aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/sparc/sparc.h
blob: e811359d4bd63c8afdf41cb05c84876e2420c0cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
/* Definitions of target machine for GNU compiler, for Sun SPARC.
   Copyright (C) 1987, 88, 89, 92, 94, 95, 1996 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com).
   64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
   at Cygnus Support.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Note that some other tm.h files include this one and then override
   many of the definitions that relate to assembler syntax.  */

/* Sparc64 support has been added by trying to allow for a day when one
   compiler can handle both v8 and v9.  There are a few cases where this
   isn't doable, but keep them to a minimum!

   TARGET_V9 is used to select at runtime the sparc64 chip.
   TARGET_ARCH64 is used to select at runtime a 64 bit environment.
   SPARC_V9 is defined as 0 or 1 (so it may be used inside and outside
   #define's), and says whether the cpu is a sparc64 chip (which may be
   running in a 32 or 64 bit environment).
   SPARC_ARCH64 is defined as 0 for a 32 bit environment and 1 for a 64 bit
   environment.

   In places where it is possible to choose at runtime, use TARGET_V9 and
   TARGET_ARCH64.  In places where it is currently not possible to select
   between the two at runtime use SPARC_{V9,ARCH64}.  Again, keep uses of
   SPARC_{V9,ARCH64} to a minimum.  No attempt is made to support both v8
   and v9 in the v9 compiler.

   ??? All uses of SPARC_V9 have been removed.  Try not to add new ones.
*/

#ifndef SPARC_V9
#define SPARC_V9 0
#endif
#ifndef SPARC_ARCH64
#define SPARC_ARCH64 0
#endif

/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile.  */
#define TARGET_CPU_sparc     0
#define TARGET_CPU_sparclet  1
#define TARGET_CPU_sparclite 2
#define TARGET_CPU_sparc64   3

#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc
#define CPP_DEFAULT_SPEC ""
#define ASM_DEFAULT_SPEC ""
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
#define CPP_DEFAULT_SPEC "-D__sparclet__"
#define ASM_DEFAULT_SPEC "-Asparclet"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
#define CPP_DEFAULT_SPEC "-D__sparclite__"
#define ASM_DEFAULT_SPEC "-Asparclite"
#else
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc64
/* ??? What does Sun's CC pass?  */
#define CPP_DEFAULT_SPEC "-D__sparc_v9__"
/* ??? It's not clear how other assemblers will handle this, so by default
   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
   is handled in sol2.h.  */
#define ASM_DEFAULT_SPEC "-Av9"
#else
Unrecognized value in TARGET_CPU_DEFAULT.
#endif
#endif
#endif
#endif

/* Names to predefine in the preprocessor for this target machine.  */

/* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
   the right varags.h file when bootstrapping.  */
/* ??? It's not clear what value we want to use for -Acpu/machine for
   sparc64 in 32 bit environments, so for now we only use `sparc64' in
   64 bit environments.  */
/* ??? __arch64__ is subject to change.  */

#if SPARC_ARCH64
#define CPP_PREDEFINES \
  "-Dsparc -Dsun -Dunix -D__arch64__ \
   -Asystem(unix) -Asystem(bsd) -Acpu(sparc64) -Amachine(sparc64)"
#else
#define CPP_PREDEFINES \
  "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
   -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
#endif

/* Define macros to distinguish architectures.  */

#if SPARC_ARCH64
#define CPP_SPEC "\
%{mint64:-D__INT_MAX__=9223372036854775807LL -D__LONG_MAX__=9223372036854775807LL} \
%{mlong64:-D__LONG_MAX__=9223372036854775807LL} \
"
#else
#define CPP_SPEC "%(cpp_cpu)"
#endif

/* Common CPP definitions used by CPP_SPEC amongst the various targets
   for handling -mcpu=xxx switches.  */
/* ??? v8plus/v9/ultrasparc handling is tentative */
#define CPP_CPU_SPEC "\
%{mcypress:} \
%{msparclite:-D__sparclite__} \
%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
%{mv8:-D__sparc_v8__} \
%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
%{mcpu=sparclite:-D__sparclite__} \
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
%{mcpu=v8:-D__sparc_v8__} \
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
%{mcpu=v8plus:-D__sparc_v9__} \
%{mcpu=v9:-D__sparc_v9__} \
%{mcpu=ultrasparc:-D__sparc_v9__} \
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_default)}}}}}}} \
"

/* Prevent error on `-sun4' and `-target sun4' options.  */
/* This used to translate -dalign to -malign, but that is no good
   because it can't turn off the usual meaning of making debugging dumps.  */
/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
   ??? Delete support for -m<cpu> for 2.9.  */

#define CC1_SPEC "\
%{sun4:} %{target:} \
%{mcypress:-mcpu=cypress} \
%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
"

#define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"

/* Provide required defaults for linker -e and -d switches.  */

#define LINK_SPEC \
 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
  %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"

/* Special flags to the Sun-4 assembler when using pipe for input.  */

#define ASM_SPEC "\
%| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
%(asm_cpu) \
"

/* Override in target specific files.  */
#define ASM_CPU_SPEC "\
%{msparclite:-Asparclite} \
%{mf930:-Asparclite} %{mf934:-Asparclite} \
%{mcpu=sparclite:-Asparclite} \
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
%{mcpu=v8plus:-Av9} \
%{mcpu=v9:-Av9} \
%{mcpu=ultrasparc:-Av9} \
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_default)}}}}}}} \
"

/* This macro defines names of additional specifications to put in the specs
   that can be used in various specifications like CC1_SPEC.  Its definition
   is an initializer with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the
   specification name, and a string constant that used by the GNU CC driver
   program.

   Do not define this macro if it does not need to do anything.  */

#define EXTRA_SPECS					\
  { "cpp_cpu",		CPP_CPU_SPEC },			\
  { "cpp_default",	CPP_DEFAULT_SPEC },		\
  { "asm_cpu",		ASM_CPU_SPEC },			\
  { "asm_default",	ASM_DEFAULT_SPEC },		\
  SUBTARGET_EXTRA_SPECS

#define SUBTARGET_EXTRA_SPECS

#if SPARC_ARCH64
#define PTRDIFF_TYPE "long long int"
#define SIZE_TYPE "long long unsigned int"
#else
#define PTRDIFF_TYPE "int"
/* The default value for SIZE_TYPE is "unsigned int" which is what we want.  */
#endif

/* ??? This should be 32 bits for v9 but what can we do?  */
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
#define MAX_WCHAR_TYPE_SIZE 16

/* Show we can debug even without a frame pointer.  */
#define CAN_DEBUG_WITHOUT_FP

/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
   code into the rtl.  Also, if we are profiling, we cannot eliminate
   the frame pointer (because the return address will get smashed).  */

void sparc_override_options ();

#define OVERRIDE_OPTIONS \
  do {									\
    if (profile_flag || profile_block_flag)				\
      {									\
	if (flag_pic)							\
	  {								\
	    char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";	\
	    warning ("%s and profiling conflict: disabling %s",		\
		     pic_string, pic_string);				\
	    flag_pic = 0;						\
	  }								\
	flag_omit_frame_pointer = 0;					\
      }									\
    sparc_override_options ();						\
    SUBTARGET_OVERRIDE_OPTIONS;						\
  } while (0)

/* This is meant to be redefined in the host dependent files.  */
#define SUBTARGET_OVERRIDE_OPTIONS

/* These compiler options take an argument.  We ignore -target for now.  */

#define WORD_SWITCH_TAKES_ARG(STR)				\
 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR)				\
  || !strcmp (STR, "target") || !strcmp (STR, "assert"))

/* Print subsidiary information on the compiler version in use.  */

#define TARGET_VERSION fprintf (stderr, " (sparc)");

/* Generate DBX debugging information.  */

#define DBX_DEBUGGING_INFO

/* Run-time compilation parameters selecting different hardware subsets.  */

extern int target_flags;

/* Nonzero if we should generate code to use the fpu.  */
#define MASK_FPU 1
#define TARGET_FPU (target_flags & MASK_FPU)

/* Nonzero if we should use FUNCTION_EPILOGUE.  Otherwise, we
   use fast return insns, but lose some generality.  */
#define MASK_EPILOGUE 2
#define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)

/* Nonzero if we should assume that double pointers might be unaligned.
   This can happen when linking gcc compiled code with other compilers,
   because the ABI only guarantees 4 byte alignment.  */
#define MASK_UNALIGNED_DOUBLES 4
#define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)

/* Nonzero means that we should generate code for a v8 sparc.  */
#define MASK_V8 0x8
#define TARGET_V8 (target_flags & MASK_V8)

/* Nonzero means that we should generate code for a sparclite.
   This enables the sparclite specific instructions, but does not affect
   whether FPU instructions are emitted.  */
#define MASK_SPARCLITE 0x10
#define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)

/* Nonzero if we're compiling for the sparclet.  */
#define MASK_SPARCLET 0x20
#define TARGET_SPARCLET (target_flags & MASK_SPARCLET)

/* Nonzero if we're compiling for v9 sparc.
   Note that v9's can run in 32 bit mode so this doesn't necessarily mean
   the word size is 64.  */
#define MASK_V9 0x40
#define TARGET_V9 (target_flags & MASK_V9)

/* Non-zero to generate code that uses the instructions deprecated in
   the v9 architecture.  This option only applies to v9 systems.  */
/* ??? This isn't user selectable yet.  It's used to enable such insns
   on 32 bit v9 systems and for the moment they're permanently disabled
   on 64 bit v9 systems.  */
#define MASK_DEPRECATED_V8_INSNS 0x80
#define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)

/* Mask of all CPU selection flags.  */
#define MASK_ISA \
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)

/* Non-zero means don't pass `-assert pure-text' to the linker.  */
#define MASK_IMPURE_TEXT 0x100
#define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)

/* Nonzero means that we should generate code using a flat register window
   model, i.e. no save/restore instructions are generated, which is
   compatible with normal sparc code.
   The frame pointer is %i7 instead of %fp.  */
#define MASK_FLAT 0x200
#define TARGET_FLAT (target_flags & MASK_FLAT)

/* Nonzero means use the registers that the Sparc ABI reserves for
   application software.  This must be the default to coincide with the
   setting in FIXED_REGISTERS.  */
#define MASK_APP_REGS 0x400
#define TARGET_APP_REGS (target_flags & MASK_APP_REGS)

/* Option to select how quad word floating point is implemented.
   When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
   Otherwise, we use the SPARC ABI quad library functions.  */
#define MASK_HARD_QUAD 0x800
#define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)

/* Bit 0x1000 currently unused.  */

/* Nonzero if ints are 64 bits.
   This automatically implies longs are 64 bits too.
   This option is for v9 only.  */
#define MASK_INT64 0x2000
#define TARGET_INT64 (target_flags & MASK_INT64)

/* Nonzero if longs are 64 bits.
   This option is for v9 only.  */
#define MASK_LONG64 0x4000
#define TARGET_LONG64 (target_flags & MASK_LONG64)

/* Nonzero if pointers are 64 bits.
   This is not a user selectable option, though it may be one day -
   so it is used to determine pointer size instead of an architecture flag.  */
#define MASK_PTR64 0x8000
#define TARGET_PTR64 (target_flags & MASK_PTR64)

/* Nonzero if generating code to run in a 64 bit environment.  */
#define MASK_ARCH64 0x10000
#define TARGET_ARCH64 (target_flags & MASK_ARCH64)
#define TARGET_ARCH32 (! TARGET_ARCH64)

/* SPARC64 memory models.
   TARGET_MEDLOW: 32 bit address space, top 32 bits = 0,
                  avoid generating %uhi and %ulo terms.
                  (pointers can be 32 or 64 bits)
   TARGET_MEDANY: 64 bit address space, data segment restricted to 4G, but
                  can be loaded anywhere (use %g4 as offset).
   TARGET_FULLANY: 64 bit address space, no restrictions.
                   This option is not fully supported yet.
   These options are for v9 only.  All mask values are nonzero so the v8
   compiler can assume this stuff won't interfere.  */
#define MASK_MEDLOW 0x20000
#define MASK_MEDANY 0x40000
#define MASK_FULLANY 0x60000
#define MASK_CODE_MODEL (MASK_MEDLOW + MASK_MEDANY)
#define TARGET_MEDLOW ((target_flags & MASK_CODE_MODEL) == MASK_MEDLOW)
#define TARGET_MEDANY ((target_flags & MASK_CODE_MODEL) == MASK_MEDANY)
#define TARGET_FULLANY ((target_flags & MASK_CODE_MODEL) == MASK_FULLANY)

/* ??? There are hardcoded references to this reg in the .md file.  */
#define MEDANY_BASE_REG "%g4"

/* Non-zero means use a stack bias of 2047.  Stack offsets are obtained by
   adding 2047 to %sp.  This option is for v9 only and is the default.  */
#define MASK_STACK_BIAS 0x80000
#define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)

/* Non-zero means %g0 is a normal register.
   We still clobber it as necessary, but we can't rely on it always having
   a zero value.
   We don't bother to support this in true 64 bit mode.  */
#define MASK_LIVE_G0 0x100000
#define TARGET_LIVE_G0 (target_flags & MASK_LIVE_G0)

/* Macro to define tables used to set the flags.
   This is a list in braces of pairs in braces,
   each pair being { "NAME", VALUE }
   where VALUE is the bits to set or minus the bits to clear.
   An empty string NAME is used to identify the default VALUE.  */

#define TARGET_SWITCHES  \
  { {"fpu", MASK_FPU},			\
    {"no-fpu", -MASK_FPU},		\
    {"hard-float", MASK_FPU},		\
    {"soft-float", -MASK_FPU},		\
    {"epilogue", MASK_EPILOGUE},	\
    {"no-epilogue", -MASK_EPILOGUE},	\
    {"unaligned-doubles", MASK_UNALIGNED_DOUBLES}, \
    {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES}, \
    {"impure-text", MASK_IMPURE_TEXT},	\
    {"no-impure-text", -MASK_IMPURE_TEXT}, \
    {"flat", MASK_FLAT},		\
    {"no-flat", -MASK_FLAT},		\
    {"app-regs", MASK_APP_REGS},	\
    {"no-app-regs", -MASK_APP_REGS},	\
    {"hard-quad-float", MASK_HARD_QUAD}, \
    {"soft-quad-float", -MASK_HARD_QUAD}, \
    /* ??? These are coerced to -mcpu=.  Delete in 2.9.  */ \
    {"cypress", 0},			\
    {"sparclite", 0},			\
    {"f930", 0},			\
    {"f934", 0},			\
    {"v8", 0},				\
    {"supersparc", 0},			\
    SUBTARGET_SWITCHES			\
    ARCH64_SWITCHES			\
    { "", TARGET_DEFAULT}}

/* MASK_APP_REGS must always be the default because that's what
   FIXED_REGISTERS is set to and -ffixed- is processed before
   CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)

/* This is meant to be redefined in target specific files.  */
#define SUBTARGET_SWITCHES

/* ??? Until we support a combination 32/64 bit compiler, these options
   are only defined for the v9 compiler in a true 64 bit environment.  */
#if SPARC_ARCH64
#define ARCH64_SWITCHES \
/*  {"arch32", -MASK_ARCH64}, */	\
/*  {"arch64", MASK_ARCH64}, */		\
    {"int64", MASK_INT64+MASK_LONG64},	\
    {"int32", -MASK_INT64},		\
    {"int32", MASK_LONG64},		\
    {"long64", -MASK_INT64},		\
    {"long64", MASK_LONG64},		\
    {"long32", -(MASK_INT64+MASK_LONG64)}, \
/*  {"ptr64", MASK_PTR64}, */		\
/*  {"ptr32", -MASK_PTR64}, */		\
    {"stack-bias", MASK_STACK_BIAS},	\
    {"no-stack-bias", -MASK_STACK_BIAS}, \
    {"medlow", -MASK_CODE_MODEL},	\
    {"medlow", MASK_MEDLOW},		\
    {"medany", -MASK_CODE_MODEL},	\
    {"medany", MASK_MEDANY},		\
    {"fullany", -MASK_CODE_MODEL},	\
    {"fullany", MASK_FULLANY},
#else
#define ARCH64_SWITCHES
#endif

/* Processor type.
   These must match the values for the cpu attribute in sparc.md.  */
enum processor_type {
  PROCESSOR_V7,
  PROCESSOR_CYPRESS,
  PROCESSOR_V8,
  PROCESSOR_SUPERSPARC,
  PROCESSOR_SPARCLITE,
  PROCESSOR_F930,
  PROCESSOR_F934,
  PROCESSOR_SPARCLET,
  PROCESSOR_90C701,
  PROCESSOR_V8PLUS,
  PROCESSOR_V9,
  PROCESSOR_ULTRASPARC
};

/* This is set from -m{cpu,tune}=xxx.  */
extern enum processor_type sparc_cpu;

/* Recast the cpu class to be the cpu attribute.
   Every file includes us, but not every file includes insn-attr.h.  */
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)

/* This macro is similar to `TARGET_SWITCHES' but defines names of
   command options that have values.  Its definition is an
   initializer with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the
   fixed part of the option name, and the address of a variable. 
   The variable, type `char *', is set to the variable part of the
   given option if the fixed part matches.  The actual option name
   is made by appending `-m' to the specified name.

   Here is an example which defines `-mshort-data-NUMBER'.  If the
   given option is `-mshort-data-512', the variable `m88k_short_data'
   will be set to the string `"512"'.

	extern char *m88k_short_data;
	#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } }  */

#define TARGET_OPTIONS \
{					\
  {"cpu=",  &sparc_select[1].string},	\
  {"tune=", &sparc_select[2].string},	\
  SUBTARGET_OPTIONS \
}

/* This is meant to be redefined in target specific files.  */
#define SUBTARGET_OPTIONS

/* sparc_select[0] is reserved for the default cpu.  */
struct sparc_cpu_select
{
  char *string;
  char *name;
  int set_tune_p;
  int set_arch_p;
};

extern struct sparc_cpu_select sparc_select[];

/* target machine storage layout */

/* Define for cross-compilation to a sparc target with no TFmode from a host
   with a different float format (e.g. VAX).  */
#define REAL_ARITHMETIC

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields.  */
#define BITS_BIG_ENDIAN 1

/* Define this if most significant byte of a word is the lowest numbered.  */
/* This is true on the SPARC.  */
#define BYTES_BIG_ENDIAN 1

/* Define this if most significant word of a multiword number is the lowest
   numbered.  */
/* Doubles are stored in memory with the high order word first.  This
   matters when cross-compiling.  */
#define WORDS_BIG_ENDIAN 1

/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8

/* Width in bits of a "word", which is the contents of a machine register.
   Note that this is not necessarily the width of data type `int';
   if using 16-bit ints on a 68000, this would still be 32.
   But on a machine with 16-bit registers, this would be 16.  */
#define BITS_PER_WORD		(TARGET_ARCH64 ? 64 : 32)
#define MAX_BITS_PER_WORD	64

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
#define MIN_UNITS_PER_WORD	4

/* Now define the sizes of the C data types.  */

#define SHORT_TYPE_SIZE		16
#define INT_TYPE_SIZE		(TARGET_INT64 ? 64 : 32)
#define LONG_TYPE_SIZE		(TARGET_LONG64 ? 64 : 32)
#define LONG_LONG_TYPE_SIZE	64
#define FLOAT_TYPE_SIZE		32
#define DOUBLE_TYPE_SIZE	64

#define MAX_INT_TYPE_SIZE	64
#define MAX_LONG_TYPE_SIZE	64

#if SPARC_ARCH64
/* ??? This does not work in SunOS 4.x, so it is not enabled here.
   Instead, it is enabled in sol2.h, because it does work under Solaris.  */
/* Define for support of TFmode long double and REAL_ARITHMETIC.
   Sparc ABI says that long double is 4 words.  */
#define LONG_DOUBLE_TYPE_SIZE 128
#endif

/* Width in bits of a pointer.
   See also the macro `Pmode' defined below.  */
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)

/* Boundary (in *bits*) on which stack pointer should be aligned.  */
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)

/* ALIGN FRAMES on double word boundaries */

#define SPARC_STACK_ALIGN(LOC) \
  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))

/* Allocation boundary (in *bits*) for the code of a function.  */
#define FUNCTION_BOUNDARY 32

/* Alignment of field after `int : 0' in a structure.  */
/* ??? Should this be based on TARGET_INT64?  */
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)

/* Every structure's size must be a multiple of this.  */
#define STRUCTURE_SIZE_BOUNDARY 8

/* A bitfield declared as `int' forces `int' alignment for the struct.  */
#define PCC_BITFIELD_TYPE_MATTERS 1

/* No data type wants to be aligned rounder than this.  */
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)

/* The best alignment to use in cases where we have a choice.  */
#define FASTEST_ALIGNMENT 64

/* Make strings word-aligned so strcpy from constants will be faster.  */
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
  ((TREE_CODE (EXP) == STRING_CST	\
    && (ALIGN) < FASTEST_ALIGNMENT)	\
   ? FASTEST_ALIGNMENT : (ALIGN))

/* Make arrays of chars word-aligned for the same reasons.  */
#define DATA_ALIGNMENT(TYPE, ALIGN)		\
  (TREE_CODE (TYPE) == ARRAY_TYPE		\
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))

/* Set this nonzero if move instructions will actually fail to work
   when given unaligned data.  */
#define STRICT_ALIGNMENT 1

/* Things that must be doubleword aligned cannot go in the text section,
   because the linker fails to align the text section enough!
   Put them in the data section.  This macro is only used in this file.  */
#define MAX_TEXT_ALIGN 32

/* This forces all variables and constants to the data section when PIC.
   This is because the SunOS 4 shared library scheme thinks everything in
   text is a function, and patches the address to point to a loader stub.  */
/* This is defined to zero for every system which doesn't use the a.out object
   file format.  */
#ifndef SUNOS4_SHARED_LIBRARIES
#define SUNOS4_SHARED_LIBRARIES 0
#endif

/* This is defined differently for v9 in a cover file.  */
#define SELECT_SECTION(T,RELOC)						\
{									\
  if (TREE_CODE (T) == VAR_DECL)					\
    {									\
      if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T)			\
	  && DECL_INITIAL (T)						\
	  && (DECL_INITIAL (T) == error_mark_node			\
	      || TREE_CONSTANT (DECL_INITIAL (T)))			\
	  && DECL_ALIGN (T) <= MAX_TEXT_ALIGN				\
	  && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)))	\
	text_section ();						\
      else								\
	data_section ();						\
    }									\
  else if (TREE_CODE (T) == CONSTRUCTOR)				\
    {									\
      if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))		\
	data_section ();						\
    }									\
  else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c')			\
    {									\
      if ((TREE_CODE (T) == STRING_CST && flag_writable_strings)	\
	  || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN		\
	  || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)))	\
	data_section ();						\
      else								\
	text_section ();						\
    }									\
}

/* Use text section for a constant
   unless we need more alignment than that offers.  */
/* This is defined differently for v9 in a cover file.  */
#define SELECT_RTX_SECTION(MODE, X)		\
{						\
  if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
      && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES)))  \
    text_section ();				\
  else						\
    data_section ();				\
}

/* Standard register usage.  */

/* Number of actual hardware registers.
   The hardware registers are assigned numbers for the compiler
   from 0 to just below FIRST_PSEUDO_REGISTER.
   All registers that the compiler knows about must be given numbers,
   even those that are not normally considered general registers.

   SPARC has 32 integer registers and 32 floating point registers.
   64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
   accessible.  We still account for them to simplify register computations
   (eg: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
   32+32+32+4 == 100.
   Register 100 is used as the integer condition code register.  */

#define FIRST_PSEUDO_REGISTER 101

/* Additional V9 fp regs.  */
#define SPARC_FIRST_V9_FP_REG 64
#define SPARC_LAST_V9_FP_REG  95
/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
#define SPARC_FIRST_V9_FCC_REG 96
#define SPARC_LAST_V9_FCC_REG  99
/* V8 fcc reg.  */
#define SPARC_FCC_REG 96
/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
#define SPARC_ICC_REG 100

/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.
   On non-v9 systems:
   g1 is free to use as temporary.
   g2-g4 are reserved for applications.  Gcc normally uses them as
   temporaries, but this can be disabled via the -mno-app-regs option.
   g5 through g7 are reserved for the operating system.
   On v9 systems:
   g1 and g5 are free to use as temporaries.
   g2-g4 are reserved for applications.  Gcc normally uses them as
   temporaries, but this can be disabled via the -mno-app-regs option.
   g6-g7 are reserved for the operating system.
   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
   currently be a fixed register until this pattern is rewritten.
   Register 1 is also used when restoring call-preserved registers in large
   stack frames.

   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
   CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
*/

#define FIXED_REGISTERS  \
 {1, 0, 0, 0, 0, 0, 1, 1,	\
  0, 0, 0, 0, 0, 0, 1, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 1, 1,	\
				\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
				\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
				\
  0, 0, 0, 0, 0}

/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you like.  */

#define CALL_USED_REGISTERS  \
 {1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 1, 1,	\
				\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
				\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
				\
  1, 1, 1, 1, 1}

/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
   they won't be allocated.  */

#define CONDITIONAL_REGISTER_USAGE				\
do								\
  {								\
    if (! SPARC_ARCH64)						\
      {								\
	fixed_regs[5] = 1;					\
      }								\
    if (SPARC_ARCH64)						\
      {								\
	int regno;						\
	fixed_regs[1] = 1;					\
	/* ??? We need to scan argv for -fcall-used-.  */	\
	for (regno = 48; regno < 80; regno++)			\
	  call_used_regs[regno] = 0;				\
      }								\
    if (! TARGET_V9)						\
      {								\
	int regno;						\
	for (regno = SPARC_FIRST_V9_FP_REG;			\
	     regno <= SPARC_LAST_V9_FP_REG;			\
	     regno++)						\
	  fixed_regs[regno] = 1;				\
	/* %fcc0 is used by v8 and v9.  */			\
	for (regno = SPARC_FIRST_V9_FCC_REG + 1;		\
	     regno <= SPARC_LAST_V9_FCC_REG;			\
	     regno++)						\
	  fixed_regs[regno] = 1;				\
      }								\
    if (! TARGET_FPU)						\
      {								\
	int regno;						\
	for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
	  fixed_regs[regno] = 1;				\
      }								\
    /* Don't unfix g2-g4 if they were fixed with -ffixed-.  */	\
    fixed_regs[2] |= ! TARGET_APP_REGS;				\
    fixed_regs[3] |= ! TARGET_APP_REGS;				\
    fixed_regs[4] |= ! TARGET_APP_REGS || TARGET_MEDANY;	\
    if (TARGET_FLAT)						\
      {								\
	/* Let the compiler believe the frame pointer is still	\
	   %fp, but output it as %i7.  */			\
	fixed_regs[31] = 1;					\
	reg_names[FRAME_POINTER_REGNUM] = "%i7";		\
	/* ??? This is a hack to disable leaf functions.  */	\
	global_regs[7] = 1;					\
      }								\
    if (profile_block_flag)					\
      {								\
	/* %g1 and %g2 must be fixed, because BLOCK_PROFILER	\
	    uses them.  */					\
	fixed_regs[1] = 1;					\
	fixed_regs[2] = 1;					\
      }								\
  }								\
while (0)

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.
   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.

   On SPARC, ordinary registers hold 32 bits worth;
   this means both integer and floating point registers.
   On v9, integer regs hold 64 bits worth; floating point regs hold
   32 bits worth (this includes the new fp regs as even the odd ones are
   included in the hard register count).  */

#define HARD_REGNO_NREGS(REGNO, MODE) \
  (TARGET_ARCH64							\
   ?  ((REGNO) < 32							\
       ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
       : (GET_MODE_SIZE (MODE) + 3) / 4)				\
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))

/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
   See sparc.c for how we initialize this.  */
extern int *hard_regno_mode_classes;
extern int sparc_mode_class[];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)

/* Value is 1 if it is a good idea to tie two pseudo registers
   when one has mode MODE1 and one has mode MODE2.
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
   for any hard reg, then this must be 0 for correct output.

   For V9: SFmode can't be combined with other float modes, because they can't
   be allocated to the %d registers.  Also, DFmode won't fit in odd %f
   registers, but SFmode will.  */
#define MODES_TIEABLE_P(MODE1, MODE2) \
  ((MODE1) == (MODE2)						\
   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)		\
       && (! TARGET_V9						\
	   || (GET_MODE_CLASS (MODE1) != MODE_FLOAT		\
	       || (MODE1 != SFmode && MODE2 != SFmode)))))

/* Specify the registers used for certain standard purposes.
   The values of these macros are register numbers.  */

/* SPARC pc isn't overloaded on a register that the compiler knows about.  */
/* #define PC_REGNUM  */

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM 14

/* Actual top-of-stack address is 92/136 greater than the contents of the
   stack pointer register for !v9/v9.  That is:
   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
     address, and 24 bytes for the 6 register parameters.
   - v9: 128 bytes for the in and local registers + 8 bytes reserved.  */
#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)

/* The stack bias (amount by which the hardware register is offset by).  */
#define SPARC_STACK_BIAS (TARGET_STACK_BIAS ? 2047 : 0)

/* Base register for access to local variables of the function.  */
#define FRAME_POINTER_REGNUM 30

#if 0
/* Register that is used for the return address.  */
#define RETURN_ADDR_REGNUM 15
#endif

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms
   may be accessed via the stack pointer) in functions that seem suitable.
   This is computed in `reload', in reload1.c.
   Used in flow.c, global.c, and reload1.c.

   Being a non-leaf function does not mean a frame pointer is needed in the
   flat window model.  However, the debugger won't be able to backtrace through
   us with out it.  */
#define FRAME_POINTER_REQUIRED \
  (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
		  || !leaf_function_p ()) \
   : ! (leaf_function_p () && only_leaf_regs_used ()))

/* C statement to store the difference between the frame pointer
   and the stack pointer values immediately after the function prologue.

   Note, we always pretend that this is a leaf function because if
   it's not, there's no point in trying to eliminate the
   frame pointer.  If it is a leaf function, we guessed right!  */
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
  ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
	    : compute_frame_size (get_frame_size (), 1)))

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM

/* Register in which static-chain is passed to a function.  This must
   not be a register used by the prologue.  */
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)

/* Register which holds offset table for position-independent
   data references.  */

#define PIC_OFFSET_TABLE_REGNUM 23

#define INITIALIZE_PIC initialize_pic ()
#define FINALIZE_PIC finalize_pic ()

/* Sparc ABI says that quad-precision floats and all structures are returned
   in memory.
   For v9, all aggregates are returned in memory.  */
#define RETURN_IN_MEMORY(TYPE)				\
  (TYPE_MODE (TYPE) == BLKmode				\
   || (! TARGET_ARCH64 && (TYPE_MODE (TYPE) == TFmode	\
			    || TYPE_MODE (TYPE) == TCmode)))

/* Functions which return large structures get the address
   to place the wanted value at offset 64 from the frame.
   Must reserve 64 bytes for the in and local registers.
   v9: Functions which return large structures get the address to place the
   wanted value from an invisible first argument.  */
/* Used only in other #defines in this file.  */
#define STRUCT_VALUE_OFFSET 64

#define STRUCT_VALUE \
  (TARGET_ARCH64					\
   ? 0							\
   : gen_rtx (MEM, Pmode,				\
	      gen_rtx (PLUS, Pmode, stack_pointer_rtx,	\
		       gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
#define STRUCT_VALUE_INCOMING \
  (TARGET_ARCH64					\
   ? 0							\
   : gen_rtx (MEM, Pmode,				\
	      gen_rtx (PLUS, Pmode, frame_pointer_rtx,	\
		       gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))

/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.  */

/* The SPARC has two kinds of registers, general and floating point.

   For v9 we must distinguish between the upper and lower floating point
   registers because the upper ones can't hold SFmode values.
   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
   satisfying a group need for a class will also satisfy a single need for
   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
   regs.

   It is important that one class contains all the general and all the standard
   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
   because reg_class_record() will bias the selection in favor of fp regs,
   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
   because FP_REGS > GENERAL_REGS.

   It is also important that one class contain all the general and all the
   fp regs.  Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
   but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
   allocate_reload_reg() to bypass it causing an abort because the compiler
   thinks it doesn't have a spill reg when in fact it does.

   v9 also has 4 floating point condition code registers.  Since we don't
   have a class that is the union of FPCC_REGS with either of the others,
   it is important that it appear first.  Otherwise the compiler will die
   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
   constraints.

   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
   may try to use it to hold an SImode value.  See register_operand.
   ??? Should %fcc[0123] be handled similarily?
*/

enum reg_class { NO_REGS, FPCC_REGS, GENERAL_REGS, FP_REGS, EXTRA_FP_REGS,
		 GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
		 ALL_REGS, LIM_REG_CLASSES };

#define N_REG_CLASSES (int) LIM_REG_CLASSES

/* Give names of register classes as strings for dump file.   */

#define REG_CLASS_NAMES \
  { "NO_REGS", "FPCC_REGS", "GENERAL_REGS", "FP_REGS", "EXTRA_FP_REGS", \
    "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", "ALL_REGS" }

/* Define which registers fit in which classes.
   This is an initializer for a vector of HARD_REG_SET
   of length N_REG_CLASSES.  */

#define REG_CLASS_CONTENTS \
  {{0, 0, 0, 0}, {0, 0, 0, 0xf}, \
   {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
   {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}

/* The same information, inverted:
   Return the class number of the smallest class containing
   reg number REGNO.  This could be a conditional expression
   or could index an array.  */

extern enum reg_class sparc_regno_reg_class[];

#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]

/* This is the order in which to allocate registers normally.  
   
   We put %f0/%f1 last among the float registers, so as to make it more
   likely that a pseudo-register which dies in the float return register
   will get allocated to the float return register, thus saving a move
   instruction at the end of the function.

   The float registers are ordered a little "funny" because in the 64 bit
   architecture, some of them (%f16-%f47) are call-preserved.  */

#define REG_ALLOC_ORDER \
{ 8, 9, 10, 11, 12, 13, 2, 3,		\
  15, 16, 17, 18, 19, 20, 21, 22,	\
  23, 24, 25, 26, 27, 28, 29, 31,	\
  34, 35, 36, 37, 38, 39,		/* %f2-%f7 */   \
  40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
  80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
  88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
  48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
  56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
  64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
  72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
  32, 33,				/* %f0,%f1 */   \
  96, 97, 98, 99, 100,			/* %fcc0-3, %icc */ \
  1, 4, 5, 6, 7, 0, 14, 30}

/* This is the order in which to allocate registers for
   leaf functions.  If all registers can fit in the "i" registers,
   then we have the possibility of having a leaf function.
   The floating point registers are ordered a little "funny" because in the
   64 bit architecture some of them (%f16-%f47) are call-preserved.   */

#define REG_LEAF_ALLOC_ORDER \
{ 2, 3, 24, 25, 26, 27, 28, 29,		\
  15, 8, 9, 10, 11, 12, 13,		\
  16, 17, 18, 19, 20, 21, 22, 23,	\
  34, 35, 36, 37, 38, 39,		\
  40, 41, 42, 43, 44, 45, 46, 47,	\
  80, 81, 82, 83, 84, 85, 86, 87,	\
  88, 89, 90, 91, 92, 93, 94, 95,	\
  48, 49, 50, 51, 52, 53, 54, 55,	\
  56, 57, 58, 59, 60, 61, 62, 63,	\
  64, 65, 66, 67, 68, 69, 70, 71,	\
  72, 73, 74, 75, 76, 77, 78, 79,	\
  32, 33,				\
  96, 97, 98, 99, 100,			\
  1, 4, 5, 6, 7, 0, 14, 30, 31}

#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()

/* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
   -mflat is used.  Function only_leaf_regs_used will return 0 if a global
   register is used and is not permitted in a leaf function.  We make %g7
   a global reg if -mflat and voila.  Since %g7 is a system register and is
   fixed it won't be used by gcc anyway.  */

#define LEAF_REGISTERS \
{ 1, 1, 1, 1, 1, 1, 1, 0,	\
  0, 0, 0, 0, 0, 0, 1, 0,	\
  0, 0, 0, 0, 0, 0, 0, 0,	\
  1, 1, 1, 1, 1, 1, 0, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1, 1, 1, 1,	\
  1, 1, 1, 1, 1}

extern char leaf_reg_remap[];
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])

/* The class value for index registers, and the one for base regs.  */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS

/* Local macro to handle the two v9 classes of FP regs.  */
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)

/* Get reg_class from a letter such as appears in the machine description.
   In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
   .md file for v8 and v9.  */

#define REG_CLASS_FROM_LETTER(C) \
(TARGET_V9			\
 ? ((C) == 'f' ? FP_REGS	\
    : (C) == 'e' ? EXTRA_FP_REGS \
    : (C) == 'c' ? FPCC_REGS	\
    : NO_REGS)			\
 : ((C) == 'f' ? FP_REGS	\
    : (C) == 'e' ? FP_REGS	\
    : (C) == 'c' ? FPCC_REGS	\
    : NO_REGS))

/* The letters I, J, K, L and M in a register constraint string
   can be used to stand for particular ranges of immediate operands.
   This macro defines what the ranges are.
   C is the letter, and VALUE is a constant value.
   Return 1 if VALUE is in the range specified by C.

   `I' is used for the range of constants an insn can actually contain.
   `J' is used for the range which is just zero (since that is R0).
   `K' is used for constants which can be loaded with a single sethi insn.
   `L' is used for the range of constants supported by the movcc insns.
   `M' is used for the range of constants supported by the movrcc insns.  */

#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) ((X) + 0x200) < 0x400)
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) ((X) + 0x400) < 0x800)
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) ((X) + 0x1000) < 0x2000)
/* 10 and 11 bit immediates are only used for a few specific insns.
   SMALL_INT is used throughout the port so we continue to use it.  */
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))

#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
  ((C) == 'I' ? SPARC_SIMM13_P (VALUE)			\
   : (C) == 'J' ? (VALUE) == 0				\
   : (C) == 'K' ? ((VALUE) & 0x3ff) == 0		\
   : (C) == 'L' ? SPARC_SIMM11_P (VALUE)		\
   : (C) == 'M' ? SPARC_SIMM10_P (VALUE)		\
   : 0)

/* Similar, but for floating constants, and defining letters G and H.
   Here VALUE is the CONST_DOUBLE rtx itself.  */

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)	\
  ((C) == 'G' ? fp_zero_operand (VALUE)			\
   : (C) == 'H' ? arith_double_operand (VALUE, DImode)	\
   : 0)

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  */
/* We can't load constants into FP registers.  We can't load any FP constant
   if an 'E' constraint fails to match it.  */
#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
  (CONSTANT_P (X)					\
   && (FP_REG_CLASS_P (CLASS)				\
       || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT	\
	   && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT	\
	       || HOST_BITS_PER_INT != BITS_PER_WORD)))	\
   ? NO_REGS : (CLASS))

/* Return the register class of a scratch register needed to load IN into
   a register of class CLASS in MODE.

   On the SPARC, when PIC, we need a temporary when loading some addresses
   into a register.

   Also, we need a temporary when loading/storing a HImode/QImode value
   between memory and the FPU registers.  This can happen when combine puts
   a paradoxical subreg in a float/fix conversion insn.  */

#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
  ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
    && (GET_CODE (IN) == MEM					\
	|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
	    && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)

#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
  ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
    && (GET_CODE (IN) == MEM					\
	|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
	    && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)

/* On SPARC it is not possible to directly move data between 
   GENERAL_REGS and FP_REGS.  */
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
  (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))

/* Return the stack location to use for secondary memory needed reloads.
   We want to use the reserved location just below the frame pointer.
   However, we must ensure that there is a frame, so use assign_stack_local
   if the frame size is zero.  */
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
  (get_frame_size () == 0						\
   ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0)			\
   : gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx,	\
				  GEN_INT (STARTING_FRAME_OFFSET))))

/* Get_secondary_mem widens it's argument to BITS_PER_WORD which loses on v9
   because the movsi and movsf patterns don't handle r/f moves.
   For v8 we copy the default definition.  */
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
  (TARGET_ARCH64						\
   ? (GET_MODE_BITSIZE (MODE) < 32				\
      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
      : MODE)							\
   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
      : MODE))

/* Return the maximum number of consecutive registers
   needed to represent mode MODE in a register of class CLASS.  */
/* On SPARC, this is the size of MODE in words.  */
#define CLASS_MAX_NREGS(CLASS, MODE)	\
  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Stack layout; function entry, exit and calling.  */

/* Define the number of register that can hold parameters.
   These two macros are used only in other macro definitions below.
   MODE is the mode of the argument.
   !v9: All args are passed in %o0-%o5.
   v9: Non-float args are passed in %o0-5 and float args are passed in
   %f0-%f15.  */
#define NPARM_REGS(MODE) \
  (TARGET_ARCH64 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 16 : 6) : 6)

/* Define this if pushing a word on the stack
   makes the stack pointer a smaller address.  */
#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset in the frame.  */
#define FRAME_GROWS_DOWNWARD

/* Offset within stack frame to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */
/* This allows space for one TFmode floating point value.  */
#define STARTING_FRAME_OFFSET \
  (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
   : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))

/* If we generate an insn to push BYTES bytes,
   this says how many the stack pointer really advances by.
   On SPARC, don't define this because there are no push insns.  */
/*  #define PUSH_ROUNDING(BYTES) */

/* Offset of first parameter from the argument pointer register value.
   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
   even if this function isn't going to use it.
   v9: This is 128 for the ins and locals, plus a reserved space of 8.  */
#define FIRST_PARM_OFFSET(FNDECL) \
  (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 136) \
   : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))

/* When a parameter is passed in a register, stack space is still
   allocated for it.  */
#if ! SPARC_ARCH64
#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS (SImode) * UNITS_PER_WORD)
#endif

/* Keep the stack pointer constant throughout the function.
   This is both an optimization and a necessity: longjmp
   doesn't behave itself when the stack pointer moves within
   the function!  */
#define ACCUMULATE_OUTGOING_ARGS

/* Value is the number of bytes of arguments automatically
   popped when returning from a subroutine call.
   FUNDECL is the declaration node of the function (as a tree),
   FUNTYPE is the data type of the function (as a tree),
   or for a library call it is an identifier node for the subroutine name.
   SIZE is the number of bytes of arguments passed on the stack.  */

#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0

/* Some subroutine macros specific to this machine.
   When !TARGET_FPU, put float return values in the general registers,
   since we don't have any fp registers.  */
#define BASE_RETURN_VALUE_REG(MODE) \
  (TARGET_ARCH64 \
   ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
   : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
#define BASE_OUTGOING_VALUE_REG(MODE) \
  (TARGET_ARCH64 \
   ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
      : TARGET_FLAT ? 8 : 24) \
   : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32	\
      : (TARGET_FLAT ? 8 : 24)))
#define BASE_PASSING_ARG_REG(MODE) \
  (TARGET_ARCH64 \
   ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
   : 8)
#define BASE_INCOMING_ARG_REG(MODE) \
  (TARGET_ARCH64 \
   ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
      : TARGET_FLAT ? 8 : 24) \
   : (TARGET_FLAT ? 8 : 24))

/* Define this macro if the target machine has "register windows".  This
   C expression returns the register number as seen by the called function
   corresponding to register number OUT as seen by the calling function.
   Return OUT if register number OUT is not an outbound register.  */

#define INCOMING_REGNO(OUT) \
 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)

/* Define this macro if the target machine has "register windows".  This
   C expression returns the register number as seen by the calling function
   corresponding to register number IN as seen by the called function.
   Return IN if register number IN is not an inbound register.  */

#define OUTGOING_REGNO(IN) \
 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)

/* Define how to find the value returned by a function.
   VALTYPE is the data type of the value (as a tree).
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
   otherwise, FUNC is 0.  */

/* On SPARC the value is found in the first "output" register.  */

#define FUNCTION_VALUE(VALTYPE, FUNC)  \
  gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))

/* But the called function leaves it in the first "input" register.  */

#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC)  \
  gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */

#define LIBCALL_VALUE(MODE)	\
  gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))

/* 1 if N is a possible register number for a function value
   as seen by the caller.
   On SPARC, the first "output" reg is used for integer values,
   and the first floating point register is used for floating point values.  */

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)

/* Define the size of space to allocate for the return value of an
   untyped_call.  */

#define APPLY_RESULT_SIZE 16

/* 1 if N is a possible register number for function argument passing.
   On SPARC, these are the "output" registers.  v9 also uses %f0-%f15.  */

#define FUNCTION_ARG_REGNO_P(N) \
  (TARGET_ARCH64 ? (((N) < 14 && (N) > 7) || (N) > 31 && (N) < 48) \
   : ((N) < 14 && (N) > 7))

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.

   On SPARC (!v9), this is a single integer, which is a number of words
   of arguments scanned so far (including the invisible argument,
   if any, which holds the structure-value-address).
   Thus 7 or more means all following args should go on the stack.

   For v9, we record how many of each type has been passed.  Different
   types get passed differently.

	- Float args are passed in %f0-15, after which they go to the stack
	  where floats and doubles are passed 8 byte aligned and long doubles
	  are passed 16 byte aligned.
	- All aggregates are passed by reference.  The callee copies
	  the structure if necessary, except if stdarg/varargs and the struct
	  matches the ellipse in which case the caller makes a copy.
	- Any non-float argument might be split between memory and reg %o5.
	  ??? I don't think this can ever happen now that structs are no
	  longer passed in regs.

   For v9 return values:

	- For all aggregates, the caller allocates space for the return value,
          and passes the pointer as an implicit first argument, which is
          allocated like all other arguments.
	- The unimp instruction stuff for structure returns is gone.  */

#if SPARC_ARCH64
enum sparc_arg_class { SPARC_ARG_INT = 0, SPARC_ARG_FLOAT = 1 };
struct sparc_args {
    int arg_count[2];	/* must be int! (for __builtin_args_info) */
};
#define CUMULATIVE_ARGS struct sparc_args

/* Return index into CUMULATIVE_ARGS.  */

#define GET_SPARC_ARG_CLASS(MODE) \
  (GET_MODE_CLASS (MODE) == MODE_FLOAT ? SPARC_ARG_FLOAT : SPARC_ARG_INT)

/* Round a register number up to a proper boundary for an arg of mode MODE.
   This macro is only used in this file.

   The "& (0x10000 - ...)" is used to round up to the next appropriate reg.  */

#define ROUND_REG(CUM, MODE)				\
  (GET_MODE_CLASS (MODE) != MODE_FLOAT			\
   ? (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)]	\
   : ((CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)]	\
      + GET_MODE_UNIT_SIZE (MODE) / 4 - 1)		\
     & (0x10000 - GET_MODE_UNIT_SIZE (MODE) / 4))

#define ROUND_ADVANCE(SIZE)	\
  (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

#else /* ! SPARC_ARCH64 */

#define CUMULATIVE_ARGS int

#define ROUND_REG(CUM, MODE) (CUM)

#define ROUND_ADVANCE(SIZE)	\
  ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
#endif /* ! SPARC_ARCH64 */

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.

   On SPARC, the offset always starts at 0: the first parm reg is always
   the same reg.  */

#if SPARC_ARCH64
extern int sparc_arg_count,sparc_n_named_args;
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
  do {								\
    (CUM).arg_count[(int) SPARC_ARG_INT] = 0;			\
    (CUM).arg_count[(int) SPARC_ARG_FLOAT] = 0;			\
    sparc_arg_count = 0;					\
    sparc_n_named_args =					\
      ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)			\
       ? (list_length (TYPE_ARG_TYPES (FNTYPE))			\
	  + (TREE_CODE (TREE_TYPE (FNTYPE)) == RECORD_TYPE	\
	     || TREE_CODE (TREE_TYPE (FNTYPE)) == QUAL_UNION_TYPE\
	     || TREE_CODE (TREE_TYPE (FNTYPE)) == SET_TYPE	\
	     || TREE_CODE (TREE_TYPE (FNTYPE)) == UNION_TYPE))	\
       /* Can't tell, treat 'em all as named.  */		\
       : 10000);						\
  } while (0)
#else
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0)
#endif

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

#if SPARC_ARCH64
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)		\
  do {								\
    (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] =		\
      ROUND_REG ((CUM), (MODE))					\
	+ (GET_MODE_CLASS (MODE) == MODE_FLOAT			\
	   ? GET_MODE_SIZE (MODE) / 4				\
	   : ROUND_ADVANCE ((MODE) == BLKmode			\
			    ? GET_MODE_SIZE (Pmode)		\
			    : GET_MODE_SIZE (MODE)));		\
    sparc_arg_count++;						\
  } while (0)
#else
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
  ((CUM) += ((MODE) != BLKmode				\
	     ? ROUND_ADVANCE (GET_MODE_SIZE (MODE))	\
	     : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
#endif

/* Return boolean indicating arg of mode MODE will be passed in a reg.
   This macro is only used in this file.  */

#if SPARC_ARCH64
#define PASS_IN_REG_P(CUM, MODE, TYPE)				\
  (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)		\
   && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE)))		\
   && ((TYPE)==0 || (MODE) != BLKmode))
#else
#define PASS_IN_REG_P(CUM, MODE, TYPE)				\
  ((CUM) < NPARM_REGS (SImode)					\
   && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE)))		\
   && ((TYPE)==0 || (MODE) != BLKmode				\
       || (TYPE_ALIGN (TYPE) % PARM_BOUNDARY == 0)))
#endif

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

/* On SPARC the first six args are normally in registers
   and the rest are pushed.  Any arg that starts within the first 6 words
   is at least partially passed in a register unless its data type forbids.
   For v9, the first 6 int args are passed in regs and the first N
   float args are passed in regs (where N is such that %f0-15 are filled).
   The rest are pushed.  Any arg that starts within the first 6 words
   is at least partially passed in a register unless its data type forbids.  */

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)				\
  (PASS_IN_REG_P ((CUM), (MODE), (TYPE))				\
   ? gen_rtx (REG, (MODE),						\
	      (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
   : 0)

/* Define where a function finds its arguments.
   This is different from FUNCTION_ARG because of register windows.  */

#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED)			\
  (PASS_IN_REG_P ((CUM), (MODE), (TYPE))				\
   ? gen_rtx (REG, (MODE),						\
	      (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
   : 0)

/* For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.
   Any arg that starts in the first 6 regs but won't entirely fit in them
   needs partial registers on the Sparc (!v9).  On v9, there are no arguments
   that are passed partially in registers (??? complex values?).  */

#if ! SPARC_ARCH64
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 		\
  (PASS_IN_REG_P ((CUM), (MODE), (TYPE))				\
   && ((CUM) + ((MODE) == BLKmode					\
		? ROUND_ADVANCE (int_size_in_bytes (TYPE))		\
		: ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS (SImode) > 0)\
   ? (NPARM_REGS (SImode) - (CUM))					\
   : 0)
#endif

/* The SPARC ABI stipulates passing struct arguments (of any size) and
   (!v9) quad-precision floats by invisible reference.
   For Pascal, also pass arrays by reference.  */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED)	\
  ((TYPE && AGGREGATE_TYPE_P (TYPE))				\
   || (!TARGET_ARCH64 && MODE == TFmode))

/* A C expression that indicates when it is the called function's
   responsibility to make copies of arguments passed by reference.
   If the callee can determine that the argument won't be modified, it can
   avoid the copy.  */
/* ??? We'd love to be able to use NAMED here.  Unfortunately, it doesn't
   include the last named argument so we keep track of the args ourselves.  */

#if SPARC_ARCH64
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
  (sparc_arg_count < sparc_n_named_args)
#endif

/* Initialize data used by insn expanders.  This is called from
   init_emit, once for each function, before code is generated.
   For v9, clear the temp slot used by float/int DImode conversions.
   ??? There is the 16 bytes at [%fp-16], however we'd like to delete this
   space at some point.
   ??? Use assign_stack_temp?  */

extern void sparc64_init_expanders ();
extern struct rtx_def *sparc64_fpconv_stack_temp ();
#if SPARC_ARCH64
#define INIT_EXPANDERS sparc64_init_expanders ()
#endif

/* Define the information needed to generate branch and scc insns.  This is
   stored from the compare operation.  Note that we can't use "rtx" here
   since it hasn't been defined!  */

extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;

/* Define the function that build the compare insn for scc and bcc.  */

extern struct rtx_def *gen_compare_reg ();

/* This function handles all v9 scc insns */

extern int gen_v9_scc ();

/* Generate the special assembly code needed to tell the assembler whatever
   it might need to know about the return value of a function.

   For Sparc assemblers, we need to output a .proc pseudo-op which conveys
   information to the assembler relating to peephole optimization (done in
   the assembler).  */

#define ASM_DECLARE_RESULT(FILE, RESULT) \
  fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))

/* Output the label for a function definition.  */

#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)			\
do {									\
  ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL));			\
  ASM_OUTPUT_LABEL (FILE, NAME);					\
} while (0)

/* This macro generates the assembly code for function entry.
   FILE is a stdio stream to output the code to.
   SIZE is an int: how many units of temporary storage to allocate.
   Refer to the array `regs_ever_live' to determine which registers
   to save; `regs_ever_live[I]' is nonzero if register number I
   is ever used in the function.  This macro is responsible for
   knowing which registers should not be saved even if used.  */

/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
   of memory.  If any fpu reg is used in the function, we allocate
   such a block here, at the bottom of the frame, just in case it's needed.

   If this function is a leaf procedure, then we may choose not
   to do a "save" insn.  The decision about whether or not
   to do this is made in regclass.c.  */

extern int leaf_function;
#define FUNCTION_PROLOGUE(FILE, SIZE) \
  (TARGET_FLAT ? sparc_flat_output_function_prologue (FILE, SIZE) \
   : output_function_prologue (FILE, SIZE, leaf_function))

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */

#define FUNCTION_PROFILER(FILE, LABELNO)  			\
  do {								\
    fputs ("\tsethi %hi(", (FILE));				\
    ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO);		\
    fputs ("),%o0\n", (FILE));					\
    if (TARGET_MEDANY)						\
      fprintf (FILE, "\tadd %%o0,%s,%%o0\n",			\
	       MEDANY_BASE_REG);				\
    fputs ("\tcall mcount\n\tadd %lo(", (FILE));		\
    ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO);		\
    fputs ("),%o0,%o0\n", (FILE));				\
  } while (0)


/* There are three profiling modes for basic blocks available.
   The modes are selected at compile time by using the options
   -a or -ax of the gnu compiler.
   The variable `profile_block_flag' will be set according to the
   selected option.

   profile_block_flag == 0, no option used:

      No profiling done.

   profile_block_flag == 1, -a option used.

      Count frequency of execution of every basic block.

   profile_block_flag == 2, -ax option used.

      Generate code to allow several different profiling modes at run time. 
      Available modes are:
             Produce a trace of all basic blocks.
             Count frequency of jump instructions executed.
      In every mode it is possible to start profiling upon entering
      certain functions and to disable profiling of some other functions.

    The result of basic-block profiling will be written to a file `bb.out'.
    If the -ax option is used parameters for the profiling will be read
    from file `bb.in'.

*/

/* The following macro shall output assembler code to FILE
   to initialize basic-block profiling.

   If profile_block_flag == 2

	Output code to call the subroutine `__bb_init_trace_func'
	and pass two parameters to it. The first parameter is
	the address of a block allocated in the object module.
	The second parameter is the number of the first basic block
	of the function.

	The name of the block is a local symbol made with this statement:
	
	    ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);

	Of course, since you are writing the definition of
	`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
	can take a short cut in the definition of this macro and use the
	name that you know will result.

	The number of the first basic block of the function is
	passed to the macro in BLOCK_OR_LABEL.

	If described in a virtual assembler language the code to be
	output looks like:

		parameter1 <- LPBX0
		parameter2 <- BLOCK_OR_LABEL
		call __bb_init_trace_func

    else if profile_block_flag != 0

	Output code to call the subroutine `__bb_init_func'
	and pass one single parameter to it, which is the same
	as the first parameter to `__bb_init_trace_func'.

	The first word of this parameter is a flag which will be nonzero if
	the object module has already been initialized.  So test this word
	first, and do not call `__bb_init_func' if the flag is nonzero.
	Note: When profile_block_flag == 2 the test need not be done
	but `__bb_init_trace_func' *must* be called.

	BLOCK_OR_LABEL may be used to generate a label number as a
	branch destination in case `__bb_init_func' will not be called.

	If described in a virtual assembler language the code to be
	output looks like:

		cmp (LPBX0),0
		jne local_label
		parameter1 <- LPBX0
		call __bb_init_func
local_label:

*/

#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL)	\
do							\
  {							\
    int bol = (BLOCK_OR_LABEL);				\
    switch (profile_block_flag)				\
      {							\
      case 2:						\
        if (TARGET_MEDANY)				\
          fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tadd %%o0,%s,%%o0\n\tsethi %%hi(%d),%%o1\n\tcall ___bb_init_trace_func\n\tadd %g0,%%lo(%d),%%o1\n",\
                   MEDANY_BASE_REG, bol, bol);		\
        else						\
          fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%o0,%%lo(LPBX0),%%o0\n\tsethi %%hi(%d),%%o1\n\tcall ___bb_init_trace_func\n\tor %%o1,%%lo(%d),%%o1\n",\
                   bol, bol);				\
        break;						\
      default:						\
        if (TARGET_MEDANY)				\
          fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tld [%s+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%s,%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n",\
                   MEDANY_BASE_REG, bol, MEDANY_BASE_REG, bol);\
        else						\
          fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n",\
                   bol, bol);				\
        break;						\
      }							\
  }							\
while (0)

/* The following macro shall output assembler code to FILE
   to increment a counter associated with basic block number BLOCKNO.

   If profile_block_flag == 2

	Output code to initialize the global structure `__bb' and
	call the function `__bb_trace_func' which will increment the
	counter.

	`__bb' consists of two words. In the first word the number
	of the basic block has to be stored. In the second word
	the address of a block allocated in the object module 
	has to be stored.

	The basic block number is given by BLOCKNO.

	The address of the block is given by the label created with 

	    ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);

	by FUNCTION_BLOCK_PROFILER.

	Of course, since you are writing the definition of
	`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
	can take a short cut in the definition of this macro and use the
	name that you know will result.

	If described in a virtual assembler language the code to be
	output looks like:

		move BLOCKNO -> (__bb)
		move LPBX0 -> (__bb+4)
		call __bb_trace_func

	Note that function `__bb_trace_func' must not change the
	machine state, especially the flag register. To grant
	this, you must output code to save and restore registers
	either in this macro or in the macros MACHINE_STATE_SAVE
	and MACHINE_STATE_RESTORE. The last two macros will be
	used in the function `__bb_trace_func', so you must make
	sure that the function prologue does not change any 
	register prior to saving it with MACHINE_STATE_SAVE.

   else if profile_block_flag != 0

	Output code to increment the counter directly.
	Basic blocks are numbered separately from zero within each
	compiled object module. The count associated with block number
	BLOCKNO is at index BLOCKNO in an array of words; the name of 
	this array is a local symbol made with this statement:

	    ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);

	Of course, since you are writing the definition of
	`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
	can take a short cut in the definition of this macro and use the
	name that you know will result. 

	If described in a virtual assembler language, the code to be
	output looks like:

		inc (LPBX2+4*BLOCKNO)

*/

#define BLOCK_PROFILER(FILE, BLOCKNO)	\
do					\
  {					\
    int blockn = (BLOCKNO);		\
    switch (profile_block_flag)		\
      {					\
      case 2:				\
        if (TARGET_MEDANY)		\
          fprintf (FILE, "\tsethi %%hi(___bb),%%g1\n\tor %%0,%%lo(___bb),%%g1\n\tsethi %%hi(%d),%%g2\n\tor %%g2,%%lo(%d),%%g2\n\tst %%g2,[%s+%%g1]\n\tsethi %%hi(LPBX0),%%g2\n\tor %%0,%%lo(LPBX0),%%g2\n\tadd %%g2,%s,%%g2\n\tadd 4,%%g1,%%g1\n\tst %%g2,[%%g1+%%lo(___bb)]\n\tmov %%o7,%%g2\n\tcall ___bb_trace_func\n\tnop\n\tmov %%g2,%%o7\n",\
                   blockn, blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
        else				\
          fprintf (FILE, "\tsethi %%hi(___bb),%%g1\n\tsethi %%hi(%d),%%g2\n\tor %%g2,%%lo(%d),%%g2\n\tst %%g2,[%%lo(___bb)+%%g1]\n\tsethi %%hi(LPBX0),%%g2\n\tor %%g2,%%lo(LPBX0),%%g2\n\tadd 4,%%g1,%%g1\n\tst %%g2,[%%lo(___bb)+%%g1]\n\tmov %%o7,%%g2\n\tcall ___bb_trace_func\n\tnop\n\tmov %%g2,%%o7\n",\
                   blockn, blockn); \
        break;				\
      default:				\
        if (TARGET_MEDANY)		\
          fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tor %%g1,%%lo(LPBX2+%d),%%g1\n\tld [%%g1+%s],%%g2\n\tadd %%g2,1,%%g2\n\tst %%g2,[%%g1+%s]\n", \
                         4 * blockn, 4 * blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
        else				\
          fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
                   4 * blockn, 4 * blockn, 4 * blockn); \
        break;				\
      }					\
  }					\
while(0)

/* The following macro shall output assembler code to FILE
   to indicate a return from function during basic-block profiling.

   If profiling_block_flag == 2:

	Output assembler code to call function `__bb_trace_ret'.

	Note that function `__bb_trace_ret' must not change the
	machine state, especially the flag register. To grant
	this, you must output code to save and restore registers
	either in this macro or in the macros MACHINE_STATE_SAVE_RET
	and MACHINE_STATE_RESTORE_RET. The last two macros will be
	used in the function `__bb_trace_ret', so you must make
	sure that the function prologue does not change any 
	register prior to saving it with MACHINE_STATE_SAVE_RET.

   else if profiling_block_flag != 0:

	The macro will not be used, so it need not distinguish
	these cases.
*/

#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
  fprintf (FILE, "\tcall ___bb_trace_ret\n\tnop\n" );

/* The function `__bb_trace_func' is called in every basic block
   and is not allowed to change the machine state. Saving (restoring)
   the state can either be done in the BLOCK_PROFILER macro,
   before calling function (rsp. after returning from function)
   `__bb_trace_func', or it can be done inside the function by
   defining the macros:

	MACHINE_STATE_SAVE(ID)
	MACHINE_STATE_RESTORE(ID)

   In the latter case care must be taken, that the prologue code
   of function `__bb_trace_func' does not already change the
   state prior to saving it with MACHINE_STATE_SAVE.

   The parameter `ID' is a string identifying a unique macro use.

   On sparc it is sufficient to save the psw register to memory.
   Unfortunately the psw register can be read in supervisor mode only,
   so we read only the condition codes by using branch instructions
   and hope that this is enough. */

#define MACHINE_STATE_SAVE(ID) \
  asm ("	mov %g0,%l0");\
  asm ("	be,a LFLGNZ" ID);\
  asm ("	or %l0,4,%l0");\
  asm ("LFLGNZ" ID ":  bcs,a LFLGNC" ID);\
  asm ("	or %l0,1,%l0");\
  asm ("LFLGNC" ID ":  bvs,a LFLGNV" ID);\
  asm ("	or %l0,2,%l0");\
  asm ("LFLGNV" ID ":  bneg,a LFLGNN" ID);\
  asm ("	or %l0,8,%l0");\
  asm ("LFLGNN" ID ": sethi %hi(LFLAGS" ID "),%l1");\
  asm ("	st %l0,[%l1+%lo(LFLAGS" ID ")]"); \
  asm ("	st %g2,[%l1+%lo(LSAVRET" ID ")]");

/* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
   The psw register can be written in supervisor mode only,
   which is true even for simple condition codes.
   We use some combination of instructions to produce the
   proper condition codes, but some flag combinations can not
   be generated in this way. If this happens an unimplemented
   instruction will be executed to abort the program. */

#define MACHINE_STATE_RESTORE(ID) \
  asm ("	sethi %hi(LFLGTAB" ID "),%l1");\
  asm ("	ld [%l1+%lo(LFLGTAB" ID "-(LFLGTAB" ID "-LFLAGS" ID "))],%l0");\
  asm ("	ld [%l1+%lo(LFLGTAB" ID "-(LFLGTAB" ID "-LSAVRET" ID "))],%g2");\
  asm ("	sll %l0,2,%l0");\
  asm ("	add %l0,%l1,%l0");\
  asm ("	ld [%l0+%lo(LFLGTAB" ID ")],%l1");\
  asm ("	jmp %l1");\
  asm (" nop");\
  asm (".data");\
  asm ("	.align 4");\
  asm ("LFLAGS" ID ":");\
  asm ("	.word 0");\
  asm ("LSAVRET" ID ":");\
  asm (" .word 0");\
  asm ("LFLGTAB" ID ": ");\
  asm ("	.word LSFLG0" ID);\
  asm ("	.word LSFLGC" ID);\
  asm ("	.word LSFLGV" ID);\
  asm ("	.word LSFLGVC" ID);\
  asm ("	.word LSFLGZ" ID);\
  asm ("	.word LSFLGZC" ID);\
  asm ("	.word LSFLGZV" ID);\
  asm ("	.word LSFLGZVC" ID);\
  asm ("	.word LSFLGN" ID);\
  asm ("	.word LSFLGNC" ID);\
  asm ("	.word LSFLGNV" ID);\
  asm ("	.word LSFLGNVC" ID);\
  asm ("	.word LSFLGNZ" ID);\
  asm ("	.word LSFLGNZC" ID);\
  asm ("	.word LSFLGNZV" ID);\
  asm ("	.word LSFLGNZVC" ID);\
  asm (".text");\
  asm ("LSFLGVC" ID ": mov -1,%l0");\
  asm ("	addcc 2,%l0,%g0");\
  asm ("	sethi %hi(0x80000000),%l0");\
  asm ("	mov %l0,%l1");\
  asm ("	ba LFLGRET" ID);\
  asm ("	addxcc %l0,%l1,%l0");\
  asm ("LSFLGC" ID ":	mov -1,%l0");\
  asm ("	ba LFLGRET" ID);\
  asm ("	addcc 2,%l0,%g0");\
  asm ("LSFLGZC" ID ": mov -1,%l0");\
  asm ("	ba LFLGRET" ID);\
  asm ("	addcc 1,%l0,%l0");\
  asm ("LSFLGZVC" ID ": sethi %hi(0x80000000),%l0");\
  asm ("	mov %l0,%l1");\
  asm ("	ba LFLGRET" ID);\
  asm ("	addcc %l0,%l1,%l0");\
  asm ("LSFLGZ" ID ":	ba LFLGRET" ID);\
  asm ("	subcc %g0,%g0,%g0");\
  asm ("LSFLGNC" ID ": add %g0,1,%l0");\
  asm ("	ba LFLGRET" ID);\
  asm ("	subcc %g0,%l0,%g0");\
  asm ("LSFLG0" ID ":	ba LFLGRET" ID);\
  asm ("	orcc 1,%g0,%g0");\
  asm ("LSFLGN" ID ":	ba LFLGRET" ID);\
  asm (" orcc -1,%g0,%g0");\
  asm ("LSFLGV" ID ":");\
  asm ("LSFLGZV" ID ":");\
  asm ("LSFLGNV" ID ":");\
  asm ("LSFLGNVC" ID ":");\
  asm ("LSFLGNZ" ID ":");\
  asm ("LSFLGNZC" ID ":");\
  asm ("LSFLGNZV" ID ":");\
  asm ("LSFLGNZVC" ID ":");\
  asm ("	unimp");\
  asm ("LFLGRET" ID ":");

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */

extern int current_function_calls_alloca;
extern int current_function_outgoing_args_size;

#define EXIT_IGNORE_STACK	\
 (get_frame_size () != 0	\
  || current_function_calls_alloca || current_function_outgoing_args_size)

/* This macro generates the assembly code for function exit,
   on machines that need it.  If FUNCTION_EPILOGUE is not defined
   then individual return instructions are generated for each
   return statement.  Args are same as for FUNCTION_PROLOGUE.

   The function epilogue should not depend on the current stack pointer!
   It should use the frame pointer only.  This is mandatory because
   of alloca; we also take advantage of it to omit stack adjustments
   before returning.  */

/* This declaration is needed due to traditional/ANSI
   incompatibilities which cannot be #ifdefed away
   because they occur inside of macros.  Sigh.  */
extern union tree_node *current_function_decl;

#define FUNCTION_EPILOGUE(FILE, SIZE) \
  (TARGET_FLAT ? sparc_flat_output_function_epilogue (FILE, SIZE) \
   : output_function_epilogue (FILE, SIZE, leaf_function))

#define DELAY_SLOTS_FOR_EPILOGUE \
  (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
  (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
   : eligible_for_epilogue_delay (trial, slots_filled))

/* Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.  */

/* On 32 bit sparcs, the trampoline contains five instructions:
     sethi #TOP_OF_FUNCTION,%g1
     or #BOTTOM_OF_FUNCTION,%g1,%g1
     sethi #TOP_OF_STATIC,%g2
     jmp g1
     or #BOTTOM_OF_STATIC,%g2,%g2

  On 64 bit sparcs, the trampoline contains 4 insns and two pseudo-immediate
  constants (plus some padding):
     rd %pc,%g1
     ldx[%g1+20],%g5
     ldx[%g1+28],%g1
     jmp %g1
     nop
     nop
     .xword context
     .xword function  */

#define TRAMPOLINE_TEMPLATE(FILE) \
do {									\
  if (TARGET_ARCH64)							\
    {									\
      fprintf (FILE, "\trd %%pc,%%g1\n");				\
      fprintf (FILE, "\tldx [%%g1+24],%%g5\n");				\
      fprintf (FILE, "\tldx [%%g1+32],%%g1\n");				\
      fprintf (FILE, "\tjmp %%g1\n");					\
      fprintf (FILE, "\tnop\n");					\
      fprintf (FILE, "\tnop\n");					\
      /* -mmedlow shouldn't generate .xwords, so don't use them at all */ \
      fprintf (FILE, "\t.word 0,0,0,0\n");				\
    }									\
  else									\
    {									\
      ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000));	\
      ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000));	\
      ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000));	\
      ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000));	\
      ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000));	\
    }									\
} while (0)

/* Length in units of the trampoline for entering a nested function.  */

#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 40 : 20)

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */

void sparc_initialize_trampoline ();
void sparc64_initialize_trampoline ();
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
  do {								\
    if (TARGET_ARCH64)						\
      sparc64_initialize_trampoline (TRAMP, FNADDR, CXT);	\
    else							\
      sparc_initialize_trampoline (TRAMP, FNADDR, CXT);		\
  } while (0)

/* Generate necessary RTL for __builtin_saveregs().
   ARGLIST is the argument list; see expr.c.  */
extern struct rtx_def *sparc_builtin_saveregs ();
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)

/* Generate RTL to flush the register windows so as to make arbitrary frames
   available.  */
#define SETUP_FRAME_ADDRESSES()		\
  emit_insn (gen_flush_register_windows ())

/* Given an rtx for the address of a frame,
   return an rtx for the address of the word in the frame
   that holds the dynamic chain--the previous frame's address.
   ??? -mflat support? */
#define DYNAMIC_CHAIN_ADDRESS(frame) \
  gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 14 * UNITS_PER_WORD))

/* The return address isn't on the stack, it is in a register, so we can't
   access it from the current frame pointer.  We can access it from the
   previous frame pointer though by reading a value from the register window
   save area.  */
#define RETURN_ADDR_IN_PREVIOUS_FRAME

/* This is the offset of the return address to the true next instruction to be
   executed for the current function. */
#define RETURN_ADDR_OFFSET \
  (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))

/* The current return address is in %i7.  The return address of anything
   farther back is in the register window save area at [%fp+60].  */
/* ??? This ignores the fact that the actual return address is +8 for normal
   returns, and +12 for structure returns.  */
#define RETURN_ADDR_RTX(count, frame)		\
  ((count == -1)				\
   ? gen_rtx (REG, Pmode, 31)			\
   : gen_rtx (MEM, Pmode,			\
	      memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD))))

/* Addressing modes, and classification of registers for them.  */

/* #define HAVE_POST_INCREMENT */
/* #define HAVE_POST_DECREMENT */

/* #define HAVE_PRE_DECREMENT */
/* #define HAVE_PRE_INCREMENT */

/* Macros to check register numbers against specific register classes.  */

/* These assume that REGNO is a hard or pseudo reg number.
   They give nonzero only if REGNO is a hard reg of the suitable class
   or a pseudo reg currently allocated to a suitable hard reg.
   Since they use reg_renumber, they are safe only once reg_renumber
   has been allocated, which happens in local-alloc.c.  */

#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
#define REGNO_OK_FOR_FP_P(REGNO) \
  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? 64 : 32)) \
   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? 64 : 32)))
#define REGNO_OK_FOR_CCFP_P(REGNO) \
 (TARGET_V9 \
  && (((unsigned) (REGNO) - 96 < 4) \
      || ((unsigned) reg_renumber[REGNO] - 96 < 4)))

/* Now macros that check whether X is a register and also,
   strictly, whether it is in a specified class.

   These macros are specific to the SPARC, and may be used only
   in code for printing assembler insns and in conditions for
   define_optimization.  */

/* 1 if X is an fp register.  */

#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))

/* Maximum number of registers that can appear in a valid memory address.  */

#define MAX_REGS_PER_ADDRESS 2

/* Recognize any constant value that is a valid address.
   When PIC, we do not accept an address that would require a scratch reg
   to load into a register.  */

#define CONSTANT_ADDRESS_P(X)   \
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH			\
   || (GET_CODE (X) == CONST						\
       && ! (flag_pic && pic_address_needs_scratch (X))))

/* Define this, so that when PIC, reload won't try to reload invalid
   addresses which require two reload registers.  */

#define LEGITIMATE_PIC_OPERAND_P(X)  (! pic_address_needs_scratch (X))

/* Nonzero if the constant value X is a legitimate general operand.
   Anything can be made to work except floating point constants.  */

#define LEGITIMATE_CONSTANT_P(X) \
  (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
   and check its validity for a certain class.
   We have two alternate definitions for each of them.
   The usual definition accepts all pseudo regs; the other rejects
   them unless they have been allocated suitable hard regs.
   The symbol REG_OK_STRICT causes the latter definition to be used.

   Most source files want to accept pseudo regs in the hope that
   they will get allocated to the class that the insn wants them to be in.
   Source files for reload pass need to be strict.
   After reload, it makes no difference, since pseudo regs have
   been eliminated by then.  */

/* Optional extra constraints for this machine.  Borrowed from romp.h.

   For the SPARC, `Q' means that this is a memory operand but not a
   symbolic memory operand.  Note that an unassigned pseudo register
   is such a memory operand.  Needed because reload will generate
   these things in insns and then not re-recognize the insns, causing
   constrain_operands to fail.

   `S' handles constraints for calls.  ??? So where is it?  */

#ifndef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as an index
   or if it is a pseudo reg.  */
#define REG_OK_FOR_INDEX_P(X) \
  (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
/* Nonzero if X is a hard reg that can be used as a base reg
   or if it is a pseudo reg.  */
#define REG_OK_FOR_BASE_P(X) \
  (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))

/* 'T', 'U' are for aligned memory loads which aren't needed for v9.  */

#define EXTRA_CONSTRAINT(OP, C)				\
  ((C) == 'Q'						\
   ? ((GET_CODE (OP) == MEM				\
       && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
       && ! symbolic_memory_operand (OP, VOIDmode))	\
      || (reload_in_progress && GET_CODE (OP) == REG	\
	  && REGNO (OP) >= FIRST_PSEUDO_REGISTER))	\
   : (! TARGET_ARCH64 && (C) == 'T')			\
   ? (mem_aligned_8 (OP))				\
   : (! TARGET_ARCH64 && (C) == 'U')			\
   ? (register_ok_for_ldd (OP))				\
   : 0)
 
#else

/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))

#define EXTRA_CONSTRAINT(OP, C)				\
  ((C) == 'Q'						\
   ? (GET_CODE (OP) == REG				\
      ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
	 && reg_renumber[REGNO (OP)] < 0)		\
      : GET_CODE (OP) == MEM)				\
   : (! TARGET_ARCH64 && (C) == 'T')			\
   ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
   : (! TARGET_ARCH64 && (C) == 'U')			\
   ? (GET_CODE (OP) == REG				\
      && (REGNO (OP) < FIRST_PSEUDO_REGISTER		\
	  || reg_renumber[REGNO (OP)] >= 0)		\
      && register_ok_for_ldd (OP))			\
   : 0)
#endif

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

   On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
   ordinarily.  This changes a bit when generating PIC.

   If you change this, execute "rm explow.o recog.o reload.o".  */

#define RTX_OK_FOR_BASE_P(X)						\
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
  || (GET_CODE (X) == SUBREG						\
      && GET_CODE (SUBREG_REG (X)) == REG				\
      && REG_OK_FOR_BASE_P (SUBREG_REG (X))))

#define RTX_OK_FOR_INDEX_P(X)						\
  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))			\
  || (GET_CODE (X) == SUBREG						\
      && GET_CODE (SUBREG_REG (X)) == REG				\
      && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))

#define RTX_OK_FOR_OFFSET_P(X)						\
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
{ if (RTX_OK_FOR_BASE_P (X))				\
    goto ADDR;						\
  else if (GET_CODE (X) == PLUS)			\
    {							\
      register rtx op0 = XEXP (X, 0);			\
      register rtx op1 = XEXP (X, 1);			\
      if (flag_pic && op0 == pic_offset_table_rtx)	\
	{						\
	  if (RTX_OK_FOR_BASE_P (op1))			\
	    goto ADDR;					\
	  else if (flag_pic == 1			\
		   && GET_CODE (op1) != REG		\
		   && GET_CODE (op1) != LO_SUM		\
		   && GET_CODE (op1) != MEM		\
		   && (GET_CODE (op1) != CONST_INT	\
		       || SMALL_INT (op1)))		\
	    goto ADDR;					\
	}						\
      else if (RTX_OK_FOR_BASE_P (op0))			\
	{						\
	  if (RTX_OK_FOR_INDEX_P (op1)			\
	      || RTX_OK_FOR_OFFSET_P (op1))		\
	    goto ADDR;					\
	}						\
      else if (RTX_OK_FOR_BASE_P (op1))			\
	{						\
	  if (RTX_OK_FOR_INDEX_P (op0)			\
	      || RTX_OK_FOR_OFFSET_P (op0))		\
	    goto ADDR;					\
	}						\
    }							\
  else if (GET_CODE (X) == LO_SUM)			\
    {							\
      register rtx op0 = XEXP (X, 0);			\
      register rtx op1 = XEXP (X, 1);			\
      if (RTX_OK_FOR_BASE_P (op0)			\
	  && CONSTANT_P (op1)				\
	  /* We can't allow TFmode, because an offset	\
	     greater than or equal to the alignment (8)	\
	     may cause the LO_SUM to overflow.  */	\
	  && MODE != TFmode)				\
	goto ADDR;					\
    }							\
  else if (GET_CODE (X) == CONST_INT && SMALL_INT (X))	\
    goto ADDR;						\
}

/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This macro is used in only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.

   MODE and WIN are passed so that this macro can use
   GO_IF_LEGITIMATE_ADDRESS.

   It is always safe for this macro to do nothing.  It exists to recognize
   opportunities to optimize the output.  */

/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
extern struct rtx_def *legitimize_pic_address ();
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)	\
{ rtx sparc_x = (X);						\
  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT)	\
    (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1),			\
		   force_operand (XEXP (X, 0), NULL_RTX));	\
  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT)	\
    (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0),			\
		   force_operand (XEXP (X, 1), NULL_RTX));	\
  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS)	\
    (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
		   XEXP (X, 1));				\
  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS)	\
    (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0),			\
		   force_operand (XEXP (X, 1), NULL_RTX));	\
  if (sparc_x != (X) && memory_address_p (MODE, X))		\
    goto WIN;							\
  if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0);	\
  else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1)))	\
    (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0),			\
		   copy_to_mode_reg (Pmode, XEXP (X, 1)));	\
  else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0)))	\
    (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1),			\
		   copy_to_mode_reg (Pmode, XEXP (X, 0)));	\
  else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST	\
	   || GET_CODE (X) == LABEL_REF)			\
    (X) = gen_rtx (LO_SUM, Pmode,				\
		   copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
  if (memory_address_p (MODE, X))				\
    goto WIN; }

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.
   On the SPARC this is never true.  */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)

/* If we are referencing a function make the SYMBOL_REF special.
   In the Medium/Anywhere code model, %g4 points to the data segment so we
   must not add it to function addresses.  */

#define ENCODE_SECTION_INFO(DECL) \
  do {							\
    if (TARGET_MEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
      SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;	\
  } while (0)

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.  */
#define CASE_VECTOR_MODE Pmode

/* Define this if the tablejump instruction expects the table
   to contain offsets from the address of the table.
   Do not define this if the table should contain absolute addresses.  */
/* #define CASE_VECTOR_PC_RELATIVE */

/* Specify the tree operation to be used to convert reals to integers.  */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR

/* This is the kind of divide that is easiest to do in the general case.  */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR

/* Define this as 1 if `char' should by default be signed; else as 0.  */
#define DEFAULT_SIGNED_CHAR 1

/* Max number of bytes we can move from memory to memory
   in one reasonably fast instruction.  */
#define MOVE_MAX 8

#if 0 /* Sun 4 has matherr, so this is no good.  */
/* This is the value of the error code EDOM for this machine,
   used by the sqrt instruction.  */
#define TARGET_EDOM 33

/* This is how to refer to the variable errno.  */
#define GEN_ERRNO_RTX \
  gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
#endif /* 0 */

/* Define if operations between registers always perform the operation
   on the full register even if a narrower mode is specified.  */
#define WORD_REGISTER_OPERATIONS

/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
   will either zero-extend or sign-extend.  The value of this macro should
   be the code that says which one of the two operations is implicitly
   done, NIL if none.  */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND

/* Nonzero if access to memory by bytes is slow and undesirable.
   For RISC chips, it means that access to memory by bytes is no
   better than access by words when possible, so grab a whole word
   and maybe make use of that.  */
#define SLOW_BYTE_ACCESS 1

/* We assume that the store-condition-codes instructions store 0 for false
   and some other value for true.  This is the value stored for true.  */

#define STORE_FLAG_VALUE 1

/* When a prototype says `char' or `short', really pass an `int'.  */
#define PROMOTE_PROTOTYPES

/* Define this to be nonzero if shift instructions ignore all but the low-order
   few bits. */
#define SHIFT_COUNT_TRUNCATED 1

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.  */
#define Pmode (TARGET_PTR64 ? DImode : SImode)

/* Generate calls to memcpy, memcmp and memset.  */
#define TARGET_MEM_FUNCTIONS

/* Add any extra modes needed to represent the condition code.

   On the Sparc, we have a "no-overflow" mode which is used when an add or
   subtract insn is used to set the condition code.  Different branches are
   used in this case for some operations.

   We also have two modes to indicate that the relevant condition code is
   in the floating-point condition code register.  One for comparisons which
   will generate an exception if the result is unordered (CCFPEmode) and
   one for comparisons which will never trap (CCFPmode).

   CCXmode and CCX_NOOVmode are only used by v9.  */

#define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode

/* Define the names for the modes specified above.  */

#define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE"

/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
   return the mode to be used for the comparison.  For floating-point,
   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand is a
   PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
   processing is needed.  */
#define SELECT_CC_MODE(OP,X,Y) \
  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT				\
   ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode)			\
   : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS			\
       || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT)		\
      ? (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
      : (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCXmode : CCmode)))

/* Return non-zero if SELECT_CC_MODE will never return MODE for a
   floating point inequality comparison.  */

#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)

/* A function address in a call instruction
   is a byte address (for indexing purposes)
   so give the MEM rtx a byte's mode.  */
#define FUNCTION_MODE SImode

/* Define this if addresses of constant functions
   shouldn't be put through pseudo regs where they can be cse'd.
   Desirable on machines where ordinary constants are expensive
   but a CALL with constant address is cheap.  */
#define NO_FUNCTION_CSE

/* alloca should avoid clobbering the old register save area.  */
#define SETJMP_VIA_SAVE_AREA

/* Define subroutines to call to handle multiply and divide.
   Use the subroutines that Sun's library provides.
   The `*' prevents an underscore from being prepended by the compiler.  */

#define DIVSI3_LIBCALL "*.div"
#define UDIVSI3_LIBCALL "*.udiv"
#define MODSI3_LIBCALL "*.rem"
#define UMODSI3_LIBCALL "*.urem"
/* .umul is a little faster than .mul.  */
#define MULSI3_LIBCALL "*.umul"

/* Define library calls for quad FP operations.  These are all part of the
   SPARC ABI.  */
#define ADDTF3_LIBCALL "_Q_add"
#define SUBTF3_LIBCALL "_Q_sub"
#define NEGTF2_LIBCALL "_Q_neg"
#define MULTF3_LIBCALL "_Q_mul"
#define DIVTF3_LIBCALL "_Q_div"
#define FLOATSITF2_LIBCALL "_Q_itoq"
#define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
#define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
#define EXTENDSFTF2_LIBCALL "_Q_stoq"
#define TRUNCTFSF2_LIBCALL "_Q_qtos"
#define EXTENDDFTF2_LIBCALL "_Q_dtoq"
#define TRUNCTFDF2_LIBCALL "_Q_qtod"
#define EQTF2_LIBCALL "_Q_feq"
#define NETF2_LIBCALL "_Q_fne"
#define GTTF2_LIBCALL "_Q_fgt"
#define GETF2_LIBCALL "_Q_fge"
#define LTTF2_LIBCALL "_Q_flt"
#define LETF2_LIBCALL "_Q_fle"

/* We can define the TFmode sqrt optab only if TARGET_FPU.  This is because
   with soft-float, the SFmode and DFmode sqrt instructions will be absent,
   and the compiler will notice and try to use the TFmode sqrt instruction
   for calls to the builtin function sqrt, but this fails.  */
#define INIT_TARGET_OPTABS						\
  do {									\
    add_optab->handlers[(int) TFmode].libfunc				\
      = gen_rtx (SYMBOL_REF, Pmode, ADDTF3_LIBCALL);			\
    sub_optab->handlers[(int) TFmode].libfunc				\
      = gen_rtx (SYMBOL_REF, Pmode, SUBTF3_LIBCALL);			\
    neg_optab->handlers[(int) TFmode].libfunc				\
      = gen_rtx (SYMBOL_REF, Pmode, NEGTF2_LIBCALL);			\
    smul_optab->handlers[(int) TFmode].libfunc				\
      = gen_rtx (SYMBOL_REF, Pmode, MULTF3_LIBCALL);			\
    flodiv_optab->handlers[(int) TFmode].libfunc			\
      = gen_rtx (SYMBOL_REF, Pmode, DIVTF3_LIBCALL);			\
    eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EQTF2_LIBCALL);		\
    netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, NETF2_LIBCALL);		\
    gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GTTF2_LIBCALL);		\
    getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GETF2_LIBCALL);		\
    lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LTTF2_LIBCALL);		\
    letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LETF2_LIBCALL);		\
    trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFSF2_LIBCALL);   \
    trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFDF2_LIBCALL);   \
    extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDSFTF2_LIBCALL); \
    extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDDFTF2_LIBCALL); \
    floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, FLOATSITF2_LIBCALL);    \
    fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIX_TRUNCTFSI2_LIBCALL);  \
    fixunstfsi_libfunc							\
      = gen_rtx (SYMBOL_REF, Pmode, FIXUNS_TRUNCTFSI2_LIBCALL);		\
    if (TARGET_FPU)							\
      sqrt_optab->handlers[(int) TFmode].libfunc			\
	= gen_rtx (SYMBOL_REF, Pmode, "_Q_sqrt");			\
    INIT_SUBTARGET_OPTABS;						\
  } while (0)

/* This is meant to be redefined in the host dependent files */
#define INIT_SUBTARGET_OPTABS

/* Compute the cost of computing a constant rtl expression RTX
   whose rtx-code is CODE.  The body of this macro is a portion
   of a switch statement.  If the code is computed here,
   return it with a return statement.  Otherwise, break from the switch.  */

#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
  case CONST_INT:						\
    if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000)	\
      return 0;							\
  case HIGH:							\
    return 2;							\
  case CONST:							\
  case LABEL_REF:						\
  case SYMBOL_REF:						\
    return 4;							\
  case CONST_DOUBLE:						\
    if (GET_MODE (RTX) == DImode)				\
      if ((XINT (RTX, 3) == 0					\
	   && (unsigned) XINT (RTX, 2) < 0x1000)		\
	  || (XINT (RTX, 3) == -1				\
	      && XINT (RTX, 2) < 0				\
	      && XINT (RTX, 2) >= -0x1000))			\
	return 0;						\
    return 8;

/* Compute the cost of an address.  For the sparc, all valid addresses are
   the same cost.
   ??? Is this true for v9?  */

#define ADDRESS_COST(RTX)  1

/* Compute extra cost of moving data between one register class
   and another.
   ??? v9: We ignore FPCC_REGS on the assumption they'll never be seen.  */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
  (((FP_REG_CLASS_P (CLASS1) && (CLASS2) == GENERAL_REGS) \
    || ((CLASS1) == GENERAL_REGS && FP_REG_CLASS_P (CLASS2))) ? 6 : 2)

/* Provide the costs of a rtl expression.  This is in the body of a
   switch on CODE.  The purpose for the cost of MULT is to encourage
   `synth_mult' to find a synthetic multiply when reasonable.

   If we need more than 12 insns to do a multiply, then go out-of-line,
   since the call overhead will be < 10% of the cost of the multiply.  */

#define RTX_COSTS(X,CODE,OUTER_CODE)			\
  case MULT:						\
    return (TARGET_V8 || TARGET_SPARCLITE || TARGET_V9) \
	? COSTS_N_INSNS (5) : COSTS_N_INSNS (25);	\
  case DIV:						\
  case UDIV:						\
  case MOD:						\
  case UMOD:						\
    return COSTS_N_INSNS (25);				\
  /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
     so that cse will favor the latter.  */		\
  case FLOAT:						\
  case FIX:						\
    return 19;

/* Adjust the cost of dependencies.  */
#define ADJUST_COST(INSN,LINK,DEP,COST) \
  if (sparc_cpu == PROCESSOR_SUPERSPARC) \
    (COST) = supersparc_adjust_cost (INSN, LINK, DEP, COST)

/* Conditional branches with empty delay slots have a length of two.  */
#define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
  if (GET_CODE (INSN) == CALL_INSN					\
      || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn)))	\
    LENGTH += 1;

/* Control the assembler format that we output.  */

/* Output at beginning of assembler file.  */

#define ASM_FILE_START(file)

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */

#define ASM_APP_ON ""

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */

#define ASM_APP_OFF ""

/* ??? Try to make the style consistent here (_OP?).  */

#define ASM_LONGLONG	".xword"
#define ASM_LONG	".word"
#define ASM_SHORT	".half"
#define ASM_BYTE_OP	".byte"
#define ASM_FLOAT	".single"
#define ASM_DOUBLE	".double"
#define ASM_LONGDOUBLE	".xxx"		/* ??? Not known (or used yet). */

/* Output before read-only data.  */

#define TEXT_SECTION_ASM_OP ".text"

/* Output before writable data.  */

#define DATA_SECTION_ASM_OP ".data"

/* How to refer to registers in assembler output.
   This sequence is indexed by compiler's hard-register-number (see above).  */

#define REGISTER_NAMES \
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}

/* Define additional names for use in asm clobbers and asm declarations.  */

#define ADDITIONAL_REGISTER_NAMES \
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}

/* How to renumber registers for dbx and gdb.  */

#define DBX_REGISTER_NUMBER(REGNO) (REGNO)

/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
   since the length can run past this up to a continuation point.  */
#define DBX_CONTIN_LENGTH 1500

/* This is how to output a note to DBX telling it the line number
   to which the following sequence of instructions corresponds.

   This is needed for SunOS 4.0, and should not hurt for 3.2
   versions either.  */
#define ASM_OUTPUT_SOURCE_LINE(file, line)		\
  { static int sym_lineno = 1;				\
    fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n",	\
	     line, sym_lineno, sym_lineno);		\
    sym_lineno += 1; }

/* This is how to output the definition of a user-level label named NAME,
   such as the label on a static function or variable NAME.  */

#define ASM_OUTPUT_LABEL(FILE,NAME)	\
  do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)

/* This is how to output a command to make the user-level label named NAME
   defined for reference from other files.  */

#define ASM_GLOBALIZE_LABEL(FILE,NAME)	\
  do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)

/* This is how to output a reference to a user-level label named NAME.
   `assemble_name' uses this.  */

#define ASM_OUTPUT_LABELREF(FILE,NAME)	\
  fprintf (FILE, "_%s", NAME)

/* This is how to output a definition of an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.  */

#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
  fprintf (FILE, "%s%d:\n", PREFIX, NUM)

/* This is how to output a reference to an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.  */
/* FIXME:  This should be used throughout gcc, and documented in the texinfo
   files.  There is no reason you should have to allocate a buffer and
   `sprintf' to reference an internal label (as opposed to defining it).  */

#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM)	\
  fprintf (FILE, "%s%d", PREFIX, NUM)

/* This is how to store into the string LABEL
   the symbol_ref name of an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.
   This is suitable for output with `assemble_name'.  */

#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
  sprintf (LABEL, "*%s%d", PREFIX, NUM)

/* This is how to output an assembler line defining a `double' constant.  */

#define ASM_OUTPUT_DOUBLE(FILE,VALUE)					\
  {									\
    long t[2];								\
    REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);				\
    fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n",			\
	     ASM_LONG, t[0], ASM_LONG, t[1]);				\
  }

/* This is how to output an assembler line defining a `float' constant.  */

#define ASM_OUTPUT_FLOAT(FILE,VALUE)					\
  {									\
    long t;								\
    REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);				\
    fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t);			\
  }									\

/* This is how to output an assembler line defining a `long double'
   constant.  */

#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE)				\
  {									\
    long t[4];								\
    REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t);			\
    fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
      ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]);	\
  }

/* This is how to output an assembler line defining an `int' constant.  */

#define ASM_OUTPUT_INT(FILE,VALUE)  \
( fprintf (FILE, "\t%s\t", ASM_LONG),		\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

/* This is how to output an assembler line defining a DImode constant.  */
#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE)  \
  output_double_int (FILE, VALUE)

/* Likewise for `char' and `short' constants.  */

#define ASM_OUTPUT_SHORT(FILE,VALUE)  \
( fprintf (FILE, "\t%s\t", ASM_SHORT),		\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

#define ASM_OUTPUT_CHAR(FILE,VALUE)  \
( fprintf (FILE, "\t%s\t", ASM_BYTE_OP),	\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

/* This is how to output an assembler line for a numeric constant byte.  */

#define ASM_OUTPUT_BYTE(FILE,VALUE)  \
  fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))

/* This is how to output an element of a case-vector that is absolute.  */

#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
do {									\
  char label[30];							\
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
  if (Pmode == SImode)							\
    fprintf (FILE, "\t.word\t");					\
  else if (TARGET_MEDLOW)						\
    fprintf (FILE, "\t.word\t0\n\t.word\t");				\
  else									\
    fprintf (FILE, "\t.xword\t");					\
  assemble_name (FILE, label);						\
  fprintf (FILE, "\n");							\
} while (0)

/* This is how to output an element of a case-vector that is relative.
   (SPARC uses such vectors only when generating PIC.)  */

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)			\
do {									\
  char label[30];							\
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
  if (Pmode == SImode)							\
    fprintf (FILE, "\t.word\t");					\
  else if (TARGET_MEDLOW)						\
    fprintf (FILE, "\t.word\t0\n\t.word\t");				\
  else									\
    fprintf (FILE, "\t.xword\t");					\
  assemble_name (FILE, label);						\
  fprintf (FILE, "-1b\n");						\
} while (0)

/* This is how to output an assembler line
   that says to advance the location counter
   to a multiple of 2**LOG bytes.  */

#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
  if ((LOG) != 0)			\
    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))

#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
  fprintf (FILE, "\t.skip %u\n", (SIZE))

/* This says how to output an assembler line
   to define a global common symbol.  */

#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
( fputs ("\t.common ", (FILE)),		\
  assemble_name ((FILE), (NAME)),		\
  fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))

/* This says how to output an assembler line to define a local common
   symbol.  */

#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
( fputs ("\t.reserve ", (FILE)),					\
  assemble_name ((FILE), (NAME)),					\
  fprintf ((FILE), ",%u,\"bss\",%u\n",					\
	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))

/* Store in OUTPUT a string (made with alloca) containing
   an assembler-name for a local static variable named NAME.
   LABELNO is an integer which is different for each call.  */

#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))

#define IDENT_ASM_OP ".ident"

/* Output #ident as a .ident.  */

#define ASM_OUTPUT_IDENT(FILE, NAME) \
  fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);

/* Define the parentheses used to group arithmetic operations
   in assembler code.  */

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

/* Define results of standard character escape sequences.  */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015

#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
  ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')

/* Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */

#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)

/* Print a memory address as an operand to reference that memory location.  */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
{ register rtx base, index = 0;					\
  int offset = 0;						\
  register rtx addr = ADDR;					\
  if (GET_CODE (addr) == REG)					\
    fputs (reg_names[REGNO (addr)], FILE);			\
  else if (GET_CODE (addr) == PLUS)				\
    {								\
      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)		\
	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)		\
	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
      else							\
	base = XEXP (addr, 0), index = XEXP (addr, 1);		\
      fputs (reg_names[REGNO (base)], FILE);			\
      if (index == 0)						\
	fprintf (FILE, "%+d", offset);				\
      else if (GET_CODE (index) == REG)				\
	fprintf (FILE, "+%s", reg_names[REGNO (index)]);	\
      else if (GET_CODE (index) == SYMBOL_REF			\
	       || GET_CODE (index) == CONST)			\
	fputc ('+', FILE), output_addr_const (FILE, index);	\
      else abort ();						\
    }								\
  else if (GET_CODE (addr) == MINUS				\
	   && GET_CODE (XEXP (addr, 1)) == LABEL_REF)		\
    {								\
      output_addr_const (FILE, XEXP (addr, 0));			\
      fputs ("-(", FILE);					\
      output_addr_const (FILE, XEXP (addr, 1));			\
      fputs ("-.)", FILE);					\
    }								\
  else if (GET_CODE (addr) == LO_SUM)				\
    {								\
      output_operand (XEXP (addr, 0), 0);			\
      fputs ("+%lo(", FILE);					\
      output_address (XEXP (addr, 1));				\
      fputc (')', FILE);					\
    }								\
  else if (flag_pic && GET_CODE (addr) == CONST			\
	   && GET_CODE (XEXP (addr, 0)) == MINUS		\
	   && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST	\
	   && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS	\
	   && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)	\
    {								\
      addr = XEXP (addr, 0);					\
      output_addr_const (FILE, XEXP (addr, 0));			\
      /* Group the args of the second CONST in parenthesis.  */	\
      fputs ("-(", FILE);					\
      /* Skip past the second CONST--it does nothing for us.  */\
      output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));	\
      /* Close the parenthesis.  */				\
      fputc (')', FILE);					\
    }								\
  else								\
    {								\
      output_addr_const (FILE, addr);				\
    }								\
}

/* Declare functions defined in sparc.c and used in templates.  */

extern char *singlemove_string ();
extern char *output_move_double ();
extern char *output_move_quad ();
extern char *output_fp_move_double ();
extern char *output_fp_move_quad ();
extern char *output_block_move ();
extern char *output_scc_insn ();
extern char *output_cbranch ();
extern char *output_v9branch ();
extern char *output_return ();

/* Defined in flags.h, but insn-emit.c does not include flags.h.  */

extern int flag_pic;