1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
|
/* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
Copyright (C) 1993-2017 Free Software Foundation, Inc.
Contributed by Steve Chamberlain (sac@cygnus.com).
Improved by Jim Wilson (wilson@cygnus.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SH_H
#define GCC_SH_H
#include "config/vxworks-dummy.h"
/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
include it here, because bconfig.h is also included by gencodes.c . */
/* ??? No longer true. */
extern int code_for_indirect_jump_scratch;
#define TARGET_CPU_CPP_BUILTINS() sh_cpu_cpp_builtins (pfile)
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may be accessed
via the stack pointer) in functions that seem suitable. */
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
#endif
/* Nonzero if this is an ELF target - compile time only */
#define TARGET_ELF 0
/* Nonzero if we should generate code using type 2E insns. */
#define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
/* Nonzero if we should generate code using type 2A insns. */
#define TARGET_SH2A TARGET_HARD_SH2A
/* Nonzero if we should generate code using type 2A SF insns. */
#define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
/* Nonzero if we should generate code using type 2A DF insns. */
#define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
/* Nonzero if we should generate code using type 3E insns. */
#define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
/* Nonzero if we schedule for a superscalar implementation. */
#define TARGET_SUPERSCALAR (TARGET_HARD_SH4 || TARGET_SH2A)
/* Nonzero if a double-precision FPU is available. */
#define TARGET_FPU_DOUBLE (TARGET_SH4 || TARGET_SH2A_DOUBLE)
/* Nonzero if an FPU is available. */
#define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
/* Nonzero if we're generating code for SH4a, unless the use of the
FPU is disabled (which makes it compatible with SH4al-dsp). */
#define TARGET_SH4A_FP (TARGET_SH4A && TARGET_FPU_ANY)
/* This is not used by the SH2E calling convention */
#define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
(! TARGET_SH2E \
&& ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT SELECT_SH1
#define SUPPORT_SH1 1
#define SUPPORT_SH2E 1
#define SUPPORT_SH4 1
#define SUPPORT_SH4_SINGLE 1
#define SUPPORT_SH2A 1
#define SUPPORT_SH2A_SINGLE 1
#endif
#define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
#define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
#define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
#define SELECT_SH1 (MASK_SH1)
#define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
#define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
| MASK_FPU_SINGLE)
#define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
| MASK_HARD_SH2A_DOUBLE \
| MASK_SH2 | MASK_SH1)
#define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
#define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
| MASK_SH1 | MASK_FPU_SINGLE \
| MASK_FPU_SINGLE_ONLY)
#define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
| MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
| MASK_SH2 | MASK_SH1)
#define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
#define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
#define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
#define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E \
| MASK_FPU_SINGLE_ONLY)
#define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
| SELECT_SH3)
#define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
#define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
#define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
#define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
#define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
#if SUPPORT_SH1
#define SUPPORT_SH2 1
#endif
#if SUPPORT_SH2
#define SUPPORT_SH3 1
#define SUPPORT_SH2A_NOFPU 1
#endif
#if SUPPORT_SH3
#define SUPPORT_SH4_NOFPU 1
#endif
#if SUPPORT_SH4_NOFPU
#define SUPPORT_SH4A_NOFPU 1
#define SUPPORT_SH4AL 1
#endif
#if SUPPORT_SH2E
#define SUPPORT_SH3E 1
#define SUPPORT_SH2A_SINGLE_ONLY 1
#endif
#if SUPPORT_SH3E
#define SUPPORT_SH4_SINGLE_ONLY 1
#endif
#if SUPPORT_SH4_SINGLE_ONLY
#define SUPPORT_SH4A_SINGLE_ONLY 1
#endif
#if SUPPORT_SH4
#define SUPPORT_SH4A 1
#endif
#if SUPPORT_SH4_SINGLE
#define SUPPORT_SH4A_SINGLE 1
#endif
/* Reset all target-selection flags. */
#define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
| MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
| MASK_HARD_SH4 | MASK_FPU_SINGLE \
| MASK_FPU_SINGLE_ONLY)
/* This defaults us to big-endian. */
#ifndef TARGET_ENDIAN_DEFAULT
#define TARGET_ENDIAN_DEFAULT 0
#endif
#ifndef TARGET_OPT_DEFAULT
#define TARGET_OPT_DEFAULT 0
#endif
#define TARGET_DEFAULT \
(TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
#ifndef SH_MULTILIB_CPU_DEFAULT
#define SH_MULTILIB_CPU_DEFAULT "m1"
#endif
#if TARGET_ENDIAN_DEFAULT
#define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
#else
#define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
#endif
#define CPP_SPEC " %(subtarget_cpp_spec) "
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define EXTRA_SPECS \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
{ "link_emul_prefix", LINK_EMUL_PREFIX }, \
{ "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
{ "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
{ "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
{ "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
{ "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
{ "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
SUBTARGET_EXTRA_SPECS
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4
#define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:-isa=sh4-up}}}"
#else
#define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
#endif
/* Define which ISA type to pass to the assembler.
For SH4 we pass SH4A to allow using some instructions that are available
on some SH4 variants, but officially are part of the SH4A ISA. */
#define SH_ASM_SPEC \
"%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)} \
%(subtarget_asm_isa_spec) %(subtarget_asm_spec) \
%{m1:--isa=sh} \
%{m2:--isa=sh2} \
%{m2e:--isa=sh2e} \
%{m3:--isa=sh3} \
%{m3e:--isa=sh3e} \
%{m4:--isa=sh4a} \
%{m4-single:--isa=sh4a} \
%{m4-single-only:--isa=sh4a} \
%{m4-nofpu:--isa=sh4a-nofpu} \
%{m4a:--isa=sh4a} \
%{m4a-single:--isa=sh4a} \
%{m4a-single-only:--isa=sh4a} \
%{m4a-nofpu:--isa=sh4a-nofpu} \
%{m2a:--isa=sh2a} \
%{m2a-single:--isa=sh2a} \
%{m2a-single-only:--isa=sh2a} \
%{m2a-nofpu:--isa=sh2a-nofpu} \
%{m4al:-dsp}"
#define ASM_SPEC SH_ASM_SPEC
#ifndef SUBTARGET_ASM_ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
#define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
#else
#define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
#endif
#endif
#if STRICT_NOFPU == 1
/* Strict nofpu means that the compiler should tell the assembler
to reject FPU instructions. E.g. from ASM inserts. */
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
#define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:-isa=sh4-nofpu}}}}"
#else
#define SUBTARGET_ASM_ISA_SPEC \
"%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
#endif
#else /* ! STRICT_NOFPU */
#define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
#endif
#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC "%{mfdpic:--fdpic}"
#endif
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
#define LINK_EMUL_PREFIX "sh%{!mb:l}"
#else
#define LINK_EMUL_PREFIX "sh%{ml:l}"
#endif
#define LINK_DEFAULT_CPU_EMUL ""
#define ASM_ISA_DEFAULT_SPEC ""
#define SUBTARGET_LINK_EMUL_SUFFIX "%{mfdpic:_fd}"
#define SUBTARGET_LINK_SPEC ""
/* Go via SH_LINK_SPEC to avoid code replication. */
#define LINK_SPEC SH_LINK_SPEC
#define SH_LINK_SPEC "\
-m %(link_emul_prefix)\
%{!m1:%{!m2:%{!m3*:%{!m4*:%(link_default_cpu_emul)}}}}\
%(subtarget_link_emul_suffix) \
%{mrelax:-relax} %(subtarget_link_spec)"
#ifndef SH_DIV_STR_FOR_SIZE
#define SH_DIV_STR_FOR_SIZE "call"
#endif
/* SH2A does not support little-endian. Catch such combinations
taking into account the default configuration. */
#if TARGET_ENDIAN_DEFAULT == MASK_BIG_ENDIAN
#define IS_LITTLE_ENDIAN_OPTION "%{ml:"
#else
#define IS_LITTLE_ENDIAN_OPTION "%{!mb:"
#endif
#if TARGET_CPU_DEFAULT & MASK_HARD_SH2A
#define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
"%{m2a*|!m1:%{!m2*:%{!m3*:%{!m4*:%eSH2a does not support little-endian}}}}}"
#else
#define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
"%{m2a*:%eSH2a does not support little-endian}}"
#endif
#ifdef FDPIC_DEFAULT
#define FDPIC_SELF_SPECS "%{!mno-fdpic:-mfdpic}"
#else
#define FDPIC_SELF_SPECS
#endif
#undef DRIVER_SELF_SPECS
#define DRIVER_SELF_SPECS UNSUPPORTED_SH2A SUBTARGET_DRIVER_SELF_SPECS \
FDPIC_SELF_SPECS
#undef SUBTARGET_DRIVER_SELF_SPECS
#define SUBTARGET_DRIVER_SELF_SPECS
#define ASSEMBLER_DIALECT assembler_dialect
extern int assembler_dialect;
enum sh_divide_strategy_e {
/* SH1 .. SH4 strategies. Because of the small number of registers
available, the compiler uses knowledge of the actual set of registers
being clobbered by the different functions called. */
SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency. */
SH_DIV_CALL_FP, /* FPU needed, small size, high latency. */
SH_DIV_CALL_TABLE, /* No FPU, large size, medium latency. */
SH_DIV_INTRINSIC
};
extern enum sh_divide_strategy_e sh_div_strategy;
#ifndef SH_DIV_STRATEGY_DEFAULT
#define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL_DIV1
#endif
#ifdef __cplusplus
/* Atomic model. */
struct sh_atomic_model
{
enum enum_type
{
none = 0,
soft_gusa,
hard_llcs,
soft_tcb,
soft_imask,
num_models
};
/* If strict is set, disallow mixing of different models, as it would
happen on SH4A. */
bool strict;
enum_type type;
/* Name string as it was specified on the command line. */
const char* name;
/* Name string as it is used in C/C++ defines. */
const char* cdef_name;
/* GBR offset variable for TCB model. */
int tcb_gbr_offset;
};
extern const sh_atomic_model& selected_atomic_model (void);
/* Shortcuts to check the currently selected atomic model. */
#define TARGET_ATOMIC_ANY \
(selected_atomic_model ().type != sh_atomic_model::none)
#define TARGET_ATOMIC_STRICT \
(selected_atomic_model ().strict)
#define TARGET_ATOMIC_SOFT_GUSA \
(selected_atomic_model ().type == sh_atomic_model::soft_gusa)
#define TARGET_ATOMIC_HARD_LLCS \
(selected_atomic_model ().type == sh_atomic_model::hard_llcs)
#define TARGET_ATOMIC_SOFT_TCB \
(selected_atomic_model ().type == sh_atomic_model::soft_tcb)
#define TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX \
GEN_INT (selected_atomic_model ().tcb_gbr_offset)
#define TARGET_ATOMIC_SOFT_IMASK \
(selected_atomic_model ().type == sh_atomic_model::soft_imask)
#endif // __cplusplus
#define SUBTARGET_OVERRIDE_OPTIONS (void) 0
/* Target machine storage layout. */
#define TARGET_BIG_ENDIAN (!TARGET_LITTLE_ENDIAN)
#define SH_REG_MSW_OFFSET (TARGET_LITTLE_ENDIAN ? 1 : 0)
#define SH_REG_LSW_OFFSET (TARGET_LITTLE_ENDIAN ? 0 : 1)
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN TARGET_BIG_ENDIAN
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN TARGET_BIG_ENDIAN
#define MAX_BITS_PER_WORD 64
/* Width in bits of an `int'. We want just 32-bits, even if words are
longer. */
#define INT_TYPE_SIZE 32
/* Width in bits of a `long'. */
#define LONG_TYPE_SIZE (32)
/* Width in bits of a `long long'. */
#define LONG_LONG_TYPE_SIZE 64
/* Width in bits of a `long double'. */
#define LONG_DOUBLE_TYPE_SIZE 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (4)
#define MIN_UNITS_PER_WORD 4
/* Scaling factor for Dwarf data offsets for CFI information.
The dwarf2out.c default would use -UNITS_PER_WORD. */
#define DWARF_CIE_DATA_ALIGNMENT -4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE (32)
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (32)
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY BIGGEST_ALIGNMENT
/* The log (base 2) of the cache line size, in bytes. Processors prior to
SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
#define CACHE_LOG (TARGET_HARD_SH4 ? 5 : TARGET_SH2 ? 4 : 2)
/* ABI given & required minimum allocation boundary (in *bits*) for the
code of a function. */
#define FUNCTION_BOUNDARY (16)
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
/* The best alignment to use in cases where we have a choice. */
#define FASTEST_ALIGNMENT (32)
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT : (ALIGN))
/* get_mode_alignment assumes complex values are always held in multiple
registers, but that is not the case on the SH; CQImode and CHImode are
held in a single integer register. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
|| GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
: (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
/* Number of bits which any structure or union's size must be a
multiple of. Each structure or union's size is rounded up to a
multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
barrier_align (LABEL_AFTER_BARRIER)
#define LOOP_ALIGN(A_LABEL) sh_loop_align (A_LABEL)
#define LABEL_ALIGN(A_LABEL) \
( \
(PREV_INSN (A_LABEL) \
&& NONJUMP_INSN_P (PREV_INSN (A_LABEL)) \
&& GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
&& XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
/* explicit alignment insn in constant tables. */ \
? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
: 0)
/* Jump tables must be 32 bit aligned, no matter the size of the element. */
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
/* The base two logarithm of the known minimum alignment of an insn length. */
#define INSN_LENGTH_ALIGNMENT(A_INSN) \
(NONJUMP_INSN_P (A_INSN) \
? 1 \
: JUMP_P (A_INSN) || CALL_P (A_INSN) \
? 1 \
: CACHE_LOG)
/* Standard register usage. */
/* Register allocation for the Renesas calling convention:
r0 arg return
r1..r3 scratch
r4..r7 args in
r8..r13 call saved
r14 frame pointer/call saved
r15 stack pointer
ap arg pointer (doesn't really exist, always eliminated)
pr subroutine return address
t t bit
mach multiply/accumulate result, high part
macl multiply/accumulate result, low part.
fpul fp/int communication register
rap return address pointer register
fr0 fp arg return
fr1..fr3 scratch floating point registers
fr4..fr11 fp args in
fr12..fr15 call saved floating point registers */
#define MAX_REGISTER_NAME_LENGTH 6
extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
#define SH_REGISTER_NAMES_INITIALIZER \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
"fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
"fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
"fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
"fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
"tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
"xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
"rap", "sfp", "fpscr0", "fpscr1" \
}
#define REGNAMES_ARR_INDEX_1(index) \
(sh_register_names[index])
#define REGNAMES_ARR_INDEX_2(index) \
REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
#define REGNAMES_ARR_INDEX_4(index) \
REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
#define REGNAMES_ARR_INDEX_8(index) \
REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
#define REGNAMES_ARR_INDEX_16(index) \
REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
#define REGNAMES_ARR_INDEX_32(index) \
REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
#define REGNAMES_ARR_INDEX_64(index) \
REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
#define REGISTER_NAMES \
{ \
REGNAMES_ARR_INDEX_64 (0), \
REGNAMES_ARR_INDEX_64 (64), \
REGNAMES_ARR_INDEX_8 (128), \
REGNAMES_ARR_INDEX_8 (136), \
REGNAMES_ARR_INDEX_8 (144), \
REGNAMES_ARR_INDEX_4 (152) \
}
#define ADDREGNAMES_SIZE 32
#define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
[MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
#define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
{ \
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
"dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
"dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
"dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
}
#define ADDREGNAMES_REGNO(index) \
((index < 32) ? (FIRST_FP_REG + (index) * 2) \
: (-1))
#define ADDREGNAMES_ARR_INDEX_1(index) \
{ (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
#define ADDREGNAMES_ARR_INDEX_2(index) \
ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
#define ADDREGNAMES_ARR_INDEX_4(index) \
ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
#define ADDREGNAMES_ARR_INDEX_8(index) \
ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
#define ADDREGNAMES_ARR_INDEX_16(index) \
ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
#define ADDREGNAMES_ARR_INDEX_32(index) \
ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
#define ADDITIONAL_REGISTER_NAMES \
{ \
ADDREGNAMES_ARR_INDEX_32 (0) \
}
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
/* There are many other relevant definitions in sh.md's md_constants. */
#define FIRST_GENERAL_REG R0_REG
#define LAST_GENERAL_REG (FIRST_GENERAL_REG + (15))
#define FIRST_FP_REG DR0_REG
#define LAST_FP_REG (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1))
#define FIRST_XD_REG XD0_REG
#define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
/* Registers that can be accessed through bank0 or bank1 depending on sr.md. */
#define FIRST_BANKED_REG R0_REG
#define LAST_BANKED_REG R7_REG
#define BANKED_REGISTER_P(REGNO) \
IN_RANGE ((REGNO), \
(unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
(unsigned HOST_WIDE_INT) LAST_BANKED_REG)
#define GENERAL_REGISTER_P(REGNO) \
IN_RANGE ((REGNO), \
(unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
(unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
#define GENERAL_OR_AP_REGISTER_P(REGNO) \
(GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
|| ((REGNO) == FRAME_POINTER_REGNUM))
#define FP_REGISTER_P(REGNO) \
((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
#define XD_REGISTER_P(REGNO) \
((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
#define FP_OR_XD_REGISTER_P(REGNO) \
(FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
#define FP_ANY_REGISTER_P(REGNO) \
(FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
#define SPECIAL_REGISTER_P(REGNO) \
((REGNO) == GBR_REG || (REGNO) == T_REG \
|| (REGNO) == MACH_REG || (REGNO) == MACL_REG \
|| (REGNO) == FPSCR_MODES_REG || (REGNO) == FPSCR_STAT_REG)
#define VALID_REGISTER_P(REGNO) \
(GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
|| XD_REGISTER_P (REGNO) \
|| (REGNO) == AP_REG || (REGNO) == RAP_REG \
|| (REGNO) == FRAME_POINTER_REGNUM \
|| ((SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
|| (TARGET_SH2E && (REGNO) == FPUL_REG))
/* The mode that should be generally used to store a register by
itself in the stack, or to load it back. */
#define REGISTER_NATURAL_MODE(REGNO) \
(FP_REGISTER_P (REGNO) ? E_SFmode \
: XD_REGISTER_P (REGNO) ? E_DFmode : E_SImode)
#define FIRST_PSEUDO_REGISTER 156
/* Don't count soft frame pointer. */
#define DWARF_FRAME_REGISTERS (153)
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
Mach register is fixed 'cause it's only 10 bits wide for SH1.
It is 32 bits wide for SH2. */
#define FIXED_REGISTERS \
{ \
/* Regular registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 1, \
/* r16 is reserved, r18 is the former pr. */ \
1, 0, 0, 0, 0, 0, 0, 0, \
/* r24 is reserved for the OS; r25, for the assembler or linker. */ \
/* r26 is a global variable data pointer; r27 is for constants. */ \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 1, \
/* FP registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* Branch target registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
/* XD registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, \
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1, 1, 1, 1, 1, 1, 0, 1, \
/*"rap", "sfp","fpscr0","fpscr1" */ \
1, 1, 1, 1, \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ \
/* Regular registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
Only the lower 32bits of R10-R14 are guaranteed to be preserved \
across SH5 function calls. */ \
0, 0, 0, 0, 0, 0, 0, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
/* FP registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* Branch target registers. */ \
1, 1, 1, 1, 1, 0, 0, 0, \
/* XD registers. */ \
1, 1, 1, 1, 1, 1, 0, 0, \
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/*"rap", "sfp","fpscr0","fpscr1" */ \
1, 1, 1, 1, \
}
/* CALL_REALLY_USED_REGISTERS is used as a default setting, which is then
overridden by -fcall-saved-* and -fcall-used-* options and then by
TARGET_CONDITIONAL_REGISTER_USAGE. There we might want to make a
register call-used, yet fixed, like PIC_OFFSET_TABLE_REGNUM. */
#define CALL_REALLY_USED_REGISTERS \
{ \
/* Regular registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
Only the lower 32bits of R10-R14 are guaranteed to be preserved \
across SH5 function calls. */ \
0, 0, 0, 0, 0, 0, 0, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
/* FP registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* Branch target registers. */ \
1, 1, 1, 1, 1, 0, 0, 0, \
/* XD registers. */ \
1, 1, 1, 1, 1, 1, 0, 0, \
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
0, 1, 1, 1, 1, 1, 1, 1, \
/*"rap", "sfp","fpscr0","fpscr1" */ \
1, 1, 0, 0, \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(XD_REGISTER_P (REGNO) \
? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If TARGET_HARD_REGNO_MODE_OK could produce different values for MODE1
and MODE2, for any hard reg, then this must be 0 for correct output.
That's the case for xd registers: we don't hold SFmode values in
them, so we can't tie an SFmode pseudos with one in another
floating-point mode. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) \
|| (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
&& (((MODE1) != SFmode && (MODE2) != SFmode))))
/* Specify the modes required to caller save a given hard regno. */
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
sh_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
/* A C expression that is nonzero if hard register NEW_REG can be
considered for use as a rename register for OLD_REG register */
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Define this if the program counter is overloaded on a register. */
/* #define PC_REGNUM 15*/
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM SP_REG
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM FP_REG
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 153
/* Fake register that holds the address on the stack of the
current function's return address. */
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
/* Register to hold the addressing base for position independent
code access to data items. */
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
/* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
entries would need to handle saving and restoring it). */
#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
/* Definitions for register eliminations.
We have three registers that can be eliminated on the SH. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer.
Third, there is the return address pointer, which can also be replaced
with either the stack or the frame pointer.
This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference.
If you add any registers here that are not actually hard registers,
and that have any alternative of elimination that doesn't always
apply, you need to amend calc_live_regs to exclude it, because
reload spills all eliminable registers where it sees an
can_eliminate == 0 entry, thus making them 'live' .
If you add any hard registers that can be eliminated in different
ways, you have to patch reload to spill them only when all alternatives
of elimination fail. */
#define ELIMINABLE_REGS \
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
OFFSET = initial_elimination_offset ((FROM), (TO))
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM AP_REG
/* Register in which the static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM (3)
/* Don't default to pcc-struct-return, because we have already specified
exactly how to return structures in the TARGET_RETURN_IN_MEMORY
target hook. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union.
The SH has two sorts of general registers, R0 and the rest. R0 can
be used as the destination of some of the arithmetic ops. There are
also some special purpose registers; the T bit register, the
Procedure Return Register and the Multiply Accumulate Registers.
Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
reg_class_subunion. We don't want to have an actual union class
of these, because it would only be used when both classes are calculated
to give the same cost, but there is only one FPUL register.
Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
applying to the actual instruction alternative considered. E.g., the
y/r alternative of movsi_ie is considered to have no more cost that
the r/r alternative, which is patently untrue. */
enum reg_class
{
NO_REGS,
R0_REGS,
PR_REGS,
T_REGS,
MAC_REGS,
FPUL_REGS,
SIBCALL_REGS,
NON_SP_REGS,
GENERAL_REGS,
FP0_REGS,
FP_REGS,
DF_REGS,
FPSCR_REGS,
GENERAL_FP_REGS,
GENERAL_DF_REGS,
TARGET_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"R0_REGS", \
"PR_REGS", \
"T_REGS", \
"MAC_REGS", \
"FPUL_REGS", \
"SIBCALL_REGS", \
"NON_SP_REGS", \
"GENERAL_REGS", \
"FP0_REGS", \
"FP_REGS", \
"DF_REGS", \
"FPSCR_REGS", \
"GENERAL_FP_REGS", \
"GENERAL_DF_REGS", \
"TARGET_REGS", \
"ALL_REGS", \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
/* NO_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
/* R0_REGS: */ \
{ 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
/* PR_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
/* T_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
/* MAC_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
/* FPUL_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00400000 }, \
/* SIBCALL_REGS: Initialized in TARGET_CONDITIONAL_REGISTER_USAGE. */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
/* NON_SP_REGS: */ \
{ 0xffff7fff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
/* GENERAL_REGS: */ \
{ 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
/* FP0_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
/* FP_REGS: */ \
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
/* DF_REGS: */ \
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
/* FPSCR_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
/* GENERAL_FP_REGS: */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 }, \
/* GENERAL_DF_REGS: */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 }, \
/* TARGET_REGS: */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
/* ALL_REGS: */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0fffffff }, \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
/* When this hook returns true for MODE, the compiler allows
registers explicitly used in the rtl to be used as spill registers
but prevents the compiler from extending the lifetime of these
registers. */
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
sh_small_register_classes_for_mode_p
/* The order in which register should be allocated. */
/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
spilled or used otherwise, we better have the FP_REGS allocated first. */
#define REG_ALLOC_ORDER \
{/* Caller-saved FPRs */ \
65, 66, 67, 68, 69, 70, 71, 64, \
72, 73, 74, 75, 80, 81, 82, 83, \
84, 85, 86, 87, 88, 89, 90, 91, \
92, 93, 94, 95, 96, 97, 98, 99, \
/* Callee-saved FPRs */ \
76, 77, 78, 79,100,101,102,103, \
104,105,106,107,108,109,110,111, \
112,113,114,115,116,117,118,119, \
120,121,122,123,124,125,126,127, \
136,137,138,139,140,141,142,143, \
/* FPSCR */ 151, \
/* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1, 2, 3, 7, 6, 5, 4, 0, \
8, 9, 17, 19, 20, 21, 22, 23, \
36, 37, 38, 39, 40, 41, 42, 43, \
60, 61, 62, \
/* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
10, 11, 12, 13, 14, 18, \
/* SH5 callee-saved GPRs */ \
28, 29, 30, 31, 32, 33, 34, 35, \
44, 45, 46, 47, 48, 49, 50, 51, \
52, 53, 54, 55, 56, 57, 58, 59, \
/* FPUL */ 150, \
/* Fixed registers */ \
15, 16, 24, 25, 26, 27, 63,144, \
145,146,147,148,149,152,153,154,155 }
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS R0_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Defines for sh.md and constraints.md. */
#define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
&& ((HOST_WIDE_INT)(VALUE)) <= 127)
#define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
&& ((HOST_WIDE_INT)(VALUE)) <= 255)
#define ZERO_EXTRACT_ANDMASK(EXTRACT_SZ_RTX, EXTRACT_POS_RTX)\
(((1 << INTVAL (EXTRACT_SZ_RTX)) - 1) << INTVAL (EXTRACT_POS_RTX))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
If TARGET_SHMEDIA, we need two FP registers per word.
Otherwise we will need at most one register per word. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* If defined, gives a class of registers that cannot be used as the
operand of a SUBREG that changes the mode of the object illegally.
??? We need to renumber the internal numbers for the frnn registers
when in little endian in order to allow mode size changes. */
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
sh_cannot_change_mode_class (FROM, TO, CLASS)
/* Stack layout; function entry, exit and calling. */
/* Define the number of registers that can hold parameters.
These macros are used only in other macro definitions below. */
#define NPARM_REGS(MODE) \
(TARGET_FPU_ANY && (MODE) == SFmode \
? 8 \
: TARGET_FPU_DOUBLE \
&& (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
? 8 \
: 4)
#define FIRST_PARM_REG (FIRST_GENERAL_REG + 4)
#define FIRST_RET_REG (FIRST_GENERAL_REG + 0)
#define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
#define FIRST_FP_RET_REG FIRST_FP_REG
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD 1
/* Define this macro to nonzero if the addresses of local variable slots
are at negative offsets from the frame pointer. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset from the frame pointer to the first local variable slot to
be allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
do correct alignment. */
#if 0
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
#endif
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Value is the number of bytes of arguments automatically popped when
calling a subroutine.
CUM is the accumulated argument list. */
#define CALL_POPS_ARGS(CUM) (0)
/* Some subroutine macros specific to this machine. */
#define BASE_RETURN_VALUE_REG(MODE) \
((TARGET_FPU_ANY && ((MODE) == SFmode)) \
? FIRST_FP_RET_REG \
: TARGET_FPU_ANY && (MODE) == SCmode \
? FIRST_FP_RET_REG \
: (TARGET_FPU_DOUBLE \
&& ((MODE) == DFmode || (MODE) == SFmode \
|| (MODE) == DCmode || (MODE) == SCmode )) \
? FIRST_FP_RET_REG \
: FIRST_RET_REG)
#define BASE_ARG_REG(MODE) \
((TARGET_SH2E && ((MODE) == SFmode)) \
? FIRST_FP_PARM_REG \
: TARGET_FPU_DOUBLE \
&& (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
? FIRST_FP_PARM_REG \
: FIRST_PARM_REG)
/* 1 if N is a possible register number for function argument passing. */
/* ??? There are some callers that pass REGNO as int, and others that pass
it as unsigned. We get warnings unless we do casts everywhere. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
(((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
&& (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
|| (TARGET_FPU_ANY \
&& (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
&& (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
+ NPARM_REGS (SFmode))))
#ifdef __cplusplus
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On SH, this is a single integer, which is a number of words
of arguments scanned so far (including the invisible argument,
if any, which holds the structure-value-address).
Thus NARGREGS or more means all following args should go on the stack. */
enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
struct sh_args
{
/* How many SH_ARG_INT and how many SH_ARG_FLOAT args there are. */
int arg_count[2];
bool force_mem;
/* Nonzero if a prototype is available for the function. */
bool prototype_p;
/* The number of an odd floating-point register, that should be used
for the next argument of type float. */
int free_single_fp_reg;
/* Whether we're processing an outgoing function call. */
bool outgoing;
/* This is set to nonzero when the call in question must use the Renesas ABI,
even without the -mrenesas option. */
bool renesas_abi;
};
typedef sh_args CUMULATIVE_ARGS;
/* Set when processing a function with interrupt attribute. */
extern bool current_function_interrupt;
#endif // __cplusplus
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On SH, the offset always starts at 0: the first parm reg is always
the same reg for a given argument class.
For TARGET_HITACHI, the structure value pointer is passed in memory. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL),\
(N_NAMED_ARGS), VOIDmode)
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
/* By accident we got stuck with passing SCmode on SH4 little endian
in two registers that are nominally successive - which is different from
two single SFmode values, where we take endianness translation into
account. That does not work at all if an odd number of registers is
already in use, so that got fixed, but library functions are still more
likely to use complex numbers without mixing them with SFmode arguments
(which in C would have to be structures), so for the sake of ABI
compatibility the way SCmode values are passed when an even number of
FP registers is in use remains different from a pair of SFmode values for
now.
I.e.:
foo (double); a: fr5,fr4
foo (float a, float b); a: fr5 b: fr4
foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
this should be the other way round...
foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
#define FUNCTION_ARG_SCmode_WART 1
/* Minimum alignment for an argument to be passed by callee-copy
reference. We need such arguments to be aligned to 8 byte
boundaries, because they'll be loaded using quad loads. */
#define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments. */
/* Call the function profiler with a given profile label.
We use two .aligns, so as to make sure that both the .long is aligned
on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
from the trapa instruction. */
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
fprintf((STREAM), "\t.align\t2\n"); \
fprintf((STREAM), "\ttrapa\t#33\n"); \
fprintf((STREAM), "\t.align\t2\n"); \
asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
}
/* Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after. */
#define PROFILE_BEFORE_PROLOGUE
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/*
On the SH, the trampoline looks like
2 0002 D202 mov.l l2,r2
1 0000 D301 mov.l l1,r3
3 0004 422B jmp @r2
4 0006 0009 nop
5 0008 00000000 l1: .long area
6 000c 00000000 l2: .long function */
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 32 : 16)
/* Alignment required for a trampoline in bits. */
#define TRAMPOLINE_ALIGNMENT \
((CACHE_LOG < 3 \
|| (optimize_size && ! (TARGET_HARD_SH4))) ? 32 \
: 64)
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame.
FRAMEADDR is already the frame pointer of the COUNT frame, so we
can ignore COUNT. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(((COUNT) == 0) ? sh_get_pr_initial_val () : NULL_RTX)
/* A C expression whose value is RTL representing the location of the
incoming return address at the beginning of any function, before the
prologue. This RTL is either a REG, indicating that the return
value is saved in REG, or a MEM representing a location in
the stack. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PR_REG)
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT TARGET_SH1
#define HAVE_PRE_DECREMENT TARGET_SH1
#define USE_LOAD_POST_INCREMENT(mode) TARGET_SH1
#define USE_LOAD_PRE_DECREMENT(mode) TARGET_SH2A
#define USE_STORE_POST_INCREMENT(mode) TARGET_SH2A
#define USE_STORE_PRE_DECREMENT(mode) TARGET_SH1
/* If a memory clear move would take CLEAR_RATIO or more simple
move-instruction pairs, we will do a setmem instead. */
#define CLEAR_RATIO(speed) ((speed) ? 15 : 3)
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in reginfo.c during register
allocation. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
(GENERAL_OR_AP_REGISTER_P (REGNO) \
|| GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
/* True if SYMBOL + OFFSET constants must refer to something within
SYMBOL's section. */
#define SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P TARGET_FDPIC
/* Maximum number of registers that can appear in a valid memory
address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
The suitable hard regs are always accepted and all pseudo regs
are also accepted if STRICT is not set. */
/* Nonzero if X is a reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X, STRICT) \
(GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
|| (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
/* Nonzero if X is a reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X, STRICT) \
((REGNO (X) == R0_REG) \
|| (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
/* Nonzero if X/OFFSET is a reg that can be used as an index. */
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET, STRICT) \
((REGNO (X) == R0_REG && OFFSET == 0) \
|| (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
/* Macros for extra constraints. */
#define IS_PC_RELATIVE_LOAD_ADDR_P(OP) \
((GET_CODE ((OP)) == LABEL_REF) \
|| (GET_CODE ((OP)) == CONST \
&& GET_CODE (XEXP ((OP), 0)) == PLUS \
&& GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
&& CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
#define IS_NON_EXPLICIT_CONSTANT_P(OP) \
(CONSTANT_P (OP) \
&& !CONST_INT_P (OP) \
&& GET_CODE (OP) != CONST_DOUBLE \
&& (!flag_pic \
|| (LEGITIMATE_PIC_OPERAND_P (OP) \
&& !PIC_ADDR_P (OP) \
&& GET_CODE (OP) != LABEL_REF)))
#define GOT_ENTRY_P(OP) \
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
#define GOTPLT_ENTRY_P(OP) \
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
#define UNSPEC_GOTOFF_P(OP) \
(GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
#define GOTOFF_P(OP) \
(GET_CODE (OP) == CONST \
&& (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
|| (GET_CODE (XEXP ((OP), 0)) == PLUS \
&& UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
&& CONST_INT_P (XEXP (XEXP ((OP), 0), 1)))))
#define PIC_ADDR_P(OP) \
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
#define PCREL_SYMOFF_P(OP) \
(GET_CODE (OP) == CONST \
&& GET_CODE (XEXP ((OP), 0)) == UNSPEC \
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_PCREL_SYMOFF)
#define NON_PIC_REFERENCE_P(OP) \
(GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
|| (GET_CODE (OP) == CONST \
&& (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
|| GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF)) \
|| (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
&& (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
|| GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF) \
&& CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
#define PIC_REFERENCE_P(OP) \
(GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
|| GOTOFF_P (OP) || PIC_ADDR_P (OP))
#define MAYBE_BASE_REGISTER_RTX_P(X, STRICT) \
((REG_P (X) && REG_OK_FOR_BASE_P (X, STRICT)) \
|| (GET_CODE (X) == SUBREG \
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
&& REG_P (SUBREG_REG (X)) \
&& REG_OK_FOR_BASE_P (SUBREG_REG (X), STRICT)))
/* Since this must be r0, which is a single register class, we must check
SUBREGs more carefully, to be sure that we don't accept one that extends
outside the class. */
#define MAYBE_INDEX_REGISTER_RTX_P(X, STRICT) \
((REG_P (X) && REG_OK_FOR_INDEX_P (X, STRICT)) \
|| (GET_CODE (X) == SUBREG \
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
&& REG_P (SUBREG_REG (X)) \
&& SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X), STRICT)))
#ifdef REG_OK_STRICT
#define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, true)
#define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, true)
#else
#define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, false)
#define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, false)
#endif
/* A C compound statement that attempts to replace X, which is an address
that needs reloading, with a valid memory address for an operand of
mode MODE. WIN is a C statement label elsewhere in the code. */
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
do { \
if (sh_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE))) \
goto WIN; \
} while (0)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
: (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
: (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
: SImode)
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
#define FLOAT_TYPE_SIZE 32
/* Since the SH2e has only `float' support, it is desirable to make all
floating point types equivalent to `float'. */
#define DOUBLE_TYPE_SIZE (TARGET_FPU_SINGLE_ONLY ? 32 : 64)
/* 'char' is signed by default. */
#define DEFAULT_SIGNED_CHAR 1
/* The type of size_t unsigned int. */
#define SIZE_TYPE ("unsigned int")
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE ("int")
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
#define SH_ELF_WCHAR_TYPE "long int"
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (4)
/* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
MOVE_MAX is not a compile-time constant. */
#define MAX_MOVE_MAX 8
/* Max number of bytes we want move_by_pieces to be able to copy
efficiently. */
#define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS 1
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, UNKNOWN if none. */
#define LOAD_EXTEND_OP(MODE) ((MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND 1
/* Nonzero if access to memory by bytes is no faster than for words. */
#define SLOW_BYTE_ACCESS 1
/* Nonzero if the target supports dynamic shift instructions
like shad and shld. */
#define TARGET_DYNSHIFT (TARGET_SH3 || TARGET_SH2A)
/* The cost of using the dynamic shift insns (shad, shld) are the same
if they are available. If they are not available a library function will
be emitted instead, which is more expensive. */
#define SH_DYNAMIC_SHIFT_COST (TARGET_DYNSHIFT ? 1 : 20)
/* Defining SHIFT_COUNT_TRUNCATED tells the combine pass that code like
(X << (Y % 32)) for register X, Y is equivalent to (X << Y).
This is not generally true when hardware dynamic shifts (shad, shld) are
used, because they check the sign bit _before_ the modulo op. The sign
bit determines whether it is a left shift or a right shift:
if (Y < 0)
return X << (Y & 31);
else
return X >> (-Y) & 31);
The dynamic shift library routines in lib1funcs.S do not use the sign bit
like the hardware dynamic shifts and truncate the shift count to 31.
We define SHIFT_COUNT_TRUNCATED to 0 and express the implied shift count
truncation in the library function call patterns, as this gives slightly
more compact code. */
#define SHIFT_COUNT_TRUNCATED (0)
/* All integers have the same format so truncation is easy. */
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) (true)
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
/*#define NO_FUNCTION_CSE 1*/
/* The machine modes of pointers and functions. */
#define Pmode (SImode)
#define FUNCTION_MODE Pmode
/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
are actually function calls with some special constraints on arguments
and register usage.
These macros tell reorg that the references to arguments and
register clobbers for insns of type sfunc do not appear to happen
until after the millicode call. This allows reorg to put insns
which set the argument registers into the delay slot of the millicode
call -- thus they act more like traditional CALL_INSNs.
get_attr_is_sfunc will try to recognize the given insn, so make sure to
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
in particular. */
#define INSN_SETS_ARE_DELAYED(X) \
((NONJUMP_INSN_P (X) \
&& GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER \
&& get_attr_is_sfunc (X)))
#define INSN_REFERENCES_ARE_DELAYED(X) \
((NONJUMP_INSN_P (X) \
&& GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER \
&& get_attr_is_sfunc (X)))
/* Position Independent Code. */
/* We can't directly access anything that contains a symbol,
nor can we indirect via the constant pool. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
((! nonpic_symbol_mentioned_p (X) \
&& (GET_CODE (X) != SYMBOL_REF \
|| ! CONSTANT_POOL_ADDRESS_P (X) \
|| ! nonpic_symbol_mentioned_p (get_pool_constant (X)))))
#define SYMBOLIC_CONST_P(X) \
((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
&& nonpic_symbol_mentioned_p (X))
/* Compute extra cost of moving data between one register class
and another. */
/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
uses this information. Hence, the general register <-> floating point
register information here is not used for SFmode. */
#define REGCLASS_HAS_GENERAL_REG(CLASS) \
((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS || (CLASS) == NON_SP_REGS \
|| ((CLASS) == SIBCALL_REGS))
#define REGCLASS_HAS_FP_REG(CLASS) \
((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
|| (CLASS) == DF_REGS)
/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
would be so that people with slow memory systems could generate
different code that does fewer memory accesses. */
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that. */
#define BRANCH_COST(speed_p, predictable_p) sh_branch_cost
/* Assembler output control. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line. */
#define ASM_COMMENT_START "!"
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
#define FILE_ASM_OP "\t.file\n"
#define SET_ASM_OP "\t.set\t"
/* How to change between sections. */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
#if defined CRT_BEGIN || defined CRT_END
/* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
#undef TEXT_SECTION_ASM_OP
#define TEXT_SECTION_ASM_OP "\t.text"
#endif
#ifndef BSS_SECTION_ASM_OP
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
#endif
#ifndef ASM_OUTPUT_ALIGNED_BSS
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
#endif
/* Define this so that jump tables go in same section as the current function,
which could be text or it could be a user defined section. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
#undef DO_GLOBAL_CTORS_BODY
#define DO_GLOBAL_CTORS_BODY \
{ \
typedef void (*pfunc) (void); \
extern pfunc __ctors[]; \
extern pfunc __ctors_end[]; \
pfunc *p; \
for (p = __ctors_end; p > __ctors; ) \
{ \
(*--p)(); \
} \
}
#undef DO_GLOBAL_DTORS_BODY
#define DO_GLOBAL_DTORS_BODY \
{ \
typedef void (*pfunc) (void); \
extern pfunc __dtors[]; \
extern pfunc __dtors_end[]; \
pfunc *p; \
for (p = __dtors; p < __dtors_end; p++) \
{ \
(*p)(); \
} \
}
#define ASM_OUTPUT_REG_PUSH(file, v) \
{ \
fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
}
#define ASM_OUTPUT_REG_POP(file, v) \
{ \
fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
}
/* DBX register number for a given compiler register number. */
/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
to match gdb. */
/* expand_builtin_init_dwarf_reg_sizes uses this to test if a
register exists, so we should return -1 for invalid register numbers. */
#define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
#define SH_DBX_REGISTER_NUMBER(REGNO) \
(IN_RANGE ((REGNO), \
(unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
FIRST_GENERAL_REG + 15U) \
? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
: ((int) (REGNO) >= FIRST_FP_REG \
&& ((int) (REGNO) \
<= (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1)))) \
? ((unsigned) (REGNO) - FIRST_FP_REG + 25) \
: XD_REGISTER_P (REGNO) \
? ((unsigned) (REGNO) - FIRST_XD_REG + 87) \
: (REGNO) == PR_REG \
? (17) \
: (REGNO) == GBR_REG \
? (18) \
: (REGNO) == MACH_REG \
? (20) \
: (REGNO) == MACL_REG \
? (21) \
: (REGNO) == T_REG \
? (22) \
: (REGNO) == FPUL_REG \
? (23) \
: (REGNO) == FPSCR_REG \
? (24) \
: (unsigned) -1)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf ((FILE), "\t.align %d\n", (LOG))
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global\t"
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
/* Output a relative address table. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
switch (GET_MODE (BODY)) \
{ \
case E_SImode: \
asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
break; \
case E_HImode: \
asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
break; \
case E_QImode: \
asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
break; \
default: \
break; \
}
/* Output an absolute table element. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
if (! optimize || TARGET_BIGTABLE) \
asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
else \
asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
/* A C statement to be executed just prior to the output of
assembler code for INSN, to modify the extracted operands so
they will be output differently.
Here the argument OPVEC is the vector containing the operands
extracted from INSN, and NOPERANDS is the number of elements of
the vector which contain meaningful data for this insn.
The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output
by changing the contents of the vector. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
/* Which processor to schedule for. The elements of the enumeration must
match exactly the cpu attribute in the sh.md file. */
enum processor_type {
PROCESSOR_SH1,
PROCESSOR_SH2,
PROCESSOR_SH2E,
PROCESSOR_SH2A,
PROCESSOR_SH3,
PROCESSOR_SH3E,
PROCESSOR_SH4,
PROCESSOR_SH4A
};
#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
extern enum processor_type sh_cpu;
enum mdep_reorg_phase_e
{
SH_BEFORE_MDEP_REORG,
SH_INSERT_USES_LABELS,
SH_SHORTEN_BRANCHES0,
SH_FIXUP_PCLOAD,
SH_SHORTEN_BRANCHES1,
SH_AFTER_MDEP_REORG
};
extern enum mdep_reorg_phase_e mdep_reorg_phase;
/* Handle Renesas compiler's pragmas. */
#define REGISTER_TARGET_PRAGMAS() do { \
c_register_pragma (0, "interrupt", sh_pr_interrupt); \
c_register_pragma (0, "trapa", sh_pr_trapa); \
c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
} while (0)
extern tree sh_deferred_function_attributes;
extern tree *sh_deferred_function_attributes_tail;
/* Instructions with unfilled delay slots take up an
extra two bytes for the nop in the delay slot.
sh-dsp parallel processing insns are four bytes long. */
#define ADJUST_INSN_LENGTH(X, LENGTH) \
(LENGTH) += sh_insn_length_adjustment (X);
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
Leaving the unsignedp unchanged gives better code than always setting it
to 0. This is despite the fact that we have only signed char and short
load instructions. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
(UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), (MODE) = SImode;
#define MAX_FIXED_MODE_SIZE (64)
/* Better to allocate once the maximum space for outgoing args in the
prologue rather than duplicate around each call. */
#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
#define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_FPU_DOUBLE)
#define ACTUAL_NORMAL_MODE(ENTITY) \
(TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
#define NORMAL_MODE(ENTITY) \
(sh_cfun_interrupt_handler_p () \
? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
: ACTUAL_NORMAL_MODE (ENTITY))
#define EPILOGUE_USES(REGNO) (TARGET_FPU_ANY && REGNO == FPSCR_REG)
#define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (PR_REG))
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 4U : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
/* We have to distinguish between code and data, so that we apply
datalabel where and only where appropriate. Use sdataN for data. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
((TARGET_FDPIC \
? ((GLOBAL) ? DW_EH_PE_indirect | DW_EH_PE_datarel : DW_EH_PE_pcrel) \
: ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
| (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr))) \
| ((CODE) ? 0 : DW_EH_PE_sdata4))
/* Handle special EH pointer encodings. Absolute, pc-relative, and
indirect are handled automatically. */
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
do { \
if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
&& ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
{ \
gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
if (0) goto DONE; \
} \
if (TARGET_FDPIC \
&& ((ENCODING) & 0xf0) == (DW_EH_PE_indirect | DW_EH_PE_datarel)) \
{ \
fputs ("\t.ualong ", FILE); \
output_addr_const (FILE, ADDR); \
if (GET_CODE (ADDR) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (ADDR)) \
fputs ("@GOTFUNCDESC", FILE); \
else \
fputs ("@GOT", FILE); \
goto DONE; \
} \
} while (0)
#if (defined CRT_BEGIN || defined CRT_END)
/* SH constant pool breaks the devices in crtstuff.c to control section
in where code resides. We have to write it as asm code. */
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
mov.l 1f,r1\n\
mova 2f,r0\n\
braf r1\n\
lds r0,pr\n\
0: .p2align 2\n\
1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
2:\n" TEXT_SECTION_ASM_OP);
#endif /* (defined CRT_BEGIN || defined CRT_END) */
#endif /* ! GCC_SH_H */
|