aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/sparc/sparc.c
blob: 9f0fb34634fbba94b4f2babf129466cac86a3410 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
/* Subroutines for insn-output.c for Sun SPARC.
   Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdio.h>
#include "config.h"
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "expr.h"
#include "recog.h"

/* Global variables for machine-dependent things.  */

/* Save the operands last given to a compare for use when we
   generate a scc or bcc insn.  */

rtx sparc_compare_op0, sparc_compare_op1;

/* We may need an epilogue if we spill too many registers.
   If this is non-zero, then we branch here for the epilogue.  */
static rtx leaf_label;

#ifdef LEAF_REGISTERS

/* Vector to say how input registers are mapped to output
   registers.  FRAME_POINTER_REGNUM cannot be remapped by
   this function to eliminate it.  You must use -fomit-frame-pointer
   to get that.  */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
  -1, -1, -1, -1, -1, -1, 14, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  8, 9, 10, 11, 12, 13, -1, 15,

  32, 33, 34, 35, 36, 37, 38, 39,
  40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55,
  56, 57, 58, 59, 60, 61, 62, 63};

#if 0 /* not used anymore */
char leaf_reg_backmap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
  24, 25, 26, 27, 28, 29, 14, 31,
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,

  32, 33, 34, 35, 36, 37, 38, 39,
  40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55,
  56, 57, 58, 59, 60, 61, 62, 63};
#endif
#endif

/* Global variables set by FUNCTION_PROLOGUE.  */
/* Size of frame.  Need to know this to emit return insns from
   leaf procedures.  */
static int apparent_fsize;
static int actual_fsize;

/* Name of where we pretend to think the frame pointer points.
   Normally, this is "%fp", but if we are in a leaf procedure,
   this is "%sp+something".  */
char *frame_base_name;

static rtx find_addr_reg ();

/* Return non-zero only if OP is a register of mode MODE,
   or const0_rtx.  */
int
reg_or_0_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (op == const0_rtx || register_operand (op, mode))
    return 1;
  if (GET_MODE (op) == DImode && GET_CODE (op) == CONST_DOUBLE
      && CONST_DOUBLE_HIGH (op) == 0
      && CONST_DOUBLE_LOW (op) == 0)
    return 1;
  if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
      && GET_CODE (op) == CONST_DOUBLE
      && fp_zero_operand (op))
    return 1;
  return 0;
}

/* Nonzero if OP is a floating point value with value 0.0.  */
int
fp_zero_operand (op)
     rtx op;
{
  REAL_VALUE_TYPE r;

  REAL_VALUE_FROM_CONST_DOUBLE (r, op);
  return REAL_VALUES_EQUAL (r, dconst0);
}

/* Nonzero if OP can appear as the dest of a RESTORE insn.  */
int
restore_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == REG && GET_MODE (op) == mode
	  && (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
}

/* Call insn on SPARC can take a PC-relative constant address, or any regular
   memory address.  */

int
call_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    abort ();
  op = XEXP (op, 0);
  return (CONSTANT_P (op) || memory_address_p (Pmode, op));
}

int
call_operand_address (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (CONSTANT_P (op) || memory_address_p (Pmode, op));
}

/* Returns 1 if OP is either a symbol reference or a sum of a symbol
   reference and a constant.  */

int
symbolic_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  switch (GET_CODE (op))
    {
    case SYMBOL_REF:
    case LABEL_REF:
      return 1;

    case CONST:
      op = XEXP (op, 0);
      return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
	       || GET_CODE (XEXP (op, 0)) == LABEL_REF)
	      && GET_CODE (XEXP (op, 1)) == CONST_INT);

      /* ??? This clause seems to be irrelevant.  */
    case CONST_DOUBLE:
      return GET_MODE (op) == mode;

    default:
      return 0;
    }
}

/* Return truth value of statement that OP is a symbolic memory
   operand of mode MODE.  */

int
symbolic_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  if (GET_CODE (op) != MEM)
    return 0;
  op = XEXP (op, 0);
  return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
	  || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
}

/* Return 1 if the operand is either a register or a memory operand that is
   not symbolic.  */

int
reg_or_nonsymb_mem_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (register_operand (op, mode))
    return 1;

  if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
    return 1;

  return 0;
}

int
sparc_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (register_operand (op, mode))
    return 1;
  if (GET_CODE (op) == CONST_INT)
    return SMALL_INT (op);
  if (GET_MODE (op) != mode)
    return 0;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  if (GET_CODE (op) != MEM)
    return 0;

  op = XEXP (op, 0);
  if (GET_CODE (op) == LO_SUM)
    return (GET_CODE (XEXP (op, 0)) == REG
	    && symbolic_operand (XEXP (op, 1), Pmode));
  return memory_address_p (mode, op);
}

int
move_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (mode == DImode && arith_double_operand (op, mode))
    return 1;
  if (register_operand (op, mode))
    return 1;
  if (GET_CODE (op) == CONST_INT)
    return (SMALL_INT (op) || (INTVAL (op) & 0x3ff) == 0);

  if (GET_MODE (op) != mode)
    return 0;
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
  if (GET_CODE (op) != MEM)
    return 0;
  op = XEXP (op, 0);
  if (GET_CODE (op) == LO_SUM)
    return (register_operand (XEXP (op, 0), Pmode)
	    && CONSTANT_P (XEXP (op, 1)));
  return memory_address_p (mode, op);
}

int
move_pic_label (op, mode)
     rtx op;
     enum machine_mode mode;
{
  /* Special case for PIC.  */
  if (flag_pic && GET_CODE (op) == LABEL_REF)
    return 1;
  return 0;
}

int
memop (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == MEM)
    return (mode == VOIDmode || mode == GET_MODE (op));
  return 0;
}

/* Return truth value of whether OP is EQ or NE.  */

int
eq_or_neq (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}

/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
   or LTU for non-floating-point.  We handle those specially.  */

int
normal_comp_operator (op, mode)
     rtx op;
     enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  if (GET_MODE (XEXP (op, 0)) == CCFPmode
      || GET_MODE (XEXP (op, 0)) == CCFPEmode)
    return 1;

  return (code != NE && code != EQ && code != GEU && code != LTU);
}

/* Return 1 if this is a comparison operator.  This allows the use of
   MATCH_OPERATOR to recognize all the branch insns.  */

int
noov_compare_op (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
    /* These are the only branches which work with CC_NOOVmode.  */
    return (code == EQ || code == NE || code == GE || code == LT);
  return 1;
}

/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation.  */

int
extend_op (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
}

/* Return nonzero if OP is an operator of mode MODE which can set
   the condition codes explicitly.  We do not include PLUS and MINUS
   because these require CC_NOOVmode, which we handle explicitly.  */

int
cc_arithop (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == AND
      || GET_CODE (op) == IOR
      || GET_CODE (op) == XOR)
    return 1;

  return 0;
}

/* Return nonzero if OP is an operator of mode MODE which can bitwise
   complement its second operand and set the condition codes explicitly.  */

int
cc_arithopn (op, mode)
     rtx op;
     enum machine_mode mode;
{
  /* XOR is not here because combine canonicalizes (xor (not ...) ...)
     and (xor ... (not ...)) to (not (xor ...)).   */
  return (GET_CODE (op) == AND
	  || GET_CODE (op) == IOR);
}

/* Return true if OP is a register, or is a CONST_INT that can fit in a 13
   bit immediate field.  This is an acceptable SImode operand for most 3
   address instructions.  */

int
arith_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
}

/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
   can fit in a 13 bit immediate field.  This is an acceptable DImode operand
   for most 3 address instructions.  */

int
arith_double_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_DOUBLE
	      && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
	      && (unsigned) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
	      && ((CONST_DOUBLE_HIGH (op) == -1
		   && (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
		  || (CONST_DOUBLE_HIGH (op) == 0
		      && (CONST_DOUBLE_LOW (op) & 0x1000) == 0)))
	  || (GET_CODE (op) == CONST_INT
	      && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
	      && (unsigned) (INTVAL (op) + 0x1000) < 0x2000));
}

/* Return true if OP is a register, or is a CONST_INT that can fit in a 5
   bit unsigned immediate field.  This is an acceptable SImode operand for
   the count field of shift instructions.  */

int
shift_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && (unsigned) (INTVAL (op)) < 32));
}

/* Return truth value of whether OP is a integer which fits the
   range constraining immediate operands in most three-address insns,
   which have a 13 bit immediate field.  */

int
small_int (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}

/* Return truth value of statement that OP is a call-clobbered register.  */
int
clobbered_register (op, mode)
     rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
}

/* X and Y are two things to compare using CODE.  Emit the compare insn and
   return the rtx for register 0 in the proper mode.  */

rtx
gen_compare_reg (code, x, y)
     enum rtx_code code;
     rtx x, y;
{
  enum machine_mode mode = SELECT_CC_MODE (code, x, y);
  rtx cc_reg = gen_rtx (REG, mode, 0);

  emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
		      gen_rtx (COMPARE, mode, x, y)));

  return cc_reg;
}

/* Return nonzero if a return peephole merging return with
   setting of output register is ok.  */
int
leaf_return_peephole_ok ()
{
  return (actual_fsize == 0);
}

/* Return nonzero if TRIAL can go into the function epilogue's
   delay slot.  SLOT is the slot we are trying to fill.  */

int
eligible_for_epilogue_delay (trial, slot)
     rtx trial;
     int slot;
{
  rtx pat, src;

  if (slot >= 1)
    return 0;
  if (GET_CODE (trial) != INSN
      || GET_CODE (PATTERN (trial)) != SET)
    return 0;
  if (get_attr_length (trial) != 1)
    return 0;

  /* In the case of a true leaf function, anything can go into the delay slot.
     A delay slot only exists however if the frame size is zero, otherwise
     we will put an insn to adjust the stack after the return.  */
  if (leaf_function)
    {
      if (leaf_return_peephole_ok ())
	return (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE);
      return 0;
    }

  /* Otherwise, only operations which can be done in tandem with
     a `restore' insn can go into the delay slot.  */
  pat = PATTERN (trial);
  if (GET_CODE (SET_DEST (pat)) != REG
      || REGNO (SET_DEST (pat)) == 0
      || REGNO (SET_DEST (pat)) >= 32
      || REGNO (SET_DEST (pat)) < 24)
    return 0;

  src = SET_SRC (pat);
  if (arith_operand (src, GET_MODE (src)))
    return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
  if (arith_double_operand (src, GET_MODE (src)))
    return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
  if (GET_CODE (src) == PLUS)
    {
      if (register_operand (XEXP (src, 0), SImode)
	  && arith_operand (XEXP (src, 1), SImode))
	return 1;
      if (register_operand (XEXP (src, 1), SImode)
	  && arith_operand (XEXP (src, 0), SImode))
	return 1;
      if (register_operand (XEXP (src, 0), DImode)
	  && arith_double_operand (XEXP (src, 1), DImode))
	return 1;
      if (register_operand (XEXP (src, 1), DImode)
	  && arith_double_operand (XEXP (src, 0), DImode))
	return 1;
    }
  if (GET_CODE (src) == MINUS
      && register_operand (XEXP (src, 0), SImode)
      && small_int (XEXP (src, 1), VOIDmode))
    return 1;
  if (GET_CODE (src) == MINUS
      && register_operand (XEXP (src, 0), DImode)
      && !register_operand (XEXP (src, 1), DImode)
      && arith_double_operand (XEXP (src, 1), DImode))
    return 1;
  return 0;
}

int
short_branch (uid1, uid2)
     int uid1, uid2;
{
  unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
  if (delta + 1024 < 2048)
    return 1;
  /* warning ("long branch, distance %d", delta); */
  return 0;
}

/* Return non-zero if REG is not used after INSN.
   We assume REG is a reload reg, and therefore does
   not live past labels or calls or jumps.  */
int
reg_unused_after (reg, insn)
     rtx reg;
     rtx insn;
{
  enum rtx_code code, prev_code = UNKNOWN;

  while (insn = NEXT_INSN (insn))
    {
      if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
	return 1;

      code = GET_CODE (insn);
      if (GET_CODE (insn) == CODE_LABEL)
	return 1;

      if (GET_RTX_CLASS (code) == 'i')
	{
	  rtx set = single_set (insn);
	  int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
	  if (set && in_src)
	    return 0;
	  if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
	    return 1;
	  if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
	    return 0;
	}
      prev_code = code;
    }
  return 1;
}

/* The rtx for the global offset table which is a special form
   that *is* a position independent symbolic constant.  */
static rtx pic_pc_rtx;

/* Ensure that we are not using patterns that are not OK with PIC.  */

int
check_pic (i)
     int i;
{
  switch (flag_pic)
    {
    case 1:
      if (GET_CODE (recog_operand[i]) == SYMBOL_REF
	  || (GET_CODE (recog_operand[i]) == CONST
	      && ! rtx_equal_p (pic_pc_rtx, recog_operand[i])))
	abort ();
    case 2:
    default:
      return 1;
    }
}

/* Return true if X is an address which needs a temporary register when 
   reloaded while generating PIC code.  */

int
pic_address_needs_scratch (x)
     rtx x;
{
  /* An address which is a symbolic plus a non SMALL_INT needs a temp reg.  */
  if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
    return 1;

  return 0;
}

/* Legitimize PIC addresses.  If the address is already position-independent,
   we return ORIG.  Newly generated position-independent addresses go into a
   reg.  This is REG if non zero, otherwise we allocate register(s) as
   necessary.  */

rtx
legitimize_pic_address (orig, mode, reg)
     rtx orig;
     enum machine_mode mode;
     rtx reg;
{
  if (GET_CODE (orig) == SYMBOL_REF)
    {
      rtx pic_ref, address;
      rtx insn;

      if (reg == 0)
	{
	  if (reload_in_progress || reload_completed)
	    abort ();
	  else
	    reg = gen_reg_rtx (Pmode);
	}

      if (flag_pic == 2)
	{
	  /* If not during reload, allocate another temp reg here for loading
	     in the address, so that these instructions can be optimized
	     properly.  */
	  rtx temp_reg = ((reload_in_progress || reload_completed)
			  ? reg : gen_reg_rtx (Pmode));

	  /* Must put the SYMBOL_REF inside an UNSPEC here so that cse
	     won't get confused into thinking that these two instructions
	     are loading in the true address of the symbol.  If in the
	     future a PIC rtx exists, that should be used instead.  */
	  emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
			      gen_rtx (HIGH, Pmode,
				       gen_rtx (UNSPEC, Pmode,
						gen_rtvec (1, orig),
						0))));
	  emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
			      gen_rtx (LO_SUM, Pmode, temp_reg,
				       gen_rtx (UNSPEC, Pmode,
						gen_rtvec (1, orig),
						0))));
	  address = temp_reg;
	}
      else
	address = orig;

      pic_ref = gen_rtx (MEM, Pmode,
			 gen_rtx (PLUS, Pmode,
				  pic_offset_table_rtx, address));
      current_function_uses_pic_offset_table = 1;
      RTX_UNCHANGING_P (pic_ref) = 1;
      insn = emit_move_insn (reg, pic_ref);
      /* Put a REG_EQUAL note on this insn, so that it can be optimized
	 by loop.  */
      REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
				  REG_NOTES (insn));
      return reg;
    }
  else if (GET_CODE (orig) == CONST)
    {
      rtx base, offset;

      if (GET_CODE (XEXP (orig, 0)) == PLUS
	  && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
	return orig;

      if (reg == 0)
	{
	  if (reload_in_progress || reload_completed)
	    abort ();
	  else
	    reg = gen_reg_rtx (Pmode);
	}

      if (GET_CODE (XEXP (orig, 0)) == PLUS)
	{
	  base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
	  offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
					 base == reg ? 0 : reg);
	}
      else
	abort ();

      if (GET_CODE (offset) == CONST_INT)
	{
	  if (SMALL_INT (offset))
	    return plus_constant_for_output (base, INTVAL (offset));
	  else if (! reload_in_progress && ! reload_completed)
	    offset = force_reg (Pmode, offset);
	  else
	    /* If we reach here, then something is seriously wrong.  */
	    abort ();
	}
      return gen_rtx (PLUS, Pmode, base, offset);
    }
  else if (GET_CODE (orig) == LABEL_REF)
    current_function_uses_pic_offset_table = 1;

  return orig;
}

/* Set up PIC-specific rtl.  This should not cause any insns
   to be emitted.  */

void
initialize_pic ()
{
}

/* Emit special PIC prologues and epilogues.  */

void
finalize_pic ()
{
  /* The table we use to reference PIC data.  */
  rtx global_offset_table;
  /* Labels to get the PC in the prologue of this function.  */
  rtx l1, l2;
  rtx seq;
  int orig_flag_pic = flag_pic;

  if (current_function_uses_pic_offset_table == 0)
    return;

  if (! flag_pic)
    abort ();

  flag_pic = 0;
  l1 = gen_label_rtx ();
  l2 = gen_label_rtx ();

  start_sequence ();

  emit_label (l1);
  /* Note that we pun calls and jumps here!  */
  emit_jump_insn (gen_rtx (PARALLEL, VOIDmode,
                         gen_rtvec (2,
                                    gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (LABEL_REF, VOIDmode, l2)),
                                    gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 15), gen_rtx (LABEL_REF, VOIDmode, l2)))));
  emit_label (l2);

  /* Initialize every time through, since we can't easily
     know this to be permanent.  */
  global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_");
  pic_pc_rtx = gen_rtx (CONST, Pmode,
			gen_rtx (MINUS, Pmode,
				 global_offset_table,
				 gen_rtx (CONST, Pmode,
					  gen_rtx (MINUS, Pmode,
						   gen_rtx (LABEL_REF, VOIDmode, l1),
						   pc_rtx))));

  emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
		      gen_rtx (HIGH, Pmode, pic_pc_rtx)));
  emit_insn (gen_rtx (SET, VOIDmode,
		      pic_offset_table_rtx,
		      gen_rtx (LO_SUM, Pmode,
			       pic_offset_table_rtx, pic_pc_rtx)));
  emit_insn (gen_rtx (SET, VOIDmode,
		      pic_offset_table_rtx,
		      gen_rtx (PLUS, Pmode,
			       pic_offset_table_rtx, gen_rtx (REG, Pmode, 15))));
  /* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */
  LABEL_PRESERVE_P (l1) = 1;
  LABEL_PRESERVE_P (l2) = 1;
  flag_pic = orig_flag_pic;

  seq = gen_sequence ();
  end_sequence ();
  emit_insn_after (seq, get_insns ());

  /* Need to emit this whether or not we obey regdecls,
     since setjmp/longjmp can cause life info to screw up.  */
  emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
}

/* For the SPARC, REG and REG+CONST is cost 0, REG+REG is cost 1,
   and addresses involving symbolic constants are cost 2.

   We make REG+REG slightly more expensive because it might keep
   a register live for longer than we might like.

   PIC addresses are very expensive.

   It is no coincidence that this has the same structure
   as GO_IF_LEGITIMATE_ADDRESS.  */
int
sparc_address_cost (X)
     rtx X;
{
#if 0
  /* Handled before calling here.  */
  if (GET_CODE (X) == REG)
    { return 1; }
#endif
  if (GET_CODE (X) == PLUS)
    {
      if (GET_CODE (XEXP (X, 0)) == REG
	  && GET_CODE (XEXP (X, 1)) == REG)
	return 2;
      return 1;
    }
  else if (GET_CODE (X) == LO_SUM)
    return 1;
  else if (GET_CODE (X) == HIGH)
    return 2;
  return 4;
}

/* Emit insns to move operands[1] into operands[0].

   Return 1 if we have written out everything that needs to be done to
   do the move.  Otherwise, return 0 and the caller will emit the move
   normally.  */

int
emit_move_sequence (operands, mode)
     rtx *operands;
     enum machine_mode mode;
{
  register rtx operand0 = operands[0];
  register rtx operand1 = operands[1];

  if (CONSTANT_P (operand1) && flag_pic
      && pic_address_needs_scratch (operand1))
    operands[1] = operand1 = legitimize_pic_address (operand1, mode, 0);

  /* Handle most common case first: storing into a register.  */
  if (register_operand (operand0, mode))
    {
      if (register_operand (operand1, mode)
	  || (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1))
	  || (GET_CODE (operand1) == CONST_DOUBLE
	      && arith_double_operand (operand1, DImode))
	  || (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode)
	  /* Only `general_operands' can come here, so MEM is ok.  */
	  || GET_CODE (operand1) == MEM)
	{
	  /* Run this case quickly.  */
	  emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
	  return 1;
	}
    }
  else if (GET_CODE (operand0) == MEM)
    {
      if (register_operand (operand1, mode) || operand1 == const0_rtx)
	{
	  /* Run this case quickly.  */
	  emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
	  return 1;
	}
      if (! reload_in_progress)
	{
	  operands[0] = validize_mem (operand0);
	  operands[1] = operand1 = force_reg (mode, operand1);
	}
    }

  /* Simplify the source if we need to.  Must handle DImode HIGH operators
     here because such a move needs a clobber added.  */
  if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
      || (GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode))
    {
      if (flag_pic && symbolic_operand (operand1, mode))
	{
	  rtx temp_reg = reload_in_progress ? operand0 : 0;

	  operands[1] = legitimize_pic_address (operand1, mode, temp_reg);
	}
      else if (GET_CODE (operand1) == CONST_INT
	       ? (! SMALL_INT (operand1)
		  && (INTVAL (operand1) & 0x3ff) != 0)
	       : (GET_CODE (operand1) == CONST_DOUBLE
		  ? ! arith_double_operand (operand1, DImode)
		  : 1))
	{
	  /* For DImode values, temp must be operand0 because of the way
	     HI and LO_SUM work.  The LO_SUM operator only copies half of
	     the LSW from the dest of the HI operator.  If the LO_SUM dest is
	     not the same as the HI dest, then the MSW of the LO_SUM dest will
	     never be set.

	     ??? The real problem here is that the ...(HI:DImode pattern emits
	     multiple instructions, and the ...(LO_SUM:DImode pattern emits
	     one instruction.  This fails, because the compiler assumes that
	     LO_SUM copies all bits of the first operand to its dest.  Better
	     would be to have the HI pattern emit one instruction and the
	     LO_SUM pattern multiple instructions.  Even better would be
	     to use four rtl insns.  */
	  rtx temp = ((reload_in_progress || mode == DImode)
		      ? operand0 : gen_reg_rtx (mode));

	  emit_insn (gen_rtx (SET, VOIDmode, temp,
			      gen_rtx (HIGH, mode, operand1)));
	  operands[1] = gen_rtx (LO_SUM, mode, temp, operand1);
	}
    }

  if (GET_CODE (operand1) == LABEL_REF && flag_pic)
    {
      /* The procedure for doing this involves using a call instruction to
	 get the pc into o7.  We need to indicate this explicitly because
	 the tablejump pattern assumes that it can use this value also.  */
      emit_insn (gen_rtx (PARALLEL, VOIDmode,
			  gen_rtvec (2,
				     gen_rtx (SET, VOIDmode, operand0,
					      operand1),
				     gen_rtx (SET, VOIDmode,
					      gen_rtx (REG, mode, 15),
					      pc_rtx))));
      return 1;
    }

  /* Now have insn-emit do whatever it normally does.  */
  return 0;
}

/* Return the best assembler insn template
   for moving operands[1] into operands[0] as a fullword.  */

char *
singlemove_string (operands)
     rtx *operands;
{
  if (GET_CODE (operands[0]) == MEM)
    {
      if (GET_CODE (operands[1]) != MEM)
	return "st %r1,%0";
      else
	abort ();
    }
  else if (GET_CODE (operands[1]) == MEM)
    return "ld %1,%0";
  else if (GET_CODE (operands[1]) == CONST_DOUBLE)
    {
      REAL_VALUE_TYPE r;
      long i;

      /* Must be SFmode, otherwise this doesn't make sense.  */
      if (GET_MODE (operands[1]) != SFmode)
	abort ();

      REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
      REAL_VALUE_TO_TARGET_SINGLE (r, i);
      operands[1] = gen_rtx (CONST_INT, VOIDmode, i);

      if (CONST_OK_FOR_LETTER_P (i, 'I'))
	return "mov %1,%0";
      else if ((i & 0x000003FF) != 0)
	return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
      else
	return "sethi %%hi(%a1),%0";
    }
  else if (GET_CODE (operands[1]) == CONST_INT
	   && ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
    {
      int i = INTVAL (operands[1]);

      /* If all low order 10 bits are clear, then we only need a single
	 sethi insn to load the constant.  */
      if ((i & 0x000003FF) != 0)
	return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
      else
	return "sethi %%hi(%a1),%0";
    }
  /* Operand 1 must be a register, or a 'I' type CONST_INT.  */
  return "mov %1,%0";
}

/* Return non-zero if it is OK to assume that the given memory operand is
   aligned at least to a 8-byte boundary.  This should only be called
   for memory accesses whose size is 8 bytes or larger.  */

int
mem_aligned_8 (mem)
     register rtx mem;
{
  register rtx addr;
  register rtx base;
  register rtx offset;

  if (GET_CODE (mem) != MEM)
    return 0;	/* It's gotta be a MEM! */

  addr = XEXP (mem, 0);

  /* Now that all misaligned double parms are copied on function entry,
     we can assume any 64-bit object is 64-bit aligned except those which
     are at unaligned offsets from the stack or frame pointer.  If the
     TARGET_UNALIGNED_DOUBLES switch is given, we do not make this
     assumption.  */

  /* See what register we use in the address.  */
  base = 0;
  if (GET_CODE (addr) == PLUS)
    {
      if (GET_CODE (XEXP (addr, 0)) == REG
	  && GET_CODE (XEXP (addr, 1)) == CONST_INT)
	{
	  base = XEXP (addr, 0);
	  offset = XEXP (addr, 1);
	}
    }
  else if (GET_CODE (addr) == REG)
    {
      base = addr;
      offset = const0_rtx;
    }

  /* If it's the stack or frame pointer, check offset alignment.
     We can have improper alignment in the function entry code.  */
  if (base
      && (REGNO (base) == FRAME_POINTER_REGNUM
	  || REGNO (base) == STACK_POINTER_REGNUM))
    {
      if ((INTVAL (offset) & 0x7) == 0)
	return 1;
    }
  /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
     is true, in which case we can only assume that an access is aligned if
     it is to an aggregate, it is to a constant address, or the address
     involves a LO_SUM.  */
  else if (! TARGET_UNALIGNED_DOUBLES || MEM_IN_STRUCT_P (mem)
	   || CONSTANT_P (addr) || GET_CODE (addr) == LO_SUM)
    return 1;

  /* An obviously unaligned address.  */
  return 0;
}

enum optype { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP };

/* Output assembler code to perform a doubleword move insn
   with operands OPERANDS.  This is very similar to the following
   output_move_quad function.  */

char *
output_move_double (operands)
     rtx *operands;
{
  register rtx op0 = operands[0];
  register rtx op1 = operands[1];
  register enum optype optype0;
  register enum optype optype1;
  rtx latehalf[2];
  rtx addreg0 = 0;
  rtx addreg1 = 0;
  int highest_first = 0;
  int no_addreg1_decrement = 0;

  /* First classify both operands.  */

  if (REG_P (op0))
    optype0 = REGOP;
  else if (offsettable_memref_p (op0))
    optype0 = OFFSOP;
  else if (GET_CODE (op0) == MEM)
    optype0 = MEMOP;
  else
    optype0 = RNDOP;

  if (REG_P (op1))
    optype1 = REGOP;
  else if (CONSTANT_P (op1))
    optype1 = CNSTOP;
  else if (offsettable_memref_p (op1))
    optype1 = OFFSOP;
  else if (GET_CODE (op1) == MEM)
    optype1 = MEMOP;
  else
    optype1 = RNDOP;

  /* Check for the cases that the operand constraints are not
     supposed to allow to happen.  Abort if we get one,
     because generating code for these cases is painful.  */

  if (optype0 == RNDOP || optype1 == RNDOP
      || (optype0 == MEM && optype1 == MEM))
    abort ();

  /* If an operand is an unoffsettable memory ref, find a register
     we can increment temporarily to make it refer to the second word.  */

  if (optype0 == MEMOP)
    addreg0 = find_addr_reg (XEXP (op0, 0));

  if (optype1 == MEMOP)
    addreg1 = find_addr_reg (XEXP (op1, 0));

  /* Ok, we can do one word at a time.
     Set up in LATEHALF the operands to use for the
     high-numbered (least significant) word and in some cases alter the
     operands in OPERANDS to be suitable for the low-numbered word.  */

  if (optype0 == REGOP)
    latehalf[0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
  else if (optype0 == OFFSOP)
    latehalf[0] = adj_offsettable_operand (op0, 4);
  else
    latehalf[0] = op0;

  if (optype1 == REGOP)
    latehalf[1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
  else if (optype1 == OFFSOP)
    latehalf[1] = adj_offsettable_operand (op1, 4);
  else if (optype1 == CNSTOP)
    split_double (op1, &operands[1], &latehalf[1]);
  else
    latehalf[1] = op1;

  /* Easy case: try moving both words at once.  Check for moving between
     an even/odd register pair and a memory location.  */
  if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP
       && (REGNO (op0) & 1) == 0)
      || (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP
	  && (REGNO (op1) & 1) == 0))
    {
      register rtx mem;

      if (optype0 == REGOP)
	mem = op1;
      else
	mem = op0;

      if (mem_aligned_8 (mem))
	return (mem == op1 ? "ldd %1,%0" : "std %1,%0");
    }

  /* If the first move would clobber the source of the second one,
     do them in the other order.  */

  /* Overlapping registers.  */
  if (optype0 == REGOP && optype1 == REGOP
      && REGNO (op0) == REGNO (latehalf[1]))
    {
      /* Do that word.  */
      output_asm_insn (singlemove_string (latehalf), latehalf);
      /* Do low-numbered word.  */
      return singlemove_string (operands);
    }
  /* Loading into a register which overlaps a register used in the address.  */
  else if (optype0 == REGOP && optype1 != REGOP
	   && reg_overlap_mentioned_p (op0, op1))
    {
      /* If both halves of dest are used in the src memory address,
	 add the two regs and put them in the low reg (op0).
	 Then it works to load latehalf first.  */
      if (reg_mentioned_p (op0, XEXP (op1, 0))
	  && reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
	{
	  rtx xops[2];
	  xops[0] = latehalf[0];
	  xops[1] = op0;
	  output_asm_insn ("add %1,%0,%1", xops);
	  operands[1] = gen_rtx (MEM, DImode, op0);
	  latehalf[1] = adj_offsettable_operand (operands[1], 4);
	  addreg1 = 0;
	  highest_first = 1;
	}
      /* Only one register in the dest is used in the src memory address,
	 and this is the first register of the dest, so we want to do
	 the late half first here also.  */
      else if (! reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
	highest_first = 1;
      /* Only one register in the dest is used in the src memory address,
	 and this is the second register of the dest, so we want to do
	 the late half last.  If addreg1 is set, and addreg1 is the same
	 register as latehalf, then we must suppress the trailing decrement,
	 because it would clobber the value just loaded.  */
      else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0]))
	no_addreg1_decrement = 1;
    }

  /* Normal case: do the two words, low-numbered first.
     Overlap case (highest_first set): do high-numbered word first.  */

  if (! highest_first)
    output_asm_insn (singlemove_string (operands), operands);

  /* Make any unoffsettable addresses point at high-numbered word.  */
  if (addreg0)
    output_asm_insn ("add %0,0x4,%0", &addreg0);
  if (addreg1)
    output_asm_insn ("add %0,0x4,%0", &addreg1);

  /* Do that word.  */
  output_asm_insn (singlemove_string (latehalf), latehalf);

  /* Undo the adds we just did.  */
  if (addreg0)
    output_asm_insn ("add %0,-0x4,%0", &addreg0);
  if (addreg1 && ! no_addreg1_decrement)
    output_asm_insn ("add %0,-0x4,%0", &addreg1);

  if (highest_first)
    output_asm_insn (singlemove_string (operands), operands);

  return "";
}

/* Output assembler code to perform a quadword move insn
   with operands OPERANDS.  This is very similar to the preceding
   output_move_double function.  */

char *
output_move_quad (operands)
     rtx *operands;
{
  register rtx op0 = operands[0];
  register rtx op1 = operands[1];
  register enum optype optype0;
  register enum optype optype1;
  rtx wordpart[4][2];
  rtx addreg0 = 0;
  rtx addreg1 = 0;

  /* First classify both operands.  */

  if (REG_P (op0))
    optype0 = REGOP;
  else if (offsettable_memref_p (op0))
    optype0 = OFFSOP;
  else if (GET_CODE (op0) == MEM)
    optype0 = MEMOP;
  else
    optype0 = RNDOP;

  if (REG_P (op1))
    optype1 = REGOP;
  else if (CONSTANT_P (op1))
    optype1 = CNSTOP;
  else if (offsettable_memref_p (op1))
    optype1 = OFFSOP;
  else if (GET_CODE (op1) == MEM)
    optype1 = MEMOP;
  else
    optype1 = RNDOP;

  /* Check for the cases that the operand constraints are not
     supposed to allow to happen.  Abort if we get one,
     because generating code for these cases is painful.  */

  if (optype0 == RNDOP || optype1 == RNDOP
      || (optype0 == MEM && optype1 == MEM))
    abort ();

  /* If an operand is an unoffsettable memory ref, find a register
     we can increment temporarily to make it refer to the later words.  */

  if (optype0 == MEMOP)
    addreg0 = find_addr_reg (XEXP (op0, 0));

  if (optype1 == MEMOP)
    addreg1 = find_addr_reg (XEXP (op1, 0));

  /* Ok, we can do one word at a time.
     Set up in wordpart the operands to use for each word of the arguments.  */

  if (optype0 == REGOP)
    {
      wordpart[0][0] = gen_rtx (REG, SImode, REGNO (op0) + 0);
      wordpart[1][0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
      wordpart[2][0] = gen_rtx (REG, SImode, REGNO (op0) + 2);
      wordpart[3][0] = gen_rtx (REG, SImode, REGNO (op0) + 3);
    }
  else if (optype0 == OFFSOP)
    {
      wordpart[0][0] = adj_offsettable_operand (op0, 0);
      wordpart[1][0] = adj_offsettable_operand (op0, 4);
      wordpart[2][0] = adj_offsettable_operand (op0, 8);
      wordpart[3][0] = adj_offsettable_operand (op0, 12);
    }
  else
    {
      wordpart[0][0] = op0;
      wordpart[1][0] = op0;
      wordpart[2][0] = op0;
      wordpart[3][0] = op0;
    }

  if (optype1 == REGOP)
    {
      wordpart[0][1] = gen_rtx (REG, SImode, REGNO (op1) + 0);
      wordpart[1][1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
      wordpart[2][1] = gen_rtx (REG, SImode, REGNO (op1) + 2);
      wordpart[3][1] = gen_rtx (REG, SImode, REGNO (op1) + 3);
    }
  else if (optype1 == OFFSOP)
    {
      wordpart[0][1] = adj_offsettable_operand (op1, 0);
      wordpart[1][1] = adj_offsettable_operand (op1, 4);
      wordpart[2][1] = adj_offsettable_operand (op1, 8);
      wordpart[3][1] = adj_offsettable_operand (op1, 12);
    }
  else if (optype1 == CNSTOP)
    {
      REAL_VALUE_TYPE r;
      long l[4];

      /* This only works for TFmode floating point constants.  */
      if (GET_CODE (op1) != CONST_DOUBLE || GET_MODE (op1) != TFmode)
	abort ();

      REAL_VALUE_FROM_CONST_DOUBLE (r, op1);
      REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
      
      wordpart[0][1] = GEN_INT (l[0]);
      wordpart[1][1] = GEN_INT (l[1]);
      wordpart[2][1] = GEN_INT (l[2]);
      wordpart[3][1] = GEN_INT (l[3]);
    }
  else
    {
      wordpart[0][1] = op1;
      wordpart[1][1] = op1;
      wordpart[2][1] = op1;
      wordpart[3][1] = op1;
    }

  /* Easy case: try moving the quad as two pairs.  Check for moving between
     an even/odd register pair and a memory location.  */
  /* ??? Should also handle the case of non-offsettable addresses here.
     We can at least do the first pair as a ldd/std, and then do the third
     and fourth words individually.  */
  if ((optype0 == REGOP && optype1 == OFFSOP && (REGNO (op0) & 1) == 0)
      || (optype0 == OFFSOP && optype1 == REGOP && (REGNO (op1) & 1) == 0))
    {
      rtx mem;

      if (optype0 == REGOP)
	mem = op1;
      else
	mem = op0;

      if (mem_aligned_8 (mem))
	{
	  operands[2] = adj_offsettable_operand (mem, 8);
	  if (mem == op1)
	    return "ldd %1,%0;ldd %2,%S0";
	  else
	    return "std %1,%0;std %S1,%2";
	}
    }

  /* If the first move would clobber the source of the second one,
     do them in the other order.  */

  /* Overlapping registers.  */
  if (optype0 == REGOP && optype1 == REGOP
      && (REGNO (op0) == REGNO (wordpart[1][3])
	  || REGNO (op0) == REGNO (wordpart[1][2])
	  || REGNO (op0) == REGNO (wordpart[1][1])))
    {
      /* Do fourth word.  */
      output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
      /* Do the third word.  */
      output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
      /* Do the second word.  */
      output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
      /* Do lowest-numbered word.  */
      return singlemove_string (wordpart[0]);
    }
  /* Loading into a register which overlaps a register used in the address.  */
  if (optype0 == REGOP && optype1 != REGOP
      && reg_overlap_mentioned_p (op0, op1))
    {
      /* ??? Not implemented yet.  This is a bit complicated, because we
	 must load which ever part overlaps the address last.  If the address
	 is a double-reg address, then there are two parts which need to
	 be done last, which is impossible.  We would need a scratch register
	 in that case.  */
      abort ();
    }

  /* Normal case: move the four words in lowest to higest address order.  */

  output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);

  /* Make any unoffsettable addresses point at the second word.  */
  if (addreg0)
    output_asm_insn ("add %0,0x4,%0", &addreg0);
  if (addreg1)
    output_asm_insn ("add %0,0x4,%0", &addreg1);

  /* Do the second word.  */
  output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);

  /* Make any unoffsettable addresses point at the third word.  */
  if (addreg0)
    output_asm_insn ("add %0,0x4,%0", &addreg0);
  if (addreg1)
    output_asm_insn ("add %0,0x4,%0", &addreg1);

  /* Do the third word.  */
  output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);

  /* Make any unoffsettable addresses point at the fourth word.  */
  if (addreg0)
    output_asm_insn ("add %0,0x4,%0", &addreg0);
  if (addreg1)
    output_asm_insn ("add %0,0x4,%0", &addreg1);

  /* Do the fourth word.  */
  output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);

  /* Undo the adds we just did.  */
  if (addreg0)
    output_asm_insn ("add %0,-0xc,%0", &addreg0);
  if (addreg1)
    output_asm_insn ("add %0,-0xc,%0", &addreg1);

  return "";
}

/* Output assembler code to perform a doubleword move insn with operands
   OPERANDS, one of which must be a floating point register.  */

char *
output_fp_move_double (operands)
     rtx *operands;
{
  if (FP_REG_P (operands[0]))
    {
      if (FP_REG_P (operands[1]))
	return "fmovs %1,%0\n\tfmovs %R1,%R0";
      else if (GET_CODE (operands[1]) == REG)
	abort ();
      else
	return output_move_double (operands);
    }
  else if (FP_REG_P (operands[1]))
    {
      if (GET_CODE (operands[0]) == REG)
	abort ();
      else
	return output_move_double (operands);
    }
  else abort ();
}

/* Output assembler code to perform a quadword move insn with operands
   OPERANDS, one of which must be a floating point register.  */

char *
output_fp_move_quad (operands)
     rtx *operands;
{
  register rtx op0 = operands[0];
  register rtx op1 = operands[1];

  if (FP_REG_P (op0))
    {
      if (FP_REG_P (op1))
	return "fmovs %1,%0\n\tfmovs %R1,%R0\n\tfmovs %S1,%S0\n\tfmovs %T1,%T0";
      else if (GET_CODE (op1) == REG)
	abort ();
      else
	return output_move_quad (operands);
    }
  else if (FP_REG_P (op1))
    {
      if (GET_CODE (op0) == REG)
	abort ();
      else
	return output_move_quad (operands);
    }
  else
    abort ();
}

/* Return a REG that occurs in ADDR with coefficient 1.
   ADDR can be effectively incremented by incrementing REG.  */

static rtx
find_addr_reg (addr)
     rtx addr;
{
  while (GET_CODE (addr) == PLUS)
    {
      /* We absolutely can not fudge the frame pointer here, because the
	 frame pointer must always be 8 byte aligned.  It also confuses
	 debuggers.  */
      if (GET_CODE (XEXP (addr, 0)) == REG
	  && REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM)
	addr = XEXP (addr, 0);
      else if (GET_CODE (XEXP (addr, 1)) == REG
	       && REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM)
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 0)))
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 1)))
	addr = XEXP (addr, 0);
      else
	abort ();
    }
  if (GET_CODE (addr) == REG)
    return addr;
  abort ();
}

#if 0 /* not currently used */

void
output_sized_memop (opname, mode, signedp)
     char *opname;
     enum machine_mode mode;
     int signedp;
{
  static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" };
  static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" };
  static char *st_size_suffix[] = { "b", "h", "", "?", "d" };
  char **opnametab, *modename;

  if (opname[0] == 'l')
    if (signedp)
      opnametab = ld_size_suffix_s;
    else
      opnametab = ld_size_suffix_u;
  else
    opnametab = st_size_suffix;
  modename = opnametab[GET_MODE_SIZE (mode) >> 1];

  fprintf (asm_out_file, "\t%s%s", opname, modename);
}

void
output_move_with_extension (operands)
     rtx *operands;
{
  if (GET_MODE (operands[2]) == HImode)
    output_asm_insn ("sll %2,0x10,%0", operands);
  else if (GET_MODE (operands[2]) == QImode)
    output_asm_insn ("sll %2,0x18,%0", operands);
  else
    abort ();
}
#endif /* not currently used */

#if 0
/* ??? These are only used by the movstrsi pattern, but we get better code
   in general without that, because emit_block_move can do just as good a
   job as this function does when alignment and size are known.  When they
   aren't known, a call to strcpy may be faster anyways, because it is
   likely to be carefully crafted assembly language code, and below we just
   do a byte-wise copy.

   Also, emit_block_move expands into multiple read/write RTL insns, which
   can then be optimized, whereas our movstrsi pattern can not be optimized
   at all.  */

/* Load the address specified by OPERANDS[3] into the register
   specified by OPERANDS[0].

   OPERANDS[3] may be the result of a sum, hence it could either be:

   (1) CONST
   (2) REG
   (2) REG + CONST_INT
   (3) REG + REG + CONST_INT
   (4) REG + REG  (special case of 3).

   Note that (3) is not a legitimate address.
   All cases are handled here.  */

void
output_load_address (operands)
     rtx *operands;
{
  rtx base, offset;

  if (CONSTANT_P (operands[3]))
    {
      output_asm_insn ("set %3,%0", operands);
      return;
    }

  if (REG_P (operands[3]))
    {
      if (REGNO (operands[0]) != REGNO (operands[3]))
	output_asm_insn ("mov %3,%0", operands);
      return;
    }

  if (GET_CODE (operands[3]) != PLUS)
    abort ();

  base = XEXP (operands[3], 0);
  offset = XEXP (operands[3], 1);

  if (GET_CODE (base) == CONST_INT)
    {
      rtx tmp = base;
      base = offset;
      offset = tmp;
    }

  if (GET_CODE (offset) != CONST_INT)
    {
      /* Operand is (PLUS (REG) (REG)).  */
      base = operands[3];
      offset = const0_rtx;
    }

  if (REG_P (base))
    {
      operands[6] = base;
      operands[7] = offset;
      if (SMALL_INT (offset))
	output_asm_insn ("add %6,%7,%0", operands);
      else
	output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands);
    }
  else if (GET_CODE (base) == PLUS)
    {
      operands[6] = XEXP (base, 0);
      operands[7] = XEXP (base, 1);
      operands[8] = offset;

      if (SMALL_INT (offset))
	output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands);
      else
	output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands);
    }
  else
    abort ();
}

/* Output code to place a size count SIZE in register REG.
   ALIGN is the size of the unit of transfer.

   Because block moves are pipelined, we don't include the
   first element in the transfer of SIZE to REG.  */

static void
output_size_for_block_move (size, reg, align)
     rtx size, reg;
     rtx align;
{
  rtx xoperands[3];

  xoperands[0] = reg;
  xoperands[1] = size;
  xoperands[2] = align;
  if (GET_CODE (size) == REG)
    output_asm_insn ("sub %1,%2,%0", xoperands);
  else
    {
      xoperands[1]
	= gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align));
      output_asm_insn ("set %1,%0", xoperands);
    }
}

/* Emit code to perform a block move.

   OPERANDS[0] is the destination.
   OPERANDS[1] is the source.
   OPERANDS[2] is the size.
   OPERANDS[3] is the alignment safe to use.
   OPERANDS[4] is a register we can safely clobber as a temp.  */

char *
output_block_move (operands)
     rtx *operands;
{
  /* A vector for our computed operands.  Note that load_output_address
     makes use of (and can clobber) up to the 8th element of this vector.  */
  rtx xoperands[10];
  rtx zoperands[10];
  static int movstrsi_label = 0;
  int i;
  rtx temp1 = operands[4];
  rtx sizertx = operands[2];
  rtx alignrtx = operands[3];
  int align = INTVAL (alignrtx);
  char label3[30], label5[30];

  xoperands[0] = operands[0];
  xoperands[1] = operands[1];
  xoperands[2] = temp1;

  /* We can't move more than this many bytes at a time because we have only
     one register, %g1, to move them through.  */
  if (align > UNITS_PER_WORD)
    {
      align = UNITS_PER_WORD;
      alignrtx = gen_rtx (CONST_INT, VOIDmode, UNITS_PER_WORD);
    }

  /* We consider 8 ld/st pairs, for a total of 16 inline insns to be
     reasonable here.  (Actually will emit a maximum of 18 inline insns for
     the case of size == 31 and align == 4).  */

  if (GET_CODE (sizertx) == CONST_INT && (INTVAL (sizertx) / align) <= 8
      && memory_address_p (QImode, plus_constant_for_output (xoperands[0],
							     INTVAL (sizertx)))
      && memory_address_p (QImode, plus_constant_for_output (xoperands[1],
							     INTVAL (sizertx))))
    {
      int size = INTVAL (sizertx);
      int offset = 0;

      /* We will store different integers into this particular RTX.  */
      xoperands[2] = rtx_alloc (CONST_INT);
      PUT_MODE (xoperands[2], VOIDmode);

      /* This case is currently not handled.  Abort instead of generating
	 bad code.  */
      if (align > 4)
	abort ();

      if (align >= 4)
	{
	  for (i = (size >> 2) - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = (i << 2) + offset;
	      output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]",
			       xoperands);
	    }
	  offset += (size & ~0x3);
	  size = size & 0x3;
	  if (size == 0)
	    return "";
	}

      if (align >= 2)
	{
	  for (i = (size >> 1) - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = (i << 1) + offset;
	      output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]",
			       xoperands);
	    }
	  offset += (size & ~0x1);
	  size = size & 0x1;
	  if (size == 0)
	    return "";
	}

      if (align >= 1)
	{
	  for (i = size - 1; i >= 0; i--)
	    {
	      INTVAL (xoperands[2]) = i + offset;
	      output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]",
			       xoperands);
	    }
	  return "";
	}

      /* We should never reach here.  */
      abort ();
    }

  /* If the size isn't known to be a multiple of the alignment,
     we have to do it in smaller pieces.  If we could determine that
     the size was a multiple of 2 (or whatever), we could be smarter
     about this.  */
  if (GET_CODE (sizertx) != CONST_INT)
    align = 1;
  else
    {
      int size = INTVAL (sizertx);
      while (size % align)
	align >>= 1;
    }

  if (align != INTVAL (alignrtx))
    alignrtx = gen_rtx (CONST_INT, VOIDmode, align);

  xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
  xoperands[4] = gen_rtx (CONST_INT, VOIDmode, align);
  xoperands[5] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);

  ASM_GENERATE_INTERNAL_LABEL (label3, "Lm", INTVAL (xoperands[3]));
  ASM_GENERATE_INTERNAL_LABEL (label5, "Lm", INTVAL (xoperands[5]));

  /* This is the size of the transfer.  Emit code to decrement the size
     value by ALIGN, and store the result in the temp1 register.  */
  output_size_for_block_move (sizertx, temp1, alignrtx);

  /* Must handle the case when the size is zero or negative, so the first thing
     we do is compare the size against zero, and only copy bytes if it is
     zero or greater.  Note that we have already subtracted off the alignment
     once, so we must copy 1 alignment worth of bytes if the size is zero
     here.

     The SUN assembler complains about labels in branch delay slots, so we
     do this before outputting the load address, so that there will always
     be a harmless insn between the branch here and the next label emitted
     below.  */

  {
    char pattern[100];

    sprintf (pattern, "cmp %%2,0\n\tbl %s", &label5[1]);
    output_asm_insn (pattern, xoperands);
  }

  zoperands[0] = operands[0];
  zoperands[3] = plus_constant_for_output (operands[0], align);
  output_load_address (zoperands);

  /* ??? This might be much faster if the loops below were preconditioned
     and unrolled.

     That is, at run time, copy enough bytes one at a time to ensure that the
     target and source addresses are aligned to the the largest possible
     alignment.  Then use a preconditioned unrolled loop to copy say 16
     bytes at a time.  Then copy bytes one at a time until finish the rest.  */

  /* Output the first label separately, so that it is spaced properly.  */

  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3]));

  {
    char pattern[200];
    register char *ld_suffix = (align == 1) ? "ub" : (align == 2) ? "uh" : "";
    register char *st_suffix = (align == 1) ? "b" : (align == 2) ? "h" : "";

    sprintf (pattern, "ld%s [%%1+%%2],%%%%g1\n\tsubcc %%2,%%4,%%2\n\tbge %s\n\tst%s %%%%g1,[%%0+%%2]\n%s:", ld_suffix, &label3[1], st_suffix, &label5[1]);
    output_asm_insn (pattern, xoperands);
  }

  return "";
}
#endif

/* Output reasonable peephole for set-on-condition-code insns.
   Note that these insns assume a particular way of defining
   labels.  Therefore, *both* sparc.h and this function must
   be changed if a new syntax is needed.    */

char *
output_scc_insn (operands, insn)
     rtx operands[];
     rtx insn;
{
  static char string[100];
  rtx label = 0, next = insn;
  int need_label = 0;

  /* Try doing a jump optimization which jump.c can't do for us
     because we did not expose that setcc works by using branches.

     If this scc insn is followed by an unconditional branch, then have
     the jump insn emitted here jump to that location, instead of to
     the end of the scc sequence as usual.  */

  do
    {
      if (GET_CODE (next) == CODE_LABEL)
	label = next;
      next = NEXT_INSN (next);
      if (next == 0)
	break;
    }
  while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL);

  /* If we are in a sequence, and the following insn is a sequence also,
     then just following the current insn's next field will take us to the
     first insn of the next sequence, which is the wrong place.  We don't
     want to optimize with a branch that has had its delay slot filled.
     Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next
     which fails only if NEXT is such a branch.  */

  if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next)
      && (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next))
    label = JUMP_LABEL (next);
  /* If not optimizing, jump label fields are not set.  To be safe, always
     check here to whether label is still zero.  */
  if (label == 0)
    {
      label = gen_label_rtx ();
      need_label = 1;
    }

  LABEL_NUSES (label) += 1;

  operands[2] = label;

  /* If we are in a delay slot, assume it is the delay slot of an fpcc
     insn since our type isn't allowed anywhere else.  */

  /* ??? Fpcc instructions no longer have delay slots, so this code is
     probably obsolete.  */

  /* The fastest way to emit code for this is an annulled branch followed
     by two move insns.  This will take two cycles if the branch is taken,
     and three cycles if the branch is not taken.

     However, if we are in the delay slot of another branch, this won't work,
     because we can't put a branch in the delay slot of another branch.
     The above sequence would effectively take 3 or 4 cycles respectively
     since a no op would have be inserted between the two branches.
     In this case, we want to emit a move, annulled branch, and then the
     second move.  This sequence always takes 3 cycles, and hence is faster
     when we are in a branch delay slot.  */

  if (final_sequence)
    {
      strcpy (string, "mov 0,%0\n\t");
      strcat (string, output_cbranch (operands[1], 2, 0, 1, 0));
      strcat (string, "\n\tmov 1,%0");
    }
  else
    {
      strcpy (string, output_cbranch (operands[1], 2, 0, 1, 0));
      strcat (string, "\n\tmov 1,%0\n\tmov 0,%0");
    }

  if (need_label)
    strcat (string, "\n%l2:");

  return string;
}

/* Vectors to keep interesting information about registers where
   it can easily be got.  */

/* Modes for condition codes.  */
#define C_MODES						\
  ((1 << (int) CCmode) | (1 << (int) CC_NOOVmode)	\
   | (1 << (int) CCFPmode) | (1 << (int) CCFPEmode))

/* Modes for single-word (and smaller) quantities.  */
#define S_MODES								\
 ((1 << (int) QImode) | (1 << (int) HImode) | (1 << (int) SImode)	\
  | (1 << (int) QFmode) | (1 << (int) HFmode) | (1 << (int) SFmode)	\
  | (1 << (int) CQImode) | (1 << (int) CHImode))

/* Modes for double-word (and smaller) quantities.  */
#define D_MODES						\
 (S_MODES | (1 << (int) DImode) | (1 << (int) DFmode)	\
  | (1 << (int) CSImode) | (1 << (int) SCmode))

/* Modes for quad-word quantities.  */
#define T_MODES						\
 (D_MODES | (1 << (int) TImode) | (1 << (int) TFmode)	\
  | (1 << (int) DCmode) | (1 << (int) CDImode))

/* Modes for single-float quantities.  We must allow any single word or
   smaller quantity.  This is because the fix/float conversion instructions
   take integer inputs/outputs from the float registers.  */
#define SF_MODES (S_MODES)

/* Modes for double-float quantities.  */
#define DF_MODES (SF_MODES | (1 << (int) DFmode) | (1 << (int) SCmode))

/* Modes for quad-float quantities.  */
#define TF_MODES (DF_MODES | (1 << (int) TFmode) | (1 << (int) DCmode))

/* Value is 1 if register/mode pair is acceptable on sparc.
   The funny mixture of D and T modes is because integer operations
   do not specially operate on tetra quantities, so non-quad-aligned
   registers can hold quadword quantities (except %o4 and %i4 because
   they cross fixed registers.  */

int hard_regno_mode_ok[] = {
  C_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
  T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,

  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
  TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES};

#ifdef __GNUC__
inline
#endif
static int
save_regs (file, low, high, base, offset, n_fregs)
     FILE *file;
     int low, high;
     char *base;
     int offset;
     int n_fregs;
{
  int i;

  for (i = low; i < high; i += 2)
    {
      if (regs_ever_live[i] && ! call_used_regs[i])
	if (regs_ever_live[i+1] && ! call_used_regs[i+1])
	  fprintf (file, "\tstd %s,[%s+%d]\n",
		   reg_names[i], base, offset + 4 * n_fregs),
	  n_fregs += 2;
	else
	  fprintf (file, "\tst %s,[%s+%d]\n",
		   reg_names[i], base, offset + 4 * n_fregs),
	  n_fregs += 2;
      else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
	fprintf (file, "\tst %s,[%s+%d]\n",
		 reg_names[i+1], base, offset + 4 * n_fregs),
	n_fregs += 2;
    }
  return n_fregs;
}

#ifdef __GNUC__
inline
#endif
static int
restore_regs (file, low, high, base, offset, n_fregs)
     FILE *file;
     int low, high;
     char *base;
     int offset;
{
  int i;

  for (i = low; i < high; i += 2)
    {
      if (regs_ever_live[i] && ! call_used_regs[i])
	if (regs_ever_live[i+1] && ! call_used_regs[i+1])
	  fprintf (file, "\tldd [%s+%d], %s\n",
		   base, offset + 4 * n_fregs, reg_names[i]),
	  n_fregs += 2;
	else
	  fprintf (file, "\tld [%s+%d],%s\n",
		   base, offset + 4 * n_fregs, reg_names[i]),
	  n_fregs += 2;
      else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
	fprintf (file, "\tld [%s+%d],%s\n",
		 base, offset + 4 * n_fregs, reg_names[i+1]),
	n_fregs += 2;
    }
  return n_fregs;
}

/* Static variables we want to share between prologue and epilogue.  */

/* Number of live floating point registers needed to be saved.  */
static int num_fregs;

int
compute_frame_size (size, leaf_function)
     int size;
     int leaf_function;
{
  int fregs_ever_live = 0;
  int n_fregs = 0, i;
  int outgoing_args_size = (current_function_outgoing_args_size
			    + REG_PARM_STACK_SPACE (current_function_decl));

  apparent_fsize = ((size) + 7 - STARTING_FRAME_OFFSET) & -8;
  for (i = 32; i < FIRST_PSEUDO_REGISTER; i += 2)
    fregs_ever_live |= regs_ever_live[i]|regs_ever_live[i+1];

  if (TARGET_EPILOGUE && fregs_ever_live)
    {
      for (i = 32; i < FIRST_PSEUDO_REGISTER; i += 2)
	if ((regs_ever_live[i] && ! call_used_regs[i])
	    || (regs_ever_live[i+1] && ! call_used_regs[i+1]))
	  n_fregs += 2;
    }

  /* Set up values for use in `function_epilogue'.  */
  num_fregs = n_fregs;

  apparent_fsize += (outgoing_args_size+7) & -8;
  if (leaf_function && n_fregs == 0
      && apparent_fsize == (REG_PARM_STACK_SPACE (current_function_decl)
			    - STARTING_FRAME_OFFSET))
    apparent_fsize = 0;

  actual_fsize = apparent_fsize + n_fregs*4;

  /* Make sure nothing can clobber our register windows.
     If a SAVE must be done, or there is a stack-local variable,
     the register window area must be allocated.  */
  if (leaf_function == 0 || size > 0)
    actual_fsize += (16 * UNITS_PER_WORD)+8;

  return actual_fsize;
}

/* Output code for the function prologue.  */

void
output_function_prologue (file, size, leaf_function)
     FILE *file;
     int size;
     int leaf_function;
{
  /* ??? This should be %sp+actual_fsize for a leaf function.  I think it
     works only because it is never used.  */
  if (leaf_function)
    frame_base_name = "%sp+80";
  else
    frame_base_name = "%fp";

  /* Need to use actual_fsize, since we are also allocating
     space for our callee (and our own register save area).  */
  actual_fsize = compute_frame_size (size, leaf_function);

  fprintf (file, "\t!#PROLOGUE# 0\n");
  if (actual_fsize == 0)
    /* do nothing.  */ ;
  else if (actual_fsize <= 4096)
    {
      if (! leaf_function)
	fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize);
      else
	fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize);
    }
  else if (actual_fsize <= 8192)
    {
      /* For frames in the range 4097..8192, we can use just two insns.  */
      if (! leaf_function)
	{
	  fprintf (file, "\tsave %%sp,-4096,%%sp\n");
	  fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
	}
      else
	{
	  fprintf (file, "\tadd %%sp,-4096,%%sp\n");
	  fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
	}
    }
  else
    {
      if (! leaf_function)
	{
	  fprintf (file, "\tsethi %%hi(-%d),%%g1\n", actual_fsize);
	  if ((actual_fsize & 0x3ff) != 0)
	    fprintf (file, "\tor %%g1,%%lo(-%d),%%g1\n", actual_fsize);
	  fprintf (file, "\tsave %%sp,%%g1,%%sp\n");
	}
      else
	{
	  fprintf (file, "\tsethi %%hi(-%d),%%g1\n", actual_fsize);
	  if ((actual_fsize & 0x3ff) != 0)
	    fprintf (file, "\tor %%g1,%%lo(-%d),%%g1\n", actual_fsize);
	  fprintf (file, "\tadd %%sp,%%g1,%%sp\n");
	}
    }

  /* If doing anything with PIC, do it now.  */
  if (! flag_pic)
    fprintf (file, "\t!#PROLOGUE# 1\n");

  /* Figure out where to save any special registers.  */
  if (num_fregs)
    {
      int offset, n_fregs = num_fregs;

      /* ??? This should always be -apparent_fsize.  */
      if (! leaf_function)
	offset = -apparent_fsize;
      else
	offset = 0;

      if (TARGET_EPILOGUE && ! leaf_function)
	n_fregs = save_regs (file, 0, 16, frame_base_name, offset, 0);
      else if (leaf_function)
	n_fregs = save_regs (file, 0, 32, frame_base_name, offset, 0);
      if (TARGET_EPILOGUE)
	save_regs (file, 32, FIRST_PSEUDO_REGISTER,
		   frame_base_name, offset, n_fregs);
    }

  leaf_label = 0;
  if (leaf_function && actual_fsize != 0)
    {
      /* warning ("leaf procedure with frame size %d", actual_fsize); */
      if (! TARGET_EPILOGUE)
	leaf_label = gen_label_rtx ();
    }
}

/* Output code for the function epilogue.  */

void
output_function_epilogue (file, size, leaf_function)
     FILE *file;
     int size;
     int leaf_function;
{
  char *ret;

  if (leaf_label)
    {
      emit_label_after (leaf_label, get_last_insn ());
      final_scan_insn (get_last_insn (), file, 0, 0, 1);
    }

  if (num_fregs)
    {
      int offset, n_fregs = num_fregs;

      /* ??? This should always be -apparent_fsize.  */
      if (! leaf_function)
	offset = -apparent_fsize;
      else
	offset = 0;

      if (TARGET_EPILOGUE && ! leaf_function)
	n_fregs = restore_regs (file, 0, 16, frame_base_name, offset, 0);
      else if (leaf_function)
	n_fregs = restore_regs (file, 0, 32, frame_base_name, offset, 0);
      if (TARGET_EPILOGUE)
	restore_regs (file, 32, FIRST_PSEUDO_REGISTER,
		      frame_base_name, offset, n_fregs);
    }

  /* Work out how to skip the caller's unimp instruction if required.  */
  if (leaf_function)
    ret = (current_function_returns_struct ? "jmp %o7+12" : "retl");
  else
    ret = (current_function_returns_struct ? "jmp %i7+12" : "ret");

  if (TARGET_EPILOGUE || leaf_label)
    {
      int old_target_epilogue = TARGET_EPILOGUE;
      target_flags &= ~old_target_epilogue;

      if (! leaf_function)
	{
	  /* If we wound up with things in our delay slot, flush them here.  */
	  if (current_function_epilogue_delay_list)
	    {
	      rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode),
					       get_last_insn ());
	      PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode,
					gen_rtvec (2,
						   PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
						   PATTERN (insn)));
	      final_scan_insn (insn, file, 1, 0, 1);
	    }
	  else
	    fprintf (file, "\t%s\n\trestore\n", ret);
	}
      /* All of the following cases are for leaf functions.  */
      else if (current_function_epilogue_delay_list)
	{
	  /* eligible_for_epilogue_delay_slot ensures that if this is a
	     leaf function, then we will only have insn in the delay slot
	     if the frame size is zero, thus no adjust for the stack is
	     needed here.  */
	  if (actual_fsize != 0)
	    abort ();
	  fprintf (file, "\t%s\n", ret);
	  final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
			   file, 1, 0, 1);
	}
      /* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
	 avoid generating confusing assembly language output.  */
      else if (actual_fsize == 0)
	fprintf (file, "\t%s\n\tnop\n", ret);
      else if (actual_fsize <= 4096)
	fprintf (file, "\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize);
      else if (actual_fsize <= 8192)
	fprintf (file, "\tsub %%sp,-4096,%%sp\n\t%s\n\tsub %%sp,-%d,%%sp\n",
		 ret, actual_fsize - 4096);
      else if ((actual_fsize & 0x3ff) == 0)
	fprintf (file, "\tsethi %%hi(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
		 actual_fsize, ret);
      else		 
	fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
		 actual_fsize, actual_fsize, ret);
      target_flags |= old_target_epilogue;
    }
}

/* Do what is necessary for `va_start'.  The argument is ignored;
   We look at the current function to determine if stdarg or varargs
   is used and return the address of the first unnamed parameter.  */

rtx
sparc_builtin_saveregs (arglist)
     tree arglist;
{
  tree fntype = TREE_TYPE (current_function_decl);
  int stdarg = (TYPE_ARG_TYPES (fntype) != 0
		&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
		    != void_type_node));
  int first_reg = current_function_args_info;
  rtx address;
  int regno;

#if 0 /* This code seemed to have no effect except to make
	 varargs not work right when va_list wasn't the first arg.  */
  if (! stdarg)
    first_reg = 0;
#endif

  for (regno = first_reg; regno < NPARM_REGS; regno++)
    emit_move_insn (gen_rtx (MEM, word_mode,
			     gen_rtx (PLUS, Pmode,
				      frame_pointer_rtx,
				      GEN_INT (STACK_POINTER_OFFSET
					       + UNITS_PER_WORD * regno))),
		    gen_rtx (REG, word_mode, BASE_INCOMING_ARG_REG (word_mode)
			     + regno));

  address = gen_rtx (PLUS, Pmode,
		     frame_pointer_rtx,
		     GEN_INT (STACK_POINTER_OFFSET
			      + UNITS_PER_WORD * first_reg));

  return address;
}

/* Return the string to output a conditional branch to LABEL, which is
   the operand number of the label.  OP is the conditional expression.  The
   mode of register 0 says what kind of comparison we made.

   REVERSED is non-zero if we should reverse the sense of the comparison.

   ANNUL is non-zero if we should generate an annulling branch.

   NOOP is non-zero if we have to follow this branch by a noop.  */

char *
output_cbranch (op, label, reversed, annul, noop)
     rtx op;
     int label;
     int reversed, annul, noop;
{
  static char string[20];
  enum rtx_code code = GET_CODE (op);
  enum machine_mode mode = GET_MODE (XEXP (op, 0));
  static char labelno[] = " %lX";

  /* ??? FP branches can not be preceded by another floating point insn.
     Because there is currently no concept of pre-delay slots, we can fix
     this only by always emitting a nop before a floating point branch.  */

  if (mode == CCFPmode || mode == CCFPEmode)
    strcpy (string, "nop\n\t");

  /* If not floating-point or if EQ or NE, we can just reverse the code.  */
  if (reversed
      && ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE))
    code = reverse_condition (code), reversed = 0;

  /* Start by writing the branch condition.  */
  switch (code)
    {
    case NE:
      if (mode == CCFPmode || mode == CCFPEmode)
	strcat (string, "fbne");
      else
	strcpy (string, "bne");
      break;

    case EQ:
      if (mode == CCFPmode || mode == CCFPEmode)
	strcat (string, "fbe");
      else
	strcpy (string, "be");
      break;

    case GE:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbul");
	  else
	    strcat (string, "fbge");
	}
      else if (mode == CC_NOOVmode)
	strcpy (string, "bpos");
      else
	strcpy (string, "bge");
      break;

    case GT:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbule");
	  else
	    strcat (string, "fbg");
	}
      else
	strcpy (string, "bg");
      break;

    case LE:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbug");
	  else
	    strcat (string, "fble");
	}
      else
	strcpy (string, "ble");
      break;

    case LT:
      if (mode == CCFPmode || mode == CCFPEmode)
	{
	  if (reversed)
	    strcat (string, "fbuge");
	  else
	    strcat (string, "fbl");
	}
      else if (mode == CC_NOOVmode)
	strcpy (string, "bneg");
      else
	strcpy (string, "bl");
      break;

    case GEU:
      strcpy (string, "bgeu");
      break;

    case GTU:
      strcpy (string, "bgu");
      break;

    case LEU:
      strcpy (string, "bleu");
      break;

    case LTU:
      strcpy (string, "blu");
      break;
    }

  /* Now add the annulling, the label, and a possible noop.  */
  if (annul)
    strcat (string, ",a");

  labelno[3] = label + '0';
  strcat (string, labelno);

  if (noop)
    strcat (string, "\n\tnop");

  return string;
}

/* Output assembler code to return from a function.  */

char *
output_return (operands)
     rtx *operands;
{
  if (leaf_label)
    {
      operands[0] = leaf_label;
      return "b,a %l0";
    }
  else if (leaf_function)
    {
      /* If we didn't allocate a frame pointer for the current function,
	 the stack pointer might have been adjusted.  Output code to
	 restore it now.  */

      operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize);

      /* Use sub of negated value in first two cases instead of add to
	 allow actual_fsize == 4096.  */

      if (actual_fsize <= 4096)
	{
	  if (current_function_returns_struct)
	    return "jmp %%o7+12\n\tsub %%sp,-%0,%%sp";
	  else
	    return "retl\n\tsub %%sp,-%0,%%sp";
	}
      else if (actual_fsize <= 8192)
	{
	  operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize - 4096);
	  if (current_function_returns_struct)
	    return "sub %%sp,-4096,%%sp\n\tjmp %%o7+12\n\tsub %%sp,-%0,%%sp";
	  else
	    return "sub %%sp,-4096,%%sp\n\tretl\n\tsub %%sp,-%0,%%sp";
	}
      else if (current_function_returns_struct)
	{
	  if ((actual_fsize & 0x3ff) != 0)
	    return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
	  else
	    return "sethi %%hi(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
	}
      else
	{
	  if ((actual_fsize & 0x3ff) != 0)
	    return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
	  else
	    return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
	}
    }
  else
    {
      if (current_function_returns_struct)
	return "jmp %%i7+12\n\trestore";
      else
	return "ret\n\trestore";
    }
}

/* Leaf functions and non-leaf functions have different needs.  */

static int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;

static int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;

static int *reg_alloc_orders[] = {
  reg_leaf_alloc_order,
  reg_nonleaf_alloc_order};

void
order_regs_for_local_alloc ()
{
  static int last_order_nonleaf = 1;

  if (regs_ever_live[15] != last_order_nonleaf)
    {
      last_order_nonleaf = !last_order_nonleaf;
      bcopy (reg_alloc_orders[last_order_nonleaf], reg_alloc_order,
	     FIRST_PSEUDO_REGISTER * sizeof (int));
    }
}

/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
   This makes them candidates for using ldd and std insns. 

   Note reg1 and reg2 *must* be hard registers.  To be sure we will
   abort if we are passed pseudo registers.  */

int
registers_ok_for_ldd_peep (reg1, reg2)
     rtx reg1, reg2;
{

  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) 
    return 0;

  if (REGNO (reg1) % 2 != 0)
    return 0;

  return (REGNO (reg1) == REGNO (reg2) - 1);
  
}

/* Return 1 if addr1 and addr2 are suitable for use in an ldd or 
   std insn.

   This can only happen when addr1 and addr2 are consecutive memory
   locations (addr1 + 4 == addr2).  addr1 must also be aligned on a 
   64 bit boundary (addr1 % 8 == 0).  

   We know %sp and %fp are kept aligned on a 64 bit boundary.  Other
   registers are assumed to *never* be properly aligned and are 
   rejected.

   Knowing %sp and %fp are kept aligned on a 64 bit boundary, we 
   need only check that the offset for addr1 % 8 == 0.  */

int
addrs_ok_for_ldd_peep (addr1, addr2)
      rtx addr1, addr2;
{
  int reg1, offset1;

  /* Extract a register number and offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr1, 0)) != REG)
	return 0;
      else
	{
          reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
            return 0;
          offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (GET_CODE (addr1) != REG)
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* Make sure the second address is a (mem (plus (reg) (const_int).  */
  if (GET_CODE (addr2) != PLUS)
    return 0;

  if (GET_CODE (XEXP (addr2, 0)) != REG
      || GET_CODE (XEXP (addr2, 1)) != CONST_INT)
    return 0;

  /* Only %fp and %sp are allowed.  Additionally both addresses must
     use the same register.  */
  if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM)
    return 0;

  if (reg1 != REGNO (XEXP (addr2, 0)))
    return 0;

  /* The first offset must be evenly divisible by 8 to ensure the 
     address is 64 bit aligned.  */
  if (offset1 % 8 != 0)
    return 0;

  /* The offset for the second addr must be 4 more than the first addr.  */
  if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for ldd and std
     instructions.  */
  return 1;
}

/* Return 1 if reg is a pseudo, or is the first register in 
   a hard register pair.  This makes it a candidate for use in
   ldd and std insns.  */

int
register_ok_for_ldd (reg)
     rtx reg;
{

  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg) != REG) 
    return 0;

  if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
    return (REGNO (reg) % 2 == 0);
  else 
    return 1;

}

/* Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */

void
print_operand (file, x, code)
     FILE *file;
     rtx x;
     int code;
{
  switch (code)
    {
    case '#':
      /* Output a 'nop' if there's nothing for the delay slot.  */
      if (dbr_sequence_length () == 0)
	fputs ("\n\tnop", file);
      return;
    case '*':
      /* Output an annul flag if there's nothing for the delay slot and we
	 are optimizing.  This is always used with '(' below.  */
      /* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
	 this is a dbx bug.  So, we only do this when optimizing.  */
      if (dbr_sequence_length () == 0 && optimize)
	fputs (",a", file);
      return;
    case '(':
      /* Output a 'nop' if there's nothing for the delay slot and we are
	 not optimizing.  This is always used with '*' above.  */
      if (dbr_sequence_length () == 0 && ! optimize)
	fputs ("\n\tnop", file);
      return;
    case 'Y':
      /* Adjust the operand to take into account a RESTORE operation.  */
      if (GET_CODE (x) != REG)
	output_operand_lossage ("Invalid %%Y operand");
      else if (REGNO (x) < 8)
	fputs (reg_names[REGNO (x)], file);
      else if (REGNO (x) >= 24 && REGNO (x) < 32)
	fputs (reg_names[REGNO (x)-16], file);
      else
	output_operand_lossage ("Invalid %%Y operand");
      return;
    case 'R':
      /* Print out the second register name of a register pair or quad.
	 I.e., R (%o0) => %o1.  */
      fputs (reg_names[REGNO (x)+1], file);
      return;
    case 'S':
      /* Print out the third register name of a register quad.
	 I.e., S (%o0) => %o2.  */
      fputs (reg_names[REGNO (x)+2], file);
      return;
    case 'T':
      /* Print out the fourth register name of a register quad.
	 I.e., T (%o0) => %o3.  */
      fputs (reg_names[REGNO (x)+3], file);
      return;
    case 'm':
      /* Print the operand's address only.  */
      output_address (XEXP (x, 0));
      return;
    case 'r':
      /* In this case we need a register.  Use %g0 if the
	 operand is const0_rtx.  */
      if (x == const0_rtx
	  || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
	{
	  fputs ("%g0", file);
	  return;
	}
      else
	break;

    case  'A':
      switch (GET_CODE (x))
	{
	case IOR: fputs ("or", file); break;
	case AND: fputs ("and", file); break;
	case XOR: fputs ("xor", file); break;
	default: output_operand_lossage ("Invalid %%A operand");
	}
      return;

    case 'B':
      switch (GET_CODE (x))
	{
	case IOR: fputs ("orn", file); break;
	case AND: fputs ("andn", file); break;
	case XOR: fputs ("xnor", file); break;
	default: output_operand_lossage ("Invalid %%B operand");
	}
      return;

    case 'b':
      {
	/* Print a sign-extended character.  */
	int i = INTVAL (x) & 0xff;
	if (i & 0x80)
	  i |= 0xffffff00;
	fprintf (file, "%d", i);
	return;
      }

    case 0:
      /* Do nothing special.  */
      break;

    default:
      /* Undocumented flag.  */
      output_operand_lossage ("invalid operand output code");
    }

  if (GET_CODE (x) == REG)
    fputs (reg_names[REGNO (x)], file);
  else if (GET_CODE (x) == MEM)
    {
      fputc ('[', file);
      if (CONSTANT_P (XEXP (x, 0)))
	/* Poor Sun assembler doesn't understand absolute addressing.  */
	fputs ("%g0+", file);
      output_address (XEXP (x, 0));
      fputc (']', file);
    }
  else if (GET_CODE (x) == HIGH)
    {
      fputs ("%hi(", file);
      output_addr_const (file, XEXP (x, 0));
      fputc (')', file);
    }
  else if (GET_CODE (x) == LO_SUM)
    {
      print_operand (file, XEXP (x, 0), 0);
      fputs ("+%lo(", file);
      output_addr_const (file, XEXP (x, 1));
      fputc (')', file);
    }
  else if (GET_CODE (x) == CONST_DOUBLE
	   && (GET_MODE (x) == VOIDmode
	       || GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
    {
      if (CONST_DOUBLE_HIGH (x) == 0)
	fprintf (file, "%u", CONST_DOUBLE_LOW (x));
      else if (CONST_DOUBLE_HIGH (x) == -1
	       && CONST_DOUBLE_LOW (x) < 0)
	fprintf (file, "%d", CONST_DOUBLE_LOW (x));
      else
	output_operand_lossage ("long long constant not a valid immediate operand");
    }
  else if (GET_CODE (x) == CONST_DOUBLE)
    output_operand_lossage ("floating point constant not a valid immediate operand");
  else { output_addr_const (file, x); }
}

/* This function outputs assembler code for VALUE to FILE, where VALUE is
   a 64 bit (DImode) value.  */

/* ??? If there is a 64 bit counterpart to .word that the assembler
   understands, then using that would simply this code greatly.  */

void
output_double_int (file, value)
     FILE *file;
     rtx value;
{
  if (GET_CODE (value) == CONST_INT)
    {
      if (INTVAL (value) < 0)
	ASM_OUTPUT_INT (file, constm1_rtx);
      else
	ASM_OUTPUT_INT (file, const0_rtx);
      ASM_OUTPUT_INT (file, value);
    }
  else if (GET_CODE (value) == CONST_DOUBLE)
    {
      ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
				     CONST_DOUBLE_HIGH (value)));
      ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
				     CONST_DOUBLE_LOW (value)));
    }
  else if (GET_CODE (value) == SYMBOL_REF
	   || GET_CODE (value) == CONST
	   || GET_CODE (value) == PLUS)
    {
      /* Addresses are only 32 bits.  */
      ASM_OUTPUT_INT (file, const0_rtx);
      ASM_OUTPUT_INT (file, value);
    }
  else
    abort ();
}

#ifndef CHAR_TYPE_SIZE
#define CHAR_TYPE_SIZE BITS_PER_UNIT
#endif

#ifndef SHORT_TYPE_SIZE
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
#endif

#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef LONG_LONG_TYPE_SIZE
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

#ifndef FLOAT_TYPE_SIZE
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#endif

#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

#ifndef LONG_DOUBLE_TYPE_SIZE
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif

unsigned long
sparc_type_code (type)
     register tree type;
{
  register unsigned long qualifiers = 0;
  register unsigned shift = 6;

  for (;;)
    {
      switch (TREE_CODE (type))
	{
	case ERROR_MARK:
	  return qualifiers;
  
	case ARRAY_TYPE:
	  qualifiers |= (3 << shift);
	  shift += 2;
	  type = TREE_TYPE (type);
	  break;

	case FUNCTION_TYPE:
	case METHOD_TYPE:
	  qualifiers |= (2 << shift);
	  shift += 2;
	  type = TREE_TYPE (type);
	  break;

	case POINTER_TYPE:
	case REFERENCE_TYPE:
	case OFFSET_TYPE:
	  qualifiers |= (1 << shift);
	  shift += 2;
	  type = TREE_TYPE (type);
	  break;

	case RECORD_TYPE:
	  return (qualifiers | 8);

	case UNION_TYPE:
	  return (qualifiers | 9);

	case ENUMERAL_TYPE:
	  return (qualifiers | 10);

	case VOID_TYPE:
	  return (qualifiers | 16);

	case INTEGER_TYPE:
	  /* If this is a range type, consider it to be the underlying
	     type.  */
	  if (TREE_TYPE (type) != 0)
	    {
	      type = TREE_TYPE (type);
	      break;
	    }

	  /* Carefully distinguish all the standard types of C,
	     without messing up if the language is not C.
	     Note that we check only for the names that contain spaces;
	     other names might occur by coincidence in other languages.  */
	  if (TYPE_NAME (type) != 0
	      && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	      && DECL_NAME (TYPE_NAME (type)) != 0
	      && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
	    {
	      char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
  
	      if (!strcmp (name, "unsigned char"))
		return (qualifiers | 12);
	      if (!strcmp (name, "signed char"))
		return (qualifiers | 2);
	      if (!strcmp (name, "unsigned int"))
		return (qualifiers | 14);
	      if (!strcmp (name, "short int"))
		return (qualifiers | 3);
	      if (!strcmp (name, "short unsigned int"))
		return (qualifiers | 13);
	      if (!strcmp (name, "long int"))
		return (qualifiers | 5);
	      if (!strcmp (name, "long unsigned int"))
		return (qualifiers | 15);
	      if (!strcmp (name, "long long int"))
		return (qualifiers | 5);	/* Who knows? */
	      if (!strcmp (name, "long long unsigned int"))
		return (qualifiers | 15);	/* Who knows? */
	    }
  
	  /* Most integer types will be sorted out above, however, for the
	     sake of special `array index' integer types, the following code
	     is also provided.  */
  
	  if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
  
	  if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
  
	  if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
  
	  if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
  
	  if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
	    return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
  
	  abort ();
  
	case REAL_TYPE:
	  /* Carefully distinguish all the standard types of C,
	     without messing up if the language is not C.  */
	  if (TYPE_NAME (type) != 0
	      && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	      && DECL_NAME (TYPE_NAME (type)) != 0
	      && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
	    {
	      char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
  
	      if (!strcmp (name, "long double"))
		return (qualifiers | 7);	/* Who knows? */
	    }
  
	  if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
	    return (qualifiers | 7);
	  if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
	    return (qualifiers | 6);
	  if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
	    return (qualifiers | 7);	/* Who knows? */
	  abort ();
  
	case COMPLEX_TYPE:	/* GNU Fortran COMPLEX type.  */
	  /* ??? We need to distinguish between double and float complex types,
	     but I don't know how yet because I can't reach this code from
	     existing front-ends.  */
	  return (qualifiers | 7);	/* Who knows? */

	case CHAR_TYPE:		/* GNU Pascal CHAR type.  Not used in C.  */
	case BOOLEAN_TYPE:	/* GNU Fortran BOOLEAN type.  */
	case FILE_TYPE:		/* GNU Pascal FILE type.  */
	case STRING_TYPE:	/* GNU Fortran STRING type.  */
	case SET_TYPE:		/* GNU Pascal SET type.  */
	case LANG_TYPE:		/* ? */
	  return qualifiers;
  
	default:
	  abort ();		/* Not a type! */
        }
    }
}

/* Subroutines to support a flat (single) register window calling
   convention.  */

/* Single-register window sparc stack frames look like:

             Before call		        After call
        +-----------------------+	+-----------------------+
   high |			|       |      			|
   mem. |		        |	|			|
        |  caller's temps.    	|       |  caller's temps.    	|
	|       		|       |       	        |
        +-----------------------+	+-----------------------+
 	|       		|	|		        |
        |  arguments on stack.  |	|  arguments on stack.  |
	|       		|FP+92->|			|
        +-----------------------+	+-----------------------+
 	|  6 words to save     	|	|  6 words to save	|
	|  arguments passed	|	|  arguments passed	|
	|  in registers, even	|	|  in registers, even	|
 SP+68->|  if not passed.       |FP+68->|  if not passed.	|
	+-----------------------+       +-----------------------+
	| 1 word struct addr	|FP+64->| 1 word struct addr	|
	+-----------------------+       +-----------------------+
	|			|	|			|
	| 16 word reg save area	|	| 16 word reg save area |
    SP->|			|   FP->|			|
	+-----------------------+	+-----------------------+
					| 4 word area for	|
				 FP-16->| fp/alu reg moves	|
					+-----------------------+
					|			|
					|  local variables	|
					|			|
					+-----------------------+
					|		        |
                                        |  fp register save     |
					|			|
					+-----------------------+
					|		        |
                                        |  gp register save     |
                                        |       		|
					+-----------------------+
					|			|
                                        |  alloca allocations   |
        				|			|
					+-----------------------+
					|			|
                                        |  arguments on stack   |
        			 SP+92->|		        |
					+-----------------------+
                                        |  6 words to save      |
					|  arguments passed     |
                                        |  in registers, even   |
   low                           SP+68->|  if not passed.       |
   memory        			+-----------------------+
				 SP+64->| 1 word struct addr	|
					+-----------------------+
					|			|
					I 16 word reg save area |
				    SP->|			|
					+-----------------------+  */

/* Structure to be filled in by sparc_frw_compute_frame_size with register
   save masks, and offsets for the current function.  */

struct sparc_frame_info
{
  unsigned long total_size;	/* # bytes that the entire frame takes up.  */
  unsigned long var_size;	/* # bytes that variables take up.  */
  unsigned long args_size;	/* # bytes that outgoing arguments take up.  */
  unsigned long extra_size;	/* # bytes of extra gunk.  */
  unsigned int  gp_reg_size;	/* # bytes needed to store gp regs.  */
  unsigned int  fp_reg_size;	/* # bytes needed to store fp regs.  */
  unsigned long mask;		/* Mask of saved gp registers.  */
  unsigned long fmask;		/* Mask of saved fp registers.  */
  unsigned long gp_sp_offset;	/* Offset from new sp to store gp regs.  */
  unsigned long fp_sp_offset;	/* Offset from new sp to store fp regs.  */
  int		initialized;	/* Nonzero if frame size already calculated.  */
};

/* Current frame information calculated by sparc_frw_compute_frame_size.  */
struct sparc_frame_info current_frame_info;

/* Zero structure to initialize current_frame_info.  */
struct sparc_frame_info zero_frame_info;

/* Tell prologue and epilogue if register REGNO should be saved / restored.  */

#define MUST_SAVE_REGISTER(regno) \
 ((regs_ever_live[regno] && !call_used_regs[regno])		\
  || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)	\
  || (regno == 15 && regs_ever_live[15]))

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.  */

unsigned long
sparc_frw_compute_frame_size (size)
     int size;			/* # of var. bytes allocated.  */
{
  int regno;
  unsigned long total_size;	/* # bytes that the entire frame takes up.  */
  unsigned long var_size;	/* # bytes that variables take up.  */
  unsigned long args_size;	/* # bytes that outgoing arguments take up.  */
  unsigned long extra_size;	/* # extra bytes.  */
  unsigned int  gp_reg_size;	/* # bytes needed to store gp regs.  */
  unsigned int  fp_reg_size;	/* # bytes needed to store fp regs.  */
  unsigned long mask;		/* Mask of saved gp registers.  */
  unsigned long fmask;		/* Mask of saved fp registers.  */

  /* This is the size of the 16 word reg save area, 1 word struct addr
     area, and 4 word fp/alu register copy area.  */
  extra_size	 = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
  var_size	 = size;
  /* Also include the size needed for the 6 parameter registers.  */
  args_size	 = current_function_outgoing_args_size + 24;
  total_size	 = var_size + args_size + extra_size;
  gp_reg_size	 = 0;
  fp_reg_size	 = 0;
  mask		 = 0;
  fmask		 = 0;

  /* Calculate space needed for gp registers.  */
  for (regno = 1; regno <= 31; regno++)
    {
      if (MUST_SAVE_REGISTER (regno))
	{
	  if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1))
	    {
	      if (gp_reg_size % 8 != 0)
		gp_reg_size += UNITS_PER_WORD;
	      gp_reg_size += 2 * UNITS_PER_WORD;
	      mask |= 3 << regno;
	      regno++;
	    }
	  else
	    {
	      gp_reg_size += UNITS_PER_WORD;
	      mask |= 1 << regno;
	    }
	}
    }
  /* Add extra word in case we have to align the space to a double word
     boundary.  */
  if (gp_reg_size != 0)
    gp_reg_size += UNITS_PER_WORD;

  /* Calculate space needed for fp registers.  */
  for (regno = 32; regno <= 63; regno++)
    {
      if (regs_ever_live[regno] && !call_used_regs[regno])
	{
	  fp_reg_size += UNITS_PER_WORD;
	  fmask |= 1 << (regno - 32);
	}
    }

  total_size += gp_reg_size + fp_reg_size;

  if (total_size == extra_size)
    total_size = extra_size = 0;

  total_size = SPARC_STACK_ALIGN (total_size);

  /* Save other computed information.  */
  current_frame_info.total_size  = total_size;
  current_frame_info.var_size    = var_size;
  current_frame_info.args_size   = args_size;
  current_frame_info.extra_size  = extra_size;
  current_frame_info.gp_reg_size = gp_reg_size;
  current_frame_info.fp_reg_size = fp_reg_size;
  current_frame_info.mask	 = mask;
  current_frame_info.fmask	 = fmask;
  current_frame_info.initialized = reload_completed;

  if (mask)
    {
      unsigned long offset = args_size;
      if (extra_size)
	offset += FIRST_PARM_OFFSET(0);
      current_frame_info.gp_sp_offset = offset;
    }

  if (fmask)
    {
      unsigned long offset = args_size + gp_reg_size;
      if (extra_size)
	offset += FIRST_PARM_OFFSET(0);
      current_frame_info.fp_sp_offset = offset;
    }

  /* Ok, we're done.  */
  return total_size;
}

/* Common code to save/restore registers.  */

void
sparc_frw_save_restore (file, word_op, doubleword_op)
     FILE *file;		/* Stream to write to.  */
     char *word_op;		/* Operation to do for one word.  */
     char *doubleword_op;	/* Operation to do for doubleword.  */
{
  int regno;
  unsigned long mask	  = current_frame_info.mask;
  unsigned long fmask	  = current_frame_info.fmask;
  unsigned long gp_offset;
  unsigned long fp_offset;
  unsigned long max_offset;
  char *base_reg;

  if (mask == 0 && fmask == 0)
    return;

  base_reg   = reg_names[STACK_POINTER_REGNUM];
  gp_offset  = current_frame_info.gp_sp_offset;
  fp_offset  = current_frame_info.fp_sp_offset;
  max_offset = (gp_offset > fp_offset) ? gp_offset : fp_offset;

  /* Deal with calling functions with a large structure.  */
  if (max_offset >= 4096)
    {
      char *temp = "%g2";
      fprintf (file, "\tset %ld,%s\n", max_offset, temp);
      fprintf (file, "\tadd %s,%s,%s\n", temp, base_reg, temp);
      base_reg = temp;
      gp_offset = max_offset - gp_offset;
      fp_offset = max_offset - fp_offset;
    }

  /* Save registers starting from high to low.  The debuggers prefer
     at least the return register be stored at func+4, and also it
     allows us not to need a nop in the epilog if at least one
     register is reloaded in addition to return address.  */

  if (mask || frame_pointer_needed)
    {
      for (regno = 1; regno <= 31; regno++)
	{
	  if ((mask & (1L << regno)) != 0
	      || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed))
	    {
	      if ((regno & 0x1) == 0 && ((mask & (1L << (regno+1))) != 0))
		{
		  if (gp_offset % 8 != 0)
		    gp_offset += UNITS_PER_WORD;
		  
		  if (word_op[0] == 's')
		    fprintf (file, "\t%s %s,[%s+%d]\n",
			     doubleword_op, reg_names[regno],
			     base_reg, gp_offset);
		  else
		    fprintf (file, "\t%s [%s+%d],%s\n",
			     doubleword_op, base_reg, gp_offset,
			     reg_names[regno]);

		  gp_offset += 2 * UNITS_PER_WORD;
		  regno++;
		}
	      else
		{
		  if (word_op[0] == 's')
		    fprintf (file, "\t%s %s,[%s+%d]\n",
			     word_op, reg_names[regno],
			     base_reg, gp_offset);
		  else
		    fprintf (file, "\t%s [%s+%d],%s\n",
			     word_op, base_reg, gp_offset, reg_names[regno]);

		  gp_offset += UNITS_PER_WORD;
		}
	    }
	}
    }

  if (fmask)
    {
      for (regno = 32; regno <= 63; regno++)
	{
	  if ((fmask & (1L << (regno - 32))) != 0)
	    {
	      if (word_op[0] == 's')
		fprintf (file, "\t%s %s,[%s+%d]\n",
			 word_op, reg_names[regno],
			 base_reg, gp_offset);
	      else
		fprintf (file, "\t%s [%s+%d],%s\n",
			 word_op, base_reg, gp_offset, reg_names[regno]);

	      fp_offset += UNITS_PER_WORD;
	    }
	}
    }
}

/* Set up the stack and frame (if desired) for the function.  */

void
sparc_frw_output_function_prologue (file, size, ignored)
     FILE *file;
     int size;
{
  extern char call_used_regs[];
  int tsize;
  char *sp_str = reg_names[STACK_POINTER_REGNUM];

  /* ??? This should be %sp+actual_fsize for a leaf function.  I think it
     works only because it is never used.  */
  frame_base_name
    = (!frame_pointer_needed) ? "%sp+80" : reg_names[FRAME_POINTER_REGNUM];

  fprintf (file, "\t!#PROLOGUE# 0\n");

  size = SPARC_STACK_ALIGN (size);
  tsize = (! current_frame_info.initialized
	   ? sparc_frw_compute_frame_size (size)
	   : current_frame_info.total_size);

  if (tsize > 0)
    {
      if (tsize <= 4095)
	fprintf (file,
		 "\tsub %s,%d,%s\t\t!# vars= %d, regs= %d/%d, args = %d, extra= %d\n",
		 sp_str, tsize, sp_str, current_frame_info.var_size,
		 current_frame_info.gp_reg_size / 4,
		 current_frame_info.fp_reg_size / 8,
		 current_function_outgoing_args_size,
		 current_frame_info.extra_size);
      else
	fprintf (file,
		 "\tset %d,%s\n\tsub\t%s,%s,%s\t\t!# vars= %d, regs= %d/%d, args = %d, sfo= %d\n",
		 tsize, "%g1", sp_str, "%g1",
		 sp_str, current_frame_info.var_size,
		 current_frame_info.gp_reg_size / 4,
		 current_frame_info.fp_reg_size / 8,
		 current_function_outgoing_args_size,
		 current_frame_info.extra_size);
    }

  sparc_frw_save_restore (file, "st", "std");

  if (frame_pointer_needed)
    {
      if (tsize <= 4095)
	fprintf (file, "\tadd %s,%d,%s\t!# set up frame pointer\n", sp_str,
		 tsize, frame_base_name);
      else
	fprintf (file, "\tadd %s,%s,%s\t!# set up frame pointer\n", sp_str,
		 "%g1", frame_base_name);
    }
}

/* Do any necessary cleanup after a function to restore stack, frame,
   and regs. */

void
sparc_frw_output_function_epilogue (file, size, ignored1, ignored2)
     FILE *file;
     int size;
{
  extern FILE *asm_out_data_file, *asm_out_file;
  extern char call_used_regs[];
  extern int frame_pointer_needed;
  int tsize;
  char *sp_str = reg_names[STACK_POINTER_REGNUM];
  char *t1_str = "%g1";
  rtx epilogue_delay = current_function_epilogue_delay_list;
  int noepilogue = FALSE;

  /* The epilogue does not depend on any registers, but the stack
     registers, so we assume that if we have 1 pending nop, it can be
     ignored, and 2 it must be filled (2 nops occur for integer
     multiply and divide).  */

  size = SPARC_STACK_ALIGN (size);
  tsize = (!current_frame_info.initialized
	   ? sparc_frw_compute_frame_size (size)
	   : current_frame_info.total_size);

  if (tsize == 0 && epilogue_delay == 0)
    {
      rtx insn = get_last_insn ();

      /* If the last insn was a BARRIER, we don't have to write any code
	 because a jump (aka return) was put there.  */
      if (GET_CODE (insn) == NOTE)
	insn = prev_nonnote_insn (insn);
      if (insn && GET_CODE (insn) == BARRIER)
	noepilogue = TRUE;
    }

  if (!noepilogue)
    {
      /* In the reload sequence, we don't need to fill the load delay
	 slots for most of the loads, also see if we can fill the final
	 delay slot if not otherwise filled by the reload sequence.  */

      if (tsize > 4095)
	fprintf (file, "\tset %d,%s\n", tsize, t1_str);

      if (frame_pointer_needed)
	{
	  char *fp_str = reg_names[FRAME_POINTER_REGNUM];
	  if (tsize > 4095)
	    fprintf (file,"\tsub %s,%s,%s\t\t!# sp not trusted  here\n",
		     fp_str, t1_str, sp_str);
	  else
	    fprintf (file,"\tsub %s,%d,%s\t\t!# sp not trusted  here\n",
		     fp_str, tsize, sp_str);
	}

      sparc_frw_save_restore (file, "ld", "ldd");

      if (current_function_returns_struct)
	fprintf (file, "\tjmp %%o7+12\n");
      else
	fprintf (file, "\tretl\n");

      /* If the only register saved is the return address, we need a
	 nop, unless we have an instruction to put into it.  Otherwise
	 we don't since reloading multiple registers doesn't reference
	 the register being loaded.  */

      if (epilogue_delay)
	{
	  if (tsize)
	    abort ();
	  final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1);
	}

      else if (tsize > 4095)
	fprintf (file, "\tadd %s,%s,%s\n", sp_str, t1_str, sp_str);

      else if (tsize > 0)
	fprintf (file, "\tadd %s,%d,%s\n", sp_str, tsize, sp_str);

      else
	fprintf (file, "\tnop\n");
    }

  /* Reset state info for each function.  */
  current_frame_info = zero_frame_info;
}

/* Define the number of delay slots needed for the function epilogue.

   On the sparc, we need a slot if either no stack has been allocated,
   or the only register saved is the return register.  */

int
sparc_frw_epilogue_delay_slots ()
{
  if (!current_frame_info.initialized)
    (void) sparc_frw_compute_frame_size (get_frame_size ());

  if (current_frame_info.total_size == 0)
    return 1;

  return 0;
}

/* Return true is TRIAL is a valid insn for the epilogue delay slot.
   Any single length instruction which doesn't reference the stack or frame
   pointer is OK.  */

int
sparc_frw_eligible_for_epilogue_delay (trial, slot)
     rtx trial;
     int slot;
{
  if (get_attr_length (trial) == 1
      && ! reg_mentioned_p (stack_pointer_rtx, PATTERN (trial))
      && ! reg_mentioned_p (frame_pointer_rtx, PATTERN (trial)))
    return 1;
  return 0;
}