aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/sh/sh.c
blob: b2fb56cab81e527b43590b8bde7fbe88e30c212e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
/* Output routines for GCC for Renesas / SuperH SH.
   Copyright (C) 1993-2019 Free Software Foundation, Inc.
   Contributed by Steve Chamberlain (sac@cygnus.com).
   Improved by Jim Wilson (wilson@cygnus.com).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include <sstream>

#define IN_TARGET_CODE 1

#include "config.h"
#define INCLUDE_VECTOR
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "reload.h"
#include "output.h"
#include "insn-attr.h"
#include "dwarf2.h"
#include "langhooks.h"
#include "cfgrtl.h"
#include "intl.h"
#include "sched-int.h"
#include "gimplify.h"
#include "tm-constrs.h"
#include "opts.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "regs.h"
#include "toplev.h"

/* This file should be included last.  */
#include "target-def.h"

int code_for_indirect_jump_scratch = CODE_FOR_indirect_jump_scratch;

#define CONST_OK_FOR_ADD(size) CONST_OK_FOR_I08 (size)
#define GEN_MOV (*(gen_movsi))
#define GEN_ADD3 (*(gen_addsi3))
#define GEN_SUB3 (*(gen_subsi3))

/* Used to simplify the logic below.  Find the attributes wherever
   they may be.  */
#define SH_ATTRIBUTES(decl) \
  (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
		  : DECL_ATTRIBUTES (decl) \
		  ? (DECL_ATTRIBUTES (decl)) \
		  : TYPE_ATTRIBUTES (TREE_TYPE (decl))

/* Set to true by expand_prologue() when the function is an
   interrupt handler.  */
bool current_function_interrupt;

tree sh_deferred_function_attributes;
tree *sh_deferred_function_attributes_tail = &sh_deferred_function_attributes;

/* Global variables for machine-dependent things.  */

/* Which cpu are we scheduling for.  */
enum processor_type sh_cpu;

/* Definitions used in ready queue reordering for first scheduling pass.  */

/* Reg weights arrays for modes SFmode and SImode, indexed by insn LUID.  */
static short *regmode_weight[2];

/* Total SFmode and SImode weights of scheduled insns.  */
static int curr_regmode_pressure[2];

/* Number of r0 life regions.  */
static int r0_life_regions;

/* If true, skip cycles for Q -> R movement.  */
static int skip_cycles = 0;

/* Cached value of can_issue_more.  This is cached in sh_variable_issue hook
   and returned from sh_reorder2.  */
static short cached_can_issue_more;

/* Unique number for UNSPEC_BBR pattern.  */
static unsigned int unspec_bbr_uid = 1;

/* Provides the class number of the smallest class containing
   reg number.  */
enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
{
  R0_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
  FP0_REGS,FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  FP_REGS, FP_REGS, FP_REGS, FP_REGS,
  TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS,
  TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS,
  DF_REGS, DF_REGS, DF_REGS, DF_REGS,
  DF_REGS, DF_REGS, DF_REGS, DF_REGS,
  NO_REGS, GENERAL_REGS, PR_REGS, T_REGS,
  MAC_REGS, MAC_REGS, FPUL_REGS, FPSCR_REGS,
  GENERAL_REGS, GENERAL_REGS,
};

char sh_register_names[FIRST_PSEUDO_REGISTER] \
  [MAX_REGISTER_NAME_LENGTH + 1] = SH_REGISTER_NAMES_INITIALIZER;

char sh_additional_register_names[ADDREGNAMES_SIZE] \
  [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1]
  = SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER;

int assembler_dialect;

static void split_branches (rtx_insn *);
static int branch_dest (rtx);
static void print_slot (rtx_sequence *);
static rtx_code_label *add_constant (rtx, machine_mode, rtx);
static void dump_table (rtx_insn *, rtx_insn *);
static bool broken_move (rtx_insn *);
static bool mova_p (rtx_insn *);
static rtx_insn *find_barrier (int, rtx_insn *, rtx_insn *);
static bool noncall_uses_reg (rtx, rtx_insn *, rtx *);
static rtx_insn *gen_block_redirect (rtx_insn *, int, int);
static void sh_reorg (void);
static void sh_option_override (void);
static void sh_override_options_after_change (void);
static void output_stack_adjust (int, rtx, int, HARD_REG_SET *, bool);
static rtx_insn* emit_frame_insn (rtx);
static rtx push (int);
static void pop (int);
static void push_regs (HARD_REG_SET* mask, bool interrupt_handler);
static int calc_live_regs (HARD_REG_SET *);
static HOST_WIDE_INT rounded_frame_size (int);
static bool sh_frame_pointer_required (void);
static void sh_emit_mode_set (int, int, int, HARD_REG_SET);
static int sh_mode_needed (int, rtx_insn *);
static int sh_mode_after (int, int, rtx_insn *);
static int sh_mode_entry (int);
static int sh_mode_exit (int);
static int sh_mode_priority (int entity, int n);

static rtx mark_constant_pool_use (rtx);
static tree sh_handle_interrupt_handler_attribute (tree *, tree, tree,
						   int, bool *);
static tree sh_handle_resbank_handler_attribute (tree *, tree,
						 tree, int, bool *);
static tree sh2a_handle_function_vector_handler_attribute (tree *, tree,
							   tree, int, bool *);
static tree sh_handle_sp_switch_attribute (tree *, tree, tree, int, bool *);
static tree sh_handle_trap_exit_attribute (tree *, tree, tree, int, bool *);
static tree sh_handle_renesas_attribute (tree *, tree, tree, int, bool *);
static void sh_print_operand (FILE *, rtx, int);
static void sh_print_operand_address (FILE *, machine_mode, rtx);
static bool sh_print_operand_punct_valid_p (unsigned char code);
static bool sh_asm_output_addr_const_extra (FILE *file, rtx x);
static void sh_output_function_epilogue (FILE *);
static void sh_insert_attributes (tree, tree *);
static const char *sh_check_pch_target_flags (int);
static int sh_register_move_cost (machine_mode, reg_class_t, reg_class_t);
static int sh_adjust_cost (rtx_insn *, int, rtx_insn *, int, unsigned int);
static int sh_issue_rate (void);
static int sh_dfa_new_cycle (FILE *, int, rtx_insn *, int, int, int *sort_p);
static short find_set_regmode_weight (rtx, machine_mode);
static short find_insn_regmode_weight (rtx, machine_mode);
static void find_regmode_weight (basic_block, machine_mode);
static int find_r0_life_regions (basic_block);
static void  sh_md_init_global (FILE *, int, int);
static void  sh_md_finish_global (FILE *, int);
static int rank_for_reorder (const void *, const void *);
static void swap_reorder (rtx_insn **, int);
static void ready_reorder (rtx_insn **, int);
static bool high_pressure (machine_mode);
static int sh_reorder (FILE *, int, rtx_insn **, int *, int);
static int sh_reorder2 (FILE *, int, rtx_insn **, int *, int);
static void sh_md_init (FILE *, int, int);
static int sh_variable_issue (FILE *, int, rtx_insn *, int);

static bool sh_function_ok_for_sibcall (tree, tree);

static bool sh_can_follow_jump (const rtx_insn *, const rtx_insn *);
static bool sh_ms_bitfield_layout_p (const_tree);

static void sh_init_builtins (void);
static tree sh_builtin_decl (unsigned, bool);
static rtx sh_expand_builtin (tree, rtx, rtx, machine_mode, int);
static void sh_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
				HOST_WIDE_INT, tree);
static void sh_file_start (void);
static bool sh_assemble_integer (rtx, unsigned int, int);
static bool flow_dependent_p (rtx_insn *, rtx_insn *);
static void flow_dependent_p_1 (rtx, const_rtx, void *);
static int shiftcosts (rtx);
static int and_xor_ior_costs (rtx, int);
static int addsubcosts (rtx);
static int multcosts (rtx);
static bool unspec_caller_rtx_p (rtx);
static bool sh_cannot_copy_insn_p (rtx_insn *);
static bool sh_cannot_force_const_mem_p (machine_mode, rtx);
static bool sh_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static int sh_address_cost (rtx, machine_mode, addr_space_t, bool);
static int sh_pr_n_sets (void);
static rtx sh_allocate_initial_value (rtx);
static reg_class_t sh_preferred_reload_class (rtx, reg_class_t);
static reg_class_t sh_secondary_reload (bool, rtx, reg_class_t,
                                        machine_mode,
                                        struct secondary_reload_info *);
static bool sh_legitimate_address_p (machine_mode, rtx, bool);
static rtx sh_legitimize_address (rtx, rtx, machine_mode);
static rtx sh_delegitimize_address (rtx);
static bool sh_cannot_substitute_mem_equiv_p (rtx);
static bool sh_legitimize_address_displacement (rtx *, rtx *,
						poly_int64, machine_mode);
static int scavenge_reg (HARD_REG_SET *s);

static rtx sh_struct_value_rtx (tree, int);
static rtx sh_function_value (const_tree, const_tree, bool);
static bool sh_function_value_regno_p (const unsigned int);
static rtx sh_libcall_value (machine_mode, const_rtx);
static bool sh_return_in_memory (const_tree, const_tree);
static rtx sh_builtin_saveregs (void);
static void sh_setup_incoming_varargs (cumulative_args_t,
				       const function_arg_info &, int *, int);
static bool sh_strict_argument_naming (cumulative_args_t);
static bool sh_pretend_outgoing_varargs_named (cumulative_args_t);
static void sh_atomic_assign_expand_fenv (tree *, tree *, tree *);
static tree sh_build_builtin_va_list (void);
static void sh_va_start (tree, rtx);
static tree sh_gimplify_va_arg_expr (tree, tree, gimple_seq *, gimple_seq *);
static bool sh_promote_prototypes (const_tree);
static machine_mode sh_promote_function_mode (const_tree type,
						   machine_mode,
						   int *punsignedp,
						   const_tree funtype,
						   int for_return);
static bool sh_pass_by_reference (cumulative_args_t,
				  const function_arg_info &);
static bool sh_callee_copies (cumulative_args_t, const function_arg_info &);
static int sh_arg_partial_bytes (cumulative_args_t, const function_arg_info &);
static void sh_function_arg_advance (cumulative_args_t,
				     const function_arg_info &);
static rtx sh_function_arg (cumulative_args_t, const function_arg_info &);
static int sh_dwarf_calling_convention (const_tree);
static void sh_encode_section_info (tree, rtx, int);
static bool sh2a_function_vector_p (tree);
static void sh_trampoline_init (rtx, tree, rtx);
static rtx sh_trampoline_adjust_address (rtx);
static void sh_conditional_register_usage (void);
static bool sh_legitimate_constant_p (machine_mode, rtx);
static int mov_insn_size (machine_mode, bool);
static int mov_insn_alignment_mask (machine_mode, bool);
static bool sh_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT,
					       unsigned int,
					       enum by_pieces_operation,
					       bool);
static bool sequence_insn_p (rtx_insn *);
static void sh_canonicalize_comparison (int *, rtx *, rtx *, bool);
static void sh_canonicalize_comparison (enum rtx_code&, rtx&, rtx&,
					machine_mode, bool);
static bool sh_legitimate_combined_insn (rtx_insn* insn);

static bool sh_fixed_condition_code_regs (unsigned int* p1, unsigned int* p2);

static void sh_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
static unsigned int sh_hard_regno_nregs (unsigned int, machine_mode);
static bool sh_hard_regno_mode_ok (unsigned int, machine_mode);
static bool sh_modes_tieable_p (machine_mode, machine_mode);
static bool sh_can_change_mode_class (machine_mode, machine_mode, reg_class_t);

static const struct attribute_spec sh_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
       affects_type_identity, handler, exclude } */
  { "interrupt_handler", 0, 0, true,  false, false, false,
    sh_handle_interrupt_handler_attribute, NULL },
  { "sp_switch",         1, 1, true,  false, false, false,
     sh_handle_sp_switch_attribute, NULL },
  { "trap_exit",         1, 1, true,  false, false, false,
    sh_handle_trap_exit_attribute, NULL },
  { "renesas",           0, 0, false, true, false, false,
    sh_handle_renesas_attribute, NULL },
  { "trapa_handler",     0, 0, true,  false, false, false,
    sh_handle_interrupt_handler_attribute, NULL },
  { "nosave_low_regs",   0, 0, true,  false, false, false,
    sh_handle_interrupt_handler_attribute, NULL },
  { "resbank",           0, 0, true,  false, false, false,
    sh_handle_resbank_handler_attribute, NULL },
  { "function_vector",   1, 1, true,  false, false, false,
    sh2a_handle_function_vector_handler_attribute, NULL },
  { NULL,                0, 0, false, false, false, false, NULL, NULL }
};

/* Initialize the GCC target structure.  */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE sh_attribute_table

/* The next two are used for debug info when compiling with -gdwarf.  */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.uaword\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.ualong\t"

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE sh_option_override

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE \
  sh_override_options_after_change

#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND sh_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS sh_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sh_print_operand_punct_valid_p
#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA sh_asm_output_addr_const_extra
 
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE sh_output_function_epilogue

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK sh_output_mi_thunk

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START sh_file_start
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true

#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER sh_assemble_integer

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST sh_register_move_cost

#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES sh_insert_attributes

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST sh_adjust_cost

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE sh_issue_rate

/* The next 5 hooks have been implemented for reenabling sched1.  With the
   help of these macros we are limiting the movement of insns in sched1 to
   reduce the register pressure.  The overall idea is to keep count of SImode
   and SFmode regs required by already scheduled insns. When these counts
   cross some threshold values; give priority to insns that free registers.
   The insn that frees registers is most likely to be the insn with lowest
   LUID (original insn order); but such an insn might be there in the stalled
   queue (Q) instead of the ready queue (R).  To solve this, we skip cycles
   up to a max of 8 cycles so that such insns may move from Q -> R.

   The description of the hooks are as below:

   TARGET_SCHED_INIT_GLOBAL: Added a new target hook in the generic
   scheduler; it is called inside the sched_init function just after
   find_insn_reg_weights function call. It is used to calculate the SImode
   and SFmode weights of insns of basic blocks; much similar to what
   find_insn_reg_weights does.
   TARGET_SCHED_FINISH_GLOBAL: Corresponding cleanup hook.

   TARGET_SCHED_DFA_NEW_CYCLE: Skip cycles if high register pressure is
   indicated by TARGET_SCHED_REORDER2; doing this may move insns from
   (Q)->(R).

   TARGET_SCHED_REORDER: If the register pressure for SImode or SFmode is
   high; reorder the ready queue so that the insn with lowest LUID will be
   issued next.

   TARGET_SCHED_REORDER2: If the register pressure is high, indicate to
   TARGET_SCHED_DFA_NEW_CYCLE to skip cycles.

   TARGET_SCHED_VARIABLE_ISSUE: Cache the value of can_issue_more so that it
   can be returned from TARGET_SCHED_REORDER2.

   TARGET_SCHED_INIT: Reset the register pressure counting variables.  */

#undef TARGET_SCHED_DFA_NEW_CYCLE
#define TARGET_SCHED_DFA_NEW_CYCLE sh_dfa_new_cycle

#undef TARGET_SCHED_INIT_GLOBAL
#define TARGET_SCHED_INIT_GLOBAL sh_md_init_global

#undef TARGET_SCHED_FINISH_GLOBAL
#define TARGET_SCHED_FINISH_GLOBAL sh_md_finish_global

#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE sh_variable_issue

#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER sh_reorder

#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 sh_reorder2

#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT sh_md_init

#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS sh_delegitimize_address

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS sh_legitimize_address

#undef TARGET_CAN_FOLLOW_JUMP
#define TARGET_CAN_FOLLOW_JUMP sh_can_follow_jump

#undef TARGET_MS_BITFIELD_LAYOUT_P
#define TARGET_MS_BITFIELD_LAYOUT_P sh_ms_bitfield_layout_p

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS sh_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL sh_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN sh_expand_builtin

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL sh_function_ok_for_sibcall

#undef TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P sh_cannot_copy_insn_p
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS sh_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST sh_address_cost
#undef TARGET_ALLOCATE_INITIAL_VALUE
#define TARGET_ALLOCATE_INITIAL_VALUE sh_allocate_initial_value

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG sh_reorg

#undef TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN sh_dwarf_register_span

#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif

#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES sh_promote_prototypes
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE sh_promote_function_mode

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE sh_function_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P sh_function_value_regno_p
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE sh_libcall_value
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX sh_struct_value_rtx
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY sh_return_in_memory

#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS sh_builtin_saveregs
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS sh_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING sh_strict_argument_naming
#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED sh_pretend_outgoing_varargs_named
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE sh_pass_by_reference
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES sh_callee_copies
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES sh_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG sh_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE sh_function_arg_advance

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV sh_atomic_assign_expand_fenv

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST sh_build_builtin_va_list
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START sh_va_start
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR sh_gimplify_va_arg_expr

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P sh_vector_mode_supported_p

#undef TARGET_CHECK_PCH_TARGET_FLAGS
#define TARGET_CHECK_PCH_TARGET_FLAGS sh_check_pch_target_flags

#undef TARGET_DWARF_CALLING_CONVENTION
#define TARGET_DWARF_CALLING_CONVENTION sh_dwarf_calling_convention

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED sh_frame_pointer_required

#undef TARGET_MODE_EMIT
#define TARGET_MODE_EMIT sh_emit_mode_set

#undef TARGET_MODE_NEEDED
#define TARGET_MODE_NEEDED sh_mode_needed

#undef TARGET_MODE_AFTER
#define TARGET_MODE_AFTER sh_mode_after

#undef TARGET_MODE_ENTRY
#define TARGET_MODE_ENTRY sh_mode_entry

#undef TARGET_MODE_EXIT
#define TARGET_MODE_EXIT sh_mode_exit

#undef TARGET_MODE_PRIORITY
#define TARGET_MODE_PRIORITY sh_mode_priority

/* Return regmode weight for insn.  */
#define INSN_REGMODE_WEIGHT(INSN, MODE)\
  regmode_weight[((MODE) == SImode) ? 0 : 1][INSN_UID (INSN)]

/* Return current register pressure for regmode.  */
#define CURR_REGMODE_PRESSURE(MODE)\
  curr_regmode_pressure[((MODE) == SImode) ? 0 : 1]

#undef  TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO	sh_encode_section_info

#undef TARGET_LRA_P
#define TARGET_LRA_P sh_lra_p

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD sh_secondary_reload

#undef  TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS sh_preferred_reload_class

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE sh_conditional_register_usage

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P	sh_legitimate_address_p

#undef TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P
#define TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P sh_cannot_substitute_mem_equiv_p

#undef TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT
#define TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT \
  sh_legitimize_address_displacement

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT		sh_trampoline_init
#undef TARGET_TRAMPOLINE_ADJUST_ADDRESS
#define TARGET_TRAMPOLINE_ADJUST_ADDRESS sh_trampoline_adjust_address

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P	sh_legitimate_constant_p

#undef TARGET_CANONICALIZE_COMPARISON
#define TARGET_CANONICALIZE_COMPARISON	sh_canonicalize_comparison

#undef TARGET_LEGITIMATE_COMBINED_INSN
#define TARGET_LEGITIMATE_COMBINED_INSN sh_legitimate_combined_insn

#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS sh_fixed_condition_code_regs

#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
  sh_use_by_pieces_infrastructure_p

/* Machine-specific symbol_ref flags.  */
#define SYMBOL_FLAG_FUNCVEC_FUNCTION	(SYMBOL_FLAG_MACH_DEP << 0)

/* The tas.b instruction sets the 7th bit in the byte, i.e. 0x80.  This value
   is used by optabs.c atomic op expansion code as well as in sync.md.  */
#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 0x80

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM sh_cannot_force_const_mem_p

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS sh_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK sh_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P sh_modes_tieable_p

#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS sh_can_change_mode_class

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings

struct gcc_target targetm = TARGET_INITIALIZER;


/* Information on the currently selected atomic model.
   This is initialized in sh_option_override.  */
static sh_atomic_model selected_atomic_model_;

const sh_atomic_model&
selected_atomic_model (void)
{
  return selected_atomic_model_;
}

static sh_atomic_model
parse_validate_atomic_model_option (const char* str)
{
  const char* model_names[sh_atomic_model::num_models];
  model_names[sh_atomic_model::none] = "none";
  model_names[sh_atomic_model::soft_gusa] = "soft-gusa";
  model_names[sh_atomic_model::hard_llcs] = "hard-llcs";
  model_names[sh_atomic_model::soft_tcb] = "soft-tcb";
  model_names[sh_atomic_model::soft_imask] = "soft-imask";

  const char* model_cdef_names[sh_atomic_model::num_models];
  model_cdef_names[sh_atomic_model::none] = "NONE";
  model_cdef_names[sh_atomic_model::soft_gusa] = "SOFT_GUSA";
  model_cdef_names[sh_atomic_model::hard_llcs] = "HARD_LLCS";
  model_cdef_names[sh_atomic_model::soft_tcb] = "SOFT_TCB";
  model_cdef_names[sh_atomic_model::soft_imask] = "SOFT_IMASK";

  sh_atomic_model ret;
  ret.type = sh_atomic_model::none;
  ret.name = model_names[sh_atomic_model::none];
  ret.cdef_name = model_cdef_names[sh_atomic_model::none];
  ret.strict = false;
  ret.tcb_gbr_offset = -1;

  /* Handle empty string as 'none'.  */
  if (str == NULL || *str == '\0')
    return ret;

#define err_ret(...) do { error (__VA_ARGS__); return ret; } while (0)

  std::vector<std::string> tokens;
  for (std::stringstream ss (str); ss.good (); )
  {
    tokens.push_back (std::string ());
    std::getline (ss, tokens.back (), ',');
  }

  if (tokens.empty ())
    err_ret ("invalid atomic model option");

  /* The first token must be the atomic model name.  */
  {
    for (size_t i = 0; i < sh_atomic_model::num_models; ++i)
      if (tokens.front () == model_names[i])
	{
	  ret.type = (sh_atomic_model::enum_type)i;
	  ret.name = model_names[i];
	  ret.cdef_name = model_cdef_names[i];
	  goto got_mode_name;
	}

    err_ret ("invalid atomic model name \"%s\"", tokens.front ().c_str ());
got_mode_name:;
  }

  /* Go through the remaining tokens.  */
  for (size_t i = 1; i < tokens.size (); ++i)
    {
      if (tokens[i] == "strict")
	ret.strict = true;
      else if (tokens[i].find ("gbr-offset=") == 0)
	{
	  std::string offset_str = tokens[i].substr (strlen ("gbr-offset="));
	  ret.tcb_gbr_offset = integral_argument (offset_str.c_str ());
	  if (offset_str.empty () || ret.tcb_gbr_offset == -1)
	    err_ret ("could not parse gbr-offset value \"%s\" in atomic model "
		     "option", offset_str.c_str ());
	}
      else
	err_ret ("unknown parameter \"%s\" in atomic model option",
		 tokens[i].c_str ());
    }

  /* Check that the selection makes sense.  */
  if (ret.type == sh_atomic_model::soft_gusa && !TARGET_SH3)
    err_ret ("atomic model %s is only available on SH3 and SH4 targets",
	     ret.name);

  if (ret.type == sh_atomic_model::hard_llcs && !TARGET_SH4A)
    err_ret ("atomic model %s is only available on SH4A targets", ret.name);

  if (ret.type == sh_atomic_model::soft_tcb && ret.tcb_gbr_offset == -1)
    err_ret ("atomic model %s requires gbr-offset parameter", ret.name);

  if (ret.type == sh_atomic_model::soft_tcb
      && (ret.tcb_gbr_offset < 0 || ret.tcb_gbr_offset > 1020
          || (ret.tcb_gbr_offset & 3) != 0))
    err_ret ("invalid gbr-offset value \"%d\" for atomic model %s; it must be "
	     "a multiple of 4 in the range 0-1020", ret.tcb_gbr_offset,
	     ret.name);

  if (ret.type == sh_atomic_model::soft_imask && TARGET_USERMODE)
    err_ret ("cannot use atomic model %s in user mode", ret.name);

  return ret;

#undef err_ret
}

/* Register SH specific RTL passes.  */
extern opt_pass* make_pass_sh_treg_combine (gcc::context* ctx, bool split_insns,
					    const char* name);
extern opt_pass* make_pass_sh_optimize_sett_clrt (gcc::context* ctx,
						  const char* name);
static void
register_sh_passes (void)
{
/* Running the sh_treg_combine pass after ce1 generates better code when
   comparisons are combined and reg-reg moves are introduced, because
   reg-reg moves will be eliminated afterwards.  However, there are quite
   some cases where combine will be unable to fold comparison related insns,
   thus for now don't do it.
  register_pass (make_pass_sh_treg_combine (g, false, "sh_treg_combine1"),
		 PASS_POS_INSERT_AFTER, "ce1", 1);
*/

  /* Run sh_treg_combine pass after combine but before register allocation.  */
  register_pass (make_pass_sh_treg_combine (g, true, "sh_treg_combine2"),
		 PASS_POS_INSERT_AFTER, "split1", 1);

  /* Run sh_treg_combine pass after register allocation and basic block
     reordering as this sometimes creates new opportunities.  */
  register_pass (make_pass_sh_treg_combine (g, true, "sh_treg_combine3"),
		 PASS_POS_INSERT_AFTER, "split4", 1);

  /* Optimize sett and clrt insns, by e.g. removing them if the T bit value
     is known after a conditional branch.
     This must be done after basic blocks and branch conditions have
     stabilized and won't be changed by further passes.  */
  register_pass (make_pass_sh_optimize_sett_clrt (g, "sh_optimize_sett_clrt"),
		 PASS_POS_INSERT_BEFORE, "sched2", 1);
}

/* Implement TARGET_OPTION_OVERRIDE macro.  Validate and override 
   various options, and do some machine dependent initialization.  */
static void
sh_option_override (void)
{
  int regno;

  SUBTARGET_OVERRIDE_OPTIONS;

  sh_cpu = PROCESSOR_SH1;
  assembler_dialect = 0;
  if (TARGET_SH2)
    sh_cpu = PROCESSOR_SH2;
  if (TARGET_SH2E)
    sh_cpu = PROCESSOR_SH2E;
  if (TARGET_SH2A)
    sh_cpu = PROCESSOR_SH2A;
  if (TARGET_SH3)
    sh_cpu = PROCESSOR_SH3;
  if (TARGET_SH3E)
    sh_cpu = PROCESSOR_SH3E;
  if (TARGET_SH4)
    {
      assembler_dialect = 1;
      sh_cpu = PROCESSOR_SH4;
    }
  if (TARGET_SH4A)
    {
      assembler_dialect = 1;
      sh_cpu = PROCESSOR_SH4A;
    }

  /* User/priviledged mode is supported only on SH3* and SH4*.
     Disable it for everything else.  */
  if (!TARGET_SH3 && TARGET_USERMODE)
    TARGET_USERMODE = false;

  if (! strcmp (sh_div_str, "call-div1"))
    sh_div_strategy = SH_DIV_CALL_DIV1;
  else if (! strcmp (sh_div_str, "call-fp") && TARGET_FPU_ANY)
    sh_div_strategy = SH_DIV_CALL_FP;
  else if (! strcmp (sh_div_str, "call-table") && TARGET_DYNSHIFT)
    sh_div_strategy = SH_DIV_CALL_TABLE;
  else
    {
      /* Pick one that makes most sense for the target in general.
	 It is not much good to use different functions depending on -Os,
	 since then we'll end up with two different functions when some of
	 the code is compiled for size, and some for speed.  */

      /* SH4 tends to emphasize speed.  */
      if (TARGET_HARD_SH4)
	sh_div_strategy = SH_DIV_CALL_TABLE;
      /* These have their own way of doing things.  */
      else if (TARGET_SH2A)
	sh_div_strategy = SH_DIV_INTRINSIC;
      /* SH1 .. SH3 cores often go into small-footprint systems, so
	 default to the smallest implementation available.  */
      else
	sh_div_strategy = SH_DIV_CALL_DIV1;
    }

  if (sh_divsi3_libfunc[0])
    ; /* User supplied - leave it alone.  */
  else if (TARGET_DIVIDE_CALL_FP)
    sh_divsi3_libfunc = "__sdivsi3_i4";
  else if (TARGET_DIVIDE_CALL_TABLE)
    sh_divsi3_libfunc = "__sdivsi3_i4i";
  else
    sh_divsi3_libfunc = "__sdivsi3";

  if (sh_branch_cost == -1)
    {
      /*  The SH1 does not have delay slots, hence we get a pipeline stall
	  at every branch.  The SH4 is superscalar, so the single delay slot
	  is not sufficient to keep both pipelines filled.
	  In any case, set the default branch cost to '2', as it results in
	  slightly overall smaller code and also enables some if conversions
	  that are required for matching special T bit related insns.  */
      sh_branch_cost = 2;
    }

  /* Set -mzdcbranch for SH4 / SH4A if not otherwise specified by the user.  */
  if (! global_options_set.x_TARGET_ZDCBRANCH && TARGET_HARD_SH4)
    TARGET_ZDCBRANCH = 1;

  /* FDPIC code is a special form of PIC, and the vast majority of code
     generation constraints that apply to PIC also apply to FDPIC, so we
     set flag_pic to avoid the need to check TARGET_FDPIC everywhere
     flag_pic is checked. */
  if (TARGET_FDPIC && !flag_pic)
    flag_pic = 2;

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (! VALID_REGISTER_P (regno))
      sh_register_names[regno][0] = '\0';

  for (regno = 0; regno < ADDREGNAMES_SIZE; regno++)
    if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno)))
      sh_additional_register_names[regno][0] = '\0';

  if (flag_pic && ! TARGET_PREFERGOT)
    flag_no_function_cse = 1;

  if (targetm.small_register_classes_for_mode_p (VOIDmode))
    {
      /* Never run scheduling before reload, since that can
	 break global alloc, and generates slower code anyway due
	 to the pressure on R0.  */
      /* Enable sched1 for SH4 if the user explicitly requests.
	 When sched1 is enabled, the ready queue will be reordered by
	 the target hooks if pressure is high.  We cannot do this for
	 PIC, SH3 and lower as they give spill failures for R0.  */
      if (!TARGET_HARD_SH4 || flag_pic)
	flag_schedule_insns = 0;
      /* ??? Current exception handling places basic block boundaries
	 after call_insns.  It causes the high pressure on R0 and gives
	 spill failures for R0 in reload.  See PR 22553 and the thread
	 on gcc-patches
	 <http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>.  */
      else if (flag_exceptions)
	{
	  if (flag_schedule_insns && global_options_set.x_flag_schedule_insns)
	    warning (0, "ignoring %<-fschedule-insns%> because of exception "
			"handling bug");
	  flag_schedule_insns = 0;
	}
      else if (flag_schedule_insns
	       && !global_options_set.x_flag_schedule_insns)
	flag_schedule_insns = 0;
    }

  /* Unwind info is not correct around the CFG unless either a frame
     pointer is present or M_A_O_A is set.  Fixing this requires rewriting
     unwind info generation to be aware of the CFG and propagating states
     around edges.  */
  if ((flag_unwind_tables || flag_asynchronous_unwind_tables
       || flag_exceptions || flag_non_call_exceptions)
      && flag_omit_frame_pointer && !TARGET_ACCUMULATE_OUTGOING_ARGS)
    {
      warning (0, "unwind tables currently require either a frame pointer "
	       "or %<-maccumulate-outgoing-args%> for correctness");
      TARGET_ACCUMULATE_OUTGOING_ARGS = 1;
    }

  if (flag_unsafe_math_optimizations)
    {
      /* Enable fsca insn for SH4A if not otherwise specified by the user.  */
      if (global_options_set.x_TARGET_FSCA == 0 && TARGET_SH4A_FP)
	TARGET_FSCA = 1;

      /* Enable fsrra insn for SH4A if not otherwise specified by the user.  */
      if (global_options_set.x_TARGET_FSRRA == 0 && TARGET_SH4A_FP)
	TARGET_FSRRA = 1;
    }

  /*  Allow fsrra insn only if -funsafe-math-optimizations and
      -ffinite-math-only is enabled.  */
  TARGET_FSRRA = TARGET_FSRRA
		 && flag_unsafe_math_optimizations
		 && flag_finite_math_only;

  /* If the -mieee option was not explicitly set by the user, turn it on
     unless -ffinite-math-only was specified.  See also PR 33135.  */
  if (! global_options_set.x_TARGET_IEEE)
    TARGET_IEEE = ! flag_finite_math_only;

  if (sh_fixed_range_str)
    sh_fix_range (sh_fixed_range_str);

  /* This target defaults to strict volatile bitfields.  */
  if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
    flag_strict_volatile_bitfields = 1;

  sh_override_options_after_change ();

  /* Parse atomic model option and make sure it is valid for the current
     target CPU.  */
  selected_atomic_model_
    = parse_validate_atomic_model_option (sh_atomic_model_str);

  register_sh_passes ();
}

/* Implement targetm.override_options_after_change.  */

static void
sh_override_options_after_change (void)
{
  /*  Adjust loop, jump and function alignment values (in bytes), if those
      were not specified by the user using -falign-loops, -falign-jumps
      and -falign-functions options.
      32 bit alignment is better for speed, because instructions can be
      fetched as a pair from a longword boundary.  For size use 16 bit
      alignment to get more compact code.
      Aligning all jumps increases the code size, even if it might
      result in slightly faster code.  Thus, it is set to the smallest 
      alignment possible if not specified by the user.  */
  if (flag_align_loops && !str_align_loops)
    str_align_loops = optimize_size ? "2" : "4";

  /* Parse values so that we can compare for current value.  */
  parse_alignment_opts ();
  if (flag_align_jumps && !str_align_jumps)
    str_align_jumps = "2";
  else if (align_jumps.levels[0].get_value () < 2)
    str_align_jumps = "2";

  if (flag_align_functions && !str_align_functions)
    str_align_functions = optimize_size ? "2" : "4";

  /* The linker relaxation code breaks when a function contains
     alignments that are larger than that at the start of a
     compilation unit.  */
  if (TARGET_RELAX)
    {
      /* Parse values so that we can compare for current value.  */
      parse_alignment_opts ();
      int min_align = MAX (align_loops.levels[0].get_value (),
			   align_jumps.levels[0].get_value ());

      /* Also take possible .long constants / mova tables into account.	*/
      if (min_align < 4)
	min_align = 4;
      if (align_functions.levels[0].get_value () < min_align)
	{
	  char *r = XNEWVEC (char, 16);
	  sprintf (r, "%d", min_align);
	  str_align_functions = r;
	}
    }
}

/* Print the operand address in x to the stream.  */
static void
sh_print_operand_address (FILE *stream, machine_mode /*mode*/, rtx x)
{
  switch (GET_CODE (x))
    {
    case REG:
    case SUBREG:
      fprintf (stream, "@%s", reg_names[true_regnum (x)]);
      break;

    case PLUS:
      {
	rtx base = XEXP (x, 0);
	rtx index = XEXP (x, 1);

	switch (GET_CODE (index))
	  {
	  case CONST_INT:
	    fprintf (stream, "@(%d,%s)", (int) INTVAL (index),
		     reg_names[true_regnum (base)]);
	    break;

	  case REG:
	  case SUBREG:
	    {
	      int base_num = true_regnum (base);
	      int index_num = true_regnum (index);

	      /* If base or index is R0, make sure that it comes first.
		 Usually one of them will be R0, but the order might be wrong.
		 If neither base nor index are R0 it's an error and we just
		 pass it on to the assembler.  This avoids silent wrong code
		 bugs.  */
	      if (base_num == 0 && index_num != 0)
		std::swap (base_num, index_num);

	      fprintf (stream, "@(%s,%s)", reg_names[index_num],
					   reg_names[base_num]);
	      break;
	    }

	  default:
	    gcc_unreachable ();
	  }
      }
      break;

    case PRE_DEC:
      fprintf (stream, "@-%s", reg_names[true_regnum (XEXP (x, 0))]);
      break;

    case POST_INC:
      fprintf (stream, "@%s+", reg_names[true_regnum (XEXP (x, 0))]);
      break;

    default:
      x = mark_constant_pool_use (x);
      output_addr_const (stream, x);
      break;
    }
}

/* Print operand x (an rtx) in assembler syntax to file stream
   according to modifier code.

   '.'  print a .s if insn needs delay slot
   ','  print LOCAL_LABEL_PREFIX
   '@'  print trap, rte or rts depending upon pragma interruptness
   '#'  output a nop if there is nothing to put in the delay slot
   '''  print likelihood suffix (/u for unlikely).
   '>'  print branch target if -fverbose-asm
   'O'  print a constant without the #
   'R'  print the LSW of a dp value - changes if in little endian
   'S'  print the MSW of a dp value - changes if in little endian
   'T'  print the next word of a dp value - same as 'R' in big endian mode.
   'M'  print .b / .w / .l / .s / .d suffix if operand is a MEM.
   'N'  print 'r63' if the operand is (const_int 0).
   'd'  print a V2SF reg as dN instead of fpN.
   'm'  print a pair `base,offset' or `base,index', for LD and ST.
   'U'  Likewise for {LD,ST}{HI,LO}.
   'V'  print the position of a single bit set.
   'W'  print the position of a single bit cleared.
   't'  print a memory address which is a register.
   'u'  prints the lowest 16 bits of CONST_INT, as an unsigned value.
   'o'  output an operator.  */
static void
sh_print_operand (FILE *stream, rtx x, int code)
{
  int regno;
  machine_mode mode;

  switch (code)
    {
      tree trapa_attr;

    case '.':
      if (final_sequence
	  && ! INSN_ANNULLED_BRANCH_P (final_sequence->insn (0))
	  && get_attr_length (final_sequence->insn (1)))
	fprintf (stream, ASSEMBLER_DIALECT ? "/s" : ".s");
      break;
    case ',':
      fprintf (stream, "%s", LOCAL_LABEL_PREFIX);
      break;
    case '@':
      trapa_attr = lookup_attribute ("trap_exit",
				      DECL_ATTRIBUTES (current_function_decl));
      if (trapa_attr)
	fprintf (stream, "trapa	#%ld",
		 (long) TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (trapa_attr))));
      else if (sh_cfun_interrupt_handler_p ())
	{
	  if (sh_cfun_resbank_handler_p ())
	    fprintf (stream, "resbank\n");
	  fprintf (stream, "rte");
	}
      else
	fprintf (stream, "rts");
      break;
    case '#':
      /* Output a nop if there's nothing in the delay slot.  */
      if (dbr_sequence_length () == 0)
	fprintf (stream, "\n\tnop");
      break;
    case '\'':
      {
	rtx note = find_reg_note (current_output_insn, REG_BR_PROB, 0);

	if (note
	    && profile_probability::from_reg_br_prob_note (XINT (note, 0))
	       < profile_probability::even ())
	  fputs ("/u", stream);
	break;
      }
    case '>':
      if (flag_verbose_asm && JUMP_LABEL (current_output_insn))
	{
	  fputs ("\t! target: ", stream);
	  output_addr_const (stream, JUMP_LABEL (current_output_insn));
	}
      break;
    case 'O':
      x = mark_constant_pool_use (x);
      output_addr_const (stream, x);
      break;
    /* N.B.: %R / %S / %T adjust memory addresses by four.
       While they can be used to access 64 bit parts of a larger value
       held in general purpose registers, that won't work with memory -
       neither for fp registers, since the frxx names are used.  */
    case 'R':
      if (REG_P (x) || GET_CODE (x) == SUBREG)
	{
	  regno = true_regnum (x);
	  regno += FP_REGISTER_P (regno) ? 1 : SH_REG_LSW_OFFSET;
	  fputs (reg_names[regno], (stream));
	}
      else if (MEM_P (x))
	{
	  x = adjust_address (x, SImode, 4 * SH_REG_LSW_OFFSET);
	  sh_print_operand_address (stream, GET_MODE (x), XEXP (x, 0));
	}
      else
	{
	  rtx sub = NULL_RTX;

	  mode = GET_MODE (x);
	  if (mode == VOIDmode)
	    mode = DImode;
	  if (GET_MODE_SIZE (mode) >= 8)
	    sub = simplify_subreg (SImode, x, mode, 4 * SH_REG_LSW_OFFSET);
	  if (sub)
	    sh_print_operand (stream, sub, 0);
	  else
	    output_operand_lossage ("invalid operand to %%R");
	}
      break;
    case 'S':
      if (REG_P (x) || GET_CODE (x) == SUBREG)
	{
	  regno = true_regnum (x);
	  regno += FP_REGISTER_P (regno) ? 0 : SH_REG_MSW_OFFSET;
	  fputs (reg_names[regno], (stream));
	}
      else if (MEM_P (x))
	{
	  x = adjust_address (x, SImode, 4 * SH_REG_MSW_OFFSET);
	  sh_print_operand_address (stream, GET_MODE (x), XEXP (x, 0));
	}
      else
	{
	  rtx sub = NULL_RTX;

	  mode = GET_MODE (x);
	  if (mode == VOIDmode)
	    mode = DImode;
	  if (GET_MODE_SIZE (mode) >= 8)
	    sub = simplify_subreg (SImode, x, mode, 4 * SH_REG_MSW_OFFSET);
	  if (sub)
	    sh_print_operand (stream, sub, 0);
	  else
	    output_operand_lossage ("invalid operand to %%S");
	}
      break;
    case 'T':
      /* Next word of a double.  */
      switch (GET_CODE (x))
	{
	case REG:
	  fputs (reg_names[REGNO (x) + 1], (stream));
	  break;
	case MEM:
	  {
	    machine_mode mode = GET_MODE (x);
	    if (GET_CODE (XEXP (x, 0)) != PRE_DEC
		&& GET_CODE (XEXP (x, 0)) != POST_INC)
	      x = adjust_address (x, SImode, 4);
	    sh_print_operand_address (stream, mode, XEXP (x, 0));
	  }
	  break;
	default:
	  break;
	}
      break;

    case 't':
      gcc_assert (MEM_P (x));
      x = XEXP (x, 0);
      switch (GET_CODE (x))
	{
	case REG:
	case SUBREG:
	  sh_print_operand (stream, x, 0);
	  break;
	default:
	  break;
	}
      break;

    case 'o':
      switch (GET_CODE (x))
	{
	case PLUS:  fputs ("add", stream); break;
	case MINUS: fputs ("sub", stream); break;
	case MULT:  fputs ("mul", stream); break;
	case DIV:   fputs ("div", stream); break;
	case EQ:    fputs ("eq",  stream); break;
	case NE:    fputs ("ne",  stream); break;
	case GT:  case LT:  fputs ("gt",  stream); break;
	case GE:  case LE:  fputs ("ge",  stream); break;
	case GTU: case LTU: fputs ("gtu", stream); break;
	case GEU: case LEU: fputs ("geu", stream); break;
	default:
	  break;
	}
      break;
    case 'M':
      if (MEM_P (x))
	{
	  switch (GET_MODE (x))
	    {
	    case E_QImode: fputs (".b", stream); break;
	    case E_HImode: fputs (".w", stream); break;
	    case E_SImode: fputs (".l", stream); break;
	    case E_SFmode: fputs (".s", stream); break;
	    case E_DFmode: fputs (".d", stream); break;
	    default: gcc_unreachable ();
	    }
	}
      break;

    case 'm':
      gcc_assert (MEM_P (x));
      x = XEXP (x, 0);
      /* Fall through.  */
    case 'U':
      switch (GET_CODE (x))
	{
	case REG:
	case SUBREG:
	  sh_print_operand (stream, x, 0);
	  fputs (", 0", stream);
	  break;

	case PLUS:
	  sh_print_operand (stream, XEXP (x, 0), 0);
	  fputs (", ", stream);
	  sh_print_operand (stream, XEXP (x, 1), 0);
	  break;

	default:
	  gcc_unreachable ();
	}
      break;

    case 'V':
      {
	int num = exact_log2 (INTVAL (x));
	gcc_assert (num >= 0);
	fprintf (stream, "#%d", num);
      }
      break;

    case 'W':
      {
	int num = exact_log2 (~INTVAL (x));
	gcc_assert (num >= 0);
	fprintf (stream, "#%d", num);
      }
      break;

    case 'd':
      gcc_assert (REG_P (x) && GET_MODE (x) == V2SFmode);

      fprintf ((stream), "d%s", reg_names[REGNO (x)] + 1);
      break;

    case 'N':
      if (x == CONST0_RTX (GET_MODE (x)))
	{
	  fprintf ((stream), "r63");
	  break;
	}
      goto default_output;
    case 'u':
      if (CONST_INT_P (x))
	{
	  fprintf ((stream), "%u", (unsigned) INTVAL (x) & (0x10000 - 1));
	  break;
	}
      /* Fall through.  */

    default_output:
    default:
      regno = 0;
      mode = GET_MODE (x);

      switch (GET_CODE (x))
	{
	case TRUNCATE:
	  {
	    rtx inner = XEXP (x, 0);
	    int offset = 0;
	    machine_mode inner_mode;

	    /* We might see SUBREGs with vector mode registers inside.  */
	    if (GET_CODE (inner) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (inner))
		    == GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
		&& subreg_lowpart_p (inner))
	      inner = SUBREG_REG (inner);
	    if (CONST_INT_P (inner))
	      {
		x = GEN_INT (trunc_int_for_mode (INTVAL (inner), GET_MODE (x)));
		goto default_output;
	      }
	    inner_mode = GET_MODE (inner);
	    if (GET_CODE (inner) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (inner))
		    < GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
		&& REG_P (SUBREG_REG (inner)))
	      {
		offset = subreg_regno_offset (REGNO (SUBREG_REG (inner)),
					      GET_MODE (SUBREG_REG (inner)),
					      SUBREG_BYTE (inner),
					      GET_MODE (inner));
		inner = SUBREG_REG (inner);
	      }
	    if (!REG_P (inner) || GET_MODE_SIZE (inner_mode) > 8)
	      abort ();
	    /* Floating point register pairs are always big endian;
	       general purpose registers are 64 bit wide.  */
	    regno = REGNO (inner);
	    regno = (hard_regno_nregs (regno, inner_mode)
		     - hard_regno_nregs (regno, mode))
		     + offset;
	    x = inner;
	    goto reg;
	  }
	case SIGN_EXTEND:
	  x = XEXP (x, 0);
	  goto reg;
	case SUBREG:
	  gcc_assert (SUBREG_BYTE (x) == 0
		      && REG_P (SUBREG_REG (x)));

	  x = SUBREG_REG (x);
	  /* Fall through.  */

	reg:
	case REG:
	  regno += REGNO (x);
	  if (FP_REGISTER_P (regno)
	      && mode == V16SFmode)
	    fprintf ((stream), "mtrx%s", reg_names[regno] + 2);
	  else if (FP_REGISTER_P (REGNO (x))
		   && mode == V4SFmode)
	    fprintf ((stream), "fv%s", reg_names[regno] + 2);
	  else if (REG_P (x)
		   && mode == V2SFmode)
	    fprintf ((stream), "fp%s", reg_names[regno] + 2);
	  else if (FP_REGISTER_P (REGNO (x))
		   && GET_MODE_SIZE (mode) > 4)
	    fprintf ((stream), "d%s", reg_names[regno] + 1);
	  else
	    fputs (reg_names[regno], (stream));
	  break;

	case MEM:
	  output_address (GET_MODE (x), XEXP (x, 0));
	  break;

	default:
	  fputc ('#', stream);
	  output_addr_const (stream, x);
	  break;
	}
      break;
    }
}

static bool
sh_print_operand_punct_valid_p (unsigned char code)
{
  return (code == '.' || code == '#' || code == '@' || code == ','
	  || code == '$' || code == '\'' || code == '>');
}

/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.  */
static bool
sh_asm_output_addr_const_extra (FILE *file, rtx x)
{
  if (GET_CODE (x) == UNSPEC)
    {
      switch (XINT (x, 1))
	{
	case UNSPEC_PIC:
	  /* GLOBAL_OFFSET_TABLE or local symbols, no suffix.  */
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  break;
	case UNSPEC_GOT:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOT", file);
	  break;
	case UNSPEC_GOTOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOTOFF", file);
	  break;
	case UNSPEC_PLT:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@PLT", file);
	  break;
	case UNSPEC_GOTPLT:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOTPLT", file);
	  break;
	case UNSPEC_PCREL:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@PCREL", file);
	  break;
	case UNSPEC_DTPOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@DTPOFF", file);
	  break;
	case UNSPEC_GOTTPOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOTTPOFF", file);
	  break;
	case UNSPEC_TPOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@TPOFF", file);
	  break;
	case UNSPEC_CALLER:
	  {
	    char name[32];
	    /* LPCS stands for Label for PIC Call Site.  */
	    targetm.asm_out.generate_internal_label (name, "LPCS",
						     INTVAL (XVECEXP (x, 0, 0)));
	    assemble_name (file, name);
	  }
	  break;
	case UNSPEC_SYMOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputc ('-', file);
	  if (GET_CODE (XVECEXP (x, 0, 1)) == CONST)
	    {
	      fputc ('(', file);
	      output_addr_const (file, XVECEXP (x, 0, 1));
	      fputc (')', file);
	    }
	  else
	    output_addr_const (file, XVECEXP (x, 0, 1));
	  break;
	case UNSPEC_PCREL_SYMOFF:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("-(", file);
	  output_addr_const (file, XVECEXP (x, 0, 1));
	  fputs ("-.)", file);
	  break;
	case UNSPEC_GOTFUNCDESC:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOTFUNCDESC", file);
	  break;
	case UNSPEC_GOTOFFFUNCDESC:
	  output_addr_const (file, XVECEXP (x, 0, 0));
	  fputs ("@GOTOFFFUNCDESC", file);
	  break;
	default:
	  return false;
	}
      return true;
    }
  else
    return false;
}

/* Encode symbol attributes of a SYMBOL_REF into its
   SYMBOL_REF_FLAGS.  */
static void
sh_encode_section_info (tree decl, rtx rtl, int first)
{
  default_encode_section_info (decl, rtl, first);

  if (TREE_CODE (decl) == FUNCTION_DECL
      && sh2a_function_vector_p (decl) && TARGET_SH2A)
    SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FUNCVEC_FUNCTION;
}

/* Prepare operands for a move define_expand; specifically, one of the
   operands must be in a register.  */
void
prepare_move_operands (rtx operands[], machine_mode mode)
{
  if ((mode == SImode || mode == DImode)
      && flag_pic
      && ! ((mode == Pmode || mode == ptr_mode)
	    && tls_symbolic_operand (operands[1], Pmode) != TLS_MODEL_NONE))
    {
      rtx temp;
      if (SYMBOLIC_CONST_P (operands[1]))
	{
	  if (MEM_P (operands[0]))
	    operands[1] = force_reg (Pmode, operands[1]);
	  else
	    {
	      temp = (!can_create_pseudo_p ()
		      ? operands[0]
		      : gen_reg_rtx (Pmode));
	      operands[1] = legitimize_pic_address (operands[1], mode, temp);
	    }
	}
      else if (GET_CODE (operands[1]) == CONST
	       && GET_CODE (XEXP (operands[1], 0)) == PLUS
	       && SYMBOLIC_CONST_P (XEXP (XEXP (operands[1], 0), 0)))
	{
	  temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
	  temp = legitimize_pic_address (XEXP (XEXP (operands[1], 0), 0),
					 mode, temp);
	  operands[1] = expand_binop (mode, add_optab, temp,
				      XEXP (XEXP (operands[1], 0), 1),
				      (!can_create_pseudo_p ()
				       ? temp
				       : gen_reg_rtx (Pmode)),
				      0, OPTAB_LIB_WIDEN);
	}
    }

  if (! reload_in_progress && ! reload_completed)
    {
      /* Copy the source to a register if both operands aren't registers.  */
      if (! register_operand (operands[0], mode)
	  && ! register_operand (operands[1], mode))
	operands[1] = copy_to_mode_reg (mode, operands[1]);

      if (MEM_P (operands[0]) && ! memory_operand (operands[0], mode))
	{
	  /* This is like change_address_1 (operands[0], mode, 0, 1) ,
	     except that we can't use that function because it is static.  */
	  rtx new_rtx = change_address (operands[0], mode, 0);
	  MEM_COPY_ATTRIBUTES (new_rtx, operands[0]);
	  operands[0] = new_rtx;
	}

      /* This case can happen while generating code to move the result
	 of a library call to the target.  Reject `st r0,@(rX,rY)' because
	 reload will fail to find a spill register for rX, since r0 is already
	 being used for the source.  */
      else if (refers_to_regno_p (R0_REG, operands[1])
	       && MEM_P (operands[0])
	       && GET_CODE (XEXP (operands[0], 0)) == PLUS
	       && REG_P (XEXP (XEXP (operands[0], 0), 1)))
	operands[1] = copy_to_mode_reg (mode, operands[1]);

      /* When the displacement addressing is used, RA will assign r0 to
	 the pseudo register operand for the QI/HImode load/store.
	 This tends to make a long live range for R0 and might cause
	 anomalous register spills in some case with LRA.  See PR
	 target/55212.
	 We split possible load/store to two move insns via r0 so as to
	 shorten R0 live range.  It will make some codes worse but will
	 win on average for LRA.
	 Also when base+index addressing is used and the index term is
	 a subreg, LRA assumes that more hard registers can be available
	 in some situation.  It isn't the case for SH in the problematic
	 case.  We can pre-allocate R0 for that index term to avoid
	 the issue.  See PR target/66591.  */
      else if (sh_lra_p ()
	       && ! TARGET_SH2A
	       && ((REG_P (operands[0]) && MEM_P (operands[1]))
		   || (REG_P (operands[1]) && MEM_P (operands[0]))))
	{
	  bool load_p = REG_P (operands[0]);
	  rtx reg = operands[load_p ? 0 : 1];
	  rtx adr = XEXP (operands[load_p ? 1 : 0], 0);

	  if ((mode == QImode || mode == HImode)
	      && REGNO (reg) >= FIRST_PSEUDO_REGISTER
	      && GET_CODE (adr) == PLUS
	      && REG_P (XEXP (adr, 0))
	      && (REGNO (XEXP (adr, 0)) >= FIRST_PSEUDO_REGISTER)
	      && CONST_INT_P (XEXP (adr, 1))
	      && INTVAL (XEXP (adr, 1)) != 0
	      && sh_legitimate_index_p (mode, XEXP (adr, 1), false, true))
	    {
	      rtx r0_rtx = gen_rtx_REG (mode, R0_REG);
	      emit_move_insn (r0_rtx, operands[1]);
	      operands[1] = r0_rtx;
	    }
	  if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
	      && GET_CODE (adr) == PLUS
	      && REG_P (XEXP (adr, 0))
	      && (REGNO (XEXP (adr, 0)) >= FIRST_PSEUDO_REGISTER)
	      && SUBREG_P (XEXP (adr, 1))
	      && REG_P (SUBREG_REG (XEXP (adr, 1))))
	    {
	      rtx r0_rtx = gen_rtx_REG (GET_MODE (XEXP (adr, 1)), R0_REG);
	      emit_move_insn (r0_rtx, XEXP (adr, 1));
	      XEXP (adr, 1) = r0_rtx;
	    }
	}
    }

  if (mode == Pmode || mode == ptr_mode)
    {
      rtx op0 = operands[0];
      rtx op1 = operands[1];
      rtx opc;
      if (GET_CODE (op1) == CONST
	  && GET_CODE (XEXP (op1, 0)) == PLUS
	  && (tls_symbolic_operand (XEXP (XEXP (op1, 0), 0), Pmode)
	      != TLS_MODEL_NONE))
	{
	  opc = XEXP (XEXP (op1, 0), 1);
	  op1 = XEXP (XEXP (op1, 0), 0);
	}
      else
	opc = NULL_RTX;

      enum tls_model tls_kind;

      if (! reload_in_progress && ! reload_completed
	  && (tls_kind = tls_symbolic_operand (op1, Pmode)) != TLS_MODEL_NONE)
	{
	  rtx tga_op1, tga_ret, tmp, tmp2;

	  if (! flag_pic
	      && (tls_kind == TLS_MODEL_GLOBAL_DYNAMIC
		  || tls_kind == TLS_MODEL_LOCAL_DYNAMIC
		  || tls_kind == TLS_MODEL_INITIAL_EXEC))
	    {
	      static int got_labelno;
	      /* Don't schedule insns for getting GOT address when
		 the first scheduling is enabled, to avoid spill
		 failures for R0.  */
	      if (flag_schedule_insns)
		emit_insn (gen_blockage ());
	      emit_insn (gen_GOTaddr2picreg (GEN_INT (++got_labelno)));
	      emit_use (gen_rtx_REG (SImode, PIC_REG));
	      if (flag_schedule_insns)
		emit_insn (gen_blockage ());
	    }

	  switch (tls_kind)
	    {
	    case TLS_MODEL_GLOBAL_DYNAMIC:
	      tga_ret = gen_rtx_REG (Pmode, R0_REG);
	      if (TARGET_FDPIC)
		emit_move_insn (gen_rtx_REG (Pmode, PIC_REG),
				sh_get_fdpic_reg_initial_val ());
	      emit_call_insn (gen_tls_global_dynamic (tga_ret, op1));
	      tmp = gen_reg_rtx (Pmode);
	      emit_move_insn (tmp, tga_ret);
	      op1 = tmp;
	      break;

	    case TLS_MODEL_LOCAL_DYNAMIC:
	      tga_ret = gen_rtx_REG (Pmode, R0_REG);
	      if (TARGET_FDPIC)
		emit_move_insn (gen_rtx_REG (Pmode, PIC_REG),
				sh_get_fdpic_reg_initial_val ());
	      emit_call_insn (gen_tls_local_dynamic (tga_ret, op1));

	      tmp = gen_reg_rtx (Pmode);
	      emit_move_insn (tmp, tga_ret);

	      if (register_operand (op0, Pmode))
		tmp2 = op0;
	      else
		tmp2 = gen_reg_rtx (Pmode);

	      emit_insn (gen_symDTPOFF2reg (tmp2, op1, tmp));
	      op1 = tmp2;
	      break;

	    case TLS_MODEL_INITIAL_EXEC:
	      tga_op1 = !can_create_pseudo_p () ? op0 : gen_reg_rtx (Pmode);
	      tmp = gen_sym2GOTTPOFF (op1);
	      if (TARGET_FDPIC)
		emit_move_insn (gen_rtx_REG (Pmode, PIC_REG),
				sh_get_fdpic_reg_initial_val ());
	      emit_insn (gen_tls_initial_exec (tga_op1, tmp));
	      op1 = tga_op1;
	      break;

	    case TLS_MODEL_LOCAL_EXEC:
	      tmp2 = gen_reg_rtx (Pmode);
	      emit_insn (gen_store_gbr (tmp2));
	      tmp = gen_reg_rtx (Pmode);
	      emit_insn (gen_symTPOFF2reg (tmp, op1));

	      if (register_operand (op0, Pmode))
		op1 = op0;
	      else
		op1 = gen_reg_rtx (Pmode);

	      emit_insn (gen_addsi3 (op1, tmp, tmp2));
	      break;

	    default:
	      gcc_unreachable ();
	    }
	  if (opc)
	    emit_insn (gen_addsi3 (op1, op1, force_reg (SImode, opc)));
	  operands[1] = op1;
	}
    }

  if (SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
    {
      rtx base, offset;
      split_const (operands[1], &base, &offset);

      if (GET_CODE (base) == SYMBOL_REF
	  && !offset_within_block_p (base, INTVAL (offset)))
	{
	  rtx tmp = can_create_pseudo_p () ? gen_reg_rtx (mode) : operands[0];
	  emit_move_insn (tmp, base);
	  if (!arith_operand (offset, mode))
	    offset = force_reg (mode, offset);
	  emit_insn (gen_add3_insn (operands[0], tmp, offset));
	}
    }
}

/* Implement the canonicalize_comparison target hook for the combine
   pass.  For the target hook this function is invoked via
   sh_canonicalize_comparison.  This function is also re-used to
   canonicalize comparisons in cbranch pattern expanders.  */
static void
sh_canonicalize_comparison (enum rtx_code& cmp, rtx& op0, rtx& op1,
			    machine_mode mode,
			    bool op0_preserve_value)
{
  /* When invoked from within the combine pass the mode is not specified,
     so try to get it from one of the operands.  */
  if (mode == VOIDmode)
    mode = GET_MODE (op0);
  if (mode == VOIDmode)
    mode = GET_MODE (op1);

  // We need to have a mode to do something useful here.
  if (mode == VOIDmode)
    return;

  // Currently, we don't deal with floats here.
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    return;

  // Make sure that the constant operand is the second operand.
  if (CONST_INT_P (op0) && !CONST_INT_P (op1))
    {
      if (op0_preserve_value)
	return;

      std::swap (op0, op1);
      cmp = swap_condition (cmp);
    }

  if (CONST_INT_P (op1))
    {
      /* Try to adjust the constant operand in such a way that available
	 comparison insns can be utilized better and the constant can be
	 loaded with a 'mov #imm,Rm' insn.  This avoids a load from the
	 constant pool.  */
      const HOST_WIDE_INT val = INTVAL (op1);

      /* x > -1		  --> x >= 0
	 x > 0xFFFFFF7F	  --> x >= 0xFFFFFF80
	 x <= -1	  --> x < 0
	 x <= 0xFFFFFF7F  --> x < 0xFFFFFF80  */
      if ((val == -1 || val == -0x81) && (cmp == GT || cmp == LE))
	{
	  cmp = cmp == GT ? GE : LT;
	  op1 = gen_int_mode (val + 1, mode);
        }

      /* x >= 1     --> x > 0
	 x >= 0x80  --> x > 0x7F
	 x < 1      --> x <= 0
	 x < 0x80   --> x <= 0x7F  */
      else if ((val == 1 || val == 0x80) && (cmp == GE || cmp == LT))
	{
	  cmp = cmp == GE ? GT : LE;
	  op1 = gen_int_mode (val - 1, mode);
	}

      /* unsigned x >= 1  --> x != 0
	 unsigned x < 1   --> x == 0  */
      else if (val == 1 && (cmp == GEU || cmp == LTU))
	{
	  cmp = cmp == GEU ? NE : EQ;
	  op1 = CONST0_RTX (mode);
	}

      /* unsigned x >= 0x80  --> unsigned x > 0x7F
	 unsigned x < 0x80   --> unsigned x < 0x7F  */
      else if (val == 0x80 && (cmp == GEU || cmp == LTU))
	{
	  cmp = cmp == GEU ? GTU : LEU;
	  op1 = gen_int_mode (val - 1, mode);
	}

      /* unsigned x > 0   --> x != 0
	 unsigned x <= 0  --> x == 0  */
      else if (val == 0 && (cmp == GTU || cmp == LEU))
	cmp = cmp == GTU ? NE : EQ;

      /* unsigned x > 0x7FFFFFFF   --> signed x < 0
	 unsigned x <= 0x7FFFFFFF  --> signed x >= 0  */
      else if (mode == SImode && (cmp == GTU || cmp == LEU)
	       && val == 0x7FFFFFFF)
	{
	  cmp = cmp == GTU ? LT : GE;
	  op1 = const0_rtx;
	}

      /* unsigned x >= 0x80000000  --> signed x < 0
	 unsigned x < 0x80000000   --> signed x >= 0  */
      else if (mode == SImode && (cmp == GEU || cmp == LTU)
	       && (unsigned HOST_WIDE_INT)val
		   == ((unsigned HOST_WIDE_INT)0x7FFFFFFF + 1))
	{
	  cmp = cmp == GEU ? LT : GE;
	  op1 = const0_rtx;
	}
    }
}

/* This function implements the canonicalize_comparison target hook.
   This wrapper around the internally used sh_canonicalize_comparison
   function is needed to do the enum rtx_code <-> int conversion.
   Target hooks cannot use enum rtx_code in its definition.  */
static void
sh_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
			    bool op0_preserve_value)
{
  enum rtx_code tmp_code = (enum rtx_code)*code;
  sh_canonicalize_comparison (tmp_code, *op0, *op1,
			      VOIDmode, op0_preserve_value);
  *code = (int)tmp_code;
}

/* This function implements the legitimate_combined_insn target hook,
   which the combine pass uses to early reject combined insns, before
   it tries to recog the insn and determine its cost.  */
static bool
sh_legitimate_combined_insn (rtx_insn* insn)
{
  /* Reject combinations of memory loads and zero extensions, as these
     interfere with other combine patterns such as zero extracts and bit
     tests.  The SH2A movu.{b|w} insns are formed later in the
     'sh_optimize_extu_exts' pass after combine/split1.  */
  rtx p = PATTERN (insn);
  if (GET_CODE (p) == SET
      && REG_P (XEXP (p, 0)) && GET_MODE (XEXP (p, 0)) == SImode
      && GET_CODE (XEXP (p, 1)) == ZERO_EXTEND
      && MEM_P (XEXP (XEXP (p, 1), 0)))
      return false;

  return true;
}

bool
sh_fixed_condition_code_regs (unsigned int* p1, unsigned int* p2)
{
  *p1 = T_REG;
  *p2 = INVALID_REGNUM;
  return true;
}

/* Try to calculate the branch distance of a conditional branch in bytes.

   FIXME: Because of PR 59189 we can't use the CFG here.  Instead just
   walk from this insn into the next (fall-through) basic block and see if
   we hit the label.  */
unsigned int
sh_cbranch_distance (rtx_insn* _cbranch_insn, unsigned int max_dist)
{
  rtx_jump_insn* cbranch_insn = safe_as_a<rtx_jump_insn*> (_cbranch_insn);

  if (dump_file)
    {
      fprintf (dump_file, "sh_cbranch_distance insn = \n");
      print_rtl_single (dump_file, cbranch_insn);
    }

  unsigned int dist = 0;

  for (rtx_insn* i = next_nonnote_insn (cbranch_insn);
       i != NULL && dist < max_dist; i = next_nonnote_insn (i))
    {
      const unsigned int i_len = get_attr_length (i);
      dist += i_len;

      if (dump_file)
	fprintf (dump_file, "  insn %d  length = %u  dist = %u\n",
		 INSN_UID (i), i_len, dist);

      if (rtx_code_label* l = dyn_cast<rtx_code_label*> (i))
	{
	  if (l == cbranch_insn->jump_target ())
	    {
	      if (dump_file)
		fprintf (dump_file, "  cbranch dist = %u\n", dist);
	      return dist;
	    }
	  break;
	}
    }

  if (dump_file)
    fprintf (dump_file, "  cbranch dist = unknown\n");

  return unknown_cbranch_distance;
}

enum rtx_code
prepare_cbranch_operands (rtx *operands, machine_mode mode,
			  enum rtx_code comparison)
{
  gcc_assert (can_create_pseudo_p ());

  if (comparison == LAST_AND_UNUSED_RTX_CODE)
    comparison = GET_CODE (operands[0]);

  sh_canonicalize_comparison (comparison, operands[1], operands[2],
			      mode, false);

  rtx op1 = operands[1];
  operands[1] = force_reg (mode, op1);

  /* When we are handling DImode comparisons, we want to keep constants so
     that we can optimize the component comparisons; however, memory loads
     are better issued as a whole so that they can be scheduled well.
     SImode equality comparisons allow I08 constants, but only when they
     compare r0.  Hence, if operands[1] has to be loaded from somewhere else
     into a register, that register might as well be r0, and we allow the
     constant.  If it is already in a register, this is likely to be
     allocated to a different hard register, thus we load the constant into
     a register unless it is zero.  */
  if (!REG_P (operands[2])
      && (!CONST_INT_P (operands[2])
	  || (mode == SImode && operands[2] != CONST0_RTX (SImode)
	      && ((comparison != EQ && comparison != NE)
		  || (REG_P (op1) && REGNO (op1) != R0_REG)
		  || !satisfies_constraint_I08 (operands[2])))))
    operands[2] = force_reg (mode, operands[2]);

  return comparison;
}

static void
expand_cbranchsi4 (rtx *operands, enum rtx_code comparison,
		   profile_probability probability)
{
  rtx (*branch_expander) (rtx) = gen_branch_true;
  comparison = prepare_cbranch_operands (operands, SImode, comparison);
  switch (comparison)
    {
    case NE: case LT: case LE: case LTU: case LEU:
      comparison = reverse_condition (comparison);
      branch_expander = gen_branch_false;
    default: ;
    }
  emit_insn (gen_rtx_SET (get_t_reg_rtx (),
			  gen_rtx_fmt_ee (comparison, SImode,
					  operands[1], operands[2])));
  rtx_insn *jump = emit_jump_insn (branch_expander (operands[3]));
  if (probability.initialized_p ())
    add_reg_br_prob_note (jump, probability);
}

void
expand_cbranchsi4 (rtx *operands, enum rtx_code comparison)
{
  expand_cbranchsi4 (operands, comparison,
		     profile_probability::uninitialized ());
}

/* ??? How should we distribute probabilities when more than one branch
   is generated.  So far we only have some ad-hoc observations:
   - If the operands are random, they are likely to differ in both parts.
   - If comparing items in a hash chain, the operands are random or equal;
     operation should be EQ or NE.
   - If items are searched in an ordered tree from the root, we can expect
     the highpart to be unequal about half of the time; operation should be
     an inequality comparison, operands non-constant, and overall probability
     about 50%.  Likewise for quicksort.
   - Range checks will be often made against constants.  Even if we assume for
     simplicity an even distribution of the non-constant operand over a
     sub-range here, the same probability could be generated with differently
     wide sub-ranges - as long as the ratio of the part of the subrange that
     is before the threshold to the part that comes after the threshold stays
     the same.  Thus, we can't really tell anything here;
     assuming random distribution is at least simple.
 */
bool
expand_cbranchdi4 (rtx *operands, enum rtx_code comparison)
{
  enum rtx_code msw_taken, msw_skip, lsw_taken;
  rtx_code_label *skip_label = NULL;
  rtx op1h, op1l, op2h, op2l;
  int num_branches;
  profile_probability prob, rev_prob;
  profile_probability msw_taken_prob = profile_probability::uninitialized (),
		      msw_skip_prob = profile_probability::uninitialized (),
		      lsw_taken_prob = profile_probability::uninitialized ();

  comparison = prepare_cbranch_operands (operands, DImode, comparison);
  op1h = gen_highpart_mode (SImode, DImode, operands[1]);
  op2h = gen_highpart_mode (SImode, DImode, operands[2]);
  op1l = gen_lowpart (SImode, operands[1]);
  op2l = gen_lowpart (SImode, operands[2]);
  msw_taken = msw_skip = lsw_taken = LAST_AND_UNUSED_RTX_CODE;
  prob = split_branch_probability;
  rev_prob = prob.invert ();
  switch (comparison)
    {
    case EQ:
      msw_skip = NE;
      lsw_taken = EQ;
      if (prob.initialized_p ())
	{
	  /* FIXME: This is not optimal.  We do not really know the probablity
	     that values differ by MCW only, but we should probably distribute
	     probabilities more evenly.  */
	  msw_skip_prob = rev_prob;
	  lsw_taken_prob = prob > profile_probability::never ()
			   ? profile_probability::guessed_always ()
			   : profile_probability::guessed_never ();
	}
      break;
    case NE:
      msw_taken = NE;
      msw_taken_prob = prob;
      lsw_taken = NE;
      lsw_taken_prob = profile_probability::guessed_never ();
      break;
    case GTU: case GT:
      msw_taken = comparison;
      if (CONST_INT_P (op2l) && INTVAL (op2l) == -1)
	break;
      if (comparison != GTU || op2h != CONST0_RTX (SImode))
	msw_skip = swap_condition (msw_taken);
      lsw_taken = GTU;
      break;
    case GEU: case GE:
      if (op2l == CONST0_RTX (SImode))
	msw_taken = comparison;
      else
	{
	  msw_taken = comparison == GE ? GT : GTU;
	  msw_skip = swap_condition (msw_taken);
	  lsw_taken = GEU;
	}
      break;
    case LTU: case LT:
      msw_taken = comparison;
      if (op2l == CONST0_RTX (SImode))
	break;
      msw_skip = swap_condition (msw_taken);
      lsw_taken = LTU;
      break;
    case LEU: case LE:
      if (CONST_INT_P (op2l) && INTVAL (op2l) == -1)
	msw_taken = comparison;
      else
	{
	  lsw_taken = LEU;
	  if (comparison == LE)
	    msw_taken = LT;
	  else if (op2h != CONST0_RTX (SImode))
	    msw_taken = LTU;
	  else
	    {
	      msw_skip = swap_condition (LTU);
	      break;
	    }
	  msw_skip = swap_condition (msw_taken);
	}
      break;
    default: return false;
    }
  num_branches = ((msw_taken != LAST_AND_UNUSED_RTX_CODE)
		  + (msw_skip != LAST_AND_UNUSED_RTX_CODE)
		  + (lsw_taken != LAST_AND_UNUSED_RTX_CODE));
  if (comparison != EQ && comparison != NE && num_branches > 1)
    {
      if (!CONSTANT_P (operands[2])
	  && prob.initialized_p ()
	  && prob.to_reg_br_prob_base () >= (int) (REG_BR_PROB_BASE * 3 / 8U)
	  && prob.to_reg_br_prob_base () <= (int) (REG_BR_PROB_BASE * 5 / 8U))
	{
	  msw_taken_prob = prob.apply_scale (1, 2);
	  msw_skip_prob = rev_prob.apply_scale (REG_BR_PROB_BASE,
						rev_prob.to_reg_br_prob_base ()
						+ REG_BR_PROB_BASE);
	  lsw_taken_prob = prob;
	}
      else
	{
	  msw_taken_prob = prob;
	  msw_skip_prob = profile_probability::guessed_always ();
	  /* ??? If we have a constant op2h, should we use that when
	     calculating lsw_taken_prob?  */
	  lsw_taken_prob = prob;
	}
    }
  operands[1] = op1h;
  operands[2] = op2h;

  if (msw_taken != LAST_AND_UNUSED_RTX_CODE)
    expand_cbranchsi4 (operands, msw_taken, msw_taken_prob);
  if (msw_skip != LAST_AND_UNUSED_RTX_CODE)
    {
      rtx taken_label = operands[3];

      /* Operands were possibly modified, but msw_skip doesn't expect this.
	 Always use the original ones.  */
      if (msw_taken != LAST_AND_UNUSED_RTX_CODE)
	{
	  operands[1] = op1h;
	  operands[2] = op2h;
	}

      operands[3] = skip_label = gen_label_rtx ();
      expand_cbranchsi4 (operands, msw_skip, msw_skip_prob);
      operands[3] = taken_label;
    }
  operands[1] = op1l;
  operands[2] = op2l;
  if (lsw_taken != LAST_AND_UNUSED_RTX_CODE)
    expand_cbranchsi4 (operands, lsw_taken, lsw_taken_prob);
  if (msw_skip != LAST_AND_UNUSED_RTX_CODE)
    emit_label (skip_label);
  return true;
}

/* Given an operand, return 1 if the evaluated operand plugged into an
   if_then_else will result in a branch_true, 0 if branch_false, or
   -1 if neither nor applies.  The truth table goes like this:

       op   | cmpval |   code  | result
   ---------+--------+---------+--------------------
      T (0) |   0    |  EQ (1) |  0 = 0 ^ (0 == 1)
      T (0) |   1    |  EQ (1) |  1 = 0 ^ (1 == 1)
      T (0) |   0    |  NE (0) |  1 = 0 ^ (0 == 0)
      T (0) |   1    |  NE (0) |  0 = 0 ^ (1 == 0)
     !T (1) |   0    |  EQ (1) |  1 = 1 ^ (0 == 1)
     !T (1) |   1    |  EQ (1) |  0 = 1 ^ (1 == 1)
     !T (1) |   0    |  NE (0) |  0 = 1 ^ (0 == 0)
     !T (1) |   1    |  NE (0) |  1 = 1 ^ (1 == 0)  */
int
sh_eval_treg_value (rtx op)
{
  if (t_reg_operand (op, GET_MODE (op)))
    return 1;
  if (negt_reg_operand (op, GET_MODE (op)))
    return 0;

  rtx_code code = GET_CODE (op);
  if ((code != EQ && code != NE) || !CONST_INT_P (XEXP (op, 1)))
    return -1;

  int cmpop = code == EQ ? 1 : 0;
  int cmpval = INTVAL (XEXP (op, 1));
  if (cmpval != 0 && cmpval != 1)
    return -1;

  int t;
  if (t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0))))
    t = 0;
  else if (negt_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0))))
    t = 1;
  else
    return -1;
  
  return t ^ (cmpval == cmpop);
}

/* Emit INSN, possibly in a PARALLEL with an USE/CLOBBER of FPSCR bits in case
   of floating-point comparisons.  */
static void
sh_emit_set_t_insn (rtx insn, machine_mode mode)
{
  if (TARGET_FPU_ANY && GET_MODE_CLASS (mode) == MODE_FLOAT
      && GET_CODE (insn) != PARALLEL)
    {
      insn = gen_rtx_PARALLEL (VOIDmode,
	  gen_rtvec (3, insn,
	      gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, FPSCR_STAT_REG)),
	      gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, FPSCR_MODES_REG))));
    }
  emit_insn (insn);
}

/* Prepare the operands for an scc instruction; make sure that the
   compare has been done and the result is in T_REG.  */
void
sh_emit_scc_to_t (enum rtx_code code, rtx op0, rtx op1)
{
  rtx t_reg = get_t_reg_rtx ();
  enum rtx_code oldcode = code;

  /* First need a compare insn.  */
  switch (code)
    {
    case NE:
      /* It isn't possible to handle this case.  */
      gcc_unreachable ();
    case LT:
      code = GT;
      break;
    case LE:
      code = GE;
      break;
    case LTU:
      code = GTU;
      break;
    case LEU:
      code = GEU;
      break;
    default:
      break;
    }
  if (code != oldcode)
    std::swap (op0, op1);

  machine_mode mode = GET_MODE (op0);
  if (mode == VOIDmode)
    mode = GET_MODE (op1);

  op0 = force_reg (mode, op0);
  if ((code != EQ && code != NE
       && (op1 != const0_rtx
	   || code == GTU  || code == GEU || code == LTU || code == LEU))
      || (mode == DImode && op1 != const0_rtx)
      || (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
    op1 = force_reg (mode, op1);

  sh_emit_set_t_insn (gen_rtx_SET (t_reg,
			           gen_rtx_fmt_ee (code, SImode, op0, op1)),
		      mode);
}

/* Called from the md file, set up the operands of a compare instruction.  */
void
sh_emit_compare_and_branch (rtx *operands, machine_mode mode)
{
  enum rtx_code code = GET_CODE (operands[0]);
  enum rtx_code branch_code;
  rtx op0 = operands[1];
  rtx op1 = operands[2];
  rtx insn;
  bool need_ccmpeq = false;

  if (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      op0 = force_reg (mode, op0);
      op1 = force_reg (mode, op1);
    }
  else
    {
      if (code != EQ || mode == DImode)
	{
	  /* Force args into regs, since we can't use constants here.  */
	  op0 = force_reg (mode, op0);
	  if (op1 != const0_rtx || code == GTU  || code == GEU)
	    op1 = force_reg (mode, op1);
        }
    }

  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      if (code == LT
	  || (code == LE && TARGET_IEEE && TARGET_SH2E)
	  || (code == GE && !(TARGET_IEEE && TARGET_SH2E)))
	{
	  std::swap (op0, op1);
	  code = swap_condition (code);
	}

      /* GE becomes fcmp/gt+fcmp/eq, for SH2E and TARGET_IEEE only.  */
      if (code == GE)
	{
	  gcc_assert (TARGET_IEEE && TARGET_SH2E);
	  need_ccmpeq = true;
	  code = GT;
	}

      /* Now we can have EQ, NE, GT, LE.  NE and LE are then transformed
	 to EQ/GT respectively.  */
      gcc_assert (code == EQ || code == GT || code == NE || code == LE);
    }

  switch (code)
    {
    case EQ:
    case GT:
    case GE:
    case GTU:
    case GEU:
      branch_code = code;
      break;
    case NE:
    case LT:
    case LE:
    case LTU:
    case LEU:
      branch_code = reverse_condition (code);
      break;
    default:
      gcc_unreachable ();
    }

  insn = gen_rtx_SET (get_t_reg_rtx (),
		      gen_rtx_fmt_ee (branch_code, SImode, op0, op1));

  sh_emit_set_t_insn (insn, mode);
  if (need_ccmpeq)
    sh_emit_set_t_insn (gen_ieee_ccmpeqsf_t (op0, op1), mode);

  if (branch_code == code)
    emit_jump_insn (gen_branch_true (operands[3]));
  else
    emit_jump_insn (gen_branch_false (operands[3]));
}

void
sh_emit_compare_and_set (rtx *operands, machine_mode mode)
{
  enum rtx_code code = GET_CODE (operands[1]);
  rtx op0 = operands[2];
  rtx op1 = operands[3];
  rtx_code_label *lab = NULL;
  bool invert = false;

  op0 = force_reg (mode, op0);
  if ((code != EQ && code != NE
       && (op1 != const0_rtx
	   || code == GTU  || code == GEU || code == LTU || code == LEU))
      || (mode == DImode && op1 != const0_rtx)
      || (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
    op1 = force_reg (mode, op1);

  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      if (code == LT || code == LE)
	{
	  std::swap (op0, op1);
	  code = swap_condition (code);
	}
      if (code == GE)
	{
	  if (TARGET_IEEE)
	    {
	      lab = gen_label_rtx ();
	      sh_emit_scc_to_t (EQ, op0, op1);
	      emit_jump_insn (gen_branch_true (lab));
	      code = GT;
	   }
	  else
	    {
	      code = LT;
	      invert = true;
	    }
	}
    }

  if (code == NE)
    {
      code = EQ;
      invert = true;
    }

  sh_emit_scc_to_t (code, op0, op1);
  if (lab)
    emit_label (lab);
  if (invert)
    emit_insn (gen_movnegt (operands[0], get_t_reg_rtx ()));
  else
    emit_move_insn (operands[0], get_t_reg_rtx ());
}

/* Functions to output assembly code.  */

/* Return a sequence of instructions to perform DI or DF move.

   Since the SH cannot move a DI or DF in one instruction, we have
   to take care when we see overlapping source and dest registers.  */
const char *
output_movedouble (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
		   machine_mode mode)
{
  rtx dst = operands[0];
  rtx src = operands[1];

  if (MEM_P (dst)
      && GET_CODE (XEXP (dst, 0)) == PRE_DEC)
    return     "mov.l	%T1,%0"	"\n"
	   "	mov.l	%1,%0";

  if (register_operand (dst, mode)
      && register_operand (src, mode))
    {
      if (REGNO (src) == MACH_REG)
	return         "sts	mach,%S0" "\n"
	       "	sts	macl,%R0";

      /* When mov.d r1,r2 do r2->r3 then r1->r2;
         when mov.d r1,r0 do r1->r0 then r2->r1.  */
      if (REGNO (src) + 1 == REGNO (dst))
	return         "mov	%T1,%T0" "\n"
	       "	mov	%1,%0";
      else
	return         "mov	%1,%0" "\n"
	       "	mov	%T1,%T0";
    }
  else if (CONST_INT_P (src))
    {
      if (INTVAL (src) < 0)
	output_asm_insn ("mov	#-1,%S0", operands);
      else
	output_asm_insn ("mov	#0,%S0", operands);

      return "mov	%1,%R0";
    }
  else if (MEM_P (src))
    {
      int ptrreg = -1;
      int dreg = REGNO (dst);
      rtx inside = XEXP (src, 0);

      switch (GET_CODE (inside))
	{
	case REG:
	  ptrreg = REGNO (inside);
	  break;

	case SUBREG:
	  ptrreg = subreg_regno (inside);
	  break;

	case PLUS:
	  ptrreg = REGNO (XEXP (inside, 0));
	  /* ??? A r0+REG address shouldn't be possible here, because it isn't
	     an offsettable address.  Unfortunately, offsettable addresses use
	     QImode to check the offset, and a QImode offsettable address
	     requires r0 for the other operand, which is not currently
	     supported, so we can't use the 'o' constraint.
	     Thus we must check for and handle r0+REG addresses here.
	     We punt for now, since this is likely very rare.  */
	  gcc_assert (!REG_P (XEXP (inside, 1)));
	  break;
	  
	case LABEL_REF:
	  return       "mov.l	%1,%0" "\n"
		 "	mov.l	%1+4,%T0";
	case POST_INC:
	  return       "mov.l	%1,%0" "\n"
		 "	mov.l	%1,%T0";
	default:
	  gcc_unreachable ();
	}

      /* Work out the safe way to copy.  Copy into the second half first.  */
      if (dreg == ptrreg)
	return         "mov.l	%T1,%T0" "\n"
	       "	mov.l	%1,%0";
    }

  return       "mov.l	%1,%0" "\n"
	 "	mov.l	%T1,%T0";
}

/* Print an instruction which would have gone into a delay slot after
   another instruction, but couldn't because the other instruction expanded
   into a sequence where putting the slot insn at the end wouldn't work.  */
static void
print_slot (rtx_sequence *seq)
{
  final_scan_insn (seq->insn (1), asm_out_file, optimize, 1, NULL);

  seq->insn (1)->set_deleted ();
}

const char *
output_far_jump (rtx_insn *insn, rtx op)
{
  struct { rtx lab, reg, op; } this_jmp;
  rtx_code_label *braf_base_lab = NULL;
  const char *jump;
  int far;
  int offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
  rtx_insn *prev;

  this_jmp.lab = gen_label_rtx ();

  if (TARGET_SH2
      && offset >= -32764
      && offset - get_attr_length (insn) <= 32766
      && ! CROSSING_JUMP_P (insn))
    {
      far = 0;
      jump =   "mov.w	%O0,%1" "\n"
	     "	braf	%1";
    }
  else
    {
      far = 1;
      if (flag_pic)
	{
	  if (TARGET_SH2)
	    jump =     "mov.l	%O0,%1" "\n"
		   "	braf	%1";
	  else
	    jump =     "mov.l	r0,@-r15"	"\n"
		   "	mova	%O0,r0"		"\n"
		   "	mov.l	@r0,%1"		"\n"
		   "	add	r0,%1"		"\n"
		   "	mov.l	@r15+,r0"	"\n"
		   "	jmp	@%1";
	}
      else
	jump =         "mov.l	%O0,%1" "\n"
	       "	jmp	@%1";
    }
  /* If we have a scratch register available, use it.  */
  if (NONJUMP_INSN_P ((prev = prev_nonnote_insn (insn)))
      && INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch)
    {
      this_jmp.reg = SET_DEST (XVECEXP (PATTERN (prev), 0, 0));
      if (REGNO (this_jmp.reg) == R0_REG && flag_pic && ! TARGET_SH2)
	jump =         "mov.l	r1,@-r15"	"\n"
	       "	mova	%O0,r0"		"\n"
	       "	mov.l	@r0,r1"		"\n"
	       "	add	r1,r0"		"\n"
	       "	mov.l	@r15+,r1"	"\n"
	       "	jmp	@%1";
      output_asm_insn (jump, &this_jmp.lab);
      if (dbr_sequence_length ())
	print_slot (final_sequence);
      else
	output_asm_insn ("nop", 0);
    }
  else
    {
      /* Output the delay slot insn first if any.  */
      if (dbr_sequence_length ())
	print_slot (final_sequence);

      this_jmp.reg = gen_rtx_REG (SImode, 13);
      output_asm_insn ("mov.l	r13,@-r15", 0);
      output_asm_insn (jump, &this_jmp.lab);
      output_asm_insn ("mov.l	@r15+,r13", 0);
    }
  if (far && flag_pic && TARGET_SH2)
    {
      braf_base_lab = gen_label_rtx ();
      (*targetm.asm_out.internal_label) (asm_out_file, "L",
				 CODE_LABEL_NUMBER (braf_base_lab));
    }
  if (far)
    output_asm_insn (".align	2", 0);
  (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (this_jmp.lab));
  this_jmp.op = op;
  if (far && flag_pic)
    {
      if (TARGET_SH2)
	this_jmp.lab = braf_base_lab;
      output_asm_insn (".long	%O2-%O0", &this_jmp.lab);
    }
  else
    output_asm_insn (far ? ".long	%O2" : ".word %O2-%O0", &this_jmp.lab);
  return "";
}

/* Local label counter, used for constants in the pool and inside
   pattern branches.  */
static int lf = 100;

/* Output code for ordinary branches.  */
const char *
output_branch (int logic, rtx_insn *insn, rtx *operands)
{
  switch (get_attr_length (insn))
    {
    case 6:
      /* This can happen if filling the delay slot has caused a forward
	 branch to exceed its range (we could reverse it, but only
	 when we know we won't overextend other branches; this should
	 best be handled by relaxation).
	 It can also happen when other condbranches hoist delay slot insn
	 from their destination, thus leading to code size increase.
	 But the branch will still be in the range -4092..+4098 bytes.  */
      if (! TARGET_RELAX)
	{
	  int label = lf++;
	  /* The call to print_slot will clobber the operands.  */
	  rtx op0 = operands[0];

	  /* If the instruction in the delay slot is annulled (true), then
	     there is no delay slot where we can put it now.  The only safe
	     place for it is after the label.  final will do that by default.  */

	  if (final_sequence
	      && ! INSN_ANNULLED_BRANCH_P (final_sequence->insn (0))
	      && get_attr_length (final_sequence->insn (1)))
	    {
	      asm_fprintf (asm_out_file, "\tb%s%ss\t%LLF%d\n", logic ? "f" : "t",
	                   ASSEMBLER_DIALECT ? "/" : ".", label);
	      print_slot (final_sequence);
	    }
	  else
	    asm_fprintf (asm_out_file, "\tb%s\t%LLF%d\n", logic ? "f" : "t", label);

	  output_asm_insn ("bra\t%l0", &op0);
	  fprintf (asm_out_file, "\tnop\n");
	  (*targetm.asm_out.internal_label) (asm_out_file, "LF", label);

	  return "";
	}
      /* FALLTHRU */
      /* When relaxing, handle this like a short branch.  The linker
	 will fix it up if it still doesn't fit after relaxation.  */
    case 2:
      return logic ? "bt%.\t%l0" : "bf%.\t%l0";

      /* These are for SH2e, in which we have to account for the
	 extra nop because of the hardware bug in annulled branches.  */
    case 8:
      if (! TARGET_RELAX)
	{
	  int label = lf++;

	  gcc_assert (!final_sequence
		      || !(INSN_ANNULLED_BRANCH_P
			   (XVECEXP (final_sequence, 0, 0))));
	  asm_fprintf (asm_out_file, "b%s%ss\t%LLF%d\n",
		       logic ? "f" : "t",
		       ASSEMBLER_DIALECT ? "/" : ".", label);
	  fprintf (asm_out_file, "\tnop\n");
	  output_asm_insn ("bra\t%l0", operands);
	  fprintf (asm_out_file, "\tnop\n");
	  (*targetm.asm_out.internal_label) (asm_out_file, "LF", label);

	  return "";
	}
      /* FALLTHRU */
    case 4:
      {
	char buffer[10];

	sprintf (buffer, "b%s%ss\t%%l0",
		 logic ? "t" : "f",
		 ASSEMBLER_DIALECT ? "/" : ".");
	output_asm_insn (buffer, &operands[0]);
	return "nop";
      }

    default:
      /* There should be no longer branches now - that would
	 indicate that something has destroyed the branches set
	 up in machine_dependent_reorg.  */
      gcc_unreachable ();
    }
}

/* Output a code sequence for INSN using TEMPL with OPERANDS; but before,
   fill in operands 9 as a label to the successor insn.
   We try to use jump threading where possible.
   IF CODE matches the comparison in the IF_THEN_ELSE of a following jump,
   we assume the jump is taken.  I.e. EQ means follow jmp and bf, NE means
   follow jmp and bt, if the address is in range.  */
const char *
output_branchy_insn (enum rtx_code code, const char *templ,
		     rtx_insn *insn, rtx *operands)
{
  rtx_insn *next_insn = NEXT_INSN (insn);

  if (next_insn && JUMP_P (next_insn) && condjump_p (next_insn))
    {
      rtx src = SET_SRC (PATTERN (next_insn));
      if (GET_CODE (src) == IF_THEN_ELSE && GET_CODE (XEXP (src, 0)) != code)
	{
	  /* Following branch not taken */
	  rtx_code_label *lab = gen_label_rtx ();
	  emit_label_after (lab, next_insn);
	  INSN_ADDRESSES_NEW (lab,
			      INSN_ADDRESSES (INSN_UID (next_insn))
			      + get_attr_length (next_insn));
	  operands[9] = lab;
	  return templ;
	}
      else
	{
	  int offset = (branch_dest (next_insn)
			- INSN_ADDRESSES (INSN_UID (next_insn)) + 4);
	  if (offset >= -252 && offset <= 258)
	    {
	      if (GET_CODE (src) == IF_THEN_ELSE)
		/* branch_true */
		src = XEXP (src, 1);
	      operands[9] = src;
	      return templ;
	    }
	}
    }
  rtx_code_label *lab = gen_label_rtx ();
  emit_label_after (lab, insn);
  INSN_ADDRESSES_NEW (lab,
		      INSN_ADDRESSES (INSN_UID (insn))
		      + get_attr_length (insn));
  operands[9] = lab;
  return templ;
}

const char *
output_ieee_ccmpeq (rtx_insn *insn, rtx *operands)
{
  return output_branchy_insn (NE,      "bt	%l9" "\n"
				  "	fcmp/eq	%1,%0",
			      insn, operands);
}

/* Output the start of the assembler file.  */
static void
sh_file_start (void)
{
  default_file_start ();

  if (TARGET_ELF)
    /* We need to show the text section with the proper
       attributes as in TEXT_SECTION_ASM_OP, before dwarf2out
       emits it without attributes in TEXT_SECTION_ASM_OP, else GAS
       will complain.  We can teach GAS specifically about the
       default attributes for our choice of text section, but
       then we would have to change GAS again if/when we change
       the text section name.  */
    fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
  else
    /* Switch to the data section so that the coffsem symbol
       isn't in the text section.  */
    switch_to_section (data_section);

  if (TARGET_LITTLE_ENDIAN)
    fputs ("\t.little\n", asm_out_file);
}

/* Implementation of TARGET_ASM_INTEGER for SH.  Pointers to functions
   need to be output as pointers to function descriptors for
   FDPIC.  */

static bool
sh_assemble_integer (rtx value, unsigned int size, int aligned_p)
{
  if (TARGET_FDPIC && size == UNITS_PER_WORD
      && GET_CODE (value) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (value))
    {
      fputs ("\t.long\t", asm_out_file);
      output_addr_const (asm_out_file, value);
      fputs ("@FUNCDESC\n", asm_out_file);
      return true;
    }
  return default_assemble_integer (value, size, aligned_p);
}

/* Check if PAT includes UNSPEC_CALLER unspec pattern.  */
static bool
unspec_caller_rtx_p (rtx pat)
{
  rtx base, offset;
  split_const (pat, &base, &offset);

  if (GET_CODE (base) == UNSPEC)
    {
      if (XINT (base, 1) == UNSPEC_CALLER)
	return true;
      for (int i = 0; i < XVECLEN (base, 0); i++)
	if (unspec_caller_rtx_p (XVECEXP (base, 0, i)))
	  return true;
    }
  return false;
}

/* Indicate that INSN cannot be duplicated.  This is true for insn
   that generates a unique label.  */
static bool
sh_cannot_copy_insn_p (rtx_insn *insn)
{
  if (!reload_completed || !flag_pic)
    return false;

  if (!NONJUMP_INSN_P (insn))
    return false;
  if (asm_noperands (insn) >= 0)
    return false;

  rtx pat = PATTERN (insn);

  if (GET_CODE (pat) == CLOBBER || GET_CODE (pat) == USE)
    return false;

  if (TARGET_FDPIC && GET_CODE (pat) == PARALLEL)
    {
      rtx t = XVECEXP (pat, 0, XVECLEN (pat, 0) - 1);
      if (GET_CODE (t) == USE && unspec_caller_rtx_p (XEXP (t, 0)))
	return true;
    }

  if (GET_CODE (pat) != SET)
    return false;
  pat = SET_SRC (pat);

  if (unspec_caller_rtx_p (pat))
    return true;

  return false;
}

/* Number of instructions used to make an arithmetic right shift by N.  */
static const char ashiftrt_insns[] =
  { 0,1,2,3,4,5,8,8,8,8,8,8,8,8,8,8,2,3,4,5,8,8,8,8,8,8,8,8,8,8,8,2};

/* Description of a logical left or right shift, when expanded to a sequence
   of 1/2/8/16 shifts.
   Notice that one bit right shifts clobber the T bit.  One bit left shifts
   are done with an 'add Rn,Rm' insn and thus do not clobber the T bit.  */
enum
{
  ASHL_CLOBBERS_T = 1 << 0,
  LSHR_CLOBBERS_T = 1 << 1
};

struct ashl_lshr_sequence
{
  char insn_count;
  signed char amount[6];
  char clobbers_t;
};

static const struct ashl_lshr_sequence ashl_lshr_seq[32] =
{
  { 0, { 0 },		    0 },		// 0
  { 1, { 1 },		    LSHR_CLOBBERS_T },
  { 1, { 2 },		    0 },
  { 2, { 2, 1 },	    LSHR_CLOBBERS_T },
  { 2, { 2, 2 },	    0 },		// 4
  { 3, { 2, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 2, 2, 2 },	    0 },
  { 4, { 2, 2, 1, 2 },	    LSHR_CLOBBERS_T },
  { 1, { 8 },		    0 },		// 8
  { 2, { 8, 1 },	    LSHR_CLOBBERS_T },
  { 2, { 8, 2 },	    0 },
  { 3, { 8, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 8, 2, 2 },	    0 },		// 12
  { 4, { 8, 2, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 8, -2, 8 },	    0 },
  { 3, { 8, -1, 8 },	    ASHL_CLOBBERS_T },
  { 1, { 16 },		    0 },		// 16
  { 2, { 16, 1 },	    LSHR_CLOBBERS_T },
  { 2, { 16, 2 },	    0 },
  { 3, { 16, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 16, 2, 2 },	    0 },		// 20
  { 4, { 16, 2, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 16, -2, 8 },	    0 },
  { 3, { 16, -1, 8 },	    ASHL_CLOBBERS_T },
  { 2, { 16, 8 },	    0 },		// 24
  { 3, { 16, 1, 8 },	    LSHR_CLOBBERS_T },
  { 3, { 16, 8, 2 },	    0 },
  { 4, { 16, 8, 1, 2 },     LSHR_CLOBBERS_T },
  { 4, { 16, 8, 2, 2 },	    0 },		// 28
  { 4, { 16, -1, -2, 16 },  ASHL_CLOBBERS_T },
  { 3, { 16, -2, 16 },	    0 },

  /* For a right shift by 31 a 2 insn shll-movt sequence can be used.
     For a left shift by 31 a 2 insn and-rotl sequences can be used.
     However, the shift-and combiner code needs this entry here to be in
     terms of real shift insns.  */
  { 3, { 16, -1, 16 },	    ASHL_CLOBBERS_T }
};

/* Individual shift amounts for shift amounts < 16, up to three highmost
   bits might be clobbered.  This is typically used when combined with some
   kind of sign or zero extension.  */
static const struct ashl_lshr_sequence ext_ashl_lshr_seq[32] =
{
  { 0, { 0 },		    0 },		// 0
  { 1, { 1 },		    LSHR_CLOBBERS_T },
  { 1, { 2 },		    0 },
  { 2, { 2, 1 },	    LSHR_CLOBBERS_T },
  { 2, { 2, 2 },	    0 },		// 4
  { 3, { 2, 1, 2 },	    LSHR_CLOBBERS_T },
  { 2, { 8, -2 },	    0 },
  { 2, { 8, -1 },	    ASHL_CLOBBERS_T },
  { 1, { 8 },		    0 },		// 8
  { 2, { 8, 1 },	    LSHR_CLOBBERS_T },
  { 2, { 8, 2 },	    0 },
  { 3, { 8, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 8, 2, 2 },	    0 },		// 12
  { 3, { 16, -2, -1 },	    ASHL_CLOBBERS_T },
  { 2, { 16, -2 },	    0 },
  { 2, { 16, -1 },	    ASHL_CLOBBERS_T },
  { 1, { 16 },		    0 },		// 16
  { 2, { 16, 1 },	    LSHR_CLOBBERS_T },
  { 2, { 16, 2 },	    0 },
  { 3, { 16, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 16, 2, 2 },	    0 },		// 20
  { 4, { 16, 2, 1, 2 },	    LSHR_CLOBBERS_T },
  { 3, { 16, -2, 8 },	    0 },
  { 3, { 16, -1, 8 },	    ASHL_CLOBBERS_T },
  { 2, { 16, 8 },	    0 },		// 24
  { 3, { 16, 1, 8 },	    LSHR_CLOBBERS_T },
  { 3, { 16, 8, 2 },	    0 },
  { 4, { 16, 8, 1, 2 },	    LSHR_CLOBBERS_T },
  { 4, { 16, 8, 2, 2 },	    0 },		// 28
  { 4, { 16, -1, -2, 16 },  ASHL_CLOBBERS_T },
  { 3, { 16, -2, 16 },	    0 },
  { 3, { 16, -1, 16 },	    ASHL_CLOBBERS_T }
};

/* Return true if a shift left consisting of 1/2/8/16 shift instructions
   will clobber the T bit.  */
bool
sh_ashlsi_clobbers_t_reg_p (rtx shift_amount)
{
  gcc_assert (CONST_INT_P (shift_amount));
  
  const int shift_amount_i = INTVAL (shift_amount) & 31;

  /* Special case for shift count of 31: use and-rotl sequence.  */
  if (shift_amount_i == 31)
    return true;

  return (ashl_lshr_seq[shift_amount_i].clobbers_t
	  & ASHL_CLOBBERS_T) != 0;
}

/* Return true if a logical right shift consisting of 1/2/8/16 shift
   instructions will clobber the T bit.  */
bool
sh_lshrsi_clobbers_t_reg_p (rtx shift_amount)
{
  gcc_assert (CONST_INT_P (shift_amount));

  /* For right shifts the constant might be negative.  */
  const int shift_amount_i = std::abs (INTVAL (shift_amount)) & 31;
 
  /* Special case for shift count of 31: use shll-movt sequence.  */
  if (shift_amount_i == 31)
    return true;

  return (ashl_lshr_seq[shift_amount_i].clobbers_t
	  & LSHR_CLOBBERS_T) != 0;
}

/* Return true if it is potentially beneficial to use a dynamic shift
   instruction (shad / shar) instead of a combination of 1/2/8/16 
   shift instructions for the specified shift count.
   If dynamic shifts are not available, always return false.  */
bool
sh_dynamicalize_shift_p (rtx count)
{
  gcc_assert (CONST_INT_P (count));

  /* For right shifts the constant might be negative.  */
  const int shift_amount_i = std::abs (INTVAL (count)) & 31;
  int insn_count;

  /* For left and right shifts, there are shorter 2 insn sequences for
     shift amounts of 31.  */
  if (shift_amount_i == 31)
    insn_count = 2;
  else
    insn_count = ashl_lshr_seq[shift_amount_i].insn_count;

  return TARGET_DYNSHIFT && (insn_count > 1 + SH_DYNAMIC_SHIFT_COST);
}

/* Assuming we have a value that has been sign-extended by at least one bit,
   can we use the ext_shift_amounts with the last shift turned to an
   arithmetic shift to shift it by N without data loss, and quicker than by
   other means?  */
#define EXT_SHIFT_SIGNED(n) (((n) | 8) == 15)

/* Return the cost of a shift.  */
static inline int
shiftcosts (rtx x)
{
  if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
    {
      if (GET_MODE (x) == DImode
	  && CONST_INT_P (XEXP (x, 1))
	  && INTVAL (XEXP (x, 1)) == 1)
	return 2;

      /* Everything else is invalid, because there is no pattern for it.  */
      return -1;
    }
  /* If shift by a non constant, then this will be expensive.  */
  if (!CONST_INT_P (XEXP (x, 1)))
    return SH_DYNAMIC_SHIFT_COST;

  /* Otherwise, return the true cost in instructions.  Cope with out of range
     shift counts more or less arbitrarily.  */
  int value = INTVAL (XEXP (x, 1)) & 31;

  if (GET_CODE (x) == ASHIFTRT)
    {
      int cost = ashiftrt_insns[value];
      /* If dynamic shifts are available and profitable in this case, then we
	 put the constant in a reg and use shad.  */
      if (cost > 1 + SH_DYNAMIC_SHIFT_COST)
	cost = 1 + SH_DYNAMIC_SHIFT_COST;
      return cost;
    }
  else
    return ashl_lshr_seq[value].insn_count;
}

/* Return the cost of an AND/XOR/IOR operation.  */
static inline int
and_xor_ior_costs (rtx x, int code)
{
  /* On SH1-4 we have only max. SImode operations.
     Double the cost for modes > SImode.  */
  const int cost_scale = GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD ? 2 : 1;

  /* A logical operation with two registers is a single cycle
     instruction.  */
  if (!CONST_INT_P (XEXP (x, 1)))
    return 1 * cost_scale;

  int i = INTVAL (XEXP (x, 1));

  /* These constants are single cycle extu.[bw] instructions.  */
  if ((i == 0xff || i == 0xffff) && code == AND)
    return 1 * cost_scale;
  /* Constants that can be used in an instruction as an immediate are
     a single cycle, but this requires r0, so make it a little more
     expensive.  */
  if (CONST_OK_FOR_K08 (i))
    return 2 * cost_scale;
  /* Constants that can be loaded with a mov immediate need one more cycle.
     This case is probably unnecessary.  */
  if (CONST_OK_FOR_I08 (i))
    return 2 * cost_scale;
  /* Any other constant requires an additional 2 cycle pc-relative load.
     This case is probably unnecessary.  */
  return 3 * cost_scale;
}

/* Return the cost of an addition or a subtraction.  */
static inline int
addsubcosts (rtx x)
{
  if (GET_MODE (x) == SImode)
    {
      /* The addc or subc patterns will eventually become one or two
	 instructions.  Below are some costs for some of the patterns
	 which combine would reject because the costs of the individual
	 insns in the patterns are lower.

	 FIXME: It would be much easier if we had something like insn cost
	 attributes and the cost calculation machinery used those attributes
	 in the first place.  This would eliminate redundant recog-like C
	 code to calculate costs of complex patterns.  */
      rtx op0 = XEXP (x, 0);
      rtx op1 = XEXP (x, 1);

      if (GET_CODE (x) == PLUS)
	{
	  if (GET_CODE (op0) == AND
	      && XEXP (op0, 1) == const1_rtx
	      && (GET_CODE (op1) == PLUS
		  || (GET_CODE (op1) == MULT && XEXP (op1, 1) == const2_rtx)))
	    return 1;

	  if (GET_CODE (op0) == MULT && XEXP (op0, 1) == const2_rtx
	      && GET_CODE (op1) == LSHIFTRT
	      && CONST_INT_P (XEXP (op1, 1)) && INTVAL (XEXP (op1, 1)) == 31)
	    return 1;
	}
      /* Let's assume that adding the result of an insns that stores into
	 the T bit is cheap.  */
      if (treg_set_expr (op1, SImode))
	return 1;
      if (treg_set_expr (op0, SImode))
	return 1;
    }

  /* On SH1-4 we have only max. SImode operations.
     Double the cost for modes > SImode.  */
  const int cost_scale = GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD ? 2 : 1;

  /* Adding a register is a single cycle insn.  */
  if (REG_P (XEXP (x, 1))
      || GET_CODE (XEXP (x, 1)) == SUBREG)
    return 1 * cost_scale;

  /* Likewise for small constants.  */
  if (CONST_INT_P (XEXP (x, 1))
      && CONST_OK_FOR_ADD (INTVAL (XEXP (x, 1))))
    return 1 * cost_scale;

  /* Any other constant requires a 2 cycle pc-relative load plus an
     addition.  */
  return 3 * cost_scale;
}

/* Return the cost of a multiply.  */
static inline int
multcosts (rtx x ATTRIBUTE_UNUSED)
{
  if (sh_multcost >= 0)
    return sh_multcost;

  if (TARGET_SH2)
    {
      /* We have a mul insn, so we can never take more than the mul and the
	 read of the mac reg, but count more because of the latency and extra
	 reg usage.  */
      if (optimize_size)
	return 2;
      return 3;
    }

  /* If we're aiming at small code, then just count the number of
     insns in a multiply call sequence.  */
  if (optimize_size)
    return 5;

  /* Otherwise count all the insns in the routine we'd be calling too.  */
  return 20;
}

/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */
static bool
sh_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
	      int opno ATTRIBUTE_UNUSED,
	      int *total, bool speed ATTRIBUTE_UNUSED)
{
  int code = GET_CODE (x);

  switch (code)
    {
      /* The lower-subreg pass decides whether to split multi-word regs
	 into individual regs by looking at the cost for a SET of certain
	 modes with the following patterns:
	   (set (reg) (reg)) 
	   (set (reg) (const_int 0))
	 On machines that support vector-move operations a multi-word move
	 is the same cost as individual reg move.  On SH there is no
	 vector-move, so we have to provide the correct cost in the number
	 of move insns to load/store the reg of the mode in question.  */
    case SET:
      if (sh_movt_set_dest (x) != NULL || sh_movrt_set_dest (x) != NULL)
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}

      if (register_operand (SET_DEST (x), VOIDmode)
	    && (register_operand (SET_SRC (x), VOIDmode)
		|| satisfies_constraint_Z (SET_SRC (x))))
	{
	  const machine_mode mode = GET_MODE (SET_DEST (x));
	  *total = COSTS_N_INSNS (GET_MODE_SIZE (mode)
				  / mov_insn_size (mode, TARGET_SH2A));
	  return true;
        }
      return false;

    /* The cost of a mem access is mainly the cost of the address mode.  */
    case MEM:
      *total = sh_address_cost (XEXP (x, 0), GET_MODE (x), MEM_ADDR_SPACE (x),
				true);
      return true;

    case IF_THEN_ELSE:
      /* This case is required for the if_then_else negc pattern.  */
      if (treg_set_expr (XEXP (x, 0), SImode))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else
	return false;

    /* Zero extracts of single bits are usually combine patterns for the
       tst insns.  */
    case ZERO_EXTRACT:
      if (GET_CODE (XEXP (x, 0)) == XOR
	  && arith_reg_operand (XEXP (XEXP (x, 0), 0), VOIDmode)
	  && XEXP (x, 1) == const1_rtx
	  && CONST_INT_P (XEXP (x, 2))
	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	  /* Check that the xor constaint overlaps with the extracted bit.  */
	  && (INTVAL (XEXP (XEXP (x, 0), 1)) & (1LL << INTVAL (XEXP (x, 2)))))
	{
	  *total = 1; //COSTS_N_INSNS (1);
	  return true;
	}

      /* div0s variant.  */
      if (GET_CODE (XEXP (x, 0)) == XOR
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
	  && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
	{
	  *total = 1;
	  return true;
	}
      return false;

    /* The cost of a sign or zero extend depends on whether the source is a
       reg or a mem.  In case of a mem take the address into account.  */
    case SIGN_EXTEND:
      if (arith_reg_operand (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      if (MEM_P (XEXP (x, 0)))
	{
	  *total = sh_address_cost (XEXP (XEXP (x, 0), 0),
				    GET_MODE (XEXP (x, 0)),
				    MEM_ADDR_SPACE (XEXP (x, 0)), true);
	  return true;
	}
      return false;

    case ZERO_EXTEND:
      if (arith_reg_operand (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else if (TARGET_SH2A && MEM_P (XEXP (x, 0))
	       && (GET_MODE (XEXP (x, 0)) == QImode
		   || GET_MODE (XEXP (x, 0)) == HImode))
	{
	  /* Handle SH2A's movu.b and movu.w insn.  */
	  *total = sh_address_cost (XEXP (XEXP (x, 0), 0), 
				    GET_MODE (XEXP (x, 0)), 
				    MEM_ADDR_SPACE (XEXP (x, 0)), true);
	  return true;
	}
      return false;

    /* mems for SFmode and DFmode can be inside a parallel due to
       the way the fpscr is handled.  */
    case PARALLEL:
      for (int i = 0; i < XVECLEN (x, 0); i++)
	{
	  rtx xx = XVECEXP (x, 0, i);
	  if (GET_CODE (xx) == SET && MEM_P (XEXP (xx, 0)))
	    {
	      *total = sh_address_cost (XEXP (XEXP (xx, 0), 0), 
					GET_MODE (XEXP (xx, 0)),
					MEM_ADDR_SPACE (XEXP (xx, 0)), true);
	      return true;
	    }
	  if (GET_CODE (xx) == SET && MEM_P (XEXP (xx, 1)))
	    {
	      *total = sh_address_cost (XEXP (XEXP (xx, 1), 0),
					GET_MODE (XEXP (xx, 1)),
					MEM_ADDR_SPACE (XEXP (xx, 1)), true);
	      return true;
	    }
	}

      if (sh_1el_vec (x, VOIDmode))
	*total = outer_code != SET;
      else if (sh_rep_vec (x, VOIDmode))
	*total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4
		  + (outer_code != SET));
      else
	*total = COSTS_N_INSNS (3) + (outer_code != SET);
      return true;

    case CONST_INT:
      if (CONST_OK_FOR_I08 (INTVAL (x)))
        *total = 0;
      else if ((outer_code == AND || outer_code == IOR || outer_code == XOR)
	       && CONST_OK_FOR_K08 (INTVAL (x)))
        *total = 1;
      /* prepare_cmp_insn will force costly constants int registers before
	 the cbranch[sd]i4 patterns can see them, so preserve potentially
	 interesting ones not covered by I08 above.  */
      else if (outer_code == COMPARE
	       && ((unsigned HOST_WIDE_INT) INTVAL (x)
		    == (unsigned HOST_WIDE_INT) 0x7fffffff + 1
		    || INTVAL (x) == 0x7fffffff
		   || INTVAL (x) == 0x80 || INTVAL (x) == -0x81))
        *total = 1;
      else
        *total = 8;
      return true;

    case EQ:
      /* An and with a constant compared against zero is
	 most likely going to be a TST #imm, R0 instruction.  */
      if (XEXP (x, 1) == const0_rtx
          && ((GET_CODE (XEXP (x, 0)) == AND
               || (SUBREG_P (XEXP (x, 0))
		   && GET_CODE (SUBREG_REG (XEXP (x, 0))) == AND))
	      || GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT))
	{
	  *total = 1;
	  return true;
	}

      else if (XEXP (x, 1) == const0_rtx
	       && GET_CODE (XEXP (x, 0)) == AND
	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFT
	       && arith_reg_operand (XEXP (XEXP (XEXP (x, 0), 0), 0), SImode)
	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1)))
	{
	  *total = 1;
	  return true;
	}
      else
	return false;

    case SMIN:
    case SMAX:
      /* This is most likely a clips.b or clips.w insn that is being made up
	 by combine.  */
      if (TARGET_SH2A
	  && (GET_CODE (XEXP (x, 0)) == SMAX || GET_CODE (XEXP (x, 0)) == SMIN)
	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	  && REG_P (XEXP (XEXP (x, 0), 0))
	  && CONST_INT_P (XEXP (x, 1)))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else
	return false;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      *total = 5;
      return true;

    case CONST_DOUBLE:
      /* prepare_cmp_insn will force costly constants int registers before
	 the cbranchdi4 pattern can see them, so preserve potentially
	 interesting ones.  */
      if (outer_code == COMPARE && GET_MODE (x) == DImode)
	*total = 1;
      else
	*total = 10;
      return true;

    case CONST_VECTOR:
    /* FIXME: This looks broken.  Only the last statement has any effect.
       Probably this could be folded with the PARALLEL case?  */
      if (x == CONST0_RTX (GET_MODE (x)))
	*total = 0;
      else if (sh_1el_vec (x, VOIDmode))
	*total = outer_code != SET;
      if (sh_rep_vec (x, VOIDmode))
	*total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4
		  + (outer_code != SET));
      *total = COSTS_N_INSNS (3) + (outer_code != SET);
      return true;

    case PLUS:
    case MINUS:
      *total = COSTS_N_INSNS (addsubcosts (x));
      return true;

    case AND:
      /* Check for (and (not (reg)) (const_int 1)) which is a tst insn.  */
      if (GET_CODE (XEXP (x, 0)) == NOT && XEXP (x, 1) == const1_rtx)
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      /* Fall through.  */

    case XOR:
    case IOR:
      *total = COSTS_N_INSNS (and_xor_ior_costs (x, code));
      return true;

    case MULT:
      *total = COSTS_N_INSNS (multcosts (x));
      return true;

    case LT:
    case GE:
      /* div0s sign comparison.  */
      if (GET_CODE (XEXP (x, 0)) == XOR
	  && REG_P ((XEXP (XEXP (x, 0), 0)))
	  && REG_P ((XEXP (XEXP (x, 0), 1)))
	  && satisfies_constraint_Z (XEXP (x, 1)))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else
	return false;

    case LSHIFTRT:
      /* div0s sign comparison.  */
      if (GET_CODE (XEXP (x, 0)) == XOR
	  && REG_P ((XEXP (XEXP (x, 0), 0)))
	  && REG_P ((XEXP (XEXP (x, 0), 1)))
	  && CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == 31)
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      /* FALLTHRU */
    case ASHIFT:
    case ASHIFTRT:
      {
	int cost = shiftcosts (x);
	if (cost < 0)
	  return false;
	*total = COSTS_N_INSNS (cost);
	return true;
      }

    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      *total = COSTS_N_INSNS (20);
      return true;

    case FLOAT:
    case FIX:
      *total = 100;
      return true;

    default:
      return false;
    }
}

/* Determine the size of the fundamental move insn that will be used
   for the specified mode.  */
static inline int
mov_insn_size (machine_mode mode, bool consider_sh2a)
{
  const int mode_sz = GET_MODE_SIZE (mode);

  if ((consider_sh2a && TARGET_SH2A_DOUBLE && mode == DFmode)
      || (TARGET_FMOVD && mode == DFmode))
    return mode_sz;
  else
    {
      /* The max. available mode for actual move insns is SImode.
	 Larger accesses will be split into multiple loads/stores.  */
      const int max_mov_sz = GET_MODE_SIZE (SImode);
      return mode_sz >= max_mov_sz ? max_mov_sz : mode_sz;
    }
}

/* Determine the maximum possible displacement for a move insn for the
   specified mode.  */
int
sh_max_mov_insn_displacement (machine_mode mode, bool consider_sh2a)
{
  /* The 4 byte displacement move insns are the same as the 2 byte
     versions but take a 12 bit displacement.  All we need to do is to
     scale the max. displacement value accordingly.  */
  const int disp_scale = consider_sh2a ? (4095 / 15) : 1;

  /* SH2A supports FPU move insns with 12 bit displacements.
     Other variants to do not support any kind of displacements for
     FPU move insns.  */
  if (! consider_sh2a && TARGET_FPU_ANY && GET_MODE_CLASS (mode) == MODE_FLOAT)
    return 0;
  else
    {
      const int mov_insn_sz = mov_insn_size (mode, consider_sh2a);
      const int mode_sz = GET_MODE_SIZE (mode);
      int r = 15 * mov_insn_sz * disp_scale;
    
      /* If the mov insn will be split into multiple loads/stores, the
	 maximum possible displacement is a bit smaller.  */
      if (mode_sz > mov_insn_sz)
	r -= mode_sz - mov_insn_sz;
      return r;
    }
}

/* Determine the alignment mask for a move insn of the
   specified mode.  */
static inline int
mov_insn_alignment_mask (machine_mode mode, bool consider_sh2a)
{
  const int mov_insn_sz = mov_insn_size (mode, consider_sh2a);
  return mov_insn_sz > 0 ? (mov_insn_sz - 1) : 0;
}

/* Return the displacement value of a displacement address.  */
HOST_WIDE_INT
sh_disp_addr_displacement (rtx x)
{
  gcc_assert (satisfies_constraint_Sdd (x));
  return INTVAL (XEXP (XEXP (x, 0), 1));
}

/* Compute the cost of an address.  */
static int
sh_address_cost (rtx x, machine_mode mode,
		 addr_space_t as ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED)
{
  /* 'GBR + 0'.  Account one more because of R0 restriction.  */
  if (REG_P (x) && REGNO (x) == GBR_REG)
    return 2;

  /* Simple reg, post-inc, pre-dec addressing.  */
  if (REG_P (x) || GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
    return 1;

  /* 'reg + disp' addressing.  */
  if (GET_CODE (x) == PLUS
      && REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1)))
    {
      /* 'GBR + disp'.  Account one more because of R0 restriction.  */
      if (REGNO (XEXP (x, 0)) == GBR_REG
	  && gbr_displacement (XEXP (x, 1), mode))
	return 2;

      const HOST_WIDE_INT offset = INTVAL (XEXP (x, 1));

      if (offset == 0)
	return 1;

      /* The displacement would fit into a 2 byte move insn.
	 HImode and QImode loads/stores with displacement put pressure on
	 R0 which will most likely require another reg copy.  Thus account
	 a higher cost for that.  */
      if (offset > 0 && offset <= sh_max_mov_insn_displacement (mode, false))
	return (mode == HImode || mode == QImode) ? 2 : 1;

      /* The displacement would fit into a 4 byte move insn (SH2A).  */
      if (TARGET_SH2A
	  && offset > 0 && offset <= sh_max_mov_insn_displacement (mode, true))
	return 2;

      /* The displacement is probably out of range and will require extra
	 calculations.  */
      return 3;
    }

  /* 'reg + reg' addressing.  Account a slightly higher cost because of 
     increased pressure on R0.  */
  if (GET_CODE (x) == PLUS && ! CONSTANT_P (XEXP (x, 1)))
    return 3;

  /* Not sure what it is - probably expensive.  */
  return 10;
}

/* Code to expand a shift.  */
static void
gen_ashift (int type, int n, rtx reg)
{
  rtx n_rtx;

  /* Negative values here come from the shift_amounts array.  */
  if (n < 0)
    {
      if (type == ASHIFT)
	type = LSHIFTRT;
      else
	type = ASHIFT;
      n = -n;
    }

  n_rtx = GEN_INT (n);
  gcc_assert (satisfies_constraint_P27 (n_rtx));

  switch (type)
    {
    case ASHIFTRT:
      emit_insn (gen_ashrsi3_k (reg, reg, n_rtx));
      break;
    case LSHIFTRT:
      if (n == 1)
	emit_insn (gen_shlr (reg, reg));
      else
	emit_insn (gen_lshrsi3_k (reg, reg, n_rtx));
      break;
    case ASHIFT:
      emit_insn (gen_ashlsi3_k (reg, reg, n_rtx));
      break;
    default:
      gcc_unreachable ();
    }
}

/* Code to expand a HImode shift.  */
static void
gen_ashift_hi (int type, int n, rtx reg)
{
  /* Negative values here come from the shift_amounts array.  */
  if (n < 0)
    {
      if (type == ASHIFT)
	type = LSHIFTRT;
      else
	type = ASHIFT;
      n = -n;
    }

  switch (type)
    {
    case ASHIFTRT:
    case LSHIFTRT:
      /* We don't have HImode right shift operations because using the
	 ordinary 32 bit shift instructions for that doesn't generate proper
	 zero/sign extension.
	 gen_ashift_hi is only called in contexts where we know that the
	 sign extension works out correctly.  */
      {
	int offset = 0;
	if (GET_CODE (reg) == SUBREG)
	  {
	    offset = SUBREG_BYTE (reg);
	    reg = SUBREG_REG (reg);
	  }
	gen_ashift (type, n, gen_rtx_SUBREG (SImode, reg, offset));
	break;
      }
    case ASHIFT:
      emit_insn (gen_ashlhi3_k (reg, reg, GEN_INT (n)));
      break;
    }
}

/* Output RTL to split a constant shift into its component SH constant
   shift instructions.  */
void
gen_shifty_op (int code, rtx *operands)
{
  int value = INTVAL (operands[2]);
  int max, i;

  /* Truncate the shift count in case it is out of bounds.  */
  value = value & 31;

  if (value == 31)
    {
      if (code == LSHIFTRT)
	{
	  emit_insn (gen_rotlsi3_1 (operands[0], operands[0]));
	  emit_insn (gen_movt (operands[0], get_t_reg_rtx ()));
	  return;
	}
      else if (code == ASHIFT)
	{
	  /* There is a two instruction sequence for 31 bit left shifts,
	     but it requires r0.  */
	  if (REG_P (operands[0]) && REGNO (operands[0]) == 0)
	    {
	      emit_insn (gen_andsi3 (operands[0], operands[0], const1_rtx));
	      emit_insn (gen_rotlsi3_31 (operands[0], operands[0]));
	      return;
	    }
	}
    }
  else if (value == 0)
    {
      /* This can happen even when optimizing, if there were subregs before
	 reload.  Don't output a nop here, as this is never optimized away;
	 use a no-op move instead.  */
      emit_insn (gen_rtx_SET (operands[0], operands[0]));
      return;
    }

  max = ashl_lshr_seq[value].insn_count;
  for (i = 0; i < max; i++)
    gen_ashift (code, ashl_lshr_seq[value].amount[i], operands[0]);
}

/* Same as gen_shifty_op, but optimized for values where the topmost bits
   don't matter.  */
void
gen_shifty_hi_op (int code, rtx *operands)
{
  int value = INTVAL (operands[2]);
  int max, i;
  void (*gen_fun) (int, int, rtx);

  /* This operation is used by and_shl for SImode values with a few
     high bits known to be cleared.  */
  value &= 31;
  if (value == 0)
    {
      emit_insn (gen_nop ());
      return;
    }

  gen_fun = GET_MODE (operands[0]) == HImode ? gen_ashift_hi : gen_ashift;
  if (code == ASHIFT)
    {
      max = ext_ashl_lshr_seq[value].insn_count;
      for (i = 0; i < max; i++)
	gen_fun (code, ext_ashl_lshr_seq[value].amount[i], operands[0]);
    }
  else
    /* When shifting right, emit the shifts in reverse order, so that
       solitary negative values come first.  */
    for (i = ext_ashl_lshr_seq[value].insn_count - 1; i >= 0; i--)
      gen_fun (code, ext_ashl_lshr_seq[value].amount[i], operands[0]);
}

/* Output RTL for an arithmetic right shift.
   ??? Rewrite to use super-optimizer sequences.  */
bool
expand_ashiftrt (rtx *operands)
{
  rtx wrk;
  char func[18];
  int value;

  if (TARGET_DYNSHIFT)
    {
      if (!CONST_INT_P (operands[2]))
	{
	  rtx count = copy_to_mode_reg (SImode, operands[2]);
	  emit_insn (gen_negsi2 (count, count));
	  emit_insn (gen_ashrsi3_d (operands[0], operands[1], count));
	  return true;
	}
      else if (ashiftrt_insns[INTVAL (operands[2]) & 31]
	       > 1 + SH_DYNAMIC_SHIFT_COST)
	{
	  rtx count
	    = force_reg (SImode, GEN_INT (- (INTVAL (operands[2]) & 31)));
	  emit_insn (gen_ashrsi3_d (operands[0], operands[1], count));
	  return true;
	}
    }
  if (!CONST_INT_P (operands[2]))
    return false;

  value = INTVAL (operands[2]) & 31;

  if (value == 31)
    {
      /* If we are called from abs expansion, arrange things so that we
	 we can use a single MT instruction that doesn't clobber the source,
	 if LICM can hoist out the load of the constant zero.  */
      if (currently_expanding_to_rtl)
	{
	  emit_insn (gen_cmpgtsi_t (force_reg (SImode, CONST0_RTX (SImode)),
				    operands[1]));
	  emit_insn (gen_mov_neg_si_t (operands[0], get_t_reg_rtx ()));
	  return true;
	}
      emit_insn (gen_ashrsi2_31 (operands[0], operands[1]));
      return true;
    }
  else if (value >= 16 && value <= 19)
    {
      wrk = gen_reg_rtx (SImode);
      emit_insn (gen_ashrsi2_16 (wrk, operands[1]));
      value -= 16;
      while (value--)
	gen_ashift (ASHIFTRT, 1, wrk);
      emit_move_insn (operands[0], wrk);
      return true;
    }
  /* Expand a short sequence inline, longer call a magic routine.  */
  else if (value <= 5)
    {
      wrk = gen_reg_rtx (SImode);
      emit_move_insn (wrk, operands[1]);
      while (value--)
	gen_ashift (ASHIFTRT, 1, wrk);
      emit_move_insn (operands[0], wrk);
      return true;
    }

  wrk = gen_reg_rtx (Pmode);

  /* Load the value into an arg reg and call a helper.  */
  emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]);
  sprintf (func, "__ashiftrt_r4_%d", value);
  rtx lab = function_symbol (wrk, func, SFUNC_STATIC).lab;
  emit_insn (gen_ashrsi3_n (GEN_INT (value), wrk, lab));
  emit_move_insn (operands[0], gen_rtx_REG (SImode, 4));
  return true;
}

/* Try to find a good way to implement the combiner pattern
  [(set (match_operand:SI 0 "register_operand" "r")
        (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
                           (match_operand:SI 2 "const_int_operand" "n"))
                (match_operand:SI 3 "const_int_operand" "n"))) .
  LEFT_RTX is operand 2 in the above pattern, and MASK_RTX is operand 3.
  return 0 for simple right / left or left/right shift combination.
  return 1 for a combination of shifts with zero_extend.
  return 2 for a combination of shifts with an AND that needs r0.
  return 3 for a combination of shifts with an AND that needs an extra
    scratch register, when the three highmost bits of the AND mask are clear.
  return 4 for a combination of shifts with an AND that needs an extra
    scratch register, when any of the three highmost bits of the AND mask
    is set.
  If ATTRP is set, store an initial right shift width in ATTRP[0],
  and the instruction length in ATTRP[1] .  These values are not valid
  when returning 0.
  When ATTRP is set and returning 1, ATTRP[2] gets set to the index into
  shift_amounts for the last shift value that is to be used before the
  sign extend.  */
int
shl_and_kind (rtx left_rtx, rtx mask_rtx, int *attrp)
{
  unsigned HOST_WIDE_INT mask, lsb, mask2, lsb2;
  int left = INTVAL (left_rtx), right;
  int best = 0;
  int cost, best_cost = 10000;
  int best_right = 0, best_len = 0;
  int i;
  int can_ext;

  if (left < 0 || left > 31)
    return 0;
  if (CONST_INT_P (mask_rtx))
    mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> left;
  else
    mask = (unsigned HOST_WIDE_INT) GET_MODE_MASK (SImode) >> left;
  /* Can this be expressed as a right shift / left shift pair?  */
  lsb = ((mask ^ (mask - 1)) >> 1) + 1;
  right = exact_log2 (lsb);
  mask2 = ~(mask + lsb - 1);
  lsb2 = ((mask2 ^ (mask2 - 1)) >> 1) + 1;
  /* mask has no zeroes but trailing zeroes <==> ! mask2 */
  if (! mask2)
    best_cost = ashl_lshr_seq[right].insn_count
		+ ashl_lshr_seq[right + left].insn_count;
  /* mask has no trailing zeroes <==> ! right */
  else if (! right && mask2 == ~(lsb2 - 1))
    {
      int late_right = exact_log2 (lsb2);
      best_cost = ashl_lshr_seq[left + late_right].insn_count
		  + ashl_lshr_seq[late_right].insn_count;
    }
  /* Try to use zero extend.  */
  if (mask2 == ~(lsb2 - 1))
    {
      int width, first;

      for (width = 8; width <= 16; width += 8)
	{
	  /* Can we zero-extend right away?  */
	  if (lsb2 == (unsigned HOST_WIDE_INT) 1 << width)
	    {
	      cost = 1 + ext_ashl_lshr_seq[right].insn_count
		       + ext_ashl_lshr_seq[left + right].insn_count;
	      if (cost < best_cost)
		{
		  best = 1;
		  best_cost = cost;
		  best_right = right;
		  best_len = cost;
		  if (attrp)
		    attrp[2] = -1;
		}
	      continue;
	    }
	  /* ??? Could try to put zero extend into initial right shift,
	     or even shift a bit left before the right shift.  */
	  /* Determine value of first part of left shift, to get to the
	     zero extend cut-off point.  */
	  first = width - exact_log2 (lsb2) + right;
	  if (first >= 0 && right + left - first >= 0)
	    {
	      cost = ext_ashl_lshr_seq[right].insn_count
		     + ext_ashl_lshr_seq[first].insn_count + 1
		     + ext_ashl_lshr_seq[right + left - first].insn_count;

	      if (cost < best_cost)
		{
		  best = 1;
		  best_cost = cost;
		  best_right = right;
		  best_len = cost;
		  if (attrp)
		    attrp[2] = first;
		}
	    }
	}
    }
  /* Try to use r0 AND pattern */
  for (i = 0; i <= 2; i++)
    {
      if (i > right)
	break;
      if (! CONST_OK_FOR_K08 (mask >> i))
	continue;
      cost = (i != 0) + 2 + ext_ashl_lshr_seq[left + i].insn_count;
      if (cost < best_cost)
	{
	  best = 2;
	  best_cost = cost;
	  best_right = i;
	  best_len = cost - 1;
	}
    }
  /* Try to use a scratch register to hold the AND operand.  */
  can_ext = ((mask << left) & ((unsigned HOST_WIDE_INT) 3 << 30)) == 0;
  for (i = 0; i <= 2; i++)
    {
      if (i > right)
	break;
      cost = (i != 0) + (CONST_OK_FOR_I08 (mask >> i) ? 2 : 3)
	     + (can_ext
		? ext_ashl_lshr_seq
		: ashl_lshr_seq)[left + i].insn_count;
      if (cost < best_cost)
	{
	  best = 4 - can_ext;
	  best_cost = cost;
	  best_right = i;
	  best_len = cost - 1 - ! CONST_OK_FOR_I08 (mask >> i);
	}
    }

  if (attrp)
    {
      attrp[0] = best_right;
      attrp[1] = best_len;
    }
  return best;
}

/* This is used in length attributes of the unnamed instructions
   corresponding to shl_and_kind return values of 1 and 2.  */
int
shl_and_length (rtx insn)
{
  rtx set_src, left_rtx, mask_rtx;
  int attributes[3];

  set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
  left_rtx = XEXP (XEXP (set_src, 0), 1);
  mask_rtx = XEXP (set_src, 1);
  shl_and_kind (left_rtx, mask_rtx, attributes);
  return attributes[1];
}

/* This is used in length attribute of the and_shl_scratch instruction.  */
int
shl_and_scr_length (rtx insn)
{
  rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
  int len = ashl_lshr_seq[INTVAL (XEXP (set_src, 1)) & 31].insn_count;
  rtx op = XEXP (set_src, 0);
  len += ashl_lshr_seq[INTVAL (XEXP (op, 1)) & 31].insn_count + 1;
  op = XEXP (XEXP (op, 0), 0);
  return len + ashl_lshr_seq[INTVAL (XEXP (op, 1)) & 31].insn_count;
}

/* Generate rtl for instructions for which shl_and_kind advised a particular
   method of generating them, i.e. returned zero.  */
bool
gen_shl_and (rtx dest, rtx left_rtx, rtx mask_rtx, rtx source)
{
  int attributes[3];
  unsigned HOST_WIDE_INT mask;
  int kind = shl_and_kind (left_rtx, mask_rtx, attributes);
  int right, total_shift;
  void (*shift_gen_fun) (int, rtx *) = gen_shifty_hi_op;

  right = attributes[0];
  total_shift = INTVAL (left_rtx) + right;
  mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> total_shift;
  switch (kind)
    {
    default:
      return true;
    case 1:
      {
	int first = attributes[2];
	rtx operands[3];

	if (first < 0)
	  {
	    emit_insn ((mask << right) <= 0xff
		       ? gen_zero_extendqisi2 (dest,
					       gen_lowpart (QImode, source))
		       : gen_zero_extendhisi2 (dest,
					       gen_lowpart (HImode, source)));
	    source = dest;
	  }
	if (source != dest)
	  emit_insn (gen_movsi (dest, source));
	operands[0] = dest;
	if (right)
	  {
	    operands[2] = GEN_INT (right);
	    gen_shifty_hi_op (LSHIFTRT, operands);
	  }
	if (first > 0)
	  {
	    operands[2] = GEN_INT (first);
	    gen_shifty_hi_op (ASHIFT, operands);
	    total_shift -= first;
	    mask <<= first;
	  }
	if (first >= 0)
	  emit_insn (mask <= 0xff
		     ? gen_zero_extendqisi2 (dest, gen_lowpart (QImode, dest))
		     : gen_zero_extendhisi2 (dest, gen_lowpart (HImode, dest)));
	if (total_shift > 0)
	  {
	    operands[2] = GEN_INT (total_shift);
	    gen_shifty_hi_op (ASHIFT, operands);
	  }
	break;
      }
    case 4:
      shift_gen_fun = gen_shifty_op;
      /* FALLTHRU */
    case 3:
      /* If the topmost bit that matters is set, set the topmost bits
	 that don't matter.  This way, we might be able to get a shorter
	 signed constant.  */
      if (mask & ((HOST_WIDE_INT) 1 << (31 - total_shift)))
	mask |= (HOST_WIDE_INT) ((HOST_WIDE_INT_M1U) << (31 - total_shift));
      /* FALLTHRU */
    case 2:
      /* Don't expand fine-grained when combining, because that will
         make the pattern fail.  */
      if (currently_expanding_to_rtl
	  || reload_in_progress || reload_completed)
	{
	  rtx operands[3];

	  /* Cases 3 and 4 should be handled by this split
	     only while combining  */
	  gcc_assert (kind <= 2);
	  if (right)
	    {
	      emit_insn (gen_lshrsi3 (dest, source, GEN_INT (right)));
	      source = dest;
	    }
	  emit_insn (gen_andsi3 (dest, source, GEN_INT (mask)));
	  if (total_shift)
	    {
	      operands[0] = dest;
	      operands[1] = dest;
	      operands[2] = GEN_INT (total_shift);
	      shift_gen_fun (ASHIFT, operands);
	    }
	  break;
	}
      else
	{
	  int neg = 0;
	  if (kind != 4 && total_shift < 16)
	    {
	      neg = -ext_ashl_lshr_seq[total_shift].amount[1];
	      if (neg > 0)
		neg -= ext_ashl_lshr_seq[total_shift].amount[2];
	      else
		neg = 0;
	    }
	  emit_insn (gen_and_shl_scratch (dest, source,
					  GEN_INT (right),
					  GEN_INT (mask),
					  GEN_INT (total_shift + neg),
					  GEN_INT (neg)));
	  emit_insn (gen_movsi (dest, dest));
	  break;
	}
    }
  return false;
}

/* Try to find a good way to implement the combiner pattern
  [(set (match_operand:SI 0 "register_operand" "=r")
        (sign_extract:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
                                    (match_operand:SI 2 "const_int_operand" "n")
                         (match_operand:SI 3 "const_int_operand" "n")
                         (const_int 0)))
   (clobber (reg:SI T_REG))]
  LEFT_RTX is operand 2 in the above pattern, and SIZE_RTX is operand 3.
  return 0 for simple left / right shift combination.
  return 1 for left shift / 8 bit sign extend / left shift.
  return 2 for left shift / 16 bit sign extend / left shift.
  return 3 for left shift / 8 bit sign extend / shift / sign extend.
  return 4 for left shift / 16 bit sign extend / shift / sign extend.
  return 5 for left shift / 16 bit sign extend / right shift
  return 6 for < 8 bit sign extend / left shift.
  return 7 for < 8 bit sign extend / left shift / single right shift.
  If COSTP is nonzero, assign the calculated cost to *COSTP.  */
int
shl_sext_kind (rtx left_rtx, rtx size_rtx, int *costp)
{
  int left, size, insize, ext;
  int cost = 0, best_cost;
  int kind;

  left = INTVAL (left_rtx);
  size = INTVAL (size_rtx);
  insize = size - left;
  gcc_assert (insize > 0);
  /* Default to left / right shift.  */
  kind = 0;
  best_cost = ashl_lshr_seq[32 - insize].insn_count
	      + ashl_lshr_seq[32 - size].insn_count;
  if (size <= 16)
    {
      /* 16 bit shift / sign extend / 16 bit shift */
      cost = ashl_lshr_seq[16 - insize].insn_count + 1
	     + ashl_lshr_seq[16 - size].insn_count;
      /* If ashiftrt_insns[16 - size] is 8, this choice will be overridden
	 below, by alternative 3 or something even better.  */
      if (cost < best_cost)
	{
	  kind = 5;
	  best_cost = cost;
	}
    }
  /* Try a plain sign extend between two shifts.  */
  for (ext = 16; ext >= insize; ext -= 8)
    {
      if (ext <= size)
	{
	  cost = ext_ashl_lshr_seq[ext - insize].insn_count + 1
		 + ashl_lshr_seq[size - ext].insn_count;
	  if (cost < best_cost)
	    {
	      kind = ext / (unsigned) 8;
	      best_cost = cost;
	    }
	}
      /* Check if we can do a sloppy shift with a final signed shift
	 restoring the sign.  */
      if (EXT_SHIFT_SIGNED (size - ext))
	cost = ext_ashl_lshr_seq[ext - insize].insn_count
	       + ext_ashl_lshr_seq[size - ext].insn_count + 1;
      /* If not, maybe it's still cheaper to do the second shift sloppy,
	 and do a final sign extend?  */
      else if (size <= 16)
	cost = ext_ashl_lshr_seq[ext - insize].insn_count + 1
	  + ext_ashl_lshr_seq[size > ext ? size - ext : ext - size].insn_count
	  + 1;
      else
	continue;
      if (cost < best_cost)
	{
	  kind = ext / (unsigned) 8 + 2;
	  best_cost = cost;
	}
    }
  /* Check if we can sign extend in r0 */
  if (insize < 8)
    {
      cost = 3 + ashl_lshr_seq[left].insn_count;
      if (cost < best_cost)
	{
	  kind = 6;
	  best_cost = cost;
	}
      /* Try the same with a final signed shift.  */
      if (left < 31)
	{
	  cost = 3 + ext_ashl_lshr_seq[left + 1].insn_count + 1;
	  if (cost < best_cost)
	    {
	      kind = 7;
	      best_cost = cost;
	    }
	}
    }
  if (TARGET_DYNSHIFT)
    {
      /* Try to use a dynamic shift.  */
      cost = ashl_lshr_seq[32 - insize].insn_count + 1 + SH_DYNAMIC_SHIFT_COST;
      if (cost < best_cost)
	{
	  kind = 0;
	  best_cost = cost;
	}
    }
  if (costp)
    *costp = cost;
  return kind;
}

/* Function to be used in the length attribute of the instructions
   implementing this pattern.  */
int
shl_sext_length (rtx insn)
{
  rtx set_src, left_rtx, size_rtx;
  int cost;

  set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
  left_rtx = XEXP (XEXP (set_src, 0), 1);
  size_rtx = XEXP (set_src, 1);
  shl_sext_kind (left_rtx, size_rtx, &cost);
  return cost;
}

/* Generate rtl for this pattern */
bool
gen_shl_sext (rtx dest, rtx left_rtx, rtx size_rtx, rtx source)
{
  int kind;
  int left, size, insize, cost;
  rtx operands[3];

  kind = shl_sext_kind (left_rtx, size_rtx, &cost);
  left = INTVAL (left_rtx);
  size = INTVAL (size_rtx);
  insize = size - left;
  switch (kind)
    {
    case 1:
    case 2:
    case 3:
    case 4:
      {
	int ext = kind & 1 ? 8 : 16;
	int shift2 = size - ext;

	/* Don't expand fine-grained when combining, because that will
	   make the pattern fail.  */
	if (! currently_expanding_to_rtl
	    && ! reload_in_progress && ! reload_completed)
	  {
	    emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
	    emit_insn (gen_movsi (dest, source));
	    break;
	  }
	if (dest != source)
	  emit_insn (gen_movsi (dest, source));
	operands[0] = dest;
	if (ext - insize)
	  {
	    operands[2] = GEN_INT (ext - insize);
	    gen_shifty_hi_op (ASHIFT, operands);
	  }
	emit_insn (kind & 1
		   ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest))
		   : gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
	if (kind <= 2)
	  {
	    if (shift2)
	      {
		operands[2] = GEN_INT (shift2);
		gen_shifty_op (ASHIFT, operands);
	      }
	  }
	else
	  {
	    if (shift2 > 0)
	      {
		if (EXT_SHIFT_SIGNED (shift2))
		  {
		    operands[2] = GEN_INT (shift2 + 1);
		    gen_shifty_op (ASHIFT, operands);
		    operands[2] = const1_rtx;
		    gen_shifty_op (ASHIFTRT, operands);
		    break;
		  }
		operands[2] = GEN_INT (shift2);
		gen_shifty_hi_op (ASHIFT, operands);
	      }
	    else if (shift2)
	      {
		operands[2] = GEN_INT (-shift2);
		gen_shifty_hi_op (LSHIFTRT, operands);
	      }
	    emit_insn (size <= 8
		       ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest))
		       : gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
	  }
	break;
      }
    case 5:
      {
	int i = 16 - size;
	if (! currently_expanding_to_rtl
	    && ! reload_in_progress && ! reload_completed)
	  emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
	else
	  {
	    operands[0] = dest;
	    operands[2] = GEN_INT (16 - insize);
	    gen_shifty_hi_op (ASHIFT, operands);
	    emit_insn (gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
	  }
	/* Don't use gen_ashrsi3 because it generates new pseudos.  */
	while (--i >= 0)
	  gen_ashift (ASHIFTRT, 1, dest);
	break;
      }
    case 6:
    case 7:
      /* Don't expand fine-grained when combining, because that will
	 make the pattern fail.  */
      if (! currently_expanding_to_rtl
	  && ! reload_in_progress && ! reload_completed)
	{
	  emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
	  emit_insn (gen_movsi (dest, source));
	  break;
	}
      emit_insn (gen_andsi3 (dest, source, GEN_INT ((1 << insize) - 1)));
      emit_insn (gen_xorsi3 (dest, dest, GEN_INT (1 << (insize - 1))));
      emit_insn (gen_addsi3 (dest, dest, GEN_INT (HOST_WIDE_INT_M1U << (insize - 1))));
      operands[0] = dest;
      operands[2] = kind == 7 ? GEN_INT (left + 1) : left_rtx;
      gen_shifty_op (ASHIFT, operands);
      if (kind == 7)
	emit_insn (gen_ashrsi3_k (dest, dest, const1_rtx));
      break;
    default:
      return true;
    }
  return false;
}

typedef struct label_ref_list_d
{
  rtx_code_label *label;
  struct label_ref_list_d *next;
} *label_ref_list_t;

static object_allocator<label_ref_list_d> label_ref_list_d_pool
  ("label references list");

/* The SH cannot load a large constant into a register, constants have to
   come from a pc relative load.  The reference of a pc relative load
   instruction must be less than 1k in front of the instruction.  This
   means that we often have to dump a constant inside a function, and
   generate code to branch around it.

   It is important to minimize this, since the branches will slow things
   down and make things bigger.

   Worst case code looks like:

   mov.l L1,rn
   bra   L2
   nop
   align
   L1:   .long value
   L2:
   ..

   mov.l L3,rn
   bra   L4
   nop
   align
   L3:   .long value
   L4:
   ..

   We fix this by performing a scan before scheduling, which notices which
   instructions need to have their operands fetched from the constant table
   and builds the table.

   The algorithm is:

   scan, find an instruction which needs a pcrel move.  Look forward, find the
   last barrier which is within MAX_COUNT bytes of the requirement.
   If there isn't one, make one.  Process all the instructions between
   the find and the barrier.

   In the above example, we can tell that L3 is within 1k of L1, so
   the first move can be shrunk from the 3 insn+constant sequence into
   just 1 insn, and the constant moved to L3 to make:

   mov.l        L1,rn
   ..
   mov.l        L3,rn
   bra          L4
   nop
   align
   L3:.long value
   L4:.long value

   Then the second move becomes the target for the shortening process.  */

typedef struct
{
  rtx value;			/* Value in table.  */
  rtx_code_label *label;	/* Label of value.  */
  label_ref_list_t wend;	/* End of window.  */
  machine_mode mode;	/* Mode of value.  */

  /* True if this constant is accessed as part of a post-increment
     sequence.  Note that HImode constants are never accessed in this way.  */
  bool part_of_sequence_p;
} pool_node;

/* The maximum number of constants that can fit into one pool, since
   constants in the range 0..510 are at least 2 bytes long, and in the
   range from there to 1018 at least 4 bytes.  */

#define MAX_POOL_SIZE 372
static pool_node pool_vector[MAX_POOL_SIZE];
static int pool_size;
static rtx_code_label *pool_window_label;
static int pool_window_last;

static int max_labelno_before_reorg;

/* ??? If we need a constant in HImode which is the truncated value of a
   constant we need in SImode, we could combine the two entries thus saving
   two bytes.  Is this common enough to be worth the effort of implementing
   it?  */

/* ??? This stuff should be done at the same time that we shorten branches.
   As it is now, we must assume that all branches are the maximum size, and
   this causes us to almost always output constant pools sooner than
   necessary.  */

/* Add a constant to the pool and return its label.  */
static rtx_code_label *
add_constant (rtx x, machine_mode mode, rtx last_value)
{
  rtx_code_label *lab, *new_rtx;
  label_ref_list_t ref, newref;

  /* First see if we've already got it.  */
  for (int i = 0; i < pool_size; i++)
    {
      if (x->code == pool_vector[i].value->code
	  && mode == pool_vector[i].mode)
	{
	  if (x->code == CODE_LABEL)
	    {
	      if (XINT (x, 3) != XINT (pool_vector[i].value, 3))
		continue;
	    }
	  if (rtx_equal_p (x, pool_vector[i].value))
	    {
	      lab = new_rtx = 0;
	      if (! last_value
		  || ! i
		  || ! rtx_equal_p (last_value, pool_vector[i-1].value))
		{
		  new_rtx = gen_label_rtx ();
		  LABEL_REFS (new_rtx) = pool_vector[i].label;
		  pool_vector[i].label = lab = new_rtx;
		}
	      if (lab && pool_window_label)
		{
		  newref = label_ref_list_d_pool.allocate ();
		  newref->label = pool_window_label;
		  ref = pool_vector[pool_window_last].wend;
		  newref->next = ref;
		  pool_vector[pool_window_last].wend = newref;
		}
	      if (new_rtx)
		pool_window_label = new_rtx;
	      pool_window_last = i;
	      return lab;
	    }
	}
    }

  /* Need a new one.  */
  pool_vector[pool_size].value = x;
  if (last_value && rtx_equal_p (last_value, pool_vector[pool_size - 1].value))
    {
      lab = 0;
      pool_vector[pool_size - 1].part_of_sequence_p = true;
    }
  else
    lab = gen_label_rtx ();
  pool_vector[pool_size].mode = mode;
  pool_vector[pool_size].label = lab;
  pool_vector[pool_size].wend = NULL;
  pool_vector[pool_size].part_of_sequence_p = (lab == 0);
  if (lab && pool_window_label)
    {
      newref = label_ref_list_d_pool.allocate ();
      newref->label = pool_window_label;
      ref = pool_vector[pool_window_last].wend;
      newref->next = ref;
      pool_vector[pool_window_last].wend = newref;
    }
  if (lab)
    pool_window_label = lab;
  pool_window_last = pool_size;
  pool_size++;
  return lab;
}

/* Output the literal table.  START, if nonzero, is the first instruction
   this table is needed for, and also indicates that there is at least one
   casesi_worker_2 instruction; We have to emit the operand3 labels from
   these insns at a 4-byte  aligned position.  BARRIER is the barrier
   after which we are to place the table.  */
static void
dump_table (rtx_insn *start, rtx_insn *barrier)
{
  rtx_insn *scan = barrier;
  bool need_align = true;
  rtx_code_label *lab;
  label_ref_list_t ref;
  bool have_df = false;

  /* Do two passes, first time dump out the HI sized constants.  */

  for (int i = 0; i < pool_size; i++)
    {
      pool_node *p = &pool_vector[i];

      if (p->mode == HImode)
	{
	  if (need_align)
	    {
	      scan = emit_insn_after (gen_align_2 (), scan);
	      need_align = false;
	    }
	  for (lab = p->label; lab;
	       lab = safe_as_a <rtx_code_label *> (LABEL_REFS (lab)))
	    scan = emit_label_after (lab, scan);
	  scan = emit_insn_after (gen_consttable_2 (p->value, const0_rtx),
				  scan);
	  for (ref = p->wend; ref; ref = ref->next)
	    {
	      lab = ref->label;
	      scan = emit_insn_after (gen_consttable_window_end (lab), scan);
	    }
	}
      else if (p->mode == DFmode)
	have_df = true;
    }

  need_align = true;

  if (start)
    {
      scan = emit_insn_after (gen_align_4 (), scan);
      need_align = false;
      for (; start != barrier; start = NEXT_INSN (start))
	if (NONJUMP_INSN_P (start)
	    && recog_memoized (start) == CODE_FOR_casesi_worker_2)
	  {
	    rtx src = SET_SRC (XVECEXP (PATTERN (start), 0, 0));
	    rtx lab = XEXP (XVECEXP (src, 0, 3), 0);

	    scan = emit_label_after (as_a <rtx_insn *> (lab), scan);
	  }
    }
  if (TARGET_FMOVD && TARGET_ALIGN_DOUBLE && have_df)
    {
      rtx_insn *align_insn = NULL;

      scan = emit_label_after (gen_label_rtx (), scan);
      scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan);
      need_align = false;

      for (int i = 0; i < pool_size; i++)
	{
	  pool_node *p = &pool_vector[i];

	  switch (p->mode)
	    {
	    case E_HImode:
	      break;
	    case E_SImode:
	    case E_SFmode:
	      if (align_insn && !p->part_of_sequence_p)
		{
		  for (lab = p->label; lab;
		       lab = safe_as_a <rtx_code_label *> (LABEL_REFS (lab)))
		    emit_label_before (lab, align_insn);
		  emit_insn_before (gen_consttable_4 (p->value, const0_rtx),
				    align_insn);
		  for (ref = p->wend; ref; ref = ref->next)
		    {
		      lab = ref->label;
		      emit_insn_before (gen_consttable_window_end (lab),
					align_insn);
		    }
		  delete_insn (align_insn);
		  align_insn = NULL;
		  continue;
		}
	      else
		{
		  for (lab = p->label; lab;
		       lab = safe_as_a <rtx_code_label *> (LABEL_REFS (lab)))
		    scan = emit_label_after (lab, scan);
		  scan = emit_insn_after (gen_consttable_4 (p->value,
							    const0_rtx), scan);
		  need_align = ! need_align;
		}
	      break;
	    case E_DFmode:
	      if (need_align)
		{
		  scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan);
		  align_insn = scan;
		  need_align = false;
		}
	      /* FALLTHRU */
	    case E_DImode:
	      for (lab = p->label; lab;
		   lab = safe_as_a <rtx_code_label *> (LABEL_REFS (lab)))
		scan = emit_label_after (lab, scan);
	      scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx),
				      scan);
	      break;
	    default:
	      gcc_unreachable ();
	    }

	  if (p->mode != HImode)
	    {
	      for (ref = p->wend; ref; ref = ref->next)
		{
		  lab = ref->label;
		  scan = emit_insn_after (gen_consttable_window_end (lab),
					  scan);
		}
	    }
	}

      pool_size = 0;
    }

  for (int i = 0; i < pool_size; i++)
    {
      pool_node *p = &pool_vector[i];

      switch (p->mode)
	{
	case E_HImode:
	  break;
	case E_SImode:
	case E_SFmode:
	  if (need_align)
	    {
	      need_align = false;
	      scan = emit_label_after (gen_label_rtx (), scan);
	      scan = emit_insn_after (gen_align_4 (), scan);
	    }
	  for (lab = p->label; lab;
	       lab = safe_as_a <rtx_code_label *> (LABEL_REFS (lab)))
	    scan = emit_label_after (lab, scan);
	  scan = emit_insn_after (gen_consttable_4 (p->value, const0_rtx),
				  scan);
	  break;
	case E_DFmode:
	case E_DImode:
	  if (need_align)
	    {
	      need_align = false;
	      scan = emit_label_after (gen_label_rtx (), scan);
	      scan = emit_insn_after (gen_align_4 (), scan);
	    }
	  for (lab = p->label; lab;
	       lab = safe_as_a <rtx_code_label *> (LABEL_REFS (lab)))
	    scan = emit_label_after (lab, scan);
	  scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx),
				  scan);
	  break;
	default:
	  gcc_unreachable ();
	}

      if (p->mode != HImode)
	{
	  for (ref = p->wend; ref; ref = ref->next)
	    {
	      lab = ref->label;
	      scan = emit_insn_after (gen_consttable_window_end (lab), scan);
	    }
	}
    }

  scan = emit_insn_after (gen_consttable_end (), scan);
  scan = emit_barrier_after (scan);
  pool_size = 0;
  pool_window_label = NULL;
  pool_window_last = 0;
}

#define MOVA_LABELREF(mova) XVECEXP (SET_SRC (PATTERN (mova)), 0, 0)

/* Nonzero if the insn is a move instruction which needs to be fixed.  */

/* ??? For a DImode/DFmode moves, we don't need to fix it if each half of the
   CONST_DOUBLE input value is CONST_OK_FOR_I08.  For a SFmode move, we don't
   need to fix it if the input value is CONST_OK_FOR_I08.  */
static bool
broken_move (rtx_insn *insn)
{
  if (NONJUMP_INSN_P (insn))
    {
      rtx pat = PATTERN (insn);
      if (GET_CODE (pat) == PARALLEL)
	pat = XVECEXP (pat, 0, 0);
      if (GET_CODE (pat) == SET
	  /* We can load any 8-bit value if we don't care what the high
	     order bits end up as.  */
	  && GET_MODE (SET_DEST (pat)) != QImode
	  && (CONSTANT_P (SET_SRC (pat))
	      || (GET_CODE (SET_SRC (pat)) == UNSPEC_VOLATILE
		  && XINT (SET_SRC (pat), 1) ==  UNSPECV_SP_SWITCH_B)
	      /* Match mova_const.  */
	      || (GET_CODE (SET_SRC (pat)) == UNSPEC
		  && XINT (SET_SRC (pat), 1) == UNSPEC_MOVA
		  && GET_CODE (XVECEXP (SET_SRC (pat), 0, 0)) == CONST))
	  && ! (TARGET_SH2E
		&& GET_CODE (SET_SRC (pat)) == CONST_DOUBLE
		&& (fp_zero_operand (SET_SRC (pat))
		    || fp_one_operand (SET_SRC (pat)))
		/* In general we don't know the current setting of fpscr, so
		   disable fldi.
		   There is an exception if this was a register-register move
		   before reload - and hence it was ascertained that we have
		   single precision setting - and in a post-reload optimization
		   we changed this to do a constant load.  In that case
		   we don't have an r0 clobber, hence we must use fldi.  */
		&& (TARGET_FMOVD
		    || (GET_CODE (XEXP (XVECEXP (PATTERN (insn), 0, 2), 0))
			== SCRATCH))
		&& REG_P (SET_DEST (pat))
		&& FP_REGISTER_P (REGNO (SET_DEST (pat))))
	  && ! (TARGET_SH2A
		&& GET_MODE (SET_DEST (pat)) == SImode
		&& (satisfies_constraint_I20 (SET_SRC (pat))
		   || satisfies_constraint_I28 (SET_SRC (pat))))
	  && ! satisfies_constraint_I08 (SET_SRC (pat)))
	return true;
    }

  return false;
}

/* Return true if the specified insn is a mova insn.  */
static bool
mova_p (rtx_insn *insn)
{
  return (NONJUMP_INSN_P (insn)
	  && GET_CODE (PATTERN (insn)) == SET
	  && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC
	  && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPEC_MOVA
	  /* Don't match mova_const.  */
	  && GET_CODE (MOVA_LABELREF (insn)) == LABEL_REF);
}

/* Fix up a mova from a switch that went out of range.  */
static void
fixup_mova (rtx_insn *mova)
{
  PUT_MODE (XEXP (MOVA_LABELREF (mova), 0), QImode);
  if (! flag_pic)
    {
      SET_SRC (PATTERN (mova)) = MOVA_LABELREF (mova);
      INSN_CODE (mova) = -1;
    }
  else
    {
      rtx_insn *worker = mova;
      rtx_code_label *lab = gen_label_rtx ();
      rtx wpat, wpat0, wpat1, wsrc, target, base, diff;

      do
	{
	  worker = NEXT_INSN (worker);
	  gcc_assert (worker
		      && !LABEL_P (worker)
		      && !JUMP_P (worker));
	} while (NOTE_P (worker)
		 || recog_memoized (worker) != CODE_FOR_casesi_worker_1);
      wpat = PATTERN (worker);
      wpat0 = XVECEXP (wpat, 0, 0);
      wpat1 = XVECEXP (wpat, 0, 1);
      wsrc = SET_SRC (wpat0);
      PATTERN (worker) = (gen_casesi_worker_2
			  (SET_DEST (wpat0), XVECEXP (wsrc, 0, 1),
			   XEXP (XVECEXP (wsrc, 0, 2), 0), lab,
			   XEXP (wpat1, 0)));
      INSN_CODE (worker) = -1;
      target = XVECEXP (SET_SRC (PATTERN (mova)), 0, 0);
      base = gen_rtx_LABEL_REF (Pmode, lab);
      diff = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, target, base), UNSPEC_SYMOFF);
      SET_SRC (PATTERN (mova)) = gen_rtx_CONST (Pmode, diff);
      INSN_CODE (mova) = -1;
    }
}

/* NEW_MOVA is a mova we've just encountered while scanning forward.  Update
   *num_mova, and check if the new mova is not nested within the first one.
   return 0 if *first_mova was replaced, 1 if new_mova was replaced,
   2 if new_mova has been assigned to *first_mova, -1 otherwise..  */
static int
untangle_mova (int *num_mova, rtx_insn **first_mova, rtx_insn *new_mova)
{
  int n_addr = 0; /* Initialization to shut up spurious warning.  */
  int f_target, n_target = 0; /* Likewise.  */

  if (optimize)
    {
      /* If NEW_MOVA has no address yet, it will be handled later.  */
      if (INSN_ADDRESSES_SIZE() <= (unsigned) INSN_UID (new_mova))
	return -1;

      n_addr = INSN_ADDRESSES (INSN_UID (new_mova));
      n_target = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (new_mova), 0)));
      if (n_addr > n_target || n_addr + 1022 < n_target)
	{
	  /* Change the mova into a load.
	     broken_move will then return true for it.  */
	  fixup_mova (new_mova);
	  return 1;
	}
    }
  if (!(*num_mova)++)
    {
      *first_mova = new_mova;
      return 2;
    }
  if (!optimize
      || ((f_target
	   = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (*first_mova), 0))))
	  >= n_target))
    return -1;

  (*num_mova)--;
  if (f_target - INSN_ADDRESSES (INSN_UID (*first_mova))
      > n_target - n_addr)
    {
      fixup_mova (*first_mova);
      return 0;
    }
  else
    {
      fixup_mova (new_mova);
      return 1;
    }
}

/* Find the last barrier from insn FROM which is close enough to hold the
   constant pool.  If we can't find one, then create one near the end of
   the range.  */
static rtx_insn *
find_barrier (int num_mova, rtx_insn *mova, rtx_insn *from)
{
  int count_si = 0;
  int count_hi = 0;
  int found_hi = 0;
  int found_si = 0;
  int hi_align = 2;
  int si_align = 2;
  int leading_mova = num_mova;
  rtx_insn *barrier_before_mova = NULL;
  rtx_insn *found_barrier = NULL;
  rtx_insn *good_barrier = NULL;
  int si_limit;
  int hi_limit;
  rtx_insn *orig = from;
  rtx_insn *last_got = NULL;
  rtx_insn *last_symoff = NULL;

  /* For HImode: range is 510, add 4 because pc counts from address of
     second instruction after this one, subtract 2 for the jump instruction
     that we may need to emit before the table, subtract 2 for the instruction
     that fills the jump delay slot (in very rare cases, reorg will take an
     instruction from after the constant pool or will leave the delay slot
     empty).  This gives 510.
     For SImode: range is 1020, add 4 because pc counts from address of
     second instruction after this one, subtract 2 in case pc is 2 byte
     aligned, subtract 2 for the jump instruction that we may need to emit
     before the table, subtract 2 for the instruction that fills the jump
     delay slot.  This gives 1018.  */

  /* The branch will always be shortened now that the reference address for
     forward branches is the successor address, thus we need no longer make
     adjustments to the [sh]i_limit for -O0.  */

  si_limit = 1018;
  hi_limit = 510;

  while (from && count_si < si_limit && count_hi < hi_limit)
    {
      int inc = get_attr_length (from);
      int new_align = 1;

      /* If this is a label that existed at the time of the compute_alignments
	 call, determine the alignment.  N.B.  When find_barrier recurses for
	 an out-of-reach mova, we might see labels at the start of previously
	 inserted constant tables.  */
      if (LABEL_P (from)
	  && CODE_LABEL_NUMBER (from) <= max_labelno_before_reorg)
	{
	  if (optimize)
	    new_align = 1 << label_to_alignment (from).levels[0].log;
	  else if (BARRIER_P (prev_nonnote_insn (from)))
	    new_align = 1 << barrier_align (from);
	  else
	    new_align = 1;
	  inc = 0;
	}
      /* In case we are scanning a constant table because of recursion, check
	 for explicit alignments.  If the table is long, we might be forced
	 to emit the new table in front of it; the length of the alignment
	 might be the last straw.  */
      else if (NONJUMP_INSN_P (from)
	       && GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE
	       && XINT (PATTERN (from), 1) == UNSPECV_ALIGN)
	new_align = INTVAL (XVECEXP (PATTERN (from), 0, 0));
      /* When we find the end of a constant table, paste the new constant
	 at the end.  That is better than putting it in front because
	 this way, we don't need extra alignment for adding a 4-byte-aligned
	 mov(a) label to a 2/4 or 8/4 byte aligned table.  */
      else if (NONJUMP_INSN_P (from)
	       && GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE
	       && XINT (PATTERN (from), 1) == UNSPECV_CONST_END)
	return from;

      if (BARRIER_P (from))
	{
	  rtx_insn *next;

	  found_barrier = from;

	  /* If we are at the end of the function, or in front of an alignment
	     instruction, we need not insert an extra alignment.  We prefer
	     this kind of barrier.  */
	  if (barrier_align (from) > 2)
	    good_barrier = from;

	  /* If we are at the end of a hot/cold block, dump the constants
	     here.  */
	  next = NEXT_INSN (from);
	  if (next
	      && NOTE_P (next)
	      && NOTE_KIND (next) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
	    break;
	}

      if (broken_move (from))
	{
	  rtx pat, src, dst;
	  machine_mode mode;

	  pat = PATTERN (from);
	  if (GET_CODE (pat) == PARALLEL)
	    pat = XVECEXP (pat, 0, 0);
	  src = SET_SRC (pat);
	  dst = SET_DEST (pat);
	  mode = GET_MODE (dst);

	  /* GOT pcrelat setting comes in pair of
	     mova	.L8,r0
	     mov.l	.L8,r12
	     instructions.  (plus add r0,r12).
	     Remember if we see one without the other.  */
	  if (GET_CODE (src) == UNSPEC && PIC_ADDR_P (XVECEXP (src, 0, 0)))
	    last_got = last_got ? NULL : from;
	  else if (PIC_ADDR_P (src))
	    last_got = last_got ? NULL : from;

	  /* We must explicitly check the mode, because sometimes the
	     front end will generate code to load unsigned constants into
	     HImode targets without properly sign extending them.  */
	  if (mode == HImode
	      || (mode == SImode && satisfies_constraint_I16 (src)
		  && REGNO (dst) != FPUL_REG))
	    {
	      found_hi += 2;
	      /* We put the short constants before the long constants, so
		 we must count the length of short constants in the range
		 for the long constants.  */
	      /* ??? This isn't optimal, but is easy to do.  */
	      si_limit -= 2;
	    }
	  else
	    {
	      /* We dump DF/DI constants before SF/SI ones, because
		 the limit is the same, but the alignment requirements
		 are higher.  We may waste up to 4 additional bytes
		 for alignment, and the DF/DI constant may have
		 another SF/SI constant placed before it.  */
	      while (si_align > 2 && found_si + si_align - 2 > count_si)
		si_align >>= 1;
	      if (found_si > count_si)
		count_si = found_si;
	      found_si += GET_MODE_SIZE (mode);
	      if (num_mova)
		si_limit -= GET_MODE_SIZE (mode);
	    }
	}

      if (mova_p (from))
	{
	  switch (untangle_mova (&num_mova, &mova, from))
	    {
	      case 1:
		if (flag_pic)
		  {
		    rtx src = SET_SRC (PATTERN (from));
		    if (GET_CODE (src) == CONST
			&& GET_CODE (XEXP (src, 0)) == UNSPEC
			&& XINT (XEXP (src, 0), 1) == UNSPEC_SYMOFF)
		      last_symoff = from;
		  }
		break;
	      case 0:	return find_barrier (0, 0, mova);
	      case 2:
		{
		  leading_mova = 0;
		  barrier_before_mova
		    = good_barrier ? good_barrier : found_barrier;
		}
	      default:	break;
	    }
	  if (found_si > count_si)
	    count_si = found_si;
	}
      else if (JUMP_TABLE_DATA_P (from)
	       && GET_CODE (PATTERN (from)) == ADDR_DIFF_VEC)
	{
	  if ((num_mova > 1 && GET_MODE (prev_nonnote_insn (from)) == VOIDmode)
	      || (num_mova
		  && (prev_nonnote_insn (from)
		      == XEXP (MOVA_LABELREF (mova), 0))))
	    num_mova--;
	  if (barrier_align (next_real_insn (from)) == align_jumps.levels[0].log)
	    {
	      /* We have just passed the barrier in front of the
		 ADDR_DIFF_VEC, which is stored in found_barrier.  Since
		 the ADDR_DIFF_VEC is accessed as data, just like our pool
		 constants, this is a good opportunity to accommodate what
		 we have gathered so far.
		 If we waited any longer, we could end up at a barrier in
		 front of code, which gives worse cache usage for separated
		 instruction / data caches.  */
	      good_barrier = found_barrier;
	      break;
	    }
	  else
	    {
	      rtx body = PATTERN (from);
	      inc = XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body));
	    }
	}
      /* For the SH1, we generate alignments even after jumps-around-jumps.  */
      else if (JUMP_P (from)
	       && ! TARGET_SH2
	       && ! optimize_size)
	new_align = 4;

      /* There is a possibility that a bf is transformed into a bf/s by the
	 delay slot scheduler.  */
      if (JUMP_P (from)
	  && get_attr_type (from) == TYPE_CBRANCH
	  && ! sequence_insn_p (from))
	inc += 2;

      if (found_si)
	{
	  count_si += inc;
	  if (new_align > si_align)
	    {
	      si_limit -= (count_si - 1) & (new_align - si_align);
	      si_align = new_align;
	    }
	  count_si = (count_si + new_align - 1) & -new_align;
	}
      if (found_hi)
	{
	  count_hi += inc;
	  if (new_align > hi_align)
	    {
	      hi_limit -= (count_hi - 1) & (new_align - hi_align);
	      hi_align = new_align;
	    }
	  count_hi = (count_hi + new_align - 1) & -new_align;
	}
      from = NEXT_INSN (from);
    }

  if (num_mova)
    {
      if (leading_mova)
	{
	  /* Try as we might, the leading mova is out of range.  Change
	     it into a load (which will become a pcload) and retry.  */
	  fixup_mova (mova);
	  return find_barrier (0, 0, mova);
	}
      else
	{
	  /* Insert the constant pool table before the mova instruction,
	     to prevent the mova label reference from going out of range.  */
	  from = mova;
	  good_barrier = found_barrier = barrier_before_mova;
	}
    }

  if (found_barrier)
    {
      if (good_barrier && next_real_insn (found_barrier))
	found_barrier = good_barrier;
    }
  else
    {
      /* We didn't find a barrier in time to dump our stuff,
	 so we'll make one.  */
      rtx_code_label *label = gen_label_rtx ();

      /* Don't emit a constant table in the middle of insns for
	 casesi_worker_2.  This is a bit overkill but is enough
	 because casesi_worker_2 wouldn't appear so frequently.  */
      if (last_symoff)
	from = last_symoff;

      /* If we exceeded the range, then we must back up over the last
	 instruction we looked at.  Otherwise, we just need to undo the
	 NEXT_INSN at the end of the loop.  */
      if (PREV_INSN (from) != orig
	  && (count_hi > hi_limit || count_si > si_limit))
	from = PREV_INSN (PREV_INSN (from));
      else
	from = PREV_INSN (from);

      /* Don't emit a constant table int the middle of global pointer setting,
	 since that that would move the addressing base GOT into another table. 
	 We need the first mov instruction before the _GLOBAL_OFFSET_TABLE_
	 in the pool anyway, so just move up the whole constant pool.

	 However, avoid doing so when the last single GOT mov is the starting
	 insn itself. Going past above the start insn would create a negative
	 offset, causing errors.  */
      if (last_got && last_got != orig)
        from = PREV_INSN (last_got);

      /* Don't insert the constant pool table at the position which
	 may be the landing pad.  */
      if (flag_exceptions
	  && CALL_P (from)
	  && find_reg_note (from, REG_EH_REGION, NULL_RTX))
	from = PREV_INSN (from);

      /* Walk back to be just before any jump or label.
	 Putting it before a label reduces the number of times the branch
	 around the constant pool table will be hit.  Putting it before
	 a jump makes it more likely that the bra delay slot will be
	 filled.  */
      while (NOTE_P (from) || JUMP_P (from) || LABEL_P (from))
	from = PREV_INSN (from);

      if (CALL_P (from))
	{
	  bool sibcall_p = SIBLING_CALL_P (from);

	  /* If FROM was a sibling call, then we know that control
	     will not return.  In fact, we were guaranteed to hit
	     a barrier before another real insn.

	     The jump around the constant pool is unnecessary.  It
	     costs space, but more importantly it confuses dwarf2cfi
	     generation.  */
	  if (sibcall_p)
	    return emit_barrier_after (from);
	}

      from = emit_jump_insn_after (gen_jump (label), from);
      JUMP_LABEL (from) = label;
      LABEL_NUSES (label) = 1;
      found_barrier = emit_barrier_after (from);
      emit_label_after (label, found_barrier);
    }

  return found_barrier;
}

/* If the instruction INSN is implemented by a special function, and we can
   positively find the register that is used to call the sfunc, and this
   register is not used anywhere else in this instruction - except as the
   destination of a set, return this register; else, return 0.  */
rtx
sfunc_uses_reg (rtx_insn *insn)
{
  int i;
  rtx pattern, part, reg_part, reg;

  if (!NONJUMP_INSN_P (insn))
    return NULL_RTX;
  pattern = PATTERN (insn);
  if (GET_CODE (pattern) != PARALLEL || get_attr_type (insn) != TYPE_SFUNC)
    return NULL_RTX;

  for (reg_part = NULL_RTX, i = XVECLEN (pattern, 0) - 1; i >= 1; i--)
    {
      part = XVECEXP (pattern, 0, i);
      if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == SImode)
	reg_part = part;
    }
  if (! reg_part)
    return NULL_RTX;
  reg = XEXP (reg_part, 0);
  for (int i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
    {
      part = XVECEXP (pattern, 0, i);
      if (part == reg_part || GET_CODE (part) == CLOBBER)
	continue;
      if (reg_mentioned_p (reg, ((GET_CODE (part) == SET
				  && REG_P (SET_DEST (part)))
				 ? SET_SRC (part) : part)))
	return NULL_RTX;
    }
  return reg;
}

/* See if the only way in which INSN uses REG is by calling it, or by
   setting it while calling it.  Set *SET to a SET rtx if the register
   is set by INSN.  */
static bool
noncall_uses_reg (rtx reg, rtx_insn *insn, rtx *set)
{
  *set = NULL_RTX;

  rtx reg2 = sfunc_uses_reg (insn);
  if (reg2 && REGNO (reg2) == REGNO (reg))
    {
      rtx pattern = single_set (insn);
      if (pattern
	  && REG_P (SET_DEST (pattern))
	  && REGNO (reg) == REGNO (SET_DEST (pattern)))
	*set = pattern;
      return false;
    }
  if (!CALL_P (insn))
    {
      /* We don't use rtx_equal_p because we don't care if the mode is
	 different.  */
      rtx pattern = single_set (insn);
      if (pattern
	  && REG_P (SET_DEST (pattern))
	  && REGNO (reg) == REGNO (SET_DEST (pattern)))
	{
	  rtx par, part;
	  int i;

	  *set = pattern;
	  par = PATTERN (insn);
	  if (GET_CODE (par) == PARALLEL)
	    for (i = XVECLEN (par, 0) - 1; i >= 0; i--)
	      {
		part = XVECEXP (par, 0, i);
		if (GET_CODE (part) != SET && reg_mentioned_p (reg, part))
		  return true;
	      }
	  return reg_mentioned_p (reg, SET_SRC (pattern));
	}

      return true;
    }

  rtx pattern = PATTERN (insn);

  if (GET_CODE (pattern) == PARALLEL)
    {
      for (int i = XVECLEN (pattern, 0) - 1; i >= 1; i--)
	if (reg_mentioned_p (reg, XVECEXP (pattern, 0, i)))
	  return true;
      pattern = XVECEXP (pattern, 0, 0);
    }

  if (GET_CODE (pattern) == SET)
    {
      if (reg_mentioned_p (reg, SET_DEST (pattern)))
	{
	  /* We don't use rtx_equal_p, because we don't care if the
	     mode is different.  */
	  if (!REG_P (SET_DEST (pattern))
	      || REGNO (reg) != REGNO (SET_DEST (pattern)))
	    return true;

	  *set = pattern;
	}

      pattern = SET_SRC (pattern);
    }

  if (GET_CODE (pattern) != CALL
      || !MEM_P (XEXP (pattern, 0))
      || ! rtx_equal_p (reg, XEXP (XEXP (pattern, 0), 0)))
    return true;

  return false;
}

/* Given a X, a pattern of an insn or a part of it, return a mask of used
   general registers.  Bits 0..15 mean that the respective registers
   are used as inputs in the instruction.  Bits 16..31 mean that the
   registers 0..15, respectively, are used as outputs, or are clobbered.
   IS_DEST should be set to 16 if X is the destination of a SET, else to 0.  */
int
regs_used (rtx x, int is_dest)
{
  enum rtx_code code;
  const char *fmt;
  int used = 0;

  if (! x)
    return used;
  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      if (REGNO (x) < 16)
	return (((1 << hard_regno_nregs (0, GET_MODE (x))) - 1)
		<< (REGNO (x) + is_dest));
      return 0;
    case SUBREG:
      {
	rtx y = SUBREG_REG (x);

	if (!REG_P (y))
	  break;
	if (REGNO (y) < 16)
	  return (((1 << hard_regno_nregs (0, GET_MODE (x))) - 1)
		  << (REGNO (y) +
		      subreg_regno_offset (REGNO (y),
					   GET_MODE (y),
					   SUBREG_BYTE (x),
					   GET_MODE (x)) + is_dest));
	return 0;
      }
    case SET:
      return regs_used (SET_SRC (x), 0) | regs_used (SET_DEST (x), 16);
    case RETURN:
      /* If there was a return value, it must have been indicated with USE.  */
      return 0x00ffff00;
    case CLOBBER:
      is_dest = 1;
      break;
    case MEM:
      is_dest = 0;
      break;
    case CALL:
      used |= 0x00ff00f0;
      break;
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);

  for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  for (int j = XVECLEN (x, i) - 1; j >= 0; j--)
	    used |= regs_used (XVECEXP (x, i, j), is_dest);
	}
      else if (fmt[i] == 'e')
	used |= regs_used (XEXP (x, i), is_dest);
    }
  return used;
}

/* Create an instruction that prevents redirection of a conditional branch
   to the destination of the JUMP with address ADDR.
   If the branch needs to be implemented as an indirect jump, try to find
   a scratch register for it.
   If NEED_BLOCK is 0, don't do anything unless we need a scratch register.
   If any preceding insn that doesn't fit into a delay slot is good enough,
   pass 1.  Pass 2 if a definite blocking insn is needed.
   -1 is used internally to avoid deep recursion.
   If a blocking instruction is made or recognized, return it.  */
static rtx_insn *
gen_block_redirect (rtx_insn *jump, int addr, int need_block)
{
  int dead = 0;
  rtx_insn *prev = prev_nonnote_insn (jump);

  /* First, check if we already have an instruction that satisfies our need.  */
  if (prev && NONJUMP_INSN_P (prev) && ! prev->deleted ())
    {
      if (INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch)
	return prev;
      if (GET_CODE (PATTERN (prev)) == USE
	  || GET_CODE (PATTERN (prev)) == CLOBBER
	  || get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES)
	prev = jump;
      else if ((need_block &= ~1) < 0)
	return prev;
      else if (recog_memoized (prev) == CODE_FOR_block_branch_redirect)
	need_block = 0;
    }
  if (GET_CODE (PATTERN (jump)) == RETURN)
    {
      if (! need_block)
	return prev;
      /* Reorg even does nasty things with return insns that cause branches
	 to go out of range - see find_end_label and callers.  */
      return emit_insn_before (gen_block_branch_redirect (const0_rtx) , jump);
    }
  /* We can't use JUMP_LABEL here because it might be undefined
     when not optimizing.  */
  rtx dest = XEXP (SET_SRC (PATTERN (jump)), 0);
  /* If the branch is out of range, try to find a scratch register for it.  */
  if (optimize
      && (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092
	  > 4092 + 4098))
    {
      rtx_insn *scan;
      /* Don't look for the stack pointer as a scratch register,
	 it would cause trouble if an interrupt occurred.  */
      unsigned attempt = 0x7fff, used;
      int jump_left = flag_expensive_optimizations + 1;

      /* It is likely that the most recent eligible instruction is wanted for
	 the delay slot.  Therefore, find out which registers it uses, and
	 try to avoid using them.  */

      for (scan = jump; (scan = PREV_INSN (scan)); )
	{
	  if (scan->deleted ())
	    continue;
	  rtx_code code = GET_CODE (scan);
	  if (code == CODE_LABEL || code == JUMP_INSN)
	    break;
	  if (code == INSN
	      && GET_CODE (PATTERN (scan)) != USE
	      && GET_CODE (PATTERN (scan)) != CLOBBER
	      && get_attr_in_delay_slot (scan) == IN_DELAY_SLOT_YES)
	    {
	      attempt &= ~regs_used (PATTERN (scan), 0);
	      break;
	    }
	}
      for (used = dead = 0, scan = JUMP_LABEL_AS_INSN (jump);
	   (scan = NEXT_INSN (scan)); )
	{
	  if (scan->deleted ())
	    continue;
	  rtx_code code = GET_CODE (scan);
	  if (INSN_P (scan))
	    {
	      used |= regs_used (PATTERN (scan), 0);
	      if (code == CALL_INSN)
		used |= regs_used (CALL_INSN_FUNCTION_USAGE (scan), 0);
	      dead |= (used >> 16) & ~used;
	      if (dead & attempt)
		{
		  dead &= attempt;
		  break;
		}
	      if (code == JUMP_INSN)
		{
		  if (jump_left-- && simplejump_p (scan))
		    scan = JUMP_LABEL_AS_INSN (scan);
		  else
		    break;
		}
	    }
	}
      /* Mask out the stack pointer again, in case it was
	 the only 'free' register we have found.  */
      dead &= 0x7fff;
    }
  /* If the immediate destination is still in range, check for possible
     threading with a jump beyond the delay slot insn.
     Don't check if we are called recursively; the jump has been or will be
     checked in a different invocation then.  */

  else if (optimize && need_block >= 0)
    {
      rtx_insn *next = next_active_insn (as_a<rtx_insn *> (dest));
      next = next_active_insn (next);
      if (next && JUMP_P (next)
	  && GET_CODE (PATTERN (next)) == SET
	  && recog_memoized (next) == CODE_FOR_jump_compact)
	{
	  dest = JUMP_LABEL (next);
	  if (dest
	      && (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092
		  > 4092 + 4098))
	    gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), -1);
	}
    }

  if (dead)
    {
      rtx reg = gen_rtx_REG (SImode, exact_log2 (dead & -dead));

      /* It would be nice if we could convert the jump into an indirect
	 jump / far branch right now, and thus exposing all constituent
	 instructions to further optimization.  However, reorg uses
	 simplejump_p to determine if there is an unconditional jump where
	 it should try to schedule instructions from the target of the
	 branch; simplejump_p fails for indirect jumps even if they have
	 a JUMP_LABEL.  */
      rtx_insn *insn = emit_insn_before (gen_indirect_jump_scratch
					 (reg, GEN_INT (unspec_bbr_uid++)),
					 jump);
      /* ??? We would like this to have the scope of the jump, but that
	 scope will change when a delay slot insn of an inner scope is added.
	 Hence, after delay slot scheduling, we'll have to expect
	 NOTE_INSN_BLOCK_END notes between the indirect_jump_scratch and
	 the jump.  */

      INSN_LOCATION (insn) = INSN_LOCATION (jump);
      INSN_CODE (insn) = CODE_FOR_indirect_jump_scratch;
      return insn;
    }
  else if (need_block)
    /* We can't use JUMP_LABEL here because it might be undefined
       when not optimizing.  */
    return emit_insn_before (gen_block_branch_redirect
			     (GEN_INT (unspec_bbr_uid++)),
			     jump);
  return prev;
}

#define CONDJUMP_MIN -252
#define CONDJUMP_MAX 262
struct far_branch
{
  /* A label (to be placed) in front of the jump
     that jumps to our ultimate destination.  */
  rtx_insn *near_label;
  /* Where we are going to insert it if we cannot move the jump any farther,
     or the jump itself if we have picked up an existing jump.  */
  rtx_insn *insert_place;
  /* The ultimate destination.  */
  rtx_insn *far_label;
  struct far_branch *prev;
  /* If the branch has already been created, its address;
     else the address of its first prospective user.  */
  int address;
};

enum mdep_reorg_phase_e mdep_reorg_phase;

static void
gen_far_branch (struct far_branch *bp)
{
  rtx_insn *insn = bp->insert_place;
  rtx_jump_insn *jump;
  rtx_code_label *label = gen_label_rtx ();

  emit_label_after (label, insn);
  if (bp->far_label)
    {
      jump = emit_jump_insn_after (gen_jump (bp->far_label), insn);
      LABEL_NUSES (bp->far_label)++;
    }
  else
    jump = emit_jump_insn_after (gen_return (), insn);

  /* Emit a barrier so that reorg knows that any following instructions
     are not reachable via a fall-through path.
     But don't do this when not optimizing, since we wouldn't suppress the
     alignment for the barrier then, and could end up with out-of-range
     pc-relative loads.  */
  if (optimize)
    emit_barrier_after (jump);
  emit_label_after (bp->near_label, insn);

  if (bp->far_label)
    JUMP_LABEL (jump) = bp->far_label;
  else
    {
      rtx pat = PATTERN (jump);
      gcc_assert (ANY_RETURN_P (pat));
      JUMP_LABEL (jump) = pat;
    }

  bool ok = invert_jump (as_a <rtx_jump_insn *> (insn), label, 1);
  gcc_assert (ok);

  /* If we are branching around a jump (rather than a return), prevent
     reorg from using an insn from the jump target as the delay slot insn -
     when reorg did this, it pessimized code (we rather hide the delay slot)
     and it could cause branches to go out of range.  */
  if (bp->far_label)
    (emit_insn_after
     (gen_stuff_delay_slot
      (GEN_INT (unspec_bbr_uid++),
       GEN_INT (recog_memoized (insn) == CODE_FOR_branch_false)),
      insn));
  /* Prevent reorg from undoing our splits.  */
  gen_block_redirect (jump, bp->address += 2, 2);
}

/* Fix up ADDR_DIFF_VECs.  */
void
fixup_addr_diff_vecs (rtx_insn *first)
{
  rtx_insn *insn;

  for (insn = first; insn; insn = NEXT_INSN (insn))
    {
      rtx vec_lab, pat, prevpat, x, braf_label;
      rtx_insn *prev;

      if (! JUMP_TABLE_DATA_P (insn)
	  || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
	continue;
      pat = PATTERN (insn);
      vec_lab = XEXP (XEXP (pat, 0), 0);

      /* Search the matching casesi_jump_2.  */
      for (prev = as_a <rtx_insn *> (vec_lab); ; prev = PREV_INSN (prev))
	{
	  if (!JUMP_P (prev))
	    continue;
	  prevpat = PATTERN (prev);
	  if (GET_CODE (prevpat) != PARALLEL || XVECLEN (prevpat, 0) != 2)
	    continue;
	  x = XVECEXP (prevpat, 0, 1);
	  if (GET_CODE (x) != USE)
	    continue;
	  x = XEXP (x, 0);
	  if (GET_CODE (x) == LABEL_REF && XEXP (x, 0) == vec_lab)
	    break;
	}
      /* FIXME: This is a bug in the optimizer, but it seems harmless
	 to just avoid panicing.  */
      if (!prev)
	continue;

      /* Emit the reference label of the braf where it belongs, right after
	 the casesi_jump_2 (i.e. braf).  */
      braf_label = XEXP (XEXP (SET_SRC (XVECEXP (prevpat, 0, 0)), 1), 0);
      emit_label_after (as_a <rtx_insn *> (braf_label), prev);

      /* Fix up the ADDR_DIF_VEC to be relative
	 to the reference address of the braf.  */
      XEXP (XEXP (pat, 0), 0) = braf_label;
    }
}

/* BARRIER_OR_LABEL is either a BARRIER or a CODE_LABEL immediately following
   a barrier.  Return the base 2 logarithm of the desired alignment.  */
int
barrier_align (rtx_insn *barrier_or_label)
{
  if (! barrier_or_label)
    return 0;

  if (LABEL_P (barrier_or_label)
      && NEXT_INSN (barrier_or_label)
      && JUMP_TABLE_DATA_P (NEXT_INSN (barrier_or_label)))
    return 2;

  if (BARRIER_P (barrier_or_label)
      && PREV_INSN (barrier_or_label)
      && JUMP_TABLE_DATA_P (PREV_INSN (barrier_or_label)))
    {
      rtx pat = PATTERN (PREV_INSN (barrier_or_label));
      /* If this is a very small table, we want to keep the alignment after
	 the table to the minimum for proper code alignment.  */
      return ((optimize_size
	       || ((unsigned) XVECLEN (pat, 1) * GET_MODE_SIZE (GET_MODE (pat))
		   <= (unsigned) 1 << (CACHE_LOG - 2)))
	      ? 1 : align_jumps.levels[0].log);
    }

  rtx_insn *next = next_active_insn (barrier_or_label);

  if (! next)
    return 0;

  rtx pat = PATTERN (next);

  if (GET_CODE (pat) == UNSPEC_VOLATILE && XINT (pat, 1) == UNSPECV_ALIGN)
    /* This is a barrier in front of a constant table.  */
    return 0;

  if (optimize_size)
    return 0;

  if (! TARGET_SH2 || ! optimize)
    return align_jumps.levels[0].log;

  /* When fixing up pcloads, a constant table might be inserted just before
     the basic block that ends with the barrier.  Thus, we can't trust the
     instruction lengths before that.  */
  if (mdep_reorg_phase > SH_FIXUP_PCLOAD)
    {
      /* Check if there is an immediately preceding branch to the insn beyond
	 the barrier.  We must weight the cost of discarding useful information
	 from the current cache line when executing this branch and there is
	 an alignment, against that of fetching unneeded insn in front of the
	 branch target when there is no alignment.  */

      /* There are two delay_slot cases to consider.  One is the simple case
	 where the preceding branch is to the insn beyond the barrier (simple
	 delay slot filling), and the other is where the preceding branch has
	 a delay slot that is a duplicate of the insn after the barrier
	 (fill_eager_delay_slots) and the branch is to the insn after the insn
	 after the barrier.  */

      int slot, credit;
      bool jump_to_next = false;

      /* Skip to the insn before the JUMP_INSN before the barrier under
	 investigation.  */
      rtx_insn *prev = prev_real_insn (prev_active_insn (barrier_or_label));

      for (slot = 2, credit = (1 << (CACHE_LOG - 2)) + 2;
	   credit >= 0 && prev && NONJUMP_INSN_P (prev);
	   prev = prev_real_insn (prev))
	{
	  jump_to_next = false;
	  if (GET_CODE (PATTERN (prev)) == USE
	      || GET_CODE (PATTERN (prev)) == CLOBBER)
	    continue;
	  if (rtx_sequence *prev_seq = dyn_cast <rtx_sequence *> (PATTERN (prev)))
	    {
	      prev = prev_seq->insn (1);
	      if (INSN_UID (prev) == INSN_UID (next))
		{
	  	  /* Delay slot was filled with insn at jump target.  */
		  jump_to_next = true;
		  continue;
  		}
	    }

	  if (slot &&
	      get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES)
	    slot = 0;
	  credit -= get_attr_length (prev);
	}
      if (prev && jump_to_label_p (prev))
	{
	  rtx_insn *x;
	  if (jump_to_next
	      || next_real_insn (JUMP_LABEL_AS_INSN (prev)) == next
	      /* If relax_delay_slots() decides NEXT was redundant
		 with some previous instruction, it will have
		 redirected PREV's jump to the following insn.  */
	      || JUMP_LABEL (prev) == next_nonnote_insn (next)
	      /* There is no upper bound on redundant instructions
		 that might have been skipped, but we must not put an
		 alignment where none had been before.  */
	      || (x = (NEXT_INSN (NEXT_INSN (PREV_INSN (prev)))),
		  (INSN_P (x)
		   && (INSN_CODE (x) == CODE_FOR_block_branch_redirect
		       || INSN_CODE (x) == CODE_FOR_indirect_jump_scratch
		       || INSN_CODE (x) == CODE_FOR_stuff_delay_slot))))
	    {
	      rtx pat = PATTERN (prev);
	      if (GET_CODE (pat) == PARALLEL)
		pat = XVECEXP (pat, 0, 0);
	      if (credit - slot >= (GET_CODE (SET_SRC (pat)) == PC ? 2 : 0))
		return 0;
	    }
	}
    }

  return align_jumps.levels[0].log;
}

/* If we are inside a phony loop, almost any kind of label can turn up as the
   first one in the loop.  Aligning a braf label causes incorrect switch
   destination addresses; we can detect braf labels because they are
   followed by a BARRIER.
   Applying loop alignment to small constant or switch tables is a waste
   of space, so we suppress this too.  */
int
sh_loop_align (rtx_insn *label)
{
  rtx_insn *next = label;

  if (! optimize || optimize_size)
    return 0;

  do
    next = next_nonnote_insn (next);
  while (next && LABEL_P (next));

  if (! next
      || ! INSN_P (next)
      || recog_memoized (next) == CODE_FOR_consttable_2)
    return 0;

  return align_loops.levels[0].log;
}

/* Do a final pass over the function, just before delayed branch
   scheduling.  */
static void
sh_reorg (void)
{
  rtx_insn *first, *insn, *mova = NULL;
  int num_mova;
  rtx r0_rtx = gen_rtx_REG (Pmode, 0);
  rtx r0_inc_rtx = gen_rtx_POST_INC (Pmode, r0_rtx);

  first = get_insns ();
  max_labelno_before_reorg = max_label_num ();

  /* We must split call insns before introducing `mova's.  If we're
     optimizing, they'll have already been split.  Otherwise, make
     sure we don't split them too late.  */
  if (! optimize)
    split_all_insns_noflow ();

  /* If relaxing, generate pseudo-ops to associate function calls with
     the symbols they call.  It does no harm to not generate these
     pseudo-ops.  However, when we can generate them, it enables the
     linker to potentially relax the jsr to a bsr, and eliminate the
     register load and, possibly, the constant pool entry.  */

  mdep_reorg_phase = SH_INSERT_USES_LABELS;
  if (TARGET_RELAX)
    {
      /* Remove all REG_LABEL_OPERAND notes.  We want to use them for our
	 own purposes.  This works because none of the remaining passes
	 need to look at them.

	 ??? But it may break in the future.  We should use a machine
	 dependent REG_NOTE, or some other approach entirely.  */
      for (insn = first; insn; insn = NEXT_INSN (insn))
	{
	  if (INSN_P (insn))
	    {
	      rtx note;

	      while ((note = find_reg_note (insn, REG_LABEL_OPERAND,
					    NULL_RTX)) != 0)
		remove_note (insn, note);
	    }
	}

      for (insn = first; insn; insn = NEXT_INSN (insn))
	{
	  rtx pattern, reg, set, dies;
	  rtx_code_label *label;
	  rtx_insn *link, *scan;
	  int rescan = 0, foundinsn = 0;

	  if (CALL_P (insn))
	    {
	      pattern = PATTERN (insn);

	      if (GET_CODE (pattern) == PARALLEL)
		pattern = XVECEXP (pattern, 0, 0);
	      if (GET_CODE (pattern) == SET)
		pattern = SET_SRC (pattern);

	      if (GET_CODE (pattern) != CALL
		  || !MEM_P (XEXP (pattern, 0)))
		continue;

	      reg = XEXP (XEXP (pattern, 0), 0);
	    }
	  else
	    {
	      reg = sfunc_uses_reg (insn);
	      if (! reg)
		continue;
	    }

	  if (!REG_P (reg))
	    continue;

	  /* Try scanning backward to find where the register is set.  */
	  link = NULL;
	  for (scan = PREV_INSN (insn);
	       scan && !LABEL_P (scan);
	       scan = PREV_INSN (scan))
	    {
	      if (! INSN_P (scan))
		continue;

	      if (! reg_mentioned_p (reg, scan))
		continue;

	      if (noncall_uses_reg (reg, scan, &set))
		break;

	      if (set)
		{
		  link = scan;
		  break;
		}
	    }

	  if (! link)
	    continue;

	  /* The register is set at LINK.  */

	  /* We can only optimize the function call if the register is
	     being set to a symbol.  In theory, we could sometimes
	     optimize calls to a constant location, but the assembler
	     and linker do not support that at present.  */
	  if (GET_CODE (SET_SRC (set)) != SYMBOL_REF
	      && GET_CODE (SET_SRC (set)) != LABEL_REF)
	    continue;

	  /* Scan forward from LINK to the place where REG dies, and
	     make sure that the only insns which use REG are
	     themselves function calls.  */

	  /* ??? This doesn't work for call targets that were allocated
	     by reload, since there may not be a REG_DEAD note for the
	     register.  */

	  dies = NULL_RTX;
	  for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan))
	    {
	      rtx scanset;

	      /* Don't try to trace forward past a CODE_LABEL if we haven't
		 seen INSN yet.  Ordinarily, we will only find the setting insn
		 if it is in the same basic block.  However,
		 cross-jumping can insert code labels in between the load and
		 the call, and can result in situations where a single call
		 insn may have two targets depending on where we came from.  */

	      if (LABEL_P (scan) && ! foundinsn)
		break;

	      if (! INSN_P (scan))
		continue;

	      /* Don't try to trace forward past a JUMP.  To optimize
		 safely, we would have to check that all the
		 instructions at the jump destination did not use REG.  */

	      if (JUMP_P (scan))
		break;

	      if (! reg_mentioned_p (reg, scan))
		continue;

	      if (noncall_uses_reg (reg, scan, &scanset))
		break;

	      if (scan == insn)
		foundinsn = 1;

	      if (scan != insn
		  && (CALL_P (scan) || sfunc_uses_reg (scan)))
		{
		  /* There is a function call to this register other
		     than the one we are checking.  If we optimize
		     this call, we need to rescan again below.  */
		  rescan = 1;
		}

	      /* ??? We shouldn't have to worry about SCANSET here.
		 We should just be able to check for a REG_DEAD note
		 on a function call.  However, the REG_DEAD notes are
		 apparently not dependable around libcalls; c-torture
		 execute/920501-2 is a test case.  If SCANSET is set,
		 then this insn sets the register, so it must have
		 died earlier.  Unfortunately, this will only handle
		 the cases in which the register is, in fact, set in a
		 later insn.  */

	      /* ??? We shouldn't have to use FOUNDINSN here.
		 This dates back to when we used LOG_LINKS to find 
		 the most recent insn which sets the register.  */

	      if (foundinsn
		  && (scanset
		      || find_reg_note (scan, REG_DEAD, reg)))
		{
		  dies = scan;
		  break;
		}
	    }

	  if (! dies)
	    {
	      /* Either there was a branch, or some insn used REG
		 other than as a function call address.  */
	      continue;
	    }

	  /* Create a code label, and put it in a REG_LABEL_OPERAND note
	     on the insn which sets the register, and on each call insn
	     which uses the register.  In final_prescan_insn we look for
	     the REG_LABEL_OPERAND notes, and output the appropriate label
	     or pseudo-op.  */

	  label = gen_label_rtx ();
	  add_reg_note (link, REG_LABEL_OPERAND, label);
	  add_reg_note (insn, REG_LABEL_OPERAND, label);
	  if (rescan)
	    {
	      scan = link;
	      do
		{
		  rtx reg2;

		  scan = NEXT_INSN (scan);
		  if (scan != insn
		      && ((CALL_P (scan)
			   && reg_mentioned_p (reg, scan))
			  || ((reg2 = sfunc_uses_reg (scan))
			      && REGNO (reg2) == REGNO (reg))))
		    add_reg_note (scan, REG_LABEL_OPERAND, label);
		}
	      while (scan != dies);
	    }
	}
    }

  if (TARGET_SH2)
    fixup_addr_diff_vecs (first);

  if (optimize)
    {
      mdep_reorg_phase = SH_SHORTEN_BRANCHES0;
      shorten_branches (first);
    }

  /* Scan the function looking for move instructions which have to be
     changed to pc-relative loads and insert the literal tables.  */
  mdep_reorg_phase = SH_FIXUP_PCLOAD;
  for (insn = first, num_mova = 0; insn; insn = NEXT_INSN (insn))
    {
      if (mova_p (insn))
	{
	  /* ??? basic block reordering can move a switch table dispatch
	     below the switch table.  Check if that has happened.
	     We only have the addresses available when optimizing; but then,
	     this check shouldn't be needed when not optimizing.  */
	  if (!untangle_mova (&num_mova, &mova, insn))
	    {
	      insn = mova;
	      num_mova = 0;
	    }
	}
      else if (JUMP_TABLE_DATA_P (insn)
	       && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
	       && num_mova
	       /* ??? loop invariant motion can also move a mova out of a
		  loop.  Since loop does this code motion anyway, maybe we
		  should wrap UNSPEC_MOVA into a CONST, so that reload can
		  move it back.  */
	       && ((num_mova > 1
		    && GET_MODE (prev_nonnote_insn (insn)) == VOIDmode)
		   || (prev_nonnote_insn (insn)
		       == XEXP (MOVA_LABELREF (mova), 0))))
	{
	  rtx_insn *scan;
	  int total;

	  num_mova--;

	  /* Some code might have been inserted between the mova and
	     its ADDR_DIFF_VEC.  Check if the mova is still in range.  */
	  for (scan = mova, total = 0; scan != insn; scan = NEXT_INSN (scan))
	    total += get_attr_length (scan);

	  /* range of mova is 1020, add 4 because pc counts from address of
	     second instruction after this one, subtract 2 in case pc is 2
	     byte aligned.  Possible alignment needed for the ADDR_DIFF_VEC
	     cancels out with alignment effects of the mova itself.  */
	  if (total > 1022)
	    {
	      /* Change the mova into a load, and restart scanning
		 there.  broken_move will then return true for mova.  */
	      fixup_mova (mova);
	      insn = mova;
	    }
	}
      if (broken_move (insn)
	  || (NONJUMP_INSN_P (insn)
	      && recog_memoized (insn) == CODE_FOR_casesi_worker_2))
	{
	  rtx_insn *scan;
	  /* Scan ahead looking for a barrier to stick the constant table
	     behind.  */
	  rtx_insn *barrier = find_barrier (num_mova, mova, insn);
	  rtx_insn *last_float_move = NULL;
	  rtx last_float = 0, *last_float_addr = NULL;
	  int need_aligned_label = 0;

	  if (num_mova && ! mova_p (mova))
	    {
	      /* find_barrier had to change the first mova into a
		 pcload; thus, we have to start with this new pcload.  */
	      insn = mova;
	      num_mova = 0;
	    }
	  /* Now find all the moves between the points and modify them.  */
	  for (scan = insn; scan != barrier; scan = NEXT_INSN (scan))
	    {
	      if (LABEL_P (scan))
		last_float = 0;
	      if (NONJUMP_INSN_P (scan)
		  && recog_memoized (scan) == CODE_FOR_casesi_worker_2)
		need_aligned_label = 1;
	      if (broken_move (scan))
		{
		  rtx *patp = &PATTERN (scan), pat = *patp;
		  rtx src, dst;
		  rtx lab;
		  rtx newsrc;
		  machine_mode mode;

		  if (GET_CODE (pat) == PARALLEL)
		    patp = &XVECEXP (pat, 0, 0), pat = *patp;
		  src = SET_SRC (pat);
		  dst = SET_DEST (pat);
		  mode = GET_MODE (dst);

		  if (mode == SImode && satisfies_constraint_I16 (src)
		      && REGNO (dst) != FPUL_REG)
		    {
		      int offset = 0;

		      mode = HImode;
		      while (GET_CODE (dst) == SUBREG)
			{
			  offset += subreg_regno_offset (REGNO (SUBREG_REG (dst)),
							 GET_MODE (SUBREG_REG (dst)),
							 SUBREG_BYTE (dst),
							 GET_MODE (dst));
			  dst = SUBREG_REG (dst);
			}
		      dst = gen_rtx_REG (HImode, REGNO (dst) + offset);
		    }
		  if (REG_P (dst) && FP_ANY_REGISTER_P (REGNO (dst)))
		    {
		      /* This must be an insn that clobbers r0.  */
		      rtx *clobberp = &XVECEXP (PATTERN (scan), 0,
						XVECLEN (PATTERN (scan), 0)
						- 1);
		      rtx clobber = *clobberp;

		      gcc_assert (GET_CODE (clobber) == CLOBBER
				  && rtx_equal_p (XEXP (clobber, 0), r0_rtx));

		      if (last_float
			  && reg_set_between_p (r0_rtx, last_float_move, scan))
			last_float = 0;
		      lab = add_constant (src, mode, last_float);
		      if (lab)
			emit_insn_before (gen_mova (lab), scan);
		      else
			{
			  /* There will be a REG_UNUSED note for r0 on
			     LAST_FLOAT_MOVE; we have to change it to REG_INC,
			     lest reorg:mark_target_live_regs will not
			     consider r0 to be used, and we end up with delay
			     slot insn in front of SCAN that clobbers r0.  */
			  rtx note
			    = find_regno_note (last_float_move, REG_UNUSED, 0);

			  /* If we are not optimizing, then there may not be
			     a note.  */
			  if (note)
			    PUT_REG_NOTE_KIND (note, REG_INC);

			  *last_float_addr = r0_inc_rtx;
			}
		      last_float_move = scan;
		      last_float = src;
		      newsrc = gen_const_mem (mode,
					(((TARGET_SH4 && ! TARGET_FMOVD)
					  || REGNO (dst) == FPUL_REG)
					 ? r0_inc_rtx
					 : r0_rtx));
		      last_float_addr = &XEXP (newsrc, 0);

		      /* Remove the clobber of r0.  */
		      *clobberp = gen_rtx_CLOBBER (GET_MODE (clobber),
						   gen_rtx_SCRATCH (Pmode));
		    }
		  /* This is a mova needing a label.  Create it.  */
		  else if (GET_CODE (src) == UNSPEC
			   && XINT (src, 1) == UNSPEC_MOVA
			   && GET_CODE (XVECEXP (src, 0, 0)) == CONST)
		    {
		      lab = add_constant (XVECEXP (src, 0, 0), mode, 0);
		      newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
		      newsrc = gen_rtx_UNSPEC (SImode,
					       gen_rtvec (1, newsrc),
					       UNSPEC_MOVA);
		    }
		  else if (GET_CODE (src) == UNSPEC_VOLATILE
			   && XINT (src, 1) == UNSPECV_SP_SWITCH_B)
		    {
		      newsrc = XVECEXP (src, 0, 0);
		      XVECEXP (src, 0, 0) = gen_const_mem (mode, newsrc);
		      INSN_CODE (scan) = -1;
		      continue;
		    }
		  else
		    {
		      lab = add_constant (src, mode, 0);
		      newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
		      newsrc = gen_const_mem (mode, newsrc);
		    }
		  *patp = gen_rtx_SET (dst, newsrc);
		  INSN_CODE (scan) = -1;
		}
	    }
	  dump_table (need_aligned_label ? insn : 0, barrier);
	  insn = barrier;
	}
    }
  label_ref_list_d_pool.release ();
  for (insn = first; insn; insn = NEXT_INSN (insn))
    PUT_MODE (insn, VOIDmode);

  mdep_reorg_phase = SH_SHORTEN_BRANCHES1;
  INSN_ADDRESSES_FREE ();
  split_branches (first);

  /* The INSN_REFERENCES_ARE_DELAYED in sh.h is problematic because it
     also has an effect on the register that holds the address of the sfunc.
     Insert an extra dummy insn in front of each sfunc that pretends to
     use this register.  */
  if (flag_delayed_branch)
    {
      for (insn = first; insn; insn = NEXT_INSN (insn))
	{
	  rtx reg = sfunc_uses_reg (insn);

	  if (! reg)
	    continue;
	  emit_insn_before (gen_use_sfunc_addr (reg), insn);
	}
    }
  mdep_reorg_phase = SH_AFTER_MDEP_REORG;
}

/* Return the UID of the insn that follows the specified label.  */
int
get_dest_uid (rtx_insn *label, int max_uid)
{
  rtx_insn *dest = next_real_insn (label);

  if (! dest)
    /* This can happen for an undefined label.  */
    return 0;
  int dest_uid = INSN_UID (dest);
  /* If this is a newly created branch redirection blocking instruction,
     we cannot index the branch_uid or insn_addresses arrays with its
     uid.  But then, we won't need to, because the actual destination is
     the following branch.  */
  while (dest_uid >= max_uid)
    {
      dest = NEXT_INSN (dest);
      dest_uid = INSN_UID (dest);
    }
  if (JUMP_P (dest) && GET_CODE (PATTERN (dest)) == RETURN)
    return 0;
  return dest_uid;
}

/* Split condbranches that are out of range.  Also add clobbers for
   scratch registers that are needed in far jumps.
   We do this before delay slot scheduling, so that it can take our
   newly created instructions into account.  It also allows us to
   find branches with common targets more easily.  */
static void
split_branches (rtx_insn *first)
{
  rtx_insn *insn;
  struct far_branch **uid_branch, *far_branch_list = 0;
  int max_uid = get_max_uid ();
  int ok;

  /* Find out which branches are out of range.  */
  shorten_branches (first);

  uid_branch = (struct far_branch **) alloca (max_uid * sizeof *uid_branch);
  memset ((char *) uid_branch, 0, max_uid * sizeof *uid_branch);

  for (insn = first; insn; insn = NEXT_INSN (insn))
    if (! INSN_P (insn))
      continue;
    else if (insn->deleted ())
      {
	/* Shorten_branches would split this instruction again,
	   so transform it into a note.  */
	SET_INSN_DELETED (insn);
      }
    else if (JUMP_P (insn))
      {
	enum attr_type type = get_attr_type (insn);
	if (type == TYPE_CBRANCH)
	  {
	    rtx_insn *next, *beyond;

	    if (get_attr_length (insn) > 4)
	      {
		rtx src = SET_SRC (PATTERN (insn));
		rtx_insn *olabel = safe_as_a <rtx_insn *> (XEXP (XEXP (src, 1), 0));
		int addr = INSN_ADDRESSES (INSN_UID (insn));
		rtx_insn *label = 0;
		int dest_uid = get_dest_uid (olabel, max_uid);
		struct far_branch *bp = uid_branch[dest_uid];

		/* redirect_jump needs a valid JUMP_LABEL, and it might delete
		   the label if the LABEL_NUSES count drops to zero.  There is
		   always a jump_optimize pass that sets these values, but it
		   proceeds to delete unreferenced code, and then if not
		   optimizing, to un-delete the deleted instructions, thus
		   leaving labels with too low uses counts.  */
		if (! optimize)
		  {
		    JUMP_LABEL (insn) = olabel;
		    LABEL_NUSES (olabel)++;
		  }
		if (! bp)
		  {
		    bp = (struct far_branch *) alloca (sizeof *bp);
		    uid_branch[dest_uid] = bp;
		    bp->prev = far_branch_list;
		    far_branch_list = bp;
		    bp->far_label = as_a <rtx_insn *> (
				      XEXP (XEXP (SET_SRC (PATTERN (insn)), 1),
					    0));
		    LABEL_NUSES (bp->far_label)++;
		  }
		else
		  {
		    label = bp->near_label;
		    if (! label && bp->address - addr >= CONDJUMP_MIN)
		      {
			rtx_insn *block = bp->insert_place;

			if (GET_CODE (PATTERN (block)) == RETURN)
			  block = PREV_INSN (block);
			else
			  block = gen_block_redirect (block,
						      bp->address, 2);
			label = emit_label_after (gen_label_rtx (),
						  PREV_INSN (block));
			bp->near_label = label;
		      }
		    else if (label && ! NEXT_INSN (label))
		      {
			if (addr + 2 - bp->address <= CONDJUMP_MAX)
			  bp->insert_place = insn;
			else
			  gen_far_branch (bp);
		      }
		  }
		if (! label
		    || (NEXT_INSN (label) && bp->address - addr < CONDJUMP_MIN))
		  {
		    bp->near_label = label = gen_label_rtx ();
		    bp->insert_place = insn;
		    bp->address = addr;
		  }
		ok = redirect_jump (as_a <rtx_jump_insn *> (insn), label, 0);
		gcc_assert (ok);
	      }
	    else
	      {
		/* get_attr_length (insn) == 2 */
		/* Check if we have a pattern where reorg wants to redirect
		   the branch to a label from an unconditional branch that
		   is too far away.  */
		/* We can't use JUMP_LABEL here because it might be undefined
		   when not optimizing.  */
		/* A syntax error might cause beyond to be NULL_RTX.  */
		rtx temp = XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0);
		beyond = next_active_insn (as_a<rtx_insn *> (temp));

		if (beyond
		    && (JUMP_P (beyond)
			|| ((beyond = next_active_insn (beyond))
			    && JUMP_P (beyond)))
		    && GET_CODE (PATTERN (beyond)) == SET
		    && recog_memoized (beyond) == CODE_FOR_jump_compact
		    && ((INSN_ADDRESSES
			 (INSN_UID (XEXP (SET_SRC (PATTERN (beyond)), 0)))
			 - INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252)
			> 252 + 258 + 2))
		  gen_block_redirect (beyond,
				      INSN_ADDRESSES (INSN_UID (beyond)), 1);
	      }

	    next = next_active_insn (insn);

	    if (next
		&& (JUMP_P (next)
		    || ((next = next_active_insn (next))
			&& JUMP_P (next)))
		&& GET_CODE (PATTERN (next)) == SET
		&& recog_memoized (next) == CODE_FOR_jump_compact
		&& ((INSN_ADDRESSES
		     (INSN_UID (XEXP (SET_SRC (PATTERN (next)), 0)))
		     - INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252)
		    > 252 + 258 + 2))
	      gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), 1);
	  }
	else if (type == TYPE_JUMP || type == TYPE_RETURN)
	  {
	    int addr = INSN_ADDRESSES (INSN_UID (insn));
	    rtx_insn *far_label = 0;
	    int dest_uid = 0;
	    struct far_branch *bp;

	    if (type == TYPE_JUMP)
	      {
		if (CROSSING_JUMP_P (insn))
		  {
		    emit_insn_before (gen_block_branch_redirect (const0_rtx),
				      insn);
		    continue;
		  }

		far_label = as_a <rtx_insn *> (
			      XEXP (SET_SRC (PATTERN (insn)), 0));
		dest_uid = get_dest_uid (far_label, max_uid);
		if (! dest_uid)
		  {
		    /* Parse errors can lead to labels outside
		      the insn stream.  */
		    if (! NEXT_INSN (far_label))
		      continue;

		    if (! optimize)
		      {
			JUMP_LABEL (insn) = far_label;
			LABEL_NUSES (far_label)++;
		      }
		    redirect_jump (as_a <rtx_jump_insn *> (insn), ret_rtx, 1);
		    far_label = 0;
		  }
	      }
	    bp = uid_branch[dest_uid];
	    if (! bp)
	      {
		bp = (struct far_branch *) alloca (sizeof *bp);
		uid_branch[dest_uid] = bp;
		bp->prev = far_branch_list;
		far_branch_list = bp;
		bp->near_label = 0;
		bp->far_label = far_label;
		if (far_label)
		  LABEL_NUSES (far_label)++;
	      }
	    else if (bp->near_label && ! NEXT_INSN (bp->near_label))
	      if (addr - bp->address <= CONDJUMP_MAX)
		emit_label_after (bp->near_label, PREV_INSN (insn));
	      else
		{
		  gen_far_branch (bp);
		  bp->near_label = 0;
		}
	    else
	      bp->near_label = 0;
	    bp->address = addr;
	    bp->insert_place = insn;
	    if (! far_label)
	      emit_insn_before (gen_block_branch_redirect (const0_rtx), insn);
	    else
	      gen_block_redirect (insn, addr, bp->near_label ? 2 : 0);
	  }
      }
  /* Generate all pending far branches,
     and free our references to the far labels.  */
  while (far_branch_list)
    {
      if (far_branch_list->near_label
	  && ! NEXT_INSN (far_branch_list->near_label))
	gen_far_branch (far_branch_list);
      if (optimize
	  && far_branch_list->far_label
	  && ! --LABEL_NUSES (far_branch_list->far_label))
	delete_insn (far_branch_list->far_label);
      far_branch_list = far_branch_list->prev;
    }

  /* Instruction length information is no longer valid due to the new
     instructions that have been generated.  */
  init_insn_lengths ();
}

/* Dump out instruction addresses, which is useful for debugging the
   constant pool table stuff.

   If relaxing, output the label and pseudo-ops used to link together
   calls and the instruction which set the registers.

   ??? The addresses printed by this routine for insns are nonsense for
   insns which are inside of a sequence where none of the inner insns have
   variable length.  This is because the second pass of shorten_branches
   does not bother to update them.  */
void
final_prescan_insn (rtx_insn *insn, rtx *opvec ATTRIBUTE_UNUSED,
		    int noperands ATTRIBUTE_UNUSED)
{
  if (TARGET_DUMPISIZE)
    fprintf (asm_out_file, "\n! at %04x\n", INSN_ADDRESSES (INSN_UID (insn)));

  if (TARGET_RELAX)
    {
      if (rtx note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
	{
	  rtx pattern = PATTERN (insn);
	  if (GET_CODE (pattern) == PARALLEL)
	    pattern = XVECEXP (pattern, 0, 0);
	  switch (GET_CODE (pattern))
	    {
	    case SET:
	      if (GET_CODE (SET_SRC (pattern)) != CALL
		  && get_attr_type (insn) != TYPE_SFUNC)
		{
		  targetm.asm_out.internal_label
		    (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (note, 0)));
		  break;
		}
	      /* FALLTHROUGH */
	    case CALL:
	      asm_fprintf (asm_out_file, "\t.uses %LL%d\n",
			   CODE_LABEL_NUMBER (XEXP (note, 0)));
	      break;

	    default:
	      gcc_unreachable ();
	    }
	}
    }
}

/* Dump out any constants accumulated in the final pass.  These will
   only be labels.  */
const char *
output_jump_label_table (void)
{
  if (pool_size)
    {
      fprintf (asm_out_file, "\t.align 2\n");
      for (int i = 0; i < pool_size; i++)
	{
	  pool_node *p = &pool_vector[i];

	  (*targetm.asm_out.internal_label) (asm_out_file, "L",
				     CODE_LABEL_NUMBER (p->label));
	  output_asm_insn (".long	%O0", &p->value);
	}
      pool_size = 0;
    }

  return "";
}

/* A full frame looks like:

   arg-5
   arg-4
   [ if current_function_anonymous_args
   arg-3
   arg-2
   arg-1
   arg-0 ]
   saved-fp
   saved-r10
   saved-r11
   saved-r12
   saved-pr
   local-n
   ..
   local-1
   local-0        <- fp points here.

   Number of bytes pushed for anonymous args, used to pass information
   between expand_prologue and expand_epilogue.

   Adjust the stack by SIZE bytes.  REG holds the rtl of the register to be
   adjusted.  If epilogue_p is zero, this is for a prologue; otherwise, it's
   for an epilogue and a negative value means that it's for a sibcall
   epilogue.  If LIVE_REGS_MASK is nonzero, it points to a HARD_REG_SET of
   all the registers that are about to be restored, and hence dead.  */
static void
output_stack_adjust (int size, rtx reg, int epilogue_p,
		     HARD_REG_SET *live_regs_mask, bool frame_p)
{
  rtx_insn *(*emit_fn) (rtx) = frame_p ? &emit_frame_insn : &emit_insn;
  if (size)
    {
      HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT;

/* This test is bogus, as output_stack_adjust is used to re-align the
   stack.  */
#if 0
      gcc_assert (!(size % align));
#endif

      if (CONST_OK_FOR_ADD (size))
	emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size)));
      /* Try to do it with two partial adjustments; however, we must make
	 sure that the stack is properly aligned at all times, in case
	 an interrupt occurs between the two partial adjustments.  */
      else if (CONST_OK_FOR_ADD (size / 2 & -align)
	       && CONST_OK_FOR_ADD (size - (size / 2 & -align)))
	{
	  emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size / 2 & -align)));
	  emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size - (size / 2 & -align))));
	}
      else
	{
	  rtx const_reg;
	  rtx insn;
	  int temp = epilogue_p ? 7 : 1;
	  int i;

	  /* If TEMP is invalid, we could temporarily save a general
	     register to MACL.  However, there is currently no need
	     to handle this case, so just die when we see it.  */
	  if (epilogue_p < 0
	      || current_function_interrupt
	      || ! call_really_used_regs[temp] || fixed_regs[temp])
	    temp = -1;
	  if (temp < 0 && ! current_function_interrupt && epilogue_p >= 0)
	    {
	      HARD_REG_SET temps = call_used_reg_set & ~call_fixed_reg_set;
	      if (epilogue_p > 0)
		{
		  int nreg = 0;
		  if (crtl->return_rtx)
		    {
		      machine_mode mode;
		      mode = GET_MODE (crtl->return_rtx);
		      if (BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG)
			nreg = hard_regno_nregs (FIRST_RET_REG, mode);
		    }
		  for (i = 0; i < nreg; i++)
		    CLEAR_HARD_REG_BIT (temps, FIRST_RET_REG + i);
		  if (crtl->calls_eh_return)
		    {
		      CLEAR_HARD_REG_BIT (temps, EH_RETURN_STACKADJ_REGNO);
		      for (i = 0; i <= 3; i++)
			CLEAR_HARD_REG_BIT (temps, EH_RETURN_DATA_REGNO (i));
		    }
		}
	      if (epilogue_p <= 0)
		{
		  for (i = FIRST_PARM_REG;
		       i < FIRST_PARM_REG + NPARM_REGS (SImode); i++)
		    CLEAR_HARD_REG_BIT (temps, i);
		  if (cfun->static_chain_decl != NULL)
		    CLEAR_HARD_REG_BIT (temps, STATIC_CHAIN_REGNUM);
		}
	      temp = scavenge_reg (&temps);
	    }
	  if (temp < 0 && live_regs_mask)
	    {
	      HARD_REG_SET temps;

	      temps = *live_regs_mask;
	      CLEAR_HARD_REG_BIT (temps, REGNO (reg));
	      temp = scavenge_reg (&temps);
	    }
	  if (temp < 0)
	    {
	      rtx adj_reg, tmp_reg, mem;
	      
	      /* If we reached here, the most likely case is the (sibcall)
		 epilogue.  Put a special push/pop sequence for such case as
		 the last resort.  This looks lengthy but would not be problem
		 because it seems to be very rare.  */
	      gcc_assert (epilogue_p);

	      /* ??? There is still the slight possibility that r4 or
		  r5 have been reserved as fixed registers or assigned
		  as global registers, and they change during an
		  interrupt.  There are possible ways to handle this:
		     
		  - If we are adjusting the frame pointer (r14), we can do
		    with a single temp register and an ordinary push / pop
		    on the stack.
		  - Grab any call-used or call-saved registers (i.e. not
		    fixed or globals) for the temps we need.  We might
		    also grab r14 if we are adjusting the stack pointer.
		    If we can't find enough available registers, issue
		    a diagnostic and die - the user must have reserved
		    way too many registers.
		 But since all this is rather unlikely to happen and
		 would require extra testing, we just die if r4 / r5
		 are not available.  */
	      gcc_assert (!fixed_regs[4] && !fixed_regs[5]
			  && !global_regs[4] && !global_regs[5]);

	      adj_reg = gen_rtx_REG (GET_MODE (reg), 4);
	      tmp_reg = gen_rtx_REG (GET_MODE (reg), 5);
	      emit_move_insn (gen_tmp_stack_mem (Pmode, reg), adj_reg);
	      emit_insn (GEN_MOV (adj_reg, GEN_INT (size)));
	      emit_insn (GEN_ADD3 (adj_reg, adj_reg, reg));
	      mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg));
	      emit_move_insn (mem, tmp_reg);
	      emit_move_insn (tmp_reg, gen_tmp_stack_mem (Pmode, reg));
	      mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg));
	      emit_move_insn (mem, tmp_reg);
	      emit_move_insn (reg, adj_reg);
	      mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg));
	      emit_move_insn (adj_reg, mem);
	      mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg));
	      emit_move_insn (tmp_reg, mem);
	      /* Tell flow the insns that pop r4/r5 aren't dead.  */
	      emit_use (tmp_reg);
	      emit_use (adj_reg);
	      return;
	    }
	  const_reg = gen_rtx_REG (GET_MODE (reg), temp);

	  /* If SIZE is negative, subtract the positive value.
	     This sometimes allows a constant pool entry to be shared
	     between prologue and epilogue code.  */
	  if (size < 0)
	    {
	      emit_insn (GEN_MOV (const_reg, GEN_INT (-size)));
	      insn = emit_fn (GEN_SUB3 (reg, reg, const_reg));
	    }
	  else
	    {
	      emit_insn (GEN_MOV (const_reg, GEN_INT (size)));
	      insn = emit_fn (GEN_ADD3 (reg, reg, const_reg));
	    }
	  add_reg_note (insn, REG_FRAME_RELATED_EXPR,
			gen_rtx_SET (reg, gen_rtx_PLUS (SImode, reg,
							GEN_INT (size))));
	}
    }
}

/* Emit the specified insn and mark it as frame related.  */
static rtx_insn *
emit_frame_insn (rtx x)
{
  rtx_insn *insn = emit_insn (x);
  RTX_FRAME_RELATED_P (insn) = 1;
  return insn;
}

/* Output RTL to push register RN onto the stack.  */
static rtx
push (int rn)
{
  rtx x;
  if (rn == FPUL_REG)
    x = gen_push_fpul ();
  else if (rn == FPSCR_REG)
    x = gen_push_fpscr ();
  else if (TARGET_FPU_DOUBLE && TARGET_FMOVD
	   && ! TARGET_FPU_SINGLE && FP_OR_XD_REGISTER_P (rn))
    {
      if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1)
	return NULL_RTX;
      x = gen_push_4 (gen_rtx_REG (DFmode, rn));
    }
  else if (TARGET_SH2E && FP_REGISTER_P (rn))
    x = gen_push_e (gen_rtx_REG (SFmode, rn));
  else
    x = gen_push (gen_rtx_REG (SImode, rn));

  x = emit_frame_insn (x);
  add_reg_note (x, REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM));
  return x;
}

/* Output RTL to pop register RN from the stack.  */
static void
pop (int rn)
{
  rtx x, sp_reg, reg;
  if (rn == FPUL_REG)
    x = gen_pop_fpul ();
  else if (rn == FPSCR_REG)
    x = gen_pop_fpscr ();
  else if (TARGET_FPU_DOUBLE && TARGET_FMOVD
	   && ! TARGET_FPU_SINGLE && FP_OR_XD_REGISTER_P (rn))
    {
      if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1)
	return;
      x = gen_pop_4 (gen_rtx_REG (DFmode, rn));
    }
  else if (TARGET_SH2E && FP_REGISTER_P (rn))
    x = gen_pop_e (gen_rtx_REG (SFmode, rn));
  else
    x = gen_pop (gen_rtx_REG (SImode, rn));

  x = emit_insn (x);

  sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
  reg = copy_rtx (GET_CODE (PATTERN (x)) == PARALLEL
		  ? SET_DEST (XVECEXP (PATTERN (x), 0, 0))
		  : SET_DEST (PATTERN (x)));
  add_reg_note (x, REG_CFA_RESTORE, reg);
  add_reg_note (x, REG_CFA_ADJUST_CFA,
		gen_rtx_SET (sp_reg,
			     plus_constant (SImode, sp_reg,
					    GET_MODE_SIZE (GET_MODE (reg)))));
  add_reg_note (x, REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM));
  RTX_FRAME_RELATED_P (x) = 1;
}

/* Generate code to push the regs specified in the mask.  */
static void
push_regs (HARD_REG_SET *mask, bool interrupt_handler)
{
  bool skip_fpscr = false;

  /* Push PR last; this gives better latencies after the prologue, and
     candidates for the return delay slot when there are no general
     registers pushed.  */
  for (int i = interrupt_handler ? LAST_BANKED_REG + 1 : 0;
       i < FIRST_PSEUDO_REGISTER; i++)
    {
      /* If this is an interrupt handler, and the SZ bit varies,
	 and we have to push any floating point register, we need
	 to switch to the correct precision first.  */
      if (i == FIRST_FP_REG && interrupt_handler && TARGET_FMOVD
	  && hard_reg_set_intersect_p (*mask, reg_class_contents[DF_REGS]))
	{
	  push (FPSCR_REG);
	  fpscr_set_from_mem (NORMAL_MODE (FP_MODE), ~*mask);
	  skip_fpscr = true;
	}
      if (i != PR_REG
	  && (i != FPSCR_REG || ! skip_fpscr)
	  && TEST_HARD_REG_BIT (*mask, i))
	{
	/* If the ISR has RESBANK attribute assigned, don't push any of
	   the following registers - R0-R14, MACH, MACL and GBR.  */
      if (! (sh_cfun_resbank_handler_p ()
	     && ((i >= FIRST_GENERAL_REG && i < LAST_GENERAL_REG)
		 || i == MACH_REG
		 || i == MACL_REG
		 || i == GBR_REG)))
	  push (i);
	}
    }

  /* Push banked registers last to improve delay slot opportunities.  */
  if (interrupt_handler)
    {
      bool use_movml = false;

      if (TARGET_SH2A)
	{
	  unsigned int count = 0;

	  for (int i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
	    if (TEST_HARD_REG_BIT (*mask, i))
	      count++;
	    else
	      break;

	  /* Use movml when all banked registers are pushed.  */
	  if (count == LAST_BANKED_REG - FIRST_BANKED_REG + 1)
	    use_movml = true;
	}

      if (sh_cfun_resbank_handler_p ())
	; /* Do nothing.  */
      else if (use_movml)
	{
	  rtx x, mem, reg, set;
	  rtx sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);

	  /* We must avoid scheduling multiple store insn with another
	     insns.  */
	  emit_insn (gen_blockage ());
	  x = gen_movml_push_banked (sp_reg);
	  x = emit_frame_insn (x);
	  for (int i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
	    {
	      mem = gen_rtx_MEM (SImode, plus_constant (Pmode, sp_reg, i * 4));
	      reg = gen_rtx_REG (SImode, i);
	      add_reg_note (x, REG_CFA_OFFSET, gen_rtx_SET (mem, reg));
	    }

	  set = gen_rtx_SET (sp_reg, plus_constant (Pmode, sp_reg, - 32));
	  add_reg_note (x, REG_CFA_ADJUST_CFA, set);
	  emit_insn (gen_blockage ());
	}
      else
	for (int i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
	  if (TEST_HARD_REG_BIT (*mask, i))
	    push (i);
    }

  /* Don't push PR register for an ISR with RESBANK attribute assigned.  */
  if (TEST_HARD_REG_BIT (*mask, PR_REG) && !sh_cfun_resbank_handler_p ())
    push (PR_REG);
}

/* Work out the registers which need to be saved, both as a mask and a
   count of saved words.  Return the count.

   If doing a pragma interrupt function, then push all regs used by the
   function, and if we call another function (we can tell by looking at PR),
   make sure that all the regs it clobbers are safe too.  */
static int
calc_live_regs (HARD_REG_SET *live_regs_mask)
{
  unsigned int reg;
  tree attrs;
  bool interrupt_or_trapa_handler, trapa_handler, interrupt_handler;
  bool nosave_low_regs;

  attrs = DECL_ATTRIBUTES (current_function_decl);
  interrupt_or_trapa_handler = sh_cfun_interrupt_handler_p ();
  trapa_handler = lookup_attribute ("trapa_handler", attrs) != NULL_TREE;
  interrupt_handler = interrupt_or_trapa_handler && ! trapa_handler;
  nosave_low_regs = lookup_attribute ("nosave_low_regs", attrs) != NULL_TREE;

  CLEAR_HARD_REG_SET (*live_regs_mask);
  if (TARGET_FPU_DOUBLE && TARGET_FMOVD && interrupt_handler
      && df_regs_ever_live_p (FPSCR_REG))
    target_flags &= ~MASK_FPU_SINGLE;
  /* If we can save a lot of saves by switching to double mode, do that.  */
  else if (TARGET_FPU_DOUBLE && TARGET_FMOVD && TARGET_FPU_SINGLE)
    for (int count = 0, reg = FIRST_FP_REG; reg <= LAST_FP_REG; reg += 2)
      if (df_regs_ever_live_p (reg) && df_regs_ever_live_p (reg+1)
	  && (! call_really_used_regs[reg]
	      || interrupt_handler)
	  && ++count > 2)
	{
	  target_flags &= ~MASK_FPU_SINGLE;
	  break;
	}


  rtx pr_initial = has_hard_reg_initial_val (Pmode, PR_REG);
  bool pr_live = (pr_initial
		 ? (!REG_P (pr_initial)
		    || REGNO (pr_initial) != (PR_REG))
		 : df_regs_ever_live_p (PR_REG));
  /* For Shcompact, if not optimizing, we end up with a memory reference
     using the return address pointer for __builtin_return_address even
     though there is no actual need to put the PR register on the stack.  */
  pr_live |= df_regs_ever_live_p (RETURN_ADDRESS_POINTER_REGNUM);

  /* Force PR to be live if the prologue has to call the SHmedia
     argument decoder or register saver.  */
  bool has_call = pr_live;

  int count;
  for (count = 0, reg = FIRST_PSEUDO_REGISTER; reg-- != 0; )
    {
      if (reg == PR_REG
	  ? pr_live
	  : interrupt_handler
	  ? (/* Need to save all the regs ever live.  */
	     (df_regs_ever_live_p (reg)
	      || (call_really_used_regs[reg]
		  && (! fixed_regs[reg] || reg == MACH_REG || reg == MACL_REG
		      || reg == PIC_OFFSET_TABLE_REGNUM)
		  && has_call))
	     && reg != STACK_POINTER_REGNUM && reg != ARG_POINTER_REGNUM
	     && reg != RETURN_ADDRESS_POINTER_REGNUM
	     && reg != T_REG && reg != GBR_REG
	     && reg != FPSCR_MODES_REG && reg != FPSCR_STAT_REG
	     /* Push fpscr only on targets which have FPU */
	     && (reg != FPSCR_REG || TARGET_FPU_ANY))
	  : (/* Only push those regs which are used and need to be saved.  */
	     (false)
	     || (df_regs_ever_live_p (reg)
		 && ((!call_really_used_regs[reg]
		      && !(reg != PIC_OFFSET_TABLE_REGNUM
			   && fixed_regs[reg] && call_used_regs[reg]))
		     || (trapa_handler && reg == FPSCR_REG && TARGET_FPU_ANY)))
	     || (crtl->calls_eh_return
		 && (reg == EH_RETURN_DATA_REGNO (0)
		     || reg == EH_RETURN_DATA_REGNO (1)
		     || reg == EH_RETURN_DATA_REGNO (2)
		     || reg == EH_RETURN_DATA_REGNO (3)))
	     || ((reg == MACL_REG || reg == MACH_REG)
		 && df_regs_ever_live_p (reg)
		 && sh_cfun_attr_renesas_p ())
	     ))
	{
	  SET_HARD_REG_BIT (*live_regs_mask, reg);
	  count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));

	  if (TARGET_FPU_DOUBLE && TARGET_FMOVD
	      && GET_MODE_CLASS (REGISTER_NATURAL_MODE (reg)) == MODE_FLOAT)
	    {
	      if (FP_REGISTER_P (reg))
		{
		  if (! TARGET_FPU_SINGLE && ! df_regs_ever_live_p (reg ^ 1))
		    {
		      SET_HARD_REG_BIT (*live_regs_mask, (reg ^ 1));
		      count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg ^ 1));
		    }
		}
	      else if (XD_REGISTER_P (reg))
		{
		  /* Must switch to double mode to access these registers.  */
		  target_flags &= ~MASK_FPU_SINGLE;
		}
	    }
	}
      if (nosave_low_regs && reg == R8_REG)
	break;
    }

  return count;
}

/* Code to generate prologue and epilogue sequences */

/* PUSHED is the number of bytes that are being pushed on the
   stack for register saves.  Return the frame size, padded
   appropriately so that the stack stays properly aligned.  */
static HOST_WIDE_INT
rounded_frame_size (int pushed)
{
  HOST_WIDE_INT size = get_frame_size ();
  HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT;

  if (ACCUMULATE_OUTGOING_ARGS)
    size += crtl->outgoing_args_size;

  return ((size + pushed + align - 1) & -align) - pushed;
}

/* Expand code for the function prologue.  */
void
sh_expand_prologue (void)
{
  int save_flags = target_flags;
  tree sp_switch_attr
    = lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl));

  current_function_interrupt = sh_cfun_interrupt_handler_p ();

  /* We have pretend args if we had an object sent partially in registers
     and partially on the stack, e.g. a large structure.  */
  int pretend_args = crtl->args.pretend_args_size;
  if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl)
      && (NPARM_REGS(SImode)
	  > crtl->args.info.arg_count[(int) SH_ARG_INT]))
    pretend_args = 0;

  output_stack_adjust (-pretend_args, stack_pointer_rtx, 0, NULL, true);
  int stack_usage = pretend_args;

  /* Emit the code for SETUP_VARARGS.  */
  if (cfun->stdarg)
    {
      if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl))
	{
	  /* Push arg regs as if they'd been provided by caller in stack.  */
	  for (int i = 0; i < NPARM_REGS(SImode); i++)
	    {
	      int rn = NPARM_REGS(SImode) + FIRST_PARM_REG - i - 1;

	      if (i >= (NPARM_REGS(SImode)
			- crtl->args.info.arg_count[(int) SH_ARG_INT]
			))
		break;
	      push (rn);
	      stack_usage += GET_MODE_SIZE (SImode);
	    }
	}
    }

  /* If we're supposed to switch stacks at function entry, do so now.  */
  if (sp_switch_attr)
    {
      rtx lab, newsrc;
      /* The argument specifies a variable holding the address of the
	 stack the interrupt function should switch to/from at entry/exit.  */
      tree arg = TREE_VALUE ( TREE_VALUE (sp_switch_attr));
      const char* s = ggc_strdup (TREE_STRING_POINTER (arg));
      rtx sp_switch = gen_rtx_SYMBOL_REF (Pmode, s);

      lab = add_constant (sp_switch, SImode, 0);
      newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);

      emit_insn (gen_sp_switch_1 (newsrc));
    }

  HARD_REG_SET live_regs_mask;
  int d = calc_live_regs (&live_regs_mask);
  /* ??? Maybe we could save some switching if we can move a mode switch
     that already happens to be at the function start into the prologue.  */
  if (target_flags != save_flags && ! current_function_interrupt)
    emit_insn (gen_toggle_sz ());

  push_regs (&live_regs_mask, current_function_interrupt);
  stack_usage += d;

  if (flag_pic && !TARGET_FDPIC
      && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
    emit_insn (gen_GOTaddr2picreg (const0_rtx));

  if (target_flags != save_flags && ! current_function_interrupt)
    emit_insn (gen_toggle_sz ());

  target_flags = save_flags;

  output_stack_adjust (-rounded_frame_size (d),
		       stack_pointer_rtx, 0, NULL, true);
  stack_usage += rounded_frame_size (d);

  if (frame_pointer_needed)
    emit_frame_insn (GEN_MOV (hard_frame_pointer_rtx, stack_pointer_rtx));

  /* If we are profiling, make sure no instructions are scheduled before
     the call to mcount.  Similarly if some call instructions are swapped
     before frame related insns, it'll confuse the unwinder because
     currently SH has no unwind info for function epilogues.  */
  if (crtl->profile || flag_exceptions || flag_unwind_tables)
    emit_insn (gen_blockage ());

  if (flag_stack_usage_info)
    current_function_static_stack_size = stack_usage;
}

/* Expand code for the function epilogue.  */
void
sh_expand_epilogue (bool sibcall_p)
{
  int save_flags = target_flags;
  bool fpscr_deferred = false;
  int e = sibcall_p ? -1 : 1;

  HARD_REG_SET live_regs_mask;
  int d = calc_live_regs (&live_regs_mask);

  int save_size = d;
  int frame_size = rounded_frame_size (d);

  if (frame_pointer_needed)
    {
      /* We must avoid scheduling the epilogue with previous basic blocks.
	 See PR/18032 and PR/40313.  */
      emit_insn (gen_blockage ());
      output_stack_adjust (frame_size, hard_frame_pointer_rtx, e,
			   &live_regs_mask, true);

      /* We must avoid moving the stack pointer adjustment past code
	 which reads from the local frame, else an interrupt could
	 occur after the SP adjustment and clobber data in the local
	 frame.  */
      emit_insn (gen_blockage ());
      emit_frame_insn (GEN_MOV (stack_pointer_rtx, hard_frame_pointer_rtx));
    }
  else if (frame_size)
    {
      /* We must avoid moving the stack pointer adjustment past code
	 which reads from the local frame, else an interrupt could
	 occur after the SP adjustment and clobber data in the local
	 frame.  */
      emit_insn (gen_blockage ());
      output_stack_adjust (frame_size, stack_pointer_rtx, e,
			   &live_regs_mask, true);
    }

  /* Pop all the registers.  */

  if (target_flags != save_flags && ! current_function_interrupt)
    emit_insn (gen_toggle_sz ());

    {
      int last_reg;

      save_size = 0;
	/* For an ISR with RESBANK attribute assigned, don't pop PR
	   register.  */
      if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG)
	  && !sh_cfun_resbank_handler_p ())	
	{
	  if (!frame_pointer_needed)
	    emit_insn (gen_blockage ());
	  pop (PR_REG);
	}

      /* Banked registers are popped first to avoid being scheduled in the
	 delay slot. RTE switches banks before the ds instruction.  */
      if (current_function_interrupt)
	{
	  bool use_movml = false;

	  if (TARGET_SH2A)
	    {
	      unsigned int count = 0;

	      for (int i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
		if (TEST_HARD_REG_BIT (live_regs_mask, i))
		  count++;
		else
		  break;

	      /* Use movml when all banked register are poped.  */
	      if (count == LAST_BANKED_REG - FIRST_BANKED_REG + 1)
		use_movml = true;
	    }

	  if (sh_cfun_resbank_handler_p ())
	    ; /* Do nothing.  */
	  else if (use_movml)
	    {
	      rtx sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);

	      /* We must avoid scheduling multiple load insn with another
		 insns.  */
	      emit_insn (gen_blockage ());
	      emit_insn (gen_movml_pop_banked (sp_reg));
	      emit_insn (gen_blockage ());
	    }
	  else
	    for (int i = LAST_BANKED_REG; i >= FIRST_BANKED_REG; i--)
	      if (TEST_HARD_REG_BIT (live_regs_mask, i))
		pop (i);

	  last_reg = FIRST_PSEUDO_REGISTER - LAST_BANKED_REG - 1;
	}
      else
	last_reg = FIRST_PSEUDO_REGISTER;

      for (int i = 0; i < last_reg; i++)
	{
	  int j = (FIRST_PSEUDO_REGISTER - 1) - i;

	  if (j == FPSCR_REG && current_function_interrupt && TARGET_FMOVD
	      && hard_reg_set_intersect_p (live_regs_mask,
					  reg_class_contents[DF_REGS]))
	    fpscr_deferred = true;
	  /* For an ISR with RESBANK attribute assigned, don't pop
	     following registers, R0-R14, MACH, MACL and GBR.  */
	  else if (j != PR_REG && TEST_HARD_REG_BIT (live_regs_mask, j) 
		   && ! (sh_cfun_resbank_handler_p ()
			 && ((j >= FIRST_GENERAL_REG
			      && j < LAST_GENERAL_REG)
			      || j == MACH_REG
			      || j == MACL_REG
			      || j == GBR_REG)))
	    pop (j);

	  if (j == FIRST_FP_REG && fpscr_deferred)
	    pop (FPSCR_REG);
	}
    }
  if (target_flags != save_flags && ! current_function_interrupt)
    emit_insn (gen_toggle_sz ());
  target_flags = save_flags;

  output_stack_adjust (crtl->args.pretend_args_size + save_size,
		       stack_pointer_rtx, e, NULL, true);

  if (crtl->calls_eh_return)
    emit_insn (GEN_ADD3 (stack_pointer_rtx, stack_pointer_rtx,
			 EH_RETURN_STACKADJ_RTX));

  /* Switch back to the normal stack if necessary.  */
  if (lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl)))
    emit_insn (gen_sp_switch_2 ());

  /* Tell flow the insn that pops PR isn't dead.  */
  if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG))
    emit_use (gen_rtx_REG (SImode, PR_REG));
}

/* Emit code to change the current function's return address to RA.
   TEMP is available as a scratch register, if needed.  */
void
sh_set_return_address (rtx ra, rtx tmp)
{
  HARD_REG_SET live_regs_mask;
  int d = calc_live_regs (&live_regs_mask);

  /* If pr_reg isn't life, we can set it directly.  */
  if (! TEST_HARD_REG_BIT (live_regs_mask, PR_REG))
    {
      rtx rr = gen_rtx_REG (SImode, PR_REG);
      emit_insn (GEN_MOV (rr, ra));
      /* Tell flow the register for return isn't dead.  */
      emit_use (rr);
      return;
    }

  int pr_offset = rounded_frame_size (d);

  emit_insn (GEN_MOV (tmp, GEN_INT (pr_offset)));

  if (frame_pointer_needed)
    emit_insn (GEN_ADD3 (tmp, tmp, hard_frame_pointer_rtx));
  else
    emit_insn (GEN_ADD3 (tmp, tmp, stack_pointer_rtx));

  tmp = gen_frame_mem (Pmode, tmp);
  emit_insn (GEN_MOV (tmp, ra));
  /* Tell this store isn't dead.  */
  emit_use (tmp);
}

/* Clear variables at function end.  */
static void
sh_output_function_epilogue (FILE *)
{
}

static rtx
sh_builtin_saveregs (void)
{
  /* First unnamed integer register.  */
  int first_intreg = crtl->args.info.arg_count[(int) SH_ARG_INT];
  /* Number of integer registers we need to save.  */
  int n_intregs = MAX (0, NPARM_REGS (SImode) - first_intreg);
  /* First unnamed SFmode float reg */
  int first_floatreg = crtl->args.info.arg_count[(int) SH_ARG_FLOAT];
  /* Number of SFmode float regs to save.  */
  int n_floatregs = MAX (0, NPARM_REGS (SFmode) - first_floatreg);
  rtx regbuf, fpregs;
  int bufsize, regno;
  alias_set_type alias_set;

  if (!TARGET_FPU_ANY)
    {
      error ("%<__builtin_saveregs%> not supported by this subtarget");
      return const0_rtx;
    }

  /* Allocate block of memory for the regs.  */
  /* ??? If n_intregs + n_floatregs == 0, should we allocate at least 1 byte?
     Or can assign_stack_local accept a 0 SIZE argument?  */
  bufsize = (n_intregs * UNITS_PER_WORD) + (n_floatregs * UNITS_PER_WORD);

  if (n_floatregs & 1)
    {
      rtx addr;

      regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0);
      addr = copy_to_mode_reg (Pmode, XEXP (regbuf, 0));
      emit_insn (gen_iorsi3 (addr, addr, GEN_INT (UNITS_PER_WORD)));
      regbuf = change_address (regbuf, BLKmode, addr);
    }
  else if (STACK_BOUNDARY < 64 && TARGET_FPU_DOUBLE && n_floatregs)
    {
      rtx addr, mask;

      regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0);
      addr = copy_to_mode_reg (Pmode, plus_constant (Pmode,
						     XEXP (regbuf, 0), 4));
      mask = copy_to_mode_reg (Pmode, GEN_INT (-8));
      emit_insn (gen_andsi3 (addr, addr, mask));
      regbuf = change_address (regbuf, BLKmode, addr);
    }
  else
    regbuf = assign_stack_local (BLKmode, bufsize, TARGET_FPU_DOUBLE ? 64 : 0);
  alias_set = get_varargs_alias_set ();
  set_mem_alias_set (regbuf, alias_set);

  /* Save int args.
     This is optimized to only save the regs that are necessary.  Explicitly
     named args need not be saved.  */
  if (n_intregs > 0)
    move_block_from_reg (BASE_ARG_REG (SImode) + first_intreg,
			 adjust_address (regbuf, BLKmode,
					 n_floatregs * UNITS_PER_WORD),
			 n_intregs);

  /* Save float args.
     This is optimized to only save the regs that are necessary.  Explicitly
     named args need not be saved.
     We explicitly build a pointer to the buffer because it halves the insn
     count when not optimizing (otherwise the pointer is built for each reg
     saved).
     We emit the moves in reverse order so that we can use predecrement.  */

  fpregs = copy_to_mode_reg (Pmode,
			     plus_constant (Pmode, XEXP (regbuf, 0),
					    n_floatregs * UNITS_PER_WORD));
  if (TARGET_FPU_DOUBLE)
    {
      rtx mem;
      for (regno = NPARM_REGS (DFmode) - 2; regno >= first_floatreg; regno -= 2)
	{
	  emit_insn (gen_addsi3 (fpregs, fpregs,
				 GEN_INT (-2 * UNITS_PER_WORD)));
	  mem = change_address (regbuf, DFmode, fpregs);
	  emit_move_insn (mem,
			  gen_rtx_REG (DFmode, BASE_ARG_REG (DFmode) + regno));
	}
      regno = first_floatreg;
      if (regno & 1)
	{
	  emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD)));
	  mem = change_address (regbuf, SFmode, fpregs);
	  emit_move_insn (mem,
			  gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode)
					       + regno - SH_REG_MSW_OFFSET));
	}
    }
  else
    for (regno = NPARM_REGS (SFmode) - 1; regno >= first_floatreg; regno--)
      {
        rtx mem;

	emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD)));
	mem = change_address (regbuf, SFmode, fpregs);
	emit_move_insn (mem,
			gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno));
      }

  /* Return the address of the regbuf.  */
  return XEXP (regbuf, 0);
}

/* Define the `__builtin_va_list' type for the ABI.  */
static tree
sh_build_builtin_va_list (void)
{
  tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
  tree record, type_decl;

  if ((! TARGET_SH2E && ! TARGET_SH4)
      || TARGET_HITACHI || sh_cfun_attr_renesas_p ())
    return ptr_type_node;

  record = (*lang_hooks.types.make_type) (RECORD_TYPE);
  type_decl = build_decl (BUILTINS_LOCATION,
			  TYPE_DECL, get_identifier ("__va_list_tag"), record);

  f_next_o = build_decl (BUILTINS_LOCATION,
			 FIELD_DECL, get_identifier ("__va_next_o"),
			 ptr_type_node);
  f_next_o_limit = build_decl (BUILTINS_LOCATION,
			       FIELD_DECL,
			       get_identifier ("__va_next_o_limit"),
			       ptr_type_node);
  f_next_fp = build_decl (BUILTINS_LOCATION,
			  FIELD_DECL, get_identifier ("__va_next_fp"),
			  ptr_type_node);
  f_next_fp_limit = build_decl (BUILTINS_LOCATION,
				FIELD_DECL,
				get_identifier ("__va_next_fp_limit"),
				ptr_type_node);
  f_next_stack = build_decl (BUILTINS_LOCATION,
			     FIELD_DECL, get_identifier ("__va_next_stack"),
			     ptr_type_node);

  DECL_FIELD_CONTEXT (f_next_o) = record;
  DECL_FIELD_CONTEXT (f_next_o_limit) = record;
  DECL_FIELD_CONTEXT (f_next_fp) = record;
  DECL_FIELD_CONTEXT (f_next_fp_limit) = record;
  DECL_FIELD_CONTEXT (f_next_stack) = record;

  TYPE_STUB_DECL (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_next_o;
  DECL_CHAIN (f_next_o) = f_next_o_limit;
  DECL_CHAIN (f_next_o_limit) = f_next_fp;
  DECL_CHAIN (f_next_fp) = f_next_fp_limit;
  DECL_CHAIN (f_next_fp_limit) = f_next_stack;

  layout_type (record);

  return record;
}

/* Implement `va_start' for varargs and stdarg.  */
static void
sh_va_start (tree valist, rtx nextarg)
{
  tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
  tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack;
  tree t, u;
  int nfp, nint;

  if ((! TARGET_SH2E && ! TARGET_SH4)
      || TARGET_HITACHI || sh_cfun_attr_renesas_p ())
    {
      std_expand_builtin_va_start (valist, nextarg);
      return;
    }

  f_next_o = TYPE_FIELDS (va_list_type_node);
  f_next_o_limit = DECL_CHAIN (f_next_o);
  f_next_fp = DECL_CHAIN (f_next_o_limit);
  f_next_fp_limit = DECL_CHAIN (f_next_fp);
  f_next_stack = DECL_CHAIN (f_next_fp_limit);

  next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o,
		   NULL_TREE);
  next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit),
			 valist, f_next_o_limit, NULL_TREE);
  next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp), valist, f_next_fp,
		    NULL_TREE);
  next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit),
			  valist, f_next_fp_limit, NULL_TREE);
  next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack),
		       valist, f_next_stack, NULL_TREE);

  /* Call __builtin_saveregs.  */
  u = make_tree (sizetype, expand_builtin_saveregs ());
  u = fold_convert (ptr_type_node, u);
  t = build2 (MODIFY_EXPR, ptr_type_node, next_fp, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  nfp = crtl->args.info.arg_count[SH_ARG_FLOAT];
  if (nfp < 8)
    nfp = 8 - nfp;
  else
    nfp = 0;
  u = fold_build_pointer_plus_hwi (u, UNITS_PER_WORD * nfp);
  t = build2 (MODIFY_EXPR, ptr_type_node, next_fp_limit, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  t = build2 (MODIFY_EXPR, ptr_type_node, next_o, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  nint = crtl->args.info.arg_count[SH_ARG_INT];
  if (nint < 4)
    nint = 4 - nint;
  else
    nint = 0;
  u = fold_build_pointer_plus_hwi (u, UNITS_PER_WORD * nint);
  t = build2 (MODIFY_EXPR, ptr_type_node, next_o_limit, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  u = make_tree (ptr_type_node, nextarg);
  t = build2 (MODIFY_EXPR, ptr_type_node, next_stack, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* TYPE is a RECORD_TYPE.  If there is only a single nonzero-sized
   member, return it.  */
static tree
find_sole_member (tree type)
{
  tree field, member = NULL_TREE;

  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    {
      if (TREE_CODE (field) != FIELD_DECL)
	continue;
      if (!DECL_SIZE (field))
	return NULL_TREE;
      if (integer_zerop (DECL_SIZE (field)))
	continue;
      if (member)
	return NULL_TREE;
      member = field;
    }
  return member;
}

/* Implement `va_arg'.  */
static tree
sh_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			 gimple_seq *post_p ATTRIBUTE_UNUSED)
{
  tree tmp;
  tree addr, lab_over = NULL, result = NULL;
  tree eff_type;

  const bool pass_by_ref
    = !VOID_TYPE_P (type) && must_pass_va_arg_in_stack (type);

  if (pass_by_ref)
    type = build_pointer_type (type);

  HOST_WIDE_INT size = int_size_in_bytes (type);
  HOST_WIDE_INT rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
  tree pptr_type_node = build_pointer_type (ptr_type_node);

  if ((TARGET_SH2E || TARGET_SH4)
      && ! (TARGET_HITACHI || sh_cfun_attr_renesas_p ()))
    {
      tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
      tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack;
      tree lab_false;
      tree member;

      f_next_o = TYPE_FIELDS (va_list_type_node);
      f_next_o_limit = DECL_CHAIN (f_next_o);
      f_next_fp = DECL_CHAIN (f_next_o_limit);
      f_next_fp_limit = DECL_CHAIN (f_next_fp);
      f_next_stack = DECL_CHAIN (f_next_fp_limit);

      next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o,
		       NULL_TREE);
      next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit),
			     valist, f_next_o_limit, NULL_TREE);
      next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp),
			valist, f_next_fp, NULL_TREE);
      next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit),
			      valist, f_next_fp_limit, NULL_TREE);
      next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack),
			   valist, f_next_stack, NULL_TREE);

      /* Structures with a single member with a distinct mode are passed
	 like their member.  This is relevant if the latter has a REAL_TYPE
	 or COMPLEX_TYPE type.  */
      eff_type = type;
      while (TREE_CODE (eff_type) == RECORD_TYPE
	     && (member = find_sole_member (eff_type))
	     && (TREE_CODE (TREE_TYPE (member)) == REAL_TYPE
		 || TREE_CODE (TREE_TYPE (member)) == COMPLEX_TYPE
		 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE))
	{
	  tree field_type = TREE_TYPE (member);

	  if (TYPE_MODE (eff_type) == TYPE_MODE (field_type))
	    eff_type = field_type;
	  else
	    {
	      gcc_assert ((TYPE_ALIGN (eff_type)
			   < GET_MODE_ALIGNMENT (TYPE_MODE (field_type)))
			  || (TYPE_ALIGN (eff_type)
			      > GET_MODE_BITSIZE (TYPE_MODE (field_type))));
	      break;
	    }
	}

      bool pass_as_float;
      if (TARGET_FPU_DOUBLE)
	{
	  pass_as_float = ((TREE_CODE (eff_type) == REAL_TYPE && size <= 8)
			   || (TREE_CODE (eff_type) == COMPLEX_TYPE
			       && TREE_CODE (TREE_TYPE (eff_type)) == REAL_TYPE
			       && size <= 16));
	}
      else
	{
	  pass_as_float = (TREE_CODE (eff_type) == REAL_TYPE && size == 4);
	}

      addr = create_tmp_var (pptr_type_node);
      lab_false = create_artificial_label (UNKNOWN_LOCATION);
      lab_over = create_artificial_label (UNKNOWN_LOCATION);

      valist = build_simple_mem_ref (addr);

      if (pass_as_float)
	{
	  tree next_fp_tmp = create_tmp_var (TREE_TYPE (f_next_fp));
	  tree cmp;
	  bool is_double = size == 8 && TREE_CODE (eff_type) == REAL_TYPE;

	  tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_fp));
	  gimplify_assign (unshare_expr (addr), tmp, pre_p);

	  gimplify_assign (unshare_expr (next_fp_tmp), valist, pre_p);
	  tmp = next_fp_limit;
	  if (size > 4 && !is_double)
	    tmp = fold_build_pointer_plus_hwi (unshare_expr (tmp), 4 - size);
	  tmp = build2 (GE_EXPR, boolean_type_node,
			unshare_expr (next_fp_tmp), unshare_expr (tmp));
	  cmp = build3 (COND_EXPR, void_type_node, tmp,
		        build1 (GOTO_EXPR, void_type_node,
				unshare_expr (lab_false)), NULL_TREE);
	  if (!is_double)
	    gimplify_and_add (cmp, pre_p);

	  if (TYPE_ALIGN (eff_type) > BITS_PER_WORD
	      || (is_double || size == 16))
	    {
	      tmp = fold_convert (sizetype, next_fp_tmp);
	      tmp = build2 (BIT_AND_EXPR, sizetype, tmp,
			    size_int (UNITS_PER_WORD));
	      tmp = fold_build_pointer_plus (unshare_expr (next_fp_tmp), tmp);
	      gimplify_assign (unshare_expr (next_fp_tmp), tmp, pre_p);
	    }
	  if (is_double)
	    gimplify_and_add (cmp, pre_p);

#ifdef FUNCTION_ARG_SCmode_WART
	  if (TYPE_MODE (eff_type) == SCmode
	      && TARGET_SH4 && TARGET_LITTLE_ENDIAN)
	    {
	      tree subtype = TREE_TYPE (eff_type);
	      tree real, imag;

	      imag
		= std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL);
	      imag = get_initialized_tmp_var (imag, pre_p, NULL);

	      real
		= std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL);
	      real = get_initialized_tmp_var (real, pre_p, NULL);

	      result = build2 (COMPLEX_EXPR, eff_type, real, imag);
	      if (type != eff_type)
		result = build1 (VIEW_CONVERT_EXPR, type, result);
	      result = get_initialized_tmp_var (result, pre_p, NULL);
	    }
#endif /* FUNCTION_ARG_SCmode_WART */

	  tmp = build1 (GOTO_EXPR, void_type_node, unshare_expr (lab_over));
	  gimplify_and_add (tmp, pre_p);

	  tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_false));
	  gimplify_and_add (tmp, pre_p);

	  tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_stack));
	  gimplify_assign (unshare_expr (addr), tmp, pre_p);
	  gimplify_assign (unshare_expr (next_fp_tmp),
			   unshare_expr (valist), pre_p);

	  gimplify_assign (unshare_expr (valist),
			   unshare_expr (next_fp_tmp), post_p);
	  valist = next_fp_tmp;
	}
      else
	{
	  tmp = fold_build_pointer_plus_hwi (unshare_expr (next_o), rsize);
	  tmp = build2 (GT_EXPR, boolean_type_node, tmp,
			unshare_expr (next_o_limit));
	  tmp = build3 (COND_EXPR, void_type_node, tmp,
		        build1 (GOTO_EXPR, void_type_node,
				unshare_expr (lab_false)),
			NULL_TREE);
	  gimplify_and_add (tmp, pre_p);

	  tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_o));
	  gimplify_assign (unshare_expr (addr), tmp, pre_p);

	  tmp = build1 (GOTO_EXPR, void_type_node, unshare_expr (lab_over));
	  gimplify_and_add (tmp, pre_p);

	  tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_false));
	  gimplify_and_add (tmp, pre_p);

	  if (size > 4 && ! (TARGET_SH4 || TARGET_SH2A))
	    gimplify_assign (unshare_expr (next_o),
			     unshare_expr (next_o_limit), pre_p);

	  tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_stack));
	  gimplify_assign (unshare_expr (addr), tmp, pre_p);
	}

      if (!result)
	{
	  tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_over));
	  gimplify_and_add (tmp, pre_p);
	}
    }

  /* ??? In va-sh.h, there had been code to make values larger than
     size 8 indirect.  This does not match the FUNCTION_ARG macros.  */

  tmp = std_gimplify_va_arg_expr (valist, type, pre_p, NULL);
  if (result)
    {
      gimplify_assign (result, tmp, pre_p);
      result = build1 (NOP_EXPR, TREE_TYPE (result), result);
      tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_over));
      gimplify_and_add (tmp, pre_p);
    }
  else
    result = tmp;

  if (pass_by_ref)
    result = build_va_arg_indirect_ref (result);

  return result;
}

/* 64 bit floating points memory transfers are paired single precision loads
   or store.  So DWARF information needs fixing in little endian (unless
   PR=SZ=1 in FPSCR).  */
rtx
sh_dwarf_register_span (rtx reg)
{
  unsigned regno = REGNO (reg);

  if (WORDS_BIG_ENDIAN || GET_MODE (reg) != DFmode)
    return NULL_RTX;

  return
    gen_rtx_PARALLEL (VOIDmode,
		      gen_rtvec (2,
				 gen_rtx_REG (SFmode, regno + 1),
				 gen_rtx_REG (SFmode, regno)));
}

static machine_mode
sh_promote_function_mode (const_tree type, machine_mode mode,
			  int *punsignedp, const_tree funtype,
			  int for_return)
{
  if (sh_promote_prototypes (funtype))
    return promote_mode (type, mode, punsignedp);
  else
    return default_promote_function_mode (type, mode, punsignedp, funtype,
					  for_return);
}

static bool
sh_promote_prototypes (const_tree type)
{
  if (TARGET_HITACHI)
    return false;
  if (! type)
    return true;
  return ! sh_attr_renesas_p (type);
}

static bool
sh_pass_by_reference (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if (targetm.calls.must_pass_in_stack (arg))
    return true;

  /* ??? std_gimplify_va_arg_expr passes NULL for cum.  That function
     wants to know about pass-by-reference semantics for incoming
     arguments.  */
  if (! cum)
    return false;

  return false;
}

static bool
sh_callee_copies (cumulative_args_t cum, const function_arg_info &arg)
{
  /* ??? How can it possibly be correct to return true only on the
     caller side of the equation?  Is there someplace else in the
     sh backend that's magically producing the copies?  */
  return (get_cumulative_args (cum)->outgoing
	  && ((arg.mode == BLKmode
	       ? TYPE_ALIGN (arg.type)
	       : GET_MODE_ALIGNMENT (arg.mode))
	      % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0));
}

static sh_arg_class
get_sh_arg_class (machine_mode mode)
{
  if (TARGET_FPU_ANY && mode == SFmode)
    return SH_ARG_FLOAT;

  if (TARGET_FPU_DOUBLE
      && (GET_MODE_CLASS (mode) == MODE_FLOAT
	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT))
    return SH_ARG_FLOAT;

  return SH_ARG_INT;
}

/* Round a register number up to a proper boundary for an arg of mode
   MODE.
   The SH doesn't care about double alignment, so we only
   round doubles to even regs when asked to explicitly.  */
static int
sh_round_reg (const CUMULATIVE_ARGS& cum, machine_mode mode)
{
  /* FIXME: This used to be a macro and has been copy pasted into this
     function as is.  Make this more readable.  */
  return
  (((TARGET_ALIGN_DOUBLE
      || (TARGET_FPU_DOUBLE
	  && (mode == DFmode || mode == DCmode)
	  && cum.arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (mode)))
     && GET_MODE_UNIT_SIZE (mode) > UNITS_PER_WORD)
    ? (cum.arg_count[(int) get_sh_arg_class (mode)]
       + (cum.arg_count[(int) get_sh_arg_class (mode)] & 1))
    : cum.arg_count[(int) get_sh_arg_class (mode)]);
}

/* Return true if arg of the specified mode should be passed in a register
   or false otherwise.  */
static bool
sh_pass_in_reg_p (const CUMULATIVE_ARGS& cum, machine_mode mode,
		  const_tree type)
{
  /* FIXME: This used to be a macro and has been copy pasted into this
     function as is.  Make this more readable.  */
  return
  ((type == 0
    || (! TREE_ADDRESSABLE (type)
	&& (! (TARGET_HITACHI || cum.renesas_abi)
	    || ! (AGGREGATE_TYPE_P (type)
		  || (!TARGET_FPU_ANY
		      && (GET_MODE_CLASS (mode) == MODE_FLOAT
			  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (SFmode)))))))
   && ! cum.force_mem
   && (TARGET_SH2E
       ? ((mode) == BLKmode
	  ? ((cum.arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD
	      + int_size_in_bytes (type))
	     <= NPARM_REGS (SImode) * UNITS_PER_WORD)
	  : ((sh_round_reg (cum, mode)
	      + sh_hard_regno_nregs (BASE_ARG_REG (mode), mode))
	     <= NPARM_REGS (mode)))
       : sh_round_reg (cum, mode) < NPARM_REGS (mode)));
}

static int
sh_arg_partial_bytes (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int words = 0;

  if (sh_pass_in_reg_p (*cum, arg.mode, arg.type)
      && !TARGET_FPU_DOUBLE
      && (sh_round_reg (*cum, arg.mode)
	  + CEIL (arg.promoted_size_in_bytes (), UNITS_PER_WORD)
	  > NPARM_REGS (arg.mode)))
    words = NPARM_REGS (arg.mode) - sh_round_reg (*cum, arg.mode);

  return words * UNITS_PER_WORD;
}


/* Define where to put the arguments to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   ARG is a description of the argument.

   On SH the first args are normally in registers
   and the rest are pushed.  Any arg that starts within the first
   NPARM_REGS words is at least partially passed in a register unless
   its data type forbids.  */
static rtx
sh_function_arg (cumulative_args_t ca_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
  machine_mode mode = arg.mode;

  if (arg.end_marker_p ())
    return ca->renesas_abi ? const1_rtx : const0_rtx;

  if (sh_pass_in_reg_p (*ca, mode, arg.type)
      && (arg.named || ! (TARGET_HITACHI || ca->renesas_abi)))
    {
      int regno;

      if (mode == SCmode && TARGET_SH4 && TARGET_LITTLE_ENDIAN
	  && (! FUNCTION_ARG_SCmode_WART || (sh_round_reg (*ca, mode) & 1)))
	{
	  rtx r1 = gen_rtx_EXPR_LIST (VOIDmode,
				      gen_rtx_REG (SFmode,
						   BASE_ARG_REG (mode)
						   + (sh_round_reg (*ca, mode) ^ 1)),
				      const0_rtx);
	  rtx r2 = gen_rtx_EXPR_LIST (VOIDmode,
				      gen_rtx_REG (SFmode,
						   BASE_ARG_REG (mode)
						   + ((sh_round_reg (*ca, mode) + 1) ^ 1)),
				      GEN_INT (4));
	  return gen_rtx_PARALLEL(SCmode, gen_rtvec(2, r1, r2));
	}

     /* If the alignment of a DF value causes an SF register to be
	skipped, we will use that skipped register for the next SF
	value.  */
      if ((TARGET_HITACHI || ca->renesas_abi)
	  && ca->free_single_fp_reg
	  && mode == SFmode)
	return gen_rtx_REG (mode, ca->free_single_fp_reg);

      regno = (BASE_ARG_REG (mode) + sh_round_reg (*ca, mode))
	       ^ (mode == SFmode && TARGET_SH4
		  && TARGET_LITTLE_ENDIAN
		  && ! TARGET_HITACHI && ! ca->renesas_abi);
      return gen_rtx_REG (mode, regno);

    }

  return NULL_RTX;
}

/* Update the data in CUM to advance over argument ARG.  */
static void
sh_function_arg_advance (cumulative_args_t ca_v,
			 const function_arg_info &arg)
{
  CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);

  if (ca->force_mem)
    ca->force_mem = false;

  if ((TARGET_HITACHI || ca->renesas_abi) && TARGET_FPU_DOUBLE)
    {
      /* Note that we've used the skipped register.  */
      if (arg.mode == SFmode && ca->free_single_fp_reg)
	{
	  ca->free_single_fp_reg = 0;
	  return;
	}
      /* When we have a DF after an SF, there's an SF register that get
	 skipped in order to align the DF value.  We note this skipped
	 register, because the next SF value will use it, and not the
	 SF that follows the DF.  */
      if (arg.mode == DFmode
	  && sh_round_reg (*ca, DFmode) != sh_round_reg (*ca, SFmode))
	{
	  ca->free_single_fp_reg = (sh_round_reg (*ca, SFmode)
				    + BASE_ARG_REG (arg.mode));
	}
    }

  if (! ((TARGET_SH4 || TARGET_SH2A) || ca->renesas_abi)
      || sh_pass_in_reg_p (*ca, arg.mode, arg.type))
    (ca->arg_count[(int) get_sh_arg_class (arg.mode)]
     = (sh_round_reg (*ca, arg.mode)
	+ CEIL (arg.promoted_size_in_bytes (), UNITS_PER_WORD)));
}

/* The Renesas calling convention doesn't quite fit into this scheme since
   the address is passed like an invisible argument, but one that is always
   passed in memory.  */
static rtx
sh_struct_value_rtx (tree fndecl, int incoming ATTRIBUTE_UNUSED)
{
  if (TARGET_HITACHI || sh_attr_renesas_p (fndecl))
    return NULL_RTX;
  return gen_rtx_REG (Pmode, 2);
}

/* Worker function for TARGET_FUNCTION_VALUE.

   For the SH, this is like LIBCALL_VALUE, except that we must change the
   mode like PROMOTE_MODE does.
   ??? PROMOTE_MODE is ignored for non-scalar types.  The set of types
   tested here has to be kept in sync with the one in
   explow.c:promote_mode.  */
static rtx
sh_function_value (const_tree valtype,
		   const_tree fn_decl_or_type,
		   bool outgoing ATTRIBUTE_UNUSED)
{
  if (fn_decl_or_type
      && !DECL_P (fn_decl_or_type))
    fn_decl_or_type = NULL;

  return gen_rtx_REG (
	   ((GET_MODE_CLASS (TYPE_MODE (valtype)) == MODE_INT
	     && GET_MODE_SIZE (TYPE_MODE (valtype)) < 4
	     && (TREE_CODE (valtype) == INTEGER_TYPE
		 || TREE_CODE (valtype) == ENUMERAL_TYPE
		 || TREE_CODE (valtype) == BOOLEAN_TYPE
		 || TREE_CODE (valtype) == REAL_TYPE
		 || TREE_CODE (valtype) == OFFSET_TYPE))
	    && sh_promote_prototypes (fn_decl_or_type)
	    ? SImode : TYPE_MODE (valtype)),
	   BASE_RETURN_VALUE_REG (TYPE_MODE (valtype)));
}

/* Worker function for TARGET_LIBCALL_VALUE.  */
static rtx
sh_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (mode, BASE_RETURN_VALUE_REG (mode));
}

/* Return true if N is a possible register number of function value.  */
static bool
sh_function_value_regno_p (const unsigned int regno)
{
  return regno == FIRST_RET_REG || (TARGET_SH2E && regno == FIRST_FP_RET_REG);
}

/* Worker function for TARGET_RETURN_IN_MEMORY.  */
static bool
sh_return_in_memory (const_tree type, const_tree fndecl)
{
  return TYPE_MODE (type) == BLKmode
	 || ((TARGET_HITACHI || sh_attr_renesas_p (fndecl))
	     && TREE_CODE (type) == RECORD_TYPE);
}

/* We actually emit the code in sh_expand_prologue.  We used to use
   a static variable to flag that we need to emit this code, but that
   doesn't when inlining, when functions are deferred and then emitted
   later.  Fortunately, we already have two flags that are part of struct
   function that tell if a function uses varargs or stdarg.  */
static void
sh_setup_incoming_varargs (cumulative_args_t ca,
			   const function_arg_info &arg,
			   int *pretend_arg_size,
			   int second_time ATTRIBUTE_UNUSED)
{
  gcc_assert (cfun->stdarg);
  if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl))
    {
      int named_parm_regs, anon_parm_regs;

      named_parm_regs = (sh_round_reg (*get_cumulative_args (ca), arg.mode)
			 + CEIL (arg.promoted_size_in_bytes (),
				 UNITS_PER_WORD));
      anon_parm_regs = NPARM_REGS (SImode) - named_parm_regs;
      if (anon_parm_regs > 0)
	*pretend_arg_size = anon_parm_regs * 4;
    }
}

static bool
sh_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
{
  return false;
}

static bool
sh_pretend_outgoing_varargs_named (cumulative_args_t ca_v)
{
  CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);

  return ! (TARGET_HITACHI || ca->renesas_abi);
}


/* Define the offset between two registers, one to be eliminated, and
   the other its replacement, at the start of a routine.  */
int
initial_elimination_offset (int from, int to)
{
  const int regs_saved_rounding = 0;
  int save_flags = target_flags;
  HARD_REG_SET live_regs_mask;

  int regs_saved = calc_live_regs (&live_regs_mask);

  int total_auto_space = rounded_frame_size (regs_saved) - regs_saved_rounding;
  target_flags = save_flags;

  int total_saved_regs_space = regs_saved + regs_saved_rounding;

  if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return total_saved_regs_space + total_auto_space;

  if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return total_saved_regs_space + total_auto_space;

  /* Initial gap between fp and sp is 0.  */
  if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return 0;

  if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    return rounded_frame_size (0);

  if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return rounded_frame_size (0);

  gcc_assert (from == RETURN_ADDRESS_POINTER_REGNUM
	      && (to == HARD_FRAME_POINTER_REGNUM
		  || to == STACK_POINTER_REGNUM));
  return total_auto_space;
}

/* Parse the -mfixed-range= option string.  */
void
sh_fix_range (const char *const_str)
{
  /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
     REG2 are either register names or register numbers.  The effect
     of this option is to mark the registers in the range from REG1 to
     REG2 as ``fixed'' so they won't be used by the compiler.  */

  char* str = strcpy ((char*)alloca (strlen (const_str) + 1), const_str);

  while (1)
    {
      char* dash = strchr (str, '-');
      if (!dash)
	{
	  warning (0, "value of %<-mfixed-range%> must have form REG1-REG2");
	  return;
	}
      *dash = '\0';
      char* comma = strchr (dash + 1, ',');
      if (comma)
	*comma = '\0';

      int first = decode_reg_name (str);
      if (first < 0)
	{
	  warning (0, "unknown register name: %s", str);
	  return;
	}

      int last = decode_reg_name (dash + 1);
      if (last < 0)
	{
	  warning (0, "unknown register name: %s", dash + 1);
	  return;
	}

      *dash = '-';

      if (first > last)
	{
	  warning (0, "%s-%s is an empty range", str, dash + 1);
	  return;
	}

      for (int i = first; i <= last; ++i)
	fixed_regs[i] = call_used_regs[i] = 1;

      if (!comma)
	break;

      *comma = ',';
      str = comma + 1;
    }
}

/* Insert any deferred function attributes from earlier pragmas.  */
static void
sh_insert_attributes (tree node, tree *attributes)
{
  if (TREE_CODE (node) != FUNCTION_DECL)
    return;

  /* We are only interested in fields.  */
  if (!DECL_P (node))
    return;

  /* Append the attributes to the deferred attributes.  */
  *sh_deferred_function_attributes_tail = *attributes;
  tree attrs = sh_deferred_function_attributes;
  if (!attrs)
    return;

  /* Some attributes imply or require the interrupt attribute.  */
  if (!lookup_attribute ("interrupt_handler", attrs)
      && !lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (node)))
    {
      /* If we have a trapa_handler, but no interrupt_handler attribute,
	 insert an interrupt_handler attribute.  */
      if (lookup_attribute ("trapa_handler", attrs) != NULL_TREE)
	/* We can't use sh_pr_interrupt here because that's not in the
	   java frontend.  */
	attrs
	  = tree_cons (get_identifier("interrupt_handler"), NULL_TREE, attrs);
      /* However, for sp_switch, trap_exit, nosave_low_regs and resbank,
	 if the interrupt attribute is missing, we ignore the attribute
	 and warn.  */
      else if (lookup_attribute ("sp_switch", attrs)
	       || lookup_attribute ("trap_exit", attrs)
	       || lookup_attribute ("nosave_low_regs", attrs)
	       || lookup_attribute ("resbank", attrs))
	{
	  tree *tail;

	  for (tail = attributes; attrs; attrs = TREE_CHAIN (attrs))
	    {
	      if (is_attribute_p ("sp_switch", TREE_PURPOSE (attrs))
		  || is_attribute_p ("trap_exit", TREE_PURPOSE (attrs))
		  || is_attribute_p ("nosave_low_regs", TREE_PURPOSE (attrs))
		  || is_attribute_p ("resbank", TREE_PURPOSE (attrs)))
		warning (OPT_Wattributes,
			 "%qE attribute only applies to interrupt functions",
			 TREE_PURPOSE (attrs));
	      else
		{
		  *tail = tree_cons (TREE_PURPOSE (attrs), NULL_TREE,
				     NULL_TREE);
		  tail = &TREE_CHAIN (*tail);
		}
	    }
	  attrs = *attributes;
	}
    }

  /* Install the processed list.  */
  *attributes = attrs;

  /* Clear deferred attributes.  */
  sh_deferred_function_attributes = NULL_TREE;
  sh_deferred_function_attributes_tail = &sh_deferred_function_attributes;

  return;
}

/*------------------------------------------------------------------------------
  Target specific attributes
  Supported attributes are:

   * interrupt_handler
	Specifies this function is an interrupt handler.

   * trapa_handler
	Like interrupt_handler, but don't save all registers.

   * sp_switch
	Specifies an alternate stack for an interrupt handler to run on.

   * trap_exit
	Use a trapa to exit an interrupt function instead of rte.

   * nosave_low_regs
	Don't save r0..r7 in an interrupt handler function.
	This is useful on SH3* and SH4*, which have a separate set of low
	regs for user and privileged modes.
	This is mainly to be used for non-reentrant interrupt handlers (i.e.
	those that run with interrupts disabled and thus can't be
	interrupted thenselves).

   * renesas
	Use Renesas calling/layout conventions (functions and structures).

   * resbank
	In case of an interrupt handler function, use a register bank to
	save registers R0-R14, MACH, MACL, GBR and PR.
	This is available only on SH2A targets.

   * function_vector
	Declares a function to be called using the TBR relative addressing
	mode.  Takes an argument that specifies the slot number in the table
	where this function can be looked up by the JSR/N @@(disp8,TBR) insn.
*/

/* Handle a 'resbank' attribute.  */
static tree
sh_handle_resbank_handler_attribute (tree * node, tree name,
				     tree args ATTRIBUTE_UNUSED,
				     int flags ATTRIBUTE_UNUSED,
				     bool * no_add_attrs)
{
  if (!TARGET_SH2A)
    {
      warning (OPT_Wattributes, "%qE attribute is supported only for SH2A",
	       name);
      *no_add_attrs = true;
    }
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle an "interrupt_handler" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
sh_handle_interrupt_handler_attribute (tree *node, tree name,
				       tree args ATTRIBUTE_UNUSED,
				       int flags ATTRIBUTE_UNUSED,
				       bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle an 'function_vector' attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
sh2a_handle_function_vector_handler_attribute (tree * node, tree name,
					       tree args ATTRIBUTE_UNUSED,
					       int flags ATTRIBUTE_UNUSED,
					       bool * no_add_attrs)
{
  if (!TARGET_SH2A)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to SH2A",
	       name);
      *no_add_attrs = true;
    }
  else if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }
  else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
    {
      /* The argument must be a constant integer.  */
      warning (OPT_Wattributes,
	       "%qE attribute argument not an integer constant",
	       name);
      *no_add_attrs = true;
    }
  else if (TREE_INT_CST_LOW (TREE_VALUE (args)) > 255)
    {
      /* The argument value must be between 0 to 255.  */
      warning (OPT_Wattributes,
	       "%qE attribute argument should be between 0 to 255",
	       name);
      *no_add_attrs = true;
    }
  return NULL_TREE;
}

/* Returns true if current function has been assigned the attribute
   'function_vector'.  */
bool
sh2a_is_function_vector_call (rtx x)
{
  if (GET_CODE (x) == SYMBOL_REF
      && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
    {
      tree tr = SYMBOL_REF_DECL (x);

      if (sh2a_function_vector_p (tr))
        return true;
    }

  return false;
}

/* Returns the function vector number, if the attribute
   'function_vector' is assigned, otherwise returns zero.  */
int
sh2a_get_function_vector_number (rtx x)
{
  if ((GET_CODE (x) == SYMBOL_REF)
      && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
    {
      tree t = SYMBOL_REF_DECL (x);

      if (TREE_CODE (t) != FUNCTION_DECL)
	return 0;

      for (tree list = SH_ATTRIBUTES (t); list; list = TREE_CHAIN (list))
	if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
	  return TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (list)));

      return 0;
    }
  else
    return 0;
}

/* Handle an "sp_switch" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
sh_handle_sp_switch_attribute (tree *node, tree name, tree args,
			       int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }
  else if (TREE_CODE (TREE_VALUE (args)) != STRING_CST)
    {
      /* The argument must be a constant string.  */
      warning (OPT_Wattributes, "%qE attribute argument not a string constant",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle an "trap_exit" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
sh_handle_trap_exit_attribute (tree *node, tree name, tree args,
			       int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }
  /* The argument specifies a trap number to be used in a trapa instruction
     at function exit (instead of an rte instruction).  */
  else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
    {
      /* The argument must be a constant integer.  */
      warning (OPT_Wattributes, "%qE attribute argument not an "
	       "integer constant", name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

static tree
sh_handle_renesas_attribute (tree *node ATTRIBUTE_UNUSED,
			     tree name ATTRIBUTE_UNUSED,
			     tree args ATTRIBUTE_UNUSED,
			     int flags ATTRIBUTE_UNUSED,
			     bool *no_add_attrs ATTRIBUTE_UNUSED)
{
  return NULL_TREE;
}

/* True if __attribute__((renesas)) or -mrenesas.  */
bool
sh_attr_renesas_p (const_tree td)
{
  if (TARGET_HITACHI)
    return true;
  if (td == NULL_TREE)
    return false;
  if (DECL_P (td))
    td = TREE_TYPE (td);
  if (td == error_mark_node)
    return false;
  return lookup_attribute ("renesas", TYPE_ATTRIBUTES (td)) != NULL_TREE;
}

/* True if __attribute__((renesas)) or -mrenesas, for the current
   function.  */
bool
sh_cfun_attr_renesas_p (void)
{
  return sh_attr_renesas_p (current_function_decl);
}

/* Returns true if the current function has the "interrupt_handler"
   attribute set.  */
bool
sh_cfun_interrupt_handler_p (void)
{
  return (lookup_attribute ("interrupt_handler",
			    DECL_ATTRIBUTES (current_function_decl))
	  != NULL_TREE);
}

/* Returns true if FUNC has been assigned the attribute
   "function_vector".  */
bool
sh2a_function_vector_p (tree func)
{
  if (TREE_CODE (func) != FUNCTION_DECL)
    return false;

  for (tree list = SH_ATTRIBUTES (func); list; list = TREE_CHAIN (list))
    if (is_attribute_p ("function_vector", get_attribute_name (list)))
      return true;

  return false;
}

/* Returns true if given tree has the "resbank" attribute set.  */
bool
sh_cfun_resbank_handler_p (void)
{
  return ((lookup_attribute ("resbank",
			     DECL_ATTRIBUTES (current_function_decl))
	  != NULL_TREE)
	  && (lookup_attribute ("interrupt_handler",
				DECL_ATTRIBUTES (current_function_decl))
	      != NULL_TREE) && TARGET_SH2A);
}

/* Returns true if the current function has a "trap_exit" attribute set.  */
bool
sh_cfun_trap_exit_p (void)
{
  return lookup_attribute ("trap_exit", DECL_ATTRIBUTES (current_function_decl))
	 != NULL_TREE;
}

/* Implement TARGET_CHECK_PCH_TARGET_FLAGS.  */
static const char *
sh_check_pch_target_flags (int old_flags)
{
  if ((old_flags ^ target_flags) & (MASK_SH1 | MASK_SH2 | MASK_SH3
				    | MASK_SH_E | MASK_HARD_SH4
				    | MASK_FPU_SINGLE | MASK_SH4))
    return _("created and used with different architectures / ABIs");
  if ((old_flags ^ target_flags) & MASK_HITACHI)
    return _("created and used with different ABIs");
  if ((old_flags ^ target_flags) & MASK_LITTLE_ENDIAN)
    return _("created and used with different endianness");
  return NULL;
}

/* Predicates used by the templates.  */

/* Returns true if OP is MACL, MACH or PR.  The input must be a REG rtx.
   Used only in general_movsrc_operand.  */
bool
system_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
{
  switch (REGNO (op))
    {
    case PR_REG:
    case MACL_REG:
    case MACH_REG:
      return true;
    }
  return false;
}

/* Returns true if OP is a floating point value with value 0.0.  */
bool
fp_zero_operand (rtx op)
{
  if (GET_MODE (op) != SFmode)
    return false;

  const REAL_VALUE_TYPE* r = CONST_DOUBLE_REAL_VALUE (op);
  return real_equal (r, &dconst0) && ! REAL_VALUE_MINUS_ZERO (*r);
}

/* Returns true if OP is a floating point value with value 1.0.  */
bool
fp_one_operand (rtx op)
{
  if (GET_MODE (op) != SFmode)
    return false;

  return real_equal (CONST_DOUBLE_REAL_VALUE (op), &dconst1);
}

/* Return the TLS type for TLS symbols.  */
enum tls_model
tls_symbolic_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
{
  if (GET_CODE (op) != SYMBOL_REF)
    return TLS_MODEL_NONE;
  return SYMBOL_REF_TLS_MODEL (op);
}

/* Return the destination address of a branch.  */
static int
branch_dest (rtx branch)
{
  rtx dest = SET_SRC (PATTERN (branch));

  if (GET_CODE (dest) == IF_THEN_ELSE)
    dest = XEXP (dest, 1);

  return INSN_ADDRESSES (INSN_UID (XEXP (dest, 0)));
}

/* Return nonzero if REG is not used after INSN.
   We assume REG is a reload reg, and therefore does
   not live past labels.  It may live past calls or jumps though.  */
bool
reg_unused_after (rtx reg, rtx_insn *insn)
{
  /* If the reg is set by this instruction, then it is safe for our
     case.  Disregard the case where this is a store to memory, since
     we are checking a register used in the store address.  */
  rtx set = single_set (insn);
  if (set && !MEM_P (SET_DEST (set))
      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
    return true;

  while ((insn = NEXT_INSN (insn)))
    {
      if (!INSN_P (insn))
	continue;

      rtx_code code = GET_CODE (insn);

#if 0
      /* If this is a label that existed before reload, then the register
	 is dead here.  However, if this is a label added by reorg, then
	 the register may still be live here.  We can't tell the difference,
	 so we just ignore labels completely.  */
      if (code == CODE_LABEL)
	return 1;
      /* else */
#endif

      if (code == JUMP_INSN)
	return false;

      /* If this is a sequence, we must handle them all at once.
	 We could have for instance a call that sets the target register,
	 and an insn in a delay slot that uses the register.  In this case,
	 we must return 0.  */
      else if (code == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
	{
	  rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
	  bool retval = false;

	  for (int i = 0; i < seq->len (); i++)
	    {
	      rtx_insn *this_insn = seq->insn (i);
	      rtx set = single_set (this_insn);

	      if (CALL_P (this_insn))
		code = CALL_INSN;
	      else if (JUMP_P (this_insn))
		{
		  if (INSN_ANNULLED_BRANCH_P (this_insn))
		    return false;
		  code = JUMP_INSN;
		}

	      if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
		return false;
	      if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
		{
		  if (!MEM_P (SET_DEST (set)))
		    retval = true;
		  else
		    return false;
		}
	      if (set == NULL_RTX
		  && reg_overlap_mentioned_p (reg, PATTERN (this_insn)))
		return false;
	    }
	  if (retval)
	    return true;
	  else if (code == JUMP_INSN)
	    return false;
	}

      rtx set = single_set (insn);
      if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
	return false;
      if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
	return !MEM_P (SET_DEST (set));
      if (set == NULL && reg_overlap_mentioned_p (reg, PATTERN (insn)))
	return false;

      if (code == CALL_INSN && call_really_used_regs[REGNO (reg)])
	return true;
    }
  return true;
}


static GTY(()) rtx t_reg_rtx;
rtx
get_t_reg_rtx (void)
{
  if (! t_reg_rtx)
    t_reg_rtx = gen_rtx_REG (SImode, T_REG);
  return t_reg_rtx;
}

static GTY(()) tree fpscr_values;

static void
emit_fpu_switch (rtx scratch, int index)
{
  if (fpscr_values == NULL)
    {
      tree t = build_index_type (integer_one_node);
      t = build_array_type (integer_type_node, t);
      t = build_decl (BUILTINS_LOCATION,
		      VAR_DECL, get_identifier ("__fpscr_values"), t);
      DECL_ARTIFICIAL (t) = 1;
      DECL_IGNORED_P (t) = 1;
      DECL_EXTERNAL (t) = 1;
      TREE_STATIC (t) = 1;
      TREE_PUBLIC (t) = 1;
      TREE_USED (t) = 1;

      fpscr_values = t;
    }

  rtx src = DECL_RTL (fpscr_values);
  if (!can_create_pseudo_p ())
    {
      emit_move_insn (scratch, XEXP (src, 0));
      if (index != 0)
	emit_insn (gen_addsi3 (scratch, scratch, GEN_INT (index * 4)));
      src = adjust_automodify_address (src, SImode, scratch, index * 4);
    }
  else
    src = adjust_address (src, SImode, index * 4);

  emit_insn (gen_lds_fpscr (src));
}

static rtx get_free_reg (HARD_REG_SET);

/* This function returns a register to use to load the address to load
   the fpscr from.  Currently it always returns r1 or r7, but when we are
   able to use pseudo registers after combine, or have a better mechanism
   for choosing a register, it should be done here.  */
/* REGS_LIVE is the liveness information for the point for which we
   need this allocation.  In some bare-bones exit blocks, r1 is live at the
   start.  We can even have all of r0..r3 being live:
__complex__ long long f (double d) { if (d == 0) return 2; else return 3; }
   INSN before which new insns are placed with will clobber the register
   we return.  If a basic block consists only of setting the return value
   register to a pseudo and using that register, the return value is not
   live before or after this block, yet we we'll insert our insns right in
   the middle.  */
static rtx
get_free_reg (HARD_REG_SET regs_live)
{
  if (! TEST_HARD_REG_BIT (regs_live, 1))
    return gen_rtx_REG (Pmode, 1);

  /* Hard reg 1 is live; since this is a small register classes target,
     there shouldn't be anything but a jump before the function end.  */
  gcc_assert (!TEST_HARD_REG_BIT (regs_live, 7));
  return gen_rtx_REG (Pmode, 7);
}

/* This function will set the fpscr from memory.
   MODE is the mode we are setting it to.  */
void
fpscr_set_from_mem (int mode, HARD_REG_SET regs_live)
{
  enum attr_fp_mode fp_mode = (enum attr_fp_mode) mode;
  enum attr_fp_mode norm_mode = ACTUAL_NORMAL_MODE (FP_MODE);

  rtx addr_reg = !can_create_pseudo_p () ? get_free_reg (regs_live) : NULL_RTX;
  emit_fpu_switch (addr_reg, fp_mode == norm_mode);
}

/* Is the given character a logical line separator for the assembler?  */
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
#endif

static bool
sequence_insn_p (rtx_insn *insn)
{
  rtx_insn* prev = PREV_INSN (insn);
  if (prev == NULL)
    return false;

  rtx_insn* next = NEXT_INSN (prev);
  if (next == NULL)
    return false;

  return INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE;
}

int
sh_insn_length_adjustment (rtx_insn *insn)
{
  /* Instructions with unfilled delay slots take up an extra two bytes for
     the nop in the delay slot.  */
  if (((NONJUMP_INSN_P (insn)
	&& GET_CODE (PATTERN (insn)) != USE
	&& GET_CODE (PATTERN (insn)) != CLOBBER)
       || CALL_P (insn) || JUMP_P (insn))
      && ! sequence_insn_p (insn)
      && get_attr_needs_delay_slot (insn) == NEEDS_DELAY_SLOT_YES)
    return 2;

  /* Increase the insn length of a cbranch without a delay slot insn to
     force a delay slot which will be stuffed with a nop.  */
  if (TARGET_CBRANCH_FORCE_DELAY_SLOT && TARGET_SH2
      && JUMP_P (insn) && get_attr_type (insn) == TYPE_CBRANCH
      && ! sequence_insn_p (insn))
    return 2;

  /* sh-dsp parallel processing insn take four bytes instead of two.  */

  if (NONJUMP_INSN_P (insn))
    {
      int sum = 0;
      rtx body = PATTERN (insn);
      const char *templ;
      char c;
      bool maybe_label = true;

      if (GET_CODE (body) == ASM_INPUT)
	templ = XSTR (body, 0);
      else if (asm_noperands (body) >= 0)
	templ
	  = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
      else
	return 0;
      do
	{
	  int ppi_adjust = 0;

	  do
	    c = *templ++;
	  while (c == ' ' || c == '\t');
	  /* all sh-dsp parallel-processing insns start with p.
	     The only non-ppi sh insn starting with p is pref.
	     The only ppi starting with pr is prnd.  */
	  if ((c == 'p' || c == 'P') && strncasecmp ("re", templ, 2))
	    ppi_adjust = 2;
	  /* The repeat pseudo-insn expands two three insns, a total of
	     six bytes in size.  */
	  else if ((c == 'r' || c == 'R')
		   && ! strncasecmp ("epeat", templ, 5))
	    ppi_adjust = 4;
	  while (c && c != '\n'
		 && ! IS_ASM_LOGICAL_LINE_SEPARATOR (c, templ))
	    {
	      /* If this is a label, it is obviously not a ppi insn.  */
	      if (c == ':' && maybe_label)
		{
		  ppi_adjust = 0;
		  break;
		}
	      else if (c == '\'' || c == '"')
		maybe_label = false;
	      c = *templ++;
	    }
	  sum += ppi_adjust;
	  maybe_label = c != ':';
	}
      while (c);
      return sum;
    }
  return 0;
}

/* Return TRUE for a valid displacement for the REG+disp addressing
   with MODE.  */
bool
sh_legitimate_index_p (machine_mode mode, rtx op, bool consider_sh2a,
		       bool allow_zero)
{
  if (! CONST_INT_P (op))
    return false;

    {
      const HOST_WIDE_INT offset = INTVAL (op);
      const int max_disp = sh_max_mov_insn_displacement (mode, consider_sh2a);
      const int align_mask = mov_insn_alignment_mask (mode, consider_sh2a);

      /* If the mode does not support any displacement always return false.
	 Even though an index of '0' is actually always valid, it will cause
	 troubles when e.g. a DFmode move is split into two SFmode moves,
	 where one SFmode move will have index '0' and the other move will
	 have index '4'.  */
       if (!allow_zero && max_disp < 1)
	return false;

      return offset >= 0 && offset <= max_disp && (offset & align_mask) == 0;
    }
}

/* Recognize an RTL expression that is a valid memory address for
   an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.
   Allow  REG
	  REG+disp
	  REG+r0
	  REG++
	  --REG
	  GBR
	  GBR+disp  */
static bool
sh_legitimate_address_p (machine_mode mode, rtx x, bool strict)
{
  if (REG_P (x) && REGNO (x) == GBR_REG)
    return true;

  if (MAYBE_BASE_REGISTER_RTX_P (x, strict))
    return true;
  else if ((GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
	   && MAYBE_BASE_REGISTER_RTX_P (XEXP (x, 0), strict))
    return true;
  else if (GET_CODE (x) == PLUS)
    {
      rtx xop0 = XEXP (x, 0);
      rtx xop1 = XEXP (x, 1);

      if (REG_P (xop0) && REGNO (xop0) == GBR_REG)
	return gbr_displacement (xop1, mode);

      if (GET_MODE_SIZE (mode) <= 8
	  && MAYBE_BASE_REGISTER_RTX_P (xop0, strict)
	  && sh_legitimate_index_p (mode, xop1, TARGET_SH2A, false))
	return true;

      if (GET_MODE_SIZE (mode) <= 4
	  || (TARGET_FPU_DOUBLE && TARGET_FMOVD && mode == DFmode))
	{
	  if (MAYBE_BASE_REGISTER_RTX_P (xop1, strict)
	      && MAYBE_INDEX_REGISTER_RTX_P (xop0, strict))
	    return true;
	  if (MAYBE_INDEX_REGISTER_RTX_P (xop1, strict)
	      && MAYBE_BASE_REGISTER_RTX_P (xop0, strict))
	    return true;
	}
    }

  return false;
}

/* Return TRUE if X references a SYMBOL_REF or LABEL_REF whose symbol
   isn't protected by a PIC unspec.  */
bool
nonpic_symbol_mentioned_p (rtx x)
{
  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF
      || GET_CODE (x) == PC)
    return true;

  /* We don't want to look into the possible MEM location of a
     CONST_DOUBLE, since we're not going to use it, in general.  */
  if (GET_CODE (x) == CONST_DOUBLE)
    return false;

  if (GET_CODE (x) == UNSPEC
      && (XINT (x, 1) == UNSPEC_PIC
	  || XINT (x, 1) == UNSPEC_GOT
	  || XINT (x, 1) == UNSPEC_GOTOFF
	  || XINT (x, 1) == UNSPEC_GOTPLT
	  || XINT (x, 1) == UNSPEC_GOTTPOFF
	  || XINT (x, 1) == UNSPEC_DTPOFF
	  || XINT (x, 1) == UNSPEC_TPOFF
	  || XINT (x, 1) == UNSPEC_PLT
	  || XINT (x, 1) == UNSPEC_PCREL
	  || XINT (x, 1) == UNSPEC_SYMOFF
	  || XINT (x, 1) == UNSPEC_PCREL_SYMOFF
	  || XINT (x, 1) == UNSPEC_GOTFUNCDESC
	  || XINT (x, 1) == UNSPEC_GOTOFFFUNCDESC))
    return false;

  const char* fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  for (int j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (nonpic_symbol_mentioned_p (XVECEXP (x, i, j)))
	      return true;
	}
      else if (fmt[i] == 'e' && nonpic_symbol_mentioned_p (XEXP (x, i)))
	return true;
    }

  return false;
}

/* Convert a non-PIC address in `orig' to a PIC address using @GOT or
   @GOTOFF in `reg'.  */
rtx
legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED, rtx reg)
{
  if (tls_symbolic_operand (orig, Pmode) != TLS_MODEL_NONE)
    return orig;

  if (GET_CODE (orig) == LABEL_REF
      || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
    {
      if (reg == NULL_RTX)
	reg = gen_reg_rtx (Pmode);

      if (TARGET_FDPIC
	  && GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (orig))
	{
	  /* Weak functions may be NULL which doesn't work with
	     GOTOFFFUNCDESC because the runtime offset is not known.  */
	  if (SYMBOL_REF_WEAK (orig))
	    emit_insn (gen_symGOTFUNCDESC2reg (reg, orig));
	  else
	    emit_insn (gen_symGOTOFFFUNCDESC2reg (reg, orig));
	}
      else if (TARGET_FDPIC
	       && (GET_CODE (orig) == LABEL_REF
		   || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_DECL (orig)
		       && (TREE_READONLY (SYMBOL_REF_DECL (orig))
			   || SYMBOL_REF_EXTERNAL_P (orig)
			   || DECL_SECTION_NAME(SYMBOL_REF_DECL (orig))))))
	/* In FDPIC, GOTOFF can only be used for writable data.  */
	emit_insn (gen_symGOT2reg (reg, orig));
      else
	emit_insn (gen_symGOTOFF2reg (reg, orig));
      return reg;
    }
  else if (GET_CODE (orig) == SYMBOL_REF)
    {
      if (reg == NULL_RTX)
	reg = gen_reg_rtx (Pmode);

      if (TARGET_FDPIC && SYMBOL_REF_FUNCTION_P (orig))
	emit_insn (gen_symGOTFUNCDESC2reg (reg, orig));
      else
	emit_insn (gen_symGOT2reg (reg, orig));
      return reg;
    }
  return orig;
}

/* Given a (logical) mode size and an offset in bytes, try to find a the
   appropriate displacement value for a mov insn.  On SH the displacements
   are limited to max. 60 bytes for SImode, max. 30 bytes in HImode and max.
   15 bytes in QImode.  To compensate this we create a new base address by
   adding an adjustment value to it.

   If the originally requested offset is greater than 127 we prefer using
   values 124..127 over 128..131 to increase opportunities to use the
   add #imm, Rn insn.

   In some cases it is possible that a requested offset might seem unaligned
   or inappropriate for the mode size, like offset = 2 and mode size = 4.
   This is compensated by adjusting the base address so that the effective
   address of the displacement move insn will be aligned. 

   This is not the best possible way of rebasing the base address, as it
   does not look at other present displacement addressings around it.
   In some cases this can create more base address adjustments than would
   actually be necessary.  */
struct disp_adjust
{
  rtx offset_adjust;
  rtx mov_disp;
};

static struct disp_adjust
sh_find_mov_disp_adjust (machine_mode mode, HOST_WIDE_INT offset)
{
  struct disp_adjust res = { NULL_RTX, NULL_RTX };

  /* Do not try to use SH2A's large displacements here, because this would
     effectively disable the small displacement insns.  */
  const int mode_sz = GET_MODE_SIZE (mode);
  const int mov_insn_sz = mov_insn_size (mode, false);
  const int max_disp = sh_max_mov_insn_displacement (mode, false);
  const int max_disp_next = max_disp + mov_insn_sz;
  HOST_WIDE_INT align_modifier = offset > 127 ? mov_insn_sz : 0;
  HOST_WIDE_INT offset_adjust;

  /* In some cases this actually does happen and we must check for it.  */
  if (mode_sz < 1 || mode_sz > 8 || max_disp < 1)
    return res;

  /* Keeps the previous behavior for QImode displacement addressing.
     This just decides how the offset is re-based.  Removing this special
     case will result in slightly bigger code on average, but it's not that
     bad actually.  */
  if (mov_insn_sz == 1)
    align_modifier = 0;

  offset_adjust = ((offset + align_modifier) & ~max_disp) - align_modifier;

  if (mode_sz + offset - offset_adjust <= max_disp_next)
    {
      res.offset_adjust = GEN_INT (offset_adjust);
      res.mov_disp = GEN_INT (offset - offset_adjust);
    }

  return res;
}

/* Try to modify an illegitimate address and make it legitimate.
   If we find one, return the new, valid address.
   Otherwise, return the original address.  */
static rtx
sh_legitimize_address (rtx x, rtx oldx, machine_mode mode)
{
  if (flag_pic)
    x = legitimize_pic_address (oldx, mode, NULL_RTX);

  if ((TARGET_FPU_DOUBLE && mode == DFmode)
      || (TARGET_SH2E && mode == SFmode))
    return x;

  if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))
      && BASE_REGISTER_RTX_P (XEXP (x, 0)))
    {
      struct disp_adjust adj = sh_find_mov_disp_adjust (mode,
							INTVAL (XEXP (x, 1)));

      if (adj.offset_adjust != NULL_RTX && adj.mov_disp != NULL_RTX)
	{
	  rtx sum = expand_binop (Pmode, add_optab, XEXP (x, 0),
				  adj.offset_adjust, NULL_RTX, 0,
				  OPTAB_LIB_WIDEN);
	  return gen_rtx_PLUS (Pmode, sum, adj.mov_disp);
	}
    }
  return x;
}

/* Attempt to replace *p, which is an address that needs reloading, with
   a valid memory address for an operand of mode MODE.
   Like for sh_legitimize_address, for the SH we try to get a normal form
   of the address.  That will allow inheritance of the address reloads.  */
bool
sh_legitimize_reload_address (rtx *p, machine_mode mode, int opnum,
			      int itype)
{
  enum reload_type type = (enum reload_type) itype;
  const int mode_sz = GET_MODE_SIZE (mode);

  if (sh_lra_p ())
    return false;

  if (GET_CODE (*p) == PLUS && CONST_INT_P (XEXP (*p, 1))
      && MAYBE_BASE_REGISTER_RTX_P (XEXP (*p, 0), true))
    {
      const HOST_WIDE_INT offset = INTVAL (XEXP (*p, 1));
      struct disp_adjust adj = sh_find_mov_disp_adjust (mode, offset);

      if (TARGET_SH2A && mode == DFmode && (offset & 0x7))
	{
	  push_reload (*p, NULL_RTX, p, NULL,
		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
	  return true;
	}

      if (TARGET_SH2E && mode == SFmode)
	{
	  *p = copy_rtx (*p);
	  push_reload (*p, NULL_RTX, p, NULL,
		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
	  return true;
	}

      /* FIXME: Do not allow to legitimize QImode and HImode displacement
	 moves because then reload has a problem figuring the constraint
	 that the move insn target/source reg must be R0.
	 Or maybe some handling is wrong in sh_secondary_reload for this
	 to work properly? */
      if ((mode_sz == 4 || mode_sz == 8)
	  && ! (TARGET_SH4 && mode == DFmode)
	  && adj.offset_adjust != NULL_RTX && adj.mov_disp != NULL_RTX)
	{
	  rtx sum = gen_rtx_PLUS (Pmode, XEXP (*p, 0), adj.offset_adjust);
	  *p = gen_rtx_PLUS (Pmode, sum, adj.mov_disp);
	  push_reload (sum, NULL_RTX, &XEXP (*p, 0), NULL,
		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
	  return true;
	}
    }

  /* We must re-recognize what we created before.  */
  if (GET_CODE (*p) == PLUS
      && (mode_sz == 4 || mode_sz == 8)
      && GET_CODE (XEXP (*p, 0)) == PLUS
      && CONST_INT_P (XEXP (XEXP (*p, 0), 1))
      && MAYBE_BASE_REGISTER_RTX_P (XEXP (XEXP (*p, 0), 0), true)
      && CONST_INT_P (XEXP (*p, 1))
      && ! (TARGET_SH2E && mode == SFmode))
    {
      /* Because this address is so complex, we know it must have
	 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,
	 it is already unshared, and needs no further unsharing.  */
      push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL,
		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
      return true;
    }

  return false;
}

/* In the name of slightly smaller debug output, and to cater to
   general assembler lossage, recognize various UNSPEC sequences
   and turn them back into a direct symbol reference.  */
static rtx
sh_delegitimize_address (rtx orig_x)
{
  orig_x = delegitimize_mem_from_attrs (orig_x);

  rtx x = orig_x;
  if (MEM_P (x))
    x = XEXP (x, 0);
  if (GET_CODE (x) == CONST)
    {
      rtx y = XEXP (x, 0);
      if (GET_CODE (y) == UNSPEC)
	{
	  if (XINT (y, 1) == UNSPEC_GOT
	      || XINT (y, 1) == UNSPEC_GOTOFF
	      || XINT (y, 1) == UNSPEC_SYMOFF)
	    return XVECEXP (y, 0, 0);
	  else if (XINT (y, 1) == UNSPEC_PCREL_SYMOFF)
	    {
	      if (GET_CODE (XVECEXP (y, 0, 0)) == CONST)
		{
		  rtx symplt = XEXP (XVECEXP (y, 0, 0), 0);

		  if (GET_CODE (symplt) == UNSPEC
		      && (XINT (symplt, 1) == UNSPEC_PLT
			  || XINT (symplt, 1) == UNSPEC_PCREL))
		    return XVECEXP (symplt, 0, 0);
		}
	    }
	}
    }

  return orig_x;
}

/* Mark the use of a constant in the literal table. If the constant
   has multiple labels, make it unique.  */
static rtx
mark_constant_pool_use (rtx x)
{
  if (x == NULL_RTX)
    return x;

  switch (GET_CODE (x))
    {
    case LABEL_REF:
      x = XEXP (x, 0);
    case CODE_LABEL:
      break;
    default:
      return x;
    }

  /* Get the first label in the list of labels for the same constant
     and delete another labels in the list.  */
  rtx_insn* lab = as_a <rtx_insn*> (x);
  for (rtx_insn* insn = PREV_INSN (lab); insn; insn = PREV_INSN (insn))
    {
      if (!LABEL_P (insn)
	  || LABEL_REFS (insn) != NEXT_INSN (insn))
	break;
      lab = insn;
    }

  for (rtx insn = LABEL_REFS (lab); insn; insn = LABEL_REFS (insn))
    as_a<rtx_insn *> (insn)->set_deleted ();

  /* Mark constants in a window.  */
  for (rtx_insn* insn = NEXT_INSN (as_a <rtx_insn *> (x)); insn;
       insn = NEXT_INSN (insn))
    {
      if (!NONJUMP_INSN_P (insn))
	continue;

      rtx pattern = PATTERN (insn);
      if (GET_CODE (pattern) != UNSPEC_VOLATILE)
	continue;

      switch (XINT (pattern, 1))
	{
	case UNSPECV_CONST2:
	case UNSPECV_CONST4:
	case UNSPECV_CONST8:
	  XVECEXP (pattern, 0, 1) = const1_rtx;
	  break;
	case UNSPECV_WINDOW_END:
	  if (XVECEXP (pattern, 0, 0) == x)
	    return lab;
	  break;
	case UNSPECV_CONST_END:
	  return lab;
	default:
	  break;
	}
    }

  return lab;
}

/* Return true if it's possible to redirect BRANCH1 to the destination
   of an unconditional jump BRANCH2.  We only want to do this if the
   resulting branch will have a short displacement.  */
static bool
sh_can_follow_jump (const rtx_insn *branch1, const rtx_insn *branch2)
{
  /* Don't follow if BRANCH2 is possible to be a jump crossing between
     hot and cold partitions.  */
  if (flag_reorder_blocks_and_partition
      && simplejump_p (branch2)
      && CROSSING_JUMP_P (branch2))
    return false;

  if (flag_expensive_optimizations && simplejump_p (branch2))
    {
      rtx dest = XEXP (SET_SRC (single_set (branch2)), 0);
      rtx_insn *insn;
      int distance;

      for (distance = 0, insn = NEXT_INSN (branch1);
	   insn && distance < 256;
	   insn = PREV_INSN (insn))
	{
	  if (insn == dest)
	    return true;
	  else
	    distance += get_attr_length (insn);
	}
      for (distance = 0, insn = NEXT_INSN (branch1);
	   insn && distance < 256;
	   insn = NEXT_INSN (insn))
	{
	  if (insn == dest)
	    return true;
	  else
	    distance += get_attr_length (insn);
	}
    }
  return false;
}

/* Return nonzero if register old_reg can be renamed to register new_reg.  */
bool
sh_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
			 unsigned int new_reg)
{
  /* Interrupt functions can only use registers that have already been
     saved by the prologue, even if they would normally be
     call-clobbered.  */
  if (sh_cfun_interrupt_handler_p () && !df_regs_ever_live_p (new_reg))
    return false;

  return true;
}

/* Function to update the integer COST
   based on the relationship between INSN that is dependent on
   DEP_INSN through the dependence LINK.  The default is to make no
   adjustment to COST.  This can be used for example to specify to
   the scheduler that an output- or anti-dependence does not incur
   the same cost as a data-dependence.  The return value should be
   the new value for COST.  */
static int
sh_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, int cost,
		unsigned int)
{
  rtx reg, use_pat;

  if (dep_type == 0)
    {
      if (recog_memoized (insn) < 0
	  || recog_memoized (dep_insn) < 0)
	return cost;

      rtx dep_set = single_set (dep_insn);

      /* The latency that we specify in the scheduling description refers
	 to the actual output, not to an auto-increment register; for that,
	 the latency is one.  */
      if (dep_set && MEM_P (SET_SRC (dep_set)) && cost > 1)
	{
	  rtx set = single_set (insn);

	  if (set
	      && !reg_mentioned_p (SET_DEST (dep_set), SET_SRC (set))
	      && (!MEM_P (SET_DEST (set))
		  || !reg_mentioned_p (SET_DEST (dep_set),
				       XEXP (SET_DEST (set), 0))))
	    cost = 1;
	}
      /* The only input for a call that is timing-critical is the
	 function's address.  */
      if (CALL_P (insn))
	{
	  rtx call = get_call_rtx_from (insn);
	  if (call
		  /* sibcalli_thunk uses a symbol_ref in an unspec.  */
	      && (GET_CODE (XEXP (XEXP (call, 0), 0)) == UNSPEC
		  || ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn)))
	    cost -= TARGET_SH4_300 ? 3 : 6;
	}
      /* Likewise, the most timing critical input for an sfuncs call
	 is the function address.  However, sfuncs typically start
	 using their arguments pretty quickly.
	 Assume a four cycle delay for SH4 before they are needed.
	 Cached ST40-300 calls are quicker, so assume only a one
	 cycle delay there.
	 ??? Maybe we should encode the delays till input registers
	 are needed by sfuncs into the sfunc call insn.  */
      /* All sfunc calls are parallels with at least four components.
	 Exploit this to avoid unnecessary calls to sfunc_uses_reg.  */
      else if (GET_CODE (PATTERN (insn)) == PARALLEL
	       && XVECLEN (PATTERN (insn), 0) >= 4
	       && (reg = sfunc_uses_reg (insn)))
	{
	  if (! reg_set_p (reg, dep_insn))
	    cost -= TARGET_SH4_300 ? 1 : 4;
	}
      if (TARGET_HARD_SH4 && !TARGET_SH4_300)
	{
	  attr_type dep_type = get_attr_type (dep_insn);
	  attr_type type;
	  if (dep_type == TYPE_FLOAD || dep_type == TYPE_PCFLOAD)
	    cost--;
	  else if ((dep_type == TYPE_LOAD_SI || dep_type == TYPE_PCLOAD_SI)
		   && (type = get_attr_type (insn)) != TYPE_CALL
		   && type != TYPE_SFUNC)
	    cost--;
	  /* When the preceding instruction loads the shift amount of
	     the following SHAD/SHLD, the latency of the load is increased
	     by 1 cycle.  */
	  if (get_attr_type (insn) == TYPE_DYN_SHIFT
	      && get_attr_any_int_load (dep_insn) == ANY_INT_LOAD_YES
	      && reg_overlap_mentioned_p (SET_DEST (dep_set),
					  XEXP (SET_SRC (single_set (insn)),
						1)))
	    cost++;
	  /* When an LS group instruction with a latency of less than
	     3 cycles is followed by a double-precision floating-point
	     instruction, FIPR, or FTRV, the latency of the first
	     instruction is increased to 3 cycles.  */
	  else if (cost < 3
		   && get_attr_insn_class (dep_insn) == INSN_CLASS_LS_GROUP
		   && get_attr_dfp_comp (insn) == DFP_COMP_YES)
	    cost = 3;
	  /* The lsw register of a double-precision computation is ready one
	     cycle earlier.  */
	  else if (reload_completed
		   && get_attr_dfp_comp (dep_insn) == DFP_COMP_YES
		   && (use_pat = single_set (insn))
		   && ! regno_use_in (REGNO (SET_DEST (single_set (dep_insn))),
				      SET_SRC (use_pat)))
	    cost -= 1;

	  if (get_attr_any_fp_comp (dep_insn) == ANY_FP_COMP_YES
	      && get_attr_late_fp_use (insn) == LATE_FP_USE_YES)
	    cost -= 1;
	}
      else if (TARGET_SH4_300)
	{
	  /* Stores need their input register two cycles later.  */
	  attr_type type;
	  if (dep_set && cost >= 1
	      && ((type = get_attr_type (insn)) == TYPE_STORE
		  || type == TYPE_PSTORE
		  || type == TYPE_FSTORE || type == TYPE_MAC_MEM))
	    {
	      rtx set = single_set (insn);

	      if (!reg_mentioned_p (SET_SRC (set), XEXP (SET_DEST (set), 0))
		  && rtx_equal_p (SET_SRC (set), SET_DEST (dep_set)))
		{
		  cost -= 2;
		  /* But don't reduce the cost below 1 if the address depends
		     on a side effect of dep_insn.  */
		  if (cost < 1
		      && modified_in_p (XEXP (SET_DEST (set), 0), dep_insn))
		    cost = 1;
		}
	    }
	}
    }
  /* An anti-dependence penalty of two applies if the first insn is a double
     precision fadd / fsub / fmul.  */
  else if (!TARGET_SH4_300
	   && dep_type == REG_DEP_ANTI
	   && recog_memoized (dep_insn) >= 0
	   && (get_attr_type (dep_insn) == TYPE_DFP_ARITH
	       || get_attr_type (dep_insn) == TYPE_DFP_MUL)
	   /* A lot of alleged anti-flow dependences are fake,
	      so check this one is real.  */
	   && flow_dependent_p (dep_insn, insn))
    cost = 2;

  return cost;
}

/* Check if INSN is flow-dependent on DEP_INSN.  Can also be used to check
   if DEP_INSN is anti-flow dependent on INSN.  */
static bool
flow_dependent_p (rtx_insn *insn, rtx_insn *dep_insn)
{
  rtx tmp = PATTERN (insn);

  note_stores (dep_insn, flow_dependent_p_1, &tmp);
  return tmp == NULL_RTX;
}

/* A helper function for flow_dependent_p called through note_stores.  */
static void
flow_dependent_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  rtx * pinsn = (rtx *) data;

  if (*pinsn && reg_referenced_p (x, *pinsn))
    *pinsn = NULL_RTX;
}

/* For use by sh_allocate_initial_value.  Note that sh.md contains some
   'special function' patterns (type sfunc) that clobber pr, but that
   do not look like function calls to leaf_function_p.  Hence we must
   do this extra check.  */
static int
sh_pr_n_sets (void)
{
  return DF_REG_DEF_COUNT (PR_REG);
}

/* Return where to allocate pseudo for a given hard register initial
   value.  */
static rtx
sh_allocate_initial_value (rtx hard_reg)
{
  if (REGNO (hard_reg) == PR_REG)
    {
      if (crtl->is_leaf && ! sh_pr_n_sets ())
	return hard_reg;
      else
	return gen_frame_mem (Pmode, return_address_pointer_rtx);
    }

  return NULL_RTX;
}

/* This function returns "2" to indicate dual issue for the SH4
   processor.  To be used by the DFA pipeline description.  */
static int
sh_issue_rate (void)
{
  if (TARGET_SUPERSCALAR)
    return 2;
  else
    return 1;
}

/* Functions for ready queue reordering for sched1.  */

/* Get weight for mode for a set x.  */
static short
find_set_regmode_weight (rtx x, machine_mode mode)
{
  if (GET_CODE (x) == CLOBBER && register_operand (SET_DEST (x), mode))
    return 1;
  if (GET_CODE (x) == SET && register_operand (SET_DEST (x), mode))
    {
      if (REG_P (SET_DEST (x)))
	{
	  if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
	    return 1;
	  else
	    return 0;
	}
      return 1;
    }
  return 0;
}

/* Get regmode weight for insn.  */
static short
find_insn_regmode_weight (rtx insn, machine_mode mode)
{
  /* Increment weight for each register born here.  */
  rtx x = PATTERN (insn);
  short reg_weight = find_set_regmode_weight (x, mode);
  if (GET_CODE (x) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
	{
	  x = XVECEXP (PATTERN (insn), 0, j);
	  reg_weight += find_set_regmode_weight (x, mode);
	}
    }
  /* Decrement weight for each register that dies here.  */
  for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
    {
      if (REG_NOTE_KIND (x) == REG_DEAD || REG_NOTE_KIND (x) == REG_UNUSED)
	{
	  rtx note = XEXP (x, 0);
	  if (REG_P (note) && GET_MODE (note) == mode)
	    reg_weight--;
	}
    }
  return reg_weight;
}

/* Calculate regmode weights for all insns of a basic block.  */
static void
find_regmode_weight (basic_block b, machine_mode mode)
{
  rtx_insn *insn, *next_tail, *head, *tail;

  get_ebb_head_tail (b, b, &head, &tail);
  next_tail = NEXT_INSN (tail);

  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      /* Handle register life information.  */
      if (!INSN_P (insn))
	continue;

      if (mode == SFmode)
	INSN_REGMODE_WEIGHT (insn, mode) =
	  find_insn_regmode_weight (insn, mode)
	  + 2 * find_insn_regmode_weight (insn, DFmode);
      else if (mode == SImode)
	INSN_REGMODE_WEIGHT (insn, mode) =
	  find_insn_regmode_weight (insn, mode)
	  + 2 * find_insn_regmode_weight (insn, DImode);
    }
}

/* Comparison function for ready queue sorting.  */
static int
rank_for_reorder (const void *x, const void *y)
{
  rtx_insn *tmp = *(rtx_insn * const *) y;
  rtx_insn *tmp2 = *(rtx_insn * const *) x;

  /* The insn in a schedule group should be issued the first.  */
  if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
    return SCHED_GROUP_P (tmp2) ? 1 : -1;

  /* If insns are equally good, sort by INSN_LUID (original insn order), This
     minimizes instruction movement, thus minimizing sched's effect on
     register pressure.  */
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
}

/* Resort the array A in which only element at index N may be out of order.  */
static void
swap_reorder (rtx_insn **a, int n)
{
  rtx_insn *insn = a[n - 1];
  int i = n - 2;

  while (i >= 0 && rank_for_reorder (a + i, &insn) >= 0)
    {
      a[i + 1] = a[i];
      i -= 1;
    }
  a[i + 1] = insn;
}

/* Sort the ready list by ascending priority.  */
static void
ready_reorder (rtx_insn **ready, int nready)
{
  if (nready == 2)
    swap_reorder (ready, nready);
  else if (nready > 2)
     qsort (ready, nready, sizeof (rtx_insn *), rank_for_reorder);
}

/* Count life regions of r0 for a block.  */
static int
find_r0_life_regions (basic_block b)
{
  bool live;
  int set;
  int death = 0;

  if (REGNO_REG_SET_P (df_get_live_in (b), R0_REG))
    {
      set = 1;
      live = true;
    }
  else
    {
      set = 0;
      live = false;
    }

  rtx_insn* insn = BB_HEAD (b);
  rtx_insn* end = BB_END (b);
  rtx r0_reg = gen_rtx_REG (SImode, R0_REG);
  while (1)
    {
      if (INSN_P (insn))
	{
	  if (find_regno_note (insn, REG_DEAD, R0_REG))
	    {
	      death++;
	      live = false;
	    }

	  rtx pset;
	  if (!live
	      && (pset = single_set (insn))
	      && reg_overlap_mentioned_p (r0_reg, SET_DEST (pset))
	      && !find_regno_note (insn, REG_UNUSED, R0_REG))
	    {
	      set++;
	      live = true;
	    }
	}
      if (insn == end)
	break;
      insn = NEXT_INSN (insn);
    }
  return set - death;
}

/* Calculate regmode weights for all insns of all basic block.  */
static void
sh_md_init_global (FILE *dump ATTRIBUTE_UNUSED,
		   int verbose ATTRIBUTE_UNUSED,
		   int old_max_uid)
{
  basic_block b;

  regmode_weight[0] = (short *) xcalloc (old_max_uid, sizeof (short));
  regmode_weight[1] = (short *) xcalloc (old_max_uid, sizeof (short));
  r0_life_regions = 0;

  FOR_EACH_BB_REVERSE_FN (b, cfun)
  {
    find_regmode_weight (b, SImode);
    find_regmode_weight (b, SFmode);
    if (!reload_completed)
      r0_life_regions += find_r0_life_regions (b);
  }

  CURR_REGMODE_PRESSURE (SImode) = 0;
  CURR_REGMODE_PRESSURE (SFmode) = 0;
}

/* Cleanup.  */
static void
sh_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
		     int verbose ATTRIBUTE_UNUSED)
{
  if (regmode_weight[0])
    {
      free (regmode_weight[0]);
      regmode_weight[0] = NULL;
    }
  if (regmode_weight[1])
    {
      free (regmode_weight[1]);
      regmode_weight[1] = NULL;
    }
}

/* Cache the can_issue_more so that we can return it from reorder2. Also,
   keep count of register pressures on SImode and SFmode. */
static int
sh_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
		   int sched_verbose ATTRIBUTE_UNUSED,
		   rtx_insn *insn,
		   int can_issue_more)
{
  if (GET_CODE (PATTERN (insn)) != USE
      && GET_CODE (PATTERN (insn)) != CLOBBER)
    cached_can_issue_more = can_issue_more - 1;
  else
    cached_can_issue_more = can_issue_more;

  if (reload_completed)
    return cached_can_issue_more;

  CURR_REGMODE_PRESSURE (SImode) += INSN_REGMODE_WEIGHT (insn, SImode);
  CURR_REGMODE_PRESSURE (SFmode) += INSN_REGMODE_WEIGHT (insn, SFmode);

  return cached_can_issue_more;
}

static void
sh_md_init (FILE *dump ATTRIBUTE_UNUSED,
	    int verbose ATTRIBUTE_UNUSED,
	    int veclen ATTRIBUTE_UNUSED)
{
  CURR_REGMODE_PRESSURE (SImode) = 0;
  CURR_REGMODE_PRESSURE (SFmode) = 0;
}

/* Some magic numbers.  */
/* Pressure on register r0 can lead to spill failures. so avoid sched1 for
   functions that already have high pressure on r0. */
#define R0_MAX_LIFE_REGIONS 2
/* Register Pressure thresholds for SImode and SFmode registers.  */
#define SIMODE_MAX_WEIGHT 5
#define SFMODE_MAX_WEIGHT 10

/* Return true if the pressure is high for MODE.  */
static bool
high_pressure (machine_mode mode)
{
  /* Pressure on register r0 can lead to spill failures. so avoid sched1 for
     functions that already have high pressure on r0. */
   if (r0_life_regions >= R0_MAX_LIFE_REGIONS)
     return true;

  if (mode == SFmode)
    return (CURR_REGMODE_PRESSURE (SFmode) > SFMODE_MAX_WEIGHT);
  else
    return (CURR_REGMODE_PRESSURE (SImode) > SIMODE_MAX_WEIGHT);
}

/* Reorder ready queue if register pressure is high.  */
static int
sh_reorder (FILE *dump ATTRIBUTE_UNUSED,
	    int sched_verbose ATTRIBUTE_UNUSED,
	    rtx_insn **ready,
	    int *n_readyp,
	    int clock_var ATTRIBUTE_UNUSED)
{
  if (reload_completed)
    return sh_issue_rate ();

  if (high_pressure (SFmode) || high_pressure (SImode))
    {
      ready_reorder (ready, *n_readyp);
    }

  return sh_issue_rate ();
}

/* Skip cycles if the current register pressure is high.  */
static int
sh_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
	     int sched_verbose ATTRIBUTE_UNUSED,
	     rtx_insn **ready ATTRIBUTE_UNUSED,
	     int *n_readyp ATTRIBUTE_UNUSED,
	     int clock_var ATTRIBUTE_UNUSED)
{
  if (reload_completed)
    return cached_can_issue_more;

  if (high_pressure(SFmode) || high_pressure (SImode))
    skip_cycles = 1;

  return cached_can_issue_more;
}

/* Skip cycles without sorting the ready queue. This will move insn from
   Q->R. If this is the last cycle we are skipping; allow sorting of ready
   queue by sh_reorder.  */

/* Generally, skipping these many cycles are sufficient for all insns to move
   from Q -> R.  */
#define MAX_SKIPS 8

static int
sh_dfa_new_cycle (FILE *sched_dump ATTRIBUTE_UNUSED,
		  int sched_verbose ATTRIBUTE_UNUSED,
		  rtx_insn *insn ATTRIBUTE_UNUSED,
		  int last_clock_var,
		  int clock_var,
		  int *sort_p)
{
  if (reload_completed)
    return 0;

  if (skip_cycles)
    {
      if ((clock_var - last_clock_var) < MAX_SKIPS)
	{
	  *sort_p = 0;
	  return 1;
	}
      /* If this is the last cycle we are skipping, allow reordering of R.  */
      if ((clock_var - last_clock_var) == MAX_SKIPS)
	{
	  *sort_p = 1;
	  return 1;
	}
    }

  skip_cycles = 0;

  return 0;
}

static bool
sh_ms_bitfield_layout_p (const_tree record_type ATTRIBUTE_UNUSED)
{
  return TARGET_HITACHI || sh_attr_renesas_p (record_type);
}

/*
   On the SH1..SH4, the trampoline looks like
   2 0002 D202     	   	mov.l	l2,r2
   1 0000 D301     		mov.l	l1,r3
   3 0004 422B     		jmp	@r2
   4 0006 0009     		nop
   5 0008 00000000 	l1:  	.long   area
   6 000c 00000000 	l2:	.long   function

   FDPIC needs a form that includes a function descriptor and
   code to load the GOT register:
   0 0000 00000000		.long	l0
   1 0004 00000000		.long	gotval
   2 0008 D302    	l0:	mov.l	l1,r3
   3 000a D203    		mov.l	l2,r2
   4 000c 6122    		mov.l	@r2,r1
   5 000e 5C21    		mov.l	@(4,r2),r12
   6 0010 412B    		jmp	@r1
   7 0012 0009    		nop
   8 0014 00000000	l1:	.long	area
   9 0018 00000000	l2:	.long	function

   SH5 (compact) uses r1 instead of r3 for the static chain.  */

/* Emit insns to store a value at memory address + offset.  */
static void
sh_emit_storesi (rtx addr, HOST_WIDE_INT offset, rtx value)
{
  gcc_assert ((offset & 3) == 0);
  emit_move_insn (offset == 0
		  ? change_address (addr, SImode, NULL_RTX)
		  : adjust_address (addr, SImode, offset), value);
}

/* Emit insns to store w0 at addr + offset and w1 at addr + offset + 2.  */
static void
sh_emit_storehi (rtx addr, HOST_WIDE_INT offset, uint16_t w0, uint16_t w1)
{
  sh_emit_storesi (addr, offset, gen_int_mode (TARGET_LITTLE_ENDIAN
					       ? (w0 | (w1 << 16))
					       : (w1 | (w0 << 16)), SImode));
}

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */
static void
sh_trampoline_init (rtx tramp_mem, tree fndecl, rtx cxt)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx tramp = force_reg (Pmode, XEXP (tramp_mem, 0));

  if (TARGET_FDPIC)
    {
      rtx a = force_reg (Pmode, plus_constant (Pmode, XEXP (tramp_mem, 0), 8));

      sh_emit_storesi (tramp_mem, 0, a);
      sh_emit_storesi (tramp_mem, 4, sh_get_fdpic_reg_initial_val ());

      sh_emit_storehi (tramp_mem,  8, 0xd302, 0xd203);
      sh_emit_storehi (tramp_mem, 12, 0x6122, 0x5c21);
      sh_emit_storehi (tramp_mem, 16, 0x412b, 0x0009);

      sh_emit_storesi (tramp_mem, 20, cxt);
      sh_emit_storesi (tramp_mem, 24, fnaddr);
    }
  else
    {
      sh_emit_storehi (tramp_mem, 0, 0xd202, 0xd301);
      sh_emit_storehi (tramp_mem, 4, 0x422b, 0x0009);

      sh_emit_storesi (tramp_mem,  8, cxt);
      sh_emit_storesi (tramp_mem, 12, fnaddr);
    }
  if (TARGET_HARD_SH4)
    {
      if (!TARGET_INLINE_IC_INVALIDATE
	  || (!(TARGET_SH4A || TARGET_SH4_300) && TARGET_USERMODE))
	emit_library_call (function_symbol (NULL, "__ic_invalidate",
					    FUNCTION_ORDINARY).sym,
			   LCT_NORMAL, VOIDmode, tramp, SImode);
      else
	emit_insn (gen_ic_invalidate_line (tramp));
    }
}

/* On SH5, trampolines are SHmedia code, so add 1 to the address.  */
static rtx
sh_trampoline_adjust_address (rtx tramp)
{
  return tramp;
}

/* If PIC, we cannot make sibling calls to global functions
   because the PLT requires r12 to be live.  */
static bool
sh_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
  return (1
	  && ! sh_cfun_interrupt_handler_p ()
	  && (! flag_pic || TARGET_FDPIC
	      || (decl && ! (TREE_PUBLIC (decl) || DECL_WEAK (decl)))
	      || (decl && DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT)));
}

/* Expand to appropriate sym*_label2reg for SYM and SIBCALL_P.  */
void
sh_expand_sym_label2reg (rtx reg, rtx sym, rtx lab, bool sibcall_p)
{
  const_tree decl = SYMBOL_REF_DECL (sym);
  bool is_weak = (decl && DECL_P (decl) && DECL_WEAK (decl));

  if (!is_weak && SYMBOL_REF_LOCAL_P (sym))
    emit_insn (gen_sym_label2reg (reg, sym, lab));
  else if (sibcall_p && SYMBOL_REF_LOCAL_P (sym))
    emit_insn (gen_symPCREL_label2reg (reg, sym, lab));
  else
    emit_insn (gen_symPLT_label2reg (reg, sym, lab));
}

/* Machine specific built-in functions.  */

struct builtin_description
{
  bool (* const is_enabled) (void);
  const enum insn_code icode;
  const char *const name;
  int signature;
  tree fndecl;
};

/* This function can be used if there are any built-ins that are not for
   SHmedia.  It's commented out to avoid the defined-but-unused warning.  */
static bool
sh1_builtin_p (void)
{
  return TARGET_SH1;
}

/* describe number and signedness of arguments; arg[0] == result
   (1: unsigned, 2: signed, 4: don't care, 8: pointer 0: no argument */
/* 9: 64-bit pointer, 10: 32-bit pointer */
static const char signature_args[][4] =
{
#define SH_BLTIN_V2SI2 0
  { 4, 4 },
#define SH_BLTIN_V4HI2 1
  { 4, 4 },
#define SH_BLTIN_V2SI3 2
  { 4, 4, 4 },
#define SH_BLTIN_V4HI3 3
  { 4, 4, 4 },
#define SH_BLTIN_V8QI3 4
  { 4, 4, 4 },
#define SH_BLTIN_MAC_HISI 5
  { 1, 4, 4, 1 },
#define SH_BLTIN_SH_HI 6
  { 4, 4, 1 },
#define SH_BLTIN_SH_SI 7
  { 4, 4, 1 },
#define SH_BLTIN_V4HI2V2SI 8
  { 4, 4, 4 },
#define SH_BLTIN_V4HI2V8QI 9
  { 4, 4, 4 },
#define SH_BLTIN_SISF 10
  { 4, 2 },
#define SH_BLTIN_LDUA_L 11
  { 2, 10 },
#define SH_BLTIN_LDUA_Q 12
  { 1, 10 },
#define SH_BLTIN_STUA_L 13
  { 0, 10, 2 },
#define SH_BLTIN_STUA_Q 14
  { 0, 10, 1 },
#define SH_BLTIN_LDUA_L64 15
  { 2, 9 },
#define SH_BLTIN_LDUA_Q64 16
  { 1, 9 },
#define SH_BLTIN_STUA_L64 17
  { 0, 9, 2 },
#define SH_BLTIN_STUA_Q64 18
  { 0, 9, 1 },
#define SH_BLTIN_NUM_SHARED_SIGNATURES 19
#define SH_BLTIN_2 19
#define SH_BLTIN_SU 19
  { 1, 2 },
#define SH_BLTIN_3 20
#define SH_BLTIN_SUS 20
  { 2, 2, 1 },
#define SH_BLTIN_PSSV 21
  { 0, 8, 2, 2 },
#define SH_BLTIN_XXUU 22
#define SH_BLTIN_UUUU 22
  { 1, 1, 1, 1 },
#define SH_BLTIN_PV 23
  { 0, 8 },
#define SH_BLTIN_VP 24
  { 8, 0 },
#define SH_BLTIN_UV 25
  { 1, 0 },
#define SH_BLTIN_VU 26
  { 0, 1 },
};
/* mcmv: operands considered unsigned.  */
/* mmulsum_wq, msad_ubq: result considered unsigned long long.  */
/* mperm: control value considered unsigned int.  */
/* mshalds, mshard, mshards, mshlld, mshlrd: shift count is unsigned int.  */
/* mshards_q: returns signed short.  */
/* nsb: takes long long arg, returns unsigned char.  */
static struct builtin_description bdesc[] =
{
  { sh1_builtin_p,
    CODE_FOR_sts_fpscr, "__builtin_sh_get_fpscr", SH_BLTIN_UV, 0 },
  { sh1_builtin_p,
    CODE_FOR_set_fpscr, "__builtin_sh_set_fpscr", SH_BLTIN_VU, 0 },
};

static tree sh_builtin_get_fpscr;
static tree sh_builtin_set_fpscr;

static void
sh_init_builtins (void)
{
  tree shared[SH_BLTIN_NUM_SHARED_SIGNATURES];
  memset (shared, 0, sizeof shared);

  for (unsigned int di = 0; di < ARRAY_SIZE (bdesc); ++di)
    {
      builtin_description* d = &bdesc[di];

      if (!d->is_enabled ())
	continue;

      tree type, arg_type = NULL_TREE;
      int signature = d->signature;

      if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES && shared[signature])
	type = shared[signature];
      else
	{
	  int has_result = signature_args[signature][0] != 0;
	  tree args[3];

	  if (! TARGET_FPU_ANY
	      && FLOAT_MODE_P (insn_data[d->icode].operand[0].mode))
	    continue;
	  for (unsigned int i = 0; i < ARRAY_SIZE (args); i++)
	    args[i] = NULL_TREE;
	  for (int i = 3; ; i--)
	    {
	      int arg = signature_args[signature][i];
	      int opno = i - 1 + has_result;

	      if (arg & 8)
		arg_type = ptr_type_node;
	      else if (arg)
		arg_type = (*lang_hooks.types.type_for_mode)
		  (insn_data[d->icode].operand[opno].mode, (arg & 1));
	      else if (i)
		continue;
	      else
		arg_type = void_type_node;
	      if (i == 0)
		break;
	      args[i-1] = arg_type;
	    }
	  type = build_function_type_list (arg_type, args[0], args[1],
					   args[2], NULL_TREE);
	  if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES)
	    shared[signature] = type;
	}
      d->fndecl =
	add_builtin_function (d->name, type, d - bdesc, BUILT_IN_MD,
			      NULL, NULL_TREE);
      /* Recode {sts,set}_fpscr decls for sh_atomic_assign_expand_fenv.  */
      if (d->icode == CODE_FOR_sts_fpscr)
	sh_builtin_get_fpscr = d->fndecl;
      else if (d->icode == CODE_FOR_set_fpscr)
	sh_builtin_set_fpscr = d->fndecl;
    }
}

/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV.  */

static void
sh_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
  const unsigned SH_FE_INVALID = 64;
  const unsigned SH_FE_DIVBYZERO = 32;
  const unsigned SH_FE_OVERFLOW = 16;
  const unsigned SH_FE_UNDERFLOW = 8;
  const unsigned SH_FE_INEXACT = 4;
  const unsigned HOST_WIDE_INT SH_FE_ALL_EXCEPT = (SH_FE_INVALID
						   | SH_FE_DIVBYZERO
						   | SH_FE_OVERFLOW
						   | SH_FE_UNDERFLOW
						   | SH_FE_INEXACT);
  const unsigned HOST_WIDE_INT SH_FE_EXCEPT_SHIFT = 5;
  tree fenv_var, mask, ld_fenv, masked_fenv;
  tree new_fenv_var, reload_fenv, restore_fnenv;
  tree update_call, atomic_feraiseexcept, hold_fnclex;

  if (! TARGET_FPU_ANY)
    return;

  /* Generate the equivalent of :
       unsigned int fenv_var;
       fenv_var = __builtin_sh_get_fpscr ();

       unsigned int masked_fenv;
       masked_fenv = fenv_var & mask;

       __builtin_sh_set_fpscr (masked_fenv);  */

  fenv_var = create_tmp_var_raw (unsigned_type_node);
  mask = build_int_cst (unsigned_type_node,
			~((SH_FE_ALL_EXCEPT << SH_FE_EXCEPT_SHIFT)
			  | SH_FE_ALL_EXCEPT));
  ld_fenv = build2 (MODIFY_EXPR, unsigned_type_node,
		    fenv_var, build_call_expr (sh_builtin_get_fpscr, 0));
  masked_fenv = build2 (BIT_AND_EXPR, unsigned_type_node, fenv_var, mask);
  hold_fnclex = build_call_expr (sh_builtin_set_fpscr, 1, masked_fenv);
  fenv_var = build4 (TARGET_EXPR, unsigned_type_node, fenv_var,
		     build2 (COMPOUND_EXPR, void_type_node, masked_fenv,
			     ld_fenv),
		     NULL_TREE, NULL_TREE);
  *hold = build2 (COMPOUND_EXPR, void_type_node, fenv_var, hold_fnclex);

  /* Store the value of masked_fenv to clear the exceptions:
     __builtin_sh_set_fpscr (masked_fenv);  */

  *clear = build_call_expr (sh_builtin_set_fpscr, 1, masked_fenv);

  /* Generate the equivalent of :
       unsigned int new_fenv_var;
       new_fenv_var = __builtin_sh_get_fpscr ();

       __builtin_sh_set_fpscr (fenv_var);

       __atomic_feraiseexcept (new_fenv_var);  */

  new_fenv_var = create_tmp_var_raw (unsigned_type_node);
  reload_fenv = build2 (MODIFY_EXPR, unsigned_type_node, new_fenv_var,
			build_call_expr (sh_builtin_get_fpscr, 0));
  restore_fnenv = build_call_expr (sh_builtin_set_fpscr, 1, fenv_var);
  atomic_feraiseexcept = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
  update_call = build_call_expr (atomic_feraiseexcept, 1,
				 fold_convert (integer_type_node,
					       new_fenv_var));
  *update = build2 (COMPOUND_EXPR, void_type_node,
		    build2 (COMPOUND_EXPR, void_type_node,
			    reload_fenv, restore_fnenv), update_call);
}

/* Implements target hook vector_mode_supported_p.  */
bool
sh_vector_mode_supported_p (machine_mode mode ATTRIBUTE_UNUSED)
{
  return false;
}

bool
sh_frame_pointer_required (void)
{
/* If needed override this in other tm.h files to cope with various OS 
   lossage requiring a frame pointer.  */
  if (SUBTARGET_FRAME_POINTER_REQUIRED)
    return true;

  if (crtl->profile)
    return true;

  return false;
}

/* Implements target hook dwarf_calling_convention.  Return an enum
   of dwarf_calling_convention.  */
int
sh_dwarf_calling_convention (const_tree func)
{
  if (sh_attr_renesas_p (func))
    return DW_CC_GNU_renesas_sh;

  return DW_CC_normal;
}

/* Returns the sh builtin decl for CODE.  */
static tree
sh_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
  if (code >= ARRAY_SIZE (bdesc))
    return error_mark_node;

  if (!bdesc[code].is_enabled ())
    return error_mark_node;

  return bdesc[code].fndecl;
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */
static rtx
sh_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
		   machine_mode mode ATTRIBUTE_UNUSED, int ignore)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
  const struct builtin_description *d = &bdesc[fcode];
  enum insn_code icode = d->icode;
  int signature = d->signature;
  int nop = 0;
  rtx op[4];

  if (signature_args[signature][0])
    {
      if (ignore)
	return NULL_RTX;

      machine_mode tmode = insn_data[icode].operand[0].mode;
      if (! target || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      op[nop++] = target;
    }
  else
    target = NULL_RTX;

  for (int i = 1; i <= 3; i++, nop++)
    {
      if (! signature_args[signature][i])
	break;
      tree arg = CALL_EXPR_ARG (exp, i - 1);
      if (arg == error_mark_node)
	return const0_rtx;

      machine_mode opmode;
      tree optype;
      if (signature_args[signature][i] & 8)
	{
	  opmode = ptr_mode;
	  optype = ptr_type_node;
	}
      else
	{
	  opmode = insn_data[icode].operand[nop].mode;
	  optype = (*lang_hooks.types.type_for_mode) (opmode, 0);
	}

      machine_mode argmode = TYPE_MODE (TREE_TYPE (arg));
      if (argmode != opmode)
	arg = build1 (NOP_EXPR, optype, arg);
      op[nop] = expand_expr (arg, NULL_RTX, opmode, EXPAND_NORMAL);
      if (! (*insn_data[icode].operand[nop].predicate) (op[nop], opmode))
	op[nop] = copy_to_mode_reg (opmode, op[nop]);
    }

  rtx pat = NULL_RTX;

  switch (nop)
    {
    case 1:
      pat = (*insn_data[d->icode].genfun) (op[0]);
      break;
    case 2:
      pat = (*insn_data[d->icode].genfun) (op[0], op[1]);
      break;
    case 3:
      pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2]);
      break;
    case 4:
      pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2], op[3]);
      break;
    default:
      gcc_unreachable ();
    }
  if (! pat)
    return NULL_RTX;
  emit_insn (pat);
  return target;
}

/* Implement TARGET_HARD_REGNO_NREGS.  On the SH all but the XD regs are
   UNITS_PER_WORD bits wide.  */

static unsigned int
sh_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
  if (XD_REGISTER_P (regno))
    return CEIL (GET_MODE_SIZE (mode), 2 * UNITS_PER_WORD);
  return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}

/* Implement TARGET_HARD_REGNO_MODE_OK.

   We can allow any mode in any general register.  The special registers
   only allow SImode.  Don't allow any mode in the PR.

   We cannot hold DCmode values in the XD registers because alter_reg
   handles subregs of them incorrectly.  We could work around this by
   spacing the XD registers like the DR registers, but this would require
   additional memory in every compilation to hold larger register vectors.
   We could hold SFmode / SCmode values in XD registers, but that
   would require a tertiary reload when reloading from / to memory,
   and a secondary reload to reload from / to general regs; that
   seems to be a losing proposition.

   We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
   it won't be ferried through GP registers first.  */
static bool
sh_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  if (SPECIAL_REGISTER_P (regno))
    return mode == SImode;

  if (regno == FPUL_REG)
    return (mode == SImode || mode == SFmode);

  if (FP_REGISTER_P (regno) && mode == SFmode)
    return true;

  if (mode == V2SFmode)
    {
      if (((FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 2 == 0)
	   || GENERAL_REGISTER_P (regno)))
	return true;
      else
	return false;
    }

  if (mode == V4SFmode)
    {
      if ((FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 4 == 0)
	  || GENERAL_REGISTER_P (regno))
	return true;
      else
	return false;
    }

  if (mode == V16SFmode)
    return regno == FIRST_XD_REG;

  if (FP_REGISTER_P (regno))
    {
      if (mode == SFmode
	  || mode == SImode
	  || ((TARGET_SH2E) && mode == SCmode)
	  || (((TARGET_FPU_DOUBLE && mode == DFmode) || mode == DCmode)
	      && ((regno - FIRST_FP_REG) & 1) == 0)
	  || (TARGET_SH4 && mode == TImode
	      && ((regno - FIRST_FP_REG) & 3) == 0))
	return true;
      else
	return false;
    }

  if (XD_REGISTER_P (regno))
    return mode == DFmode;

  if (regno == PR_REG)
    return mode == SImode;

  if (regno == FPSCR_REG)
    return mode == SImode;

  return true;
}

/* Implement TARGET_MODES_TIEABLE_P.

   If TARGET_HARD_REGNO_MODE_OK could produce different values for MODE1
   and MODE2, for any hard reg, then this must be false for correct output.
   That's the case for xd registers: we don't hold SFmode values in
   them, so we can't tie an SFmode pseudos with one in another
   floating-point mode.  */

static bool
sh_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  return (mode1 == mode2
	  || (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2)
	      && (mode1 != SFmode && mode2 != SFmode)));
}

/* Specify the modes required to caller save a given hard regno.
   choose_hard_reg_mode chooses mode based on TARGET_HARD_REGNO_MODE_OK
   and returns ?Imode for float regs when sh_hard_regno_mode_ok
   permits integer modes on them.  That makes LRA's split process
   unhappy.  See PR55212.
 */
machine_mode
sh_hard_regno_caller_save_mode (unsigned int regno, unsigned int nregs,
				machine_mode mode)
{
  if (FP_REGISTER_P (regno)
      && (mode == SFmode
	  || mode == SCmode
	  || ((mode == DFmode || mode == DCmode)
	      && ((regno - FIRST_FP_REG) & 1) == 0)))
    return mode;

  return choose_hard_reg_mode (regno, nregs, false);
}

/* Implement TARGET_CAN_CHANGE_MODE_CLASS.  */
static bool
sh_can_change_mode_class (machine_mode from, machine_mode to,
			  reg_class_t rclass)
{
  /* We want to enable the use of SUBREGs as a means to
     VEC_SELECT a single element of a vector.  */

  /* This effectively disallows using GENERAL_REGS for SFmode vector subregs.
     This can be problematic when SFmode vector subregs need to be accessed
     on the stack with displacement addressing, as it happens with -O0.
     Thus we disallow the mode change for -O0.  */
  if (to == SFmode && VECTOR_MODE_P (from) && GET_MODE_INNER (from) == SFmode)
    return optimize ? !reg_classes_intersect_p (GENERAL_REGS, rclass) : true;

  if (GET_MODE_SIZE (from) != GET_MODE_SIZE (to))
    {
      if (TARGET_LITTLE_ENDIAN)
	{
	  if (GET_MODE_SIZE (to) < 8 || GET_MODE_SIZE (from) < 8)
	    return !reg_classes_intersect_p (DF_REGS, rclass);
	}
      else
	{
	  if (GET_MODE_SIZE (from) < 8)
	    return !reg_classes_intersect_p (DF_REGS, rclass);
	}
    }
  return true;
}

/* Return true if registers in machine mode MODE will likely be
   allocated to registers in small register classes.  */
bool
sh_small_register_classes_for_mode_p (machine_mode mode ATTRIBUTE_UNUSED)
{
  return true;
}

/* If ADDRESS refers to a CODE_LABEL, add NUSES to the number of times
   that label is used.  */
void
sh_mark_label (rtx address, int nuses)
{
  if (GOTOFF_P (address))
    {
      /* Extract the label or symbol.  */
      address = XEXP (address, 0);
      if (GET_CODE (address) == PLUS)
	address = XEXP (address, 0);
      address = XVECEXP (address, 0, 0);
    }
  if (GET_CODE (address) == LABEL_REF
      && LABEL_P (XEXP (address, 0)))
    LABEL_NUSES (XEXP (address, 0)) += nuses;
}

/* Compute extra cost of moving data between one register class
   and another.

   If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
   uses this information.  Hence, the general register <-> floating point
   register information here is not used for SFmode.  */
static int
sh_register_move_cost (machine_mode mode,
		       reg_class_t srcclass, reg_class_t dstclass)
{
  if (dstclass == T_REGS || dstclass == PR_REGS)
    return 10;

  if (dstclass == MAC_REGS && srcclass == MAC_REGS)
    return 4;

  if (mode == SImode && TARGET_FMOVD
      && REGCLASS_HAS_FP_REG (srcclass)
      && REGCLASS_HAS_FP_REG (dstclass))
    return 4;

  if (REGCLASS_HAS_FP_REG (dstclass) && srcclass == T_REGS)
    return ((TARGET_HARD_SH4 && !optimize_size) ? 10 : 7);

  if ((REGCLASS_HAS_FP_REG (dstclass) && srcclass == MAC_REGS)
      || (dstclass == MAC_REGS && REGCLASS_HAS_FP_REG (srcclass)))
    return 9;

  if ((REGCLASS_HAS_FP_REG (dstclass)
       && REGCLASS_HAS_GENERAL_REG (srcclass))
      || (REGCLASS_HAS_GENERAL_REG (dstclass)
	  && REGCLASS_HAS_FP_REG (srcclass)))
    {
      /* Discourage trying to use fp regs for a pointer.  This also
	 discourages fp regs with SImode because Pmode is an alias
	 of SImode on this target.  See PR target/48596.  */
      int addend = (mode == Pmode) ? 40 : 0;

      return ((TARGET_FMOVD ? 8 : 12) + addend)
	     * ((GET_MODE_SIZE (mode) + 7) / 8U);
    }

  if ((dstclass == FPUL_REGS
       && REGCLASS_HAS_GENERAL_REG (srcclass))
      || (srcclass == FPUL_REGS
	  && REGCLASS_HAS_GENERAL_REG (dstclass)))
    return 5;

  if ((dstclass == FPUL_REGS
       && (srcclass == PR_REGS || srcclass == MAC_REGS || srcclass == T_REGS))
      || (srcclass == FPUL_REGS
	  && (dstclass == PR_REGS || dstclass == MAC_REGS)))
    return 7;

  if ((srcclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass))
      || (dstclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass)))
  return 4;

  if (TARGET_FMOVD
      && ! REGCLASS_HAS_GENERAL_REG (srcclass)
      && ! REGCLASS_HAS_GENERAL_REG (dstclass))
    return 2 * ((GET_MODE_SIZE (mode) + 7) / 8U);

  return 2 * ((GET_MODE_SIZE (mode) + 3) / 4U);
}

static rtx
emit_load_ptr (rtx reg, rtx addr)
{
  rtx mem = gen_const_mem (ptr_mode, addr);

  if (Pmode != ptr_mode)
    mem = gen_rtx_SIGN_EXTEND (Pmode, mem);
  return emit_move_insn (reg, mem);
}

static void
sh_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
		    HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
		    tree function)
{
  const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
  CUMULATIVE_ARGS cum;
  int structure_value_byref = 0;
  rtx this_rtx, this_value, sibcall, funexp;
  rtx_insn *insns;
  tree funtype = TREE_TYPE (function);
  int simple_add = CONST_OK_FOR_ADD (delta);
  int did_load = 0;
  rtx scratch0, scratch1, scratch2;

  reload_completed = 1;
  epilogue_completed = 1;
  crtl->uses_only_leaf_regs = 1;

  emit_note (NOTE_INSN_PROLOGUE_END);

  /* Find the "this" pointer.  We have such a wide range of ABIs for the
     SH that it's best to do this completely machine independently.
     "this" is passed as first argument, unless a structure return pointer
     comes first, in which case "this" comes second.  */
  INIT_CUMULATIVE_ARGS (cum, funtype, NULL_RTX, 0, 1);
#ifndef PCC_STATIC_STRUCT_RETURN
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    structure_value_byref = 1;
#endif /* not PCC_STATIC_STRUCT_RETURN */
  if (structure_value_byref && sh_struct_value_rtx (function, 0) == 0)
    {
      tree ptype = build_pointer_type (TREE_TYPE (funtype));

      function_arg_info ptr_arg (ptype, Pmode, /*named=*/true);
      sh_function_arg_advance (pack_cumulative_args (&cum), ptr_arg);
    }
  function_arg_info ptr_arg (ptr_type_node, Pmode, /*named=*/true);
  this_rtx = sh_function_arg (pack_cumulative_args (&cum), ptr_arg);

  /* For SHcompact, we only have r0 for a scratch register: r1 is the
     static chain pointer (even if you can't have nested virtual functions
     right now, someone might implement them sometime), and the rest of the
     registers are used for argument passing, are callee-saved, or reserved.  */
  /* We need to check call_used_regs / fixed_regs in case -fcall_saved-reg /
     -ffixed-reg has been used.  */
  if (! call_used_regs[0] || fixed_regs[0])
    error ("r0 needs to be available as a call-clobbered register");
  scratch0 = scratch1 = scratch2 = gen_rtx_REG (Pmode, 0);

    {
      if (call_used_regs[1] && ! fixed_regs[1])
	scratch1 = gen_rtx_REG (ptr_mode, 1);
      /* N.B., if not TARGET_HITACHI, register 2 is used to pass the pointer
	 pointing where to return struct values.  */
      if (call_used_regs[3] && ! fixed_regs[3])
	scratch2 = gen_rtx_REG (Pmode, 3);
    }

  this_value = plus_constant (Pmode, this_rtx, delta);
  if (vcall_offset
      && (simple_add || scratch0 != scratch1)
      && strict_memory_address_p (ptr_mode, this_value))
    {
      emit_load_ptr (scratch0, this_value);
      did_load = 1;
    }

  if (!delta)
    ; /* Do nothing.  */
  else if (simple_add)
    emit_move_insn (this_rtx, this_value);
  else
    {
      emit_move_insn (scratch1, GEN_INT (delta));
      emit_insn (gen_add2_insn (this_rtx, scratch1));
    }

  if (vcall_offset)
    {
      rtx offset_addr;

      if (!did_load)
	emit_load_ptr (scratch0, this_rtx);

      offset_addr = plus_constant (Pmode, scratch0, vcall_offset);
      if (strict_memory_address_p (ptr_mode, offset_addr))
	; /* Do nothing.  */
      else if (scratch0 != scratch1)
	{
	  /* scratch0 != scratch1, and we have indexed loads.  Get better
	     schedule by loading the offset into r1 and using an indexed
	     load - then the load of r1 can issue before the load from
	     (this_rtx + delta) finishes.  */
	  emit_move_insn (scratch1, GEN_INT (vcall_offset));
	  offset_addr = gen_rtx_PLUS (Pmode, scratch0, scratch1);
	}
      else if (CONST_OK_FOR_ADD (vcall_offset))
	{
	  emit_insn (gen_add2_insn (scratch0, GEN_INT (vcall_offset)));
	  offset_addr = scratch0;
	}
      else
	gcc_unreachable (); /* FIXME */
      emit_load_ptr (scratch0, offset_addr);

      if (Pmode != ptr_mode)
	scratch0 = gen_rtx_TRUNCATE (ptr_mode, scratch0);
      emit_insn (gen_add2_insn (this_rtx, scratch0));
    }

  /* Generate a tail call to the target function.  */
  if (! TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);
  /* If the function is overridden, so is the thunk, hence we don't
     need GOT addressing even if this is a public symbol.  */
#if 0
  if (TARGET_SH1 && ! flag_weak)
    sibcall = gen_sibcalli_thunk (funexp, const0_rtx);
  else
#endif
  if (TARGET_SH2 && flag_pic)
    {
      if (TARGET_FDPIC)
	{
	  sibcall = gen_sibcall_pcrel_fdpic (funexp, const0_rtx);
	  XEXP (XVECEXP (sibcall, 0, 3), 0) = scratch2;
	}
      else
	{
	  sibcall = gen_sibcall_pcrel (funexp, const0_rtx);
	  XEXP (XVECEXP (sibcall, 0, 2), 0) = scratch2;
	}
    }
  else
    {
      emit_move_insn (scratch2, funexp);
      funexp = gen_rtx_MEM (FUNCTION_MODE, scratch2);
      sibcall = gen_sibcall (funexp, const0_rtx, NULL_RTX);
    }
  sibcall = emit_call_insn (sibcall);
  SIBLING_CALL_P (sibcall) = 1;
  use_reg (&CALL_INSN_FUNCTION_USAGE (sibcall), this_rtx);
  emit_barrier ();

  /* Run just enough of rest_of_compilation to do scheduling and get
     the insns emitted.  */

  insns = get_insns ();

  if (optimize > 0)
    {
      if (! cfun->cfg)
	init_flow (cfun);
      split_all_insns_noflow ();
    }

  sh_reorg ();
  shorten_branches (insns);
  assemble_start_function (thunk_fndecl, fnname);
  final_start_function (insns, file, 1);
  final (insns, file, 1);
  final_end_function ();
  assemble_end_function (thunk_fndecl, fnname);

  reload_completed = 0;
  epilogue_completed = 0;
}

/* Return an RTX pair for the address and call site label of a function
   NAME of kind KIND, placing the result in TARGET if not NULL.  For
   SFUNC_STATIC, if FDPIC, the LAB member of result will be set to
   (const_int 0) if jsr should be used, or a label_ref if bsrf should
   be used.  For FDPIC, both SFUNC_GOT and SFUNC_STATIC will return the
   address of the function itself, not a function descriptor, so they
   can only be used with functions not using the FDPIC register that
   are known to be called directory without a PLT entry.  */

function_symbol_result
function_symbol (rtx target, const char *name, sh_function_kind kind)
{
  /* If this is not an ordinary function, the name usually comes from a
     string literal or an sprintf buffer.  Make sure we use the same
     string consistently, so that cse will be able to unify address loads.  */
  if (kind != FUNCTION_ORDINARY)
    name = IDENTIFIER_POINTER (get_identifier (name));
  rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
  rtx lab = const0_rtx;
  SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_FUNCTION;
  if (flag_pic)
    switch (kind)
      {
      case FUNCTION_ORDINARY:
	break;
      case SFUNC_GOT:
	{
	  rtx reg = target ? target : gen_reg_rtx (Pmode);

	  emit_insn (gen_symGOT2reg (reg, sym));
	  sym = reg;
	  break;
	}
      case SFUNC_STATIC:
	{
	  rtx reg = target ? target : gen_reg_rtx (Pmode);

	  if (TARGET_FDPIC)
	    {
	      /* We use PC-relative calls, since GOTOFF can only refer
		 to writable data.  This works along with sh_sfunc_call.  */
 	      lab = PATTERN (gen_call_site ());
	      emit_insn (gen_sym_label2reg (reg, sym, lab));
	    }
	  else
	    {
	      /* ??? To allow cse to work, we use GOTOFF relocations.
		 we could add combiner patterns to transform this into
		 straight pc-relative calls with sym2PIC / bsrf when
		 label load and function call are still 1:1 and in the
		 same basic block during combine.  */
	      emit_insn (gen_symGOTOFF2reg (reg, sym));
	    }

	  sym = reg;
	  break;
	}
      }
  if (target && sym != target)
    {
      emit_move_insn (target, sym);
      return function_symbol_result (target, lab);
    }
  return function_symbol_result (sym, lab);
}

/* Find the number of the first general purpose register in S that
   is not set.  */
static int
scavenge_reg (HARD_REG_SET *s)
{
  for (int r = FIRST_GENERAL_REG; r <= LAST_GENERAL_REG; r++)
    if (TEST_HARD_REG_BIT (*s, r))
      return r;
  return -1;
}

rtx
sh_get_pr_initial_val (void)
{
  /* If we haven't finished rtl generation, there might be a nonlocal label
     that we haven't seen yet.
     ??? get_hard_reg_initial_val fails if it is called after register
     allocation has started, unless it has been called before for the
     same register.  And even then, we end in trouble if we didn't use
     the register in the same basic block before.  So call
     get_hard_reg_initial_val now and wrap it in an unspec if we might
     need to replace it.  */
  /* ??? We also must do this for TARGET_SH1 in general, because otherwise
     combine can put the pseudo returned by get_hard_reg_initial_val into
     instructions that need a general purpose registers, which will fail to
     be recognized when the pseudo becomes allocated to PR.  */
  rtx val = get_hard_reg_initial_val (Pmode, PR_REG);
  return gen_rtx_UNSPEC (SImode, gen_rtvec (1, val), UNSPEC_RA);
}

bool
sh_expand_t_scc (rtx operands[])
{
  enum rtx_code code = GET_CODE (operands[1]);
  rtx target = operands[0];
  rtx op0 = operands[2];
  rtx op1 = operands[3];
  rtx result = target;

  if (!REG_P (op0) || REGNO (op0) != T_REG
      || !CONST_INT_P (op1))
    return false;
  if (!REG_P (result))
    result = gen_reg_rtx (SImode);
  HOST_WIDE_INT val = INTVAL (op1);
  if ((code == EQ && val == 1) || (code == NE && val == 0))
    emit_insn (gen_movt (result, get_t_reg_rtx ()));
  else if ((code == EQ && val == 0) || (code == NE && val == 1))
    emit_insn (gen_movnegt (result, get_t_reg_rtx ()));
  else if (code == EQ || code == NE)
    emit_insn (gen_move_insn (result, GEN_INT (code == NE)));
  else
    return false;
  if (result != target)
    emit_move_insn (target, result);
  return true;
}

/* INSN is an sfunc; return the rtx that describes the address used.  */
static rtx
extract_sfunc_addr (rtx insn)
{
  rtx pattern = PATTERN (insn);
  const int len = XVECLEN (pattern, 0);
  for (int i = 0; i < len; i++)
    {
      rtx part = XVECEXP (pattern, 0, i);
      if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == Pmode
	  && GENERAL_REGISTER_P (true_regnum (XEXP (part, 0))))
	return XEXP (part, 0);
    }
  gcc_assert (GET_CODE (XVECEXP (pattern, 0, 0)) == UNSPEC_VOLATILE);
  return XVECEXP (XVECEXP (pattern, 0, 0), 0, 1);
}

/* Verify that the register in use_sfunc_addr still agrees with the address
   used in the sfunc.  This prevents fill_slots_from_thread from changing
   use_sfunc_addr.
   INSN is the use_sfunc_addr instruction, and REG is the register it
   guards.  */
bool
check_use_sfunc_addr (rtx_insn *insn, rtx reg)
{
  /* Search for the sfunc.  It should really come right after INSN.  */
  while ((insn = NEXT_INSN (insn)))
    {
      if (LABEL_P (insn) || JUMP_P (insn))
	break;
      if (! INSN_P (insn))
	continue;

      if (rtx_sequence *seq = dyn_cast<rtx_sequence *> (PATTERN (insn)))
	insn = seq->insn (0);
      if (GET_CODE (PATTERN (insn)) != PARALLEL
	  || get_attr_type (insn) != TYPE_SFUNC)
	continue;
      return rtx_equal_p (extract_sfunc_addr (insn), reg);
    }
  gcc_unreachable ();
}

/* This function returns a constant rtx that represents 2**15 / pi in
   SFmode.  It's used to scale a fixed-point signed 16.16-bit fraction
   of a full circle back to an SFmode value, i.e. 0x10000 maps to 2*pi.  */
static GTY(()) rtx sh_fsca_sf2int_rtx;

rtx
sh_fsca_sf2int (void)
{
  if (! sh_fsca_sf2int_rtx)
    {
      REAL_VALUE_TYPE rv;

      real_from_string (&rv, "10430.378350470453");
      sh_fsca_sf2int_rtx = const_double_from_real_value (rv, SFmode);
    }

  return sh_fsca_sf2int_rtx;
}

/* This function returns a constant rtx that represents pi / 2**15 in
   SFmode.  It's used to scale SFmode angles, in radians, to a
   fixed-point signed 16.16-bit fraction of a full circle, i.e. 2*pi
   maps to 0x10000.  */
static GTY(()) rtx sh_fsca_int2sf_rtx;

rtx
sh_fsca_int2sf (void)
{
  if (! sh_fsca_int2sf_rtx)
    {
      REAL_VALUE_TYPE rv;

      real_from_string (&rv, "9.587379924285257e-5");
      sh_fsca_int2sf_rtx = const_double_from_real_value (rv, SFmode);
    }

  return sh_fsca_int2sf_rtx;
}

/* Initialize the CUMULATIVE_ARGS structure.  */
void
sh_init_cumulative_args (CUMULATIVE_ARGS *  pcum,
			 tree		    fntype,
			 rtx		    libname ATTRIBUTE_UNUSED,
			 tree		    fndecl,
			 signed int	    n_named_args,
			 machine_mode  mode)
{
  pcum->arg_count [(int) SH_ARG_FLOAT] = 0;
  pcum->free_single_fp_reg = 0;
  pcum->outgoing = n_named_args != -1;

  /* FIXME: Should we check TARGET_HITACHI here ???  */
  pcum->renesas_abi = sh_attr_renesas_p (fntype);

  if (fntype)
    {
      pcum->force_mem = ((TARGET_HITACHI || pcum->renesas_abi)
			 && aggregate_value_p (TREE_TYPE (fntype), fndecl));
      pcum->prototype_p = prototype_p (fntype);
      pcum->arg_count [(int) SH_ARG_INT] = false;
    }
  else
    {
      pcum->arg_count [(int) SH_ARG_INT] = 0;
      pcum->prototype_p = false;
      if (mode != VOIDmode)
	{
	  /* If the default ABI is the Renesas ABI then all library
	     calls must assume that the library will be using the
	     Renesas ABI.  So if the function would return its result
	     in memory then we must force the address of this memory
	     block onto the stack.  Ideally we would like to call
	     targetm.calls.return_in_memory() here but we do not have
	     the TYPE or the FNDECL available so we synthesize the
	     contents of that function as best we can.  */
	  pcum->force_mem =
	    (TARGET_DEFAULT & MASK_HITACHI)
	    && (mode == BLKmode
		|| (GET_MODE_SIZE (mode) > 4
		    && !(mode == DFmode
			 && TARGET_FPU_DOUBLE)));
	}
      else
	pcum->force_mem = false;
    }
}

rtx
sh_gen_truncate (machine_mode mode, rtx x, int need_sign_ext)
{
  enum rtx_code code = TRUNCATE;

  if (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
    {
      rtx inner = XEXP (x, 0);
      machine_mode inner_mode = GET_MODE (inner);

      if (inner_mode == mode)
	return inner;
      else if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
	x = inner;
      else if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode)
	       && (! need_sign_ext || GET_CODE (x) == SIGN_EXTEND))
	{
	  code = GET_CODE (x);
	  x = inner;
	}
    }
  return gen_rtx_fmt_e (code, mode, x);
}

/* Load and store depend on the highpart of the address.  However,
   set_attr_alternative does not give well-defined results before reload,
   so we must look at the rtl ourselves to see if any of the feeding
   registers is used in a memref.

   Return true iff INSN contains a MEM.  */
bool
sh_contains_memref_p (rtx insn)
{
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
    if (MEM_P (*iter))
      return true;
  return false;
}

/* Return true iff INSN loads a banked register.  */
bool
sh_loads_bankedreg_p (rtx insn)
{
  if (GET_CODE (PATTERN (insn)) == SET)
    {
      rtx op = SET_DEST (PATTERN(insn));
      if (REG_P (op) && BANKED_REGISTER_P (REGNO (op)))
	return true;
    }

  return false;
}

/* Implement TARGET_PREFERRED_RELOAD_CLASS.  */
static reg_class_t
sh_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass)
{
  return rclass;
}

/* Implement TARGET_SECONDARY_RELOAD.  */
static reg_class_t
sh_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
		     machine_mode mode, secondary_reload_info *sri)
{
  enum reg_class rclass = (enum reg_class) rclass_i;

  if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == PLUS
      && REG_P (XEXP (XEXP (x, 0), 0))
      && REGNO (XEXP (XEXP (x, 0), 0)) == GBR_REG)
    return rclass == R0_REGS ? NO_REGS : R0_REGS;

  if (MEM_P (x) && REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) == GBR_REG)
    return rclass == R0_REGS ? NO_REGS : R0_REGS;

  if (REG_P (x) && REGNO (x) == GBR_REG)
    return NO_REGS;

  if (in_p)
    {
      if (REGCLASS_HAS_FP_REG (rclass)
	  && immediate_operand ((x), mode)
	  && ! ((fp_zero_operand (x) || fp_one_operand (x)) && mode == SFmode))
	switch (mode)
	  {
	  case E_SFmode:
	    sri->icode = CODE_FOR_reload_insf__frn;
	    return NO_REGS;
	  case E_DFmode:
	    sri->icode = CODE_FOR_reload_indf__frn;
	    return NO_REGS;
	  case E_SImode:
	    /* ??? If we knew that we are in the appropriate mode -
	       single precision - we could use a reload pattern directly.  */
	    return FPUL_REGS;
	  default:
	    abort ();
	  }
      if (rclass == FPUL_REGS
	  && ((REG_P (x) && (REGNO (x) == MACL_REG || REGNO (x) == MACH_REG
			     || REGNO (x) == T_REG))
	      || GET_CODE (x) == PLUS))
	return GENERAL_REGS;
      if (rclass == FPUL_REGS && immediate_operand (x, mode))
	{
	  if (satisfies_constraint_I08 (x) || fp_zero_operand (x))
	    return GENERAL_REGS;
	  else if (mode == SFmode)
	    return FP_REGS;
	  sri->icode = CODE_FOR_reload_insi__i_fpul;
	  return NO_REGS;
	}
      if (rclass == FPSCR_REGS
	  && ((REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
	      || (MEM_P (x) && GET_CODE (XEXP (x, 0)) == PLUS)))
        return GENERAL_REGS;
    } /* end of input-only processing.  */

  if (((REGCLASS_HAS_FP_REG (rclass)
	&& (REG_P (x)
	    && (GENERAL_OR_AP_REGISTER_P (REGNO (x))
		|| (FP_REGISTER_P (REGNO (x)) && mode == SImode
		    && TARGET_FMOVD))))
       || (REGCLASS_HAS_GENERAL_REG (rclass)
	   && REG_P (x)
	   && FP_REGISTER_P (REGNO (x))))
      && (mode == SFmode || mode == SImode))
    return FPUL_REGS;
  if ((rclass == FPUL_REGS
       || (REGCLASS_HAS_FP_REG (rclass) && mode == SImode))
      && (MEM_P (x)
	  || (REG_P (x)
	      && (REGNO (x) >= FIRST_PSEUDO_REGISTER
		  || REGNO (x) == T_REG
		  || system_reg_operand (x, VOIDmode)))))
    {
      if (rclass == FPUL_REGS)
	return GENERAL_REGS;
      return NO_REGS;  // LRA wants NO_REGS here, it used to be FPUL_REGS;
    }

  if ((rclass == MAC_REGS || rclass == PR_REGS)
      && REG_P (x) && ! GENERAL_REGISTER_P (REGNO (x))
      && rclass != REGNO_REG_CLASS (REGNO (x)))
    return GENERAL_REGS;

 /* If here fall back to loading FPUL register through general registers.
    This case can happen when movsi_ie insn is picked initially to
    load/store the FPUL register from/to another register, and then the
    other register is allocated on the stack.  */
  if (rclass == FPUL_REGS && true_regnum (x) == -1)
    return GENERAL_REGS;

  /* Force mov.b / mov.w displacement addressing insn to use R0 as
     the other operand.
     On SH2A could also just leave it alone here, which would result in a
     4 byte move insn being generated instead.  However, for this to work
     the insns must have the appropriate alternatives.  */
  if ((mode == QImode || mode == HImode) && rclass != R0_REGS
      && satisfies_constraint_Sdd (x)
      && sh_disp_addr_displacement (x)
	 <= sh_max_mov_insn_displacement (mode, false))
    return R0_REGS;

  /* When reload is trying to address a QImode or HImode subreg on the stack, 
     force any subreg byte into R0_REGS, as this is going to become a
     displacement address.
     We could restrict this to SUBREG_BYTE (x) > 0, but if the actual reg
     is on the stack, the memref to it might already require a displacement
     and that has to be added to the final address.  At this point we don't
     know the cumulative displacement so we assume the worst case.  */
  if ((mode == QImode || mode == HImode) && rclass != R0_REGS 
      && GET_CODE (x) == SUBREG && true_regnum (x) == -1)
    return R0_REGS;

  return NO_REGS;
}

/* Return true if SUBST can't safely replace its equivalent during RA.  */
static bool
sh_cannot_substitute_mem_equiv_p (rtx)
{
  /* If SUBST is mem[base+index] or QI/HImode mem[base+disp], the insn
     uses R0 and may cause spill failure when R0 is already used.
     We have to return true for that case at least.
     Moreover SH has strong R0 parity and also have not enough numbers of
     the hard registers to make the equiv substitution win in the size
     and the speed on average working sets.  The pseudos produced to
     hold the equiv values can't get good hard registers for bad cases
     and end up memory save/restore insns which make the code worse.  */
  return true;
}

/* Implement TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT.  */
static bool
sh_legitimize_address_displacement (rtx *offset1, rtx *offset2,
				    poly_int64 orig_offset,
				    machine_mode mode)
{
  if ((TARGET_FPU_DOUBLE && mode == DFmode)
      || (TARGET_SH2E && mode == SFmode))
    return false;

  struct disp_adjust adj = sh_find_mov_disp_adjust (mode, orig_offset);
  if (adj.offset_adjust != NULL_RTX && adj.mov_disp != NULL_RTX)
    {
      *offset1 = adj.offset_adjust;
      *offset2 = adj.mov_disp;
      return true;
    }
 
  return false;
}

/* Return true if movsf insn should be splited with an additional
   register.  */
bool
sh_movsf_ie_ra_split_p (rtx op0, rtx op1, rtx op2)
{
  /* op0 == op1 */
  if (rtx_equal_p (op0, op1))
    return true;
  /* fy, FQ, reg */
  if (GET_CODE (op1) == CONST_DOUBLE
      && ! satisfies_constraint_G (op1)
      && ! satisfies_constraint_H (op1)
      && REG_P (op0)
      && REG_P (op2))
    return true;
  /* f, r, y */
  if (REG_P (op0) && FP_REGISTER_P (REGNO (op0))
      && REG_P (op1) && GENERAL_REGISTER_P (REGNO (op1))
      && REG_P (op2) && (REGNO (op2) == FPUL_REG))
    return true;
  /* r, f, y */
  if (REG_P (op1) && FP_REGISTER_P (REGNO (op1))
      && REG_P (op0) && GENERAL_REGISTER_P (REGNO (op0))
      && REG_P (op2) && (REGNO (op2) == FPUL_REG))
    return true;

  return false;
}

static void
sh_conditional_register_usage (void)
{
  for (int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++)
    if (! VALID_REGISTER_P (regno))
      fixed_regs[regno] = call_used_regs[regno] = 1;
  /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.  */
  if (flag_pic)
    {
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
    }
  if (TARGET_FDPIC)
    {
      fixed_regs[PIC_REG] = 1;
      call_used_regs[PIC_REG] = 1;
      call_really_used_regs[PIC_REG] = 1;
    }
  /* Renesas saves and restores mac registers on call.  */
  if (TARGET_HITACHI && ! TARGET_NOMACSAVE)
    {
      call_really_used_regs[MACH_REG] = 0;
      call_really_used_regs[MACL_REG] = 0;
    }

  for (int regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++)
    if (! fixed_regs[regno] && call_really_used_regs[regno])
      SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);

  call_really_used_regs[FPSCR_MODES_REG] = 0;
  call_really_used_regs[FPSCR_STAT_REG] = 0;
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P

   can_store_by_pieces constructs VOIDmode CONST_DOUBLEs.  */
static bool
sh_legitimate_constant_p (machine_mode mode, rtx x)
{
  if (SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
    {
      rtx base, offset;
      split_const (x, &base, &offset);

      if (GET_CODE (base) == SYMBOL_REF
	  && !offset_within_block_p (base, INTVAL (offset)))
       return false;
    }

  if (TARGET_FDPIC
      && (SYMBOLIC_CONST_P (x)
	  || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
	      && SYMBOLIC_CONST_P (XEXP (XEXP (x, 0), 0)))))
    return false;

  return GET_CODE (x) != CONST_DOUBLE
	 || mode == DFmode || mode == SFmode
	 || mode == DImode || GET_MODE (x) == VOIDmode;
}

enum sh_divide_strategy_e sh_div_strategy = SH_DIV_STRATEGY_DEFAULT;

static void
sh_init_sync_libfuncs (void)
{
  init_sync_libfuncs (UNITS_PER_WORD);
}

/* Return true if it is appropriate to emit `ret' instructions in the
   body of a function.  */
bool
sh_can_use_simple_return_p (void)
{
  if (! reload_completed || frame_pointer_needed)
    return false;

  /* Moving prologue around does't reduce the size.  */
  if (optimize_function_for_size_p (cfun))
    return false;

  /* Finally, allow for pr save.  */
  HARD_REG_SET live_regs_mask;
  int d = calc_live_regs (&live_regs_mask);

  if (rounded_frame_size (d) > 4)
   return false;

  return true;
}

/*------------------------------------------------------------------------------
  Address mode optimization support code
*/

typedef HOST_WIDE_INT disp_t;
static const disp_t MIN_DISP = HOST_WIDE_INT_MIN;
static const disp_t MAX_DISP = HOST_WIDE_INT_MAX;
static const disp_t INVALID_DISP = MAX_DISP;

/* A memory reference which is described by a base register and a
   displacement.  */
class base_reg_disp
{
public:
  base_reg_disp (rtx br, disp_t d);

  bool is_reg (void) const;
  bool is_disp (void) const;
  rtx reg (void) const;
  disp_t disp (void) const;

private:
  rtx reg_;
  disp_t disp_;
};

inline
base_reg_disp::base_reg_disp (rtx br, disp_t d)
: reg_ (br), disp_ (d)
{
}
 
inline bool
base_reg_disp::is_reg (void) const
{
  return reg_ != NULL_RTX && disp_ != INVALID_DISP;
}

inline bool
base_reg_disp::is_disp (void) const
{
  return reg_ == NULL_RTX && disp_ != INVALID_DISP;
}

inline rtx
base_reg_disp::reg (void) const
{
  return reg_;
}

inline disp_t
base_reg_disp::disp (void) const
{
  return disp_;
}

/* Find the base register and calculate the displacement for a given
   address rtx 'x'.  */
static base_reg_disp
sh_find_base_reg_disp (rtx_insn* insn, rtx x, disp_t disp = 0,
		       rtx base_reg = NULL)
{
  if (REG_P (x))
    {
      if (REGNO (x) == GBR_REG)
	return base_reg_disp (x, disp);

      /* We've reached a hard-reg.  This is probably the point where
	 function args are copied to pseudos.  Do not go any further and
	 stick to the pseudo.  If the original mem addr was in a hard reg
	 from the beginning, it will become the base reg.  */
      if (REGNO (x) < FIRST_PSEUDO_REGISTER)
	return base_reg_disp (base_reg != NULL ? base_reg : x, disp);

      /* Find the def of the reg and trace it.  If there are more than one
	 defs and they are not the same, assume it's not safe to proceed.  */
      rtx_insn* last_i = NULL;
      rtx last_set = NULL;
      for (df_ref d = DF_REG_DEF_CHAIN (REGNO (x)); d != NULL;
	   d = DF_REF_NEXT_REG (d))
	{
	  rtx set = const_cast<rtx> (set_of (x, DF_REF_INSN (d)));

	  /* Accept multiple defs, as long as they are equal.  */
	  if (last_set == NULL || rtx_equal_p (last_set, set))
	    {
	      last_i = DF_REF_INSN (d);
	      last_set = set;
	    }
	  else
	    {
	      last_i = NULL;
	      last_set = NULL;
	      break;
	    }
	}

      if (last_set != NULL && last_i != NULL)
	return sh_find_base_reg_disp (last_i, XEXP (last_set, 1), disp,
				      XEXP (last_set, 0));

      /* When here, no previous insn was found that sets the reg.
	 The input reg is already the base reg.  */
      return base_reg_disp (x, disp);
    }

  else if (GET_CODE (x) == PLUS)
    {
      base_reg_disp left_val = sh_find_base_reg_disp (insn, XEXP (x, 0));
      base_reg_disp right_val = sh_find_base_reg_disp (insn, XEXP (x, 1));

      /* Either left or right val must be a reg.
	 We don't handle the case of 'reg + reg' here.  */
      if (left_val.is_reg () && right_val.is_disp ())
	return base_reg_disp (left_val.reg (), left_val.disp ()
					       + right_val.disp () + disp);
      else if (right_val.is_reg () && left_val.is_disp ())
	return base_reg_disp (right_val.reg (), right_val.disp ()
						+ left_val.disp () + disp);
      else
	return base_reg_disp (base_reg, disp);
    }

  else if (CONST_INT_P (x))
    return base_reg_disp (NULL, disp + INTVAL (x));

  /* Didn't find anything useful.  */
  return base_reg_disp (base_reg, disp);
}

/* Given an insn and a memory operand, try to find an equivalent GBR
   based memory address and return the corresponding new memory address.
   Return NULL_RTX if not found.  */
rtx
sh_find_equiv_gbr_addr (rtx_insn* insn, rtx mem)
{
  if (!MEM_P (mem) || gbr_address_mem (mem, GET_MODE (mem)))
    return NULL_RTX;

  /* Leave post/pre inc/dec or any other side effect addresses alone.  */
  if (side_effects_p (XEXP (mem, 0)))
    return NULL_RTX;

  /* When not optimizing there might be no dataflow available.  */
  if (df == NULL)
    return NULL_RTX;

  base_reg_disp gbr_disp = sh_find_base_reg_disp (insn, XEXP (mem, 0));

  if (gbr_disp.is_reg () && REGNO (gbr_disp.reg ()) == GBR_REG)
    {
      /* If GBR is marked as call clobbered we bail out if we see a call.
	 FIXME: Actually should check if this mem refers to the gbr value
	 before or after the call.  If there is a store_gbr preceeding this
	 mem, it's safe to use GBR for this mem.

	 If GBR is not marked as call clobbered, but there is some other
	 def than a call, it's probably a load_gbr upon which we also
	 bail out to be on the safe side.
	 FIXME: Should check if we have a use-after-def case, such as
	 the call case above.  */
      for (df_ref d = DF_REG_DEF_CHAIN (GBR_REG); d != NULL;
	   d = DF_REF_NEXT_REG (d))
	{
	  if (CALL_P (DF_REF_INSN (d)))
	    {
	      if (TEST_HARD_REG_BIT (regs_invalidated_by_call, GBR_REG))
		return NULL_RTX;
	      else
		continue;
	    }
	  else
	    return NULL_RTX;
	}

      rtx disp = GEN_INT (gbr_disp.disp ());
      if (gbr_displacement (disp, GET_MODE (mem)))
	return gen_rtx_PLUS (SImode, gen_rtx_REG (SImode, GBR_REG), disp);
    }

  return NULL_RTX;
}

/*------------------------------------------------------------------------------
  Manual insn combine support code.
*/

/* Return true if the specified insn contains any UNSPECs or
   UNSPEC_VOLATILEs.  */
static bool
sh_unspec_insn_p (rtx x)
{
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (i, array, x, ALL)
    if (*i != NULL
	&& (GET_CODE (*i) == UNSPEC || GET_CODE (*i) == UNSPEC_VOLATILE))
      return true;

  return false;
}

/* Return true if the register operands of the specified insn are modified
   between the specified from and to insns (exclusive of those two).  */
bool
sh_insn_operands_modified_between_p (rtx_insn* operands_insn,
				     const rtx_insn* from,
				     const rtx_insn* to)
{
  /*  FIXME: Return true for multiple sets for now.  */
  rtx s = single_set (operands_insn);
  if (s == NULL_RTX)
    return true;

  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (i, array, SET_SRC (s), ALL)
    if (*i != NULL &&
	((REG_P (*i) || SUBREG_P (*i)) && reg_set_between_p (*i, from, to)))
      return true;

  return false;
}

/* Given an insn, determine whether it's a 'nott' insn, i.e. an insn that
   negates the T bit and stores the result in the T bit.  */
bool
sh_is_nott_insn (const rtx_insn* i)
{
  return i != NULL && GET_CODE (PATTERN (i)) == SET
	 && t_reg_operand (XEXP (PATTERN (i), 0), VOIDmode)
	 && negt_reg_operand (XEXP (PATTERN (i), 1), VOIDmode);
}

rtx
sh_movt_set_dest (const rtx_insn* i)
{
  return i == NULL ? NULL : sh_movt_set_dest (PATTERN (i));
}

rtx
sh_movt_set_dest (const_rtx pat)
{
  return GET_CODE (pat) == SET
	 && arith_reg_dest (XEXP (pat, 0), SImode)
	 && t_reg_operand (XEXP (pat, 1), VOIDmode) ? XEXP (pat, 0) : NULL;
}

/* Given an insn, check whether it's a 'movrt' kind of insn, i.e. an insn
   that stores the negated T bit in a register, and return the destination
   register rtx, or null.  */
rtx
sh_movrt_set_dest (const rtx_insn* i)
{
  return i == NULL ? NULL : sh_movrt_set_dest (PATTERN (i));
}

rtx
sh_movrt_set_dest (const_rtx pat)
{
  /* The negc movrt replacement is inside a parallel.  */
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);

  return GET_CODE (pat) == SET
	 && arith_reg_dest (XEXP (pat, 0), SImode)
	 && negt_reg_operand (XEXP (pat, 1), VOIDmode) ? XEXP (pat, 0) : NULL;

}

/* Given an insn and a reg number, tell whether the reg dies or is unused
   after the insn.  */
bool
sh_reg_dead_or_unused_after_insn (const rtx_insn* i, int regno)
{
  return find_regno_note (i, REG_DEAD, regno) != NULL
	 || find_regno_note (i, REG_UNUSED, regno) != NULL;
}

/* Given an insn and a reg number, remove reg dead or reg unused notes to
   mark it as being used after the insn.  */
void
sh_remove_reg_dead_or_unused_notes (rtx_insn* i, int regno)
{
  if (rtx n = find_regno_note (i, REG_DEAD, regno))
    remove_note (i, n);
  if (rtx n = find_regno_note (i, REG_UNUSED, regno))
    remove_note (i, n);
}

/* Given an insn check if it contains any post/pre inc/dec mem operands and
   add the REG_INC notes accordingly.
   FIXME: This function is very similar to lra.c (add_auto_inc_notes).
   FIXME: This function is currently used by peephole2 patterns because
	  the peephole2 pass does not preserve REG_INC notes.  If the notes
	  are dropped the following passes will do wrong things.  */
rtx_insn*
sh_check_add_incdec_notes (rtx_insn* i)
{
  struct for_each_inc_dec_clb
  {
    static int func (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
		     rtx dest, rtx src ATTRIBUTE_UNUSED,
		     rtx srcoff ATTRIBUTE_UNUSED, void* arg)
    {
      gcc_assert (REG_P (dest));

      rtx_insn* i = (rtx_insn*)arg;
      if (find_regno_note (i, REG_INC, REGNO (dest)) == NULL)
	add_reg_note (i, REG_INC, dest);

      return 0;
    }
  };

  for_each_inc_dec (PATTERN (i), for_each_inc_dec_clb::func, i);
  return i;
}

/* Given a move insn destiation and a source, make sure that the move source
   operand is not a post-inc mem load with the same address reg as the
   destination.  Returns the modified source operand with the post-inc removed
   if necessary.  */
rtx
sh_remove_overlapping_post_inc (rtx dst, rtx src)
{
  if (!MEM_P (src))
    return src;

  rtx addr = XEXP (src, 0);

  if (GET_CODE (addr) == POST_INC
      && reg_overlap_mentioned_p (XEXP (addr, 0), dst))
    return replace_equiv_address (src, XEXP (addr, 0));

  gcc_assert (GET_CODE (addr) != POST_MODIFY);
  return src;
}

/* Emit a move insn that is safe to be used in peephole patterns.  */
rtx_insn*
sh_peephole_emit_move_insn (rtx dst, rtx src)
{
  return sh_check_add_incdec_notes (
	emit_move_insn (dst, sh_remove_overlapping_post_inc (dst, src)));
}

/* Given an op rtx and an insn, try to find out whether the result of the
   specified op consists only of logical operations on T bit stores.  */
bool
sh_is_logical_t_store_expr (rtx op, rtx_insn* insn)
{
  if (!logical_operator (op, SImode))
    return false;

  rtx ops[2] = { XEXP (op, 0), XEXP (op, 1) };
  int op_is_t_count = 0;

  for (int i = 0; i < 2; ++i)
    {
      if (t_reg_operand (ops[i], VOIDmode)
	  || negt_reg_operand (ops[i], VOIDmode))
	op_is_t_count++;

      else
	{
	  set_of_reg op_set = sh_find_set_of_reg
	    (ops[i], insn, prev_nonnote_nondebug_insn_bb);
	  if (op_set.set_src == NULL_RTX)
	    continue;

	  if (t_reg_operand (op_set.set_src, VOIDmode)
	      || negt_reg_operand (op_set.set_src, VOIDmode)
	      || sh_is_logical_t_store_expr (op_set.set_src, op_set.insn))
	      op_is_t_count++;
	}
    }
  
  return op_is_t_count == 2;
}

/* Given the operand that is extended in a sign/zero extend insn, and the
   insn, try to figure out whether the sign/zero extension can be replaced
   by a simple reg-reg copy.  If so, the replacement reg rtx is returned,
   NULL_RTX otherwise.  */
rtx
sh_try_omit_signzero_extend (rtx extended_op, rtx_insn* insn)
{
  if (REG_P (extended_op))
    extended_op = extended_op;
  else if (GET_CODE (extended_op) == SUBREG && REG_P (SUBREG_REG (extended_op)))
    extended_op = SUBREG_REG (extended_op);
  else
    return NULL_RTX;

  /* Reg moves must be of the same mode.  */
  if (GET_MODE (extended_op) != SImode)
    return NULL_RTX;

  set_of_reg s = sh_find_set_of_reg (extended_op, insn,
				     prev_nonnote_nondebug_insn_bb);
  if (s.set_src == NULL_RTX)
    return NULL_RTX;

  if (t_reg_operand (s.set_src, VOIDmode)
      || negt_reg_operand (s.set_src, VOIDmode))
    return extended_op;

  /* If the zero extended reg was formed by a logical operation, check the
     operands of the logical operation.  If both originated from T bit
     stores the zero extension can be eliminated.  */
  else if (sh_is_logical_t_store_expr (s.set_src, s.insn))
    return extended_op;

  return NULL_RTX;
}

/* Given the current insn, which is assumed to be a movrt_negc insn, try to
   figure out whether it should be converted into a movt-xor sequence in
   the movrt_negc splitter.
   Returns true if insns have been modified and the splitter has succeeded.  */
bool
sh_split_movrt_negc_to_movt_xor (rtx_insn* curr_insn, rtx operands[])
{
  /* In cases such as
	tst	r4,r4
	mov	#-1,r1
	negc	r1,r1
	tst	r4,r4
     we can replace the T bit clobbering negc with a movt-xor sequence and
     eliminate the redundant comparison.
     Because the xor insn depends on register allocation results, allow this
     only before reload.  */
  if (!can_create_pseudo_p ())
    return false;

  set_of_reg t_before_negc = sh_find_set_of_reg
    (get_t_reg_rtx (), curr_insn, prev_nonnote_nondebug_insn_bb);
  set_of_reg t_after_negc = sh_find_set_of_reg
    (get_t_reg_rtx (), curr_insn, next_nonnote_nondebug_insn_bb);

  if (t_before_negc.set_rtx != NULL_RTX && t_after_negc.set_rtx != NULL_RTX
      && rtx_equal_p (t_before_negc.set_rtx, t_after_negc.set_rtx)
      && !reg_used_between_p (get_t_reg_rtx (), curr_insn, t_after_negc.insn)
      && !sh_insn_operands_modified_between_p (t_before_negc.insn,
					       t_before_negc.insn,
					       t_after_negc.insn)
      && !modified_between_p (get_t_reg_rtx (), curr_insn, t_after_negc.insn)
      && !sh_unspec_insn_p (t_after_negc.insn)
      && !volatile_insn_p (PATTERN (t_after_negc.insn))
      && !side_effects_p (PATTERN (t_after_negc.insn))
      && !may_trap_or_fault_p (PATTERN (t_after_negc.insn)))
    {
      emit_insn (gen_movrt_xor (operands[0], get_t_reg_rtx ()));
      set_insn_deleted (t_after_negc.insn);
      return true;
    }
  else
    return false;
}

/* Given a reg and the current insn, see if the value of the reg originated
   from a sign or zero extension and return the discovered information.  */
sh_extending_set_of_reg
sh_find_extending_set_of_reg (rtx reg, rtx_insn* curr_insn)
{
  if (reg == NULL)
    return sh_extending_set_of_reg (curr_insn);

  if (SUBREG_P (reg))
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return sh_extending_set_of_reg (curr_insn);

  /* FIXME: Also search the predecessor basic blocks.  It seems that checking
     only the adjacent predecessor blocks would cover most of the cases.
     Also try to look through the first extension that we hit.  There are some
     cases, where a zero_extend is followed an (implicit) sign_extend, and it
     fails to see the sign_extend.  */
  sh_extending_set_of_reg result = sh_find_set_of_reg
    (reg, curr_insn, prev_nonnote_nondebug_insn_bb, true);

  if (result.set_src != NULL)
    {
      if (GET_CODE (result.set_src) == SIGN_EXTEND
	  || GET_CODE (result.set_src) == ZERO_EXTEND)
	{
	  if (dump_file)
	    fprintf (dump_file, "sh_find_extending_set_of_reg: reg %d is "
				"explicitly sign/zero extended in insn %d\n",
				REGNO (reg), INSN_UID (result.insn));
	  result.from_mode = GET_MODE (XEXP (result.set_src, 0));
	  result.ext_code = GET_CODE (result.set_src);
	}
      else if (MEM_P (result.set_src)
	       && (GET_MODE (result.set_src) == QImode
		   || GET_MODE (result.set_src) == HImode)
	       && !sh_unspec_insn_p (result.insn))
	{
	  /* On SH QIHImode memory loads always sign extend.  However, in
	     some cases where it seems that the higher bits are not
	     interesting, the loads will not be expanded as sign extending
	     insns, but as QIHImode loads into QIHImode regs.  We report that
	     the reg has been sign extended by the mem load.  When it is used
	     as such, we must convert the mem load into a sign extending insn,
	     see also sh_extending_set_of_reg::use_as_extended_reg.  */
	  if (dump_file)
	    fprintf (dump_file, "sh_find_extending_set_of_reg: reg %d is "
				"implicitly sign extended in insn %d\n",
				REGNO (reg), INSN_UID (result.insn));
	  result.from_mode = GET_MODE (result.set_src);
	  result.ext_code = SIGN_EXTEND;
	}
    }

  return result;
}

/* Given a reg that is known to be sign or zero extended at some insn,
   take the appropriate measures so that the extended value can be used as
   a reg at the specified insn and return the resulting reg rtx.  */
rtx
sh_extending_set_of_reg::use_as_extended_reg (rtx_insn* use_at_insn) const
{
  gcc_assert (insn != NULL && set_src != NULL && set_rtx != NULL);
  gcc_assert (ext_code == SIGN_EXTEND || ext_code == ZERO_EXTEND);
  gcc_assert (from_mode == QImode || from_mode == HImode);

  if (MEM_P (set_src) && ext_code == SIGN_EXTEND)
    {
      if (dump_file)
	fprintf (dump_file,
		 "use_as_extended_reg: converting non-extending mem load in "
		 "insn %d into sign-extending load\n", INSN_UID (insn));

	rtx r = gen_reg_rtx (SImode);
	rtx_insn* i0;
	if (from_mode == QImode)
	  i0 = emit_insn_after (gen_extendqisi2 (r, set_src), insn);
	else if (from_mode == HImode)
	  i0 = emit_insn_after (gen_extendhisi2 (r, set_src), insn);
	else
	  gcc_unreachable ();

	emit_insn_after (
		gen_move_insn (XEXP (set_rtx, 0),
			       gen_lowpart (GET_MODE (set_src), r)), i0);
	set_insn_deleted (insn);
	return r;
    }
  else
    {
      rtx extension_dst = XEXP (set_rtx, 0);
      if (GET_MODE (extension_dst) != SImode)
	extension_dst = simplify_gen_subreg (SImode, extension_dst,
					     GET_MODE (extension_dst), 0);
      if (modified_between_p (extension_dst, insn, use_at_insn))
	{
	  if (dump_file)
	    fprintf (dump_file,
		     "use_as_extended_reg: dest reg %d of extending insn %d is "
		     "modified, inserting a reg-reg copy\n",
		     REGNO (extension_dst), INSN_UID (insn));

	  rtx r = gen_reg_rtx (SImode);
	  emit_insn_after (gen_move_insn (r, extension_dst), insn);
	  return r;
	}
      else
	{
	  sh_remove_reg_dead_or_unused_notes (insn, REGNO (extension_dst));
	  return extension_dst;
	}
    }
}

bool
sh_extending_set_of_reg::can_use_as_unextended_reg (void) const
{
  if ((ext_code == SIGN_EXTEND || ext_code == ZERO_EXTEND)
      && (from_mode == QImode || from_mode == HImode)
      && set_src != NULL)
    return arith_reg_operand (XEXP (set_src, 0), from_mode);
  else
    return false;
}

rtx
sh_extending_set_of_reg::use_as_unextended_reg (rtx_insn* use_at_insn) const
{
  gcc_assert (can_use_as_unextended_reg ());

  rtx r = XEXP (set_src, 0);
  rtx r0 = simplify_gen_subreg (SImode, r, from_mode, 0);

  if (modified_between_p (r, insn, use_at_insn))
    {
      rtx r1 = gen_reg_rtx (SImode);
      emit_insn_after (gen_move_insn (r1, r0), insn);
      return r1;
    }
  else
    {
      sh_remove_reg_dead_or_unused_notes (insn, SUBREG_P (r)
						? REGNO (SUBREG_REG (r))
						: REGNO (r));
      return r0;
    }
}

/* Given the current insn, which is assumed to be the *tst<mode>_t_subregs insn,
   perform the necessary checks on the operands and split it accordingly.  */
void
sh_split_tst_subregs (rtx_insn* curr_insn, machine_mode subreg_mode,
		      int subreg_offset, rtx operands[])
{
  gcc_assert (subreg_mode == QImode || subreg_mode == HImode);

  sh_extending_set_of_reg eop0 = sh_find_extending_set_of_reg (operands[0],
							       curr_insn);
  sh_extending_set_of_reg eop1 = sh_find_extending_set_of_reg (operands[1],
							       curr_insn);

  /* If one of the operands is known to be zero extended, that's already
     sufficient to mask out the unwanted high bits.  */
  if (eop0.ext_code == ZERO_EXTEND && eop0.from_mode == subreg_mode)
    {
      emit_insn (gen_tstsi_t (eop0.use_as_extended_reg (curr_insn),
			      operands[1]));
      return;
    }
  if (eop1.ext_code == ZERO_EXTEND && eop1.from_mode == subreg_mode)
    {
      emit_insn (gen_tstsi_t (operands[0],
			      eop1.use_as_extended_reg (curr_insn)));
      return;
    }

  /* None of the operands seem to be zero extended.
     If both are sign extended it's OK, too.  */
  if (eop0.ext_code == SIGN_EXTEND && eop1.ext_code == SIGN_EXTEND
      && eop0.from_mode == subreg_mode && eop1.from_mode == subreg_mode)
    {
      emit_insn (gen_tstsi_t (eop0.use_as_extended_reg (curr_insn),
			      eop1.use_as_extended_reg (curr_insn)));
      return;
    }

  /* Otherwise we have to insert a zero extension on one of the operands to
     mask out the unwanted high bits.
     Prefer the operand that has no known extension.  */
  if (eop0.ext_code != UNKNOWN && eop1.ext_code == UNKNOWN)
    std::swap (operands[0], operands[1]);

  rtx tmp0 = gen_reg_rtx (SImode);
  rtx tmp1 = simplify_gen_subreg (subreg_mode, operands[0],
				  GET_MODE (operands[0]), subreg_offset);
  emit_insn (subreg_mode == QImode
	     ? gen_zero_extendqisi2 (tmp0, tmp1)
	     : gen_zero_extendhisi2 (tmp0, tmp1));
  emit_insn (gen_tstsi_t (tmp0, operands[1]));
}

/* A helper class to increment/decrement a counter variable each time a
   function is entered/left.  */
class scope_counter
{
public:
  scope_counter (int& counter) : m_counter (counter) { ++m_counter; }

  ~scope_counter (void)
  {
    --m_counter;
    gcc_assert (m_counter >= 0);
  }

  int count (void) const { return m_counter; }

private:
  int& m_counter;
};

/* Given an rtx x, determine whether the expression can be used to create
   an insn that calulates x and stores the result in the T bit.
   This is used by the 'treg_set_expr' predicate to construct insns sequences
   where T bit results are fed into other insns, such as addc, subc, negc
   insns.

   FIXME: The patterns that expand 'treg_set_expr' operands tend to
   distinguish between 'positive' and 'negative' forms.  For now this has to
   be done in the preparation code.  We could also introduce
   'pos_treg_set_expr' and 'neg_treg_set_expr' predicates for that and write
   two different patterns for the 'postive' and 'negative' forms.  However,
   the total amount of lines of code seems to be about the same and the
   '{pos|neg}_treg_set_expr' predicates would be more expensive, because the
   recog function would need to look inside the expression by temporarily
   splitting it.  */
static int sh_recog_treg_set_expr_reent_count = 0;

bool
sh_recog_treg_set_expr (rtx op, machine_mode mode)
{
  scope_counter recursion (sh_recog_treg_set_expr_reent_count);

  /* Limit the recursion count to avoid nested expressions which we can't
     resolve to a single treg set insn.  */
  if (recursion.count () > 1)
    return false;

  /* Early accept known possible operands before doing recog.  */
  if (op == const0_rtx || op == const1_rtx || t_reg_operand (op, mode)
      || negt_reg_operand (op, mode))
    return true;

  /* Early reject impossible operands before doing recog.
     There are some (set ((t) (subreg ...))) patterns, but we must be careful
     not to allow any invalid reg-reg or mem-reg moves, or else other passes
     such as lower-subreg will bail out.  Some insns such as SH4A movua are
     done with UNSPEC, so must reject those, too, or else it would result
     in an invalid reg -> treg move.  */
  if (CONST_INT_P (op) || register_operand (op, mode)
      || memory_operand (op, mode) || sh_unspec_insn_p (op))
    return false;

  if (!can_create_pseudo_p ())
    return false;

  /* expand_debug_locations may call this to compute rtx costs at
     very early stage.  In that case, don't make new insns here to
     avoid codegen differences with -g. */
  if (currently_expanding_to_rtl)
    return false;

  /* We are going to invoke recog in a re-entrant way and thus
     have to capture its current state and restore it afterwards.  */
  recog_data_d prev_recog_data = recog_data;

  rtx_insn* i = make_insn_raw (gen_rtx_SET (get_t_reg_rtx (), op));
  SET_PREV_INSN (i) = NULL;
  SET_NEXT_INSN (i) = NULL;

  /* If the comparison op doesn't have a result mode, set it to SImode.  */
  machine_mode prev_op_mode = GET_MODE (op);
  if (COMPARISON_P (op) && prev_op_mode == VOIDmode)
    PUT_MODE (op, SImode);

  int result = recog (PATTERN (i), i, 0);

  /* It seems there is no insn like that.  Create a negated version and
     try again.  If we hit a negated form, we'll allow that and append a
     nott sequence when splitting out the insns.  Insns that do the split
     can then remove the trailing nott if they know how to deal with it.  */
  if (result < 0 && COMPARISON_P (op))
    {
      machine_mode cmp_mode = GET_MODE (XEXP (op, 0));
      if (cmp_mode == VOIDmode)
        cmp_mode = GET_MODE (XEXP (op, 1));

      rtx_code prev_code = GET_CODE (op);
      PUT_CODE (op, reverse_condition (GET_CODE (op)));
      result = recog (PATTERN (i), i, 0);
      PUT_CODE (op, prev_code);
    }

  PUT_MODE (op, prev_op_mode);
  recog_data = prev_recog_data;
  return result >= 0;
}

/* Returns true when recog of a 'treg_set_expr' is currently in progress.
   This can be used as a condition for insn/split patterns to allow certain
   T bit setting patters only to be matched as sub expressions of other
   patterns.  */
bool
sh_in_recog_treg_set_expr (void)
{
  return sh_recog_treg_set_expr_reent_count > 0;
}

/* Given an rtx x, which is assumed to be some expression that has been
   matched by the 'treg_set_expr' predicate before, split and emit the
   insns that are necessary to calculate the expression and store the result
   in the T bit.
   The splitting is done recursively similar to 'try_split' in emit-rt.c.
   Unfortunately we can't use 'try_split' here directly, as it tries to invoke
   'delete_insn' which then causes the DF parts to bail out, because we
   currently are inside another gen_split* function and would invoke
   'try_split' in a reentrant way.  */
static std::pair<rtx_insn*, rtx_insn*>
sh_try_split_insn_simple (rtx_insn* i, rtx_insn* curr_insn, int n = 0)
{
  if (dump_file)
    {
      fprintf (dump_file, "sh_try_split_insn_simple n = %d i = \n", n);
      print_rtl_single (dump_file, i);
      fprintf (dump_file, "\n");
    }

  rtx_insn* seq = split_insns (PATTERN (i), curr_insn);

  if (seq == NULL)
    return std::make_pair (i, i);

  /* Avoid infinite splitter loops if any insn of the result matches
     the original pattern.  */
  for (rtx_insn* s = seq; s != NULL; s = NEXT_INSN (s))
    if (INSN_P (s) && rtx_equal_p (PATTERN (s), PATTERN (i)))
      return std::make_pair (i, i);

  unshare_all_rtl_in_chain (seq);

  /* 'seq' is now a replacement for 'i'.  Assuming that 'i' is an insn in
     a linked list, replace the single insn with the new insns.  */
  rtx_insn* seqlast = seq;
  while (NEXT_INSN (seqlast) != NULL)
    seqlast = NEXT_INSN (seqlast);

  if (rtx_insn* iprev = PREV_INSN (i))
    SET_NEXT_INSN (iprev) = seq;
  if (rtx_insn* inext = NEXT_INSN (i))
    SET_PREV_INSN (inext) = seqlast;

  SET_PREV_INSN (seq) = PREV_INSN (i);
  SET_NEXT_INSN (seqlast) = NEXT_INSN (i);

  SET_PREV_INSN (i) = NULL;
  SET_NEXT_INSN (i) = NULL;

  /* Recursively split all insns.  */
  for (i = seq; ; i = NEXT_INSN (i))
    {
      std::pair<rtx_insn*, rtx_insn*> ii =
	  sh_try_split_insn_simple (i, curr_insn, n + 1);
      if (i == seq)
	seq = ii.first;
      if (i == seqlast)
	{
	  seqlast = ii.second;
	  break;
	}
      i = ii.first;
    }

  return std::make_pair (seq, seqlast);
}

sh_treg_insns
sh_split_treg_set_expr (rtx x, rtx_insn* curr_insn)
{
  if (t_reg_operand (x, VOIDmode))
    return sh_treg_insns ();

  scope_counter in_treg_set_expr (sh_recog_treg_set_expr_reent_count);

  rtx_insn* i = make_insn_raw (gen_rtx_SET (get_t_reg_rtx (), x));
  SET_PREV_INSN (i) = NULL;
  SET_NEXT_INSN (i) = NULL;

  if (dump_file)
    {
      fprintf (dump_file, "split_treg_set_expr insn:\n");
      print_rtl (dump_file, i);
      fprintf (dump_file, "\n");
    }

  /* If the insn is not found, we will try a negated form and append
     a nott.  */
  bool append_nott = false;

  /* We are going to invoke recog/split_insns in a re-entrant way and thus
     have to capture its current state and restore it afterwards.  */
  recog_data_d prev_recog_data = recog_data;

  if (negt_reg_operand (x, GET_MODE (x)))
    {
      /* This is a normal movt followed by a nott.  It will be converted
	 into a movrt after initial expansion.  */
      XEXP (PATTERN (i), 1) = get_t_reg_rtx ();
      append_nott = true;
    }
  else
    {
      /* If the comparison op doesn't have a mode set, set it to SImode.  */
      if (COMPARISON_P (x) && GET_MODE (x) == VOIDmode)
	PUT_MODE (x, SImode);

      int insn_code = recog (PATTERN (i), i, 0);

      if (insn_code < 0 && COMPARISON_P (x))
	{
	  machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
	  if (cmp_mode == VOIDmode)
	    cmp_mode = GET_MODE (XEXP (x, 1));

	  PUT_CODE (x, reverse_condition (GET_CODE (x)));
	  insn_code = recog (PATTERN (i), i, 0);
	  append_nott = true;
	}

      gcc_assert (insn_code >= 0);
    }

  /* Try to recursively split the insn.  Some insns might refuse to split
     any further while we are in the treg_set_expr splitting phase.  They
     will be emitted as part of the outer insn and then split again.  */
  std::pair<rtx_insn*, rtx_insn*> insnlist =
	sh_try_split_insn_simple (i, curr_insn);

  /* Restore recog state.  */
  recog_data = prev_recog_data;

  rtx_insn* nott_insn = sh_is_nott_insn (insnlist.second)
			? insnlist.second
			: NULL;
  if (dump_file)
    {
      fprintf (dump_file, "split_treg_set_expr insnlist:\n");
      print_rtl (dump_file, insnlist.first);
      fprintf (dump_file, "\n");

      if (nott_insn != NULL)
	fprintf (dump_file, "trailing nott insn %d\n", INSN_UID (nott_insn));
    }

  emit_insn (insnlist.first);

  if (nott_insn != NULL && append_nott)
    {
      if (dump_file)
	fprintf (dump_file, "removing trailing nott\n");
      remove_insn (nott_insn);
      nott_insn = NULL;
      append_nott = false;
    }

  if (append_nott)
    nott_insn = emit_insn (gen_nott (get_t_reg_rtx ()));

  rtx_insn* first_insn = get_insns ();

  if (dump_file)
    {
      fprintf (dump_file, "resulting insns:\n");
      print_rtl (dump_file, first_insn);
      fprintf (dump_file, "\n");
    }

  return sh_treg_insns (first_insn, nott_insn);
}

/*------------------------------------------------------------------------------
  Mode switching support code.
*/

static void
sh_emit_mode_set (int entity ATTRIBUTE_UNUSED, int mode,
		  int prev_mode, HARD_REG_SET regs_live ATTRIBUTE_UNUSED)
{
  if ((TARGET_SH4A_FP || TARGET_SH4_300)
      && prev_mode != FP_MODE_NONE && prev_mode != mode)
    {
      emit_insn (gen_toggle_pr ());
      if (TARGET_FMOVD)
	emit_insn (gen_toggle_sz ());
    }
  else if (mode != FP_MODE_NONE)
    {
      rtx tmp = gen_reg_rtx (SImode);
      emit_insn (gen_sts_fpscr (tmp));
      rtx i = NULL;

      const unsigned HOST_WIDE_INT fpbits =
	  TARGET_FMOVD ? (FPSCR_PR | FPSCR_SZ) : FPSCR_PR;

      if (prev_mode != FP_MODE_NONE && prev_mode != mode)
	i = gen_xorsi3 (tmp, tmp, force_reg (SImode, GEN_INT (fpbits)));
      else if (mode == FP_MODE_SINGLE)
	i = gen_andsi3 (tmp, tmp, force_reg (SImode, GEN_INT (~fpbits)));
      else if (mode == FP_MODE_DOUBLE)
	i = gen_iorsi3 (tmp, tmp, force_reg (SImode, GEN_INT (fpbits)));
      else
	gcc_unreachable ();

      emit_insn (i);
      emit_insn (gen_lds_fpscr (tmp));
    }
}

static int
sh_mode_needed (int entity ATTRIBUTE_UNUSED, rtx_insn *insn)
{
  return recog_memoized (insn) >= 0  ? get_attr_fp_mode (insn) : FP_MODE_NONE;
}

static int
sh_mode_after (int entity ATTRIBUTE_UNUSED, int mode, rtx_insn *insn)
{
  if (TARGET_HITACHI && recog_memoized (insn) >= 0 &&
      get_attr_fp_set (insn) != FP_SET_NONE)
    return (int) get_attr_fp_set (insn);
  else
    return mode;
}

static int
sh_mode_entry (int entity ATTRIBUTE_UNUSED)
{
  return NORMAL_MODE (entity);
}

static int
sh_mode_exit (int entity ATTRIBUTE_UNUSED)
{
  return sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (entity);
}

static int
sh_mode_priority (int entity ATTRIBUTE_UNUSED, int n)
{
  return ((TARGET_FPU_SINGLE != 0) ^ (n) ? FP_MODE_SINGLE : FP_MODE_DOUBLE);
}

/*------------------------------------------------------------------------------
  Misc
*/

/* Return true if we use LRA instead of reload pass.  */
bool
sh_lra_p (void)
{
  return sh_lra_flag;
}

/* Implement TARGET_USE_BY_PIECES_INFRASTRUCTURE_P.  */

static bool
sh_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
				   unsigned int align,
				   enum by_pieces_operation op,
				   bool speed_p)
{
  switch (op)
    {
      case MOVE_BY_PIECES:
	return by_pieces_ninsns (size, align, MOVE_MAX_PIECES + 1, op)
	  < (!speed_p ? 2 : (align >= 32) ? 16 : 2);
      case STORE_BY_PIECES:
      case SET_BY_PIECES:
	return by_pieces_ninsns (size, align, STORE_MAX_PIECES + 1, op)
	  < (!speed_p ? 2 : (align >= 32) ? 16 : 2);
      default:
	return default_use_by_pieces_infrastructure_p (size, align,
						       op, speed_p);
    }
}

bool
sh_cannot_force_const_mem_p (machine_mode mode ATTRIBUTE_UNUSED,
			     rtx x ATTRIBUTE_UNUSED)
{
  return TARGET_FDPIC;
}

/* Emit insns to load the function address from FUNCDESC (an FDPIC
   function descriptor) into r1 and the GOT address into r12,
   returning an rtx for r1.  */

rtx
sh_load_function_descriptor (rtx funcdesc)
{
  rtx r1 = gen_rtx_REG (Pmode, R1_REG);
  rtx pic_reg = gen_rtx_REG (Pmode, PIC_REG);
  rtx fnaddr = gen_rtx_MEM (Pmode, funcdesc);
  rtx gotaddr = gen_rtx_MEM (Pmode, plus_constant (Pmode, funcdesc, 4));

  emit_move_insn (r1, fnaddr);
  /* The ABI requires the entry point address to be loaded first, so
     prevent the load from being moved after that of the GOT
     address.  */
  emit_insn (gen_blockage ());
  emit_move_insn (pic_reg, gotaddr);
  return r1;
}

/* Return an rtx holding the initial value of the FDPIC register (the
   FDPIC pointer passed in from the caller).  */

rtx
sh_get_fdpic_reg_initial_val (void)
{
  return get_hard_reg_initial_val (Pmode, PIC_REG);
}

#include "gt-sh.h"