aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/stormy16/stormy16.c
blob: 5847e2ad086d3aaa80266868cc6e11a87de60268 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
/* Stormy16 target functions.
   Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
   Contributed by Red Hat, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "toplev.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "output.h"
#include "except.h"
#include "function.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"

static rtx emit_addhi3_postreload PARAMS ((rtx, rtx, rtx));
static void stormy16_asm_out_constructor PARAMS ((rtx, int));
static void stormy16_asm_out_destructor PARAMS ((rtx, int));

/* Define the information needed to generate branch and scc insns.  This is
   stored from the compare operation.  */
struct rtx_def * stormy16_compare_op0;
struct rtx_def * stormy16_compare_op1;

/* Return 1 if this is a LT, GE, LTU, or GEU operator.  */

int
stormy16_ineqsi_operator (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);
  
  return ((mode == VOIDmode || GET_MODE (op) == mode)
	  && (code == LT || code == GE || code == LTU || code == GEU));
}

/* Return 1 if this is an EQ or NE operator.  */

int
equality_operator (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return ((mode == VOIDmode || GET_MODE (op) == mode)
	  && (GET_CODE (op) == EQ || GET_CODE (op) == NE));
}

/* Return 1 if this is a comparison operator but not an EQ or NE operator.  */

int
inequality_operator (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return comparison_operator (op, mode) && ! equality_operator (op, mode);
}

/* Branches are handled as follows:

   1. HImode compare-and-branches.  The machine supports these
      natively, so the appropriate pattern is emitted directly.

   2. SImode EQ and NE.  These are emitted as pairs of HImode
      compare-and-branches.      

   3. SImode LT, GE, LTU and GEU.  These are emitted as a sequence
      of a SImode subtract followed by a branch (not a compare-and-branch),
      like this:
      sub
      sbc
      blt

   4. SImode GT, LE, GTU, LEU.  These are emitted as a sequence like:
      sub
      sbc
      blt
      or
      bne
*/

/* Emit a branch of kind CODE to location LOC.  */

void
stormy16_emit_cbranch (code, loc)
     enum rtx_code code;
     rtx loc;
{
  rtx op0 = stormy16_compare_op0;
  rtx op1 = stormy16_compare_op1;
  rtx condition_rtx, loc_ref, branch, cy_clobber;
  rtvec vec;
  enum machine_mode mode;
  
  mode = GET_MODE (op0);
  if (mode != HImode && mode != SImode)
    abort ();

  if (mode == SImode
      && (code == GT || code == LE || code == GTU || code == LEU))
    {
      int unsigned_p = (code == GTU || code == LEU);
      int gt_p = (code == GT || code == GTU);
      rtx lab;
      
      if (gt_p)
	lab = gen_label_rtx ();
      stormy16_emit_cbranch (unsigned_p ? LTU : LT, gt_p ? lab : loc);
      /* This should be generated as a comparison against the temporary
	 created by the previous insn, but reload can't handle that.  */
      stormy16_emit_cbranch (gt_p ? NE : EQ, loc);
      if (gt_p)
	emit_label (lab);
      return;
    }
  else if (mode == SImode 
	   && (code == NE || code == EQ)
	   && op1 != const0_rtx)
    {
      rtx lab;
      int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
      int i;
      
      if (code == EQ)
	lab = gen_label_rtx ();
      
      for (i = 0; i < num_words - 1; i++)
	{
	  stormy16_compare_op0 = simplify_gen_subreg (word_mode, op0, mode, 
						      i * UNITS_PER_WORD);
	  stormy16_compare_op1 = simplify_gen_subreg (word_mode, op1, mode, 
						      i * UNITS_PER_WORD);
	  stormy16_emit_cbranch (NE, code == EQ ? lab : loc);
	}
      stormy16_compare_op0 = simplify_gen_subreg (word_mode, op0, mode, 
						  i * UNITS_PER_WORD);
      stormy16_compare_op1 = simplify_gen_subreg (word_mode, op1, mode, 
						  i * UNITS_PER_WORD);
      stormy16_emit_cbranch (code, loc);

      if (code == EQ)
	emit_label (lab);
      return;
    }

  /* We can't allow reload to try to generate any reload after a branch,
     so when some register must match we must make the temporary ourselves.  */
  if (mode != HImode)
    {
      rtx tmp;
      tmp = gen_reg_rtx (mode);
      emit_move_insn (tmp, op0);
      op0 = tmp;
    }

  condition_rtx = gen_rtx (code, mode, op0, op1);
  loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc);
  branch = gen_rtx_SET (VOIDmode, pc_rtx,
			gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
					      loc_ref, pc_rtx));

  cy_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (BImode));

  if (mode == HImode)
    vec = gen_rtvec (2, branch, cy_clobber);
  else if (code == NE || code == EQ)
    vec = gen_rtvec (2, branch, gen_rtx_CLOBBER (VOIDmode, op0));
  else
    {
      rtx sub;
#if 0
      sub = gen_rtx_SET (VOIDmode, op0, gen_rtx_MINUS (SImode, op0, op1));
#else
      sub = gen_rtx_CLOBBER (SImode, op0);
#endif
      vec = gen_rtvec (3, branch, sub, cy_clobber);
    }

  emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, vec));
}

/* Take a SImode conditional branch, one of GT/LE/GTU/LEU, and split
   the arithmetic operation.  Most of the work is done by
   stormy16_expand_arith.  */

void
stormy16_split_cbranch (mode, label, comparison, dest, carry)
     enum machine_mode mode;
     rtx label;
     rtx comparison;
     rtx dest;
     rtx carry;
{
  rtx op0 = XEXP (comparison, 0);
  rtx op1 = XEXP (comparison, 1);
  rtx seq;
  rtx compare;
  
  start_sequence ();
  stormy16_expand_arith (mode, COMPARE, dest, op0, op1, carry);
  seq = gen_sequence ();
  end_sequence ();
  compare = SET_SRC (XVECEXP (PATTERN (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)),
			      0, 0));
  PUT_CODE (XEXP (compare, 0), GET_CODE (comparison));
  XEXP (compare, 1) = gen_rtx_LABEL_REF (VOIDmode, label);
  emit_insn (seq);
}


/* Return the string to output a conditional branch to LABEL, which is
   the operand number of the label.

   OP is the conditional expression, or NULL for branch-always.

   REVERSED is non-zero if we should reverse the sense of the comparison.

   INSN is the insn.  */

char *
stormy16_output_cbranch_hi (op, label, reversed, insn)
     rtx op;
     const char * label;
     int reversed;
     rtx insn;
{
  static char string[64];
  int need_longbranch = (op != NULL_RTX
			 ? get_attr_length (insn) == 8
			 : get_attr_length (insn) == 4);
  int really_reversed = reversed ^ need_longbranch;
  const char *ccode;
  const char *template;
  const char *operands;
  enum rtx_code code;
  
  if (! op)
    {
      if (need_longbranch)
	ccode = "jmpf";
      else
	ccode = "br";
      sprintf (string, "%s %s", ccode, label);
      return string;
    }

  code = GET_CODE (op);

  if (GET_CODE (XEXP (op, 0)) != REG)
    {
      code = swap_condition (code);
      operands = "%3,%2";
    }
  else
      operands = "%2,%3";

  /* Work out which way this really branches.  */
  if (really_reversed)
    code = reverse_condition (code);

  switch (code)
    {
    case EQ:   ccode = "z";   break;
    case NE:   ccode = "nz";  break;
    case GE:   ccode = "ge";  break;
    case LT:   ccode = "lt";  break;
    case GT:   ccode = "gt";  break;
    case LE:   ccode = "le";  break;
    case GEU:  ccode = "nc";  break;
    case LTU:  ccode = "c";   break;
    case GTU:  ccode = "hi";  break;
    case LEU:  ccode = "ls";  break;
      
    default:
      abort ();
    }

  if (need_longbranch)
    template = "b%s %s,.+8 | jmpf %s";
  else
    template = "b%s %s,%s";
  sprintf (string, template, ccode, operands, label);
  
  return string;
}

/* Return the string to output a conditional branch to LABEL, which is
   the operand number of the label, but suitable for the tail of a
   SImode branch.

   OP is the conditional expression (OP is never NULL_RTX).

   REVERSED is non-zero if we should reverse the sense of the comparison.

   INSN is the insn.  */

char *
stormy16_output_cbranch_si (op, label, reversed, insn)
     rtx op;
     const char * label;
     int reversed;
     rtx insn;
{
  static char string[64];
  int need_longbranch = get_attr_length (insn) >= 8;
  int really_reversed = reversed ^ need_longbranch;
  const char *ccode;
  const char *template;
  char prevop[16];
  enum rtx_code code;
  
  code = GET_CODE (op);

  /* Work out which way this really branches.  */
  if (really_reversed)
    code = reverse_condition (code);

  switch (code)
    {
    case EQ:   ccode = "z";   break;
    case NE:   ccode = "nz";  break;
    case GE:   ccode = "ge";  break;
    case LT:   ccode = "lt";  break;
    case GEU:  ccode = "nc";  break;
    case LTU:  ccode = "c";   break;

      /* The missing codes above should never be generated.  */
    default:
      abort ();
    }

  switch (code)
    {
    case EQ: case NE:
      {
	int regnum;
	
	if (GET_CODE (XEXP (op, 0)) != REG)
	  abort ();
      
	regnum = REGNO (XEXP (op, 0));
	sprintf (prevop, "or %s,%s", reg_names[regnum], reg_names[regnum+1]);
      }
      break;

    case GE: case LT: case GEU: case LTU:
      strcpy (prevop, "sbc %2,%3");
      break;

    default:
      abort ();
    }

  if (need_longbranch)
    template = "%s | b%s .+6 | jmpf %s";
  else
    template = "%s | b%s %s";
  sprintf (string, template, prevop, ccode, label);
  
  return string;
}

/* Many machines have some registers that cannot be copied directly to or from
   memory or even from other types of registers.  An example is the `MQ'
   register, which on most machines, can only be copied to or from general
   registers, but not memory.  Some machines allow copying all registers to and
   from memory, but require a scratch register for stores to some memory
   locations (e.g., those with symbolic address on the RT, and those with
   certain symbolic address on the Sparc when compiling PIC).  In some cases,
   both an intermediate and a scratch register are required.

   You should define these macros to indicate to the reload phase that it may
   need to allocate at least one register for a reload in addition to the
   register to contain the data.  Specifically, if copying X to a register
   CLASS in MODE requires an intermediate register, you should define
   `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
   whose registers can be used as intermediate registers or scratch registers.

   If copying a register CLASS in MODE to X requires an intermediate or scratch
   register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
   largest register class required.  If the requirements for input and output
   reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
   instead of defining both macros identically.

   The values returned by these macros are often `GENERAL_REGS'.  Return
   `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
   to or from a register of CLASS in MODE without requiring a scratch register.
   Do not define this macro if it would always return `NO_REGS'.

   If a scratch register is required (either with or without an intermediate
   register), you should define patterns for `reload_inM' or `reload_outM', as
   required..  These patterns, which will normally be implemented with a
   `define_expand', should be similar to the `movM' patterns, except that
   operand 2 is the scratch register.

   Define constraints for the reload register and scratch register that contain
   a single register class.  If the original reload register (whose class is
   CLASS) can meet the constraint given in the pattern, the value returned by
   these macros is used for the class of the scratch register.  Otherwise, two
   additional reload registers are required.  Their classes are obtained from
   the constraints in the insn pattern.

   X might be a pseudo-register or a `subreg' of a pseudo-register, which could
   either be in a hard register or in memory.  Use `true_regnum' to find out;
   it will return -1 if the pseudo is in memory and the hard register number if
   it is in a register.

   These macros should not be used in the case where a particular class of
   registers can only be copied to memory and not to another class of
   registers.  In that case, secondary reload registers are not needed and
   would not be helpful.  Instead, a stack location must be used to perform the
   copy and the `movM' pattern should use memory as a intermediate storage.
   This case often occurs between floating-point and general registers.  */

enum reg_class
stormy16_secondary_reload_class (class, mode, x)
     enum reg_class class;
     enum machine_mode mode;
     rtx x;
{
  /* This chip has the interesting property that only the first eight
     registers can be moved to/from memory.  */
  if ((GET_CODE (x) == MEM
       || ((GET_CODE (x) == SUBREG || GET_CODE (x) == REG)
	   && (true_regnum (x) == -1
	       || true_regnum (x) >= FIRST_PSEUDO_REGISTER)))
      && ! reg_class_subset_p (class, EIGHT_REGS))
    return EIGHT_REGS;

  /* When reloading a PLUS, the carry register will be required
     unless the inc or dec instructions can be used.  */
  if (stormy16_carry_plus_operand (x, mode))
    return CARRY_REGS;

  return NO_REGS;
}

/* Recognise a PLUS that needs the carry register.  */
int
stormy16_carry_plus_operand (x, mode)
     rtx x;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (x) == PLUS
	  && GET_CODE (XEXP (x, 1)) == CONST_INT
	  && (INTVAL (XEXP (x, 1)) < -4 || INTVAL (XEXP (x, 1)) > 4));
}


enum reg_class
stormy16_preferred_reload_class (x, class)
     enum reg_class class;
     rtx x;
{
  if (class == GENERAL_REGS
      && GET_CODE (x) == MEM)
    return EIGHT_REGS;

  return class;
}

#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET)				\
 (GET_CODE (X) == CONST_INT						\
  && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 2048) < 4096)

#define LEGITIMATE_ADDRESS_CONST_INT_P(X, OFFSET)			 \
 (GET_CODE (X) == CONST_INT						 \
  && INTVAL (X) + (OFFSET) >= 0						 \
  && INTVAL (X) + (OFFSET) < 0x8000					 \
  && (INTVAL (X) + (OFFSET) < 0x100 || INTVAL (X) + (OFFSET) >= 0x7F00))

int
stormy16_legitimate_address_p (mode, x, strict)
     enum machine_mode mode ATTRIBUTE_UNUSED;
     rtx x;
     int strict;
{
  if (LEGITIMATE_ADDRESS_CONST_INT_P (x, 0))
    return 1;

  if (GET_CODE (x) == PLUS
      && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 0))
    x = XEXP (x, 0);
  
  if (GET_CODE (x) == POST_INC
      || GET_CODE (x) == PRE_DEC)
    x = XEXP (x, 0);
  
  if (GET_CODE (x) == REG && REGNO_OK_FOR_BASE_P (REGNO (x))
      && (! strict || REGNO (x) < FIRST_PSEUDO_REGISTER))
    return 1;
  
  return 0;
}

/* Return nonzero if memory address X (an RTX) can have different
   meanings depending on the machine mode of the memory reference it
   is used for or if the address is valid for some modes but not
   others.

   Autoincrement and autodecrement addresses typically have mode-dependent
   effects because the amount of the increment or decrement is the size of the
   operand being addressed.  Some machines have other mode-dependent addresses.
   Many RISC machines have no mode-dependent addresses.

   You may assume that ADDR is a valid address for the machine.  
   
   On this chip, this is true if the address is valid with an offset
   of 0 but not of 6, because in that case it cannot be used as an
   address for DImode or DFmode, or if the address is a post-increment
   or pre-decrement address.  */
int
stormy16_mode_dependent_address_p (x)
     rtx x;
{
  if (LEGITIMATE_ADDRESS_CONST_INT_P (x, 0)
      && ! LEGITIMATE_ADDRESS_CONST_INT_P (x, 6))
    return 1;
  
  if (GET_CODE (x) == PLUS
      && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 0)
      && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 6))
    return 1;

  if (GET_CODE (x) == PLUS)
    x = XEXP (x, 0);

  if (GET_CODE (x) == POST_INC
      || GET_CODE (x) == PRE_DEC)
    return 1;

  return 0;
}

/* A C expression that defines the optional machine-dependent constraint
   letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
   types of operands, usually memory references, for the target machine.
   Normally this macro will not be defined.  If it is required for a particular
   target machine, it should return 1 if VALUE corresponds to the operand type
   represented by the constraint letter C.  If C is not defined as an extra
   constraint, the value returned should be 0 regardless of VALUE.  */
int
stormy16_extra_constraint_p (x, c)
     rtx x;
     int c;
{
  switch (c)
    {
      /* 'Q' is for pushes.  */
    case 'Q':
      return (GET_CODE (x) == MEM
	      && GET_CODE (XEXP (x, 0)) == POST_INC
	      && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx);

      /* 'R' is for pops.  */
    case 'R':
      return (GET_CODE (x) == MEM
	      && GET_CODE (XEXP (x, 0)) == PRE_DEC
	      && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx);

      /* 'S' is for immediate memory addresses.  */
    case 'S':
      return (GET_CODE (x) == MEM
	      && GET_CODE (XEXP (x, 0)) == CONST_INT
	      && stormy16_legitimate_address_p (VOIDmode, XEXP (x, 0), 0));

      /* 'T' is for Rx.  */
    case 'T':
      /* Not implemented yet.  */
      return 0;

      /* 'U' is for CONST_INT values not between 2 and 15 inclusive,
	 for allocating a scratch register for 32-bit shifts.  */
    case 'U':
      return (GET_CODE (x) == CONST_INT
	      && (INTVAL (x) < 2 || INTVAL (x) > 15));

    default:
      return 0;
    }
}

int
short_memory_operand (x, mode)
     rtx x;
     enum machine_mode mode;
{
  if (! memory_operand (x, mode))
    return 0;
  return (GET_CODE (XEXP (x, 0)) != PLUS);
}

/* Splitter for the 'move' patterns, for modes not directly implemeted
   by hardware.  Emit insns to copy a value of mode MODE from SRC to
   DEST.

   This function is only called when reload_completed.
   */

void 
stormy16_split_move (mode, dest, src)
     enum machine_mode mode;
     rtx dest;
     rtx src;
{
  int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
  int direction, end, i;
  int src_modifies = 0;
  int dest_modifies = 0;
  int src_volatile = 0;
  int dest_volatile = 0;
  rtx mem_operand;
  
  /* Check initial conditions.  */
  if (! reload_completed
      || mode == QImode || mode == HImode
      || ! nonimmediate_operand (dest, mode)
      || ! general_operand (src, mode))
    abort ();

  /* This case is not supported below, and shouldn't be generated.  */
  if (GET_CODE (dest) == MEM
      && GET_CODE (src) == MEM)
    abort ();

  /* This case is very very bad after reload, so trap it now.  */
  if (GET_CODE (dest) == SUBREG
      || GET_CODE (src) == SUBREG)
    abort ();

  /* The general idea is to copy by words, offsetting the source and
     destination.  Normally the least-significant word will be copied
     first, but for pre-dec operations it's better to copy the 
     most-significant word first.  Only one operand can be a pre-dec
     or post-inc operand.  

     It's also possible that the copy overlaps so that the direction
     must be reversed.  */
  direction = 1;
  
  if (GET_CODE (dest) == MEM)
    {
      mem_operand = XEXP (dest, 0);
      dest_modifies = side_effects_p (mem_operand);
      dest_volatile = MEM_VOLATILE_P (dest);
      if (dest_volatile)
	{
	  dest = copy_rtx (dest);
	  MEM_VOLATILE_P (dest) = 0;
	}
    }
  else if (GET_CODE (src) == MEM)
    {
      mem_operand = XEXP (src, 0);
      src_modifies = side_effects_p (mem_operand);
      src_volatile = MEM_VOLATILE_P (src);
      if (src_volatile)
	{
	  src = copy_rtx (src);
	  MEM_VOLATILE_P (src) = 0;
	}
    }
  else
    mem_operand = NULL_RTX;

  if (mem_operand == NULL_RTX)
    {
      if (GET_CODE (src) == REG
	  && GET_CODE (dest) == REG
	  && reg_overlap_mentioned_p (dest, src)
	  && REGNO (dest) > REGNO (src))
	direction = -1;
    }
  else if (GET_CODE (mem_operand) == PRE_DEC
      || (GET_CODE (mem_operand) == PLUS 
	  && GET_CODE (XEXP (mem_operand, 0)) == PRE_DEC))
    direction = -1;
  else if (GET_CODE (src) == MEM
	   && reg_overlap_mentioned_p (dest, src))
    {
      int regno;
      if (GET_CODE (dest) != REG)
	abort ();
      regno = REGNO (dest);
      
      if (! refers_to_regno_p (regno, regno + num_words, mem_operand, 0))
	abort ();
      
      if (refers_to_regno_p (regno, regno + 1, mem_operand, 0))
	direction = -1;
      else if (refers_to_regno_p (regno + num_words - 1, regno + num_words,
				  mem_operand, 0))
	direction = 1;
      else
	/* This means something like
	   (set (reg:DI r0) (mem:DI (reg:HI r1)))
	   which we'd need to support by doing the set of the second word
	   last.  */
	abort ();
    }

  end = direction < 0 ? -1 : num_words;
  for (i = direction < 0 ? num_words - 1 : 0; i != end; i += direction)
    {
      rtx w_src, w_dest;
      if (src_modifies)
	w_src = gen_rtx_MEM (word_mode, mem_operand);
      else
	w_src = simplify_gen_subreg (word_mode, src, mode, i * UNITS_PER_WORD);
      if (src_volatile)
	MEM_VOLATILE_P (w_src) = 1;
      if (dest_modifies)
	w_dest = gen_rtx_MEM (word_mode, mem_operand);
      else
	w_dest = simplify_gen_subreg (word_mode, dest, mode, 
				      i * UNITS_PER_WORD);
      if (dest_volatile)
	MEM_VOLATILE_P (w_dest) = 1;
      
      /* The simplify_subreg calls must always be able to simplify.  */
      if (GET_CODE (w_src) == SUBREG
	  || GET_CODE (w_dest) == SUBREG)
	abort ();
      
      emit_insn (gen_rtx_SET (VOIDmode, w_dest, w_src));
    }
}

/* Expander for the 'move' patterns.  Emit insns to copy a value of
   mode MODE from SRC to DEST.  */

void 
stormy16_expand_move (mode, dest, src)
     enum machine_mode mode;
     rtx dest;
     rtx src;
{
  /* There are only limited immediate-to-memory move instructions.  */
  if (! reload_in_progress
      && ! reload_completed
      && GET_CODE (dest) == MEM
      && (GET_CODE (XEXP (dest, 0)) != CONST_INT
	  || ! stormy16_legitimate_address_p (mode, XEXP (dest, 0), 0))
      && GET_CODE (src) != REG
      && GET_CODE (src) != SUBREG)
    src = copy_to_mode_reg (mode, src);

  /* Don't emit something we would immediately split.  */
  if (reload_completed
      && mode != HImode && mode != QImode)
    {
      stormy16_split_move (mode, dest, src);
      return;
    }
  
  emit_insn (gen_rtx_SET (VOIDmode, dest, src));
}


/* Stack Layout:

   The stack is laid out as follows:

SP->
FP->	Local variables
	Register save area (up to 4 words)
	Argument register save area for stdarg (NUM_ARGUMENT_REGISTERS words)

AP->	Return address (two words)
	9th procedure parameter word
	10th procedure parameter word
	...
	last procedure parameter word

  The frame pointer location is tuned to make it most likely that all
  parameters and local variables can be accessed using a load-indexed
  instruction.  */

/* A structure to describe the layout.  */
struct stormy16_stack_layout
{
  /* Size of the topmost three items on the stack.  */
  int locals_size;
  int register_save_size;
  int stdarg_save_size;
  /* Sum of the above items.  */
  int frame_size;
  /* Various offsets.  */
  int first_local_minus_ap;
  int sp_minus_fp;
  int fp_minus_ap;
};

/* Does REGNO need to be saved?  */
#define REG_NEEDS_SAVE(REGNUM, IFUN)					\
  ((regs_ever_live[REGNUM] && ! call_used_regs[REGNUM])			\
   || (IFUN && ! fixed_regs[REGNUM] && call_used_regs[REGNUM]		\
       && (regs_ever_live[REGNUM] || ! current_function_is_leaf)))

/* Compute the stack layout.  */
struct stormy16_stack_layout 
stormy16_compute_stack_layout ()
{
  struct stormy16_stack_layout layout;
  int regno;
  const int ifun = stormy16_interrupt_function_p ();

  layout.locals_size = get_frame_size ();
  
  layout.register_save_size = 0;
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (REG_NEEDS_SAVE (regno, ifun))
      layout.register_save_size += UNITS_PER_WORD;
  
  if (current_function_varargs || current_function_stdarg)
    layout.stdarg_save_size = NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD;
  else
    layout.stdarg_save_size = 0;
  
  layout.frame_size = (layout.locals_size 
		       + layout.register_save_size 
		       + layout.stdarg_save_size);
  
  if (current_function_args_size <= 2048 && current_function_args_size != -1)
    {
      if (layout.frame_size + INCOMING_FRAME_SP_OFFSET 
	  + current_function_args_size <= 2048)
	layout.fp_minus_ap = layout.frame_size + INCOMING_FRAME_SP_OFFSET;
      else
	layout.fp_minus_ap = 2048 - current_function_args_size;
    }
  else
    layout.fp_minus_ap = (layout.stdarg_save_size 
			  + layout.register_save_size
			  + INCOMING_FRAME_SP_OFFSET);
  layout.sp_minus_fp = (layout.frame_size + INCOMING_FRAME_SP_OFFSET 
			- layout.fp_minus_ap);
  layout.first_local_minus_ap = layout.sp_minus_fp - layout.locals_size;
  return layout;
}

/* Determine how all the special registers get eliminated.  */
int
stormy16_initial_elimination_offset (from, to)
     int from, to;
{
  struct stormy16_stack_layout layout;
  int result;
  
  layout = stormy16_compute_stack_layout ();

  if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    result = layout.sp_minus_fp - layout.locals_size;
  else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    result = -layout.locals_size;
  else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    result = -layout.fp_minus_ap;
  else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    result = -(layout.sp_minus_fp + layout.fp_minus_ap);
  else
    abort ();

  return result;
}

static rtx
emit_addhi3_postreload (dest, src0, src1)
     rtx dest;
     rtx src0;
     rtx src1;
{
  rtx set, clobber, insn;
  
  set = gen_rtx_SET (VOIDmode, dest, gen_rtx_PLUS (HImode, src0, src1));
  clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
  insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
  return insn;
}

/* Called after register allocation to add any instructions needed for
   the prologue.  Using a prologue insn is favored compared to putting
   all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE macro,
   since it allows the scheduler to intermix instructions with the
   saves of the caller saved registers.  In some cases, it might be
   necessary to emit a barrier instruction as the last insn to prevent
   such scheduling.

   Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
   so that the debug info generation code can handle them properly.  */
void
stormy16_expand_prologue ()
{
  struct stormy16_stack_layout layout;
  int regno;
  rtx insn;
  rtx mem_push_rtx;
  rtx mem_fake_push_rtx;
  const int ifun = stormy16_interrupt_function_p ();
  
  mem_push_rtx = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
  mem_push_rtx = gen_rtx_MEM (HImode, mem_push_rtx);
  mem_fake_push_rtx = gen_rtx_PRE_INC (Pmode, stack_pointer_rtx);
  mem_fake_push_rtx = gen_rtx_MEM (HImode, mem_fake_push_rtx);
    
  layout = stormy16_compute_stack_layout ();

  /* Save the argument registers if necessary.  */
  if (layout.stdarg_save_size)
    for (regno = FIRST_ARGUMENT_REGISTER; 
	 regno < FIRST_ARGUMENT_REGISTER + NUM_ARGUMENT_REGISTERS;
	 regno++)
      {
	rtx reg = gen_rtx_REG (HImode, regno);
	insn = emit_move_insn (mem_push_rtx, reg);
	RTX_FRAME_RELATED_P (insn) = 1;
	REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
					      gen_rtx_SET (VOIDmode,
							   mem_fake_push_rtx,
							   reg),
					      REG_NOTES (insn));
      }
  
  /* Push each of the registers to save.  */
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (REG_NEEDS_SAVE (regno, ifun))
      {
	rtx reg = gen_rtx_REG (HImode, regno);
	insn = emit_move_insn (mem_push_rtx, reg);
	RTX_FRAME_RELATED_P (insn) = 1;
	REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
					      gen_rtx_SET (VOIDmode,
							   mem_fake_push_rtx,
							   reg),
					      REG_NOTES (insn));
      }

  /* It's just possible that the SP here might be what we need for
     the new FP... */
  if (frame_pointer_needed && layout.sp_minus_fp == layout.locals_size)
    {
      insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Allocate space for local variables.  */
  if (layout.locals_size)
    {
      insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
				     GEN_INT (layout.locals_size));
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Set up the frame pointer, if required.  */
  if (frame_pointer_needed && layout.sp_minus_fp != layout.locals_size)
    {
      insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
      if (layout.sp_minus_fp)
	{
	  insn = emit_addhi3_postreload (hard_frame_pointer_rtx,
					 hard_frame_pointer_rtx,
					 GEN_INT (-layout.sp_minus_fp));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
    }
}

/* Do we need an epilogue at all?  */
int
direct_return ()
{
  return (reload_completed 
	  && stormy16_compute_stack_layout ().frame_size == 0);
}

/* Called after register allocation to add any instructions needed for
   the epilogue.  Using a epilogue insn is favored compared to putting
   all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE macro,
   since it allows the scheduler to intermix instructions with the
   saves of the caller saved registers.  In some cases, it might be
   necessary to emit a barrier instruction as the last insn to prevent
   such scheduling.  */

void
stormy16_expand_epilogue ()
{
  struct stormy16_stack_layout layout;
  rtx mem_pop_rtx;
  int regno;
  const int ifun = stormy16_interrupt_function_p ();
  
  mem_pop_rtx = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
  mem_pop_rtx = gen_rtx_MEM (HImode, mem_pop_rtx);
  
  layout = stormy16_compute_stack_layout ();

  /* Pop the stack for the locals.  */
  if (layout.locals_size)
    {
      if (frame_pointer_needed && layout.sp_minus_fp == layout.locals_size)
	emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
      else
	emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
				GEN_INT (- layout.locals_size));
    }

  /* Restore any call-saved registers.  */
  for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
    if (REG_NEEDS_SAVE (regno, ifun))
      emit_move_insn (gen_rtx_REG (HImode, regno), mem_pop_rtx);
  
  /* Pop the stack for the stdarg save area.  */
  if (layout.stdarg_save_size)
    emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
			    GEN_INT (- layout.stdarg_save_size));

  /* Return.  */
  if (ifun)
    emit_jump_insn (gen_return_internal_interrupt ());
  else
    emit_jump_insn (gen_return_internal ());
}

int
stormy16_epilogue_uses (regno)
     int regno;
{
  if (reload_completed && call_used_regs[regno])
    {
      const int ifun = stormy16_interrupt_function_p ();
      return REG_NEEDS_SAVE (regno, ifun);
    }
  return 0;
}

/* Return an updated summarizer variable CUM to advance past an
   argument in the argument list.  The values MODE, TYPE and NAMED
   describe that argument.  Once this is done, the variable CUM is
   suitable for analyzing the *following* argument with
   `FUNCTION_ARG', etc.

   This function need not do anything if the argument in question was
   passed on the stack.  The compiler knows how to track the amount of
   stack space used for arguments without any special help.  However,
   it makes life easier for stormy16_build_va_list if it does update
   the word count.  */
CUMULATIVE_ARGS
stormy16_function_arg_advance (cum, mode, type, named)
     CUMULATIVE_ARGS cum;
     enum machine_mode mode;
     tree type;
     int named ATTRIBUTE_UNUSED;
{
  /* If an argument would otherwise be passed partially in registers,
     and partially on the stack, the whole of it is passed on the
     stack.  */
  if (cum < NUM_ARGUMENT_REGISTERS
      && cum + STORMY16_WORD_SIZE (type, mode) > NUM_ARGUMENT_REGISTERS)
    cum = NUM_ARGUMENT_REGISTERS;
  
  cum += STORMY16_WORD_SIZE (type, mode);
  
  return cum;
}

/* Do any needed setup for a variadic function.  CUM has not been updated
   for the last named argument which has type TYPE and mode MODE.  */
void
stormy16_setup_incoming_varargs (cum, int_mode, type, pretend_size)
     CUMULATIVE_ARGS cum ATTRIBUTE_UNUSED;
     int             int_mode ATTRIBUTE_UNUSED;
     tree            type ATTRIBUTE_UNUSED;
     int *           pretend_size ATTRIBUTE_UNUSED;
{
}

/* Build the va_list type.

   For this chip, va_list is a record containing a counter and a pointer.
   The counter is of type 'int' and indicates how many bytes
   have been used to date.  The pointer indicates the stack position
   for arguments that have not been passed in registers.  
   To keep the layout nice, the pointer is first in the structure.  */

tree
stormy16_build_va_list ()
{
  tree f_1, f_2, record, type_decl;

  record = make_lang_type (RECORD_TYPE);
  type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);

  f_2 = build_decl (FIELD_DECL, get_identifier ("base"),
		      ptr_type_node);
  f_1 = build_decl (FIELD_DECL, get_identifier ("count"), 
		      unsigned_type_node);

  DECL_FIELD_CONTEXT (f_1) = record;
  DECL_FIELD_CONTEXT (f_2) = record;

  TREE_CHAIN (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_1;
  TREE_CHAIN (f_1) = f_2;

  layout_type (record);

  return record;
}

/* Implement the stdarg/varargs va_start macro.  STDARG_P is non-zero if this
   is stdarg.h instead of varargs.h.  VALIST is the tree of the va_list
   variable to initialize.  NEXTARG is the machine independent notion of the
   'next' argument after the variable arguments.  */
void
stormy16_expand_builtin_va_start (stdarg_p, valist, nextarg)
     int stdarg_p ATTRIBUTE_UNUSED;
     tree valist;
     rtx nextarg ATTRIBUTE_UNUSED;
{
  tree f_base, f_count;
  tree base, count;
  tree t;

  if (stormy16_interrupt_function_p ())
    error ("cannot use va_start in interrupt function");
  
  f_base = TYPE_FIELDS (va_list_type_node);
  f_count = TREE_CHAIN (f_base);
  
  base = build (COMPONENT_REF, TREE_TYPE (f_base), valist, f_base);
  count = build (COMPONENT_REF, TREE_TYPE (f_count), valist, f_count);

  t = make_tree (TREE_TYPE (base), virtual_incoming_args_rtx);
  t = build (PLUS_EXPR, TREE_TYPE (base), t, 
	     build_int_2 (INCOMING_FRAME_SP_OFFSET, 0));
  t = build (MODIFY_EXPR, TREE_TYPE (base), base, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  t = build (MODIFY_EXPR, TREE_TYPE (count), count, 
	     build_int_2 (current_function_args_info * UNITS_PER_WORD, 0));
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* Implement the stdarg/varargs va_arg macro.  VALIST is the variable
   of type va_list as a tree, TYPE is the type passed to va_arg.  */
rtx
stormy16_expand_builtin_va_arg (valist, type)
     tree valist;
     tree type;
{
  tree f_base, f_count;
  tree base, count;
  rtx count_rtx, addr_rtx, r;
  rtx lab_gotaddr, lab_fromstack;
  tree t;
  int size, last_reg_count;
  tree size_tree, count_plus_size;
  
  f_base = TYPE_FIELDS (va_list_type_node);
  f_count = TREE_CHAIN (f_base);
  
  base = build (COMPONENT_REF, TREE_TYPE (f_base), valist, f_base);
  count = build (COMPONENT_REF, TREE_TYPE (f_count), valist, f_count);

  size = PUSH_ROUNDING (int_size_in_bytes (type));
  size_tree = round_up (size_in_bytes (type), UNITS_PER_WORD);
  
  last_reg_count = NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD - size;

  count_rtx = expand_expr (count, NULL_RTX, HImode, EXPAND_NORMAL);
  lab_gotaddr = gen_label_rtx ();
  lab_fromstack = gen_label_rtx ();
  addr_rtx = gen_reg_rtx (Pmode);
  emit_cmp_and_jump_insns (count_rtx, GEN_INT (last_reg_count),
			  GTU, const1_rtx, HImode, 1, 1, lab_fromstack);
  
  t = build (PLUS_EXPR, ptr_type_node, base, count);
  r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
  if (r != addr_rtx)
    emit_move_insn (addr_rtx, r);

  emit_jump_insn (gen_jump (lab_gotaddr));
  emit_barrier ();
  emit_label (lab_fromstack);
  
  /* Arguments larger than a word might need to skip over some
     registers, since arguments are either passed entirely in
     registers or entirely on the stack.  */
  if (size > 2 || size < 0)
    {
      rtx lab_notransition = gen_label_rtx ();
      emit_cmp_and_jump_insns (count_rtx, GEN_INT (NUM_ARGUMENT_REGISTERS 
						   * UNITS_PER_WORD),
			       GEU, const1_rtx, HImode, 1, 1, 
			       lab_notransition);
      
      t = build (MODIFY_EXPR, TREE_TYPE (count), count, 
		 build_int_2 (NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD, 0));
      TREE_SIDE_EFFECTS (t) = 1;
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      
      emit_label (lab_notransition);
    }

  t = build (PLUS_EXPR, sizetype, size_tree,
	     build_int_2 ((- NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD
			   + INCOMING_FRAME_SP_OFFSET),
			  -1));
  t = build (PLUS_EXPR, TREE_TYPE (count), count, fold (t));
  t = build (MINUS_EXPR, TREE_TYPE (base), base, t);
  r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
  if (r != addr_rtx)
    emit_move_insn (addr_rtx, r);
	     
  emit_label (lab_gotaddr);

  count_plus_size = build (PLUS_EXPR, TREE_TYPE (count), count, size_tree);
  t = build (MODIFY_EXPR, TREE_TYPE (count), count, count_plus_size);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  return addr_rtx;
}

/* Initialize the variable parts of a trampoline.  ADDR is an RTX for
   the address of the trampoline; FNADDR is an RTX for the address of
   the nested function; STATIC_CHAIN is an RTX for the static chain
   value that should be passed to the function when it is called.  */
void
stormy16_initialize_trampoline (addr, fnaddr, static_chain)
     rtx addr;
     rtx fnaddr;
     rtx static_chain;
{
  rtx reg_addr = gen_reg_rtx (Pmode);
  rtx temp = gen_reg_rtx (HImode);
  rtx reg_fnaddr = gen_reg_rtx (HImode);
  rtx reg_addr_mem;

  reg_addr_mem = gen_rtx_MEM (HImode, reg_addr);
    
  emit_move_insn (reg_addr, addr);
  emit_move_insn (temp, GEN_INT (0x3130 | STATIC_CHAIN_REGNUM));
  emit_move_insn (reg_addr_mem, temp);
  emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
  emit_move_insn (temp, static_chain);
  emit_move_insn (reg_addr_mem, temp);
  emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
  emit_move_insn (reg_fnaddr, fnaddr);
  emit_move_insn (temp, reg_fnaddr);
  emit_insn (gen_andhi3 (temp, temp, GEN_INT (0xFF)));
  emit_insn (gen_iorhi3 (temp, temp, GEN_INT (0x0200)));
  emit_move_insn (reg_addr_mem, temp);
  emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
  emit_insn (gen_lshrhi3 (reg_fnaddr, reg_fnaddr, GEN_INT (8)));
  emit_move_insn (reg_addr_mem, reg_fnaddr);
}

/* Create an RTX representing the place where a function returns a
   value of data type VALTYPE.  VALTYPE is a tree node representing a
   data type.  Write `TYPE_MODE (VALTYPE)' to get the machine mode
   used to represent that type.  On many machines, only the mode is
   relevant.  (Actually, on most machines, scalar values are returned
   in the same place regardless of mode).

   If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
   rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.

   If the precise function being called is known, FUNC is a tree node
   (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer.  This makes it
   possible to use a different value-returning convention for specific
   functions when all their calls are known.

   `FUNCTION_VALUE' is not used for return vales with aggregate data types,
   because these are returned in another way.  See `STRUCT_VALUE_REGNUM' and
   related macros.  */
rtx
stormy16_function_value (valtype, func)
     tree valtype;
     tree func ATTRIBUTE_UNUSED;
{
  enum machine_mode mode;
  mode = TYPE_MODE (valtype);
  PROMOTE_MODE (mode, 0, valtype);
  return gen_rtx_REG (mode, RETURN_VALUE_REGNUM);
}

/* Mark functions with SYMBOL_REF_FLAG.  */

void
stormy16_encode_section_info (decl)
     tree decl;
{
  if (TREE_CODE (decl) == FUNCTION_DECL)
    SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
}

/* Output constructors and destructors.  Just like 
   default_named_section_asm_out_* but don't set the sections writable.  */
#undef TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR stormy16_asm_out_constructor
#undef TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR stormy16_asm_out_destructor

static void
stormy16_asm_out_destructor (symbol, priority)
     rtx symbol;
     int priority;
{
  const char *section = ".dtors";
  char buf[16];

  /* ??? This only works reliably with the GNU linker.   */
  if (priority != DEFAULT_INIT_PRIORITY)
    {
      sprintf (buf, ".dtors.%.5u",
	       /* Invert the numbering so the linker puts us in the proper
		  order; constructors are run from right to left, and the
		  linker sorts in increasing order.  */
	       MAX_INIT_PRIORITY - priority);
      section = buf;
    }

  named_section_flags (section, 0);
  assemble_align (POINTER_SIZE);
  assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}

static void
stormy16_asm_out_constructor (symbol, priority)
     rtx symbol;
     int priority;
{
  const char *section = ".ctors";
  char buf[16];

  /* ??? This only works reliably with the GNU linker.   */
  if (priority != DEFAULT_INIT_PRIORITY)
    {
      sprintf (buf, ".ctors.%.5u",
	       /* Invert the numbering so the linker puts us in the proper
		  order; constructors are run from right to left, and the
		  linker sorts in increasing order.  */
	       MAX_INIT_PRIORITY - priority);
      section = buf;
    }

  named_section_flags (section, 0);
  assemble_align (POINTER_SIZE);
  assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}

/* Print a memory address as an operand to reference that memory location.  */
void
stormy16_print_operand_address (file, address)
     FILE * file;
     rtx    address;
{
  HOST_WIDE_INT offset;
  int pre_dec, post_inc;

  /* There are a few easy cases.  */
  if (GET_CODE (address) == CONST_INT)
    {
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (address) & 0xFFFF);
      return;
    }
  
  if (CONSTANT_P (address) || GET_CODE (address) == CODE_LABEL)
    {
      output_addr_const (file, address);
      return;
    }
  
  /* Otherwise, it's hopefully something of the form 
     (plus:HI (pre_dec:HI (reg:HI ...)) (const_int ...))
  */

  if (GET_CODE (address) == PLUS)
    {
      if (GET_CODE (XEXP (address, 1)) != CONST_INT)
	abort ();
      offset = INTVAL (XEXP (address, 1));
      address = XEXP (address, 0);
    }
  else
    offset = 0;

  pre_dec = (GET_CODE (address) == PRE_DEC);
  post_inc = (GET_CODE (address) == POST_INC);
  if (pre_dec || post_inc)
    address = XEXP (address, 0);
  
  if (GET_CODE (address) != REG)
    abort ();

  fputc ('(', file);
  if (pre_dec)
    fputs ("--", file);
  fputs (reg_names [REGNO (address)], file);
  if (post_inc)
    fputs ("++", file);
  if (offset != 0)
    {
      fputc (',', file);
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
    }
  fputc (')', file);
}

/* Print an operand to a assembler instruction.  */
void
stormy16_print_operand (file, x, code)
     FILE * file;
     rtx    x;
     int    code;
{
  switch (code)
    {
    case 'B':
	/* There is either one bit set, or one bit clear, in X.
	   Print it preceded by '#'.  */
      {
	HOST_WIDE_INT xx, l;

	if (GET_CODE (x) == CONST_INT)
	  xx = INTVAL (x);
	else
	  output_operand_lossage ("`B' operand is not constant");
	
	l = exact_log2 (xx);
	if (l == -1)
	  l = exact_log2 (~xx);
	if (l == -1)
	  output_operand_lossage ("`B' operand has multiple bits set");
	
	fputs (IMMEDIATE_PREFIX, file);
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, l);
	return;
      }

    case 'C':
      /* Print the symbol without a surrounding @fptr().  */
      if (GET_CODE (x) == SYMBOL_REF)
	assemble_name (file, XSTR (x, 0));
      else
	stormy16_print_operand_address (file, x);
      return;

    case 'o':
    case 'O':
      /* Print the immediate operand less one, preceded by '#'.  
         For 'O', negate it first.  */
      {
	HOST_WIDE_INT xx;
	
	if (GET_CODE (x) == CONST_INT)
	  xx = INTVAL (x);
	else
	  output_operand_lossage ("`o' operand is not constant");
	
	if (code == 'O')
	  xx = -xx;
	
	fputs (IMMEDIATE_PREFIX, file);
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, xx - 1);
	return;
      }

    case 0:
      /* Handled below.  */
      break;
      
    default:
      output_operand_lossage ("stormy16_print_operand: unknown code");
      return;
    }

  switch (GET_CODE (x))
    {
    case REG:
      fputs (reg_names [REGNO (x)], file);
      break;

    case MEM:
      stormy16_print_operand_address (file, XEXP (x, 0));
      break;

    default:
      /* Some kind of constant or label; an immediate operand,
         so prefix it with '#' for the assembler.  */
      fputs (IMMEDIATE_PREFIX, file);
      output_addr_const (file, x);
      break;
    }

  return;
}


/* Expander for the `casesi' pattern.
   INDEX is the index of the switch statement.
   LOWER_BOUND is a CONST_INT that is the value of INDEX corresponding
     to the first table entry.
   RANGE is the number of table entries.
   TABLE is an ADDR_VEC that is the jump table.
   DEFAULT_LABEL is the address to branch to if INDEX is outside the
     range LOWER_BOUND to LOWER_BOUND+RANGE-1.
*/

void 
stormy16_expand_casesi (index, lower_bound, range, table, default_label)
     rtx index;
     rtx lower_bound;
     rtx range;
     rtx table;
     rtx default_label;
{
  HOST_WIDE_INT range_i = INTVAL (range);
  rtx int_index;

  /* This code uses 'br', so it can deal only with tables of size up to
     8192 entries.  */
  if (range_i >= 8192)
    sorry ("switch statement of size %lu entries too large", 
	   (unsigned long) range_i);

  index = expand_binop (SImode, sub_optab, index, lower_bound, index, 0,
			OPTAB_LIB_WIDEN);
  emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, SImode, 1,
			   0, default_label);
  int_index = gen_lowpart_common (HImode, index);
  emit_insn (gen_ashlhi3 (int_index, int_index, GEN_INT (2)));
  emit_jump_insn (gen_tablejump_pcrel (int_index, table));
}

/* Output an ADDR_VEC.  It is output as a sequence of 'jmpf'
   instructions, without label or alignment or any other special
   constructs.  We know that the previous instruction will be the
   `tablejump_pcrel' output above.

   TODO: it might be nice to output 'br' instructions if they could
   all reach.  */

void
stormy16_output_addr_vec (file, label, table)
     FILE *file;
     rtx label ATTRIBUTE_UNUSED;
     rtx table;
{ 
  int vlen, idx;
  
  function_section (current_function_decl);

  vlen = XVECLEN (table, 0);
  for (idx = 0; idx < vlen; idx++)
    {
      fputs ("\tjmpf ", file);
      stormy16_print_operand_address (file, 
				      XEXP (XVECEXP (table, 0, idx), 0));
      fputc ('\n', file);
    }
}


/* Expander for the `call' patterns.
   INDEX is the index of the switch statement.
   LOWER_BOUND is a CONST_INT that is the value of INDEX corresponding
     to the first table entry.
   RANGE is the number of table entries.
   TABLE is an ADDR_VEC that is the jump table.
   DEFAULT_LABEL is the address to branch to if INDEX is outside the
     range LOWER_BOUND to LOWER_BOUND+RANGE-1.
*/

void 
stormy16_expand_call (retval, dest, counter)
     rtx retval;
     rtx dest;
     rtx counter;
{
  rtx call, temp;
  enum machine_mode mode;

  if (GET_CODE (dest) != MEM)
    abort ();
  dest = XEXP (dest, 0);

  if (! CONSTANT_P (dest)
      && GET_CODE (dest) != REG)
    dest = force_reg (Pmode, dest);
  
  if (retval == NULL)
    mode = VOIDmode;
  else
    mode = GET_MODE (retval);

  call = gen_rtx_CALL (mode, gen_rtx_MEM (FUNCTION_MODE, dest),
		       counter);
  if (retval)
    call = gen_rtx_SET (VOIDmode, retval, call);
  
  if (! CONSTANT_P (dest))
    {
      temp = gen_reg_rtx (HImode);
      emit_move_insn (temp, const0_rtx);
    }
  else
    temp = const0_rtx;
  
  call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call, 
						gen_rtx_USE (VOIDmode, temp)));
  emit_call_insn (call);
}

/* Expanders for multiword computational operations.  */

/* Expander for arithmetic operations; emit insns to compute

   (set DEST (CODE:MODE SRC0 SRC1))
   
   using CARRY as a temporary.  When CODE is COMPARE, a branch
   template is generated (this saves duplicating code in
   stormy16_split_cbranch).  */

void 
stormy16_expand_arith (mode, code, dest, src0, src1, carry)
     enum machine_mode mode;
     enum rtx_code code;
     rtx dest;
     rtx src0;
     rtx src1;
     rtx carry;
{
  int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
  int i;
  int firstloop = 1;

  if (code == NEG)
    {
      rtx zero_reg = gen_reg_rtx (word_mode);
      emit_move_insn (zero_reg, src0);
      src0 = zero_reg;
    }
  
  for (i = 0; i < num_words; i++)
    {
      rtx w_src0, w_src1, w_dest;
      rtx insn;
      
      if (code == NEG)
	w_src0 = src0;
      else
	w_src0 = simplify_gen_subreg (word_mode, src0, mode, 
				      i * UNITS_PER_WORD);
      w_src1 = simplify_gen_subreg (word_mode, src1, mode, i * UNITS_PER_WORD);
      w_dest = simplify_gen_subreg (word_mode, dest, mode, i * UNITS_PER_WORD);

      switch (code)
	{
	case PLUS:
	  if (firstloop
	      && GET_CODE (w_src1) == CONST_INT && INTVAL (w_src1) == 0)
	    continue;
	  
	  if (firstloop)
	    insn = gen_addchi4 (w_dest, w_src0, w_src1, carry);
	  else
	    insn = gen_addchi5 (w_dest, w_src0, w_src1, carry, carry);
	  break;

	case NEG:
	case MINUS:
	case COMPARE:
	  if (code == COMPARE && i == num_words - 1)
	    {
	      rtx branch, sub, clobber, sub_1;
	      
	      sub_1 = gen_rtx_MINUS (HImode, w_src0, 
				     gen_rtx_ZERO_EXTEND (HImode, carry));
	      sub = gen_rtx_SET (VOIDmode, w_dest,
				 gen_rtx_MINUS (HImode, sub_1, w_src1));
	      clobber = gen_rtx_CLOBBER (VOIDmode, carry);
	      branch = gen_rtx_SET (VOIDmode, pc_rtx,
				    gen_rtx_IF_THEN_ELSE (VOIDmode,
							  gen_rtx_EQ (HImode,
								      sub_1,
								      w_src1),
							  pc_rtx,
							  pc_rtx));
	      insn = gen_rtx_PARALLEL (VOIDmode,
				       gen_rtvec (3, branch, sub, clobber));
	    }
	  else if (firstloop
		   && code != COMPARE
		   && GET_CODE (w_src1) == CONST_INT && INTVAL (w_src1) == 0)
	    continue;
	  else if (firstloop)
	    insn = gen_subchi4 (w_dest, w_src0, w_src1, carry);
	  else
	    insn = gen_subchi5 (w_dest, w_src0, w_src1, carry, carry);
	  break;

	case IOR:
	case XOR:
	case AND:
	  if (GET_CODE (w_src1) == CONST_INT 
	      && INTVAL (w_src1) == -(code == AND))
	    continue;
	  
	  insn = gen_rtx_SET (VOIDmode, w_dest, gen_rtx (code, mode,
							 w_src0, w_src1));
	  break;

	case NOT:
	  insn = gen_rtx_SET (VOIDmode, w_dest, gen_rtx_NOT (mode, w_src0));
	  break;

	default:
	  abort ();
	}
      
      firstloop = 0;
      emit (insn);
    }
}

/* Return 1 if OP is a shift operator.  */

int
shift_operator (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  enum rtx_code code = GET_CODE (op);

  return (code == ASHIFT
	  || code == ASHIFTRT
	  || code == LSHIFTRT);
}

/* The shift operations are split at output time for constant values;
   variable-width shifts get handed off to a library routine.  

   Generate an output string to do (set X (CODE:MODE X SIZE_R))
   SIZE_R will be a CONST_INT, X will be a hard register.  */

const char * 
stormy16_output_shift (mode, code, x, size_r, temp)
     enum machine_mode mode;
     enum rtx_code code;
     rtx x;
     rtx size_r;
     rtx temp;
{
  HOST_WIDE_INT size;
  const char *r0, *r1, *rt;
  static char r[64];

  if (GET_CODE (size_r) != CONST_INT
      || GET_CODE (x) != REG
      || mode != SImode)
    abort ();
  size = INTVAL (size_r) & (GET_MODE_BITSIZE (mode) - 1);

  if (size == 0)
    return "";

  r0 = reg_names [REGNO (x)];
  r1 = reg_names [REGNO (x) + 1];
  rt = reg_names [REGNO (temp)];

  /* For shifts of size 1, we can use the rotate instructions.  */
  if (size == 1)
    {
      switch (code)
	{
	case ASHIFT:
	  sprintf (r, "shl %s,#1 | rlc %s,#1", r0, r1);
	  break;
	case ASHIFTRT:
	  sprintf (r, "asr %s,#1 | rrc %s,#1", r1, r0);
	  break;
	case LSHIFTRT:
	  sprintf (r, "shr %s,#1 | rrc %s,#1", r1, r0);
	  break;
	default:
	  abort ();
	}
      return r;
    }
  
  /* For large shifts, there are easy special cases.  */
  if (size == 16)
    {
      switch (code)
	{
	case ASHIFT:
	  sprintf (r, "mov %s,%s | mov %s,#0", r1, r0, r0);
	  break;
	case ASHIFTRT:
	  sprintf (r, "mov %s,%s | asr %s,#15", r0, r1, r1);
	  break;
	case LSHIFTRT:
	  sprintf (r, "mov %s,%s | mov %s,#0", r0, r1, r1);
	  break;
	default:
	  abort ();
	}
      return r;
    }
  if (size > 16)
    {
      switch (code)
	{
	case ASHIFT:
	  sprintf (r, "mov %s,%s | mov %s,#0 | shl %s,#%d", 
		   r1, r0, r0, r1, (int) size - 16);
	  break;
	case ASHIFTRT:
	  sprintf (r, "mov %s,%s | asr %s,#15 | asr %s,#%d", 
		   r0, r1, r1, r0, (int) size - 16);
	  break;
	case LSHIFTRT:
	  sprintf (r, "mov %s,%s | mov %s,#0 | shr %s,#%d", 
		   r0, r1, r1, r0, (int) size - 16);
	  break;
	default:
	  abort ();
	}
      return r;
    }

  /* For the rest, we have to do more work.  In particular, we
     need a temporary.  */
  switch (code)
    {
    case ASHIFT:
      sprintf (r, 
	       "mov %s,%s | shl %s,#%d | shl %s,#%d | shr %s,#%d | or %s,%s", 
	       rt, r0, r0, (int) size, r1, (int) size, rt, (int) 16-size,
	       r1, rt);
      break;
    case ASHIFTRT:
      sprintf (r, 
	       "mov %s,%s | asr %s,#%d | shr %s,#%d | shl %s,#%d | or %s,%s", 
	       rt, r1, r1, (int) size, r0, (int) size, rt, (int) 16-size,
	       r0, rt);
      break;
    case LSHIFTRT:
      sprintf (r, 
	       "mov %s,%s | shr %s,#%d | shr %s,#%d | shl %s,#%d | or %s,%s", 
	       rt, r1, r1, (int) size, r0, (int) size, rt, (int) 16-size,
	       r0, rt);
      break;
    default:
      abort ();
    }
  return r;
}

/* Attribute handling.  */

/* Return nonzero if the function is an interrupt function.  */
int
stormy16_interrupt_function_p ()
{
  tree attributes;
  
  /* The dwarf2 mechanism asks for INCOMING_FRAME_SP_OFFSET before
     any functions are declared, which is demonstrably wrong, but
     it is worked around here.  FIXME.  */
  if (!cfun)
    return 0;

  attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
  return lookup_attribute ("interrupt", attributes) != NULL_TREE;
}

#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE stormy16_attribute_table
static tree stormy16_handle_interrupt_attribute PARAMS ((tree *, tree, tree, int, bool *));
static const struct attribute_spec stormy16_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "interrupt", 0, 0, false, true,  true,  stormy16_handle_interrupt_attribute },
  { NULL,        0, 0, false, false, false, NULL }
};

/* Handle an "interrupt" attribute;
   arguments as in struct attribute_spec.handler.  */
static tree
stormy16_handle_interrupt_attribute (node, name, args, flags, no_add_attrs)
     tree *node;
     tree name;
     tree args ATTRIBUTE_UNUSED;
     int flags ATTRIBUTE_UNUSED;
     bool *no_add_attrs;
{
  if (TREE_CODE (*node) != FUNCTION_TYPE)
    {
      warning ("`%s' attribute only applies to functions",
	       IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

struct gcc_target targetm = TARGET_INITIALIZER;