1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
|
/* Subroutines used for code generation on IBM S/390 and zSeries
Copyright (C) 1999-2024 Free Software Foundation, Inc.
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
Ulrich Weigand (uweigand@de.ibm.com) and
Andreas Krebbel (Andreas.Krebbel@de.ibm.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "target-globals.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "diagnostic.h"
#include "alias.h"
#include "fold-const.h"
#include "print-tree.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "except.h"
#include "dojump.h"
#include "explow.h"
#include "stmt.h"
#include "expr.h"
#include "reload.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "debug.h"
#include "langhooks.h"
#include "internal-fn.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "opts.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "ifcvt.h"
#include "rtl-iter.h"
#include "intl.h"
#include "tm-constrs.h"
#include "tree-vrp.h"
#include "symbol-summary.h"
#include "sreal.h"
#include "ipa-cp.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "sched-int.h"
/* This file should be included last. */
#include "target-def.h"
static bool s390_hard_regno_mode_ok (unsigned int, machine_mode);
/* Remember the last target of s390_set_current_function. */
static GTY(()) tree s390_previous_fndecl;
/* Define the specific costs for a given cpu. */
struct processor_costs
{
/* multiplication */
const int m; /* cost of an M instruction. */
const int mghi; /* cost of an MGHI instruction. */
const int mh; /* cost of an MH instruction. */
const int mhi; /* cost of an MHI instruction. */
const int ml; /* cost of an ML instruction. */
const int mr; /* cost of an MR instruction. */
const int ms; /* cost of an MS instruction. */
const int msg; /* cost of an MSG instruction. */
const int msgf; /* cost of an MSGF instruction. */
const int msgfr; /* cost of an MSGFR instruction. */
const int msgr; /* cost of an MSGR instruction. */
const int msr; /* cost of an MSR instruction. */
const int mult_df; /* cost of multiplication in DFmode. */
const int mxbr;
/* square root */
const int sqxbr; /* cost of square root in TFmode. */
const int sqdbr; /* cost of square root in DFmode. */
const int sqebr; /* cost of square root in SFmode. */
/* multiply and add */
const int madbr; /* cost of multiply and add in DFmode. */
const int maebr; /* cost of multiply and add in SFmode. */
/* division */
const int dxbr;
const int ddbr;
const int debr;
const int dlgr;
const int dlr;
const int dr;
const int dsgfr;
const int dsgr;
};
#define s390_cost ((const struct processor_costs *)(s390_cost_pointer))
static const
struct processor_costs z900_cost =
{
COSTS_N_INSNS (5), /* M */
COSTS_N_INSNS (10), /* MGHI */
COSTS_N_INSNS (5), /* MH */
COSTS_N_INSNS (4), /* MHI */
COSTS_N_INSNS (5), /* ML */
COSTS_N_INSNS (5), /* MR */
COSTS_N_INSNS (4), /* MS */
COSTS_N_INSNS (15), /* MSG */
COSTS_N_INSNS (7), /* MSGF */
COSTS_N_INSNS (7), /* MSGFR */
COSTS_N_INSNS (10), /* MSGR */
COSTS_N_INSNS (4), /* MSR */
COSTS_N_INSNS (7), /* multiplication in DFmode */
COSTS_N_INSNS (13), /* MXBR */
COSTS_N_INSNS (136), /* SQXBR */
COSTS_N_INSNS (44), /* SQDBR */
COSTS_N_INSNS (35), /* SQEBR */
COSTS_N_INSNS (18), /* MADBR */
COSTS_N_INSNS (13), /* MAEBR */
COSTS_N_INSNS (134), /* DXBR */
COSTS_N_INSNS (30), /* DDBR */
COSTS_N_INSNS (27), /* DEBR */
COSTS_N_INSNS (220), /* DLGR */
COSTS_N_INSNS (34), /* DLR */
COSTS_N_INSNS (34), /* DR */
COSTS_N_INSNS (32), /* DSGFR */
COSTS_N_INSNS (32), /* DSGR */
};
static const
struct processor_costs z990_cost =
{
COSTS_N_INSNS (4), /* M */
COSTS_N_INSNS (2), /* MGHI */
COSTS_N_INSNS (2), /* MH */
COSTS_N_INSNS (2), /* MHI */
COSTS_N_INSNS (4), /* ML */
COSTS_N_INSNS (4), /* MR */
COSTS_N_INSNS (5), /* MS */
COSTS_N_INSNS (6), /* MSG */
COSTS_N_INSNS (4), /* MSGF */
COSTS_N_INSNS (4), /* MSGFR */
COSTS_N_INSNS (4), /* MSGR */
COSTS_N_INSNS (4), /* MSR */
COSTS_N_INSNS (1), /* multiplication in DFmode */
COSTS_N_INSNS (28), /* MXBR */
COSTS_N_INSNS (130), /* SQXBR */
COSTS_N_INSNS (66), /* SQDBR */
COSTS_N_INSNS (38), /* SQEBR */
COSTS_N_INSNS (1), /* MADBR */
COSTS_N_INSNS (1), /* MAEBR */
COSTS_N_INSNS (60), /* DXBR */
COSTS_N_INSNS (40), /* DDBR */
COSTS_N_INSNS (26), /* DEBR */
COSTS_N_INSNS (176), /* DLGR */
COSTS_N_INSNS (31), /* DLR */
COSTS_N_INSNS (31), /* DR */
COSTS_N_INSNS (31), /* DSGFR */
COSTS_N_INSNS (31), /* DSGR */
};
static const
struct processor_costs z9_109_cost =
{
COSTS_N_INSNS (4), /* M */
COSTS_N_INSNS (2), /* MGHI */
COSTS_N_INSNS (2), /* MH */
COSTS_N_INSNS (2), /* MHI */
COSTS_N_INSNS (4), /* ML */
COSTS_N_INSNS (4), /* MR */
COSTS_N_INSNS (5), /* MS */
COSTS_N_INSNS (6), /* MSG */
COSTS_N_INSNS (4), /* MSGF */
COSTS_N_INSNS (4), /* MSGFR */
COSTS_N_INSNS (4), /* MSGR */
COSTS_N_INSNS (4), /* MSR */
COSTS_N_INSNS (1), /* multiplication in DFmode */
COSTS_N_INSNS (28), /* MXBR */
COSTS_N_INSNS (130), /* SQXBR */
COSTS_N_INSNS (66), /* SQDBR */
COSTS_N_INSNS (38), /* SQEBR */
COSTS_N_INSNS (1), /* MADBR */
COSTS_N_INSNS (1), /* MAEBR */
COSTS_N_INSNS (60), /* DXBR */
COSTS_N_INSNS (40), /* DDBR */
COSTS_N_INSNS (26), /* DEBR */
COSTS_N_INSNS (30), /* DLGR */
COSTS_N_INSNS (23), /* DLR */
COSTS_N_INSNS (23), /* DR */
COSTS_N_INSNS (24), /* DSGFR */
COSTS_N_INSNS (24), /* DSGR */
};
static const
struct processor_costs z10_cost =
{
COSTS_N_INSNS (10), /* M */
COSTS_N_INSNS (10), /* MGHI */
COSTS_N_INSNS (10), /* MH */
COSTS_N_INSNS (10), /* MHI */
COSTS_N_INSNS (10), /* ML */
COSTS_N_INSNS (10), /* MR */
COSTS_N_INSNS (10), /* MS */
COSTS_N_INSNS (10), /* MSG */
COSTS_N_INSNS (10), /* MSGF */
COSTS_N_INSNS (10), /* MSGFR */
COSTS_N_INSNS (10), /* MSGR */
COSTS_N_INSNS (10), /* MSR */
COSTS_N_INSNS (1) , /* multiplication in DFmode */
COSTS_N_INSNS (50), /* MXBR */
COSTS_N_INSNS (120), /* SQXBR */
COSTS_N_INSNS (52), /* SQDBR */
COSTS_N_INSNS (38), /* SQEBR */
COSTS_N_INSNS (1), /* MADBR */
COSTS_N_INSNS (1), /* MAEBR */
COSTS_N_INSNS (111), /* DXBR */
COSTS_N_INSNS (39), /* DDBR */
COSTS_N_INSNS (32), /* DEBR */
COSTS_N_INSNS (160), /* DLGR */
COSTS_N_INSNS (71), /* DLR */
COSTS_N_INSNS (71), /* DR */
COSTS_N_INSNS (71), /* DSGFR */
COSTS_N_INSNS (71), /* DSGR */
};
static const
struct processor_costs z196_cost =
{
COSTS_N_INSNS (7), /* M */
COSTS_N_INSNS (5), /* MGHI */
COSTS_N_INSNS (5), /* MH */
COSTS_N_INSNS (5), /* MHI */
COSTS_N_INSNS (7), /* ML */
COSTS_N_INSNS (7), /* MR */
COSTS_N_INSNS (6), /* MS */
COSTS_N_INSNS (8), /* MSG */
COSTS_N_INSNS (6), /* MSGF */
COSTS_N_INSNS (6), /* MSGFR */
COSTS_N_INSNS (8), /* MSGR */
COSTS_N_INSNS (6), /* MSR */
COSTS_N_INSNS (1) , /* multiplication in DFmode */
COSTS_N_INSNS (40), /* MXBR B+40 */
COSTS_N_INSNS (100), /* SQXBR B+100 */
COSTS_N_INSNS (42), /* SQDBR B+42 */
COSTS_N_INSNS (28), /* SQEBR B+28 */
COSTS_N_INSNS (1), /* MADBR B */
COSTS_N_INSNS (1), /* MAEBR B */
COSTS_N_INSNS (101), /* DXBR B+101 */
COSTS_N_INSNS (29), /* DDBR */
COSTS_N_INSNS (22), /* DEBR */
COSTS_N_INSNS (160), /* DLGR cracked */
COSTS_N_INSNS (160), /* DLR cracked */
COSTS_N_INSNS (160), /* DR expanded */
COSTS_N_INSNS (160), /* DSGFR cracked */
COSTS_N_INSNS (160), /* DSGR cracked */
};
static const
struct processor_costs zEC12_cost =
{
COSTS_N_INSNS (7), /* M */
COSTS_N_INSNS (5), /* MGHI */
COSTS_N_INSNS (5), /* MH */
COSTS_N_INSNS (5), /* MHI */
COSTS_N_INSNS (7), /* ML */
COSTS_N_INSNS (7), /* MR */
COSTS_N_INSNS (6), /* MS */
COSTS_N_INSNS (8), /* MSG */
COSTS_N_INSNS (6), /* MSGF */
COSTS_N_INSNS (6), /* MSGFR */
COSTS_N_INSNS (8), /* MSGR */
COSTS_N_INSNS (6), /* MSR */
COSTS_N_INSNS (1) , /* multiplication in DFmode */
COSTS_N_INSNS (40), /* MXBR B+40 */
COSTS_N_INSNS (100), /* SQXBR B+100 */
COSTS_N_INSNS (42), /* SQDBR B+42 */
COSTS_N_INSNS (28), /* SQEBR B+28 */
COSTS_N_INSNS (1), /* MADBR B */
COSTS_N_INSNS (1), /* MAEBR B */
COSTS_N_INSNS (131), /* DXBR B+131 */
COSTS_N_INSNS (29), /* DDBR */
COSTS_N_INSNS (22), /* DEBR */
COSTS_N_INSNS (160), /* DLGR cracked */
COSTS_N_INSNS (160), /* DLR cracked */
COSTS_N_INSNS (160), /* DR expanded */
COSTS_N_INSNS (160), /* DSGFR cracked */
COSTS_N_INSNS (160), /* DSGR cracked */
};
const struct s390_processor processor_table[] =
{
{ "z900", "z900", PROCESSOR_2064_Z900, &z900_cost, 5 },
{ "z990", "z990", PROCESSOR_2084_Z990, &z990_cost, 6 },
{ "z9-109", "z9-109", PROCESSOR_2094_Z9_109, &z9_109_cost, 7 },
{ "z9-ec", "z9-ec", PROCESSOR_2094_Z9_EC, &z9_109_cost, 7 },
{ "z10", "z10", PROCESSOR_2097_Z10, &z10_cost, 8 },
{ "z196", "z196", PROCESSOR_2817_Z196, &z196_cost, 9 },
{ "zEC12", "zEC12", PROCESSOR_2827_ZEC12, &zEC12_cost, 10 },
{ "z13", "z13", PROCESSOR_2964_Z13, &zEC12_cost, 11 },
{ "z14", "arch12", PROCESSOR_3906_Z14, &zEC12_cost, 12 },
{ "z15", "arch13", PROCESSOR_8561_Z15, &zEC12_cost, 13 },
{ "z16", "arch14", PROCESSOR_3931_Z16, &zEC12_cost, 14 },
{ "native", "", PROCESSOR_NATIVE, NULL, 0 }
};
extern int reload_completed;
/* Kept up to date using the SCHED_VARIABLE_ISSUE hook. */
static rtx_insn *last_scheduled_insn;
#define NUM_SIDES 2
#define MAX_SCHED_UNITS 4
static int last_scheduled_unit_distance[MAX_SCHED_UNITS][NUM_SIDES];
/* Estimate of number of cycles a long-running insn occupies an
execution unit. */
static int fxd_longrunning[NUM_SIDES];
static int fpd_longrunning[NUM_SIDES];
/* The maximum score added for an instruction whose unit hasn't been
in use for MAX_SCHED_MIX_DISTANCE steps. Increase this value to
give instruction mix scheduling more priority over instruction
grouping. */
#define MAX_SCHED_MIX_SCORE 2
/* The maximum distance up to which individual scores will be
calculated. Everything beyond this gives MAX_SCHED_MIX_SCORE.
Increase this with the OOO windows size of the machine. */
#define MAX_SCHED_MIX_DISTANCE 70
/* Structure used to hold the components of a S/390 memory
address. A legitimate address on S/390 is of the general
form
base + index + displacement
where any of the components is optional.
base and index are registers of the class ADDR_REGS,
displacement is an unsigned 12-bit immediate constant. */
/* The max number of insns of backend generated memset/memcpy/memcmp
loops. This value is used in the unroll adjust hook to detect such
loops. Current max is 9 coming from the memcmp loop. */
#define BLOCK_MEM_OPS_LOOP_INSNS 9
struct s390_address
{
rtx base;
rtx indx;
rtx disp;
bool pointer;
bool literal_pool;
};
/* Few accessor macros for struct cfun->machine->s390_frame_layout. */
#define cfun_frame_layout (cfun->machine->frame_layout)
#define cfun_save_high_fprs_p (!!cfun_frame_layout.high_fprs)
#define cfun_save_arg_fprs_p (!!(TARGET_64BIT \
? cfun_frame_layout.fpr_bitmap & 0x0f \
: cfun_frame_layout.fpr_bitmap & 0x03))
#define cfun_gprs_save_area_size ((cfun_frame_layout.last_save_gpr_slot - \
cfun_frame_layout.first_save_gpr_slot + 1) * UNITS_PER_LONG)
#define cfun_set_fpr_save(REGNO) (cfun->machine->frame_layout.fpr_bitmap |= \
(1 << (REGNO - FPR0_REGNUM)))
#define cfun_fpr_save_p(REGNO) (!!(cfun->machine->frame_layout.fpr_bitmap & \
(1 << (REGNO - FPR0_REGNUM))))
#define cfun_gpr_save_slot(REGNO) \
cfun->machine->frame_layout.gpr_save_slots[REGNO]
/* Number of GPRs and FPRs used for argument passing. */
#define GP_ARG_NUM_REG 5
#define FP_ARG_NUM_REG (TARGET_64BIT? 4 : 2)
#define VEC_ARG_NUM_REG 8
/* Return TRUE if GPR REGNO is supposed to be restored in the function
epilogue. */
static inline bool
s390_restore_gpr_p (int regno)
{
return (cfun_frame_layout.first_restore_gpr != -1
&& regno >= cfun_frame_layout.first_restore_gpr
&& regno <= cfun_frame_layout.last_restore_gpr);
}
/* Return TRUE if any of the registers in range [FIRST, LAST] is saved
because of -mpreserve-args. */
static inline bool
s390_preserve_gpr_arg_in_range_p (int first, int last)
{
int num_arg_regs = MIN (crtl->args.info.gprs + cfun->va_list_gpr_size,
GP_ARG_NUM_REG);
return (num_arg_regs
&& s390_preserve_args_p
&& first <= GPR2_REGNUM + num_arg_regs - 1
&& last >= GPR2_REGNUM);
}
static inline bool
s390_preserve_gpr_arg_p (int regno)
{
return s390_preserve_gpr_arg_in_range_p (regno, regno);
}
static inline bool
s390_preserve_fpr_arg_p (int regno)
{
int num_arg_regs = MIN (crtl->args.info.fprs + cfun->va_list_fpr_size,
FP_ARG_NUM_REG);
return (s390_preserve_args_p
&& regno <= FPR0_REGNUM + num_arg_regs - 1
&& regno >= FPR0_REGNUM);
}
#undef TARGET_ATOMIC_ALIGN_FOR_MODE
#define TARGET_ATOMIC_ALIGN_FOR_MODE s390_atomic_align_for_mode
static unsigned int
s390_atomic_align_for_mode (machine_mode mode)
{
return GET_MODE_BITSIZE (mode);
}
/* A couple of shortcuts. */
#define CONST_OK_FOR_J(x) \
CONST_OK_FOR_CONSTRAINT_P((x), 'J', "J")
#define CONST_OK_FOR_K(x) \
CONST_OK_FOR_CONSTRAINT_P((x), 'K', "K")
#define CONST_OK_FOR_Os(x) \
CONST_OK_FOR_CONSTRAINT_P((x), 'O', "Os")
#define CONST_OK_FOR_Op(x) \
CONST_OK_FOR_CONSTRAINT_P((x), 'O', "Op")
#define CONST_OK_FOR_On(x) \
CONST_OK_FOR_CONSTRAINT_P((x), 'O', "On")
#define REGNO_PAIR_OK(REGNO, MODE) \
(s390_hard_regno_nregs ((REGNO), (MODE)) == 1 || !((REGNO) & 1))
/* That's the read ahead of the dynamic branch prediction unit in
bytes on a z10 (or higher) CPU. */
#define PREDICT_DISTANCE (TARGET_Z10 ? 384 : 2048)
static int
s390_address_cost (rtx addr, machine_mode mode ATTRIBUTE_UNUSED,
addr_space_t as ATTRIBUTE_UNUSED,
bool speed ATTRIBUTE_UNUSED);
static unsigned int
s390_hard_regno_nregs (unsigned int regno, machine_mode mode);
/* Masks per jump target register indicating which thunk need to be
generated. */
static GTY(()) int indirect_branch_prez10thunk_mask = 0;
static GTY(()) int indirect_branch_z10thunk_mask = 0;
#define INDIRECT_BRANCH_NUM_OPTIONS 4
enum s390_indirect_branch_option
{
s390_opt_indirect_branch_jump = 0,
s390_opt_indirect_branch_call,
s390_opt_function_return_reg,
s390_opt_function_return_mem
};
static GTY(()) int indirect_branch_table_label_no[INDIRECT_BRANCH_NUM_OPTIONS] = { 0 };
const char *indirect_branch_table_label[INDIRECT_BRANCH_NUM_OPTIONS] = \
{ "LJUMP", "LCALL", "LRETREG", "LRETMEM" };
const char *indirect_branch_table_name[INDIRECT_BRANCH_NUM_OPTIONS] = \
{ ".s390_indirect_jump", ".s390_indirect_call",
".s390_return_reg", ".s390_return_mem" };
bool
s390_return_addr_from_memory ()
{
return cfun_gpr_save_slot(RETURN_REGNUM) == SAVE_SLOT_STACK;
}
/* Return nonzero if it's OK to use fused multiply-add for MODE. */
bool
s390_fma_allowed_p (machine_mode mode)
{
if (TARGET_VXE && mode == TFmode)
return flag_vx_long_double_fma;
return true;
}
/* Indicate which ABI has been used for passing vector args.
0 - no vector type arguments have been passed where the ABI is relevant
1 - the old ABI has been used
2 - a vector type argument has been passed either in a vector register
or on the stack by value */
static int s390_vector_abi = 0;
/* Set the vector ABI marker if TYPE is subject to the vector ABI
switch. The vector ABI affects only vector data types. There are
two aspects of the vector ABI relevant here:
1. vectors >= 16 bytes have an alignment of 8 bytes with the new
ABI and natural alignment with the old.
2. vector <= 16 bytes are passed in VRs or by value on the stack
with the new ABI but by reference on the stack with the old.
If ARG_P is true TYPE is used for a function argument or return
value. The ABI marker then is set for all vector data types. If
ARG_P is false only type 1 vectors are being checked. */
static void
s390_check_type_for_vector_abi (const_tree type, bool arg_p, bool in_struct_p)
{
static hash_set<const_tree> visited_types_hash;
if (s390_vector_abi)
return;
if (type == NULL_TREE || TREE_CODE (type) == ERROR_MARK)
return;
if (visited_types_hash.contains (type))
return;
visited_types_hash.add (type);
if (VECTOR_TYPE_P (type))
{
int type_size = int_size_in_bytes (type);
/* Outside arguments only the alignment is changing and this
only happens for vector types >= 16 bytes. */
if (!arg_p && type_size < 16)
return;
/* In arguments vector types > 16 are passed as before (GCC
never enforced the bigger alignment for arguments which was
required by the old vector ABI). However, it might still be
ABI relevant due to the changed alignment if it is a struct
member. */
if (arg_p && type_size > 16 && !in_struct_p)
return;
s390_vector_abi = TARGET_VX_ABI ? 2 : 1;
}
else if (POINTER_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
{
/* ARRAY_TYPE: Since with neither of the ABIs we have more than
natural alignment there will never be ABI dependent padding
in an array type. That's why we do not set in_struct_p to
true here. */
s390_check_type_for_vector_abi (TREE_TYPE (type), arg_p, in_struct_p);
}
else if (FUNC_OR_METHOD_TYPE_P (type))
{
tree arg_chain;
/* Check the return type. */
s390_check_type_for_vector_abi (TREE_TYPE (type), true, false);
for (arg_chain = TYPE_ARG_TYPES (type);
arg_chain;
arg_chain = TREE_CHAIN (arg_chain))
s390_check_type_for_vector_abi (TREE_VALUE (arg_chain), true, false);
}
else if (RECORD_OR_UNION_TYPE_P (type))
{
tree field;
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
s390_check_type_for_vector_abi (TREE_TYPE (field), arg_p, true);
}
}
}
/* System z builtins. */
#include "s390-builtins.h"
const unsigned int bflags_builtin[S390_BUILTIN_MAX + 1] =
{
#undef B_DEF
#undef OB_DEF
#undef OB_DEF_VAR
#define B_DEF(NAME, PATTERN, ATTRS, BFLAGS, ...) BFLAGS,
#define OB_DEF(...)
#define OB_DEF_VAR(...)
#include "s390-builtins.def"
0
};
const unsigned int opflags_builtin[S390_BUILTIN_MAX + 1] =
{
#undef B_DEF
#undef OB_DEF
#undef OB_DEF_VAR
#define B_DEF(NAME, PATTERN, ATTRS, BFLAGS, OPFLAGS, ...) OPFLAGS,
#define OB_DEF(...)
#define OB_DEF_VAR(...)
#include "s390-builtins.def"
0
};
const unsigned int bflags_overloaded_builtin[S390_OVERLOADED_BUILTIN_MAX + 1] =
{
#undef B_DEF
#undef OB_DEF
#undef OB_DEF_VAR
#define B_DEF(...)
#define OB_DEF(NAME, FIRST_VAR_NAME, LAST_VAR_NAME, BFLAGS, ...) BFLAGS,
#define OB_DEF_VAR(...)
#include "s390-builtins.def"
0
};
const unsigned int
bflags_overloaded_builtin_var[S390_OVERLOADED_BUILTIN_VAR_MAX + 1] =
{
#undef B_DEF
#undef OB_DEF
#undef OB_DEF_VAR
#define B_DEF(...)
#define OB_DEF(...)
#define OB_DEF_VAR(NAME, PATTERN, FLAGS, OPFLAGS, FNTYPE) FLAGS,
#include "s390-builtins.def"
0
};
const unsigned int
opflags_overloaded_builtin_var[S390_OVERLOADED_BUILTIN_VAR_MAX + 1] =
{
#undef B_DEF
#undef OB_DEF
#undef OB_DEF_VAR
#define B_DEF(...)
#define OB_DEF(...)
#define OB_DEF_VAR(NAME, PATTERN, FLAGS, OPFLAGS, FNTYPE) OPFLAGS,
#include "s390-builtins.def"
0
};
tree s390_builtin_types[BT_MAX];
tree s390_builtin_fn_types[BT_FN_MAX];
tree s390_builtin_decls[S390_BUILTIN_MAX +
S390_OVERLOADED_BUILTIN_MAX +
S390_OVERLOADED_BUILTIN_VAR_MAX];
static enum insn_code const code_for_builtin[S390_BUILTIN_MAX + 1] = {
#undef B_DEF
#undef OB_DEF
#undef OB_DEF_VAR
#define B_DEF(NAME, PATTERN, ...) CODE_FOR_##PATTERN,
#define OB_DEF(...)
#define OB_DEF_VAR(...)
#include "s390-builtins.def"
CODE_FOR_nothing
};
static void
s390_init_builtins (void)
{
/* These definitions are being used in s390-builtins.def. */
tree returns_twice_attr = tree_cons (get_identifier ("returns_twice"),
NULL, NULL);
tree noreturn_attr = tree_cons (get_identifier ("noreturn"), NULL, NULL);
tree c_uint64_type_node;
/* The uint64_type_node from tree.cc is not compatible to the C99
uint64_t data type. What we want is c_uint64_type_node from
c-common.cc. But since backend code is not supposed to interface
with the frontend we recreate it here. */
if (TARGET_64BIT)
c_uint64_type_node = long_unsigned_type_node;
else
c_uint64_type_node = long_long_unsigned_type_node;
#undef DEF_TYPE
#define DEF_TYPE(INDEX, NODE, CONST_P) \
if (s390_builtin_types[INDEX] == NULL) \
s390_builtin_types[INDEX] = (!CONST_P) ? \
(NODE) : build_type_variant ((NODE), 1, 0);
#undef DEF_POINTER_TYPE
#define DEF_POINTER_TYPE(INDEX, INDEX_BASE) \
if (s390_builtin_types[INDEX] == NULL) \
s390_builtin_types[INDEX] = \
build_pointer_type (s390_builtin_types[INDEX_BASE]);
#undef DEF_DISTINCT_TYPE
#define DEF_DISTINCT_TYPE(INDEX, INDEX_BASE) \
if (s390_builtin_types[INDEX] == NULL) \
s390_builtin_types[INDEX] = \
build_distinct_type_copy (s390_builtin_types[INDEX_BASE]);
#undef DEF_VECTOR_TYPE
#define DEF_VECTOR_TYPE(INDEX, INDEX_BASE, ELEMENTS) \
if (s390_builtin_types[INDEX] == NULL) \
s390_builtin_types[INDEX] = \
build_vector_type (s390_builtin_types[INDEX_BASE], ELEMENTS);
#undef DEF_OPAQUE_VECTOR_TYPE
#define DEF_OPAQUE_VECTOR_TYPE(INDEX, INDEX_BASE, ELEMENTS) \
if (s390_builtin_types[INDEX] == NULL) \
s390_builtin_types[INDEX] = \
build_opaque_vector_type (s390_builtin_types[INDEX_BASE], ELEMENTS);
#undef DEF_FN_TYPE
#define DEF_FN_TYPE(INDEX, args...) \
if (s390_builtin_fn_types[INDEX] == NULL) \
s390_builtin_fn_types[INDEX] = \
build_function_type_list (args, NULL_TREE);
#undef DEF_OV_TYPE
#define DEF_OV_TYPE(...)
#include "s390-builtin-types.def"
#undef B_DEF
#define B_DEF(NAME, PATTERN, ATTRS, BFLAGS, OPFLAGS, FNTYPE) \
if (s390_builtin_decls[S390_BUILTIN_##NAME] == NULL) \
s390_builtin_decls[S390_BUILTIN_##NAME] = \
add_builtin_function ("__builtin_" #NAME, \
s390_builtin_fn_types[FNTYPE], \
S390_BUILTIN_##NAME, \
BUILT_IN_MD, \
NULL, \
ATTRS);
#undef OB_DEF
#define OB_DEF(NAME, FIRST_VAR_NAME, LAST_VAR_NAME, BFLAGS, FNTYPE) \
if (s390_builtin_decls[S390_OVERLOADED_BUILTIN_##NAME + S390_BUILTIN_MAX] \
== NULL) \
s390_builtin_decls[S390_OVERLOADED_BUILTIN_##NAME + S390_BUILTIN_MAX] = \
add_builtin_function ("__builtin_" #NAME, \
s390_builtin_fn_types[FNTYPE], \
S390_OVERLOADED_BUILTIN_##NAME + S390_BUILTIN_MAX, \
BUILT_IN_MD, \
NULL, \
0);
#undef OB_DEF_VAR
#define OB_DEF_VAR(...)
#include "s390-builtins.def"
}
/* Return true if ARG is appropriate as argument number ARGNUM of
builtin DECL. The operand flags from s390-builtins.def have to
passed as OP_FLAGS. */
bool
s390_const_operand_ok (tree arg, int argnum, int op_flags, tree decl)
{
if (O_UIMM_P (op_flags))
{
unsigned HOST_WIDE_INT bitwidths[] = { 1, 2, 3, 4, 5, 8, 12, 16, 32, 4 };
unsigned HOST_WIDE_INT bitmasks[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 12 };
unsigned HOST_WIDE_INT bitwidth = bitwidths[op_flags - O_U1];
unsigned HOST_WIDE_INT bitmask = bitmasks[op_flags - O_U1];
gcc_assert(ARRAY_SIZE(bitwidths) == (O_M12 - O_U1 + 1));
gcc_assert(ARRAY_SIZE(bitmasks) == (O_M12 - O_U1 + 1));
if (!tree_fits_uhwi_p (arg)
|| tree_to_uhwi (arg) > (HOST_WIDE_INT_1U << bitwidth) - 1
|| (bitmask && tree_to_uhwi (arg) & ~bitmask))
{
if (bitmask)
{
gcc_assert (bitmask < 16);
char values[120] = "";
for (unsigned HOST_WIDE_INT i = 0; i <= bitmask; i++)
{
char buf[5];
if (i & ~bitmask)
continue;
int ret = snprintf (buf, 5, HOST_WIDE_INT_PRINT_UNSIGNED, i & bitmask);
gcc_assert (ret < 5);
strcat (values, buf);
if (i < bitmask)
strcat (values, ", ");
}
error ("constant argument %d for builtin %qF is invalid (%s)",
argnum, decl, values);
}
else
error ("constant argument %d for builtin %qF is out of range (0-%wu)",
argnum, decl, (HOST_WIDE_INT_1U << bitwidth) - 1);
return false;
}
}
if (O_SIMM_P (op_flags))
{
int bitwidths[] = { 2, 3, 4, 5, 8, 12, 16, 32 };
int bitwidth = bitwidths[op_flags - O_S2];
if (!tree_fits_shwi_p (arg)
|| tree_to_shwi (arg) < -(HOST_WIDE_INT_1 << (bitwidth - 1))
|| tree_to_shwi (arg) > ((HOST_WIDE_INT_1 << (bitwidth - 1)) - 1))
{
error ("constant argument %d for builtin %qF is out of range "
"(%wd-%wd)", argnum, decl,
-(HOST_WIDE_INT_1 << (bitwidth - 1)),
(HOST_WIDE_INT_1 << (bitwidth - 1)) - 1);
return false;
}
}
return true;
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
static rtx
s390_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
#define MAX_ARGS 6
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
enum insn_code icode;
rtx op[MAX_ARGS], pat;
int arity;
bool nonvoid;
tree arg;
call_expr_arg_iterator iter;
unsigned int all_op_flags = opflags_for_builtin (fcode);
machine_mode last_vec_mode = VOIDmode;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr,
"s390_expand_builtin, code = %4d, %s, bflags = 0x%x\n",
(int)fcode, IDENTIFIER_POINTER (DECL_NAME (fndecl)),
bflags_for_builtin (fcode));
}
if (S390_USE_TARGET_ATTRIBUTE)
{
unsigned int bflags;
bflags = bflags_for_builtin (fcode);
if ((bflags & B_HTM) && !TARGET_HTM)
{
error ("builtin %qF is not supported without %<-mhtm%> "
"(default with %<-march=zEC12%> and higher)", fndecl);
return const0_rtx;
}
if (((bflags & B_VX) || (bflags & B_VXE)) && !TARGET_VX)
{
error ("builtin %qF requires %<-mvx%> "
"(default with %<-march=z13%> and higher)", fndecl);
return const0_rtx;
}
if ((bflags & B_VXE) && !TARGET_VXE)
{
error ("Builtin %qF requires z14 or higher", fndecl);
return const0_rtx;
}
if ((bflags & B_VXE2) && !TARGET_VXE2)
{
error ("Builtin %qF requires z15 or higher", fndecl);
return const0_rtx;
}
}
if (fcode >= S390_OVERLOADED_BUILTIN_VAR_OFFSET
&& fcode < S390_ALL_BUILTIN_MAX)
{
gcc_unreachable ();
}
else if (fcode < S390_OVERLOADED_BUILTIN_OFFSET)
{
icode = code_for_builtin[fcode];
/* Set a flag in the machine specific cfun part in order to support
saving/restoring of FPRs. */
if (fcode == S390_BUILTIN_tbegin || fcode == S390_BUILTIN_tbegin_retry)
cfun->machine->tbegin_p = true;
}
else if (fcode < S390_OVERLOADED_BUILTIN_VAR_OFFSET)
{
error ("unresolved overloaded builtin");
return const0_rtx;
}
else
internal_error ("bad builtin fcode");
if (icode == 0)
internal_error ("bad builtin icode");
nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
if (nonvoid)
{
machine_mode tmode = insn_data[icode].operand[0].mode;
if (!target
|| GET_MODE (target) != tmode
|| !(*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
/* There are builtins (e.g. vec_promote) with no vector
arguments but an element selector. So we have to also look
at the vector return type when emitting the modulo
operation. */
if (VECTOR_MODE_P (insn_data[icode].operand[0].mode))
last_vec_mode = insn_data[icode].operand[0].mode;
}
arity = 0;
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
{
rtx tmp_rtx;
const struct insn_operand_data *insn_op;
unsigned int op_flags = all_op_flags & ((1 << O_SHIFT) - 1);
all_op_flags = all_op_flags >> O_SHIFT;
if (arg == error_mark_node)
return NULL_RTX;
if (arity >= MAX_ARGS)
return NULL_RTX;
if (O_IMM_P (op_flags)
&& TREE_CODE (arg) != INTEGER_CST)
{
error ("constant value required for builtin %qF argument %d",
fndecl, arity + 1);
return const0_rtx;
}
if (!s390_const_operand_ok (arg, arity + 1, op_flags, fndecl))
return const0_rtx;
insn_op = &insn_data[icode].operand[arity + nonvoid];
op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL);
/* expand_expr truncates constants to the target mode only if it
is "convenient". However, our checks below rely on this
being done. */
if (CONST_INT_P (op[arity])
&& SCALAR_INT_MODE_P (insn_op->mode)
&& GET_MODE (op[arity]) != insn_op->mode)
op[arity] = GEN_INT (trunc_int_for_mode (INTVAL (op[arity]),
insn_op->mode));
/* Wrap the expanded RTX for pointer types into a MEM expr with
the proper mode. This allows us to use e.g. (match_operand
"memory_operand"..) in the insn patterns instead of (mem
(match_operand "address_operand)). This is helpful for
patterns not just accepting MEMs. */
if (POINTER_TYPE_P (TREE_TYPE (arg))
&& insn_op->predicate != address_operand)
op[arity] = gen_rtx_MEM (insn_op->mode, op[arity]);
/* Expand the module operation required on element selectors. */
if (op_flags == O_ELEM)
{
gcc_assert (last_vec_mode != VOIDmode);
op[arity] = simplify_expand_binop (SImode, code_to_optab (AND),
op[arity],
GEN_INT (GET_MODE_NUNITS (last_vec_mode) - 1),
NULL_RTX, 1, OPTAB_DIRECT);
}
/* Record the vector mode used for an element selector. This assumes:
1. There is no builtin with two different vector modes and an element selector
2. The element selector comes after the vector type it is referring to.
This currently the true for all the builtins but FIXME we
should better check for that. */
if (VECTOR_MODE_P (insn_op->mode))
last_vec_mode = insn_op->mode;
if (insn_op->predicate (op[arity], insn_op->mode))
{
arity++;
continue;
}
/* A memory operand is rejected by the memory_operand predicate.
Try making the address legal by copying it into a register. */
if (MEM_P (op[arity])
&& insn_op->predicate == memory_operand
&& (GET_MODE (XEXP (op[arity], 0)) == Pmode
|| GET_MODE (XEXP (op[arity], 0)) == VOIDmode))
{
op[arity] = replace_equiv_address (op[arity],
copy_to_mode_reg (Pmode,
XEXP (op[arity], 0)));
}
/* Some of the builtins require different modes/types than the
pattern in order to implement a specific API. Instead of
adding many expanders which do the mode change we do it here.
E.g. s390_vec_add_u128 required to have vector unsigned char
arguments is mapped to addti3. */
else if (insn_op->mode != VOIDmode
&& GET_MODE (op[arity]) != VOIDmode
&& GET_MODE (op[arity]) != insn_op->mode
&& ((tmp_rtx = simplify_gen_subreg (insn_op->mode, op[arity],
GET_MODE (op[arity]), 0))
!= NULL_RTX))
{
op[arity] = tmp_rtx;
}
/* The predicate rejects the operand although the mode is fine.
Copy the operand to register. */
if (!insn_op->predicate (op[arity], insn_op->mode)
&& (GET_MODE (op[arity]) == insn_op->mode
|| GET_MODE (op[arity]) == VOIDmode
|| (insn_op->predicate == address_operand
&& GET_MODE (op[arity]) == Pmode)))
{
/* An address_operand usually has VOIDmode in the expander
so we cannot use this. */
machine_mode target_mode =
(insn_op->predicate == address_operand
? (machine_mode) Pmode : insn_op->mode);
op[arity] = copy_to_mode_reg (target_mode, op[arity]);
}
if (!insn_op->predicate (op[arity], insn_op->mode))
{
error ("invalid argument %d for builtin %qF", arity + 1, fndecl);
return const0_rtx;
}
arity++;
}
switch (arity)
{
case 0:
pat = GEN_FCN (icode) (target);
break;
case 1:
if (nonvoid)
pat = GEN_FCN (icode) (target, op[0]);
else
pat = GEN_FCN (icode) (op[0]);
break;
case 2:
if (nonvoid)
pat = GEN_FCN (icode) (target, op[0], op[1]);
else
pat = GEN_FCN (icode) (op[0], op[1]);
break;
case 3:
if (nonvoid)
pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
else
pat = GEN_FCN (icode) (op[0], op[1], op[2]);
break;
case 4:
if (nonvoid)
pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
else
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
break;
case 5:
if (nonvoid)
pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3], op[4]);
else
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3], op[4]);
break;
case 6:
if (nonvoid)
pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3], op[4], op[5]);
else
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3], op[4], op[5]);
break;
default:
gcc_unreachable ();
}
if (!pat)
return NULL_RTX;
emit_insn (pat);
if (nonvoid)
return target;
else
return const0_rtx;
}
static const int s390_hotpatch_hw_max = 1000000;
static int s390_hotpatch_hw_before_label = 0;
static int s390_hotpatch_hw_after_label = 0;
/* Check whether the hotpatch attribute is applied to a function and, if it has
an argument, the argument is valid. */
static tree
s390_handle_hotpatch_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree expr;
tree expr2;
int err;
if (TREE_CODE (*node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
*no_add_attrs = true;
}
if (args != NULL && TREE_CHAIN (args) != NULL)
{
expr = TREE_VALUE (args);
expr2 = TREE_VALUE (TREE_CHAIN (args));
}
if (args == NULL || TREE_CHAIN (args) == NULL)
err = 1;
else if (TREE_CODE (expr) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (expr))
|| wi::gtu_p (wi::to_wide (expr), s390_hotpatch_hw_max))
err = 1;
else if (TREE_CODE (expr2) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (expr2))
|| wi::gtu_p (wi::to_wide (expr2), s390_hotpatch_hw_max))
err = 1;
else
err = 0;
if (err)
{
error ("requested %qE attribute is not a comma separated pair of"
" non-negative integer constants or too large (max. %d)", name,
s390_hotpatch_hw_max);
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Expand the s390_vector_bool type attribute. */
static tree
s390_handle_vectorbool_attribute (tree *node, tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree type = *node, result = NULL_TREE;
machine_mode mode;
while (POINTER_TYPE_P (type)
|| TREE_CODE (type) == FUNCTION_TYPE
|| TREE_CODE (type) == METHOD_TYPE
|| TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
mode = TYPE_MODE (type);
switch (mode)
{
case E_DImode: case E_V2DImode:
result = s390_builtin_types[BT_BV2DI];
break;
case E_SImode: case E_V4SImode:
result = s390_builtin_types[BT_BV4SI];
break;
case E_HImode: case E_V8HImode:
result = s390_builtin_types[BT_BV8HI];
break;
case E_QImode: case E_V16QImode:
result = s390_builtin_types[BT_BV16QI];
break;
default:
break;
}
*no_add_attrs = true; /* No need to hang on to the attribute. */
if (result)
*node = lang_hooks.types.reconstruct_complex_type (*node, result);
return NULL_TREE;
}
/* Check syntax of function decl attributes having a string type value. */
static tree
s390_handle_string_attribute (tree *node, tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree cst;
if (TREE_CODE (*node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
*no_add_attrs = true;
}
cst = TREE_VALUE (args);
if (TREE_CODE (cst) != STRING_CST)
{
warning (OPT_Wattributes,
"%qE attribute requires a string constant argument",
name);
*no_add_attrs = true;
}
if (is_attribute_p ("indirect_branch", name)
|| is_attribute_p ("indirect_branch_call", name)
|| is_attribute_p ("function_return", name)
|| is_attribute_p ("function_return_reg", name)
|| is_attribute_p ("function_return_mem", name))
{
if (strcmp (TREE_STRING_POINTER (cst), "keep") != 0
&& strcmp (TREE_STRING_POINTER (cst), "thunk") != 0
&& strcmp (TREE_STRING_POINTER (cst), "thunk-extern") != 0)
{
warning (OPT_Wattributes,
"argument to %qE attribute is not "
"(keep|thunk|thunk-extern)", name);
*no_add_attrs = true;
}
}
if (is_attribute_p ("indirect_branch_jump", name)
&& strcmp (TREE_STRING_POINTER (cst), "keep") != 0
&& strcmp (TREE_STRING_POINTER (cst), "thunk") != 0
&& strcmp (TREE_STRING_POINTER (cst), "thunk-inline") != 0
&& strcmp (TREE_STRING_POINTER (cst), "thunk-extern") != 0)
{
warning (OPT_Wattributes,
"argument to %qE attribute is not "
"(keep|thunk|thunk-inline|thunk-extern)", name);
*no_add_attrs = true;
}
return NULL_TREE;
}
TARGET_GNU_ATTRIBUTES (s390_attribute_table, {
{ "hotpatch", 2, 2, true, false, false, false,
s390_handle_hotpatch_attribute, NULL },
{ "s390_vector_bool", 0, 0, false, true, false, true,
s390_handle_vectorbool_attribute, NULL },
{ "indirect_branch", 1, 1, true, false, false, false,
s390_handle_string_attribute, NULL },
{ "indirect_branch_jump", 1, 1, true, false, false, false,
s390_handle_string_attribute, NULL },
{ "indirect_branch_call", 1, 1, true, false, false, false,
s390_handle_string_attribute, NULL },
{ "function_return", 1, 1, true, false, false, false,
s390_handle_string_attribute, NULL },
{ "function_return_reg", 1, 1, true, false, false, false,
s390_handle_string_attribute, NULL },
{ "function_return_mem", 1, 1, true, false, false, false,
s390_handle_string_attribute, NULL }
});
/* Return the alignment for LABEL. We default to the -falign-labels
value except for the literal pool base label. */
int
s390_label_align (rtx_insn *label)
{
rtx_insn *prev_insn = prev_active_insn (label);
rtx set, src;
if (prev_insn == NULL_RTX)
goto old;
set = single_set (prev_insn);
if (set == NULL_RTX)
goto old;
src = SET_SRC (set);
/* Don't align literal pool base labels. */
if (GET_CODE (src) == UNSPEC
&& XINT (src, 1) == UNSPEC_MAIN_BASE)
return 0;
old:
return align_labels.levels[0].log;
}
static GTY(()) rtx got_symbol;
/* Return the GOT table symbol. The symbol will be created when the
function is invoked for the first time. */
static rtx
s390_got_symbol (void)
{
if (!got_symbol)
{
got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
SYMBOL_REF_FLAGS (got_symbol) = SYMBOL_FLAG_LOCAL;
}
return got_symbol;
}
static scalar_int_mode
s390_libgcc_cmp_return_mode (void)
{
return TARGET_64BIT ? DImode : SImode;
}
static scalar_int_mode
s390_libgcc_shift_count_mode (void)
{
return TARGET_64BIT ? DImode : SImode;
}
static scalar_int_mode
s390_unwind_word_mode (void)
{
return TARGET_64BIT ? DImode : SImode;
}
/* Return true if the back end supports mode MODE. */
static bool
s390_scalar_mode_supported_p (scalar_mode mode)
{
/* In contrast to the default implementation reject TImode constants on 31bit
TARGET_ZARCH for ABI compliance. */
if (!TARGET_64BIT && TARGET_ZARCH && mode == TImode)
return false;
if (DECIMAL_FLOAT_MODE_P (mode))
return default_decimal_float_supported_p ();
return default_scalar_mode_supported_p (mode);
}
/* Return true if the back end supports vector mode MODE. */
static bool
s390_vector_mode_supported_p (machine_mode mode)
{
machine_mode inner;
if (!VECTOR_MODE_P (mode)
|| !TARGET_VX
|| GET_MODE_SIZE (mode) > 16)
return false;
inner = GET_MODE_INNER (mode);
switch (inner)
{
case E_QImode:
case E_HImode:
case E_SImode:
case E_DImode:
case E_TImode:
case E_SFmode:
case E_DFmode:
case E_TFmode:
return true;
default:
return false;
}
}
/* Set the has_landing_pad_p flag in struct machine_function to VALUE. */
void
s390_set_has_landing_pad_p (bool value)
{
cfun->machine->has_landing_pad_p = value;
}
/* If two condition code modes are compatible, return a condition code
mode which is compatible with both. Otherwise, return
VOIDmode. */
static machine_mode
s390_cc_modes_compatible (machine_mode m1, machine_mode m2)
{
if (m1 == m2)
return m1;
switch (m1)
{
case E_CCZmode:
if (m2 == CCUmode || m2 == CCTmode || m2 == CCZ1mode
|| m2 == CCSmode || m2 == CCSRmode || m2 == CCURmode)
return m2;
return VOIDmode;
case E_CCSmode:
case E_CCUmode:
case E_CCTmode:
case E_CCSRmode:
case E_CCURmode:
case E_CCZ1mode:
if (m2 == CCZmode)
return m1;
return VOIDmode;
default:
return VOIDmode;
}
return VOIDmode;
}
/* Return true if SET either doesn't set the CC register, or else
the source and destination have matching CC modes and that
CC mode is at least as constrained as REQ_MODE. */
static bool
s390_match_ccmode_set (rtx set, machine_mode req_mode)
{
machine_mode set_mode;
gcc_assert (GET_CODE (set) == SET);
/* These modes are supposed to be used only in CC consumer
patterns. */
gcc_assert (req_mode != CCVIALLmode && req_mode != CCVIANYmode
&& req_mode != CCVFALLmode && req_mode != CCVFANYmode);
if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set))))
return 1;
set_mode = GET_MODE (SET_DEST (set));
switch (set_mode)
{
case E_CCZ1mode:
case E_CCSmode:
case E_CCSRmode:
case E_CCSFPSmode:
case E_CCUmode:
case E_CCURmode:
case E_CCOmode:
case E_CCLmode:
case E_CCL1mode:
case E_CCL2mode:
case E_CCL3mode:
case E_CCT1mode:
case E_CCT2mode:
case E_CCT3mode:
case E_CCVEQmode:
case E_CCVIHmode:
case E_CCVIHUmode:
case E_CCVFHmode:
case E_CCVFHEmode:
if (req_mode != set_mode)
return 0;
break;
case E_CCZmode:
if (req_mode != CCSmode && req_mode != CCUmode && req_mode != CCTmode
&& req_mode != CCSRmode && req_mode != CCURmode
&& req_mode != CCZ1mode)
return 0;
break;
case E_CCAPmode:
case E_CCANmode:
if (req_mode != CCAmode)
return 0;
break;
default:
gcc_unreachable ();
}
return (GET_MODE (SET_SRC (set)) == set_mode);
}
/* Return true if every SET in INSN that sets the CC register
has source and destination with matching CC modes and that
CC mode is at least as constrained as REQ_MODE.
If REQ_MODE is VOIDmode, always return false. */
bool
s390_match_ccmode (rtx_insn *insn, machine_mode req_mode)
{
int i;
/* s390_tm_ccmode returns VOIDmode to indicate failure. */
if (req_mode == VOIDmode)
return false;
if (GET_CODE (PATTERN (insn)) == SET)
return s390_match_ccmode_set (PATTERN (insn), req_mode);
if (GET_CODE (PATTERN (insn)) == PARALLEL)
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx set = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (set) == SET)
if (!s390_match_ccmode_set (set, req_mode))
return false;
}
return true;
}
/* If a test-under-mask instruction can be used to implement
(compare (and ... OP1) OP2), return the CC mode required
to do that. Otherwise, return VOIDmode.
MIXED is true if the instruction can distinguish between
CC1 and CC2 for mixed selected bits (TMxx), it is false
if the instruction cannot (TM). */
machine_mode
s390_tm_ccmode (rtx op1, rtx op2, bool mixed)
{
int bit0, bit1;
/* ??? Fixme: should work on CONST_WIDE_INT as well. */
if (GET_CODE (op1) != CONST_INT || GET_CODE (op2) != CONST_INT)
return VOIDmode;
/* Selected bits all zero: CC0.
e.g.: int a; if ((a & (16 + 128)) == 0) */
if (INTVAL (op2) == 0)
return CCTmode;
/* Selected bits all one: CC3.
e.g.: int a; if ((a & (16 + 128)) == 16 + 128) */
if (INTVAL (op2) == INTVAL (op1))
return CCT3mode;
/* Exactly two bits selected, mixed zeroes and ones: CC1 or CC2. e.g.:
int a;
if ((a & (16 + 128)) == 16) -> CCT1
if ((a & (16 + 128)) == 128) -> CCT2 */
if (mixed)
{
bit1 = exact_log2 (INTVAL (op2));
bit0 = exact_log2 (INTVAL (op1) ^ INTVAL (op2));
if (bit0 != -1 && bit1 != -1)
return bit0 > bit1 ? CCT1mode : CCT2mode;
}
return VOIDmode;
}
/* Given a comparison code OP (EQ, NE, etc.) and the operands
OP0 and OP1 of a COMPARE, return the mode to be used for the
comparison. */
machine_mode
s390_select_ccmode (enum rtx_code code, rtx op0, rtx op1)
{
switch (code)
{
case EQ:
case NE:
if ((GET_CODE (op0) == NEG || GET_CODE (op0) == ABS)
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
return CCAPmode;
if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& CONST_OK_FOR_K (INTVAL (XEXP (op0, 1))))
return CCAPmode;
if ((GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|| GET_CODE (op1) == NEG)
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
return CCLmode;
if (GET_CODE (op0) == AND)
{
/* Check whether we can potentially do it via TM. */
machine_mode ccmode;
ccmode = s390_tm_ccmode (XEXP (op0, 1), op1, 1);
if (ccmode != VOIDmode)
{
/* Relax CCTmode to CCZmode to allow fall-back to AND
if that turns out to be beneficial. */
return ccmode == CCTmode ? CCZmode : ccmode;
}
}
if (register_operand (op0, HImode)
&& GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) == -1 || INTVAL (op1) == 65535))
return CCT3mode;
if (register_operand (op0, QImode)
&& GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) == -1 || INTVAL (op1) == 255))
return CCT3mode;
return CCZmode;
case LE:
case LT:
case GE:
case GT:
/* The only overflow condition of NEG and ABS happens when
-INT_MAX is used as parameter, which stays negative. So
we have an overflow from a positive value to a negative.
Using CCAP mode the resulting cc can be used for comparisons. */
if ((GET_CODE (op0) == NEG || GET_CODE (op0) == ABS)
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
return CCAPmode;
/* If constants are involved in an add instruction it is possible to use
the resulting cc for comparisons with zero. Knowing the sign of the
constant the overflow behavior gets predictable. e.g.:
int a, b; if ((b = a + c) > 0)
with c as a constant value: c < 0 -> CCAN and c >= 0 -> CCAP */
if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (CONST_OK_FOR_K (INTVAL (XEXP (op0, 1)))
|| (CONST_OK_FOR_CONSTRAINT_P (INTVAL (XEXP (op0, 1)), 'O', "Os")
/* Avoid INT32_MIN on 32 bit. */
&& (!TARGET_ZARCH || INTVAL (XEXP (op0, 1)) != -0x7fffffff - 1))))
{
if (INTVAL (XEXP((op0), 1)) < 0)
return CCANmode;
else
return CCAPmode;
}
/* Fall through. */
case LTGT:
if (HONOR_NANS (op0) || HONOR_NANS (op1))
return CCSFPSmode;
/* Fall through. */
case UNORDERED:
case ORDERED:
case UNEQ:
case UNLE:
case UNLT:
case UNGE:
case UNGT:
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
&& GET_CODE (op1) != CONST_INT)
return CCSRmode;
return CCSmode;
case LTU:
case GEU:
if (GET_CODE (op0) == PLUS
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
return CCL1mode;
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
&& GET_CODE (op1) != CONST_INT)
return CCURmode;
return CCUmode;
case LEU:
case GTU:
if (GET_CODE (op0) == MINUS
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
return CCL2mode;
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
&& GET_CODE (op1) != CONST_INT)
return CCURmode;
return CCUmode;
default:
gcc_unreachable ();
}
}
/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
that we can implement more efficiently. */
static void
s390_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
bool op0_preserve_value)
{
if (op0_preserve_value)
return;
/* Convert ZERO_EXTRACT back to AND to enable TM patterns. */
if ((*code == EQ || *code == NE)
&& *op1 == const0_rtx
&& GET_CODE (*op0) == ZERO_EXTRACT
&& GET_CODE (XEXP (*op0, 1)) == CONST_INT
&& GET_CODE (XEXP (*op0, 2)) == CONST_INT
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (*op0, 0))))
{
rtx inner = XEXP (*op0, 0);
HOST_WIDE_INT modesize = GET_MODE_BITSIZE (GET_MODE (inner));
HOST_WIDE_INT len = INTVAL (XEXP (*op0, 1));
HOST_WIDE_INT pos = INTVAL (XEXP (*op0, 2));
if (len > 0 && len < modesize
&& pos >= 0 && pos + len <= modesize
&& modesize <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT block;
block = (HOST_WIDE_INT_1U << len) - 1;
block <<= modesize - pos - len;
*op0 = gen_rtx_AND (GET_MODE (inner), inner,
gen_int_mode (block, GET_MODE (inner)));
}
}
/* Narrow AND of memory against immediate to enable TM. */
if ((*code == EQ || *code == NE)
&& *op1 == const0_rtx
&& GET_CODE (*op0) == AND
&& GET_CODE (XEXP (*op0, 1)) == CONST_INT
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (*op0, 0))))
{
rtx inner = XEXP (*op0, 0);
rtx mask = XEXP (*op0, 1);
/* Ignore paradoxical SUBREGs if all extra bits are masked out. */
if (GET_CODE (inner) == SUBREG
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (inner)))
&& (GET_MODE_SIZE (GET_MODE (inner))
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
&& ((INTVAL (mask)
& GET_MODE_MASK (GET_MODE (inner))
& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (inner))))
== 0))
inner = SUBREG_REG (inner);
/* Do not change volatile MEMs. */
if (MEM_P (inner) && !MEM_VOLATILE_P (inner))
{
int part = s390_single_part (XEXP (*op0, 1),
GET_MODE (inner), QImode, 0);
if (part >= 0)
{
mask = gen_int_mode (s390_extract_part (mask, QImode, 0), QImode);
inner = adjust_address_nv (inner, QImode, part);
*op0 = gen_rtx_AND (QImode, inner, mask);
}
}
}
/* Narrow comparisons against 0xffff to HImode if possible. */
if ((*code == EQ || *code == NE)
&& GET_CODE (*op1) == CONST_INT
&& INTVAL (*op1) == 0xffff
&& SCALAR_INT_MODE_P (GET_MODE (*op0))
&& (nonzero_bits (*op0, GET_MODE (*op0))
& ~HOST_WIDE_INT_UC (0xffff)) == 0)
{
*op0 = gen_lowpart (HImode, *op0);
*op1 = constm1_rtx;
}
/* Remove redundant UNSPEC_STRCMPCC_TO_INT conversions if possible. */
if (GET_CODE (*op0) == UNSPEC
&& XINT (*op0, 1) == UNSPEC_STRCMPCC_TO_INT
&& XVECLEN (*op0, 0) == 1
&& GET_MODE (XVECEXP (*op0, 0, 0)) == CCUmode
&& GET_CODE (XVECEXP (*op0, 0, 0)) == REG
&& REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM
&& *op1 == const0_rtx)
{
enum rtx_code new_code = UNKNOWN;
switch (*code)
{
case EQ: new_code = EQ; break;
case NE: new_code = NE; break;
case LT: new_code = GTU; break;
case GT: new_code = LTU; break;
case LE: new_code = GEU; break;
case GE: new_code = LEU; break;
default: break;
}
if (new_code != UNKNOWN)
{
*op0 = XVECEXP (*op0, 0, 0);
*code = new_code;
}
}
/* Remove redundant UNSPEC_CC_TO_INT conversions if possible. */
if (GET_CODE (*op0) == UNSPEC
&& XINT (*op0, 1) == UNSPEC_CC_TO_INT
&& XVECLEN (*op0, 0) == 1
&& GET_CODE (XVECEXP (*op0, 0, 0)) == REG
&& REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM
&& CONST_INT_P (*op1))
{
enum rtx_code new_code = UNKNOWN;
switch (GET_MODE (XVECEXP (*op0, 0, 0)))
{
case E_CCZmode:
case E_CCRAWmode:
switch (*code)
{
case EQ: new_code = EQ; break;
case NE: new_code = NE; break;
default: break;
}
break;
default: break;
}
if (new_code != UNKNOWN)
{
/* For CCRAWmode put the required cc mask into the second
operand. */
if (GET_MODE (XVECEXP (*op0, 0, 0)) == CCRAWmode
&& INTVAL (*op1) >= 0 && INTVAL (*op1) <= 3)
*op1 = gen_rtx_CONST_INT (VOIDmode, 1 << (3 - INTVAL (*op1)));
*op0 = XVECEXP (*op0, 0, 0);
*code = new_code;
}
}
/* Remove UNSPEC_CC_TO_INT from connectives. This happens for
checks against multiple condition codes. */
if (GET_CODE (*op0) == AND
&& GET_CODE (XEXP (*op0, 0)) == UNSPEC
&& XINT (XEXP (*op0, 0), 1) == UNSPEC_CC_TO_INT
&& XVECLEN (XEXP (*op0, 0), 0) == 1
&& REGNO (XVECEXP (XEXP (*op0, 0), 0, 0)) == CC_REGNUM
&& CONST_INT_P (XEXP (*op0, 1))
&& CONST_INT_P (*op1)
&& INTVAL (XEXP (*op0, 1)) == -3
&& (*code == EQ || *code == NE))
{
if (INTVAL (*op1) == 0)
{
/* case cc == 0 || cc = 2 => mask = 0xa */
*op0 = XVECEXP (XEXP (*op0, 0), 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0xa);
}
else if (INTVAL (*op1) == 1)
{
/* case cc == 1 || cc == 3 => mask = 0x5 */
*op0 = XVECEXP (XEXP (*op0, 0), 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0x5);
}
}
if (GET_CODE (*op0) == PLUS
&& GET_CODE (XEXP (*op0, 0)) == UNSPEC
&& XINT (XEXP (*op0, 0), 1) == UNSPEC_CC_TO_INT
&& XVECLEN (XEXP (*op0, 0), 0) == 1
&& REGNO (XVECEXP (XEXP (*op0, 0), 0, 0)) == CC_REGNUM
&& CONST_INT_P (XEXP (*op0, 1))
&& CONST_INT_P (*op1)
&& (*code == LEU || *code == GTU))
{
if (INTVAL (*op1) == 1)
{
if (INTVAL (XEXP (*op0, 1)) == -1)
{
/* case cc == 1 || cc == 2 => mask = 0x6 */
*op0 = XVECEXP (XEXP (*op0, 0), 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0x6);
*code = *code == GTU ? NE : EQ;
}
else if (INTVAL (XEXP (*op0, 1)) == -2)
{
/* case cc == 2 || cc == 3 => mask = 0x3 */
*op0 = XVECEXP (XEXP (*op0, 0), 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0x3);
*code = *code == GTU ? NE : EQ;
}
}
else if (INTVAL (*op1) == 2
&& INTVAL (XEXP (*op0, 1)) == -1)
{
/* case cc == 1 || cc == 2 || cc == 3 => mask = 0x7 */
*op0 = XVECEXP (XEXP (*op0, 0), 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0x7);
*code = *code == GTU ? NE : EQ;
}
}
else if (*code == LEU || *code == GTU)
{
if (GET_CODE (*op0) == UNSPEC
&& XINT (*op0, 1) == UNSPEC_CC_TO_INT
&& XVECLEN (*op0, 0) == 1
&& REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM
&& CONST_INT_P (*op1))
{
if (INTVAL (*op1) == 1)
{
/* case cc == 0 || cc == 1 => mask = 0xc */
*op0 = XVECEXP (*op0, 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0xc);
*code = *code == GTU ? NE : EQ;
}
else if (INTVAL (*op1) == 2)
{
/* case cc == 0 || cc == 1 || cc == 2 => mask = 0xd */
*op0 = XVECEXP (*op0, 0, 0);
*op1 = gen_rtx_CONST_INT (VOIDmode, 0xd);
*code = *code == GTU ? NE : EQ;
}
else if (INTVAL (*op1) == 3)
{
/* always true */
*op0 = const0_rtx;
*op1 = const0_rtx;
*code = *code == GTU ? NE : EQ;
}
}
}
/* Simplify cascaded EQ, NE with const0_rtx. */
if ((*code == NE || *code == EQ)
&& (GET_CODE (*op0) == EQ || GET_CODE (*op0) == NE)
&& GET_MODE (*op0) == SImode
&& GET_MODE (XEXP (*op0, 0)) == CCZ1mode
&& REG_P (XEXP (*op0, 0))
&& XEXP (*op0, 1) == const0_rtx
&& *op1 == const0_rtx)
{
if ((*code == EQ && GET_CODE (*op0) == NE)
|| (*code == NE && GET_CODE (*op0) == EQ))
*code = EQ;
else
*code = NE;
*op0 = XEXP (*op0, 0);
}
/* Prefer register over memory as first operand. */
if (MEM_P (*op0) && REG_P (*op1))
{
rtx tem = *op0; *op0 = *op1; *op1 = tem;
*code = (int)swap_condition ((enum rtx_code)*code);
}
/* A comparison result is compared against zero. Replace it with
the (perhaps inverted) original comparison.
This probably should be done by simplify_relational_operation. */
if ((*code == EQ || *code == NE)
&& *op1 == const0_rtx
&& COMPARISON_P (*op0)
&& CC_REG_P (XEXP (*op0, 0)))
{
enum rtx_code new_code;
if (*code == EQ)
new_code = reversed_comparison_code_parts (GET_CODE (*op0),
XEXP (*op0, 0),
XEXP (*op0, 1), NULL);
else
new_code = GET_CODE (*op0);
if (new_code != UNKNOWN)
{
*code = new_code;
*op1 = XEXP (*op0, 1);
*op0 = XEXP (*op0, 0);
}
}
/* ~a==b -> ~(a^b)==0 ~a!=b -> ~(a^b)!=0 */
if (TARGET_Z15
&& (*code == EQ || *code == NE)
&& (GET_MODE (*op0) == DImode || GET_MODE (*op0) == SImode)
&& GET_CODE (*op0) == NOT)
{
machine_mode mode = GET_MODE (*op0);
*op0 = gen_rtx_XOR (mode, XEXP (*op0, 0), *op1);
*op0 = gen_rtx_NOT (mode, *op0);
*op1 = const0_rtx;
}
/* a&b == -1 -> ~a|~b == 0 a|b == -1 -> ~a&~b == 0 */
if (TARGET_Z15
&& (*code == EQ || *code == NE)
&& (GET_CODE (*op0) == AND || GET_CODE (*op0) == IOR)
&& (GET_MODE (*op0) == DImode || GET_MODE (*op0) == SImode)
&& CONST_INT_P (*op1)
&& *op1 == constm1_rtx)
{
machine_mode mode = GET_MODE (*op0);
rtx op00 = gen_rtx_NOT (mode, XEXP (*op0, 0));
rtx op01 = gen_rtx_NOT (mode, XEXP (*op0, 1));
if (GET_CODE (*op0) == AND)
*op0 = gen_rtx_IOR (mode, op00, op01);
else
*op0 = gen_rtx_AND (mode, op00, op01);
*op1 = const0_rtx;
}
}
/* Emit a compare instruction suitable to implement the comparison
OP0 CODE OP1. Return the correct condition RTL to be placed in
the IF_THEN_ELSE of the conditional branch testing the result. */
rtx
s390_emit_compare (enum rtx_code code, rtx op0, rtx op1)
{
machine_mode mode = s390_select_ccmode (code, op0, op1);
rtx cc;
/* Force OP1 into register in order to satisfy VXE TFmode patterns. */
if (TARGET_VXE && GET_MODE (op1) == TFmode)
op1 = force_reg (TFmode, op1);
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
{
/* Do not output a redundant compare instruction if a
compare_and_swap pattern already computed the result and the
machine modes are compatible. */
gcc_assert (s390_cc_modes_compatible (GET_MODE (op0), mode)
== GET_MODE (op0));
cc = op0;
}
else
{
cc = gen_rtx_REG (mode, CC_REGNUM);
emit_insn (gen_rtx_SET (cc, gen_rtx_COMPARE (mode, op0, op1)));
}
return gen_rtx_fmt_ee (code, VOIDmode, cc, const0_rtx);
}
/* If MEM is not a legitimate compare-and-swap memory operand, return a new
MEM, whose address is a pseudo containing the original MEM's address. */
static rtx
s390_legitimize_cs_operand (rtx mem)
{
rtx tmp;
if (!contains_symbol_ref_p (mem))
return mem;
tmp = gen_reg_rtx (Pmode);
emit_move_insn (tmp, copy_rtx (XEXP (mem, 0)));
return change_address (mem, VOIDmode, tmp);
}
/* Emit a SImode compare and swap instruction setting MEM to NEW_RTX if OLD
matches CMP.
Return the correct condition RTL to be placed in the IF_THEN_ELSE of the
conditional branch testing the result. */
static rtx
s390_emit_compare_and_swap (enum rtx_code code, rtx old, rtx mem,
rtx cmp, rtx new_rtx, machine_mode ccmode)
{
rtx cc;
mem = s390_legitimize_cs_operand (mem);
cc = gen_rtx_REG (ccmode, CC_REGNUM);
switch (GET_MODE (mem))
{
case E_SImode:
emit_insn (gen_atomic_compare_and_swapsi_internal (old, mem, cmp,
new_rtx, cc));
break;
case E_DImode:
emit_insn (gen_atomic_compare_and_swapdi_internal (old, mem, cmp,
new_rtx, cc));
break;
case E_TImode:
emit_insn (gen_atomic_compare_and_swapti_internal (old, mem, cmp,
new_rtx, cc));
break;
case E_QImode:
case E_HImode:
default:
gcc_unreachable ();
}
return s390_emit_compare (code, cc, const0_rtx);
}
/* Emit a jump instruction to TARGET and return it. If COND is
NULL_RTX, emit an unconditional jump, else a conditional jump under
condition COND. */
rtx_insn *
s390_emit_jump (rtx target, rtx cond)
{
rtx insn;
target = gen_rtx_LABEL_REF (VOIDmode, target);
if (cond)
target = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, target, pc_rtx);
insn = gen_rtx_SET (pc_rtx, target);
return emit_jump_insn (insn);
}
/* Return branch condition mask to implement a branch
specified by CODE. Return -1 for invalid comparisons. */
int
s390_branch_condition_mask (rtx code)
{
const int CC0 = 1 << 3;
const int CC1 = 1 << 2;
const int CC2 = 1 << 1;
const int CC3 = 1 << 0;
gcc_assert (GET_CODE (XEXP (code, 0)) == REG);
gcc_assert (REGNO (XEXP (code, 0)) == CC_REGNUM);
gcc_assert (XEXP (code, 1) == const0_rtx
|| (GET_MODE (XEXP (code, 0)) == CCRAWmode
&& CONST_INT_P (XEXP (code, 1))));
switch (GET_MODE (XEXP (code, 0)))
{
case E_CCZmode:
case E_CCZ1mode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
default: return -1;
}
break;
case E_CCT1mode:
switch (GET_CODE (code))
{
case EQ: return CC1;
case NE: return CC0 | CC2 | CC3;
default: return -1;
}
break;
case E_CCT2mode:
switch (GET_CODE (code))
{
case EQ: return CC2;
case NE: return CC0 | CC1 | CC3;
default: return -1;
}
break;
case E_CCT3mode:
switch (GET_CODE (code))
{
case EQ: return CC3;
case NE: return CC0 | CC1 | CC2;
default: return -1;
}
break;
case E_CCLmode:
switch (GET_CODE (code))
{
case EQ: return CC0 | CC2;
case NE: return CC1 | CC3;
default: return -1;
}
break;
case E_CCL1mode:
switch (GET_CODE (code))
{
case LTU: return CC2 | CC3; /* carry */
case GEU: return CC0 | CC1; /* no carry */
default: return -1;
}
break;
case E_CCL2mode:
switch (GET_CODE (code))
{
case GTU: return CC0 | CC1; /* borrow */
case LEU: return CC2 | CC3; /* no borrow */
default: return -1;
}
break;
case E_CCL3mode:
switch (GET_CODE (code))
{
case EQ: return CC0 | CC2;
case NE: return CC1 | CC3;
case LTU: return CC1;
case GTU: return CC3;
case LEU: return CC1 | CC2;
case GEU: return CC2 | CC3;
default: return -1;
}
case E_CCUmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
case LTU: return CC1;
case GTU: return CC2;
case LEU: return CC0 | CC1;
case GEU: return CC0 | CC2;
default: return -1;
}
break;
case E_CCURmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC2 | CC1 | CC3;
case LTU: return CC2;
case GTU: return CC1;
case LEU: return CC0 | CC2;
case GEU: return CC0 | CC1;
default: return -1;
}
break;
case E_CCAPmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
case LT: return CC1 | CC3;
case GT: return CC2;
case LE: return CC0 | CC1 | CC3;
case GE: return CC0 | CC2;
default: return -1;
}
break;
case E_CCANmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
case LT: return CC1;
case GT: return CC2 | CC3;
case LE: return CC0 | CC1;
case GE: return CC0 | CC2 | CC3;
default: return -1;
}
break;
case E_CCOmode:
switch (GET_CODE (code))
{
case EQ: return CC0 | CC1 | CC2;
case NE: return CC3;
default: return -1;
}
break;
case E_CCSmode:
case E_CCSFPSmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC1 | CC2 | CC3;
case LT: return CC1;
case GT: return CC2;
case LE: return CC0 | CC1;
case GE: return CC0 | CC2;
case UNORDERED: return CC3;
case ORDERED: return CC0 | CC1 | CC2;
case UNEQ: return CC0 | CC3;
case UNLT: return CC1 | CC3;
case UNGT: return CC2 | CC3;
case UNLE: return CC0 | CC1 | CC3;
case UNGE: return CC0 | CC2 | CC3;
case LTGT: return CC1 | CC2;
default: return -1;
}
break;
case E_CCSRmode:
switch (GET_CODE (code))
{
case EQ: return CC0;
case NE: return CC2 | CC1 | CC3;
case LT: return CC2;
case GT: return CC1;
case LE: return CC0 | CC2;
case GE: return CC0 | CC1;
case UNORDERED: return CC3;
case ORDERED: return CC0 | CC2 | CC1;
case UNEQ: return CC0 | CC3;
case UNLT: return CC2 | CC3;
case UNGT: return CC1 | CC3;
case UNLE: return CC0 | CC2 | CC3;
case UNGE: return CC0 | CC1 | CC3;
case LTGT: return CC2 | CC1;
default: return -1;
}
break;
/* Vector comparison modes. */
/* CC2 will never be set. It however is part of the negated
masks. */
case E_CCVIALLmode:
switch (GET_CODE (code))
{
case EQ:
case GTU:
case GT:
case GE: return CC0;
/* The inverted modes are in fact *any* modes. */
case NE:
case LEU:
case LE:
case LT: return CC3 | CC1 | CC2;
default: return -1;
}
case E_CCVIANYmode:
switch (GET_CODE (code))
{
case EQ:
case GTU:
case GT:
case GE: return CC0 | CC1;
/* The inverted modes are in fact *all* modes. */
case NE:
case LEU:
case LE:
case LT: return CC3 | CC2;
default: return -1;
}
case E_CCVFALLmode:
switch (GET_CODE (code))
{
case EQ:
case GT:
case GE: return CC0;
/* The inverted modes are in fact *any* modes. */
case NE:
case UNLE:
case UNLT: return CC3 | CC1 | CC2;
default: return -1;
}
case E_CCVFANYmode:
switch (GET_CODE (code))
{
case EQ:
case GT:
case GE: return CC0 | CC1;
/* The inverted modes are in fact *all* modes. */
case NE:
case UNLE:
case UNLT: return CC3 | CC2;
default: return -1;
}
case E_CCRAWmode:
switch (GET_CODE (code))
{
case EQ:
return INTVAL (XEXP (code, 1));
case NE:
return (INTVAL (XEXP (code, 1))) ^ 0xf;
default:
gcc_unreachable ();
}
default:
return -1;
}
}
/* Return branch condition mask to implement a compare and branch
specified by CODE. Return -1 for invalid comparisons. */
int
s390_compare_and_branch_condition_mask (rtx code)
{
const int CC0 = 1 << 3;
const int CC1 = 1 << 2;
const int CC2 = 1 << 1;
switch (GET_CODE (code))
{
case EQ:
return CC0;
case NE:
return CC1 | CC2;
case LT:
case LTU:
return CC1;
case GT:
case GTU:
return CC2;
case LE:
case LEU:
return CC0 | CC1;
case GE:
case GEU:
return CC0 | CC2;
default:
gcc_unreachable ();
}
return -1;
}
/* If INV is false, return assembler mnemonic string to implement
a branch specified by CODE. If INV is true, return mnemonic
for the corresponding inverted branch. */
static const char *
s390_branch_condition_mnemonic (rtx code, int inv)
{
int mask;
static const char *const mnemonic[16] =
{
NULL, "o", "h", "nle",
"l", "nhe", "lh", "ne",
"e", "nlh", "he", "nl",
"le", "nh", "no", NULL
};
if (GET_CODE (XEXP (code, 0)) == REG
&& REGNO (XEXP (code, 0)) == CC_REGNUM
&& (XEXP (code, 1) == const0_rtx
|| (GET_MODE (XEXP (code, 0)) == CCRAWmode
&& CONST_INT_P (XEXP (code, 1)))))
mask = s390_branch_condition_mask (code);
else
mask = s390_compare_and_branch_condition_mask (code);
gcc_assert (mask >= 0);
if (inv)
mask ^= 15;
gcc_assert (mask >= 1 && mask <= 14);
return mnemonic[mask];
}
/* Return the part of op which has a value different from def.
The size of the part is determined by mode.
Use this function only if you already know that op really
contains such a part. */
unsigned HOST_WIDE_INT
s390_extract_part (rtx op, machine_mode mode, int def)
{
unsigned HOST_WIDE_INT value = 0;
int max_parts = HOST_BITS_PER_WIDE_INT / GET_MODE_BITSIZE (mode);
int part_bits = GET_MODE_BITSIZE (mode);
unsigned HOST_WIDE_INT part_mask = (HOST_WIDE_INT_1U << part_bits) - 1;
int i;
for (i = 0; i < max_parts; i++)
{
if (i == 0)
value = UINTVAL (op);
else
value >>= part_bits;
if ((value & part_mask) != (def & part_mask))
return value & part_mask;
}
gcc_unreachable ();
}
/* If OP is an integer constant of mode MODE with exactly one
part of mode PART_MODE unequal to DEF, return the number of that
part. Otherwise, return -1. */
int
s390_single_part (rtx op,
machine_mode mode,
machine_mode part_mode,
int def)
{
unsigned HOST_WIDE_INT value = 0;
int n_parts = GET_MODE_SIZE (mode) / GET_MODE_SIZE (part_mode);
unsigned HOST_WIDE_INT part_mask
= (HOST_WIDE_INT_1U << GET_MODE_BITSIZE (part_mode)) - 1;
int i, part = -1;
if (GET_CODE (op) != CONST_INT)
return -1;
for (i = 0; i < n_parts; i++)
{
if (i == 0)
value = UINTVAL (op);
else
value >>= GET_MODE_BITSIZE (part_mode);
if ((value & part_mask) != (def & part_mask))
{
if (part != -1)
return -1;
else
part = i;
}
}
return part == -1 ? -1 : n_parts - 1 - part;
}
/* Return true if IN contains a contiguous bitfield in the lower SIZE
bits and no other bits are set in (the lower SIZE bits of) IN.
PSTART and PEND can be used to obtain the start and end
position (inclusive) of the bitfield relative to 64
bits. *PSTART / *PEND gives the position of the first/last bit
of the bitfield counting from the highest order bit starting
with zero. */
bool
s390_contiguous_bitmask_nowrap_p (unsigned HOST_WIDE_INT in, int size,
int *pstart, int *pend)
{
int start;
int end = -1;
int lowbit = HOST_BITS_PER_WIDE_INT - 1;
int highbit = HOST_BITS_PER_WIDE_INT - size;
unsigned HOST_WIDE_INT bitmask = HOST_WIDE_INT_1U;
gcc_assert (!!pstart == !!pend);
for (start = lowbit; start >= highbit; bitmask <<= 1, start--)
if (end == -1)
{
/* Look for the rightmost bit of a contiguous range of ones. */
if (bitmask & in)
/* Found it. */
end = start;
}
else
{
/* Look for the firt zero bit after the range of ones. */
if (! (bitmask & in))
/* Found it. */
break;
}
/* We're one past the last one-bit. */
start++;
if (end == -1)
/* No one bits found. */
return false;
if (start > highbit)
{
unsigned HOST_WIDE_INT mask;
/* Calculate a mask for all bits beyond the contiguous bits. */
mask = ((~HOST_WIDE_INT_0U >> highbit)
& (~HOST_WIDE_INT_0U << (lowbit - start + 1)));
if (mask & in)
/* There are more bits set beyond the first range of one bits. */
return false;
}
if (pstart)
{
*pstart = start;
*pend = end;
}
return true;
}
/* Same as s390_contiguous_bitmask_nowrap_p but also returns true
if ~IN contains a contiguous bitfield. In that case, *END is <
*START.
If WRAP_P is true, a bitmask that wraps around is also tested.
When a wraparoud occurs *START is greater than *END (in
non-null pointers), and the uppermost (64 - SIZE) bits are thus
part of the range. If WRAP_P is false, no wraparound is
tested. */
bool
s390_contiguous_bitmask_p (unsigned HOST_WIDE_INT in, bool wrap_p,
int size, int *start, int *end)
{
int bs = HOST_BITS_PER_WIDE_INT;
bool b;
gcc_assert (!!start == !!end);
if ((in & ((~HOST_WIDE_INT_0U) >> (bs - size))) == 0)
/* This cannot be expressed as a contiguous bitmask. Exit early because
the second call of s390_contiguous_bitmask_nowrap_p would accept this as
a valid bitmask. */
return false;
b = s390_contiguous_bitmask_nowrap_p (in, size, start, end);
if (b)
return true;
if (! wrap_p)
return false;
b = s390_contiguous_bitmask_nowrap_p (~in, size, start, end);
if (b && start)
{
int s = *start;
int e = *end;
gcc_assert (s >= 1);
*start = ((e + 1) & (bs - 1));
*end = ((s - 1 + bs) & (bs - 1));
}
return b;
}
/* Return true if OP is a constant which fits into a vector register and if it
is a 16-byte constant, then the high and low half must equal. Otherwise
return false. The out parameter *VEC2 equals the high/low half for 16-byte
constants and for smaller constants it equals the concatination of constant
OP until an 8-byte constant is constructed. */
static bool
s390_constant_via_vgm_vrepi_1 (rtx op, unsigned HOST_WIDE_INT *vec2)
{
unsigned HOST_WIDE_INT vec;
if (GET_CODE (op) == CONST_VECTOR)
switch (GET_MODE_SIZE (GET_MODE (op)))
{
case 1:
{
rtx op_v1qi = gen_lowpart (V1QImode, op);
vec = UINTVAL (XVECEXP (op_v1qi, 0, 0));
vec &= GET_MODE_MASK (QImode);
vec |= vec << 8;
vec |= vec << 16;
vec |= vec << 32;
*vec2 = vec;
return true;
}
case 2:
{
rtx op_v1hi = gen_lowpart (V1HImode, op);
vec = UINTVAL (XVECEXP (op_v1hi, 0, 0));
vec &= GET_MODE_MASK (HImode);
vec |= vec << 16;
vec |= vec << 32;
*vec2 = vec;
return true;
}
case 4:
{
rtx op_v1si = gen_lowpart (V1SImode, op);
vec = UINTVAL (XVECEXP (op_v1si, 0, 0));
vec &= GET_MODE_MASK (SImode);
vec |= vec << 32;
*vec2 = vec;
return true;
}
case 8:
{
rtx op_v1di = gen_lowpart (V1DImode, op);
vec = UINTVAL (XVECEXP (op_v1di, 0, 0));
*vec2 = vec;
return true;
}
case 16:
{
rtx op_v2di = gen_lowpart (V2DImode, op);
vec = UINTVAL (XVECEXP (op_v2di, 0, 0));
unsigned HOST_WIDE_INT tmp = UINTVAL (XVECEXP (op_v2di, 0, 1));
if (vec != tmp)
return false;
*vec2 = vec;
return true;
}
default:
return false;
}
else if (CONST_WIDE_INT_P (op) && CONST_WIDE_INT_NUNITS (op) == 2)
{
vec = CONST_WIDE_INT_ELT (op, 0);
unsigned HOST_WIDE_INT tmp = CONST_WIDE_INT_ELT (op, 1);
if (vec != tmp)
return false;
*vec2 = vec;
return true;
}
else if (CONST_DOUBLE_P (op) && GET_MODE (op) == TFmode)
{
long l[4];
const REAL_VALUE_TYPE *rv = CONST_DOUBLE_REAL_VALUE (op);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (*rv, l);
vec = ((unsigned HOST_WIDE_INT) l[0] << 32)
| ((unsigned HOST_WIDE_INT) l[1] & 0xffffffffUL);
unsigned HOST_WIDE_INT tmp
= ((unsigned HOST_WIDE_INT) l[2] << 32)
| ((unsigned HOST_WIDE_INT) l[3] & 0xffffffffUL);
if (vec != tmp)
return false;
*vec2 = vec;
return true;
}
else
return false;
}
/* Return true if constant OP can be loaded via VGM. Otherwise return false.
If MODE, START, and END are not null, then out parameter *MODE is the
element size of VGM, and *START and *END are the starting and ending bit
positions, respectively. */
bool
s390_constant_via_vgm_p (rtx op, machine_mode *mode, int *start, int *end)
{
unsigned HOST_WIDE_INT vec;
if (!s390_constant_via_vgm_vrepi_1 (op, &vec))
return false;
machine_mode iter;
FOR_EACH_MODE_UNTIL (iter, TImode)
{
unsigned HOST_WIDE_INT bits = vec & GET_MODE_MASK (iter);
bool b = s390_contiguous_bitmask_p (bits, true, GET_MODE_BITSIZE (iter),
start, end);
if (!b)
continue;
unsigned HOST_WIDE_INT vec2 = bits;
for (int i = 1; i < 8 / GET_MODE_SIZE (iter); ++i)
vec2 |= bits << (GET_MODE_BITSIZE (iter) * i);
if (vec == vec2)
{
if (mode && start && end)
{
*mode = iter;
*start -= (HOST_BITS_PER_WIDE_INT - GET_MODE_BITSIZE (iter));
*end -= (HOST_BITS_PER_WIDE_INT - GET_MODE_BITSIZE (iter));
}
return true;
}
}
return false;
}
/* Return true if constant OP can be loaded via VREPI. Otherwise return false.
If MODE and IMM are not null, then out parameter *MODE is the element size
of VREPI, and *IMM is the signed integer immediate. */
bool
s390_constant_via_vrepi_p (rtx op, machine_mode *mode, short *imm)
{
unsigned HOST_WIDE_INT vec;
if (!s390_constant_via_vgm_vrepi_1 (op, &vec))
return false;
unsigned HOST_WIDE_INT bits = (short) (vec & 0xffff);
machine_mode iter;
FOR_EACH_MODE_UNTIL (iter, TImode)
{
unsigned HOST_WIDE_INT tmp = bits & GET_MODE_MASK (iter);
unsigned HOST_WIDE_INT vec2 = tmp;
for (int i = 1; i < 8 / GET_MODE_SIZE (iter); ++i)
vec2 |= tmp << (GET_MODE_BITSIZE (iter) * i);
if (vec == vec2)
{
if (mode && imm)
{
*mode = iter;
/* Although, vrepib ignores the high half of the 16-bit mask,
canonicalize to an 8-bit sign-extended mask. */
*imm = iter == QImode ? (signed char) (bits & 0xff)
: (short) (bits & 0xffff);
}
return true;
}
}
return false;
}
/* Return true if OP consists only of byte chunks being either 0 or
0xff. If MASK is !=NULL a byte mask is generated which is
appropriate for the vector generate byte mask instruction. */
bool
s390_constant_via_vgbm_p (rtx op, unsigned *mask)
{
int i;
unsigned tmp_mask = 0;
int nunit, unit_size;
if (GET_CODE (op) == CONST_VECTOR)
{
if (GET_MODE_INNER (GET_MODE (op)) == TImode
|| GET_MODE_INNER (GET_MODE (op)) == TFmode)
/* For the sake of simplicity, bitcast 16-byte one-element vector
into two-element vector so we don't have to special case them in
the following. */
op = gen_lowpart (V2DImode, op);
else
/* Handle floats by bitcasting them to ints. */
op = gen_lowpart (related_int_vector_mode (GET_MODE (op)).require (),
op);
}
else if ((CONST_WIDE_INT_P (op) && CONST_WIDE_INT_NUNITS (op) == 2)
|| (CONST_DOUBLE_P (op) && GET_MODE (op) == TFmode))
/* For the sake of simplicity, bitcast the 16-byte constants into a vector
so we don't have to special case them in the following. */
op = gen_lowpart (V2DImode, op);
else
return false;
nunit = GET_MODE_NUNITS (GET_MODE (op));
unit_size = GET_MODE_UNIT_SIZE (GET_MODE (op));
for (i = 0; i < nunit; i++)
{
unsigned HOST_WIDE_INT c;
int j;
c = UINTVAL (XVECEXP (op, 0, i));
for (j = 0; j < unit_size; j++)
{
if ((c & 0xff) != 0 && (c & 0xff) != 0xff)
return false;
tmp_mask |= (c & 1) << ((nunit - 1 - i) * unit_size + j);
c = c >> BITS_PER_UNIT;
}
}
if (mask != NULL)
*mask = tmp_mask << (16 - GET_MODE_SIZE (GET_MODE (op)));
return true;
}
/* Check whether a rotate of ROTL followed by an AND of CONTIG is
equivalent to a shift followed by the AND. In particular, CONTIG
should not overlap the (rotated) bit 0/bit 63 gap. Negative values
for ROTL indicate a rotate to the right. */
bool
s390_extzv_shift_ok (int bitsize, int rotl, unsigned HOST_WIDE_INT contig)
{
int start, end;
bool ok;
ok = s390_contiguous_bitmask_nowrap_p (contig, bitsize, &start, &end);
gcc_assert (ok);
if (rotl >= 0)
return (64 - end >= rotl);
else
{
/* Translate "- rotate right" in BITSIZE mode to "rotate left" in
DIMode. */
rotl = -rotl + (64 - bitsize);
return (start >= rotl);
}
}
/* Check whether we can (and want to) split a double-word
move in mode MODE from SRC to DST into two single-word
moves, moving the subword FIRST_SUBWORD first. */
bool
s390_split_ok_p (rtx dst, rtx src, machine_mode mode, int first_subword)
{
/* Floating point and vector registers cannot be split. */
if (FP_REG_P (src) || FP_REG_P (dst) || VECTOR_REG_P (src) || VECTOR_REG_P (dst))
return false;
/* Non-offsettable memory references cannot be split. */
if ((GET_CODE (src) == MEM && !offsettable_memref_p (src))
|| (GET_CODE (dst) == MEM && !offsettable_memref_p (dst)))
return false;
/* Moving the first subword must not clobber a register
needed to move the second subword. */
if (register_operand (dst, mode))
{
rtx subreg = operand_subword (dst, first_subword, 0, mode);
if (reg_overlap_mentioned_p (subreg, src))
return false;
}
return true;
}
/* Return true if it can be proven that [MEM1, MEM1 + SIZE]
and [MEM2, MEM2 + SIZE] do overlap and false
otherwise. */
bool
s390_overlap_p (rtx mem1, rtx mem2, HOST_WIDE_INT size)
{
rtx addr1, addr2, addr_delta;
HOST_WIDE_INT delta;
if (GET_CODE (mem1) != MEM || GET_CODE (mem2) != MEM)
return true;
if (size == 0)
return false;
addr1 = XEXP (mem1, 0);
addr2 = XEXP (mem2, 0);
addr_delta = simplify_binary_operation (MINUS, Pmode, addr2, addr1);
/* This overlapping check is used by peepholes merging memory block operations.
Overlapping operations would otherwise be recognized by the S/390 hardware
and would fall back to a slower implementation. Allowing overlapping
operations would lead to slow code but not to wrong code. Therefore we are
somewhat optimistic if we cannot prove that the memory blocks are
overlapping.
That's why we return false here although this may accept operations on
overlapping memory areas. */
if (!addr_delta || GET_CODE (addr_delta) != CONST_INT)
return false;
delta = INTVAL (addr_delta);
if (delta == 0
|| (delta > 0 && delta < size)
|| (delta < 0 && -delta < size))
return true;
return false;
}
/* Check whether the address of memory reference MEM2 equals exactly
the address of memory reference MEM1 plus DELTA. Return true if
we can prove this to be the case, false otherwise. */
bool
s390_offset_p (rtx mem1, rtx mem2, rtx delta)
{
rtx addr1, addr2, addr_delta;
if (GET_CODE (mem1) != MEM || GET_CODE (mem2) != MEM)
return false;
addr1 = XEXP (mem1, 0);
addr2 = XEXP (mem2, 0);
addr_delta = simplify_binary_operation (MINUS, Pmode, addr2, addr1);
if (!addr_delta || !rtx_equal_p (addr_delta, delta))
return false;
return true;
}
/* Expand logical operator CODE in mode MODE with operands OPERANDS. */
void
s390_expand_logical_operator (enum rtx_code code, machine_mode mode,
rtx *operands)
{
machine_mode wmode = mode;
rtx dst = operands[0];
rtx src1 = operands[1];
rtx src2 = operands[2];
rtx op, clob, tem;
/* If we cannot handle the operation directly, use a temp register. */
if (!s390_logical_operator_ok_p (operands))
dst = gen_reg_rtx (mode);
/* QImode and HImode patterns make sense only if we have a destination
in memory. Otherwise perform the operation in SImode. */
if ((mode == QImode || mode == HImode) && GET_CODE (dst) != MEM)
wmode = SImode;
/* Widen operands if required. */
if (mode != wmode)
{
if (GET_CODE (dst) == SUBREG
&& (tem = simplify_subreg (wmode, dst, mode, 0)) != 0)
dst = tem;
else if (REG_P (dst))
dst = gen_rtx_SUBREG (wmode, dst, 0);
else
dst = gen_reg_rtx (wmode);
if (GET_CODE (src1) == SUBREG
&& (tem = simplify_subreg (wmode, src1, mode, 0)) != 0)
src1 = tem;
else if (GET_MODE (src1) != VOIDmode)
src1 = gen_rtx_SUBREG (wmode, force_reg (mode, src1), 0);
if (GET_CODE (src2) == SUBREG
&& (tem = simplify_subreg (wmode, src2, mode, 0)) != 0)
src2 = tem;
else if (GET_MODE (src2) != VOIDmode)
src2 = gen_rtx_SUBREG (wmode, force_reg (mode, src2), 0);
}
/* Emit the instruction. */
op = gen_rtx_SET (dst, gen_rtx_fmt_ee (code, wmode, src1, src2));
clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
/* Fix up the destination if needed. */
if (dst != operands[0])
emit_move_insn (operands[0], gen_lowpart (mode, dst));
}
/* Check whether OPERANDS are OK for a logical operation (AND, IOR, XOR). */
bool
s390_logical_operator_ok_p (rtx *operands)
{
/* If the destination operand is in memory, it needs to coincide
with one of the source operands. After reload, it has to be
the first source operand. */
if (GET_CODE (operands[0]) == MEM)
return rtx_equal_p (operands[0], operands[1])
|| (!reload_completed && rtx_equal_p (operands[0], operands[2]));
return true;
}
/* Narrow logical operation CODE of memory operand MEMOP with immediate
operand IMMOP to switch from SS to SI type instructions. */
void
s390_narrow_logical_operator (enum rtx_code code, rtx *memop, rtx *immop)
{
int def = code == AND ? -1 : 0;
HOST_WIDE_INT mask;
int part;
gcc_assert (GET_CODE (*memop) == MEM);
gcc_assert (!MEM_VOLATILE_P (*memop));
mask = s390_extract_part (*immop, QImode, def);
part = s390_single_part (*immop, GET_MODE (*memop), QImode, def);
gcc_assert (part >= 0);
*memop = adjust_address (*memop, QImode, part);
*immop = gen_int_mode (mask, QImode);
}
/* How to allocate a 'struct machine_function'. */
static struct machine_function *
s390_init_machine_status (void)
{
return ggc_cleared_alloc<machine_function> ();
}
/* Map for smallest class containing reg regno. */
const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
{ GENERAL_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, /* 0 */
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, /* 4 */
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, /* 8 */
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS, /* 12 */
FP_REGS, FP_REGS, FP_REGS, FP_REGS, /* 16 */
FP_REGS, FP_REGS, FP_REGS, FP_REGS, /* 20 */
FP_REGS, FP_REGS, FP_REGS, FP_REGS, /* 24 */
FP_REGS, FP_REGS, FP_REGS, FP_REGS, /* 28 */
ADDR_REGS, CC_REGS, ADDR_REGS, ADDR_REGS, /* 32 */
ACCESS_REGS, ACCESS_REGS, VEC_REGS, VEC_REGS, /* 36 */
VEC_REGS, VEC_REGS, VEC_REGS, VEC_REGS, /* 40 */
VEC_REGS, VEC_REGS, VEC_REGS, VEC_REGS, /* 44 */
VEC_REGS, VEC_REGS, VEC_REGS, VEC_REGS, /* 48 */
VEC_REGS, VEC_REGS /* 52 */
};
/* Return attribute type of insn. */
static enum attr_type
s390_safe_attr_type (rtx_insn *insn)
{
if (recog_memoized (insn) >= 0)
return get_attr_type (insn);
else
return TYPE_NONE;
}
/* Return attribute relative_long of insn. */
static bool
s390_safe_relative_long_p (rtx_insn *insn)
{
if (recog_memoized (insn) >= 0)
return get_attr_relative_long (insn) == RELATIVE_LONG_YES;
else
return false;
}
/* Return true if DISP is a valid short displacement. */
static bool
s390_short_displacement (rtx disp)
{
/* No displacement is OK. */
if (!disp)
return true;
/* Without the long displacement facility we don't need to
distingiush between long and short displacement. */
if (!TARGET_LONG_DISPLACEMENT)
return true;
/* Integer displacement in range. */
if (GET_CODE (disp) == CONST_INT)
return INTVAL (disp) >= 0 && INTVAL (disp) < 4096;
/* GOT offset is not OK, the GOT can be large. */
if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == UNSPEC
&& (XINT (XEXP (disp, 0), 1) == UNSPEC_GOT
|| XINT (XEXP (disp, 0), 1) == UNSPEC_GOTNTPOFF))
return false;
/* All other symbolic constants are literal pool references,
which are OK as the literal pool must be small. */
if (GET_CODE (disp) == CONST)
return true;
return false;
}
/* Attempts to split `ref', which should be UNSPEC_LTREF, into (base + `disp').
If successful, also determines the
following characteristics of `ref': `is_ptr' - whether it can be an
LA argument, `is_base_ptr' - whether the resulting base is a well-known
base register (stack/frame pointer, etc), `is_pool_ptr` - whether it is
considered a literal pool pointer for purposes of avoiding two different
literal pool pointers per insn during or after reload (`B' constraint). */
static bool
s390_decompose_constant_pool_ref (rtx *ref, rtx *disp, bool *is_ptr,
bool *is_base_ptr, bool *is_pool_ptr)
{
if (!*ref)
return true;
if (GET_CODE (*ref) == UNSPEC)
switch (XINT (*ref, 1))
{
case UNSPEC_LTREF:
if (!*disp)
*disp = gen_rtx_UNSPEC (Pmode,
gen_rtvec (1, XVECEXP (*ref, 0, 0)),
UNSPEC_LTREL_OFFSET);
else
return false;
*ref = XVECEXP (*ref, 0, 1);
break;
default:
return false;
}
if (!REG_P (*ref) || GET_MODE (*ref) != Pmode)
return false;
if (REGNO (*ref) == STACK_POINTER_REGNUM
|| REGNO (*ref) == FRAME_POINTER_REGNUM
|| ((reload_completed || reload_in_progress)
&& frame_pointer_needed
&& REGNO (*ref) == HARD_FRAME_POINTER_REGNUM)
|| REGNO (*ref) == ARG_POINTER_REGNUM
|| (flag_pic
&& REGNO (*ref) == PIC_OFFSET_TABLE_REGNUM))
*is_ptr = *is_base_ptr = true;
if ((reload_completed || reload_in_progress)
&& *ref == cfun->machine->base_reg)
*is_ptr = *is_base_ptr = *is_pool_ptr = true;
return true;
}
/* Decompose a RTL expression ADDR for a memory address into
its components, returned in OUT.
Returns false if ADDR is not a valid memory address, true
otherwise. If OUT is NULL, don't return the components,
but check for validity only.
Note: Only addresses in canonical form are recognized.
LEGITIMIZE_ADDRESS should convert non-canonical forms to the
canonical form so that they will be recognized. */
static int
s390_decompose_address (rtx addr, struct s390_address *out)
{
HOST_WIDE_INT offset = 0;
rtx base = NULL_RTX;
rtx indx = NULL_RTX;
rtx disp = NULL_RTX;
rtx orig_disp;
bool pointer = false;
bool base_ptr = false;
bool indx_ptr = false;
bool literal_pool = false;
/* We may need to substitute the literal pool base register into the address
below. However, at this point we do not know which register is going to
be used as base, so we substitute the arg pointer register. This is going
to be treated as holding a pointer below -- it shouldn't be used for any
other purpose. */
rtx fake_pool_base = gen_rtx_REG (Pmode, ARG_POINTER_REGNUM);
/* Decompose address into base + index + displacement. */
if (GET_CODE (addr) == REG || GET_CODE (addr) == UNSPEC)
base = addr;
else if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
if (code0 == REG || code0 == UNSPEC)
{
if (code1 == REG || code1 == UNSPEC)
{
indx = op0; /* index + base */
base = op1;
}
else
{
base = op0; /* base + displacement */
disp = op1;
}
}
else if (code0 == PLUS)
{
indx = XEXP (op0, 0); /* index + base + disp */
base = XEXP (op0, 1);
disp = op1;
}
else
{
return false;
}
}
else
disp = addr; /* displacement */
/* Extract integer part of displacement. */
orig_disp = disp;
if (disp)
{
if (GET_CODE (disp) == CONST_INT)
{
offset = INTVAL (disp);
disp = NULL_RTX;
}
else if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT)
{
offset = INTVAL (XEXP (XEXP (disp, 0), 1));
disp = XEXP (XEXP (disp, 0), 0);
}
}
/* Strip off CONST here to avoid special case tests later. */
if (disp && GET_CODE (disp) == CONST)
disp = XEXP (disp, 0);
/* We can convert literal pool addresses to
displacements by basing them off the base register. */
if (disp && GET_CODE (disp) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (disp))
{
if (base || indx)
return false;
base = fake_pool_base, literal_pool = true;
/* Mark up the displacement. */
disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, disp),
UNSPEC_LTREL_OFFSET);
}
/* Validate base register. */
if (!s390_decompose_constant_pool_ref (&base, &disp, &pointer, &base_ptr,
&literal_pool))
return false;
/* Validate index register. */
if (!s390_decompose_constant_pool_ref (&indx, &disp, &pointer, &indx_ptr,
&literal_pool))
return false;
/* Prefer to use pointer as base, not index. */
if (base && indx && !base_ptr
&& (indx_ptr || (!REG_POINTER (base) && REG_POINTER (indx))))
{
rtx tmp = base;
base = indx;
indx = tmp;
}
/* Validate displacement. */
if (!disp)
{
/* If virtual registers are involved, the displacement will change later
anyway as the virtual registers get eliminated. This could make a
valid displacement invalid, but it is more likely to make an invalid
displacement valid, because we sometimes access the register save area
via negative offsets to one of those registers.
Thus we don't check the displacement for validity here. If after
elimination the displacement turns out to be invalid after all,
this is fixed up by reload in any case. */
/* LRA maintains always displacements up to date and we need to
know the displacement is right during all LRA not only at the
final elimination. */
if (lra_in_progress
|| (base != arg_pointer_rtx
&& indx != arg_pointer_rtx
&& base != return_address_pointer_rtx
&& indx != return_address_pointer_rtx
&& base != frame_pointer_rtx
&& indx != frame_pointer_rtx
&& base != virtual_stack_vars_rtx
&& indx != virtual_stack_vars_rtx))
if (!DISP_IN_RANGE (offset))
return false;
}
else
{
/* All the special cases are pointers. */
pointer = true;
/* In the small-PIC case, the linker converts @GOT
and @GOTNTPOFF offsets to possible displacements. */
if (GET_CODE (disp) == UNSPEC
&& (XINT (disp, 1) == UNSPEC_GOT
|| XINT (disp, 1) == UNSPEC_GOTNTPOFF)
&& flag_pic == 1)
{
;
}
/* Accept pool label offsets. */
else if (GET_CODE (disp) == UNSPEC
&& XINT (disp, 1) == UNSPEC_POOL_OFFSET)
;
/* Accept literal pool references. */
else if (GET_CODE (disp) == UNSPEC
&& XINT (disp, 1) == UNSPEC_LTREL_OFFSET)
{
/* In case CSE pulled a non literal pool reference out of
the pool we have to reject the address. This is
especially important when loading the GOT pointer on non
zarch CPUs. In this case the literal pool contains an lt
relative offset to the _GLOBAL_OFFSET_TABLE_ label which
will most likely exceed the displacement. */
if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
|| !CONSTANT_POOL_ADDRESS_P (XVECEXP (disp, 0, 0)))
return false;
orig_disp = gen_rtx_CONST (Pmode, disp);
if (offset)
{
/* If we have an offset, make sure it does not
exceed the size of the constant pool entry.
Otherwise we might generate an out-of-range
displacement for the base register form. */
rtx sym = XVECEXP (disp, 0, 0);
if (offset >= GET_MODE_SIZE (get_pool_mode (sym)))
return false;
orig_disp = plus_constant (Pmode, orig_disp, offset);
}
}
else
return false;
}
if (!base && !indx)
pointer = true;
if (out)
{
out->base = base;
out->indx = indx;
out->disp = orig_disp;
out->pointer = pointer;
out->literal_pool = literal_pool;
}
return true;
}
/* Decompose a RTL expression OP for an address style operand into its
components, and return the base register in BASE and the offset in
OFFSET. While OP looks like an address it is never supposed to be
used as such.
Return true if OP is a valid address operand, false if not. */
bool
s390_decompose_addrstyle_without_index (rtx op, rtx *base,
HOST_WIDE_INT *offset)
{
rtx off = NULL_RTX;
/* We can have an integer constant, an address register,
or a sum of the two. */
if (CONST_SCALAR_INT_P (op))
{
off = op;
op = NULL_RTX;
}
if (op && GET_CODE (op) == PLUS && CONST_SCALAR_INT_P (XEXP (op, 1)))
{
off = XEXP (op, 1);
op = XEXP (op, 0);
}
while (op && GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (op && (!REG_P (op)
|| (reload_completed
&& !REGNO_OK_FOR_BASE_P (REGNO (op)))))
return false;
if (offset)
{
if (off == NULL_RTX)
*offset = 0;
else if (CONST_INT_P (off))
*offset = INTVAL (off);
else if (CONST_WIDE_INT_P (off))
/* The offset will anyway be cut down to 12 bits so take just
the lowest order chunk of the wide int. */
*offset = CONST_WIDE_INT_ELT (off, 0);
else
gcc_unreachable ();
}
if (base)
*base = op;
return true;
}
/* Check that OP is a valid shift count operand.
It should be of the following structure:
(subreg (and (plus (reg imm_op)) 2^k-1) 7)
where subreg, and and plus are optional.
If IMPLICIT_MASK is > 0 and OP contains and
(AND ... immediate)
it is checked whether IMPLICIT_MASK and the immediate match.
Otherwise, no checking is performed.
*/
bool
s390_valid_shift_count (rtx op, HOST_WIDE_INT implicit_mask)
{
/* Strip subreg. */
while (GET_CODE (op) == SUBREG && subreg_lowpart_p (op))
op = XEXP (op, 0);
/* Check for an and with proper constant. */
if (GET_CODE (op) == AND)
{
rtx op1 = XEXP (op, 0);
rtx imm = XEXP (op, 1);
if (GET_CODE (op1) == SUBREG && subreg_lowpart_p (op1))
op1 = XEXP (op1, 0);
if (!(register_operand (op1, GET_MODE (op1)) || GET_CODE (op1) == PLUS))
return false;
if (!immediate_operand (imm, GET_MODE (imm)))
return false;
HOST_WIDE_INT val = INTVAL (imm);
if (implicit_mask > 0
&& (val & implicit_mask) != implicit_mask)
return false;
op = op1;
}
/* Check the rest. */
return s390_decompose_addrstyle_without_index (op, NULL, NULL);
}
/* Return true if CODE is a valid address without index. */
bool
s390_legitimate_address_without_index_p (rtx op)
{
struct s390_address addr;
if (!s390_decompose_address (XEXP (op, 0), &addr))
return false;
if (addr.indx)
return false;
return true;
}
/* Return TRUE if ADDR is an operand valid for a load/store relative
instruction. Be aware that the alignment of the operand needs to
be checked separately.
Valid addresses are single references or a sum of a reference and a
constant integer. Return these parts in SYMREF and ADDEND. You can
pass NULL in REF and/or ADDEND if you are not interested in these
values. */
static bool
s390_loadrelative_operand_p (rtx addr, rtx *symref, HOST_WIDE_INT *addend)
{
HOST_WIDE_INT tmpaddend = 0;
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS)
{
if (!CONST_INT_P (XEXP (addr, 1)))
return false;
tmpaddend = INTVAL (XEXP (addr, 1));
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == SYMBOL_REF
|| (GET_CODE (addr) == UNSPEC
&& (XINT (addr, 1) == UNSPEC_GOTENT
|| XINT (addr, 1) == UNSPEC_PLT31)))
{
if (symref)
*symref = addr;
if (addend)
*addend = tmpaddend;
return true;
}
return false;
}
/* Return true if the address in OP is valid for constraint letter C
if wrapped in a MEM rtx. Set LIT_POOL_OK to true if it literal
pool MEMs should be accepted. Only the Q, R, S, T constraint
letters are allowed for C. */
static int
s390_check_qrst_address (char c, rtx op, bool lit_pool_ok)
{
rtx symref;
struct s390_address addr;
bool decomposed = false;
if (!address_operand (op, GET_MODE (op)))
return 0;
/* This check makes sure that no symbolic address (except literal
pool references) are accepted by the R or T constraints. */
if (s390_loadrelative_operand_p (op, &symref, NULL)
&& (!lit_pool_ok
|| !SYMBOL_REF_P (symref)
|| !CONSTANT_POOL_ADDRESS_P (symref)))
return 0;
/* Ensure literal pool references are only accepted if LIT_POOL_OK. */
if (!lit_pool_ok)
{
if (!s390_decompose_address (op, &addr))
return 0;
if (addr.literal_pool)
return 0;
decomposed = true;
}
/* With reload, we sometimes get intermediate address forms that are
actually invalid as-is, but we need to accept them in the most
generic cases below ('R' or 'T'), since reload will in fact fix
them up. LRA behaves differently here; we never see such forms,
but on the other hand, we need to strictly reject every invalid
address form. After both reload and LRA invalid address forms
must be rejected, because nothing will fix them up later. Perform
this check right up front. */
if (lra_in_progress || reload_completed)
{
if (!decomposed && !s390_decompose_address (op, &addr))
return 0;
decomposed = true;
}
switch (c)
{
case 'Q': /* no index short displacement */
if (!decomposed && !s390_decompose_address (op, &addr))
return 0;
if (addr.indx)
return 0;
if (!s390_short_displacement (addr.disp))
return 0;
break;
case 'R': /* with index short displacement */
if (TARGET_LONG_DISPLACEMENT)
{
if (!decomposed && !s390_decompose_address (op, &addr))
return 0;
if (!s390_short_displacement (addr.disp))
return 0;
}
/* Any invalid address here will be fixed up by reload,
so accept it for the most generic constraint. */
break;
case 'S': /* no index long displacement */
if (!decomposed && !s390_decompose_address (op, &addr))
return 0;
if (addr.indx)
return 0;
break;
case 'T': /* with index long displacement */
/* Any invalid address here will be fixed up by reload,
so accept it for the most generic constraint. */
break;
default:
return 0;
}
return 1;
}
/* Evaluates constraint strings described by the regular expression
([A|B|Z](Q|R|S|T))|Y and returns 1 if OP is a valid operand for
the constraint given in STR, or 0 else. */
int
s390_mem_constraint (const char *str, rtx op)
{
char c = str[0];
switch (c)
{
case 'A':
/* Check for offsettable variants of memory constraints. */
if (!MEM_P (op) || MEM_VOLATILE_P (op))
return 0;
if ((reload_completed || reload_in_progress)
? !offsettable_memref_p (op) : !offsettable_nonstrict_memref_p (op))
return 0;
/* offsettable_memref_p ensures only that any positive offset added to
the address forms a valid general address. For AQ and AR constraints
we also have to verify that the resulting displacement after adding
any positive offset less than the size of the object being referenced
is still valid. */
if (str[1] == 'Q' || str[1] == 'R')
{
int o = GET_MODE_SIZE (GET_MODE (op)) - 1;
rtx tmp = adjust_address (op, QImode, o);
if (!s390_check_qrst_address (str[1], XEXP (tmp, 0), true))
return 0;
}
return s390_check_qrst_address (str[1], XEXP (op, 0), true);
case 'B':
/* Check for non-literal-pool variants of memory constraints. */
if (!MEM_P (op))
return 0;
return s390_check_qrst_address (str[1], XEXP (op, 0), false);
case 'Q':
case 'R':
case 'S':
case 'T':
if (GET_CODE (op) != MEM)
return 0;
return s390_check_qrst_address (c, XEXP (op, 0), true);
case 'Y':
/* Simply check for the basic form of a shift count. Reload will
take care of making sure we have a proper base register. */
if (!s390_decompose_addrstyle_without_index (op, NULL, NULL))
return 0;
break;
case 'Z':
return s390_check_qrst_address (str[1], op, true);
default:
return 0;
}
return 1;
}
/* Evaluates constraint strings starting with letter O. Input
parameter C is the second letter following the "O" in the constraint
string. Returns 1 if VALUE meets the respective constraint and 0
otherwise. */
int
s390_O_constraint_str (const char c, HOST_WIDE_INT value)
{
if (!TARGET_EXTIMM)
return 0;
switch (c)
{
case 's':
return trunc_int_for_mode (value, SImode) == value;
case 'p':
return value == 0
|| s390_single_part (GEN_INT (value), DImode, SImode, 0) == 1;
case 'n':
return s390_single_part (GEN_INT (value - 1), DImode, SImode, -1) == 1;
default:
gcc_unreachable ();
}
}
/* Evaluates constraint strings starting with letter N. Parameter STR
contains the letters following letter "N" in the constraint string.
Returns true if VALUE matches the constraint. */
int
s390_N_constraint_str (const char *str, HOST_WIDE_INT value)
{
machine_mode mode, part_mode;
int def;
int part, part_goal;
if (str[0] == 'x')
part_goal = -1;
else
part_goal = str[0] - '0';
switch (str[1])
{
case 'Q':
part_mode = QImode;
break;
case 'H':
part_mode = HImode;
break;
case 'S':
part_mode = SImode;
break;
default:
return 0;
}
switch (str[2])
{
case 'H':
mode = HImode;
break;
case 'S':
mode = SImode;
break;
case 'D':
mode = DImode;
break;
default:
return 0;
}
switch (str[3])
{
case '0':
def = 0;
break;
case 'F':
def = -1;
break;
default:
return 0;
}
if (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (part_mode))
return 0;
part = s390_single_part (GEN_INT (value), mode, part_mode, def);
if (part < 0)
return 0;
if (part_goal != -1 && part_goal != part)
return 0;
return 1;
}
/* Returns true if the input parameter VALUE is a float zero. */
int
s390_float_const_zero_p (rtx value)
{
return (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT
&& value == CONST0_RTX (GET_MODE (value)));
}
/* Implement TARGET_REGISTER_MOVE_COST. */
static int
s390_register_move_cost (machine_mode mode,
reg_class_t from, reg_class_t to)
{
/* On s390, copy between fprs and gprs is expensive. */
/* It becomes somewhat faster having ldgr/lgdr. */
if (TARGET_Z10 && GET_MODE_SIZE (mode) == 8)
{
/* ldgr is single cycle. */
if (reg_classes_intersect_p (from, GENERAL_REGS)
&& reg_classes_intersect_p (to, FP_REGS))
return 1;
/* lgdr needs 3 cycles. */
if (reg_classes_intersect_p (to, GENERAL_REGS)
&& reg_classes_intersect_p (from, FP_REGS))
return 3;
}
/* Otherwise copying is done via memory. */
if ((reg_classes_intersect_p (from, GENERAL_REGS)
&& reg_classes_intersect_p (to, FP_REGS))
|| (reg_classes_intersect_p (from, FP_REGS)
&& reg_classes_intersect_p (to, GENERAL_REGS)))
return 10;
/* We usually do not want to copy via CC. */
if (reg_classes_intersect_p (from, CC_REGS)
|| reg_classes_intersect_p (to, CC_REGS))
return 5;
return 1;
}
/* Implement TARGET_MEMORY_MOVE_COST. */
static int
s390_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
return 2;
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. The
initial value of *TOTAL is the default value computed by
rtx_cost. It may be left unmodified. OUTER_CODE contains the
code of the superexpression of x. */
static bool
s390_rtx_costs (rtx x, machine_mode mode, int outer_code,
int opno ATTRIBUTE_UNUSED,
int *total, bool speed ATTRIBUTE_UNUSED)
{
int code = GET_CODE (x);
switch (code)
{
case CONST:
case CONST_INT:
case LABEL_REF:
case SYMBOL_REF:
case CONST_DOUBLE:
case CONST_WIDE_INT:
case MEM:
*total = 0;
return true;
case SET: {
rtx dst = SET_DEST (x);
rtx src = SET_SRC (x);
switch (GET_CODE (src))
{
case IF_THEN_ELSE: {
/* Without this a conditional move instruction would be
accounted as 3 * COSTS_N_INSNS (set, if_then_else,
comparison operator). That's a bit pessimistic. */
if (!TARGET_Z196)
return false;
rtx cond = XEXP (src, 0);
if (!CC_REG_P (XEXP (cond, 0)) || !CONST_INT_P (XEXP (cond, 1)))
return false;
/* It is going to be a load/store on condition. Make it
slightly more expensive than a normal load. */
*total = COSTS_N_INSNS (1) + 2;
rtx then = XEXP (src, 1);
rtx els = XEXP (src, 2);
/* It is a real IF-THEN-ELSE. An additional move will be
needed to implement that. */
if (!TARGET_Z15 && reload_completed && !rtx_equal_p (dst, then)
&& !rtx_equal_p (dst, els))
*total += COSTS_N_INSNS (1) / 2;
/* A minor penalty for constants we cannot directly handle. */
if ((CONST_INT_P (then) || CONST_INT_P (els))
&& (!TARGET_Z13 || MEM_P (dst)
|| (CONST_INT_P (then) && !satisfies_constraint_K (then))
|| (CONST_INT_P (els) && !satisfies_constraint_K (els))))
*total += COSTS_N_INSNS (1) / 2;
/* A store on condition can only handle register src operands. */
if (MEM_P (dst) && (!REG_P (then) || !REG_P (els)))
*total += COSTS_N_INSNS (1) / 2;
return true;
}
default:
break;
}
switch (GET_CODE (dst))
{
case SUBREG:
if (!REG_P (SUBREG_REG (dst)))
*total += rtx_cost (SUBREG_REG (src), VOIDmode, SET, 0, speed);
/* fallthrough */
case REG:
/* If this is a VR -> VR copy, count the number of
registers. */
if (VECTOR_MODE_P (GET_MODE (dst)) && REG_P (src))
{
int nregs = s390_hard_regno_nregs (VR0_REGNUM, GET_MODE (dst));
*total = COSTS_N_INSNS (nregs);
}
/* Same for GPRs. */
else if (REG_P (src))
{
int nregs
= s390_hard_regno_nregs (GPR0_REGNUM, GET_MODE (dst));
*total = COSTS_N_INSNS (nregs);
}
else
/* Otherwise just cost the src. */
*total += rtx_cost (src, mode, SET, 1, speed);
return true;
case MEM: {
rtx address = XEXP (dst, 0);
rtx tmp;
HOST_WIDE_INT tmp2;
if (s390_loadrelative_operand_p (address, &tmp, &tmp2))
*total = COSTS_N_INSNS (1);
else
*total = s390_address_cost (address, mode, 0, speed);
return true;
}
default:
/* Not handled for now, assume default costs. */
*total = COSTS_N_INSNS (1);
return false;
}
return false;
}
case IOR:
/* nnrk, nngrk */
if (TARGET_Z15
&& (mode == SImode || mode == DImode)
&& GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (x, 1)) == NOT)
{
*total = COSTS_N_INSNS (1);
if (!REG_P (XEXP (XEXP (x, 0), 0)))
*total += 1;
if (!REG_P (XEXP (XEXP (x, 1), 0)))
*total += 1;
return true;
}
/* risbg */
if (GET_CODE (XEXP (x, 0)) == AND
&& GET_CODE (XEXP (x, 1)) == ASHIFT
&& REG_P (XEXP (XEXP (x, 0), 0))
&& REG_P (XEXP (XEXP (x, 1), 0))
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& CONST_INT_P (XEXP (XEXP (x, 1), 1))
&& (UINTVAL (XEXP (XEXP (x, 0), 1)) ==
(HOST_WIDE_INT_1U << UINTVAL (XEXP (XEXP (x, 1), 1))) - 1))
{
*total = COSTS_N_INSNS (2);
return true;
}
/* ~AND on a 128 bit mode. This can be done using a vector
instruction. */
if (TARGET_VXE
&& GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (x, 1)) == NOT
&& REG_P (XEXP (XEXP (x, 0), 0))
&& REG_P (XEXP (XEXP (x, 1), 0))
&& GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0), 0))) == 16
&& s390_hard_regno_mode_ok (VR0_REGNUM,
GET_MODE (XEXP (XEXP (x, 0), 0))))
{
*total = COSTS_N_INSNS (1);
return true;
}
*total = COSTS_N_INSNS (1);
return false;
case AND:
/* nork, nogrk */
if (TARGET_Z15
&& (mode == SImode || mode == DImode)
&& GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (x, 1)) == NOT)
{
*total = COSTS_N_INSNS (1);
if (!REG_P (XEXP (XEXP (x, 0), 0)))
*total += 1;
if (!REG_P (XEXP (XEXP (x, 1), 0)))
*total += 1;
return true;
}
/* fallthrough */
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
case ROTATE:
case ROTATERT:
case XOR:
case NEG:
case NOT:
case PLUS:
case MINUS:
*total = COSTS_N_INSNS (1);
return false;
case MULT:
switch (mode)
{
case E_SImode:
{
rtx left = XEXP (x, 0);
rtx right = XEXP (x, 1);
if (GET_CODE (right) == CONST_INT
&& CONST_OK_FOR_K (INTVAL (right)))
*total = s390_cost->mhi;
else if (GET_CODE (left) == SIGN_EXTEND)
*total = s390_cost->mh;
else
*total = s390_cost->ms; /* msr, ms, msy */
break;
}
case E_DImode:
{
rtx left = XEXP (x, 0);
rtx right = XEXP (x, 1);
if (TARGET_ZARCH)
{
if (GET_CODE (right) == CONST_INT
&& CONST_OK_FOR_K (INTVAL (right)))
*total = s390_cost->mghi;
else if (GET_CODE (left) == SIGN_EXTEND)
*total = s390_cost->msgf;
else
*total = s390_cost->msg; /* msgr, msg */
}
else /* TARGET_31BIT */
{
if (GET_CODE (left) == SIGN_EXTEND
&& GET_CODE (right) == SIGN_EXTEND)
/* mulsidi case: mr, m */
*total = s390_cost->m;
else if (GET_CODE (left) == ZERO_EXTEND
&& GET_CODE (right) == ZERO_EXTEND)
/* umulsidi case: ml, mlr */
*total = s390_cost->ml;
else
/* Complex calculation is required. */
*total = COSTS_N_INSNS (40);
}
break;
}
case E_SFmode:
case E_DFmode:
*total = s390_cost->mult_df;
break;
case E_TFmode:
*total = s390_cost->mxbr;
break;
default:
return false;
}
return false;
case FMA:
switch (mode)
{
case E_DFmode:
*total = s390_cost->madbr;
break;
case E_SFmode:
*total = s390_cost->maebr;
break;
default:
return false;
}
/* Negate in the third argument is free: FMSUB. */
if (GET_CODE (XEXP (x, 2)) == NEG)
{
*total += (rtx_cost (XEXP (x, 0), mode, FMA, 0, speed)
+ rtx_cost (XEXP (x, 1), mode, FMA, 1, speed)
+ rtx_cost (XEXP (XEXP (x, 2), 0), mode, FMA, 2, speed));
return true;
}
return false;
case UDIV:
case UMOD:
if (mode == TImode) /* 128 bit division */
*total = s390_cost->dlgr;
else if (mode == DImode)
{
rtx right = XEXP (x, 1);
if (GET_CODE (right) == ZERO_EXTEND) /* 64 by 32 bit division */
*total = s390_cost->dlr;
else /* 64 by 64 bit division */
*total = s390_cost->dlgr;
}
else if (mode == SImode) /* 32 bit division */
*total = s390_cost->dlr;
return false;
case DIV:
case MOD:
if (mode == DImode)
{
rtx right = XEXP (x, 1);
if (GET_CODE (right) == ZERO_EXTEND) /* 64 by 32 bit division */
if (TARGET_ZARCH)
*total = s390_cost->dsgfr;
else
*total = s390_cost->dr;
else /* 64 by 64 bit division */
*total = s390_cost->dsgr;
}
else if (mode == SImode) /* 32 bit division */
*total = s390_cost->dlr;
else if (mode == SFmode)
{
*total = s390_cost->debr;
}
else if (mode == DFmode)
{
*total = s390_cost->ddbr;
}
else if (mode == TFmode)
{
*total = s390_cost->dxbr;
}
return false;
case SQRT:
if (mode == SFmode)
*total = s390_cost->sqebr;
else if (mode == DFmode)
*total = s390_cost->sqdbr;
else /* TFmode */
*total = s390_cost->sqxbr;
return false;
case SIGN_EXTEND:
case ZERO_EXTEND:
if (outer_code == MULT || outer_code == DIV || outer_code == MOD
|| outer_code == PLUS || outer_code == MINUS
|| outer_code == COMPARE)
*total = 0;
return false;
case COMPARE:
*total = COSTS_N_INSNS (1);
/* nxrk, nxgrk ~(a^b)==0 */
if (TARGET_Z15
&& GET_CODE (XEXP (x, 0)) == NOT
&& XEXP (x, 1) == const0_rtx
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
&& (GET_MODE (XEXP (x, 0)) == SImode || GET_MODE (XEXP (x, 0)) == DImode)
&& mode == CCZmode)
{
if (!REG_P (XEXP (XEXP (XEXP (x, 0), 0), 0)))
*total += 1;
if (!REG_P (XEXP (XEXP (XEXP (x, 0), 0), 1)))
*total += 1;
return true;
}
/* nnrk, nngrk, nork, nogrk */
if (TARGET_Z15
&& (GET_CODE (XEXP (x, 0)) == AND || GET_CODE (XEXP (x, 0)) == IOR)
&& XEXP (x, 1) == const0_rtx
&& (GET_MODE (XEXP (x, 0)) == SImode || GET_MODE (XEXP (x, 0)) == DImode)
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == NOT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == NOT
&& mode == CCZmode)
{
if (!REG_P (XEXP (XEXP (XEXP (x, 0), 0), 0)))
*total += 1;
if (!REG_P (XEXP (XEXP (XEXP (x, 0), 1), 0)))
*total += 1;
return true;
}
if (GET_CODE (XEXP (x, 0)) == AND
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
{
rtx op0 = XEXP (XEXP (x, 0), 0);
rtx op1 = XEXP (XEXP (x, 0), 1);
rtx op2 = XEXP (x, 1);
if (memory_operand (op0, GET_MODE (op0))
&& s390_tm_ccmode (op1, op2, 0) != VOIDmode)
return true;
if (register_operand (op0, GET_MODE (op0))
&& s390_tm_ccmode (op1, op2, 1) != VOIDmode)
return true;
}
return false;
default:
return false;
}
}
/* Return the cost of an address rtx ADDR. */
static int
s390_address_cost (rtx addr, machine_mode mode ATTRIBUTE_UNUSED,
addr_space_t as ATTRIBUTE_UNUSED,
bool speed ATTRIBUTE_UNUSED)
{
struct s390_address ad;
if (!s390_decompose_address (addr, &ad))
return 1000;
return ad.indx? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (1);
}
/* Implement targetm.vectorize.builtin_vectorization_cost. */
static int
s390_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
tree vectype,
int misalign ATTRIBUTE_UNUSED)
{
switch (type_of_cost)
{
case scalar_stmt:
case scalar_load:
case scalar_store:
case vector_stmt:
case vector_load:
case vector_store:
case vector_gather_load:
case vector_scatter_store:
case vec_to_scalar:
case scalar_to_vec:
case cond_branch_not_taken:
case vec_perm:
case vec_promote_demote:
case unaligned_load:
case unaligned_store:
return 1;
case cond_branch_taken:
return 3;
case vec_construct:
return TYPE_VECTOR_SUBPARTS (vectype) - 1;
default:
gcc_unreachable ();
}
}
/* If OP is a SYMBOL_REF of a thread-local symbol, return its TLS mode,
otherwise return 0. */
int
tls_symbolic_operand (rtx op)
{
if (GET_CODE (op) != SYMBOL_REF)
return 0;
return SYMBOL_REF_TLS_MODEL (op);
}
/* Split DImode access register reference REG (on 64-bit) into its constituent
low and high parts, and store them into LO and HI. Note that gen_lowpart/
gen_highpart cannot be used as they assume all registers are word-sized,
while our access registers have only half that size. */
void
s390_split_access_reg (rtx reg, rtx *lo, rtx *hi)
{
gcc_assert (TARGET_64BIT);
gcc_assert (ACCESS_REG_P (reg));
gcc_assert (GET_MODE (reg) == DImode);
gcc_assert (!(REGNO (reg) & 1));
*lo = gen_rtx_REG (SImode, REGNO (reg) + 1);
*hi = gen_rtx_REG (SImode, REGNO (reg));
}
/* Return true if OP contains a symbol reference */
bool
symbolic_reference_mentioned_p (rtx op)
{
const char *fmt;
int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
return 0;
}
/* Return true if OP contains a reference to a thread-local symbol. */
bool
tls_symbolic_reference_mentioned_p (rtx op)
{
const char *fmt;
int i;
if (GET_CODE (op) == SYMBOL_REF)
return tls_symbolic_operand (op);
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (tls_symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return true;
}
else if (fmt[i] == 'e' && tls_symbolic_reference_mentioned_p (XEXP (op, i)))
return true;
}
return false;
}
/* Return true if OP is a legitimate general operand when
generating PIC code. It is given that flag_pic is on
and that OP satisfies CONSTANT_P. */
int
legitimate_pic_operand_p (rtx op)
{
/* Accept all non-symbolic constants. */
if (!SYMBOLIC_CONST (op))
return 1;
/* Accept addresses that can be expressed relative to (pc). */
if (larl_operand (op, VOIDmode))
return 1;
/* Reject everything else; must be handled
via emit_symbolic_move. */
return 0;
}
/* Returns true if the constant value OP is a legitimate general operand.
It is given that OP satisfies CONSTANT_P. */
static bool
s390_legitimate_constant_p (machine_mode mode, rtx op)
{
if (TARGET_VX && GET_CODE (op) == CONST_VECTOR)
{
if (!satisfies_constraint_j00 (op)
&& !satisfies_constraint_jm1 (op)
&& !satisfies_constraint_jzz (op)
&& !satisfies_constraint_jxx (op)
&& !satisfies_constraint_jyy (op))
return 0;
}
/* Accept all non-symbolic constants. */
if (!SYMBOLIC_CONST (op))
return 1;
/* Accept immediate LARL operands. */
if (larl_operand (op, mode))
return 1;
/* Thread-local symbols are never legal constants. This is
so that emit_call knows that computing such addresses
might require a function call. */
if (TLS_SYMBOLIC_CONST (op))
return 0;
/* In the PIC case, symbolic constants must *not* be
forced into the literal pool. We accept them here,
so that they will be handled by emit_symbolic_move. */
if (flag_pic)
return 1;
/* All remaining non-PIC symbolic constants are
forced into the literal pool. */
return 0;
}
/* Determine if it's legal to put X into the constant pool. This
is not possible if X contains the address of a symbol that is
not constant (TLS) or not known at final link time (PIC). */
static bool
s390_cannot_force_const_mem (machine_mode mode, rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_WIDE_INT:
case CONST_VECTOR:
/* Accept all non-symbolic constants. */
return false;
case NEG:
/* Accept an unary '-' only on scalar numeric constants. */
switch (GET_CODE (XEXP (x, 0)))
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_WIDE_INT:
return false;
default:
return true;
}
case LABEL_REF:
/* Labels are OK iff we are non-PIC. */
return flag_pic != 0;
case SYMBOL_REF:
/* 'Naked' TLS symbol references are never OK,
non-TLS symbols are OK iff we are non-PIC. */
if (tls_symbolic_operand (x))
return true;
else
return flag_pic != 0;
case CONST:
return s390_cannot_force_const_mem (mode, XEXP (x, 0));
case PLUS:
case MINUS:
return s390_cannot_force_const_mem (mode, XEXP (x, 0))
|| s390_cannot_force_const_mem (mode, XEXP (x, 1));
case UNSPEC:
switch (XINT (x, 1))
{
/* Only lt-relative or GOT-relative UNSPECs are OK. */
case UNSPEC_LTREL_OFFSET:
case UNSPEC_GOT:
case UNSPEC_GOTOFF:
case UNSPEC_PLTOFF:
case UNSPEC_TLSGD:
case UNSPEC_TLSLDM:
case UNSPEC_NTPOFF:
case UNSPEC_DTPOFF:
case UNSPEC_GOTNTPOFF:
case UNSPEC_INDNTPOFF:
return false;
/* If the literal pool shares the code section, be put
execute template placeholders into the pool as well. */
case UNSPEC_INSN:
default:
return true;
}
break;
default:
gcc_unreachable ();
}
}
/* Returns true if the constant value OP is a legitimate general
operand during and after reload. The difference to
legitimate_constant_p is that this function will not accept
a constant that would need to be forced to the literal pool
before it can be used as operand.
This function accepts all constants which can be loaded directly
into a GPR. */
bool
legitimate_reload_constant_p (rtx op)
{
/* Accept la(y) operands. */
if (GET_CODE (op) == CONST_INT
&& DISP_IN_RANGE (INTVAL (op)))
return true;
/* Accept l(g)hi/l(g)fi operands. */
if (GET_CODE (op) == CONST_INT
&& (CONST_OK_FOR_K (INTVAL (op)) || CONST_OK_FOR_Os (INTVAL (op))))
return true;
/* Accept lliXX operands. */
if (TARGET_ZARCH
&& GET_CODE (op) == CONST_INT
&& trunc_int_for_mode (INTVAL (op), word_mode) == INTVAL (op)
&& s390_single_part (op, word_mode, HImode, 0) >= 0)
return true;
if (TARGET_EXTIMM
&& GET_CODE (op) == CONST_INT
&& trunc_int_for_mode (INTVAL (op), word_mode) == INTVAL (op)
&& s390_single_part (op, word_mode, SImode, 0) >= 0)
return true;
/* Accept larl operands. */
if (larl_operand (op, VOIDmode))
return true;
/* Accept floating-point zero operands that fit into a single GPR. */
if (GET_CODE (op) == CONST_DOUBLE
&& s390_float_const_zero_p (op)
&& GET_MODE_SIZE (GET_MODE (op)) <= UNITS_PER_WORD)
return true;
/* Accept double-word operands that can be split. */
if (GET_CODE (op) == CONST_WIDE_INT
|| (GET_CODE (op) == CONST_INT
&& trunc_int_for_mode (INTVAL (op), word_mode) != INTVAL (op)))
{
machine_mode dword_mode = word_mode == SImode ? DImode : TImode;
rtx hi = operand_subword (op, 0, 0, dword_mode);
rtx lo = operand_subword (op, 1, 0, dword_mode);
return legitimate_reload_constant_p (hi)
&& legitimate_reload_constant_p (lo);
}
/* Everything else cannot be handled without reload. */
return false;
}
/* Returns true if the constant value OP is a legitimate fp operand
during and after reload.
This function accepts all constants which can be loaded directly
into an FPR. */
static bool
legitimate_reload_fp_constant_p (rtx op)
{
/* Accept floating-point zero operands if the load zero instruction
can be used. Prior to z196 the load fp zero instruction caused a
performance penalty if the result is used as BFP number. */
if (TARGET_Z196
&& GET_CODE (op) == CONST_DOUBLE
&& s390_float_const_zero_p (op))
return true;
return false;
}
/* Returns true if the constant value OP is a legitimate vector operand
during and after reload.
This function accepts all constants which can be loaded directly
into an VR. */
static bool
legitimate_reload_vector_constant_p (rtx op)
{
return TARGET_VX && (satisfies_constraint_j00 (op)
|| satisfies_constraint_jm1 (op)
|| satisfies_constraint_jzz (op)
|| satisfies_constraint_jxx (op)
|| satisfies_constraint_jyy (op));
}
/* Given an rtx OP being reloaded into a reg required to be in class RCLASS,
return the class of reg to actually use. */
static reg_class_t
s390_preferred_reload_class (rtx op, reg_class_t rclass)
{
switch (GET_CODE (op))
{
/* Constants we cannot reload into general registers
must be forced into the literal pool. */
case CONST_VECTOR:
case CONST_DOUBLE:
case CONST_INT:
case CONST_WIDE_INT:
if (reg_class_subset_p (GENERAL_REGS, rclass)
&& legitimate_reload_constant_p (op))
return GENERAL_REGS;
else if (reg_class_subset_p (ADDR_REGS, rclass)
&& legitimate_reload_constant_p (op))
return ADDR_REGS;
else if (reg_class_subset_p (FP_REGS, rclass)
&& legitimate_reload_fp_constant_p (op))
return FP_REGS;
else if (reg_class_subset_p (VEC_REGS, rclass)
&& legitimate_reload_vector_constant_p (op))
return VEC_REGS;
return NO_REGS;
/* If a symbolic constant or a PLUS is reloaded,
it is most likely being used as an address, so
prefer ADDR_REGS. If 'class' is not a superset
of ADDR_REGS, e.g. FP_REGS, reject this reload. */
case CONST:
/* Symrefs cannot be pushed into the literal pool with -fPIC
so we *MUST NOT* return NO_REGS for these cases
(s390_cannot_force_const_mem will return true).
On the other hand we MUST return NO_REGS for symrefs with
invalid addend which might have been pushed to the literal
pool (no -fPIC). Usually we would expect them to be
handled via secondary reload but this does not happen if
they are used as literal pool slot replacement in reload
inheritance (see emit_input_reload_insns). */
if (GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP(op, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP(op, 0), 1)) == CONST_INT)
{
if (flag_pic && reg_class_subset_p (ADDR_REGS, rclass))
return ADDR_REGS;
else
return NO_REGS;
}
/* fallthrough */
case LABEL_REF:
case SYMBOL_REF:
if (!legitimate_reload_constant_p (op))
return NO_REGS;
/* fallthrough */
case PLUS:
/* load address will be used. */
if (reg_class_subset_p (ADDR_REGS, rclass))
return ADDR_REGS;
else
return NO_REGS;
default:
break;
}
return rclass;
}
/* Return true if ADDR is SYMBOL_REF + addend with addend being a
multiple of ALIGNMENT and the SYMBOL_REF being naturally
aligned. */
bool
s390_check_symref_alignment (rtx addr, HOST_WIDE_INT alignment)
{
HOST_WIDE_INT addend;
rtx symref;
/* The "required alignment" might be 0 (e.g. for certain structs
accessed via BLKmode). Early abort in this case, as well as when
an alignment > 8 is required. */
if (alignment < 2 || alignment > 8)
return false;
if (!s390_loadrelative_operand_p (addr, &symref, &addend))
return false;
if (addend & (alignment - 1))
return false;
if (GET_CODE (symref) == SYMBOL_REF)
{
/* s390_encode_section_info is not called for anchors, since they don't
have corresponding VAR_DECLs. Therefore, we cannot rely on
SYMBOL_FLAG_NOTALIGN{2,4,8}_P returning useful information. */
if (SYMBOL_REF_ANCHOR_P (symref))
{
HOST_WIDE_INT block_offset = SYMBOL_REF_BLOCK_OFFSET (symref);
unsigned int block_alignment = (SYMBOL_REF_BLOCK (symref)->alignment
/ BITS_PER_UNIT);
gcc_assert (block_offset >= 0);
return ((block_offset & (alignment - 1)) == 0
&& block_alignment >= alignment);
}
/* We have load-relative instructions for 2-byte, 4-byte, and
8-byte alignment so allow only these. */
switch (alignment)
{
case 8: return !SYMBOL_FLAG_NOTALIGN8_P (symref);
case 4: return !SYMBOL_FLAG_NOTALIGN4_P (symref);
case 2: return !SYMBOL_FLAG_NOTALIGN2_P (symref);
default: return false;
}
}
if (GET_CODE (symref) == UNSPEC
&& alignment <= UNITS_PER_LONG)
return true;
return false;
}
/* ADDR is moved into REG using larl. If ADDR isn't a valid larl
operand SCRATCH is used to reload the even part of the address and
adding one. */
void
s390_reload_larl_operand (rtx reg, rtx addr, rtx scratch)
{
HOST_WIDE_INT addend;
rtx symref;
if (!s390_loadrelative_operand_p (addr, &symref, &addend))
gcc_unreachable ();
if (!(addend & 1))
/* Easy case. The addend is even so larl will do fine. */
emit_move_insn (reg, addr);
else
{
/* We can leave the scratch register untouched if the target
register is a valid base register. */
if (REGNO (reg) < FIRST_PSEUDO_REGISTER
&& REGNO_REG_CLASS (REGNO (reg)) == ADDR_REGS)
scratch = reg;
gcc_assert (REGNO (scratch) < FIRST_PSEUDO_REGISTER);
gcc_assert (REGNO_REG_CLASS (REGNO (scratch)) == ADDR_REGS);
if (addend != 1)
emit_move_insn (scratch,
gen_rtx_CONST (Pmode,
gen_rtx_PLUS (Pmode, symref,
GEN_INT (addend - 1))));
else
emit_move_insn (scratch, symref);
/* Increment the address using la in order to avoid clobbering cc. */
s390_load_address (reg, gen_rtx_PLUS (Pmode, scratch, const1_rtx));
}
}
/* Generate what is necessary to move between REG and MEM using
SCRATCH. The direction is given by TOMEM. */
void
s390_reload_symref_address (rtx reg, rtx mem, rtx scratch, bool tomem)
{
/* Reload might have pulled a constant out of the literal pool.
Force it back in. */
if (CONST_INT_P (mem) || GET_CODE (mem) == CONST_DOUBLE
|| GET_CODE (mem) == CONST_WIDE_INT
|| GET_CODE (mem) == CONST_VECTOR
|| GET_CODE (mem) == CONST)
mem = force_const_mem (GET_MODE (reg), mem);
gcc_assert (MEM_P (mem));
/* For a load from memory we can leave the scratch register
untouched if the target register is a valid base register. */
if (!tomem
&& REGNO (reg) < FIRST_PSEUDO_REGISTER
&& REGNO_REG_CLASS (REGNO (reg)) == ADDR_REGS
&& GET_MODE (reg) == GET_MODE (scratch))
scratch = reg;
/* Load address into scratch register. Since we can't have a
secondary reload for a secondary reload we have to cover the case
where larl would need a secondary reload here as well. */
s390_reload_larl_operand (scratch, XEXP (mem, 0), scratch);
/* Now we can use a standard load/store to do the move. */
if (tomem)
emit_move_insn (replace_equiv_address (mem, scratch), reg);
else
emit_move_insn (reg, replace_equiv_address (mem, scratch));
}
/* Inform reload about cases where moving X with a mode MODE to a register in
RCLASS requires an extra scratch or immediate register. Return the class
needed for the immediate register. */
static reg_class_t
s390_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
machine_mode mode, secondary_reload_info *sri)
{
enum reg_class rclass = (enum reg_class) rclass_i;
/* Intermediate register needed. */
if (reg_classes_intersect_p (CC_REGS, rclass))
return GENERAL_REGS;
if (TARGET_VX)
{
/* The vst/vl vector move instructions allow only for short
displacements. */
if (MEM_P (x)
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& !SHORT_DISP_IN_RANGE(INTVAL (XEXP (XEXP (x, 0), 1)))
&& reg_class_subset_p (rclass, VEC_REGS)
&& (!reg_class_subset_p (rclass, FP_REGS)
|| (GET_MODE_SIZE (mode) > 8
&& s390_class_max_nregs (FP_REGS, mode) == 1)))
{
if (in_p)
sri->icode = (TARGET_64BIT ?
CODE_FOR_reloaddi_la_in :
CODE_FOR_reloadsi_la_in);
else
sri->icode = (TARGET_64BIT ?
CODE_FOR_reloaddi_la_out :
CODE_FOR_reloadsi_la_out);
}
}
if (TARGET_Z10)
{
HOST_WIDE_INT offset;
rtx symref;
/* On z10 several optimizer steps may generate larl operands with
an odd addend. */
if (in_p
&& s390_loadrelative_operand_p (x, &symref, &offset)
&& mode == Pmode
&& (!SYMBOL_REF_P (symref) || !SYMBOL_FLAG_NOTALIGN2_P (symref))
&& (offset & 1) == 1)
sri->icode = ((mode == DImode) ? CODE_FOR_reloaddi_larl_odd_addend_z10
: CODE_FOR_reloadsi_larl_odd_addend_z10);
/* Handle all the (mem (symref)) accesses we cannot use the z10
instructions for. */
if (MEM_P (x)
&& s390_loadrelative_operand_p (XEXP (x, 0), NULL, NULL)
&& (mode == QImode
|| !reg_class_subset_p (rclass, GENERAL_REGS)
|| GET_MODE_SIZE (mode) > UNITS_PER_WORD
|| !s390_check_symref_alignment (XEXP (x, 0),
GET_MODE_SIZE (mode))))
{
#define __SECONDARY_RELOAD_CASE(M,m) \
case E_##M##mode: \
if (TARGET_64BIT) \
sri->icode = in_p ? CODE_FOR_reload##m##di_toreg_z10 : \
CODE_FOR_reload##m##di_tomem_z10; \
else \
sri->icode = in_p ? CODE_FOR_reload##m##si_toreg_z10 : \
CODE_FOR_reload##m##si_tomem_z10; \
break;
switch (GET_MODE (x))
{
__SECONDARY_RELOAD_CASE (QI, qi);
__SECONDARY_RELOAD_CASE (HI, hi);
__SECONDARY_RELOAD_CASE (SI, si);
__SECONDARY_RELOAD_CASE (DI, di);
__SECONDARY_RELOAD_CASE (TI, ti);
__SECONDARY_RELOAD_CASE (SF, sf);
__SECONDARY_RELOAD_CASE (DF, df);
__SECONDARY_RELOAD_CASE (TF, tf);
__SECONDARY_RELOAD_CASE (SD, sd);
__SECONDARY_RELOAD_CASE (DD, dd);
__SECONDARY_RELOAD_CASE (TD, td);
__SECONDARY_RELOAD_CASE (V1QI, v1qi);
__SECONDARY_RELOAD_CASE (V2QI, v2qi);
__SECONDARY_RELOAD_CASE (V4QI, v4qi);
__SECONDARY_RELOAD_CASE (V8QI, v8qi);
__SECONDARY_RELOAD_CASE (V16QI, v16qi);
__SECONDARY_RELOAD_CASE (V1HI, v1hi);
__SECONDARY_RELOAD_CASE (V2HI, v2hi);
__SECONDARY_RELOAD_CASE (V4HI, v4hi);
__SECONDARY_RELOAD_CASE (V8HI, v8hi);
__SECONDARY_RELOAD_CASE (V1SI, v1si);
__SECONDARY_RELOAD_CASE (V2SI, v2si);
__SECONDARY_RELOAD_CASE (V4SI, v4si);
__SECONDARY_RELOAD_CASE (V1DI, v1di);
__SECONDARY_RELOAD_CASE (V2DI, v2di);
__SECONDARY_RELOAD_CASE (V1TI, v1ti);
__SECONDARY_RELOAD_CASE (V1SF, v1sf);
__SECONDARY_RELOAD_CASE (V2SF, v2sf);
__SECONDARY_RELOAD_CASE (V4SF, v4sf);
__SECONDARY_RELOAD_CASE (V1DF, v1df);
__SECONDARY_RELOAD_CASE (V2DF, v2df);
__SECONDARY_RELOAD_CASE (V1TF, v1tf);
default:
gcc_unreachable ();
}
#undef __SECONDARY_RELOAD_CASE
}
}
/* We need a scratch register when loading a PLUS expression which
is not a legitimate operand of the LOAD ADDRESS instruction. */
/* LRA can deal with transformation of plus op very well -- so we
don't need to prompt LRA in this case. */
if (! lra_in_progress && in_p && s390_plus_operand (x, mode))
sri->icode = (TARGET_64BIT ?
CODE_FOR_reloaddi_plus : CODE_FOR_reloadsi_plus);
/* Performing a multiword move from or to memory we have to make sure the
second chunk in memory is addressable without causing a displacement
overflow. If that would be the case we calculate the address in
a scratch register. */
if (MEM_P (x)
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& !DISP_IN_RANGE (INTVAL (XEXP (XEXP (x, 0), 1))
+ GET_MODE_SIZE (mode) - 1))
{
/* For GENERAL_REGS a displacement overflow is no problem if occurring
in a s_operand address since we may fallback to lm/stm. So we only
have to care about overflows in the b+i+d case. */
if ((reg_classes_intersect_p (GENERAL_REGS, rclass)
&& s390_class_max_nregs (GENERAL_REGS, mode) > 1
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
/* For FP_REGS no lm/stm is available so this check is triggered
for displacement overflows in b+i+d and b+d like addresses. */
|| (reg_classes_intersect_p (FP_REGS, rclass)
&& s390_class_max_nregs (FP_REGS, mode) > 1))
{
if (in_p)
sri->icode = (TARGET_64BIT ?
CODE_FOR_reloaddi_la_in :
CODE_FOR_reloadsi_la_in);
else
sri->icode = (TARGET_64BIT ?
CODE_FOR_reloaddi_la_out :
CODE_FOR_reloadsi_la_out);
}
}
/* A scratch address register is needed when a symbolic constant is
copied to r0 compiling with -fPIC. In other cases the target
register might be used as temporary (see legitimize_pic_address). */
if (in_p && SYMBOLIC_CONST (x) && flag_pic == 2 && rclass != ADDR_REGS)
sri->icode = (TARGET_64BIT ?
CODE_FOR_reloaddi_PIC_addr :
CODE_FOR_reloadsi_PIC_addr);
/* Either scratch or no register needed. */
return NO_REGS;
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED.
We need secondary memory to move data between GPRs and FPRs.
- With DFP the ldgr lgdr instructions are available. Due to the
different alignment we cannot use them for SFmode. For 31 bit a
64 bit value in GPR would be a register pair so here we still
need to go via memory.
- With z13 we can do the SF/SImode moves with vlgvf. Due to the
overlapping of FPRs and VRs we still disallow TF/TD modes to be
in full VRs so as before also on z13 we do these moves via
memory.
FIXME: Should we try splitting it into two vlgvg's/vlvg's instead? */
static bool
s390_secondary_memory_needed (machine_mode mode,
reg_class_t class1, reg_class_t class2)
{
return (((reg_classes_intersect_p (class1, VEC_REGS)
&& reg_classes_intersect_p (class2, GENERAL_REGS))
|| (reg_classes_intersect_p (class1, GENERAL_REGS)
&& reg_classes_intersect_p (class2, VEC_REGS)))
&& (TARGET_TPF || !TARGET_DFP || !TARGET_64BIT
|| GET_MODE_SIZE (mode) != 8)
&& (!TARGET_VX || (SCALAR_FLOAT_MODE_P (mode)
&& GET_MODE_SIZE (mode) > 8)));
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE.
get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
because the movsi and movsf patterns don't handle r/f moves. */
static machine_mode
s390_secondary_memory_needed_mode (machine_mode mode)
{
if (GET_MODE_BITSIZE (mode) < 32)
return mode_for_size (32, GET_MODE_CLASS (mode), 0).require ();
return mode;
}
/* Generate code to load SRC, which is PLUS that is not a
legitimate operand for the LA instruction, into TARGET.
SCRATCH may be used as scratch register. */
void
s390_expand_plus_operand (rtx target, rtx src,
rtx scratch)
{
rtx sum1, sum2;
struct s390_address ad;
/* src must be a PLUS; get its two operands. */
gcc_assert (GET_CODE (src) == PLUS);
gcc_assert (GET_MODE (src) == Pmode);
/* Check if any of the two operands is already scheduled
for replacement by reload. This can happen e.g. when
float registers occur in an address. */
sum1 = find_replacement (&XEXP (src, 0));
sum2 = find_replacement (&XEXP (src, 1));
src = gen_rtx_PLUS (Pmode, sum1, sum2);
/* If the address is already strictly valid, there's nothing to do. */
if (!s390_decompose_address (src, &ad)
|| (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
|| (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx))))
{
/* Otherwise, one of the operands cannot be an address register;
we reload its value into the scratch register. */
if (true_regnum (sum1) < 1 || true_regnum (sum1) > 15)
{
emit_move_insn (scratch, sum1);
sum1 = scratch;
}
if (true_regnum (sum2) < 1 || true_regnum (sum2) > 15)
{
emit_move_insn (scratch, sum2);
sum2 = scratch;
}
/* According to the way these invalid addresses are generated
in reload.cc, it should never happen (at least on s390) that
*neither* of the PLUS components, after find_replacements
was applied, is an address register. */
if (sum1 == scratch && sum2 == scratch)
{
debug_rtx (src);
gcc_unreachable ();
}
src = gen_rtx_PLUS (Pmode, sum1, sum2);
}
/* Emit the LOAD ADDRESS pattern. Note that reload of PLUS
is only ever performed on addresses, so we can mark the
sum as legitimate for LA in any case. */
s390_load_address (target, src);
}
/* Return true if ADDR is a valid memory address.
STRICT specifies whether strict register checking applies. */
static bool
s390_legitimate_address_p (machine_mode mode, rtx addr, bool strict,
code_helper = ERROR_MARK)
{
struct s390_address ad;
if (TARGET_Z10
&& larl_operand (addr, VOIDmode)
&& (mode == VOIDmode
|| s390_check_symref_alignment (addr, GET_MODE_SIZE (mode))))
return true;
if (!s390_decompose_address (addr, &ad))
return false;
/* The vector memory instructions only support short displacements.
Reject invalid displacements early to prevent plenty of lay
instructions to be generated later which then cannot be merged
properly. */
if (TARGET_VX
&& VECTOR_MODE_P (mode)
&& ad.disp != NULL_RTX
&& CONST_INT_P (ad.disp)
&& !SHORT_DISP_IN_RANGE (INTVAL (ad.disp)))
return false;
if (strict)
{
if (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
return false;
if (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx)))
return false;
}
else
{
if (ad.base
&& !(REGNO (ad.base) >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (REGNO (ad.base)) == ADDR_REGS))
return false;
if (ad.indx
&& !(REGNO (ad.indx) >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (REGNO (ad.indx)) == ADDR_REGS))
return false;
}
return true;
}
/* Return true if OP is a valid operand for the LA instruction.
In 31-bit, we need to prove that the result is used as an
address, as LA performs only a 31-bit addition. */
bool
legitimate_la_operand_p (rtx op)
{
struct s390_address addr;
if (!s390_decompose_address (op, &addr))
return false;
return (TARGET_64BIT || addr.pointer);
}
/* Return true if it is valid *and* preferable to use LA to
compute the sum of OP1 and OP2. */
bool
preferred_la_operand_p (rtx op1, rtx op2)
{
struct s390_address addr;
if (op2 != const0_rtx)
op1 = gen_rtx_PLUS (Pmode, op1, op2);
if (!s390_decompose_address (op1, &addr))
return false;
if (addr.base && !REGNO_OK_FOR_BASE_P (REGNO (addr.base)))
return false;
if (addr.indx && !REGNO_OK_FOR_INDEX_P (REGNO (addr.indx)))
return false;
/* Avoid LA instructions with index (and base) register on z196 or
later; it is preferable to use regular add instructions when
possible. Starting with zEC12 the la with index register is
"uncracked" again but still slower than a regular add. */
if (addr.indx && s390_tune >= PROCESSOR_2817_Z196)
return false;
if (!TARGET_64BIT && !addr.pointer)
return false;
if (addr.pointer)
return true;
if ((addr.base && REG_P (addr.base) && REG_POINTER (addr.base))
|| (addr.indx && REG_P (addr.indx) && REG_POINTER (addr.indx)))
return true;
return false;
}
/* Emit a forced load-address operation to load SRC into DST.
This will use the LOAD ADDRESS instruction even in situations
where legitimate_la_operand_p (SRC) returns false. */
void
s390_load_address (rtx dst, rtx src)
{
if (TARGET_64BIT)
emit_move_insn (dst, src);
else
emit_insn (gen_force_la_31 (dst, src));
}
/* Return true if it ok to use SYMBOL_REF in a relative address. */
bool
s390_rel_address_ok_p (rtx symbol_ref)
{
tree decl;
if (symbol_ref == s390_got_symbol () || CONSTANT_POOL_ADDRESS_P (symbol_ref))
return true;
decl = SYMBOL_REF_DECL (symbol_ref);
if (!flag_pic || SYMBOL_REF_LOCAL_P (symbol_ref))
return (s390_pic_data_is_text_relative
|| (decl
&& TREE_CODE (decl) == FUNCTION_DECL));
return false;
}
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
There are two types of references that must be handled:
1. Global data references must load the address from the GOT, via
the PIC reg. An insn is emitted to do this load, and the reg is
returned.
2. Static data references, constant pool addresses, and code labels
compute the address as an offset from the GOT, whose base is in
the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to
differentiate them from global data objects. The returned
address is the PIC reg + an unspec constant.
TARGET_LEGITIMIZE_ADDRESS_P rejects symbolic references unless the PIC
reg also appears in the address. */
rtx
legitimize_pic_address (rtx orig, rtx reg)
{
rtx addr = orig;
rtx addend = const0_rtx;
rtx new_rtx = orig;
gcc_assert (!TLS_SYMBOLIC_CONST (addr));
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS)
{
addend = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if ((GET_CODE (addr) == LABEL_REF
|| (SYMBOL_REF_P (addr) && s390_rel_address_ok_p (addr))
|| (GET_CODE (addr) == UNSPEC &&
(XINT (addr, 1) == UNSPEC_GOTENT
|| XINT (addr, 1) == UNSPEC_PLT31)))
&& GET_CODE (addend) == CONST_INT)
{
/* This can be locally addressed. */
/* larl_operand requires UNSPECs to be wrapped in a const rtx. */
rtx const_addr = (GET_CODE (addr) == UNSPEC ?
gen_rtx_CONST (Pmode, addr) : addr);
if (larl_operand (const_addr, VOIDmode)
&& INTVAL (addend) < HOST_WIDE_INT_1 << 31
&& INTVAL (addend) >= -(HOST_WIDE_INT_1 << 31))
{
if (INTVAL (addend) & 1)
{
/* LARL can't handle odd offsets, so emit a pair of LARL
and LA. */
rtx temp = reg? reg : gen_reg_rtx (Pmode);
if (!DISP_IN_RANGE (INTVAL (addend)))
{
HOST_WIDE_INT even = INTVAL (addend) - 1;
addr = gen_rtx_PLUS (Pmode, addr, GEN_INT (even));
addr = gen_rtx_CONST (Pmode, addr);
addend = const1_rtx;
}
emit_move_insn (temp, addr);
new_rtx = gen_rtx_PLUS (Pmode, temp, addend);
if (reg != 0)
{
s390_load_address (reg, new_rtx);
new_rtx = reg;
}
}
else
{
/* If the offset is even, we can just use LARL. This
will happen automatically. */
}
}
else
{
/* No larl - Access local symbols relative to the GOT. */
rtx temp = reg? reg : gen_reg_rtx (Pmode);
if (reload_in_progress || reload_completed)
df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF);
if (addend != const0_rtx)
addr = gen_rtx_PLUS (Pmode, addr, addend);
addr = gen_rtx_CONST (Pmode, addr);
addr = force_const_mem (Pmode, addr);
emit_move_insn (temp, addr);
new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
if (reg != 0)
{
s390_load_address (reg, new_rtx);
new_rtx = reg;
}
}
}
else if (GET_CODE (addr) == SYMBOL_REF && addend == const0_rtx)
{
/* A non-local symbol reference without addend.
The symbol ref is wrapped into an UNSPEC to make sure the
proper operand modifier (@GOT or @GOTENT) will be emitted.
This will tell the linker to put the symbol into the GOT.
Additionally the code dereferencing the GOT slot is emitted here.
An addend to the symref needs to be added afterwards.
legitimize_pic_address calls itself recursively to handle
that case. So no need to do it here. */
if (reg == 0)
reg = gen_reg_rtx (Pmode);
if (TARGET_Z10)
{
/* Use load relative if possible.
lgrl <target>, sym@GOTENT */
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTENT);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = gen_const_mem (GET_MODE (reg), new_rtx);
emit_move_insn (reg, new_rtx);
new_rtx = reg;
}
else if (flag_pic == 1)
{
/* Assume GOT offset is a valid displacement operand (< 4k
or < 512k with z990). This is handled the same way in
both 31- and 64-bit code (@GOT).
lg <target>, sym@GOT(r12) */
if (reload_in_progress || reload_completed)
df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
new_rtx = gen_const_mem (Pmode, new_rtx);
emit_move_insn (reg, new_rtx);
new_rtx = reg;
}
else
{
/* If the GOT offset might be >= 4k, we determine the position
of the GOT entry via a PC-relative LARL (@GOTENT).
larl temp, sym@GOTENT
lg <target>, 0(temp) */
rtx temp = reg ? reg : gen_reg_rtx (Pmode);
gcc_assert (REGNO (temp) >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (REGNO (temp)) == ADDR_REGS);
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTENT);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
emit_move_insn (temp, new_rtx);
new_rtx = gen_const_mem (Pmode, temp);
emit_move_insn (reg, new_rtx);
new_rtx = reg;
}
}
else if (GET_CODE (addr) == UNSPEC && GET_CODE (addend) == CONST_INT)
{
gcc_assert (XVECLEN (addr, 0) == 1);
switch (XINT (addr, 1))
{
/* These address symbols (or PLT slots) relative to the GOT
(not GOT slots!). In general this will exceed the
displacement range so these value belong into the literal
pool. */
case UNSPEC_GOTOFF:
case UNSPEC_PLTOFF:
new_rtx = force_const_mem (Pmode, orig);
break;
/* For -fPIC the GOT size might exceed the displacement
range so make sure the value is in the literal pool. */
case UNSPEC_GOT:
if (flag_pic == 2)
new_rtx = force_const_mem (Pmode, orig);
break;
/* For @GOTENT larl is used. This is handled like local
symbol refs. */
case UNSPEC_GOTENT:
gcc_unreachable ();
break;
/* For @PLT larl is used. This is handled like local
symbol refs. */
case UNSPEC_PLT31:
gcc_unreachable ();
break;
/* Everything else cannot happen. */
default:
gcc_unreachable ();
}
}
else if (addend != const0_rtx)
{
/* Otherwise, compute the sum. */
rtx base = legitimize_pic_address (addr, reg);
new_rtx = legitimize_pic_address (addend,
base == reg ? NULL_RTX : reg);
if (GET_CODE (new_rtx) == CONST_INT)
new_rtx = plus_constant (Pmode, base, INTVAL (new_rtx));
else
{
if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1)))
{
base = gen_rtx_PLUS (Pmode, base, XEXP (new_rtx, 0));
new_rtx = XEXP (new_rtx, 1);
}
new_rtx = gen_rtx_PLUS (Pmode, base, new_rtx);
}
if (GET_CODE (new_rtx) == CONST)
new_rtx = XEXP (new_rtx, 0);
new_rtx = force_operand (new_rtx, 0);
}
return new_rtx;
}
/* Load the thread pointer into a register. */
rtx
s390_get_thread_pointer (void)
{
rtx tp = gen_reg_rtx (Pmode);
emit_insn (gen_get_thread_pointer (Pmode, tp));
mark_reg_pointer (tp, BITS_PER_WORD);
return tp;
}
/* Emit a tls call insn. The call target is the SYMBOL_REF stored
in s390_tls_symbol which always refers to __tls_get_offset.
The returned offset is written to RESULT_REG and an USE rtx is
generated for TLS_CALL. */
static GTY(()) rtx s390_tls_symbol;
static void
s390_emit_tls_call_insn (rtx result_reg, rtx tls_call)
{
rtx insn;
if (!flag_pic)
emit_insn (s390_load_got ());
if (!s390_tls_symbol)
{
s390_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_offset");
SYMBOL_REF_FLAGS (s390_tls_symbol) |= SYMBOL_FLAG_FUNCTION;
}
insn = s390_emit_call (s390_tls_symbol, tls_call, result_reg,
gen_rtx_REG (Pmode, RETURN_REGNUM));
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), result_reg);
RTL_CONST_CALL_P (insn) = 1;
}
/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
this (thread-local) address. REG may be used as temporary. */
static rtx
legitimize_tls_address (rtx addr, rtx reg)
{
rtx new_rtx, tls_call, temp, base, r2;
rtx_insn *insn;
if (GET_CODE (addr) == SYMBOL_REF)
switch (tls_symbolic_operand (addr))
{
case TLS_MODEL_GLOBAL_DYNAMIC:
start_sequence ();
r2 = gen_rtx_REG (Pmode, 2);
tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_TLSGD);
new_rtx = gen_rtx_CONST (Pmode, tls_call);
new_rtx = force_const_mem (Pmode, new_rtx);
emit_move_insn (r2, new_rtx);
s390_emit_tls_call_insn (r2, tls_call);
insn = get_insns ();
end_sequence ();
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF);
temp = gen_reg_rtx (Pmode);
emit_libcall_block (insn, temp, r2, new_rtx);
new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
if (reg != 0)
{
s390_load_address (reg, new_rtx);
new_rtx = reg;
}
break;
case TLS_MODEL_LOCAL_DYNAMIC:
start_sequence ();
r2 = gen_rtx_REG (Pmode, 2);
tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM);
new_rtx = gen_rtx_CONST (Pmode, tls_call);
new_rtx = force_const_mem (Pmode, new_rtx);
emit_move_insn (r2, new_rtx);
s390_emit_tls_call_insn (r2, tls_call);
insn = get_insns ();
end_sequence ();
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM_NTPOFF);
temp = gen_reg_rtx (Pmode);
emit_libcall_block (insn, temp, r2, new_rtx);
new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
base = gen_reg_rtx (Pmode);
s390_load_address (base, new_rtx);
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_DTPOFF);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = force_const_mem (Pmode, new_rtx);
temp = gen_reg_rtx (Pmode);
emit_move_insn (temp, new_rtx);
new_rtx = gen_rtx_PLUS (Pmode, base, temp);
if (reg != 0)
{
s390_load_address (reg, new_rtx);
new_rtx = reg;
}
break;
case TLS_MODEL_INITIAL_EXEC:
if (flag_pic == 1)
{
/* Assume GOT offset < 4k. This is handled the same way
in both 31- and 64-bit code. */
if (reload_in_progress || reload_completed)
df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
new_rtx = gen_const_mem (Pmode, new_rtx);
temp = gen_reg_rtx (Pmode);
emit_move_insn (temp, new_rtx);
}
else
{
/* If the GOT offset might be >= 4k, we determine the position
of the GOT entry via a PC-relative LARL. */
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
temp = gen_reg_rtx (Pmode);
emit_move_insn (temp, new_rtx);
new_rtx = gen_const_mem (Pmode, temp);
temp = gen_reg_rtx (Pmode);
emit_move_insn (temp, new_rtx);
}
new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
if (reg != 0)
{
s390_load_address (reg, new_rtx);
new_rtx = reg;
}
break;
case TLS_MODEL_LOCAL_EXEC:
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = force_const_mem (Pmode, new_rtx);
temp = gen_reg_rtx (Pmode);
emit_move_insn (temp, new_rtx);
new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
if (reg != 0)
{
s390_load_address (reg, new_rtx);
new_rtx = reg;
}
break;
default:
gcc_unreachable ();
}
else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == UNSPEC)
{
switch (XINT (XEXP (addr, 0), 1))
{
case UNSPEC_NTPOFF:
case UNSPEC_INDNTPOFF:
new_rtx = addr;
break;
default:
gcc_unreachable ();
}
}
else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
{
new_rtx = XEXP (XEXP (addr, 0), 0);
if (GET_CODE (new_rtx) != SYMBOL_REF)
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = legitimize_tls_address (new_rtx, reg);
new_rtx = plus_constant (Pmode, new_rtx,
INTVAL (XEXP (XEXP (addr, 0), 1)));
new_rtx = force_operand (new_rtx, 0);
}
/* (const (neg (unspec (symbol_ref)))) -> (neg (const (unspec (symbol_ref)))) */
else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == NEG)
{
new_rtx = XEXP (XEXP (addr, 0), 0);
if (GET_CODE (new_rtx) != SYMBOL_REF)
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = legitimize_tls_address (new_rtx, reg);
new_rtx = gen_rtx_NEG (Pmode, new_rtx);
new_rtx = force_operand (new_rtx, 0);
}
else
gcc_unreachable (); /* for now ... */
return new_rtx;
}
/* Emit insns making the address in operands[1] valid for a standard
move to operands[0]. operands[1] is replaced by an address which
should be used instead of the former RTX to emit the move
pattern. */
void
emit_symbolic_move (rtx *operands)
{
rtx temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (Pmode, operands[1]);
else if (TLS_SYMBOLIC_CONST (operands[1]))
operands[1] = legitimize_tls_address (operands[1], temp);
else if (flag_pic)
operands[1] = legitimize_pic_address (operands[1], temp);
}
/* Try machine-dependent ways of modifying an illegitimate address X
to be legitimate. If we find one, return the new, valid address.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE is the mode of the operand pointed to by X.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address for details. */
static rtx
s390_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED)
{
rtx constant_term = const0_rtx;
if (TLS_SYMBOLIC_CONST (x))
{
x = legitimize_tls_address (x, 0);
if (s390_legitimate_address_p (mode, x, FALSE))
return x;
}
else if (GET_CODE (x) == PLUS
&& (TLS_SYMBOLIC_CONST (XEXP (x, 0))
|| TLS_SYMBOLIC_CONST (XEXP (x, 1))))
{
return x;
}
else if (flag_pic)
{
if (SYMBOLIC_CONST (x)
|| (GET_CODE (x) == PLUS
&& (SYMBOLIC_CONST (XEXP (x, 0))
|| SYMBOLIC_CONST (XEXP (x, 1)))))
x = legitimize_pic_address (x, 0);
if (s390_legitimate_address_p (mode, x, FALSE))
return x;
}
x = eliminate_constant_term (x, &constant_term);
/* Optimize loading of large displacements by splitting them
into the multiple of 4K and the rest; this allows the
former to be CSE'd if possible.
Don't do this if the displacement is added to a register
pointing into the stack frame, as the offsets will
change later anyway. */
if (GET_CODE (constant_term) == CONST_INT
&& !TARGET_LONG_DISPLACEMENT
&& !DISP_IN_RANGE (INTVAL (constant_term))
&& !(REG_P (x) && REGNO_PTR_FRAME_P (REGNO (x))))
{
HOST_WIDE_INT lower = INTVAL (constant_term) & 0xfff;
HOST_WIDE_INT upper = INTVAL (constant_term) ^ lower;
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (GEN_INT (upper), temp);
if (val != temp)
emit_move_insn (temp, val);
x = gen_rtx_PLUS (Pmode, x, temp);
constant_term = GEN_INT (lower);
}
if (GET_CODE (x) == PLUS)
{
if (GET_CODE (XEXP (x, 0)) == REG)
{
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (XEXP (x, 1), temp);
if (val != temp)
emit_move_insn (temp, val);
x = gen_rtx_PLUS (Pmode, XEXP (x, 0), temp);
}
else if (GET_CODE (XEXP (x, 1)) == REG)
{
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (XEXP (x, 0), temp);
if (val != temp)
emit_move_insn (temp, val);
x = gen_rtx_PLUS (Pmode, temp, XEXP (x, 1));
}
}
if (constant_term != const0_rtx)
x = gen_rtx_PLUS (Pmode, x, constant_term);
return x;
}
/* Try a machine-dependent way of reloading an illegitimate address AD
operand. If we find one, push the reload and return the new address.
MODE is the mode of the enclosing MEM. OPNUM is the operand number
and TYPE is the reload type of the current reload. */
rtx
legitimize_reload_address (rtx ad, machine_mode mode ATTRIBUTE_UNUSED,
int opnum, int type)
{
if (!optimize || TARGET_LONG_DISPLACEMENT)
return NULL_RTX;
if (GET_CODE (ad) == PLUS)
{
rtx tem = simplify_binary_operation (PLUS, Pmode,
XEXP (ad, 0), XEXP (ad, 1));
if (tem)
ad = tem;
}
if (GET_CODE (ad) == PLUS
&& GET_CODE (XEXP (ad, 0)) == REG
&& GET_CODE (XEXP (ad, 1)) == CONST_INT
&& !DISP_IN_RANGE (INTVAL (XEXP (ad, 1))))
{
HOST_WIDE_INT lower = INTVAL (XEXP (ad, 1)) & 0xfff;
HOST_WIDE_INT upper = INTVAL (XEXP (ad, 1)) ^ lower;
rtx cst, tem, new_rtx;
cst = GEN_INT (upper);
if (!legitimate_reload_constant_p (cst))
cst = force_const_mem (Pmode, cst);
tem = gen_rtx_PLUS (Pmode, XEXP (ad, 0), cst);
new_rtx = gen_rtx_PLUS (Pmode, tem, GEN_INT (lower));
push_reload (XEXP (tem, 1), 0, &XEXP (tem, 1), 0,
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
opnum, (enum reload_type) type);
return new_rtx;
}
return NULL_RTX;
}
/* Emit code to move LEN bytes from SRC to DST. */
bool
s390_expand_cpymem (rtx dst, rtx src, rtx len, rtx min_len_rtx, rtx max_len_rtx)
{
/* Exit early in case nothing has to be done. */
if (CONST_INT_P (len) && UINTVAL (len) == 0)
return true;
unsigned HOST_WIDE_INT min_len = UINTVAL (min_len_rtx);
unsigned HOST_WIDE_INT max_len
= max_len_rtx ? UINTVAL (max_len_rtx) : HOST_WIDE_INT_M1U;
/* Expand memcpy for constant length operands without a loop if it
is shorter that way.
With a constant length argument a
memcpy loop (without pfd) is 36 bytes -> 6 * mvc */
if (CONST_INT_P (len)
&& UINTVAL (len) <= 6 * 256
&& (!TARGET_MVCLE || UINTVAL (len) <= 256))
{
HOST_WIDE_INT o, l;
for (l = INTVAL (len), o = 0; l > 0; l -= 256, o += 256)
{
rtx newdst = adjust_address (dst, BLKmode, o);
rtx newsrc = adjust_address (src, BLKmode, o);
emit_insn (gen_cpymem_short (newdst, newsrc,
GEN_INT (l > 256 ? 255 : l - 1)));
}
return true;
}
else if (TARGET_MVCLE
&& (s390_tune < PROCESSOR_2097_Z10
|| (CONST_INT_P (len) && UINTVAL (len) <= (1 << 16))))
{
emit_insn (gen_cpymem_long (dst, src, convert_to_mode (Pmode, len, 1)));
return true;
}
/* Non-constant length and no loop required. */
else if (!CONST_INT_P (len) && max_len <= 256)
{
rtx_code_label *end_label;
if (min_len == 0)
{
end_label = gen_label_rtx ();
emit_cmp_and_jump_insns (len, const0_rtx, EQ, NULL_RTX,
GET_MODE (len), 1, end_label,
profile_probability::very_unlikely ());
}
rtx lenm1 = expand_binop (GET_MODE (len), add_optab, len, constm1_rtx,
NULL_RTX, 1, OPTAB_DIRECT);
/* Prefer a vectorized implementation over one which makes use of an
execute instruction since it is faster (although it increases register
pressure). */
if (max_len <= 16 && TARGET_VX)
{
rtx tmp = gen_reg_rtx (V16QImode);
lenm1 = convert_to_mode (SImode, lenm1, 1);
emit_insn (gen_vllv16qi (tmp, lenm1, src));
emit_insn (gen_vstlv16qi (tmp, lenm1, dst));
}
else if (TARGET_Z15)
emit_insn (gen_mvcrl (dst, src, convert_to_mode (SImode, lenm1, 1)));
else
emit_insn (
gen_cpymem_short (dst, src, convert_to_mode (Pmode, lenm1, 1)));
if (min_len == 0)
emit_label (end_label);
return true;
}
else if (s390_tune < PROCESSOR_2097_Z10 || (CONST_INT_P (len) && UINTVAL (len) <= (1 << 16)))
{
rtx dst_addr, src_addr, count, blocks, temp;
rtx_code_label *loop_start_label = gen_label_rtx ();
rtx_code_label *loop_end_label = gen_label_rtx ();
rtx_code_label *end_label = gen_label_rtx ();
machine_mode mode;
mode = GET_MODE (len);
if (mode == VOIDmode)
mode = Pmode;
dst_addr = gen_reg_rtx (Pmode);
src_addr = gen_reg_rtx (Pmode);
count = gen_reg_rtx (mode);
blocks = gen_reg_rtx (mode);
convert_move (count, len, 1);
if (min_len == 0)
emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1,
end_label);
emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
emit_move_insn (src_addr, force_operand (XEXP (src, 0), NULL_RTX));
dst = change_address (dst, VOIDmode, dst_addr);
src = change_address (src, VOIDmode, src_addr);
temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1,
OPTAB_DIRECT);
if (temp != count)
emit_move_insn (count, temp);
temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1,
OPTAB_DIRECT);
if (temp != blocks)
emit_move_insn (blocks, temp);
emit_cmp_and_jump_insns (blocks, const0_rtx,
EQ, NULL_RTX, mode, 1, loop_end_label);
emit_label (loop_start_label);
if (TARGET_Z10
&& (GET_CODE (len) != CONST_INT || INTVAL (len) > 768))
{
rtx prefetch;
/* Issue a read prefetch for the +3 cache line. */
prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, src_addr, GEN_INT (768)),
const0_rtx, const0_rtx);
PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
emit_insn (prefetch);
/* Issue a write prefetch for the +3 cache line. */
prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (768)),
const1_rtx, const0_rtx);
PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
emit_insn (prefetch);
}
emit_insn (gen_cpymem_short (dst, src, GEN_INT (255)));
s390_load_address (dst_addr,
gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256)));
s390_load_address (src_addr,
gen_rtx_PLUS (Pmode, src_addr, GEN_INT (256)));
temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1,
OPTAB_DIRECT);
if (temp != blocks)
emit_move_insn (blocks, temp);
emit_cmp_and_jump_insns (blocks, const0_rtx,
EQ, NULL_RTX, mode, 1, loop_end_label);
emit_jump (loop_start_label);
emit_label (loop_end_label);
emit_insn (gen_cpymem_short (dst, src,
convert_to_mode (Pmode, count, 1)));
emit_label (end_label);
return true;
}
return false;
}
bool
s390_expand_movmem (rtx dst, rtx src, rtx len, rtx min_len_rtx, rtx max_len_rtx)
{
/* Exit early in case nothing has to be done. */
if (CONST_INT_P (len) && UINTVAL (len) == 0)
return true;
/* Exit early in case length is not upper bounded. */
else if (max_len_rtx == NULL)
return false;
unsigned HOST_WIDE_INT min_len = UINTVAL (min_len_rtx);
unsigned HOST_WIDE_INT max_len = UINTVAL (max_len_rtx);
/* At most 16 bytes. */
if (max_len <= 16 && TARGET_VX)
{
rtx_code_label *end_label;
if (min_len == 0)
{
end_label = gen_label_rtx ();
emit_cmp_and_jump_insns (len, const0_rtx, EQ, NULL_RTX,
GET_MODE (len), 1, end_label,
profile_probability::very_unlikely ());
}
rtx lenm1;
if (CONST_INT_P (len))
{
lenm1 = gen_reg_rtx (SImode);
emit_move_insn (lenm1, GEN_INT (UINTVAL (len) - 1));
}
else
lenm1
= expand_binop (SImode, add_optab, convert_to_mode (SImode, len, 1),
constm1_rtx, NULL_RTX, 1, OPTAB_DIRECT);
rtx tmp = gen_reg_rtx (V16QImode);
emit_insn (gen_vllv16qi (tmp, lenm1, src));
emit_insn (gen_vstlv16qi (tmp, lenm1, dst));
if (min_len == 0)
emit_label (end_label);
return true;
}
/* At most 256 bytes. */
else if (max_len <= 256 && TARGET_Z15)
{
rtx_code_label *end_label = gen_label_rtx ();
if (min_len == 0)
emit_cmp_and_jump_insns (len, const0_rtx, EQ, NULL_RTX, GET_MODE (len),
1, end_label,
profile_probability::very_unlikely ());
rtx dst_addr = gen_reg_rtx (Pmode);
rtx src_addr = gen_reg_rtx (Pmode);
emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
emit_move_insn (src_addr, force_operand (XEXP (src, 0), NULL_RTX));
rtx lenm1 = CONST_INT_P (len)
? GEN_INT (UINTVAL (len) - 1)
: expand_binop (GET_MODE (len), add_optab, len, constm1_rtx,
NULL_RTX, 1, OPTAB_DIRECT);
rtx_code_label *right_to_left_label = gen_label_rtx ();
emit_cmp_and_jump_insns (src_addr, dst_addr, LT, NULL_RTX, GET_MODE (len),
1, right_to_left_label);
// MVC
emit_insn (
gen_cpymem_short (dst, src, convert_to_mode (Pmode, lenm1, 1)));
emit_jump (end_label);
// MVCRL
emit_label (right_to_left_label);
emit_insn (gen_mvcrl (dst, src, convert_to_mode (SImode, lenm1, 1)));
emit_label (end_label);
return true;
}
return false;
}
/* Emit code to set LEN bytes at DST to VAL.
Make use of clrmem if VAL is zero. */
void
s390_expand_setmem (rtx dst, rtx len, rtx val, rtx min_len_rtx, rtx max_len_rtx)
{
/* Exit early in case nothing has to be done. */
if (CONST_INT_P (len) && UINTVAL (len) == 0)
return;
gcc_assert (GET_CODE (val) == CONST_INT || GET_MODE (val) == QImode);
unsigned HOST_WIDE_INT min_len = UINTVAL (min_len_rtx);
unsigned HOST_WIDE_INT max_len
= max_len_rtx ? UINTVAL (max_len_rtx) : HOST_WIDE_INT_M1U;
/* Vectorize memset with a constant length
- if 0 < LEN < 16, then emit a vstl based solution;
- if 16 <= LEN <= 64, then emit a vst based solution
where the last two vector stores may overlap in case LEN%16!=0. Paying
the price for an overlap is negligible compared to an extra GPR which is
required for vstl. */
if (CONST_INT_P (len) && UINTVAL (len) <= 64 && val != const0_rtx
&& TARGET_VX)
{
rtx val_vec = gen_reg_rtx (V16QImode);
emit_move_insn (val_vec, gen_rtx_VEC_DUPLICATE (V16QImode, val));
if (UINTVAL (len) < 16)
{
rtx len_reg = gen_reg_rtx (SImode);
emit_move_insn (len_reg, GEN_INT (UINTVAL (len) - 1));
emit_insn (gen_vstlv16qi (val_vec, len_reg, dst));
}
else
{
unsigned HOST_WIDE_INT l = UINTVAL (len) / 16;
unsigned HOST_WIDE_INT r = UINTVAL (len) % 16;
unsigned HOST_WIDE_INT o = 0;
for (unsigned HOST_WIDE_INT i = 0; i < l; ++i)
{
rtx newdst = adjust_address (dst, V16QImode, o);
emit_move_insn (newdst, val_vec);
o += 16;
}
if (r != 0)
{
rtx newdst = adjust_address (dst, V16QImode, (o - 16) + r);
emit_move_insn (newdst, val_vec);
}
}
}
/* Expand setmem/clrmem for a constant length operand without a
loop if it will be shorter that way.
clrmem loop (with PFD) is 30 bytes -> 5 * xc
clrmem loop (without PFD) is 24 bytes -> 4 * xc
setmem loop (with PFD) is 38 bytes -> ~4 * (mvi/stc + mvc)
setmem loop (without PFD) is 32 bytes -> ~4 * (mvi/stc + mvc) */
else if (GET_CODE (len) == CONST_INT
&& ((val == const0_rtx
&& (INTVAL (len) <= 256 * 4
|| (INTVAL (len) <= 256 * 5 && TARGET_SETMEM_PFD(val,len))))
|| (val != const0_rtx && INTVAL (len) <= 257 * 4))
&& (!TARGET_MVCLE || INTVAL (len) <= 256))
{
HOST_WIDE_INT o, l;
if (val == const0_rtx)
/* clrmem: emit 256 byte blockwise XCs. */
for (l = INTVAL (len), o = 0; l > 0; l -= 256, o += 256)
{
rtx newdst = adjust_address (dst, BLKmode, o);
emit_insn (gen_clrmem_short (newdst,
GEN_INT (l > 256 ? 255 : l - 1)));
}
else
/* setmem: emit 1(mvi) + 256(mvc) byte blockwise memsets by
setting first byte to val and using a 256 byte mvc with one
byte overlap to propagate the byte. */
for (l = INTVAL (len), o = 0; l > 0; l -= 257, o += 257)
{
rtx newdst = adjust_address (dst, BLKmode, o);
emit_move_insn (adjust_address (dst, QImode, o), val);
if (l > 1)
{
rtx newdstp1 = adjust_address (dst, BLKmode, o + 1);
emit_insn (gen_cpymem_short (newdstp1, newdst,
GEN_INT (l > 257 ? 255 : l - 2)));
}
}
}
else if (TARGET_MVCLE)
{
val = force_not_mem (convert_modes (Pmode, QImode, val, 1));
if (TARGET_64BIT)
emit_insn (gen_setmem_long_di (dst, convert_to_mode (Pmode, len, 1),
val));
else
emit_insn (gen_setmem_long_si (dst, convert_to_mode (Pmode, len, 1),
val));
}
/* Non-constant length and no loop required. */
else if (!CONST_INT_P (len) && max_len <= 256)
{
rtx_code_label *end_label;
if (min_len == 0)
{
end_label = gen_label_rtx ();
emit_cmp_and_jump_insns (len, const0_rtx, EQ, NULL_RTX,
GET_MODE (len), 1, end_label,
profile_probability::very_unlikely ());
}
rtx lenm1 = expand_binop (GET_MODE (len), add_optab, len, constm1_rtx,
NULL_RTX, 1, OPTAB_DIRECT);
/* Prefer a vectorized implementation over one which makes use of an
execute instruction since it is faster (although it increases register
pressure). */
if (max_len <= 16 && TARGET_VX)
{
rtx val_vec = gen_reg_rtx (V16QImode);
if (val == const0_rtx)
emit_move_insn (val_vec, CONST0_RTX (V16QImode));
else
emit_move_insn (val_vec, gen_rtx_VEC_DUPLICATE (V16QImode, val));
lenm1 = convert_to_mode (SImode, lenm1, 1);
emit_insn (gen_vstlv16qi (val_vec, lenm1, dst));
}
else
{
if (val == const0_rtx)
emit_insn (
gen_clrmem_short (dst, convert_to_mode (Pmode, lenm1, 1)));
else
{
emit_move_insn (adjust_address (dst, QImode, 0), val);
rtx_code_label *onebyte_end_label;
if (min_len <= 1)
{
onebyte_end_label = gen_label_rtx ();
emit_cmp_and_jump_insns (
len, const1_rtx, EQ, NULL_RTX, GET_MODE (len), 1,
onebyte_end_label, profile_probability::very_unlikely ());
}
rtx dstp1 = adjust_address (dst, VOIDmode, 1);
rtx lenm2
= expand_binop (GET_MODE (len), add_optab, len, GEN_INT (-2),
NULL_RTX, 1, OPTAB_DIRECT);
lenm2 = convert_to_mode (Pmode, lenm2, 1);
emit_insn (gen_cpymem_short (dstp1, dst, lenm2));
if (min_len <= 1)
emit_label (onebyte_end_label);
}
}
if (min_len == 0)
emit_label (end_label);
}
else
{
rtx dst_addr, count, blocks, temp, dstp1 = NULL_RTX;
rtx_code_label *loop_start_label = gen_label_rtx ();
rtx_code_label *onebyte_end_label = gen_label_rtx ();
rtx_code_label *zerobyte_end_label = gen_label_rtx ();
rtx_code_label *restbyte_end_label = gen_label_rtx ();
machine_mode mode;
mode = GET_MODE (len);
if (mode == VOIDmode)
mode = Pmode;
dst_addr = gen_reg_rtx (Pmode);
count = gen_reg_rtx (mode);
blocks = gen_reg_rtx (mode);
convert_move (count, len, 1);
if (min_len == 0)
emit_cmp_and_jump_insns (count, const0_rtx, EQ, NULL_RTX, mode, 1,
zerobyte_end_label,
profile_probability::very_unlikely ());
/* We need to make a copy of the target address since memset is
supposed to return it unmodified. We have to make it here
already since the new reg is used at onebyte_end_label. */
emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
dst = change_address (dst, VOIDmode, dst_addr);
if (val != const0_rtx)
{
/* When using the overlapping mvc the original target
address is only accessed as single byte entity (even by
the mvc reading this value). */
set_mem_size (dst, 1);
dstp1 = adjust_address (dst, VOIDmode, 1);
if (min_len <= 1)
emit_cmp_and_jump_insns (count, const1_rtx, EQ, NULL_RTX, mode, 1,
onebyte_end_label,
profile_probability::very_unlikely ());
}
/* There is one unconditional (mvi+mvc)/xc after the loop
dealing with the rest of the bytes, subtracting two (mvi+mvc)
or one (xc) here leaves this number of bytes to be handled by
it. */
temp = expand_binop (mode, add_optab, count,
val == const0_rtx ? constm1_rtx : GEN_INT (-2),
count, 1, OPTAB_DIRECT);
if (temp != count)
emit_move_insn (count, temp);
temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1,
OPTAB_DIRECT);
if (temp != blocks)
emit_move_insn (blocks, temp);
emit_cmp_and_jump_insns (blocks, const0_rtx,
EQ, NULL_RTX, mode, 1, restbyte_end_label);
emit_jump (loop_start_label);
if (val != const0_rtx && min_len <= 1)
{
/* The 1 byte != 0 special case. Not handled efficiently
since we require two jumps for that. However, this
should be very rare. */
emit_label (onebyte_end_label);
emit_move_insn (adjust_address (dst, QImode, 0), val);
emit_jump (zerobyte_end_label);
}
emit_label (loop_start_label);
if (TARGET_SETMEM_PFD (val, len))
{
/* Issue a write prefetch. */
rtx distance = GEN_INT (TARGET_SETMEM_PREFETCH_DISTANCE);
rtx prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, dst_addr, distance),
const1_rtx, const0_rtx);
emit_insn (prefetch);
PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
}
if (val == const0_rtx)
emit_insn (gen_clrmem_short (dst, GEN_INT (255)));
else
{
/* Set the first byte in the block to the value and use an
overlapping mvc for the block. */
emit_move_insn (adjust_address (dst, QImode, 0), val);
emit_insn (gen_cpymem_short (dstp1, dst, GEN_INT (254)));
}
s390_load_address (dst_addr,
gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256)));
temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1,
OPTAB_DIRECT);
if (temp != blocks)
emit_move_insn (blocks, temp);
emit_cmp_and_jump_insns (blocks, const0_rtx,
NE, NULL_RTX, mode, 1, loop_start_label);
emit_label (restbyte_end_label);
if (val == const0_rtx)
emit_insn (gen_clrmem_short (dst, convert_to_mode (Pmode, count, 1)));
else
{
/* Set the first byte in the block to the value and use an
overlapping mvc for the block. */
emit_move_insn (adjust_address (dst, QImode, 0), val);
/* execute only uses the lowest 8 bits of count that's
exactly what we need here. */
emit_insn (gen_cpymem_short (dstp1, dst,
convert_to_mode (Pmode, count, 1)));
}
emit_label (zerobyte_end_label);
}
}
/* Emit code to compare LEN bytes at OP0 with those at OP1,
and return the result in TARGET. */
bool
s390_expand_cmpmem (rtx target, rtx op0, rtx op1, rtx len)
{
rtx ccreg = gen_rtx_REG (CCUmode, CC_REGNUM);
rtx tmp;
/* When tuning for z10 or higher we rely on the Glibc functions to
do the right thing. Only for constant lengths below 64k we will
generate inline code. */
if (s390_tune >= PROCESSOR_2097_Z10
&& (GET_CODE (len) != CONST_INT || INTVAL (len) > (1<<16)))
return false;
/* As the result of CMPINT is inverted compared to what we need,
we have to swap the operands. */
tmp = op0; op0 = op1; op1 = tmp;
if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256)
{
if (INTVAL (len) > 0)
{
emit_insn (gen_cmpmem_short (op0, op1, GEN_INT (INTVAL (len) - 1)));
emit_insn (gen_cmpint (target, ccreg));
}
else
emit_move_insn (target, const0_rtx);
}
else if (TARGET_MVCLE)
{
emit_insn (gen_cmpmem_long (op0, op1, convert_to_mode (Pmode, len, 1)));
emit_insn (gen_cmpint (target, ccreg));
}
else
{
rtx addr0, addr1, count, blocks, temp;
rtx_code_label *loop_start_label = gen_label_rtx ();
rtx_code_label *loop_end_label = gen_label_rtx ();
rtx_code_label *end_label = gen_label_rtx ();
machine_mode mode;
mode = GET_MODE (len);
if (mode == VOIDmode)
mode = Pmode;
addr0 = gen_reg_rtx (Pmode);
addr1 = gen_reg_rtx (Pmode);
count = gen_reg_rtx (mode);
blocks = gen_reg_rtx (mode);
convert_move (count, len, 1);
emit_cmp_and_jump_insns (count, const0_rtx,
EQ, NULL_RTX, mode, 1, end_label);
emit_move_insn (addr0, force_operand (XEXP (op0, 0), NULL_RTX));
emit_move_insn (addr1, force_operand (XEXP (op1, 0), NULL_RTX));
op0 = change_address (op0, VOIDmode, addr0);
op1 = change_address (op1, VOIDmode, addr1);
temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1,
OPTAB_DIRECT);
if (temp != count)
emit_move_insn (count, temp);
temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1,
OPTAB_DIRECT);
if (temp != blocks)
emit_move_insn (blocks, temp);
emit_cmp_and_jump_insns (blocks, const0_rtx,
EQ, NULL_RTX, mode, 1, loop_end_label);
emit_label (loop_start_label);
if (TARGET_Z10
&& (GET_CODE (len) != CONST_INT || INTVAL (len) > 512))
{
rtx prefetch;
/* Issue a read prefetch for the +2 cache line of operand 1. */
prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, addr0, GEN_INT (512)),
const0_rtx, const0_rtx);
emit_insn (prefetch);
PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
/* Issue a read prefetch for the +2 cache line of operand 2. */
prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, addr1, GEN_INT (512)),
const0_rtx, const0_rtx);
emit_insn (prefetch);
PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
}
emit_insn (gen_cmpmem_short (op0, op1, GEN_INT (255)));
temp = gen_rtx_NE (VOIDmode, ccreg, const0_rtx);
temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp,
gen_rtx_LABEL_REF (VOIDmode, end_label), pc_rtx);
temp = gen_rtx_SET (pc_rtx, temp);
emit_jump_insn (temp);
s390_load_address (addr0,
gen_rtx_PLUS (Pmode, addr0, GEN_INT (256)));
s390_load_address (addr1,
gen_rtx_PLUS (Pmode, addr1, GEN_INT (256)));
temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1,
OPTAB_DIRECT);
if (temp != blocks)
emit_move_insn (blocks, temp);
emit_cmp_and_jump_insns (blocks, const0_rtx,
EQ, NULL_RTX, mode, 1, loop_end_label);
emit_jump (loop_start_label);
emit_label (loop_end_label);
emit_insn (gen_cmpmem_short (op0, op1,
convert_to_mode (Pmode, count, 1)));
emit_label (end_label);
emit_insn (gen_cmpint (target, ccreg));
}
return true;
}
/* Emit a conditional jump to LABEL for condition code mask MASK using
comparsion operator COMPARISON. Return the emitted jump insn. */
static rtx_insn *
s390_emit_ccraw_jump (HOST_WIDE_INT mask, enum rtx_code comparison, rtx label)
{
rtx temp;
gcc_assert (comparison == EQ || comparison == NE);
gcc_assert (mask > 0 && mask < 15);
temp = gen_rtx_fmt_ee (comparison, VOIDmode,
gen_rtx_REG (CCRAWmode, CC_REGNUM), GEN_INT (mask));
temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp,
gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx);
temp = gen_rtx_SET (pc_rtx, temp);
return emit_jump_insn (temp);
}
/* Emit the instructions to implement strlen of STRING and store the
result in TARGET. The string has the known ALIGNMENT. This
version uses vector instructions and is therefore not appropriate
for targets prior to z13. */
void
s390_expand_vec_strlen (rtx target, rtx string, rtx alignment)
{
rtx highest_index_to_load_reg = gen_reg_rtx (Pmode);
rtx str_reg = gen_reg_rtx (V16QImode);
rtx str_addr_base_reg = gen_reg_rtx (Pmode);
rtx str_idx_reg = gen_reg_rtx (Pmode);
rtx result_reg = gen_reg_rtx (V16QImode);
rtx is_aligned_label = gen_label_rtx ();
rtx into_loop_label = NULL_RTX;
rtx loop_start_label = gen_label_rtx ();
rtx temp;
rtx len = gen_reg_rtx (QImode);
rtx cond;
rtx mem;
s390_load_address (str_addr_base_reg, XEXP (string, 0));
emit_move_insn (str_idx_reg, const0_rtx);
if (INTVAL (alignment) < 16)
{
/* Check whether the address happens to be aligned properly so
jump directly to the aligned loop. */
emit_cmp_and_jump_insns (gen_rtx_AND (Pmode,
str_addr_base_reg, GEN_INT (15)),
const0_rtx, EQ, NULL_RTX,
Pmode, 1, is_aligned_label);
temp = gen_reg_rtx (Pmode);
temp = expand_binop (Pmode, and_optab, str_addr_base_reg,
GEN_INT (15), temp, 1, OPTAB_DIRECT);
gcc_assert (REG_P (temp));
highest_index_to_load_reg =
expand_binop (Pmode, sub_optab, GEN_INT (15), temp,
highest_index_to_load_reg, 1, OPTAB_DIRECT);
gcc_assert (REG_P (highest_index_to_load_reg));
emit_insn (gen_vllv16qi (str_reg,
convert_to_mode (SImode, highest_index_to_load_reg, 1),
gen_rtx_MEM (BLKmode, str_addr_base_reg)));
into_loop_label = gen_label_rtx ();
s390_emit_jump (into_loop_label, NULL_RTX);
emit_barrier ();
}
emit_label (is_aligned_label);
LABEL_NUSES (is_aligned_label) = INTVAL (alignment) < 16 ? 2 : 1;
/* Reaching this point we are only performing 16 bytes aligned
loads. */
emit_move_insn (highest_index_to_load_reg, GEN_INT (15));
emit_label (loop_start_label);
LABEL_NUSES (loop_start_label) = 1;
/* Load 16 bytes of the string into VR. */
mem = gen_rtx_MEM (V16QImode,
gen_rtx_PLUS (Pmode, str_idx_reg, str_addr_base_reg));
set_mem_align (mem, 128);
emit_move_insn (str_reg, mem);
if (into_loop_label != NULL_RTX)
{
emit_label (into_loop_label);
LABEL_NUSES (into_loop_label) = 1;
}
/* Increment string index by 16 bytes. */
expand_binop (Pmode, add_optab, str_idx_reg, GEN_INT (16),
str_idx_reg, 1, OPTAB_DIRECT);
emit_insn (gen_vec_vfenesv16qi (result_reg, str_reg, str_reg,
GEN_INT (VSTRING_FLAG_ZS | VSTRING_FLAG_CS)));
add_int_reg_note (s390_emit_ccraw_jump (8, NE, loop_start_label),
REG_BR_PROB,
profile_probability::very_likely ().to_reg_br_prob_note ());
emit_insn (gen_vec_extractv16qiqi (len, result_reg, GEN_INT (7)));
/* If the string pointer wasn't aligned we have loaded less then 16
bytes and the remaining bytes got filled with zeros (by vll).
Now we have to check whether the resulting index lies within the
bytes actually part of the string. */
cond = s390_emit_compare (GT, convert_to_mode (Pmode, len, 1),
highest_index_to_load_reg);
s390_load_address (highest_index_to_load_reg,
gen_rtx_PLUS (Pmode, highest_index_to_load_reg,
const1_rtx));
if (TARGET_64BIT)
emit_insn (gen_movdicc (str_idx_reg, cond,
highest_index_to_load_reg, str_idx_reg));
else
emit_insn (gen_movsicc (str_idx_reg, cond,
highest_index_to_load_reg, str_idx_reg));
add_reg_br_prob_note (s390_emit_jump (is_aligned_label, cond),
profile_probability::very_unlikely ());
expand_binop (Pmode, add_optab, str_idx_reg,
GEN_INT (-16), str_idx_reg, 1, OPTAB_DIRECT);
/* FIXME: len is already zero extended - so avoid the llgcr emitted
here. */
temp = expand_binop (Pmode, add_optab, str_idx_reg,
convert_to_mode (Pmode, len, 1),
target, 1, OPTAB_DIRECT);
if (temp != target)
emit_move_insn (target, temp);
}
void
s390_expand_vec_movstr (rtx result, rtx dst, rtx src)
{
rtx temp = gen_reg_rtx (Pmode);
rtx src_addr = XEXP (src, 0);
rtx dst_addr = XEXP (dst, 0);
rtx src_addr_reg = gen_reg_rtx (Pmode);
rtx dst_addr_reg = gen_reg_rtx (Pmode);
rtx offset = gen_reg_rtx (Pmode);
rtx vsrc = gen_reg_rtx (V16QImode);
rtx vpos = gen_reg_rtx (V16QImode);
rtx loadlen = gen_reg_rtx (SImode);
rtx gpos_qi = gen_reg_rtx(QImode);
rtx gpos = gen_reg_rtx (SImode);
rtx done_label = gen_label_rtx ();
rtx loop_label = gen_label_rtx ();
rtx exit_label = gen_label_rtx ();
rtx full_label = gen_label_rtx ();
/* Perform a quick check for string ending on the first up to 16
bytes and exit early if successful. */
emit_insn (gen_vlbb (vsrc, src, GEN_INT (6)));
emit_insn (gen_lcbb (loadlen, src_addr, GEN_INT (6)));
emit_insn (gen_vfenezv16qi (vpos, vsrc, vsrc));
emit_insn (gen_vec_extractv16qiqi (gpos_qi, vpos, GEN_INT (7)));
emit_move_insn (gpos, gen_rtx_SUBREG (SImode, gpos_qi, 0));
/* gpos is the byte index if a zero was found and 16 otherwise.
So if it is lower than the loaded bytes we have a hit. */
emit_cmp_and_jump_insns (gpos, loadlen, GE, NULL_RTX, SImode, 1,
full_label);
emit_insn (gen_vstlv16qi (vsrc, gpos, dst));
force_expand_binop (Pmode, add_optab, dst_addr, gpos, result,
1, OPTAB_DIRECT);
emit_jump (exit_label);
emit_barrier ();
emit_label (full_label);
LABEL_NUSES (full_label) = 1;
/* Calculate `offset' so that src + offset points to the last byte
before 16 byte alignment. */
/* temp = src_addr & 0xf */
force_expand_binop (Pmode, and_optab, src_addr, GEN_INT (15), temp,
1, OPTAB_DIRECT);
/* offset = 0xf - temp */
emit_move_insn (offset, GEN_INT (15));
force_expand_binop (Pmode, sub_optab, offset, temp, offset,
1, OPTAB_DIRECT);
/* Store `offset' bytes in the dstination string. The quick check
has loaded at least `offset' bytes into vsrc. */
emit_insn (gen_vstlv16qi (vsrc, gen_lowpart (SImode, offset), dst));
/* Advance to the next byte to be loaded. */
force_expand_binop (Pmode, add_optab, offset, const1_rtx, offset,
1, OPTAB_DIRECT);
/* Make sure the addresses are single regs which can be used as a
base. */
emit_move_insn (src_addr_reg, src_addr);
emit_move_insn (dst_addr_reg, dst_addr);
/* MAIN LOOP */
emit_label (loop_label);
LABEL_NUSES (loop_label) = 1;
emit_move_insn (vsrc,
gen_rtx_MEM (V16QImode,
gen_rtx_PLUS (Pmode, src_addr_reg, offset)));
emit_insn (gen_vec_vfenesv16qi (vpos, vsrc, vsrc,
GEN_INT (VSTRING_FLAG_ZS | VSTRING_FLAG_CS)));
add_int_reg_note (s390_emit_ccraw_jump (8, EQ, done_label),
REG_BR_PROB, profile_probability::very_unlikely ()
.to_reg_br_prob_note ());
emit_move_insn (gen_rtx_MEM (V16QImode,
gen_rtx_PLUS (Pmode, dst_addr_reg, offset)),
vsrc);
/* offset += 16 */
force_expand_binop (Pmode, add_optab, offset, GEN_INT (16),
offset, 1, OPTAB_DIRECT);
emit_jump (loop_label);
emit_barrier ();
/* REGULAR EXIT */
/* We are done. Add the offset of the zero character to the dst_addr
pointer to get the result. */
emit_label (done_label);
LABEL_NUSES (done_label) = 1;
force_expand_binop (Pmode, add_optab, dst_addr_reg, offset, dst_addr_reg,
1, OPTAB_DIRECT);
emit_insn (gen_vec_extractv16qiqi (gpos_qi, vpos, GEN_INT (7)));
emit_move_insn (gpos, gen_rtx_SUBREG (SImode, gpos_qi, 0));
emit_insn (gen_vstlv16qi (vsrc, gpos, gen_rtx_MEM (BLKmode, dst_addr_reg)));
force_expand_binop (Pmode, add_optab, dst_addr_reg, gpos, result,
1, OPTAB_DIRECT);
/* EARLY EXIT */
emit_label (exit_label);
LABEL_NUSES (exit_label) = 1;
}
/* Expand conditional increment or decrement using alc/slb instructions.
Should generate code setting DST to either SRC or SRC + INCREMENT,
depending on the result of the comparison CMP_OP0 CMP_CODE CMP_OP1.
Returns true if successful, false otherwise.
That makes it possible to implement some if-constructs without jumps e.g.:
(borrow = CC0 | CC1 and carry = CC2 | CC3)
unsigned int a, b, c;
if (a < b) c++; -> CCU b > a -> CC2; c += carry;
if (a < b) c--; -> CCL3 a - b -> borrow; c -= borrow;
if (a <= b) c++; -> CCL3 b - a -> borrow; c += carry;
if (a <= b) c--; -> CCU a <= b -> borrow; c -= borrow;
Checks for EQ and NE with a nonzero value need an additional xor e.g.:
if (a == b) c++; -> CCL3 a ^= b; 0 - a -> borrow; c += carry;
if (a == b) c--; -> CCU a ^= b; a <= 0 -> CC0 | CC1; c -= borrow;
if (a != b) c++; -> CCU a ^= b; a > 0 -> CC2; c += carry;
if (a != b) c--; -> CCL3 a ^= b; 0 - a -> borrow; c -= borrow; */
bool
s390_expand_addcc (enum rtx_code cmp_code, rtx cmp_op0, rtx cmp_op1,
rtx dst, rtx src, rtx increment)
{
machine_mode cmp_mode;
machine_mode cc_mode;
rtx op_res;
rtx insn;
rtvec p;
int ret;
if ((GET_MODE (cmp_op0) == SImode || GET_MODE (cmp_op0) == VOIDmode)
&& (GET_MODE (cmp_op1) == SImode || GET_MODE (cmp_op1) == VOIDmode))
cmp_mode = SImode;
else if ((GET_MODE (cmp_op0) == DImode || GET_MODE (cmp_op0) == VOIDmode)
&& (GET_MODE (cmp_op1) == DImode || GET_MODE (cmp_op1) == VOIDmode))
cmp_mode = DImode;
else
return false;
/* Try ADD LOGICAL WITH CARRY. */
if (increment == const1_rtx)
{
/* Determine CC mode to use. */
if (cmp_code == EQ || cmp_code == NE)
{
if (cmp_op1 != const0_rtx)
{
cmp_op0 = expand_simple_binop (cmp_mode, XOR, cmp_op0, cmp_op1,
NULL_RTX, 0, OPTAB_WIDEN);
cmp_op1 = const0_rtx;
}
cmp_code = cmp_code == EQ ? LEU : GTU;
}
if (cmp_code == LTU || cmp_code == LEU)
{
rtx tem = cmp_op0;
cmp_op0 = cmp_op1;
cmp_op1 = tem;
cmp_code = swap_condition (cmp_code);
}
switch (cmp_code)
{
case GTU:
cc_mode = CCUmode;
break;
case GEU:
cc_mode = CCL3mode;
break;
default:
return false;
}
/* Emit comparison instruction pattern. */
if (!register_operand (cmp_op0, cmp_mode))
cmp_op0 = force_reg (cmp_mode, cmp_op0);
insn = gen_rtx_SET (gen_rtx_REG (cc_mode, CC_REGNUM),
gen_rtx_COMPARE (cc_mode, cmp_op0, cmp_op1));
/* We use insn_invalid_p here to add clobbers if required. */
ret = insn_invalid_p (emit_insn (insn), false);
gcc_assert (!ret);
/* Emit ALC instruction pattern. */
op_res = gen_rtx_fmt_ee (cmp_code, GET_MODE (dst),
gen_rtx_REG (cc_mode, CC_REGNUM),
const0_rtx);
if (src != const0_rtx)
{
if (!register_operand (src, GET_MODE (dst)))
src = force_reg (GET_MODE (dst), src);
op_res = gen_rtx_PLUS (GET_MODE (dst), op_res, src);
op_res = gen_rtx_PLUS (GET_MODE (dst), op_res, const0_rtx);
}
p = rtvec_alloc (2);
RTVEC_ELT (p, 0) =
gen_rtx_SET (dst, op_res);
RTVEC_ELT (p, 1) =
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
return true;
}
/* Try SUBTRACT LOGICAL WITH BORROW. */
if (increment == constm1_rtx)
{
/* Determine CC mode to use. */
if (cmp_code == EQ || cmp_code == NE)
{
if (cmp_op1 != const0_rtx)
{
cmp_op0 = expand_simple_binop (cmp_mode, XOR, cmp_op0, cmp_op1,
NULL_RTX, 0, OPTAB_WIDEN);
cmp_op1 = const0_rtx;
}
cmp_code = cmp_code == EQ ? LEU : GTU;
}
if (cmp_code == GTU || cmp_code == GEU)
{
rtx tem = cmp_op0;
cmp_op0 = cmp_op1;
cmp_op1 = tem;
cmp_code = swap_condition (cmp_code);
}
switch (cmp_code)
{
case LEU:
cc_mode = CCUmode;
break;
case LTU:
cc_mode = CCL3mode;
break;
default:
return false;
}
/* Emit comparison instruction pattern. */
if (!register_operand (cmp_op0, cmp_mode))
cmp_op0 = force_reg (cmp_mode, cmp_op0);
insn = gen_rtx_SET (gen_rtx_REG (cc_mode, CC_REGNUM),
gen_rtx_COMPARE (cc_mode, cmp_op0, cmp_op1));
/* We use insn_invalid_p here to add clobbers if required. */
ret = insn_invalid_p (emit_insn (insn), false);
gcc_assert (!ret);
/* Emit SLB instruction pattern. */
if (!register_operand (src, GET_MODE (dst)))
src = force_reg (GET_MODE (dst), src);
op_res = gen_rtx_MINUS (GET_MODE (dst),
gen_rtx_MINUS (GET_MODE (dst), src, const0_rtx),
gen_rtx_fmt_ee (cmp_code, GET_MODE (dst),
gen_rtx_REG (cc_mode, CC_REGNUM),
const0_rtx));
p = rtvec_alloc (2);
RTVEC_ELT (p, 0) =
gen_rtx_SET (dst, op_res);
RTVEC_ELT (p, 1) =
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
return true;
}
return false;
}
/* Expand code for the insv template. Return true if successful. */
bool
s390_expand_insv (rtx dest, rtx op1, rtx op2, rtx src)
{
int bitsize = INTVAL (op1);
int bitpos = INTVAL (op2);
machine_mode mode = GET_MODE (dest);
machine_mode smode;
int smode_bsize, mode_bsize;
rtx op, clobber;
if (bitsize + bitpos > GET_MODE_BITSIZE (mode))
return false;
/* Just a move. */
if (bitpos == 0
&& bitsize == GET_MODE_BITSIZE (GET_MODE (src))
&& mode == GET_MODE (src))
{
emit_move_insn (dest, src);
return true;
}
/* Generate INSERT IMMEDIATE (IILL et al). */
/* (set (ze (reg)) (const_int)). */
if (TARGET_ZARCH
&& register_operand (dest, word_mode)
&& (bitpos % 16) == 0
&& (bitsize % 16) == 0
&& const_int_operand (src, VOIDmode))
{
HOST_WIDE_INT val = INTVAL (src);
int regpos = bitpos + bitsize;
while (regpos > bitpos)
{
machine_mode putmode;
int putsize;
if (TARGET_EXTIMM && (regpos % 32 == 0) && (regpos >= bitpos + 32))
putmode = SImode;
else
putmode = HImode;
putsize = GET_MODE_BITSIZE (putmode);
regpos -= putsize;
emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest,
GEN_INT (putsize),
GEN_INT (regpos)),
gen_int_mode (val, putmode));
val >>= putsize;
}
gcc_assert (regpos == bitpos);
return true;
}
smode = smallest_int_mode_for_size (bitsize).require ();
smode_bsize = GET_MODE_BITSIZE (smode);
mode_bsize = GET_MODE_BITSIZE (mode);
/* Generate STORE CHARACTERS UNDER MASK (STCM et al). */
if (bitpos == 0
&& (bitsize % BITS_PER_UNIT) == 0
&& MEM_P (dest)
&& (register_operand (src, word_mode)
|| const_int_operand (src, VOIDmode)))
{
/* Emit standard pattern if possible. */
if (smode_bsize == bitsize)
{
emit_move_insn (adjust_address (dest, smode, 0),
gen_lowpart (smode, src));
return true;
}
/* (set (ze (mem)) (const_int)). */
else if (const_int_operand (src, VOIDmode))
{
int size = bitsize / BITS_PER_UNIT;
rtx src_mem = adjust_address (force_const_mem (word_mode, src),
BLKmode,
UNITS_PER_WORD - size);
dest = adjust_address (dest, BLKmode, 0);
set_mem_size (dest, size);
rtx size_rtx = GEN_INT (size);
s390_expand_cpymem (dest, src_mem, size_rtx, size_rtx, size_rtx);
return true;
}
/* (set (ze (mem)) (reg)). */
else if (register_operand (src, word_mode))
{
if (bitsize <= 32)
emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest, op1,
const0_rtx), src);
else
{
/* Emit st,stcmh sequence. */
int stcmh_width = bitsize - 32;
int size = stcmh_width / BITS_PER_UNIT;
emit_move_insn (adjust_address (dest, SImode, size),
gen_lowpart (SImode, src));
set_mem_size (dest, size);
emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest,
GEN_INT (stcmh_width),
const0_rtx),
gen_rtx_LSHIFTRT (word_mode, src, GEN_INT (32)));
}
return true;
}
}
/* Generate INSERT CHARACTERS UNDER MASK (IC, ICM et al). */
if ((bitpos % BITS_PER_UNIT) == 0
&& (bitsize % BITS_PER_UNIT) == 0
&& (bitpos & 32) == ((bitpos + bitsize - 1) & 32)
&& MEM_P (src)
&& (mode == DImode || mode == SImode)
&& mode != smode
&& register_operand (dest, mode))
{
/* Emit a strict_low_part pattern if possible. */
if (smode_bsize == bitsize && bitpos == mode_bsize - smode_bsize)
{
rtx low_dest = gen_lowpart (smode, dest);
if (SUBREG_P (low_dest) && !paradoxical_subreg_p (low_dest))
{
poly_int64 offset = GET_MODE_SIZE (mode) - GET_MODE_SIZE (smode);
rtx low_src = adjust_address (src, smode, offset);
switch (smode)
{
case E_QImode: emit_insn (gen_movstrictqi (low_dest, low_src));
return true;
case E_HImode: emit_insn (gen_movstricthi (low_dest, low_src));
return true;
case E_SImode: emit_insn (gen_movstrictsi (low_dest, low_src));
return true;
default: break;
}
}
}
/* ??? There are more powerful versions of ICM that are not
completely represented in the md file. */
}
/* For z10, generate ROTATE THEN INSERT SELECTED BITS (RISBG et al). */
if (TARGET_Z10 && (mode == DImode || mode == SImode))
{
machine_mode mode_s = GET_MODE (src);
if (CONSTANT_P (src))
{
/* For constant zero values the representation with AND
appears to be folded in more situations than the (set
(zero_extract) ...).
We only do this when the start and end of the bitfield
remain in the same SImode chunk. That way nihf or nilf
can be used.
The AND patterns might still generate a risbg for this. */
if (src == const0_rtx && bitpos / 32 == (bitpos + bitsize - 1) / 32)
return false;
else
src = force_reg (mode, src);
}
else if (mode_s != mode)
{
gcc_assert (GET_MODE_BITSIZE (mode_s) >= bitsize);
src = force_reg (mode_s, src);
src = gen_lowpart (mode, src);
}
op = gen_rtx_ZERO_EXTRACT (mode, dest, op1, op2),
op = gen_rtx_SET (op, src);
if (!TARGET_ZEC12)
{
clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
op = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clobber));
}
emit_insn (op);
return true;
}
return false;
}
/* A subroutine of s390_expand_cs_hqi and s390_expand_atomic which returns a
register that holds VAL of mode MODE shifted by COUNT bits. */
static inline rtx
s390_expand_mask_and_shift (rtx val, machine_mode mode, rtx count)
{
val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
NULL_RTX, 1, OPTAB_DIRECT);
return expand_simple_binop (SImode, ASHIFT, val, count,
NULL_RTX, 1, OPTAB_DIRECT);
}
/* Generate a vector comparison COND of CMP_OP1 and CMP_OP2 and store
the result in TARGET. */
void
s390_expand_vec_compare (rtx target, enum rtx_code cond,
rtx cmp_op1, rtx cmp_op2)
{
machine_mode mode = GET_MODE (target);
bool neg_p = false, swap_p = false;
rtx tmp;
if (GET_MODE_CLASS (GET_MODE (cmp_op1)) == MODE_VECTOR_FLOAT)
{
cmp_op2 = force_reg (GET_MODE (cmp_op1), cmp_op2);
switch (cond)
{
/* NE a != b -> !(a == b) */
case NE: cond = EQ; neg_p = true; break;
case UNGT:
emit_insn (gen_vec_cmpungt (target, cmp_op1, cmp_op2));
return;
case UNGE:
emit_insn (gen_vec_cmpunge (target, cmp_op1, cmp_op2));
return;
case LE: cond = GE; swap_p = true; break;
/* UNLE: (a u<= b) -> (b u>= a). */
case UNLE:
emit_insn (gen_vec_cmpunge (target, cmp_op2, cmp_op1));
return;
/* LT: a < b -> b > a */
case LT: cond = GT; swap_p = true; break;
/* UNLT: (a u< b) -> (b u> a). */
case UNLT:
emit_insn (gen_vec_cmpungt (target, cmp_op2, cmp_op1));
return;
case UNEQ:
emit_insn (gen_vec_cmpuneq (target, cmp_op1, cmp_op2));
return;
case LTGT:
emit_insn (gen_vec_cmpltgt (target, cmp_op1, cmp_op2));
return;
case ORDERED:
emit_insn (gen_vec_cmpordered (target, cmp_op1, cmp_op2));
return;
case UNORDERED:
emit_insn (gen_vec_cmpunordered (target, cmp_op1, cmp_op2));
return;
default: break;
}
}
else
{
/* Turn x < 0 into x >> (bits per element - 1) */
if (cond == LT && cmp_op2 == CONST0_RTX (mode))
{
int shift = GET_MODE_BITSIZE (GET_MODE_INNER (mode)) - 1;
rtx res = expand_simple_binop (mode, ASHIFTRT, cmp_op1,
GEN_INT (shift), target,
0, OPTAB_DIRECT);
if (res != target)
emit_move_insn (target, res);
return;
}
cmp_op2 = force_reg (GET_MODE (cmp_op1), cmp_op2);
switch (cond)
{
/* NE: a != b -> !(a == b) */
case NE: cond = EQ; neg_p = true; break;
/* GE: a >= b -> !(b > a) */
case GE: cond = GT; neg_p = true; swap_p = true; break;
/* GEU: a >= b -> !(b > a) */
case GEU: cond = GTU; neg_p = true; swap_p = true; break;
/* LE: a <= b -> !(a > b) */
case LE: cond = GT; neg_p = true; break;
/* LEU: a <= b -> !(a > b) */
case LEU: cond = GTU; neg_p = true; break;
/* LT: a < b -> b > a */
case LT: cond = GT; swap_p = true; break;
/* LTU: a < b -> b > a */
case LTU: cond = GTU; swap_p = true; break;
default: break;
}
}
if (swap_p)
{
tmp = cmp_op1; cmp_op1 = cmp_op2; cmp_op2 = tmp;
}
emit_insn (gen_rtx_SET (target, gen_rtx_fmt_ee (cond,
mode,
cmp_op1, cmp_op2)));
if (neg_p)
emit_insn (gen_rtx_SET (target, gen_rtx_NOT (mode, target)));
}
/* Expand the comparison CODE of CMP1 and CMP2 and copy 1 or 0 into
TARGET if either all (ALL_P is true) or any (ALL_P is false) of the
elements in CMP1 and CMP2 fulfill the comparison.
This function is only used to emit patterns for the vx builtins and
therefore only handles comparison codes required by the
builtins. */
void
s390_expand_vec_compare_cc (rtx target, enum rtx_code code,
rtx cmp1, rtx cmp2, bool all_p)
{
machine_mode cc_producer_mode, cc_consumer_mode, scratch_mode;
rtx tmp_reg = gen_reg_rtx (SImode);
bool swap_p = false;
if (GET_MODE_CLASS (GET_MODE (cmp1)) == MODE_VECTOR_INT)
{
switch (code)
{
case EQ:
case NE:
cc_producer_mode = CCVEQmode;
break;
case GE:
case LT:
code = swap_condition (code);
swap_p = true;
/* fallthrough */
case GT:
case LE:
cc_producer_mode = CCVIHmode;
break;
case GEU:
case LTU:
code = swap_condition (code);
swap_p = true;
/* fallthrough */
case GTU:
case LEU:
cc_producer_mode = CCVIHUmode;
break;
default:
gcc_unreachable ();
}
scratch_mode = GET_MODE (cmp1);
/* These codes represent inverted CC interpretations. Inverting
an ALL CC mode results in an ANY CC mode and the other way
around. Invert the all_p flag here to compensate for
that. */
if (code == NE || code == LE || code == LEU)
all_p = !all_p;
cc_consumer_mode = all_p ? CCVIALLmode : CCVIANYmode;
}
else if (GET_MODE_CLASS (GET_MODE (cmp1)) == MODE_VECTOR_FLOAT)
{
bool inv_p = false;
switch (code)
{
case EQ: cc_producer_mode = CCVEQmode; break;
case NE: cc_producer_mode = CCVEQmode; inv_p = true; break;
case GT: cc_producer_mode = CCVFHmode; break;
case GE: cc_producer_mode = CCVFHEmode; break;
case UNLE: cc_producer_mode = CCVFHmode; inv_p = true; break;
case UNLT: cc_producer_mode = CCVFHEmode; inv_p = true; break;
case LT: cc_producer_mode = CCVFHmode; code = GT; swap_p = true; break;
case LE: cc_producer_mode = CCVFHEmode; code = GE; swap_p = true; break;
default: gcc_unreachable ();
}
scratch_mode = related_int_vector_mode (GET_MODE (cmp1)).require ();
if (inv_p)
all_p = !all_p;
cc_consumer_mode = all_p ? CCVFALLmode : CCVFANYmode;
}
else
gcc_unreachable ();
if (swap_p)
{
rtx tmp = cmp2;
cmp2 = cmp1;
cmp1 = tmp;
}
emit_insn (gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2, gen_rtx_SET (
gen_rtx_REG (cc_producer_mode, CC_REGNUM),
gen_rtx_COMPARE (cc_producer_mode, cmp1, cmp2)),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx_SCRATCH (scratch_mode)))));
emit_move_insn (target, const0_rtx);
emit_move_insn (tmp_reg, const1_rtx);
emit_move_insn (target,
gen_rtx_IF_THEN_ELSE (SImode,
gen_rtx_fmt_ee (code, VOIDmode,
gen_rtx_REG (cc_consumer_mode, CC_REGNUM),
const0_rtx),
tmp_reg, target));
}
/* Invert the comparison CODE applied to a CC mode. This is only safe
if we know whether there result was created by a floating point
compare or not. For the CCV modes this is encoded as part of the
mode. */
enum rtx_code
s390_reverse_condition (machine_mode mode, enum rtx_code code)
{
/* Reversal of FP compares takes care -- an ordered compare
becomes an unordered compare and vice versa. */
if (mode == CCVFALLmode || mode == CCVFANYmode || mode == CCSFPSmode)
return reverse_condition_maybe_unordered (code);
else if (mode == CCVIALLmode || mode == CCVIANYmode)
return reverse_condition (code);
else
gcc_unreachable ();
}
/* Generate a vector comparison expression loading either elements of
THEN or ELS into TARGET depending on the comparison COND of CMP_OP1
and CMP_OP2. */
void
s390_expand_vcond (rtx target, rtx then, rtx els,
enum rtx_code cond, rtx cmp_op1, rtx cmp_op2)
{
rtx tmp;
machine_mode result_mode;
rtx result_target;
machine_mode target_mode = GET_MODE (target);
machine_mode cmp_mode = GET_MODE (cmp_op1);
rtx op = (cond == LT) ? els : then;
/* Try to optimize x < 0 ? -1 : 0 into (signed) x >> 31
and x < 0 ? 1 : 0 into (unsigned) x >> 31. Likewise
for short and byte (x >> 15 and x >> 7 respectively). */
if ((cond == LT || cond == GE)
&& target_mode == cmp_mode
&& cmp_op2 == CONST0_RTX (cmp_mode)
&& op == CONST0_RTX (target_mode)
&& s390_vector_mode_supported_p (target_mode)
&& GET_MODE_CLASS (target_mode) == MODE_VECTOR_INT)
{
rtx negop = (cond == LT) ? then : els;
int shift = GET_MODE_BITSIZE (GET_MODE_INNER (target_mode)) - 1;
/* if x < 0 ? 1 : 0 or if x >= 0 ? 0 : 1 */
if (negop == CONST1_RTX (target_mode))
{
rtx res = expand_simple_binop (cmp_mode, LSHIFTRT, cmp_op1,
GEN_INT (shift), target,
1, OPTAB_DIRECT);
if (res != target)
emit_move_insn (target, res);
return;
}
/* if x < 0 ? -1 : 0 or if x >= 0 ? 0 : -1 */
else if (all_ones_operand (negop, target_mode))
{
rtx res = expand_simple_binop (cmp_mode, ASHIFTRT, cmp_op1,
GEN_INT (shift), target,
0, OPTAB_DIRECT);
if (res != target)
emit_move_insn (target, res);
return;
}
}
/* We always use an integral type vector to hold the comparison
result. */
result_mode = related_int_vector_mode (cmp_mode).require ();
result_target = gen_reg_rtx (result_mode);
/* We allow vector immediates as comparison operands that
can be handled by the optimization above but not by the
following code. Hence, force them into registers here. */
if (!REG_P (cmp_op1))
cmp_op1 = force_reg (GET_MODE (cmp_op1), cmp_op1);
s390_expand_vec_compare (result_target, cond, cmp_op1, cmp_op2);
/* If the results are supposed to be either -1 or 0 we are done
since this is what our compare instructions generate anyway. */
if (all_ones_operand (then, GET_MODE (then))
&& const0_operand (els, GET_MODE (els)))
{
emit_move_insn (target, gen_rtx_SUBREG (target_mode,
result_target, 0));
return;
}
/* Otherwise we will do a vsel afterwards. */
/* This gets triggered e.g.
with gcc.c-torture/compile/pr53410-1.c */
if (!REG_P (then))
then = force_reg (target_mode, then);
if (!REG_P (els))
els = force_reg (target_mode, els);
tmp = gen_rtx_fmt_ee (EQ, VOIDmode,
result_target,
CONST0_RTX (result_mode));
/* We compared the result against zero above so we have to swap then
and els here. */
tmp = gen_rtx_IF_THEN_ELSE (target_mode, tmp, els, then);
gcc_assert (target_mode == GET_MODE (then));
emit_insn (gen_rtx_SET (target, tmp));
}
/* Emit the RTX necessary to initialize the vector TARGET with values
in VALS. */
void
s390_expand_vec_init (rtx target, rtx vals)
{
machine_mode mode = GET_MODE (target);
machine_mode inner_mode = GET_MODE_INNER (mode);
int n_elts = GET_MODE_NUNITS (mode);
bool all_same = true, all_regs = true, all_const_int = true;
rtx x;
int i;
for (i = 0; i < n_elts; ++i)
{
x = XVECEXP (vals, 0, i);
if (!CONST_INT_P (x))
all_const_int = false;
if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
all_same = false;
if (!REG_P (x))
all_regs = false;
}
/* Use vector gen mask or vector gen byte mask or vector replicate immediate
if possible. */
if (all_same && all_const_int)
{
rtx vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
if (XVECEXP (vals, 0, 0) == const0_rtx
|| s390_constant_via_vgm_p (vec, NULL, NULL, NULL)
|| s390_constant_via_vrepi_p (vec, NULL, NULL)
|| s390_constant_via_vgbm_p (vec, NULL))
{
emit_insn (gen_rtx_SET (target, vec));
return;
}
}
/* Use vector replicate instructions. vlrep/vrepi/vrep */
if (all_same)
{
rtx elem = XVECEXP (vals, 0, 0);
/* vec_splats accepts general_operand as source. */
if (!general_operand (elem, GET_MODE (elem)))
elem = force_reg (inner_mode, elem);
emit_insn (gen_rtx_SET (target, gen_rtx_VEC_DUPLICATE (mode, elem)));
return;
}
if (all_regs
&& REG_P (target)
&& n_elts == 2
&& GET_MODE_SIZE (inner_mode) == 8)
{
/* Use vector load pair. */
emit_insn (gen_rtx_SET (target,
gen_rtx_VEC_CONCAT (mode,
XVECEXP (vals, 0, 0),
XVECEXP (vals, 0, 1))));
return;
}
/* Use vector load logical element and zero. */
if (TARGET_VXE && (mode == V4SImode || mode == V4SFmode))
{
bool found = true;
x = XVECEXP (vals, 0, 0);
if (memory_operand (x, inner_mode))
{
for (i = 1; i < n_elts; ++i)
found = found && XVECEXP (vals, 0, i) == const0_rtx;
if (found)
{
machine_mode half_mode = (inner_mode == SFmode
? V2SFmode : V2SImode);
emit_insn (gen_rtx_SET (target,
gen_rtx_VEC_CONCAT (mode,
gen_rtx_VEC_CONCAT (half_mode,
x,
const0_rtx),
gen_rtx_VEC_CONCAT (half_mode,
const0_rtx,
const0_rtx))));
return;
}
}
}
/* We are about to set the vector elements one by one. Zero out the
full register first in order to help the data flow framework to
detect it as full VR set. */
emit_insn (gen_rtx_SET (target, CONST0_RTX (mode)));
/* Unfortunately the vec_init expander is not allowed to fail. So
we have to implement the fallback ourselves. */
for (i = 0; i < n_elts; i++)
{
rtx elem = XVECEXP (vals, 0, i);
if (!general_operand (elem, GET_MODE (elem)))
elem = force_reg (inner_mode, elem);
if (elem != const0_rtx)
emit_insn (gen_rtx_SET (target,
gen_rtx_UNSPEC (mode,
gen_rtvec (3, elem,
GEN_INT (i), target),
UNSPEC_VEC_SET)));
}
}
/* Return a parallel of constant integers to be used as permutation
vector for a vector merge operation in MODE. If HIGH_P is true the
left-most elements of the source vectors are merged otherwise the
right-most elements. */
rtx
s390_expand_merge_perm_const (machine_mode mode, bool high_p)
{
int nelts = GET_MODE_NUNITS (mode);
rtx perm[16];
int addend = high_p ? 0 : nelts;
for (int i = 0; i < nelts; i++)
perm[i] = GEN_INT ((i + addend) / 2 + (i % 2) * nelts);
return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, perm));
}
/* Emit RTL to implement a vector merge operation of SRC1 and SRC2
which creates the result in TARGET. HIGH_P determines whether a
merge hi or lo will be generated. */
void
s390_expand_merge (rtx target, rtx src1, rtx src2, bool high_p)
{
machine_mode mode = GET_MODE (target);
opt_machine_mode opt_mode_2x = mode_for_vector (GET_MODE_INNER (mode),
2 * GET_MODE_NUNITS (mode));
gcc_assert (opt_mode_2x.exists ());
machine_mode mode_double_nelts = opt_mode_2x.require ();
rtx constv = s390_expand_merge_perm_const (mode, high_p);
src1 = force_reg (GET_MODE (src1), src1);
src2 = force_reg (GET_MODE (src2), src2);
rtx x = gen_rtx_VEC_CONCAT (mode_double_nelts, src1, src2);
x = gen_rtx_VEC_SELECT (mode, x, constv);
emit_insn (gen_rtx_SET (target, x));
}
/* Emit a vector constant that contains 1s in each element's sign bit position
and 0s in other positions. MODE is the desired constant's mode. */
extern rtx
s390_build_signbit_mask (machine_mode mode)
{
if (mode == TFmode && TARGET_VXE)
{
wide_int mask_val = wi::set_bit_in_zero (127, 128);
rtx mask = immed_wide_int_const (mask_val, TImode);
return gen_lowpart (TFmode, mask);
}
/* Generate the integral element mask value. */
machine_mode inner_mode = GET_MODE_INNER (mode);
int inner_bitsize = GET_MODE_BITSIZE (inner_mode);
wide_int mask_val = wi::set_bit_in_zero (inner_bitsize - 1, inner_bitsize);
/* Emit the element mask rtx. Use gen_lowpart in order to cast the integral
value to the desired mode. */
machine_mode int_mode = related_int_vector_mode (mode).require ();
rtx mask = immed_wide_int_const (mask_val, GET_MODE_INNER (int_mode));
mask = gen_lowpart (inner_mode, mask);
/* Emit the vector mask rtx by mode the element mask rtx. */
int nunits = GET_MODE_NUNITS (mode);
rtvec v = rtvec_alloc (nunits);
for (int i = 0; i < nunits; i++)
RTVEC_ELT (v, i) = mask;
return gen_rtx_CONST_VECTOR (mode, v);
}
/* Structure to hold the initial parameters for a compare_and_swap operation
in HImode and QImode. */
struct alignment_context
{
rtx memsi; /* SI aligned memory location. */
rtx shift; /* Bit offset with regard to lsb. */
rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */
rtx modemaski; /* ~modemask */
bool aligned; /* True if memory is aligned, false else. */
};
/* A subroutine of s390_expand_cs_hqi and s390_expand_atomic to initialize
structure AC for transparent simplifying, if the memory alignment is known
to be at least 32bit. MEM is the memory location for the actual operation
and MODE its mode. */
static void
init_alignment_context (struct alignment_context *ac, rtx mem,
machine_mode mode)
{
ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
ac->aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));
if (ac->aligned)
ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */
else
{
/* Alignment is unknown. */
rtx byteoffset, addr, align;
/* Force the address into a register. */
addr = force_reg (Pmode, XEXP (mem, 0));
/* Align it to SImode. */
align = expand_simple_binop (Pmode, AND, addr,
GEN_INT (-GET_MODE_SIZE (SImode)),
NULL_RTX, 1, OPTAB_DIRECT);
/* Generate MEM. */
ac->memsi = gen_rtx_MEM (SImode, align);
MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));
/* Calculate shiftcount. */
byteoffset = expand_simple_binop (Pmode, AND, addr,
GEN_INT (GET_MODE_SIZE (SImode) - 1),
NULL_RTX, 1, OPTAB_DIRECT);
/* As we already have some offset, evaluate the remaining distance. */
ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
NULL_RTX, 1, OPTAB_DIRECT);
}
/* Shift is the byte count, but we need the bitcount. */
ac->shift = expand_simple_binop (SImode, ASHIFT, ac->shift, GEN_INT (3),
NULL_RTX, 1, OPTAB_DIRECT);
/* Calculate masks. */
ac->modemask = expand_simple_binop (SImode, ASHIFT,
GEN_INT (GET_MODE_MASK (mode)),
ac->shift, NULL_RTX, 1, OPTAB_DIRECT);
ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask,
NULL_RTX, 1);
}
/* A subroutine of s390_expand_cs_hqi. Insert INS into VAL. If possible,
use a single insv insn into SEQ2. Otherwise, put prep insns in SEQ1 and
perform the merge in SEQ2. */
static rtx
s390_two_part_insv (struct alignment_context *ac, rtx *seq1, rtx *seq2,
machine_mode mode, rtx val, rtx ins)
{
rtx tmp;
if (ac->aligned)
{
start_sequence ();
tmp = copy_to_mode_reg (SImode, val);
if (s390_expand_insv (tmp, GEN_INT (GET_MODE_BITSIZE (mode)),
const0_rtx, ins))
{
*seq1 = NULL;
*seq2 = get_insns ();
end_sequence ();
return tmp;
}
end_sequence ();
}
/* Failed to use insv. Generate a two part shift and mask. */
start_sequence ();
tmp = s390_expand_mask_and_shift (ins, mode, ac->shift);
*seq1 = get_insns ();
end_sequence ();
start_sequence ();
tmp = expand_simple_binop (SImode, IOR, tmp, val, NULL_RTX, 1, OPTAB_DIRECT);
*seq2 = get_insns ();
end_sequence ();
return tmp;
}
/* Expand an atomic compare and swap operation for HImode and QImode. MEM is
the memory location, CMP the old value to compare MEM with and NEW_RTX the
value to set if CMP == MEM. */
static void
s390_expand_cs_hqi (machine_mode mode, rtx btarget, rtx vtarget, rtx mem,
rtx cmp, rtx new_rtx, bool is_weak)
{
struct alignment_context ac;
rtx cmpv, newv, val, cc, seq0, seq1, seq2, seq3;
rtx res = gen_reg_rtx (SImode);
rtx_code_label *csloop = NULL, *csend = NULL;
gcc_assert (MEM_P (mem));
init_alignment_context (&ac, mem, mode);
/* Load full word. Subsequent loads are performed by CS. */
val = expand_simple_binop (SImode, AND, ac.memsi, ac.modemaski,
NULL_RTX, 1, OPTAB_DIRECT);
/* Prepare insertions of cmp and new_rtx into the loaded value. When
possible, we try to use insv to make this happen efficiently. If
that fails we'll generate code both inside and outside the loop. */
cmpv = s390_two_part_insv (&ac, &seq0, &seq2, mode, val, cmp);
newv = s390_two_part_insv (&ac, &seq1, &seq3, mode, val, new_rtx);
if (seq0)
emit_insn (seq0);
if (seq1)
emit_insn (seq1);
/* Start CS loop. */
if (!is_weak)
{
/* Begin assuming success. */
emit_move_insn (btarget, const1_rtx);
csloop = gen_label_rtx ();
csend = gen_label_rtx ();
emit_label (csloop);
}
/* val = "<mem>00..0<mem>"
* cmp = "00..0<cmp>00..0"
* new = "00..0<new>00..0"
*/
emit_insn (seq2);
emit_insn (seq3);
cc = s390_emit_compare_and_swap (EQ, res, ac.memsi, cmpv, newv, CCZ1mode);
if (is_weak)
emit_insn (gen_cstorecc4 (btarget, cc, XEXP (cc, 0), XEXP (cc, 1)));
else
{
rtx tmp;
/* Jump to end if we're done (likely?). */
s390_emit_jump (csend, cc);
/* Check for changes outside mode, and loop internal if so.
Arrange the moves so that the compare is adjacent to the
branch so that we can generate CRJ. */
tmp = copy_to_reg (val);
force_expand_binop (SImode, and_optab, res, ac.modemaski, val,
1, OPTAB_DIRECT);
cc = s390_emit_compare (NE, val, tmp);
s390_emit_jump (csloop, cc);
/* Failed. */
emit_move_insn (btarget, const0_rtx);
emit_label (csend);
}
/* Return the correct part of the bitfield. */
convert_move (vtarget, expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
NULL_RTX, 1, OPTAB_DIRECT), 1);
}
/* Variant of s390_expand_cs for SI, DI and TI modes. */
static void
s390_expand_cs_tdsi (machine_mode mode, rtx btarget, rtx vtarget, rtx mem,
rtx cmp, rtx new_rtx, bool is_weak)
{
rtx output = vtarget;
rtx_code_label *skip_cs_label = NULL;
bool do_const_opt = false;
if (!register_operand (output, mode))
output = gen_reg_rtx (mode);
/* If IS_WEAK is true and the INPUT value is a constant, compare the memory
with the constant first and skip the compare_and_swap because its very
expensive and likely to fail anyway.
Note 1: This is done only for IS_WEAK. C11 allows optimizations that may
cause spurious in that case.
Note 2: It may be useful to do this also for non-constant INPUT.
Note 3: Currently only targets with "load on condition" are supported
(z196 and newer). */
if (TARGET_Z196
&& (mode == SImode || mode == DImode))
do_const_opt = (is_weak && CONST_INT_P (cmp));
if (do_const_opt)
{
rtx cc = gen_rtx_REG (CCZmode, CC_REGNUM);
skip_cs_label = gen_label_rtx ();
emit_move_insn (btarget, const0_rtx);
if (CONST_INT_P (cmp) && INTVAL (cmp) == 0)
{
rtvec lt = rtvec_alloc (2);
/* Load-and-test + conditional jump. */
RTVEC_ELT (lt, 0)
= gen_rtx_SET (cc, gen_rtx_COMPARE (CCZmode, mem, cmp));
RTVEC_ELT (lt, 1) = gen_rtx_SET (output, mem);
emit_insn (gen_rtx_PARALLEL (VOIDmode, lt));
}
else
{
emit_move_insn (output, mem);
emit_insn (gen_rtx_SET (cc, gen_rtx_COMPARE (CCZmode, output, cmp)));
}
s390_emit_jump (skip_cs_label, gen_rtx_NE (VOIDmode, cc, const0_rtx));
add_reg_br_prob_note (get_last_insn (),
profile_probability::very_unlikely ());
/* If the jump is not taken, OUTPUT is the expected value. */
cmp = output;
/* Reload newval to a register manually, *after* the compare and jump
above. Otherwise Reload might place it before the jump. */
}
else
cmp = force_reg (mode, cmp);
new_rtx = force_reg (mode, new_rtx);
s390_emit_compare_and_swap (EQ, output, mem, cmp, new_rtx,
(do_const_opt) ? CCZmode : CCZ1mode);
if (skip_cs_label != NULL)
emit_label (skip_cs_label);
/* We deliberately accept non-register operands in the predicate
to ensure the write back to the output operand happens *before*
the store-flags code below. This makes it easier for combine
to merge the store-flags code with a potential test-and-branch
pattern following (immediately!) afterwards. */
if (output != vtarget)
emit_move_insn (vtarget, output);
if (do_const_opt)
{
rtx cc, cond, ite;
/* Do not use gen_cstorecc4 here because it writes either 1 or 0, but
btarget has already been initialized with 0 above. */
cc = gen_rtx_REG (CCZmode, CC_REGNUM);
cond = gen_rtx_EQ (VOIDmode, cc, const0_rtx);
ite = gen_rtx_IF_THEN_ELSE (SImode, cond, const1_rtx, btarget);
emit_insn (gen_rtx_SET (btarget, ite));
}
else
{
rtx cc, cond;
cc = gen_rtx_REG (CCZ1mode, CC_REGNUM);
cond = gen_rtx_EQ (SImode, cc, const0_rtx);
emit_insn (gen_cstorecc4 (btarget, cond, cc, const0_rtx));
}
}
/* Expand an atomic compare and swap operation. MEM is the memory location,
CMP the old value to compare MEM with and NEW_RTX the value to set if
CMP == MEM. */
void
s390_expand_cs (machine_mode mode, rtx btarget, rtx vtarget, rtx mem,
rtx cmp, rtx new_rtx, bool is_weak)
{
switch (mode)
{
case E_TImode:
case E_DImode:
case E_SImode:
s390_expand_cs_tdsi (mode, btarget, vtarget, mem, cmp, new_rtx, is_weak);
break;
case E_HImode:
case E_QImode:
s390_expand_cs_hqi (mode, btarget, vtarget, mem, cmp, new_rtx, is_weak);
break;
default:
gcc_unreachable ();
}
}
/* Expand an atomic_exchange operation simulated with a compare-and-swap loop.
The memory location MEM is set to INPUT. OUTPUT is set to the previous value
of MEM. */
void
s390_expand_atomic_exchange_tdsi (rtx output, rtx mem, rtx input)
{
machine_mode mode = GET_MODE (mem);
rtx_code_label *csloop;
if (TARGET_Z196
&& (mode == DImode || mode == SImode)
&& CONST_INT_P (input) && INTVAL (input) == 0)
{
emit_move_insn (output, const0_rtx);
if (mode == DImode)
emit_insn (gen_atomic_fetch_anddi (output, mem, const0_rtx, input));
else
emit_insn (gen_atomic_fetch_andsi (output, mem, const0_rtx, input));
return;
}
input = force_reg (mode, input);
emit_move_insn (output, mem);
csloop = gen_label_rtx ();
emit_label (csloop);
s390_emit_jump (csloop, s390_emit_compare_and_swap (NE, output, mem, output,
input, CCZ1mode));
}
/* Expand an atomic operation CODE of mode MODE. MEM is the memory location
and VAL the value to play with. If AFTER is true then store the value
MEM holds after the operation, if AFTER is false then store the value MEM
holds before the operation. If TARGET is zero then discard that value, else
store it to TARGET. */
void
s390_expand_atomic (machine_mode mode, enum rtx_code code,
rtx target, rtx mem, rtx val, bool after)
{
struct alignment_context ac;
rtx cmp;
rtx new_rtx = gen_reg_rtx (SImode);
rtx orig = gen_reg_rtx (SImode);
rtx_code_label *csloop = gen_label_rtx ();
gcc_assert (!target || register_operand (target, VOIDmode));
gcc_assert (MEM_P (mem));
init_alignment_context (&ac, mem, mode);
/* Shift val to the correct bit positions.
Preserve "icm", but prevent "ex icm". */
if (!(ac.aligned && code == SET && MEM_P (val)))
val = s390_expand_mask_and_shift (val, mode, ac.shift);
/* Further preparation insns. */
if (code == PLUS || code == MINUS)
emit_move_insn (orig, val);
else if (code == MULT || code == AND) /* val = "11..1<val>11..1" */
val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
NULL_RTX, 1, OPTAB_DIRECT);
/* Load full word. Subsequent loads are performed by CS. */
cmp = force_reg (SImode, ac.memsi);
/* Start CS loop. */
emit_label (csloop);
emit_move_insn (new_rtx, cmp);
/* Patch new with val at correct position. */
switch (code)
{
case PLUS:
case MINUS:
val = expand_simple_binop (SImode, code, new_rtx, orig,
NULL_RTX, 1, OPTAB_DIRECT);
val = expand_simple_binop (SImode, AND, val, ac.modemask,
NULL_RTX, 1, OPTAB_DIRECT);
/* FALLTHRU */
case SET:
if (ac.aligned && MEM_P (val))
store_bit_field (new_rtx, GET_MODE_BITSIZE (mode), 0,
0, 0, SImode, val, false, false);
else
{
new_rtx = expand_simple_binop (SImode, AND, new_rtx, ac.modemaski,
NULL_RTX, 1, OPTAB_DIRECT);
new_rtx = expand_simple_binop (SImode, IOR, new_rtx, val,
NULL_RTX, 1, OPTAB_DIRECT);
}
break;
case AND:
case IOR:
case XOR:
new_rtx = expand_simple_binop (SImode, code, new_rtx, val,
NULL_RTX, 1, OPTAB_DIRECT);
break;
case MULT: /* NAND */
new_rtx = expand_simple_binop (SImode, AND, new_rtx, val,
NULL_RTX, 1, OPTAB_DIRECT);
new_rtx = expand_simple_binop (SImode, XOR, new_rtx, ac.modemask,
NULL_RTX, 1, OPTAB_DIRECT);
break;
default:
gcc_unreachable ();
}
s390_emit_jump (csloop, s390_emit_compare_and_swap (NE, cmp,
ac.memsi, cmp, new_rtx,
CCZ1mode));
/* Return the correct part of the bitfield. */
if (target)
convert_move (target, expand_simple_binop (SImode, LSHIFTRT,
after ? new_rtx : cmp, ac.shift,
NULL_RTX, 1, OPTAB_DIRECT), 1);
}
/* This is called from dwarf2out.cc via TARGET_ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
static void s390_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static void
s390_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
switch (size)
{
case 4:
fputs ("\t.long\t", file);
break;
case 8:
fputs ("\t.quad\t", file);
break;
default:
gcc_unreachable ();
}
output_addr_const (file, x);
fputs ("@DTPOFF", file);
}
/* Return the proper mode for REGNO being represented in the dwarf
unwind table. */
machine_mode
s390_dwarf_frame_reg_mode (int regno)
{
machine_mode save_mode = default_dwarf_frame_reg_mode (regno);
/* Make sure not to return DImode for any GPR with -m31 -mzarch. */
if (GENERAL_REGNO_P (regno))
save_mode = Pmode;
/* The rightmost 64 bits of vector registers are call-clobbered. */
if (GET_MODE_SIZE (save_mode) > 8)
save_mode = DImode;
return save_mode;
}
#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
/* Implement TARGET_MANGLE_TYPE. */
static const char *
s390_mangle_type (const_tree type)
{
type = TYPE_MAIN_VARIANT (type);
if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
&& TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
return NULL;
if (type == s390_builtin_types[BT_BV16QI]) return "U6__boolc";
if (type == s390_builtin_types[BT_BV8HI]) return "U6__bools";
if (type == s390_builtin_types[BT_BV4SI]) return "U6__booli";
if (type == s390_builtin_types[BT_BV2DI]) return "U6__booll";
if (type == long_double_type_node && TARGET_LONG_DOUBLE_128)
return "g";
/* For all other types, use normal C++ mangling. */
return NULL;
}
#endif
/* In the name of slightly smaller debug output, and to cater to
general assembler lossage, recognize various UNSPEC sequences
and turn them back into a direct symbol reference. */
static rtx
s390_delegitimize_address (rtx orig_x)
{
rtx x, y;
orig_x = delegitimize_mem_from_attrs (orig_x);
x = orig_x;
/* Extract the symbol ref from:
(plus:SI (reg:SI 12 %r12)
(const:SI (unspec:SI [(symbol_ref/f:SI ("*.LC0"))]
UNSPEC_GOTOFF/PLTOFF)))
and
(plus:SI (reg:SI 12 %r12)
(const:SI (plus:SI (unspec:SI [(symbol_ref:SI ("L"))]
UNSPEC_GOTOFF/PLTOFF)
(const_int 4 [0x4])))) */
if (GET_CODE (x) == PLUS
&& REG_P (XEXP (x, 0))
&& REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM
&& GET_CODE (XEXP (x, 1)) == CONST)
{
HOST_WIDE_INT offset = 0;
/* The const operand. */
y = XEXP (XEXP (x, 1), 0);
if (GET_CODE (y) == PLUS
&& GET_CODE (XEXP (y, 1)) == CONST_INT)
{
offset = INTVAL (XEXP (y, 1));
y = XEXP (y, 0);
}
if (GET_CODE (y) == UNSPEC
&& (XINT (y, 1) == UNSPEC_GOTOFF
|| XINT (y, 1) == UNSPEC_PLTOFF))
return plus_constant (Pmode, XVECEXP (y, 0, 0), offset);
}
if (GET_CODE (x) != MEM)
return orig_x;
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST
&& GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM)
{
y = XEXP (XEXP (x, 1), 0);
if (GET_CODE (y) == UNSPEC
&& XINT (y, 1) == UNSPEC_GOT)
y = XVECEXP (y, 0, 0);
else
return orig_x;
}
else if (GET_CODE (x) == CONST)
{
/* Extract the symbol ref from:
(mem:QI (const:DI (unspec:DI [(symbol_ref:DI ("foo"))]
UNSPEC_PLT/GOTENT))) */
y = XEXP (x, 0);
if (GET_CODE (y) == UNSPEC
&& (XINT (y, 1) == UNSPEC_GOTENT
|| XINT (y, 1) == UNSPEC_PLT31))
y = XVECEXP (y, 0, 0);
else
return orig_x;
}
else
return orig_x;
if (GET_MODE (orig_x) != Pmode)
{
if (GET_MODE (orig_x) == BLKmode)
return orig_x;
y = lowpart_subreg (GET_MODE (orig_x), y, Pmode);
if (y == NULL_RTX)
return orig_x;
}
return y;
}
/* Output operand OP to stdio stream FILE.
OP is an address (register + offset) which is not used to address data;
instead the rightmost bits are interpreted as the value. */
static void
print_addrstyle_operand (FILE *file, rtx op)
{
HOST_WIDE_INT offset;
rtx base;
/* Extract base register and offset. */
if (!s390_decompose_addrstyle_without_index (op, &base, &offset))
gcc_unreachable ();
/* Sanity check. */
if (base)
{
gcc_assert (GET_CODE (base) == REG);
gcc_assert (REGNO (base) < FIRST_PSEUDO_REGISTER);
gcc_assert (REGNO_REG_CLASS (REGNO (base)) == ADDR_REGS);
}
/* Offsets are constricted to twelve bits. */
fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset & ((1 << 12) - 1));
if (base)
fprintf (file, "(%s)", reg_names[REGNO (base)]);
}
/* Print the shift count operand OP to FILE.
OP is an address-style operand in a form which
s390_valid_shift_count permits. Subregs and no-op
and-masking of the operand are stripped. */
static void
print_shift_count_operand (FILE *file, rtx op)
{
/* No checking of the and mask required here. */
if (!s390_valid_shift_count (op, 0))
gcc_unreachable ();
while (op && GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) == AND)
op = XEXP (op, 0);
print_addrstyle_operand (file, op);
}
/* Assigns the number of NOP halfwords to be emitted before and after the
function label to *HW_BEFORE and *HW_AFTER. Both pointers must not be NULL.
If hotpatching is disabled for the function, the values are set to zero.
*/
static void
s390_function_num_hotpatch_hw (tree decl,
int *hw_before,
int *hw_after)
{
tree attr;
attr = lookup_attribute ("hotpatch", DECL_ATTRIBUTES (decl));
/* Handle the arguments of the hotpatch attribute. The values
specified via attribute might override the cmdline argument
values. */
if (attr)
{
tree args = TREE_VALUE (attr);
*hw_before = TREE_INT_CST_LOW (TREE_VALUE (args));
*hw_after = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args)));
}
else
{
/* Use the values specified by the cmdline arguments. */
*hw_before = s390_hotpatch_hw_before_label;
*hw_after = s390_hotpatch_hw_after_label;
}
}
/* Write the current .machine and .machinemode specification to the assembler
file. */
#ifdef HAVE_AS_MACHINE_MACHINEMODE
static void
s390_asm_output_machine_for_arch (FILE *asm_out_file)
{
fprintf (asm_out_file, "\t.machinemode %s\n",
(TARGET_ZARCH) ? "zarch" : "esa");
fprintf (asm_out_file, "\t.machine \"%s",
processor_table[s390_arch].binutils_name);
if (S390_USE_ARCHITECTURE_MODIFIERS)
{
int cpu_flags;
cpu_flags = processor_flags_table[(int) s390_arch];
if (TARGET_HTM && !(cpu_flags & PF_TX))
fprintf (asm_out_file, "+htm");
else if (!TARGET_HTM && (cpu_flags & PF_TX))
fprintf (asm_out_file, "+nohtm");
if (TARGET_VX && !(cpu_flags & PF_VX))
fprintf (asm_out_file, "+vx");
else if (!TARGET_VX && (cpu_flags & PF_VX))
fprintf (asm_out_file, "+novx");
}
fprintf (asm_out_file, "\"\n");
}
/* Write an extra function header before the very start of the function. */
void
s390_asm_output_function_prefix (FILE *asm_out_file,
const char *fnname ATTRIBUTE_UNUSED)
{
if (DECL_FUNCTION_SPECIFIC_TARGET (current_function_decl) == NULL)
return;
/* Since only the function specific options are saved but not the indications
which options are set, it's too much work here to figure out which options
have actually changed. Thus, generate .machine and .machinemode whenever a
function has the target attribute or pragma. */
fprintf (asm_out_file, "\t.machinemode push\n");
fprintf (asm_out_file, "\t.machine push\n");
s390_asm_output_machine_for_arch (asm_out_file);
}
/* Write an extra function footer after the very end of the function. */
void
s390_asm_declare_function_size (FILE *asm_out_file,
const char *fnname, tree decl)
{
if (!flag_inhibit_size_directive)
ASM_OUTPUT_MEASURED_SIZE (asm_out_file, fnname);
if (DECL_FUNCTION_SPECIFIC_TARGET (decl) == NULL)
return;
fprintf (asm_out_file, "\t.machine pop\n");
fprintf (asm_out_file, "\t.machinemode pop\n");
}
#endif
/* Write the extra assembler code needed to declare a function properly. */
void
s390_asm_output_function_label (FILE *out_file, const char *fname,
tree decl)
{
int hw_before, hw_after;
s390_function_num_hotpatch_hw (decl, &hw_before, &hw_after);
if (hw_before > 0)
{
unsigned int function_alignment;
int i;
/* Add a trampoline code area before the function label and initialize it
with two-byte nop instructions. This area can be overwritten with code
that jumps to a patched version of the function. */
asm_fprintf (out_file, "\tnopr\t%%r0"
"\t# pre-label NOPs for hotpatch (%d halfwords)\n",
hw_before);
for (i = 1; i < hw_before; i++)
fputs ("\tnopr\t%r0\n", out_file);
/* Note: The function label must be aligned so that (a) the bytes of the
following nop do not cross a cacheline boundary, and (b) a jump address
(eight bytes for 64 bit targets, 4 bytes for 32 bit targets) can be
stored directly before the label without crossing a cacheline
boundary. All this is necessary to make sure the trampoline code can
be changed atomically.
This alignment is done automatically using the FOUNCTION_BOUNDARY, but
if there are NOPs before the function label, the alignment is placed
before them. So it is necessary to duplicate the alignment after the
NOPs. */
function_alignment = MAX (8, DECL_ALIGN (decl) / BITS_PER_UNIT);
if (! DECL_USER_ALIGN (decl))
function_alignment
= MAX (function_alignment,
(unsigned int) align_functions.levels[0].get_value ());
fputs ("\t# alignment for hotpatch\n", out_file);
ASM_OUTPUT_ALIGN (out_file, align_functions.levels[0].log);
}
if (S390_USE_TARGET_ATTRIBUTE && TARGET_DEBUG_ARG)
{
asm_fprintf (out_file, "\t# fn:%s ar%d\n", fname, s390_arch);
asm_fprintf (out_file, "\t# fn:%s tu%d\n", fname, s390_tune);
asm_fprintf (out_file, "\t# fn:%s sg%d\n", fname, s390_stack_guard);
asm_fprintf (out_file, "\t# fn:%s ss%d\n", fname, s390_stack_size);
asm_fprintf (out_file, "\t# fn:%s bc%d\n", fname, s390_branch_cost);
asm_fprintf (out_file, "\t# fn:%s wf%d\n", fname,
s390_warn_framesize);
asm_fprintf (out_file, "\t# fn:%s ba%d\n", fname, TARGET_BACKCHAIN);
asm_fprintf (out_file, "\t# fn:%s hd%d\n", fname, TARGET_HARD_DFP);
asm_fprintf (out_file, "\t# fn:%s hf%d\n", fname, !TARGET_SOFT_FLOAT);
asm_fprintf (out_file, "\t# fn:%s ht%d\n", fname, TARGET_OPT_HTM);
asm_fprintf (out_file, "\t# fn:%s vx%d\n", fname, TARGET_OPT_VX);
asm_fprintf (out_file, "\t# fn:%s ps%d\n", fname,
TARGET_PACKED_STACK);
asm_fprintf (out_file, "\t# fn:%s se%d\n", fname, TARGET_SMALL_EXEC);
asm_fprintf (out_file, "\t# fn:%s mv%d\n", fname, TARGET_MVCLE);
asm_fprintf (out_file, "\t# fn:%s zv%d\n", fname, TARGET_ZVECTOR);
asm_fprintf (out_file, "\t# fn:%s wd%d\n", fname,
s390_warn_dynamicstack_p);
}
assemble_function_label_raw (out_file, fname);
if (hw_after > 0)
asm_fprintf (out_file,
"\t# post-label NOPs for hotpatch (%d halfwords)\n",
hw_after);
}
/* Output machine-dependent UNSPECs occurring in address constant X
in assembler syntax to stdio stream FILE. Returns true if the
constant X could be recognized, false otherwise. */
static bool
s390_output_addr_const_extra (FILE *file, rtx x)
{
if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
switch (XINT (x, 1))
{
case UNSPEC_GOTENT:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOTENT");
return true;
case UNSPEC_GOT:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOT");
return true;
case UNSPEC_GOTOFF:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOTOFF");
return true;
case UNSPEC_PLT31:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@PLT");
return true;
case UNSPEC_PLTOFF:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@PLTOFF");
return true;
case UNSPEC_TLSGD:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@TLSGD");
return true;
case UNSPEC_TLSLDM:
assemble_name (file, get_some_local_dynamic_name ());
fprintf (file, "@TLSLDM");
return true;
case UNSPEC_DTPOFF:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@DTPOFF");
return true;
case UNSPEC_NTPOFF:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@NTPOFF");
return true;
case UNSPEC_GOTNTPOFF:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@GOTNTPOFF");
return true;
case UNSPEC_INDNTPOFF:
output_addr_const (file, XVECEXP (x, 0, 0));
fprintf (file, "@INDNTPOFF");
return true;
}
if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 2)
switch (XINT (x, 1))
{
case UNSPEC_POOL_OFFSET:
x = gen_rtx_MINUS (GET_MODE (x), XVECEXP (x, 0, 0), XVECEXP (x, 0, 1));
output_addr_const (file, x);
return true;
}
return false;
}
/* Output address operand ADDR in assembler syntax to
stdio stream FILE. */
void
print_operand_address (FILE *file, rtx addr)
{
struct s390_address ad;
memset (&ad, 0, sizeof (s390_address));
if (s390_loadrelative_operand_p (addr, NULL, NULL))
{
if (!TARGET_Z10)
{
output_operand_lossage ("symbolic memory references are "
"only supported on z10 or later");
return;
}
output_addr_const (file, addr);
return;
}
if (!s390_decompose_address (addr, &ad)
|| (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
|| (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx))))
output_operand_lossage ("cannot decompose address");
if (ad.disp)
output_addr_const (file, ad.disp);
else
fprintf (file, "0");
if (ad.base && ad.indx)
fprintf (file, "(%s,%s)", reg_names[REGNO (ad.indx)],
reg_names[REGNO (ad.base)]);
else if (ad.base)
fprintf (file, "(%s)", reg_names[REGNO (ad.base)]);
}
/* Output operand X in assembler syntax to stdio stream FILE.
CODE specified the format flag. The following format flags
are recognized:
'A': On z14 or higher: If operand is a mem print the alignment
hint usable with vl/vst prefixed by a comma.
'C': print opcode suffix for branch condition.
'D': print opcode suffix for inverse branch condition.
'E': print opcode suffix for branch on index instruction.
'G': print the size of the operand in bytes.
'J': print tls_load/tls_gdcall/tls_ldcall suffix
'K': print @PLT suffix for call targets and load address values.
'M': print the second word of a TImode operand.
'N': print the second word of a DImode operand.
'O': print only the displacement of a memory reference or address.
'p': print immediate and element size mask for instruction vrepi
'q': print start/end bit positions and element size mask for instruction vgm
'r': print immediate for instruction vgbm
'R': print only the base register of a memory reference or address.
'S': print S-type memory reference (base+displacement).
'Y': print address style operand without index (e.g. shift count or setmem
operand).
'b': print integer X as if it's an unsigned byte.
'c': print integer X as if it's an signed byte.
'e': "end" contiguous bitmask X in either DImode or vector inner mode.
'f': "end" contiguous bitmask X in SImode.
'h': print integer X as if it's a signed halfword.
'i': print the first nonzero HImode part of X.
'j': print the first HImode part unequal to -1 of X.
'k': print the first nonzero SImode part of X.
'm': print the first SImode part unequal to -1 of X.
'o': print integer X as if it's an unsigned 32bit word.
's': "start" of contiguous bitmask X in either DImode or vector inner mode.
't': CONST_INT: "start" of contiguous bitmask X in SImode.
'x': print integer X as if it's an unsigned halfword.
'v': print register number as vector register (v1 instead of f1).
*/
void
print_operand (FILE *file, rtx x, int code)
{
HOST_WIDE_INT ival;
switch (code)
{
case 'A':
if (TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS && MEM_P (x))
{
if (MEM_ALIGN (x) >= 128)
fprintf (file, ",4");
else if (MEM_ALIGN (x) == 64)
fprintf (file, ",3");
}
return;
case 'C':
fprintf (file, s390_branch_condition_mnemonic (x, FALSE));
return;
case 'D':
fprintf (file, s390_branch_condition_mnemonic (x, TRUE));
return;
case 'E':
if (GET_CODE (x) == LE)
fprintf (file, "l");
else if (GET_CODE (x) == GT)
fprintf (file, "h");
else
output_operand_lossage ("invalid comparison operator "
"for 'E' output modifier");
return;
case 'J':
if (GET_CODE (x) == SYMBOL_REF)
{
fprintf (file, "%s", ":tls_load:");
output_addr_const (file, x);
}
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD)
{
fprintf (file, "%s", ":tls_gdcall:");
output_addr_const (file, XVECEXP (x, 0, 0));
}
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM)
{
fprintf (file, "%s", ":tls_ldcall:");
const char *name = get_some_local_dynamic_name ();
gcc_assert (name);
assemble_name (file, name);
}
else
output_operand_lossage ("invalid reference for 'J' output modifier");
return;
case 'G':
fprintf (file, "%u", GET_MODE_SIZE (GET_MODE (x)));
return;
case 'O':
{
struct s390_address ad;
int ret;
ret = s390_decompose_address (MEM_P (x) ? XEXP (x, 0) : x, &ad);
if (!ret
|| (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
|| ad.indx)
{
output_operand_lossage ("invalid address for 'O' output modifier");
return;
}
if (ad.disp)
output_addr_const (file, ad.disp);
else
fprintf (file, "0");
}
return;
case 'p':
{
machine_mode mode;
short imm;
bool b = s390_constant_via_vrepi_p (x, &mode, &imm);
gcc_checking_assert (b);
switch (mode)
{
case QImode:
fprintf (file, "%i,0", imm);
break;
case HImode:
fprintf (file, "%i,1", imm);
break;
case SImode:
fprintf (file, "%i,2", imm);
break;
case DImode:
fprintf (file, "%i,3", imm);
break;
default:
gcc_unreachable ();
}
}
return;
case 'q':
{
machine_mode mode;
int start, end;
bool b = s390_constant_via_vgm_p (x, &mode, &start, &end);
gcc_checking_assert (b);
switch (mode)
{
case QImode:
fprintf (file, "%u,%u,0", start, end);
break;
case HImode:
fprintf (file, "%u,%u,1", start, end);
break;
case SImode:
fprintf (file, "%u,%u,2", start, end);
break;
case DImode:
fprintf (file, "%u,%u,3", start, end);
break;
default:
gcc_unreachable ();
}
}
return;
case 'r':
{
unsigned mask;
bool b = s390_constant_via_vgbm_p (x, &mask);
gcc_checking_assert (b);
fprintf (file, "%u", mask);
}
return;
case 'R':
{
struct s390_address ad;
int ret;
ret = s390_decompose_address (MEM_P (x) ? XEXP (x, 0) : x, &ad);
if (!ret
|| (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
|| ad.indx)
{
output_operand_lossage ("invalid address for 'R' output modifier");
return;
}
if (ad.base)
fprintf (file, "%s", reg_names[REGNO (ad.base)]);
else
fprintf (file, "0");
}
return;
case 'S':
{
struct s390_address ad;
int ret;
if (!MEM_P (x))
{
output_operand_lossage ("memory reference expected for "
"'S' output modifier");
return;
}
ret = s390_decompose_address (XEXP (x, 0), &ad);
if (!ret
|| (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
|| ad.indx)
{
output_operand_lossage ("invalid address for 'S' output modifier");
return;
}
if (ad.disp)
output_addr_const (file, ad.disp);
else
fprintf (file, "0");
if (ad.base)
fprintf (file, "(%s)", reg_names[REGNO (ad.base)]);
}
return;
case 'N':
if (GET_CODE (x) == REG)
x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
else if (GET_CODE (x) == MEM)
x = change_address (x, VOIDmode,
plus_constant (Pmode, XEXP (x, 0), 4));
else
output_operand_lossage ("register or memory expression expected "
"for 'N' output modifier");
break;
case 'M':
if (GET_CODE (x) == REG)
x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
else if (GET_CODE (x) == MEM)
x = change_address (x, VOIDmode,
plus_constant (Pmode, XEXP (x, 0), 8));
else
output_operand_lossage ("register or memory expression expected "
"for 'M' output modifier");
break;
case 'Y':
print_shift_count_operand (file, x);
return;
case 'K':
/* Append @PLT to both local and non-local symbols in order to support
Linux Kernel livepatching: patches contain individual functions and
are loaded further than 2G away from vmlinux, and therefore they must
call even static functions via PLT. ld will optimize @PLT away for
normal code, and keep it for patches.
Do not indiscriminately add @PLT in 31-bit mode due to the %r12
restriction, use UNSPEC_PLT31 instead.
@PLT only makes sense for functions, data is taken care of by
-mno-pic-data-is-text-relative.
Adding @PLT interferes with handling of weak symbols in non-PIC code,
since their addresses are loaded with larl, which then always produces
a non-NULL result, so skip them here as well. */
if (TARGET_64BIT
&& GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_FUNCTION_P (x)
&& !(SYMBOL_REF_WEAK (x) && !flag_pic))
fprintf (file, "@PLT");
return;
}
switch (GET_CODE (x))
{
case REG:
/* Print FP regs as fx instead of vx when they are accessed
through non-vector mode. */
if (code == 'v'
|| VECTOR_NOFP_REG_P (x)
|| (FP_REG_P (x) && VECTOR_MODE_P (GET_MODE (x)))
|| (VECTOR_REG_P (x)
&& (GET_MODE_SIZE (GET_MODE (x)) /
s390_class_max_nregs (FP_REGS, GET_MODE (x))) > 8))
fprintf (file, "%%v%s", reg_names[REGNO (x)] + 2);
else
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case MEM:
output_address (GET_MODE (x), XEXP (x, 0));
break;
case CONST:
case CODE_LABEL:
case LABEL_REF:
case SYMBOL_REF:
output_addr_const (file, x);
break;
case CONST_INT:
ival = INTVAL (x);
switch (code)
{
case 0:
break;
case 'b':
ival &= 0xff;
break;
case 'c':
ival = ((ival & 0xff) ^ 0x80) - 0x80;
break;
case 'x':
ival &= 0xffff;
break;
case 'h':
ival = ((ival & 0xffff) ^ 0x8000) - 0x8000;
break;
case 'i':
ival = s390_extract_part (x, HImode, 0);
break;
case 'j':
ival = s390_extract_part (x, HImode, -1);
break;
case 'k':
ival = s390_extract_part (x, SImode, 0);
break;
case 'm':
ival = s390_extract_part (x, SImode, -1);
break;
case 'o':
ival &= 0xffffffff;
break;
case 'e': case 'f':
case 's': case 't':
{
int start, end;
int len;
bool ok;
len = (code == 's' || code == 'e' ? 64 : 32);
ok = s390_contiguous_bitmask_p (ival, true, len, &start, &end);
gcc_assert (ok);
if (code == 's' || code == 't')
ival = start;
else
ival = end;
}
break;
default:
output_operand_lossage ("invalid constant for output modifier '%c'", code);
}
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
case CONST_WIDE_INT:
if (code == 'b')
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
CONST_WIDE_INT_ELT (x, 0) & 0xff);
else if (code == 'x')
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
CONST_WIDE_INT_ELT (x, 0) & 0xffff);
else if (code == 'h')
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
((CONST_WIDE_INT_ELT (x, 0) & 0xffff) ^ 0x8000) - 0x8000);
else
{
if (code == 0)
output_operand_lossage ("invalid constant - try using "
"an output modifier");
else
output_operand_lossage ("invalid constant for output modifier '%c'",
code);
}
break;
case CONST_VECTOR:
switch (code)
{
case 'h':
gcc_assert (const_vec_duplicate_p (x));
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
((INTVAL (XVECEXP (x, 0, 0)) & 0xffff) ^ 0x8000) - 0x8000);
break;
default:
output_operand_lossage ("invalid constant vector for output "
"modifier '%c'", code);
}
break;
default:
if (code == 0)
output_operand_lossage ("invalid expression - try using "
"an output modifier");
else
output_operand_lossage ("invalid expression for output "
"modifier '%c'", code);
break;
}
}
/* Target hook for assembling integer objects. We need to define it
here to work a round a bug in some versions of GAS, which couldn't
handle values smaller than INT_MIN when printed in decimal. */
static bool
s390_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
if (size == 8 && aligned_p
&& GET_CODE (x) == CONST_INT && INTVAL (x) < INT_MIN)
{
fprintf (asm_out_file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n",
INTVAL (x));
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
/* Returns true if register REGNO is used for forming
a memory address in expression X. */
static bool
reg_used_in_mem_p (int regno, rtx x)
{
enum rtx_code code = GET_CODE (x);
int i, j;
const char *fmt;
if (code == MEM)
{
if (refers_to_regno_p (regno, XEXP (x, 0)))
return true;
}
else if (code == SET
&& GET_CODE (SET_DEST (x)) == PC)
{
if (refers_to_regno_p (regno, SET_SRC (x)))
return true;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e'
&& reg_used_in_mem_p (regno, XEXP (x, i)))
return true;
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (reg_used_in_mem_p (regno, XVECEXP (x, i, j)))
return true;
}
return false;
}
/* Returns true if expression DEP_RTX sets an address register
used by instruction INSN to address memory. */
static bool
addr_generation_dependency_p (rtx dep_rtx, rtx_insn *insn)
{
rtx target, pat;
if (NONJUMP_INSN_P (dep_rtx))
dep_rtx = PATTERN (dep_rtx);
if (GET_CODE (dep_rtx) == SET)
{
target = SET_DEST (dep_rtx);
if (GET_CODE (target) == STRICT_LOW_PART)
target = XEXP (target, 0);
while (GET_CODE (target) == SUBREG)
target = SUBREG_REG (target);
if (GET_CODE (target) == REG)
{
int regno = REGNO (target);
if (s390_safe_attr_type (insn) == TYPE_LA)
{
pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
{
gcc_assert (XVECLEN (pat, 0) == 2);
pat = XVECEXP (pat, 0, 0);
}
gcc_assert (GET_CODE (pat) == SET);
return refers_to_regno_p (regno, SET_SRC (pat));
}
else if (get_attr_atype (insn) == ATYPE_AGEN)
return reg_used_in_mem_p (regno, PATTERN (insn));
}
}
return false;
}
/* Return 1, if dep_insn sets register used in insn in the agen unit. */
int
s390_agen_dep_p (rtx_insn *dep_insn, rtx_insn *insn)
{
rtx dep_rtx = PATTERN (dep_insn);
int i;
if (GET_CODE (dep_rtx) == SET
&& addr_generation_dependency_p (dep_rtx, insn))
return 1;
else if (GET_CODE (dep_rtx) == PARALLEL)
{
for (i = 0; i < XVECLEN (dep_rtx, 0); i++)
{
if (addr_generation_dependency_p (XVECEXP (dep_rtx, 0, i), insn))
return 1;
}
}
return 0;
}
/* A C statement (sans semicolon) to update the integer scheduling priority
INSN_PRIORITY (INSN). Increase the priority to execute the INSN earlier,
reduce the priority to execute INSN later. Do not define this macro if
you do not need to adjust the scheduling priorities of insns.
A STD instruction should be scheduled earlier,
in order to use the bypass. */
static int
s390_adjust_priority (rtx_insn *insn, int priority)
{
if (! INSN_P (insn))
return priority;
if (s390_tune <= PROCESSOR_2064_Z900)
return priority;
switch (s390_safe_attr_type (insn))
{
case TYPE_FSTOREDF:
case TYPE_FSTORESF:
priority = priority << 3;
break;
case TYPE_STORE:
case TYPE_STM:
priority = priority << 1;
break;
default:
break;
}
return priority;
}
/* The number of instructions that can be issued per cycle. */
static int
s390_issue_rate (void)
{
switch (s390_tune)
{
case PROCESSOR_2084_Z990:
case PROCESSOR_2094_Z9_109:
case PROCESSOR_2094_Z9_EC:
case PROCESSOR_2817_Z196:
return 3;
case PROCESSOR_2097_Z10:
return 2;
case PROCESSOR_2064_Z900:
/* Starting with EC12 we use the sched_reorder hook to take care
of instruction dispatch constraints. The algorithm only
picks the best instruction and assumes only a single
instruction gets issued per cycle. */
case PROCESSOR_2827_ZEC12:
case PROCESSOR_2964_Z13:
case PROCESSOR_3906_Z14:
case PROCESSOR_8561_Z15:
case PROCESSOR_3931_Z16:
default:
return 1;
}
}
static int
s390_first_cycle_multipass_dfa_lookahead (void)
{
return 4;
}
static void
annotate_constant_pool_refs_1 (rtx *x)
{
int i, j;
const char *fmt;
gcc_assert (GET_CODE (*x) != SYMBOL_REF
|| !CONSTANT_POOL_ADDRESS_P (*x));
/* Literal pool references can only occur inside a MEM ... */
if (GET_CODE (*x) == MEM)
{
rtx memref = XEXP (*x, 0);
if (GET_CODE (memref) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (memref))
{
rtx base = cfun->machine->base_reg;
rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, memref, base),
UNSPEC_LTREF);
*x = replace_equiv_address (*x, addr);
return;
}
if (GET_CODE (memref) == CONST
&& GET_CODE (XEXP (memref, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (memref, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (memref, 0), 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (memref, 0), 0)))
{
HOST_WIDE_INT off = INTVAL (XEXP (XEXP (memref, 0), 1));
rtx sym = XEXP (XEXP (memref, 0), 0);
rtx base = cfun->machine->base_reg;
rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, sym, base),
UNSPEC_LTREF);
*x = replace_equiv_address (*x, plus_constant (Pmode, addr, off));
return;
}
}
/* ... or a load-address type pattern. */
if (GET_CODE (*x) == SET)
{
rtx addrref = SET_SRC (*x);
if (GET_CODE (addrref) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (addrref))
{
rtx base = cfun->machine->base_reg;
rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, addrref, base),
UNSPEC_LTREF);
SET_SRC (*x) = addr;
return;
}
if (GET_CODE (addrref) == CONST
&& GET_CODE (XEXP (addrref, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (addrref, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (addrref, 0), 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addrref, 0), 0)))
{
HOST_WIDE_INT off = INTVAL (XEXP (XEXP (addrref, 0), 1));
rtx sym = XEXP (XEXP (addrref, 0), 0);
rtx base = cfun->machine->base_reg;
rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, sym, base),
UNSPEC_LTREF);
SET_SRC (*x) = plus_constant (Pmode, addr, off);
return;
}
}
fmt = GET_RTX_FORMAT (GET_CODE (*x));
for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
annotate_constant_pool_refs_1 (&XEXP (*x, i));
}
else if (fmt[i] == 'E')
{
for (j = 0; j < XVECLEN (*x, i); j++)
annotate_constant_pool_refs_1 (&XVECEXP (*x, i, j));
}
}
}
/* Annotate every literal pool reference in INSN by an UNSPEC_LTREF expression.
Fix up MEMs as required.
Skip insns which support relative addressing, because they do not use a base
register. */
static void
annotate_constant_pool_refs (rtx_insn *insn)
{
if (s390_safe_relative_long_p (insn))
return;
annotate_constant_pool_refs_1 (&PATTERN (insn));
}
static void
find_constant_pool_ref_1 (rtx x, rtx *ref)
{
int i, j;
const char *fmt;
/* Likewise POOL_ENTRY insns. */
if (GET_CODE (x) == UNSPEC_VOLATILE
&& XINT (x, 1) == UNSPECV_POOL_ENTRY)
return;
gcc_assert (GET_CODE (x) != SYMBOL_REF
|| !CONSTANT_POOL_ADDRESS_P (x));
if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_LTREF)
{
rtx sym = XVECEXP (x, 0, 0);
gcc_assert (GET_CODE (sym) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (sym));
if (*ref == NULL_RTX)
*ref = sym;
else
gcc_assert (*ref == sym);
return;
}
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
find_constant_pool_ref_1 (XEXP (x, i), ref);
}
else if (fmt[i] == 'E')
{
for (j = 0; j < XVECLEN (x, i); j++)
find_constant_pool_ref_1 (XVECEXP (x, i, j), ref);
}
}
}
/* Find an annotated literal pool symbol referenced in INSN,
and store it at REF. Will abort if INSN contains references to
more than one such pool symbol; multiple references to the same
symbol are allowed, however.
The rtx pointed to by REF must be initialized to NULL_RTX
by the caller before calling this routine.
Skip insns which support relative addressing, because they do not use a base
register. */
static void
find_constant_pool_ref (rtx_insn *insn, rtx *ref)
{
if (s390_safe_relative_long_p (insn))
return;
find_constant_pool_ref_1 (PATTERN (insn), ref);
}
static void
replace_constant_pool_ref_1 (rtx *x, rtx ref, rtx offset)
{
int i, j;
const char *fmt;
gcc_assert (*x != ref);
if (GET_CODE (*x) == UNSPEC
&& XINT (*x, 1) == UNSPEC_LTREF
&& XVECEXP (*x, 0, 0) == ref)
{
*x = gen_rtx_PLUS (Pmode, XVECEXP (*x, 0, 1), offset);
return;
}
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& GET_CODE (XEXP (*x, 0)) == UNSPEC
&& XINT (XEXP (*x, 0), 1) == UNSPEC_LTREF
&& XVECEXP (XEXP (*x, 0), 0, 0) == ref)
{
rtx addr = gen_rtx_PLUS (Pmode, XVECEXP (XEXP (*x, 0), 0, 1), offset);
*x = plus_constant (Pmode, addr, INTVAL (XEXP (*x, 1)));
return;
}
fmt = GET_RTX_FORMAT (GET_CODE (*x));
for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
replace_constant_pool_ref_1 (&XEXP (*x, i), ref, offset);
}
else if (fmt[i] == 'E')
{
for (j = 0; j < XVECLEN (*x, i); j++)
replace_constant_pool_ref_1 (&XVECEXP (*x, i, j), ref, offset);
}
}
}
/* Replace every reference to the annotated literal pool
symbol REF in INSN by its base plus OFFSET.
Skip insns which support relative addressing, because they do not use a base
register. */
static void
replace_constant_pool_ref (rtx_insn *insn, rtx ref, rtx offset)
{
if (s390_safe_relative_long_p (insn))
return;
replace_constant_pool_ref_1 (&PATTERN (insn), ref, offset);
}
/* We keep a list of constants which we have to add to internal
constant tables in the middle of large functions. */
static machine_mode constant_modes[] =
{
TFmode, FPRX2mode, TImode, TDmode,
V16QImode, V8HImode, V4SImode, V2DImode, V1TImode,
V4SFmode, V2DFmode, V1TFmode,
DFmode, DImode, DDmode,
V8QImode, V4HImode, V2SImode, V1DImode, V2SFmode, V1DFmode,
SFmode, SImode, SDmode,
V4QImode, V2HImode, V1SImode, V1SFmode,
HImode,
V2QImode, V1HImode,
QImode,
V1QImode
};
#define NR_C_MODES (ARRAY_SIZE (constant_modes))
struct constant
{
struct constant *next;
rtx value;
rtx_code_label *label;
};
struct constant_pool
{
struct constant_pool *next;
rtx_insn *first_insn;
rtx_insn *pool_insn;
bitmap insns;
rtx_insn *emit_pool_after;
struct constant *constants[NR_C_MODES];
struct constant *execute;
rtx_code_label *label;
int size;
};
/* Allocate new constant_pool structure. */
static struct constant_pool *
s390_alloc_pool (void)
{
struct constant_pool *pool;
size_t i;
pool = (struct constant_pool *) xmalloc (sizeof *pool);
pool->next = NULL;
for (i = 0; i < NR_C_MODES; i++)
pool->constants[i] = NULL;
pool->execute = NULL;
pool->label = gen_label_rtx ();
pool->first_insn = NULL;
pool->pool_insn = NULL;
pool->insns = BITMAP_ALLOC (NULL);
pool->size = 0;
pool->emit_pool_after = NULL;
return pool;
}
/* Create new constant pool covering instructions starting at INSN
and chain it to the end of POOL_LIST. */
static struct constant_pool *
s390_start_pool (struct constant_pool **pool_list, rtx_insn *insn)
{
struct constant_pool *pool, **prev;
pool = s390_alloc_pool ();
pool->first_insn = insn;
for (prev = pool_list; *prev; prev = &(*prev)->next)
;
*prev = pool;
return pool;
}
/* End range of instructions covered by POOL at INSN and emit
placeholder insn representing the pool. */
static void
s390_end_pool (struct constant_pool *pool, rtx_insn *insn)
{
rtx pool_size = GEN_INT (pool->size + 8 /* alignment slop */);
if (!insn)
insn = get_last_insn ();
pool->pool_insn = emit_insn_after (gen_pool (pool_size), insn);
INSN_ADDRESSES_NEW (pool->pool_insn, -1);
}
/* Add INSN to the list of insns covered by POOL. */
static void
s390_add_pool_insn (struct constant_pool *pool, rtx insn)
{
bitmap_set_bit (pool->insns, INSN_UID (insn));
}
/* Return pool out of POOL_LIST that covers INSN. */
static struct constant_pool *
s390_find_pool (struct constant_pool *pool_list, rtx insn)
{
struct constant_pool *pool;
for (pool = pool_list; pool; pool = pool->next)
if (bitmap_bit_p (pool->insns, INSN_UID (insn)))
break;
return pool;
}
/* Add constant VAL of mode MODE to the constant pool POOL. */
static void
s390_add_constant (struct constant_pool *pool, rtx val, machine_mode mode)
{
struct constant *c;
size_t i;
for (i = 0; i < NR_C_MODES; i++)
if (constant_modes[i] == mode)
break;
gcc_assert (i != NR_C_MODES);
for (c = pool->constants[i]; c != NULL; c = c->next)
if (rtx_equal_p (val, c->value))
break;
if (c == NULL)
{
c = (struct constant *) xmalloc (sizeof *c);
c->value = val;
c->label = gen_label_rtx ();
c->next = pool->constants[i];
pool->constants[i] = c;
pool->size += GET_MODE_SIZE (mode);
}
}
/* Return an rtx that represents the offset of X from the start of
pool POOL. */
static rtx
s390_pool_offset (struct constant_pool *pool, rtx x)
{
rtx label;
label = gen_rtx_LABEL_REF (GET_MODE (x), pool->label);
x = gen_rtx_UNSPEC (GET_MODE (x), gen_rtvec (2, x, label),
UNSPEC_POOL_OFFSET);
return gen_rtx_CONST (GET_MODE (x), x);
}
/* Find constant VAL of mode MODE in the constant pool POOL.
Return an RTX describing the distance from the start of
the pool to the location of the new constant. */
static rtx
s390_find_constant (struct constant_pool *pool, rtx val,
machine_mode mode)
{
struct constant *c;
size_t i;
for (i = 0; i < NR_C_MODES; i++)
if (constant_modes[i] == mode)
break;
gcc_assert (i != NR_C_MODES);
for (c = pool->constants[i]; c != NULL; c = c->next)
if (rtx_equal_p (val, c->value))
break;
gcc_assert (c);
return s390_pool_offset (pool, gen_rtx_LABEL_REF (Pmode, c->label));
}
/* Check whether INSN is an execute. Return the label_ref to its
execute target template if so, NULL_RTX otherwise. */
static rtx
s390_execute_label (rtx insn)
{
if (INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == UNSPEC
&& (XINT (XVECEXP (PATTERN (insn), 0, 0), 1) == UNSPEC_EXECUTE
|| XINT (XVECEXP (PATTERN (insn), 0, 0), 1) == UNSPEC_EXECUTE_JUMP))
{
if (XINT (XVECEXP (PATTERN (insn), 0, 0), 1) == UNSPEC_EXECUTE)
return XVECEXP (XVECEXP (PATTERN (insn), 0, 0), 0, 2);
else
{
gcc_assert (JUMP_P (insn));
/* For jump insns as execute target:
- There is one operand less in the parallel (the
modification register of the execute is always 0).
- The execute target label is wrapped into an
if_then_else in order to hide it from jump analysis. */
return XEXP (XVECEXP (XVECEXP (PATTERN (insn), 0, 0), 0, 0), 0);
}
}
return NULL_RTX;
}
/* Find execute target for INSN in the constant pool POOL.
Return an RTX describing the distance from the start of
the pool to the location of the execute target. */
static rtx
s390_find_execute (struct constant_pool *pool, rtx insn)
{
struct constant *c;
for (c = pool->execute; c != NULL; c = c->next)
if (INSN_UID (insn) == INSN_UID (c->value))
break;
gcc_assert (c);
return s390_pool_offset (pool, gen_rtx_LABEL_REF (Pmode, c->label));
}
/* For an execute INSN, extract the execute target template. */
static rtx
s390_execute_target (rtx insn)
{
rtx pattern = PATTERN (insn);
gcc_assert (s390_execute_label (insn));
if (XVECLEN (pattern, 0) == 2)
{
pattern = copy_rtx (XVECEXP (pattern, 0, 1));
}
else
{
rtvec vec = rtvec_alloc (XVECLEN (pattern, 0) - 1);
int i;
for (i = 0; i < XVECLEN (pattern, 0) - 1; i++)
RTVEC_ELT (vec, i) = copy_rtx (XVECEXP (pattern, 0, i + 1));
pattern = gen_rtx_PARALLEL (VOIDmode, vec);
}
return pattern;
}
/* Indicate that INSN cannot be duplicated. This is the case for
execute insns that carry a unique label. */
static bool
s390_cannot_copy_insn_p (rtx_insn *insn)
{
rtx label = s390_execute_label (insn);
return label && label != const0_rtx;
}
/* Dump out the constants in POOL. If REMOTE_LABEL is true,
do not emit the pool base label. */
static void
s390_dump_pool (struct constant_pool *pool, bool remote_label)
{
struct constant *c;
rtx_insn *insn = pool->pool_insn;
size_t i;
/* Switch to rodata section. */
insn = emit_insn_after (gen_pool_section_start (), insn);
INSN_ADDRESSES_NEW (insn, -1);
/* Ensure minimum pool alignment. */
insn = emit_insn_after (gen_pool_align (GEN_INT (8)), insn);
INSN_ADDRESSES_NEW (insn, -1);
/* Emit pool base label. */
if (!remote_label)
{
insn = emit_label_after (pool->label, insn);
INSN_ADDRESSES_NEW (insn, -1);
}
/* Dump constants in descending alignment requirement order,
ensuring proper alignment for every constant. */
for (i = 0; i < NR_C_MODES; i++)
for (c = pool->constants[i]; c; c = c->next)
{
/* Convert UNSPEC_LTREL_OFFSET unspecs to pool-relative references. */
rtx value = copy_rtx (c->value);
if (GET_CODE (value) == CONST
&& GET_CODE (XEXP (value, 0)) == UNSPEC
&& XINT (XEXP (value, 0), 1) == UNSPEC_LTREL_OFFSET
&& XVECLEN (XEXP (value, 0), 0) == 1)
value = s390_pool_offset (pool, XVECEXP (XEXP (value, 0), 0, 0));
insn = emit_label_after (c->label, insn);
INSN_ADDRESSES_NEW (insn, -1);
value = gen_rtx_UNSPEC_VOLATILE (constant_modes[i],
gen_rtvec (1, value),
UNSPECV_POOL_ENTRY);
insn = emit_insn_after (value, insn);
INSN_ADDRESSES_NEW (insn, -1);
}
/* Ensure minimum alignment for instructions. */
insn = emit_insn_after (gen_pool_align (GEN_INT (2)), insn);
INSN_ADDRESSES_NEW (insn, -1);
/* Output in-pool execute template insns. */
for (c = pool->execute; c; c = c->next)
{
insn = emit_label_after (c->label, insn);
INSN_ADDRESSES_NEW (insn, -1);
insn = emit_insn_after (s390_execute_target (c->value), insn);
INSN_ADDRESSES_NEW (insn, -1);
}
/* Switch back to previous section. */
insn = emit_insn_after (gen_pool_section_end (), insn);
INSN_ADDRESSES_NEW (insn, -1);
insn = emit_barrier_after (insn);
INSN_ADDRESSES_NEW (insn, -1);
/* Remove placeholder insn. */
remove_insn (pool->pool_insn);
}
/* Free all memory used by POOL. */
static void
s390_free_pool (struct constant_pool *pool)
{
struct constant *c, *next;
size_t i;
for (i = 0; i < NR_C_MODES; i++)
for (c = pool->constants[i]; c; c = next)
{
next = c->next;
free (c);
}
for (c = pool->execute; c; c = next)
{
next = c->next;
free (c);
}
BITMAP_FREE (pool->insns);
free (pool);
}
/* Collect main literal pool. Return NULL on overflow. */
static struct constant_pool *
s390_mainpool_start (void)
{
struct constant_pool *pool;
rtx_insn *insn;
pool = s390_alloc_pool ();
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == SET
&& GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC_VOLATILE
&& XINT (SET_SRC (PATTERN (insn)), 1) == UNSPECV_MAIN_POOL)
{
/* There might be two main_pool instructions if base_reg
is call-clobbered; one for shrink-wrapped code and one
for the rest. We want to keep the first. */
if (pool->pool_insn)
{
insn = PREV_INSN (insn);
delete_insn (NEXT_INSN (insn));
continue;
}
pool->pool_insn = insn;
}
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
{
rtx pool_ref = NULL_RTX;
find_constant_pool_ref (insn, &pool_ref);
if (pool_ref)
{
rtx constant = get_pool_constant (pool_ref);
machine_mode mode = get_pool_mode (pool_ref);
s390_add_constant (pool, constant, mode);
}
}
/* If hot/cold partitioning is enabled we have to make sure that
the literal pool is emitted in the same section where the
initialization of the literal pool base pointer takes place.
emit_pool_after is only used in the non-overflow case on non
Z cpus where we can emit the literal pool at the end of the
function body within the text section. */
if (NOTE_P (insn)
&& NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS
&& !pool->emit_pool_after)
pool->emit_pool_after = PREV_INSN (insn);
}
gcc_assert (pool->pool_insn || pool->size == 0);
if (pool->size >= 4096)
{
/* We're going to chunkify the pool, so remove the main
pool placeholder insn. */
remove_insn (pool->pool_insn);
s390_free_pool (pool);
pool = NULL;
}
/* If the functions ends with the section where the literal pool
should be emitted set the marker to its end. */
if (pool && !pool->emit_pool_after)
pool->emit_pool_after = get_last_insn ();
return pool;
}
/* POOL holds the main literal pool as collected by s390_mainpool_start.
Modify the current function to output the pool constants as well as
the pool register setup instruction. */
static void
s390_mainpool_finish (struct constant_pool *pool)
{
rtx base_reg = cfun->machine->base_reg;
rtx set;
rtx_insn *insn;
/* If the pool is empty, we're done. */
if (pool->size == 0)
{
/* We don't actually need a base register after all. */
cfun->machine->base_reg = NULL_RTX;
if (pool->pool_insn)
remove_insn (pool->pool_insn);
s390_free_pool (pool);
return;
}
/* We need correct insn addresses. */
shorten_branches (get_insns ());
/* Use a LARL to load the pool register. The pool is
located in the .rodata section, so we emit it after the function. */
set = gen_main_base_64 (base_reg, pool->label);
insn = emit_insn_after (set, pool->pool_insn);
INSN_ADDRESSES_NEW (insn, -1);
remove_insn (pool->pool_insn);
insn = get_last_insn ();
pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn);
INSN_ADDRESSES_NEW (pool->pool_insn, -1);
s390_dump_pool (pool, 0);
/* Replace all literal pool references. */
for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
{
rtx addr, pool_ref = NULL_RTX;
find_constant_pool_ref (insn, &pool_ref);
if (pool_ref)
{
if (s390_execute_label (insn))
addr = s390_find_execute (pool, insn);
else
addr = s390_find_constant (pool, get_pool_constant (pool_ref),
get_pool_mode (pool_ref));
replace_constant_pool_ref (insn, pool_ref, addr);
INSN_CODE (insn) = -1;
}
}
}
/* Free the pool. */
s390_free_pool (pool);
}
/* Chunkify the literal pool. */
#define S390_POOL_CHUNK_MIN 0xc00
#define S390_POOL_CHUNK_MAX 0xe00
static struct constant_pool *
s390_chunkify_start (void)
{
struct constant_pool *curr_pool = NULL, *pool_list = NULL;
bitmap far_labels;
rtx_insn *insn;
/* We need correct insn addresses. */
shorten_branches (get_insns ());
/* Scan all insns and move literals to pool chunks. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
{
rtx pool_ref = NULL_RTX;
find_constant_pool_ref (insn, &pool_ref);
if (pool_ref)
{
rtx constant = get_pool_constant (pool_ref);
machine_mode mode = get_pool_mode (pool_ref);
if (!curr_pool)
curr_pool = s390_start_pool (&pool_list, insn);
s390_add_constant (curr_pool, constant, mode);
s390_add_pool_insn (curr_pool, insn);
}
}
if (JUMP_P (insn) || JUMP_TABLE_DATA_P (insn) || LABEL_P (insn))
{
if (curr_pool)
s390_add_pool_insn (curr_pool, insn);
}
if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
continue;
if (!curr_pool
|| INSN_ADDRESSES_SIZE () <= (size_t) INSN_UID (insn)
|| INSN_ADDRESSES (INSN_UID (insn)) == -1)
continue;
if (curr_pool->size < S390_POOL_CHUNK_MAX)
continue;
s390_end_pool (curr_pool, NULL);
curr_pool = NULL;
}
if (curr_pool)
s390_end_pool (curr_pool, NULL);
/* Find all labels that are branched into
from an insn belonging to a different chunk. */
far_labels = BITMAP_ALLOC (NULL);
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx_jump_table_data *table;
/* Labels marked with LABEL_PRESERVE_P can be target
of non-local jumps, so we have to mark them.
The same holds for named labels.
Don't do that, however, if it is the label before
a jump table. */
if (LABEL_P (insn)
&& (LABEL_PRESERVE_P (insn) || LABEL_NAME (insn)))
{
rtx_insn *vec_insn = NEXT_INSN (insn);
if (! vec_insn || ! JUMP_TABLE_DATA_P (vec_insn))
bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (insn));
}
/* Check potential targets in a table jump (casesi_jump). */
else if (tablejump_p (insn, NULL, &table))
{
rtx vec_pat = PATTERN (table);
int i, diff_p = GET_CODE (vec_pat) == ADDR_DIFF_VEC;
for (i = 0; i < XVECLEN (vec_pat, diff_p); i++)
{
rtx label = XEXP (XVECEXP (vec_pat, diff_p, i), 0);
if (s390_find_pool (pool_list, label)
!= s390_find_pool (pool_list, insn))
bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label));
}
}
/* If we have a direct jump (conditional or unconditional),
check all potential targets. */
else if (JUMP_P (insn))
{
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
pat = XVECEXP (pat, 0, 0);
if (GET_CODE (pat) == SET)
{
rtx label = JUMP_LABEL (insn);
if (label && !ANY_RETURN_P (label))
{
if (s390_find_pool (pool_list, label)
!= s390_find_pool (pool_list, insn))
bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label));
}
}
}
}
/* Insert base register reload insns before every pool. */
for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
{
rtx new_insn = gen_reload_base_64 (cfun->machine->base_reg,
curr_pool->label);
rtx_insn *insn = curr_pool->first_insn;
INSN_ADDRESSES_NEW (emit_insn_before (new_insn, insn), -1);
}
/* Insert base register reload insns at every far label. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (LABEL_P (insn)
&& bitmap_bit_p (far_labels, CODE_LABEL_NUMBER (insn)))
{
struct constant_pool *pool = s390_find_pool (pool_list, insn);
if (pool)
{
rtx new_insn = gen_reload_base_64 (cfun->machine->base_reg,
pool->label);
INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1);
}
}
BITMAP_FREE (far_labels);
/* Recompute insn addresses. */
init_insn_lengths ();
shorten_branches (get_insns ());
return pool_list;
}
/* POOL_LIST is a chunk list as prepared by s390_chunkify_start.
After we have decided to use this list, finish implementing
all changes to the current function as required. */
static void
s390_chunkify_finish (struct constant_pool *pool_list)
{
struct constant_pool *curr_pool = NULL;
rtx_insn *insn;
/* Replace all literal pool references. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
curr_pool = s390_find_pool (pool_list, insn);
if (!curr_pool)
continue;
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
{
rtx addr, pool_ref = NULL_RTX;
find_constant_pool_ref (insn, &pool_ref);
if (pool_ref)
{
if (s390_execute_label (insn))
addr = s390_find_execute (curr_pool, insn);
else
addr = s390_find_constant (curr_pool,
get_pool_constant (pool_ref),
get_pool_mode (pool_ref));
replace_constant_pool_ref (insn, pool_ref, addr);
INSN_CODE (insn) = -1;
}
}
}
/* Dump out all literal pools. */
for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
s390_dump_pool (curr_pool, 0);
/* Free pool list. */
while (pool_list)
{
struct constant_pool *next = pool_list->next;
s390_free_pool (pool_list);
pool_list = next;
}
}
/* Output the constant pool entry EXP in mode MODE with alignment ALIGN. */
void
s390_output_pool_entry (rtx exp, machine_mode mode, unsigned int align)
{
switch (GET_MODE_CLASS (mode))
{
case MODE_FLOAT:
case MODE_DECIMAL_FLOAT:
gcc_assert (GET_CODE (exp) == CONST_DOUBLE);
assemble_real (*CONST_DOUBLE_REAL_VALUE (exp),
as_a <scalar_float_mode> (mode), align);
break;
case MODE_INT:
assemble_integer (exp, GET_MODE_SIZE (mode), align, 1);
mark_symbol_refs_as_used (exp);
break;
case MODE_VECTOR_INT:
case MODE_VECTOR_FLOAT:
{
int i;
machine_mode inner_mode;
gcc_assert (GET_CODE (exp) == CONST_VECTOR);
inner_mode = GET_MODE_INNER (GET_MODE (exp));
for (i = 0; i < XVECLEN (exp, 0); i++)
s390_output_pool_entry (XVECEXP (exp, 0, i),
inner_mode,
i == 0
? align
: GET_MODE_BITSIZE (inner_mode));
}
break;
default:
gcc_unreachable ();
}
}
/* Return true if MEM refers to an integer constant in the literal pool. If
VAL is not nullptr, then also fill it with the constant's value. */
bool
s390_const_int_pool_entry_p (rtx mem, HOST_WIDE_INT *val)
{
/* Try to match the following:
- (mem (unspec [(symbol_ref) (reg)] UNSPEC_LTREF)).
- (mem (symbol_ref)). */
if (!MEM_P (mem) || GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
return false;
rtx addr = XEXP (mem, 0);
rtx sym;
if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_LTREF)
sym = XVECEXP (addr, 0, 0);
else
sym = addr;
if (!SYMBOL_REF_P (sym) || !CONSTANT_POOL_ADDRESS_P (sym))
return false;
rtx val_rtx = get_pool_constant (sym);
machine_mode mode = get_pool_mode (sym);
if (!CONST_INT_P (val_rtx)
|| GET_MODE_CLASS (mode) != MODE_INT
|| GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (mem)))
return false;
if (mode != GET_MODE (mem))
{
val_rtx = simplify_subreg (GET_MODE (mem), val_rtx, mode, 0);
if (val_rtx == NULL_RTX || !CONST_INT_P (val_rtx))
return false;
}
if (val != nullptr)
*val = INTVAL (val_rtx);
return true;
}
/* Return an RTL expression representing the value of the return address
for the frame COUNT steps up from the current frame. FRAME is the
frame pointer of that frame. */
rtx
s390_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
{
int offset;
rtx addr;
/* Without backchain, we fail for all but the current frame. */
if (!TARGET_BACKCHAIN && count > 0)
return NULL_RTX;
/* For the current frame, we need to make sure the initial
value of RETURN_REGNUM is actually saved. */
if (count == 0)
return get_hard_reg_initial_val (Pmode, RETURN_REGNUM);
if (TARGET_PACKED_STACK)
offset = -2 * UNITS_PER_LONG;
else
offset = RETURN_REGNUM * UNITS_PER_LONG;
addr = plus_constant (Pmode, frame, offset);
addr = memory_address (Pmode, addr);
return gen_rtx_MEM (Pmode, addr);
}
/* Return an RTL expression representing the back chain stored in
the current stack frame. */
rtx
s390_back_chain_rtx (void)
{
rtx chain;
gcc_assert (TARGET_BACKCHAIN);
if (TARGET_PACKED_STACK)
chain = plus_constant (Pmode, stack_pointer_rtx,
STACK_POINTER_OFFSET - UNITS_PER_LONG);
else
chain = stack_pointer_rtx;
chain = gen_rtx_MEM (Pmode, chain);
return chain;
}
/* Find first call clobbered register unused in a function.
This could be used as base register in a leaf function
or for holding the return address before epilogue. */
static int
find_unused_clobbered_reg (void)
{
int i;
for (i = 0; i < 6; i++)
if (!df_regs_ever_live_p (i))
return i;
return 0;
}
/* Helper function for s390_regs_ever_clobbered. Sets the fields in DATA for all
clobbered hard regs in SETREG. */
static void
s390_reg_clobbered_rtx (rtx setreg, const_rtx set_insn ATTRIBUTE_UNUSED, void *data)
{
char *regs_ever_clobbered = (char *)data;
unsigned int i, regno;
machine_mode mode = GET_MODE (setreg);
if (GET_CODE (setreg) == SUBREG)
{
rtx inner = SUBREG_REG (setreg);
if (!GENERAL_REG_P (inner) && !FP_REG_P (inner))
return;
regno = subreg_regno (setreg);
}
else if (GENERAL_REG_P (setreg) || FP_REG_P (setreg))
regno = REGNO (setreg);
else
return;
for (i = regno;
i < end_hard_regno (mode, regno);
i++)
regs_ever_clobbered[i] = 1;
}
/* Walks through all basic blocks of the current function looking
for clobbered hard regs using s390_reg_clobbered_rtx. The fields
of the passed integer array REGS_EVER_CLOBBERED are set to one for
each of those regs. */
static void
s390_regs_ever_clobbered (char regs_ever_clobbered[])
{
basic_block cur_bb;
rtx_insn *cur_insn;
unsigned int i;
memset (regs_ever_clobbered, 0, 32);
/* For non-leaf functions we have to consider all call clobbered regs to be
clobbered. */
if (!crtl->is_leaf)
{
for (i = 0; i < 32; i++)
regs_ever_clobbered[i] = call_used_regs[i];
}
/* Make the "magic" eh_return registers live if necessary. For regs_ever_live
this work is done by liveness analysis (mark_regs_live_at_end).
Special care is needed for functions containing landing pads. Landing pads
may use the eh registers, but the code which sets these registers is not
contained in that function. Hence s390_regs_ever_clobbered is not able to
deal with this automatically. */
if (crtl->calls_eh_return || cfun->machine->has_landing_pad_p)
for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM ; i++)
if (crtl->calls_eh_return
|| (cfun->machine->has_landing_pad_p
&& df_regs_ever_live_p (EH_RETURN_DATA_REGNO (i))))
regs_ever_clobbered[EH_RETURN_DATA_REGNO (i)] = 1;
/* For nonlocal gotos all call-saved registers have to be saved.
This flag is also set for the unwinding code in libgcc.
See expand_builtin_unwind_init. For regs_ever_live this is done by
reload. */
if (crtl->saves_all_registers)
for (i = 0; i < 32; i++)
if (!call_used_regs[i])
regs_ever_clobbered[i] = 1;
FOR_EACH_BB_FN (cur_bb, cfun)
{
FOR_BB_INSNS (cur_bb, cur_insn)
{
rtx pat;
if (!INSN_P (cur_insn))
continue;
pat = PATTERN (cur_insn);
/* Ignore GPR restore insns. */
if (epilogue_completed && RTX_FRAME_RELATED_P (cur_insn))
{
if (GET_CODE (pat) == SET
&& GENERAL_REG_P (SET_DEST (pat)))
{
/* lgdr */
if (GET_MODE (SET_SRC (pat)) == DImode
&& FP_REG_P (SET_SRC (pat)))
continue;
/* l / lg */
if (GET_CODE (SET_SRC (pat)) == MEM)
continue;
}
/* lm / lmg */
if (GET_CODE (pat) == PARALLEL
&& load_multiple_operation (pat, VOIDmode))
continue;
}
note_stores (cur_insn,
s390_reg_clobbered_rtx,
regs_ever_clobbered);
}
}
}
/* Determine the frame area which actually has to be accessed
in the function epilogue. The values are stored at the
given pointers AREA_BOTTOM (address of the lowest used stack
address) and AREA_TOP (address of the first item which does
not belong to the stack frame). */
static void
s390_frame_area (int *area_bottom, int *area_top)
{
int b, t;
b = INT_MAX;
t = INT_MIN;
if (cfun_frame_layout.first_restore_gpr != -1)
{
b = (cfun_frame_layout.gprs_offset
+ cfun_frame_layout.first_restore_gpr * UNITS_PER_LONG);
t = b + (cfun_frame_layout.last_restore_gpr
- cfun_frame_layout.first_restore_gpr + 1) * UNITS_PER_LONG;
}
if (TARGET_64BIT && cfun_save_high_fprs_p)
{
b = MIN (b, cfun_frame_layout.f8_offset);
t = MAX (t, (cfun_frame_layout.f8_offset
+ cfun_frame_layout.high_fprs * 8));
}
if (!TARGET_64BIT)
{
if (cfun_fpr_save_p (FPR4_REGNUM))
{
b = MIN (b, cfun_frame_layout.f4_offset);
t = MAX (t, cfun_frame_layout.f4_offset + 8);
}
if (cfun_fpr_save_p (FPR6_REGNUM))
{
b = MIN (b, cfun_frame_layout.f4_offset + 8);
t = MAX (t, cfun_frame_layout.f4_offset + 16);
}
}
*area_bottom = b;
*area_top = t;
}
/* Update gpr_save_slots in the frame layout trying to make use of
FPRs as GPR save slots.
This is a helper routine of s390_register_info. */
static void
s390_register_info_gprtofpr ()
{
int save_reg_slot = FPR0_REGNUM;
int i, j;
if (TARGET_TPF || !TARGET_Z10 || !TARGET_HARD_FLOAT || !crtl->is_leaf)
return;
/* builtin_eh_return needs to be able to modify the return address
on the stack. It could also adjust the FPR save slot instead but
is it worth the trouble?! */
if (crtl->calls_eh_return)
return;
for (i = 15; i >= 6; i--)
{
if (cfun_gpr_save_slot (i) == SAVE_SLOT_NONE)
continue;
/* Advance to the next FP register which can be used as a
GPR save slot. */
while ((!call_used_regs[save_reg_slot]
|| df_regs_ever_live_p (save_reg_slot)
|| cfun_fpr_save_p (save_reg_slot))
&& FP_REGNO_P (save_reg_slot))
save_reg_slot++;
if (!FP_REGNO_P (save_reg_slot))
{
/* We only want to use ldgr/lgdr if we can get rid of
stm/lm entirely. So undo the gpr slot allocation in
case we ran out of FPR save slots. */
for (j = 6; j <= 15; j++)
if (FP_REGNO_P (cfun_gpr_save_slot (j)))
cfun_gpr_save_slot (j) = SAVE_SLOT_STACK;
break;
}
cfun_gpr_save_slot (i) = save_reg_slot++;
}
}
/* Set the bits in fpr_bitmap for FPRs which need to be saved due to
stdarg or -mpreserve-args.
This is a helper routine for s390_register_info. */
static void
s390_register_info_arg_fpr ()
{
int i;
int min_stdarg_fpr = INT_MAX, max_stdarg_fpr = -1;
int min_preserve_fpr = INT_MAX, max_preserve_fpr = -1;
int min_fpr, max_fpr;
/* Save the FP argument regs for stdarg. f0, f2 for 31 bit and
f0-f4 for 64 bit. */
if (cfun->stdarg
&& TARGET_HARD_FLOAT
&& cfun->va_list_fpr_size
&& crtl->args.info.fprs < FP_ARG_NUM_REG)
{
min_stdarg_fpr = crtl->args.info.fprs;
max_stdarg_fpr = min_stdarg_fpr + cfun->va_list_fpr_size - 1;
if (max_stdarg_fpr >= FP_ARG_NUM_REG)
max_stdarg_fpr = FP_ARG_NUM_REG - 1;
/* FPR argument regs start at f0. */
min_stdarg_fpr += FPR0_REGNUM;
max_stdarg_fpr += FPR0_REGNUM;
}
if (s390_preserve_args_p && crtl->args.info.fprs)
{
min_preserve_fpr = FPR0_REGNUM;
max_preserve_fpr = MIN (FPR0_REGNUM + FP_ARG_NUM_REG - 1,
FPR0_REGNUM + crtl->args.info.fprs - 1);
}
min_fpr = MIN (min_stdarg_fpr, min_preserve_fpr);
max_fpr = MAX (max_stdarg_fpr, max_preserve_fpr);
if (max_fpr == -1)
return;
for (i = min_fpr; i <= max_fpr; i++)
cfun_set_fpr_save (i);
}
/* Reserve the GPR save slots for GPRs which need to be saved due to
stdarg or -mpreserve-args.
This is a helper routine for s390_register_info. */
static void
s390_register_info_arg_gpr ()
{
int i;
int min_stdarg_gpr = INT_MAX, max_stdarg_gpr = -1;
int min_preserve_gpr = INT_MAX, max_preserve_gpr = -1;
int min_gpr, max_gpr;
if (cfun->stdarg
&& cfun->va_list_gpr_size
&& crtl->args.info.gprs < GP_ARG_NUM_REG)
{
min_stdarg_gpr = crtl->args.info.gprs;
max_stdarg_gpr = min_stdarg_gpr + cfun->va_list_gpr_size - 1;
if (max_stdarg_gpr >= GP_ARG_NUM_REG)
max_stdarg_gpr = GP_ARG_NUM_REG - 1;
/* GPR argument regs start at r2. */
min_stdarg_gpr += GPR2_REGNUM;
max_stdarg_gpr += GPR2_REGNUM;
}
if (s390_preserve_args_p && crtl->args.info.gprs)
{
min_preserve_gpr = GPR2_REGNUM;
max_preserve_gpr = MIN (GPR6_REGNUM,
GPR2_REGNUM + crtl->args.info.gprs - 1);
}
min_gpr = MIN (min_stdarg_gpr, min_preserve_gpr);
max_gpr = MAX (max_stdarg_gpr, max_preserve_gpr);
if (max_gpr == -1)
return;
/* If r6 was supposed to be saved into an FPR and now needs to go to
the stack for vararg we have to adjust the restore range to make
sure that the restore is done from stack as well. */
if (FP_REGNO_P (cfun_gpr_save_slot (GPR6_REGNUM))
&& min_gpr <= GPR6_REGNUM
&& max_gpr >= GPR6_REGNUM)
{
if (cfun_frame_layout.first_restore_gpr == -1
|| cfun_frame_layout.first_restore_gpr > GPR6_REGNUM)
cfun_frame_layout.first_restore_gpr = GPR6_REGNUM;
if (cfun_frame_layout.last_restore_gpr == -1
|| cfun_frame_layout.last_restore_gpr < GPR6_REGNUM)
cfun_frame_layout.last_restore_gpr = GPR6_REGNUM;
}
if (cfun_frame_layout.first_save_gpr == -1
|| cfun_frame_layout.first_save_gpr > min_gpr)
cfun_frame_layout.first_save_gpr = min_gpr;
if (cfun_frame_layout.last_save_gpr == -1
|| cfun_frame_layout.last_save_gpr < max_gpr)
cfun_frame_layout.last_save_gpr = max_gpr;
for (i = min_gpr; i <= max_gpr; i++)
cfun_gpr_save_slot (i) = SAVE_SLOT_STACK;
}
/* Calculate the save and restore ranges for stm(g) and lm(g) in the
prologue and epilogue. */
static void
s390_register_info_set_ranges ()
{
int i, j;
/* Find the first and the last save slot supposed to use the stack
to set the restore range.
Vararg regs might be marked as save to stack but only the
call-saved regs really need restoring (i.e. r6). This code
assumes that the vararg regs have not yet been recorded in
cfun_gpr_save_slot. */
for (i = 0; i < 16 && cfun_gpr_save_slot (i) != SAVE_SLOT_STACK; i++);
for (j = 15; j > i && cfun_gpr_save_slot (j) != SAVE_SLOT_STACK; j--);
cfun_frame_layout.first_restore_gpr = (i == 16) ? -1 : i;
cfun_frame_layout.last_restore_gpr = (i == 16) ? -1 : j;
cfun_frame_layout.first_save_gpr = (i == 16) ? -1 : i;
cfun_frame_layout.last_save_gpr = (i == 16) ? -1 : j;
}
/* The GPR and FPR save slots in cfun->machine->frame_layout are set
for registers which need to be saved in function prologue.
This function can be used until the insns emitted for save/restore
of the regs are visible in the RTL stream. */
static void
s390_register_info ()
{
int i;
char clobbered_regs[32];
gcc_assert (!epilogue_completed);
if (reload_completed)
/* After reload we rely on our own routine to determine which
registers need saving. */
s390_regs_ever_clobbered (clobbered_regs);
else
/* During reload we use regs_ever_live as a base since reload
does changes in there which we otherwise would not be aware
of. */
for (i = 0; i < 32; i++)
clobbered_regs[i] = df_regs_ever_live_p (i);
for (i = 0; i < 32; i++)
clobbered_regs[i] = clobbered_regs[i] && !global_regs[i];
/* Mark the call-saved FPRs which need to be saved.
This needs to be done before checking the special GPRs since the
stack pointer usage depends on whether high FPRs have to be saved
or not. */
cfun_frame_layout.fpr_bitmap = 0;
cfun_frame_layout.high_fprs = 0;
for (i = FPR0_REGNUM; i <= FPR15_REGNUM; i++)
if (clobbered_regs[i] && !call_used_regs[i])
{
cfun_set_fpr_save (i);
if (i >= FPR8_REGNUM)
cfun_frame_layout.high_fprs++;
}
/* Register 12 is used for GOT address, but also as temp in prologue
for split-stack stdarg functions (unless r14 is available). */
clobbered_regs[12]
|= ((flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
|| (flag_split_stack && cfun->stdarg
&& (crtl->is_leaf || TARGET_TPF_PROFILING
|| has_hard_reg_initial_val (Pmode, RETURN_REGNUM))));
clobbered_regs[BASE_REGNUM]
|= (cfun->machine->base_reg
&& REGNO (cfun->machine->base_reg) == BASE_REGNUM);
clobbered_regs[HARD_FRAME_POINTER_REGNUM]
|= !!frame_pointer_needed;
/* On pre z900 machines this might take until machine dependent
reorg to decide.
save_return_addr_p will only be set on non-zarch machines so
there is no risk that r14 goes into an FPR instead of a stack
slot. */
clobbered_regs[RETURN_REGNUM]
|= (!crtl->is_leaf
|| TARGET_TPF_PROFILING
|| cfun_frame_layout.save_return_addr_p
|| crtl->calls_eh_return);
clobbered_regs[STACK_POINTER_REGNUM]
|= (!crtl->is_leaf
|| TARGET_TPF_PROFILING
|| cfun_save_high_fprs_p
|| get_frame_size () > 0
|| (reload_completed && cfun_frame_layout.frame_size > 0)
|| cfun->calls_alloca);
memset (cfun_frame_layout.gpr_save_slots, SAVE_SLOT_NONE, 16);
for (i = 0; i < 16; i++)
if (clobbered_regs[i] && !call_used_regs[i])
cfun_gpr_save_slot (i) = SAVE_SLOT_STACK;
s390_register_info_arg_fpr ();
s390_register_info_gprtofpr ();
s390_register_info_set_ranges ();
/* Forcing argument registers to be saved on the stack might
override the GPR->FPR save decision for r6 so this must come
last. */
s390_register_info_arg_gpr ();
}
/* Return true if REGNO is a global register, but not one
of the special ones that need to be saved/restored in anyway. */
static inline bool
global_not_special_regno_p (int regno)
{
return (global_regs[regno]
/* These registers are special and need to be
restored in any case. */
&& !(regno == STACK_POINTER_REGNUM
|| regno == RETURN_REGNUM
|| regno == BASE_REGNUM
|| (flag_pic && regno == (int)PIC_OFFSET_TABLE_REGNUM)));
}
/* This function is called by s390_optimize_prologue in order to get
rid of unnecessary GPR save/restore instructions. The register info
for the GPRs is re-computed and the ranges are re-calculated. */
static void
s390_optimize_register_info ()
{
char clobbered_regs[32];
int i;
gcc_assert (epilogue_completed);
s390_regs_ever_clobbered (clobbered_regs);
/* Global registers do not need to be saved and restored unless it
is one of our special regs. (r12, r13, r14, or r15). */
for (i = 0; i < 32; i++)
clobbered_regs[i] = clobbered_regs[i] && !global_not_special_regno_p (i);
/* There is still special treatment needed for cases invisible to
s390_regs_ever_clobbered. */
clobbered_regs[RETURN_REGNUM]
|= (TARGET_TPF_PROFILING
/* When expanding builtin_return_addr in ESA mode we do not
know whether r14 will later be needed as scratch reg when
doing branch splitting. So the builtin always accesses the
r14 save slot and we need to stick to the save/restore
decision for r14 even if it turns out that it didn't get
clobbered. */
|| cfun_frame_layout.save_return_addr_p
|| crtl->calls_eh_return);
for (i = 0; i < 16; i++)
if (!clobbered_regs[i] || call_used_regs[i])
cfun_gpr_save_slot (i) = SAVE_SLOT_NONE;
s390_register_info_set_ranges ();
s390_register_info_arg_gpr ();
}
/* Fill cfun->machine with info about frame of current function. */
static void
s390_frame_info (void)
{
HOST_WIDE_INT lowest_offset;
cfun_frame_layout.first_save_gpr_slot = cfun_frame_layout.first_save_gpr;
cfun_frame_layout.last_save_gpr_slot = cfun_frame_layout.last_save_gpr;
/* The va_arg builtin uses a constant distance of 16 *
UNITS_PER_LONG (r0-r15) to reach the FPRs from the reg_save_area
pointer. So even if we are going to save the stack pointer in an
FPR we need the stack space in order to keep the offsets
correct. */
if (cfun->stdarg && cfun_save_arg_fprs_p)
{
cfun_frame_layout.last_save_gpr_slot = STACK_POINTER_REGNUM;
if (cfun_frame_layout.first_save_gpr_slot == -1)
cfun_frame_layout.first_save_gpr_slot = STACK_POINTER_REGNUM;
}
cfun_frame_layout.frame_size = get_frame_size ();
if (!TARGET_64BIT && cfun_frame_layout.frame_size > 0x7fff0000)
fatal_error (input_location,
"total size of local variables exceeds architecture limit");
if (!TARGET_PACKED_STACK)
{
/* Fixed stack layout. */
cfun_frame_layout.backchain_offset = 0;
cfun_frame_layout.f0_offset = 16 * UNITS_PER_LONG;
cfun_frame_layout.f4_offset = cfun_frame_layout.f0_offset + 2 * 8;
cfun_frame_layout.f8_offset = -cfun_frame_layout.high_fprs * 8;
cfun_frame_layout.gprs_offset = (cfun_frame_layout.first_save_gpr_slot
* UNITS_PER_LONG);
}
else if (TARGET_BACKCHAIN)
{
/* Kernel stack layout - packed stack, backchain, no float */
gcc_assert (TARGET_SOFT_FLOAT);
cfun_frame_layout.backchain_offset = (STACK_POINTER_OFFSET
- UNITS_PER_LONG);
/* The distance between the backchain and the return address
save slot must not change. So we always need a slot for the
stack pointer which resides in between. */
cfun_frame_layout.last_save_gpr_slot = STACK_POINTER_REGNUM;
cfun_frame_layout.gprs_offset
= cfun_frame_layout.backchain_offset - cfun_gprs_save_area_size;
/* FPRs will not be saved. Nevertheless pick sane values to
keep area calculations valid. */
cfun_frame_layout.f0_offset =
cfun_frame_layout.f4_offset =
cfun_frame_layout.f8_offset = cfun_frame_layout.gprs_offset;
}
else
{
int num_fprs;
/* Packed stack layout without backchain. */
/* With stdarg FPRs need their dedicated slots. */
num_fprs = (TARGET_64BIT && cfun->stdarg ? 2
: (cfun_fpr_save_p (FPR4_REGNUM) +
cfun_fpr_save_p (FPR6_REGNUM)));
cfun_frame_layout.f4_offset = STACK_POINTER_OFFSET - 8 * num_fprs;
num_fprs = (cfun->stdarg ? 2
: (cfun_fpr_save_p (FPR0_REGNUM)
+ cfun_fpr_save_p (FPR2_REGNUM)));
cfun_frame_layout.f0_offset = cfun_frame_layout.f4_offset - 8 * num_fprs;
cfun_frame_layout.gprs_offset
= cfun_frame_layout.f0_offset - cfun_gprs_save_area_size;
cfun_frame_layout.f8_offset = (cfun_frame_layout.gprs_offset
- cfun_frame_layout.high_fprs * 8);
}
if (cfun_save_high_fprs_p)
cfun_frame_layout.frame_size += cfun_frame_layout.high_fprs * 8;
if (!crtl->is_leaf)
cfun_frame_layout.frame_size += crtl->outgoing_args_size;
/* In the following cases we have to allocate a STACK_POINTER_OFFSET
sized area at the bottom of the stack. This is required also for
leaf functions. When GCC generates a local stack reference it
will always add STACK_POINTER_OFFSET to all these references. */
if (crtl->is_leaf
&& !TARGET_TPF_PROFILING
&& cfun_frame_layout.frame_size == 0
&& !cfun->calls_alloca)
return;
/* Calculate the number of bytes we have used in our own register
save area. With the packed stack layout we can re-use the
remaining bytes for normal stack elements. */
if (TARGET_PACKED_STACK)
lowest_offset = MIN (MIN (cfun_frame_layout.f0_offset,
cfun_frame_layout.f4_offset),
cfun_frame_layout.gprs_offset);
else
lowest_offset = 0;
if (TARGET_BACKCHAIN)
lowest_offset = MIN (lowest_offset, cfun_frame_layout.backchain_offset);
cfun_frame_layout.frame_size += STACK_POINTER_OFFSET - lowest_offset;
/* If under 31 bit an odd number of gprs has to be saved we have to
adjust the frame size to sustain 8 byte alignment of stack
frames. */
cfun_frame_layout.frame_size = ((cfun_frame_layout.frame_size +
STACK_BOUNDARY / BITS_PER_UNIT - 1)
& ~(STACK_BOUNDARY / BITS_PER_UNIT - 1));
}
/* Generate frame layout. Fills in register and frame data for the current
function in cfun->machine. This routine can be called multiple times;
it will re-do the complete frame layout every time. */
static void
s390_init_frame_layout (void)
{
HOST_WIDE_INT frame_size;
int base_used;
/* After LRA the frame layout is supposed to be read-only and should
not be re-computed. */
if (reload_completed)
return;
do
{
frame_size = cfun_frame_layout.frame_size;
/* Try to predict whether we'll need the base register. */
base_used = crtl->uses_const_pool
|| (!DISP_IN_RANGE (frame_size)
&& !CONST_OK_FOR_K (frame_size));
/* Decide which register to use as literal pool base. In small
leaf functions, try to use an unused call-clobbered register
as base register to avoid save/restore overhead. */
if (!base_used)
cfun->machine->base_reg = NULL_RTX;
else
{
int br = 0;
if (crtl->is_leaf)
/* Prefer r5 (most likely to be free). */
for (br = 5; br >= 2 && df_regs_ever_live_p (br); br--)
;
cfun->machine->base_reg =
gen_rtx_REG (Pmode, (br >= 2) ? br : BASE_REGNUM);
}
s390_register_info ();
s390_frame_info ();
}
while (frame_size != cfun_frame_layout.frame_size);
}
/* Remove the FPR clobbers from a tbegin insn if it can be proven that
the TX is nonescaping. A transaction is considered escaping if
there is at least one path from tbegin returning CC0 to the
function exit block without an tend.
The check so far has some limitations:
- only single tbegin/tend BBs are supported
- the first cond jump after tbegin must separate the CC0 path from ~CC0
- when CC is copied to a GPR and the CC0 check is done with the GPR
this is not supported
*/
static void
s390_optimize_nonescaping_tx (void)
{
const unsigned int CC0 = 1 << 3;
basic_block tbegin_bb = NULL;
basic_block tend_bb = NULL;
basic_block bb;
rtx_insn *insn;
bool result = true;
int bb_index;
rtx_insn *tbegin_insn = NULL;
if (!cfun->machine->tbegin_p)
return;
for (bb_index = 0; bb_index < n_basic_blocks_for_fn (cfun); bb_index++)
{
bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
if (!bb)
continue;
FOR_BB_INSNS (bb, insn)
{
rtx ite, cc, pat, target;
unsigned HOST_WIDE_INT mask;
if (!INSN_P (insn) || INSN_CODE (insn) <= 0)
continue;
pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
pat = XVECEXP (pat, 0, 0);
if (GET_CODE (pat) != SET
|| GET_CODE (SET_SRC (pat)) != UNSPEC_VOLATILE)
continue;
if (XINT (SET_SRC (pat), 1) == UNSPECV_TBEGIN)
{
rtx_insn *tmp;
tbegin_insn = insn;
/* Just return if the tbegin doesn't have clobbers. */
if (GET_CODE (PATTERN (insn)) != PARALLEL)
return;
if (tbegin_bb != NULL)
return;
/* Find the next conditional jump. */
for (tmp = NEXT_INSN (insn);
tmp != NULL_RTX;
tmp = NEXT_INSN (tmp))
{
if (reg_set_p (gen_rtx_REG (CCmode, CC_REGNUM), tmp))
return;
if (!JUMP_P (tmp))
continue;
ite = SET_SRC (PATTERN (tmp));
if (GET_CODE (ite) != IF_THEN_ELSE)
continue;
cc = XEXP (XEXP (ite, 0), 0);
if (!REG_P (cc) || !CC_REGNO_P (REGNO (cc))
|| GET_MODE (cc) != CCRAWmode
|| GET_CODE (XEXP (XEXP (ite, 0), 1)) != CONST_INT)
return;
if (bb->succs->length () != 2)
return;
mask = INTVAL (XEXP (XEXP (ite, 0), 1));
if (GET_CODE (XEXP (ite, 0)) == NE)
mask ^= 0xf;
if (mask == CC0)
target = XEXP (ite, 1);
else if (mask == (CC0 ^ 0xf))
target = XEXP (ite, 2);
else
return;
{
edge_iterator ei;
edge e1, e2;
ei = ei_start (bb->succs);
e1 = ei_safe_edge (ei);
ei_next (&ei);
e2 = ei_safe_edge (ei);
if (e2->flags & EDGE_FALLTHRU)
{
e2 = e1;
e1 = ei_safe_edge (ei);
}
if (!(e1->flags & EDGE_FALLTHRU))
return;
tbegin_bb = (target == pc_rtx) ? e1->dest : e2->dest;
}
if (tmp == BB_END (bb))
break;
}
}
if (XINT (SET_SRC (pat), 1) == UNSPECV_TEND)
{
if (tend_bb != NULL)
return;
tend_bb = bb;
}
}
}
/* Either we successfully remove the FPR clobbers here or we are not
able to do anything for this TX. Both cases don't qualify for
another look. */
cfun->machine->tbegin_p = false;
if (tbegin_bb == NULL || tend_bb == NULL)
return;
calculate_dominance_info (CDI_POST_DOMINATORS);
result = dominated_by_p (CDI_POST_DOMINATORS, tbegin_bb, tend_bb);
free_dominance_info (CDI_POST_DOMINATORS);
if (!result)
return;
PATTERN (tbegin_insn) = gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2,
XVECEXP (PATTERN (tbegin_insn), 0, 0),
XVECEXP (PATTERN (tbegin_insn), 0, 1)));
INSN_CODE (tbegin_insn) = -1;
df_insn_rescan (tbegin_insn);
return;
}
/* Implement TARGET_HARD_REGNO_NREGS. Because all registers in a class
have the same size, this is equivalent to CLASS_MAX_NREGS. */
static unsigned int
s390_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
return s390_class_max_nregs (REGNO_REG_CLASS (regno), mode);
}
/* Implement TARGET_HARD_REGNO_MODE_OK.
Integer modes <= word size fit into any GPR.
Integer modes > word size fit into successive GPRs, starting with
an even-numbered register.
SImode and DImode fit into FPRs as well.
Floating point modes <= word size fit into any FPR or GPR.
Floating point modes > word size (i.e. DFmode on 32-bit) fit
into any FPR, or an even-odd GPR pair.
TFmode fits only into an even-odd FPR pair.
Complex floating point modes fit either into two FPRs, or into
successive GPRs (again starting with an even number).
TCmode fits only into two successive even-odd FPR pairs.
Condition code modes fit only into the CC register. */
static bool
s390_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
if (!TARGET_VX && VECTOR_NOFP_REGNO_P (regno))
return false;
switch (REGNO_REG_CLASS (regno))
{
case VEC_REGS:
return ((GET_MODE_CLASS (mode) == MODE_INT
&& s390_class_max_nregs (VEC_REGS, mode) == 1)
|| mode == DFmode
|| (TARGET_VXE && mode == SFmode)
|| s390_vector_mode_supported_p (mode));
break;
case FP_REGS:
if (TARGET_VX
&& ((GET_MODE_CLASS (mode) == MODE_INT
&& s390_class_max_nregs (FP_REGS, mode) == 1)
|| mode == DFmode
|| s390_vector_mode_supported_p (mode)))
return true;
if (REGNO_PAIR_OK (regno, mode))
{
if (mode == SImode || mode == DImode)
return true;
if (FLOAT_MODE_P (mode) && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
return true;
}
break;
case ADDR_REGS:
if (FRAME_REGNO_P (regno) && mode == Pmode)
return true;
/* fallthrough */
case GENERAL_REGS:
if (REGNO_PAIR_OK (regno, mode))
{
if (TARGET_ZARCH
|| (mode != TFmode && mode != TCmode && mode != TDmode))
return true;
}
break;
case CC_REGS:
if (GET_MODE_CLASS (mode) == MODE_CC)
return true;
break;
case ACCESS_REGS:
if (REGNO_PAIR_OK (regno, mode))
{
if (mode == SImode || mode == Pmode)
return true;
}
break;
default:
return false;
}
return false;
}
/* Implement TARGET_MODES_TIEABLE_P. */
static bool
s390_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
return ((mode1 == SFmode || mode1 == DFmode)
== (mode2 == SFmode || mode2 == DFmode));
}
/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
bool
s390_hard_regno_rename_ok (unsigned int old_reg, unsigned int new_reg)
{
/* Once we've decided upon a register to use as base register, it must
no longer be used for any other purpose. */
if (cfun->machine->base_reg)
if (REGNO (cfun->machine->base_reg) == old_reg
|| REGNO (cfun->machine->base_reg) == new_reg)
return false;
/* Prevent regrename from using call-saved regs which haven't
actually been saved. This is necessary since regrename assumes
the backend save/restore decisions are based on
df_regs_ever_live. Since we have our own routine we have to tell
regrename manually about it. */
if (GENERAL_REGNO_P (new_reg)
&& !call_used_regs[new_reg]
&& cfun_gpr_save_slot (new_reg) == SAVE_SLOT_NONE)
return false;
return true;
}
/* Return nonzero if register REGNO can be used as a scratch register
in peephole2. */
static bool
s390_hard_regno_scratch_ok (unsigned int regno)
{
/* See s390_hard_regno_rename_ok. */
if (GENERAL_REGNO_P (regno)
&& !call_used_regs[regno]
&& cfun_gpr_save_slot (regno) == SAVE_SLOT_NONE)
return false;
return true;
}
/* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. When generating
code that runs in z/Architecture mode, but conforms to the 31-bit
ABI, GPRs can hold 8 bytes; the ABI guarantees only that the lower 4
bytes are saved across calls, however. */
static bool
s390_hard_regno_call_part_clobbered (unsigned int, unsigned int regno,
machine_mode mode)
{
/* For r12 we know that the only bits we actually care about are
preserved across function calls. Since r12 is a fixed reg all
accesses to r12 are generated by the backend.
This workaround is necessary until gcse implements proper
tracking of partially clobbered registers. */
if (!TARGET_64BIT
&& TARGET_ZARCH
&& GET_MODE_SIZE (mode) > 4
&& (!flag_pic || regno != PIC_OFFSET_TABLE_REGNUM)
&& ((regno >= 6 && regno <= 15) || regno == 32))
return true;
if (TARGET_VX
&& GET_MODE_SIZE (mode) > 8
&& (((TARGET_64BIT && regno >= 24 && regno <= 31))
|| (!TARGET_64BIT && (regno == 18 || regno == 19))))
return true;
return false;
}
/* Maximum number of registers to represent a value of mode MODE
in a register of class RCLASS. */
int
s390_class_max_nregs (enum reg_class rclass, machine_mode mode)
{
int reg_size;
bool reg_pair_required_p = false;
switch (rclass)
{
case FP_REGS:
case VEC_REGS:
reg_size = TARGET_VX ? 16 : 8;
/* TF and TD modes would fit into a VR but we put them into a
register pair since we do not have 128bit FP instructions on
full VRs. */
if (TARGET_VX
&& SCALAR_FLOAT_MODE_P (mode)
&& GET_MODE_SIZE (mode) >= 16
&& !(TARGET_VXE && mode == TFmode))
reg_pair_required_p = true;
/* Even if complex types would fit into a single FPR/VR we force
them into a register pair to deal with the parts more easily.
(FIXME: What about complex ints?) */
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
reg_pair_required_p = true;
break;
case ACCESS_REGS:
reg_size = 4;
break;
default:
reg_size = UNITS_PER_WORD;
break;
}
if (reg_pair_required_p)
return 2 * ((GET_MODE_SIZE (mode) / 2 + reg_size - 1) / reg_size);
return (GET_MODE_SIZE (mode) + reg_size - 1) / reg_size;
}
/* Return nonzero if mode M describes a 128-bit float in a floating point
register pair. */
static bool
s390_is_fpr128 (machine_mode m)
{
return m == FPRX2mode || (!TARGET_VXE && m == TFmode);
}
/* Return nonzero if mode M describes a 128-bit float in a vector
register. */
static bool
s390_is_vr128 (machine_mode m)
{
return m == V1TFmode || (TARGET_VXE && m == TFmode);
}
/* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
static bool
s390_can_change_mode_class (machine_mode from_mode,
machine_mode to_mode,
reg_class_t rclass)
{
machine_mode small_mode;
machine_mode big_mode;
/* 128-bit values have different representations in floating point and
vector registers. */
if (reg_classes_intersect_p (VEC_REGS, rclass)
&& ((s390_is_fpr128 (from_mode) && s390_is_vr128 (to_mode))
|| (s390_is_vr128 (from_mode) && s390_is_fpr128 (to_mode))))
return false;
if (GET_MODE_SIZE (from_mode) == GET_MODE_SIZE (to_mode))
return true;
if (GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
{
small_mode = from_mode;
big_mode = to_mode;
}
else
{
small_mode = to_mode;
big_mode = from_mode;
}
/* Values residing in VRs are little-endian style. All modes are
placed left-aligned in an VR. This means that we cannot allow
switching between modes with differing sizes. Also if the vector
facility is available we still place TFmode values in VR register
pairs, since the only instructions we have operating on TFmodes
only deal with register pairs. Therefore we have to allow DFmode
subregs of TFmodes to enable the TFmode splitters. */
if (reg_classes_intersect_p (VEC_REGS, rclass)
&& (GET_MODE_SIZE (small_mode) < 8
|| s390_class_max_nregs (VEC_REGS, big_mode) == 1))
return false;
/* Likewise for access registers, since they have only half the
word size on 64-bit. */
if (reg_classes_intersect_p (ACCESS_REGS, rclass))
return false;
return true;
}
/* Return true if register FROM can be eliminated via register TO. */
static bool
s390_can_eliminate (const int from, const int to)
{
/* We have not marked the base register as fixed.
Instead, we have an elimination rule BASE_REGNUM -> BASE_REGNUM.
If a function requires the base register, we say here that this
elimination cannot be performed. This will cause reload to free
up the base register (as if it were fixed). On the other hand,
if the current function does *not* require the base register, we
say here the elimination succeeds, which in turn allows reload
to allocate the base register for any other purpose. */
if (from == BASE_REGNUM && to == BASE_REGNUM)
{
s390_init_frame_layout ();
return cfun->machine->base_reg == NULL_RTX;
}
/* Everything else must point into the stack frame. */
gcc_assert (to == STACK_POINTER_REGNUM
|| to == HARD_FRAME_POINTER_REGNUM);
gcc_assert (from == FRAME_POINTER_REGNUM
|| from == ARG_POINTER_REGNUM
|| from == RETURN_ADDRESS_POINTER_REGNUM);
/* Make sure we actually saved the return address. */
if (from == RETURN_ADDRESS_POINTER_REGNUM)
if (!crtl->calls_eh_return
&& !cfun->stdarg
&& !cfun_frame_layout.save_return_addr_p)
return false;
return true;
}
/* Return offset between register FROM and TO initially after prolog. */
HOST_WIDE_INT
s390_initial_elimination_offset (int from, int to)
{
HOST_WIDE_INT offset;
/* ??? Why are we called for non-eliminable pairs? */
if (!s390_can_eliminate (from, to))
return 0;
switch (from)
{
case FRAME_POINTER_REGNUM:
offset = (get_frame_size()
+ STACK_POINTER_OFFSET
+ crtl->outgoing_args_size);
break;
case ARG_POINTER_REGNUM:
s390_init_frame_layout ();
offset = cfun_frame_layout.frame_size + STACK_POINTER_OFFSET;
break;
case RETURN_ADDRESS_POINTER_REGNUM:
s390_init_frame_layout ();
if (cfun_frame_layout.first_save_gpr_slot == -1)
{
/* If it turns out that for stdarg nothing went into the reg
save area we also do not need the return address
pointer. */
if (cfun->stdarg && !cfun_save_arg_fprs_p)
return 0;
gcc_unreachable ();
}
/* In order to make the following work it is not necessary for
r14 to have a save slot. It is sufficient if one other GPR
got one. Since the GPRs are always stored without gaps we
are able to calculate where the r14 save slot would
reside. */
offset = (cfun_frame_layout.frame_size + cfun_frame_layout.gprs_offset +
(RETURN_REGNUM - cfun_frame_layout.first_save_gpr_slot) *
UNITS_PER_LONG);
break;
case BASE_REGNUM:
offset = 0;
break;
default:
gcc_unreachable ();
}
return offset;
}
/* Emit insn to save fpr REGNUM at offset OFFSET relative
to register BASE. Return generated insn. */
static rtx
save_fpr (rtx base, int offset, int regnum)
{
rtx addr;
rtx insn;
addr = gen_rtx_MEM (DFmode, plus_constant (Pmode, base, offset));
if (regnum >= FPR0_REGNUM && regnum <= (FPR0_REGNUM + FP_ARG_NUM_REG))
set_mem_alias_set (addr, get_varargs_alias_set ());
else
set_mem_alias_set (addr, get_frame_alias_set ());
insn = emit_move_insn (addr, gen_rtx_REG (DFmode, regnum));
if (!call_used_regs[regnum] || s390_preserve_fpr_arg_p (regnum))
RTX_FRAME_RELATED_P (insn) = 1;
if (s390_preserve_fpr_arg_p (regnum) && !cfun_fpr_save_p (regnum))
{
rtx reg = gen_rtx_REG (DFmode, regnum);
add_reg_note (insn, REG_CFA_NO_RESTORE, reg);
add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (addr, reg));
}
return insn;
}
/* Emit insn to restore fpr REGNUM from offset OFFSET relative
to register BASE. Return generated insn. */
static rtx
restore_fpr (rtx base, int offset, int regnum)
{
rtx addr;
addr = gen_rtx_MEM (DFmode, plus_constant (Pmode, base, offset));
set_mem_alias_set (addr, get_frame_alias_set ());
return emit_move_insn (gen_rtx_REG (DFmode, regnum), addr);
}
/* Generate insn to save registers FIRST to LAST into
the register save area located at offset OFFSET
relative to register BASE. */
static void
save_gprs (rtx base, int offset, int first, int last, rtx_insn *before = NULL)
{
rtx addr, insn, note;
rtx_insn *out_insn;
int i;
addr = plus_constant (Pmode, base, offset);
addr = gen_frame_mem (Pmode, addr);
/* Special-case single register. */
if (first == last)
{
if (TARGET_64BIT)
insn = gen_movdi (addr, gen_rtx_REG (Pmode, first));
else
insn = gen_movsi (addr, gen_rtx_REG (Pmode, first));
if (!global_not_special_regno_p (first))
RTX_FRAME_RELATED_P (insn) = 1;
if (s390_preserve_gpr_arg_p (first) && !s390_restore_gpr_p (first))
{
rtx reg = gen_rtx_REG (Pmode, first);
add_reg_note (insn, REG_CFA_NO_RESTORE, reg);
add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (addr, reg));
}
goto emit;
}
insn = gen_store_multiple (addr,
gen_rtx_REG (Pmode, first),
GEN_INT (last - first + 1));
if (first <= 6 && cfun->stdarg)
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx mem = XEXP (XVECEXP (PATTERN (insn), 0, i), 0);
if (first + i <= 6)
set_mem_alias_set (mem, get_varargs_alias_set ());
}
/* We need to set the FRAME_RELATED flag on all SETs
inside the store-multiple pattern.
However, we must not emit DWARF records for registers 2..5
if they are stored for use by variable arguments ...
??? Unfortunately, it is not enough to simply not the
FRAME_RELATED flags for those SETs, because the first SET
of the PARALLEL is always treated as if it had the flag
set, even if it does not. Therefore we emit a new pattern
without those registers as REG_FRAME_RELATED_EXPR note. */
/* In these cases all of the sets are marked as frame related:
1. call-save GPR saved and restored
2. argument GPR saved because of -mpreserve-args */
if ((first >= GPR6_REGNUM && !global_not_special_regno_p (first))
|| s390_preserve_gpr_arg_in_range_p (first, last))
{
rtx pat = PATTERN (insn);
for (i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) == SET
&& !global_not_special_regno_p (REGNO (SET_SRC (XVECEXP (pat,
0, i)))))
RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1;
RTX_FRAME_RELATED_P (insn) = 1;
/* For the -mpreserve-args register saves no restore operations
will be emitted. CFI checking would complain about this. We
manually generate the REG_CFA notes here to be able to mark
those operations with REG_CFA_NO_RESTORE. */
if (s390_preserve_gpr_arg_in_range_p (first, last))
{
for (int regno = first; regno <= last; regno++)
{
rtx reg = gen_rtx_REG (Pmode, regno);
rtx reg_addr = plus_constant (Pmode, base,
offset + (regno - first) * UNITS_PER_LONG);
if (!s390_restore_gpr_p (regno))
add_reg_note (insn, REG_CFA_NO_RESTORE, reg);
add_reg_note (insn, REG_CFA_OFFSET,
gen_rtx_SET (gen_frame_mem (Pmode, reg_addr), reg));
}
}
}
else if (last >= 6)
{
int start;
for (start = first >= 6 ? first : 6; start <= last; start++)
if (!global_not_special_regno_p (start))
break;
if (start > last)
goto emit;
addr = plus_constant (Pmode, base,
offset + (start - first) * UNITS_PER_LONG);
if (start == last)
{
if (TARGET_64BIT)
note = gen_movdi (gen_rtx_MEM (Pmode, addr),
gen_rtx_REG (Pmode, start));
else
note = gen_movsi (gen_rtx_MEM (Pmode, addr),
gen_rtx_REG (Pmode, start));
note = PATTERN (note);
add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
RTX_FRAME_RELATED_P (insn) = 1;
goto emit;
}
note = gen_store_multiple (gen_rtx_MEM (Pmode, addr),
gen_rtx_REG (Pmode, start),
GEN_INT (last - start + 1));
note = PATTERN (note);
add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
for (i = 0; i < XVECLEN (note, 0); i++)
if (GET_CODE (XVECEXP (note, 0, i)) == SET
&& !global_not_special_regno_p (REGNO (SET_SRC (XVECEXP (note,
0, i)))))
RTX_FRAME_RELATED_P (XVECEXP (note, 0, i)) = 1;
RTX_FRAME_RELATED_P (insn) = 1;
}
emit:
if (before != NULL_RTX)
out_insn = emit_insn_before (insn, before);
else
out_insn = emit_insn (insn);
INSN_ADDRESSES_NEW (out_insn, -1);
}
/* Generate insn to restore registers FIRST to LAST from
the register save area located at offset OFFSET
relative to register BASE. */
static rtx
restore_gprs (rtx base, int offset, int first, int last)
{
rtx addr, insn;
addr = plus_constant (Pmode, base, offset);
addr = gen_frame_mem (Pmode, addr);
/* Special-case single register. */
if (first == last)
{
if (TARGET_64BIT)
insn = gen_movdi (gen_rtx_REG (Pmode, first), addr);
else
insn = gen_movsi (gen_rtx_REG (Pmode, first), addr);
RTX_FRAME_RELATED_P (insn) = 1;
return insn;
}
insn = gen_load_multiple (gen_rtx_REG (Pmode, first),
addr,
GEN_INT (last - first + 1));
RTX_FRAME_RELATED_P (insn) = 1;
return insn;
}
/* Return insn sequence to load the GOT register. */
rtx_insn *
s390_load_got (void)
{
rtx_insn *insns;
/* We cannot use pic_offset_table_rtx here since we use this
function also for non-pic if __tls_get_offset is called and in
that case PIC_OFFSET_TABLE_REGNUM as well as pic_offset_table_rtx
aren't usable. */
rtx got_rtx = gen_rtx_REG (Pmode, 12);
start_sequence ();
emit_move_insn (got_rtx, s390_got_symbol ());
insns = get_insns ();
end_sequence ();
return insns;
}
/* This ties together stack memory (MEM with an alias set of frame_alias_set)
and the change to the stack pointer. */
static void
s390_emit_stack_tie (void)
{
rtx mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
if (frame_pointer_needed)
emit_insn (gen_stack_tie (Pmode, mem, hard_frame_pointer_rtx));
else
emit_insn (gen_stack_tie (Pmode, mem, stack_pointer_rtx));
}
/* Copy GPRS into FPR save slots. */
static void
s390_save_gprs_to_fprs (void)
{
int i;
if (!TARGET_Z10 || !TARGET_HARD_FLOAT || !crtl->is_leaf)
return;
for (i = 6; i < 16; i++)
{
if (FP_REGNO_P (cfun_gpr_save_slot (i)))
{
rtx_insn *insn =
emit_move_insn (gen_rtx_REG (DImode, cfun_gpr_save_slot (i)),
gen_rtx_REG (DImode, i));
RTX_FRAME_RELATED_P (insn) = 1;
/* This prevents dwarf2cfi from interpreting the set. Doing
so it might emit def_cfa_register infos setting an FPR as
new CFA. */
add_reg_note (insn, REG_CFA_REGISTER, copy_rtx (PATTERN (insn)));
}
}
}
/* Restore GPRs from FPR save slots. */
static void
s390_restore_gprs_from_fprs (void)
{
int i;
if (!TARGET_Z10 || !TARGET_HARD_FLOAT || !crtl->is_leaf)
return;
/* Restore the GPRs starting with the stack pointer. That way the
stack pointer already has its original value when it comes to
restoring the hard frame pointer. So we can set the cfa reg back
to the stack pointer. */
for (i = STACK_POINTER_REGNUM; i >= 6; i--)
{
rtx_insn *insn;
if (!FP_REGNO_P (cfun_gpr_save_slot (i)))
continue;
rtx fpr = gen_rtx_REG (DImode, cfun_gpr_save_slot (i));
if (i == STACK_POINTER_REGNUM)
insn = emit_insn (gen_stack_restore_from_fpr (fpr));
else
insn = emit_move_insn (gen_rtx_REG (DImode, i), fpr);
df_set_regs_ever_live (i, true);
add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (DImode, i));
/* If either the stack pointer or the frame pointer get restored
set the CFA value to its value at function start. Doing this
for the frame pointer results in .cfi_def_cfa_register 15
what is ok since if the stack pointer got modified it has
been restored already. */
if (i == STACK_POINTER_REGNUM || i == HARD_FRAME_POINTER_REGNUM)
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
STACK_POINTER_OFFSET));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* A pass run immediately before shrink-wrapping and prologue and epilogue
generation. */
namespace {
const pass_data pass_data_s390_early_mach =
{
RTL_PASS, /* type */
"early_mach", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_MACH_DEP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
};
class pass_s390_early_mach : public rtl_opt_pass
{
public:
pass_s390_early_mach (gcc::context *ctxt)
: rtl_opt_pass (pass_data_s390_early_mach, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_s390_early_mach
unsigned int
pass_s390_early_mach::execute (function *fun)
{
rtx_insn *insn;
/* Try to get rid of the FPR clobbers. */
s390_optimize_nonescaping_tx ();
/* Re-compute register info. */
s390_register_info ();
/* If we're using a base register, ensure that it is always valid for
the first non-prologue instruction. */
if (fun->machine->base_reg)
emit_insn_at_entry (gen_main_pool (fun->machine->base_reg));
/* Annotate all constant pool references to let the scheduler know
they implicitly use the base register. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
annotate_constant_pool_refs (insn);
df_insn_rescan (insn);
}
return 0;
}
} // anon namespace
rtl_opt_pass *
make_pass_s390_early_mach (gcc::context *ctxt)
{
return new pass_s390_early_mach (ctxt);
}
/* Calculate TARGET = REG + OFFSET as s390_emit_prologue would do it.
- push too big immediates to the literal pool and annotate the refs
- emit frame related notes for stack pointer changes. */
static rtx
s390_prologue_plus_offset (rtx target, rtx reg, rtx offset, bool frame_related_p)
{
rtx_insn *insn;
rtx orig_offset = offset;
gcc_assert (REG_P (target));
gcc_assert (REG_P (reg));
gcc_assert (CONST_INT_P (offset));
if (offset == const0_rtx) /* lr/lgr */
{
insn = emit_move_insn (target, reg);
}
else if (DISP_IN_RANGE (INTVAL (offset))) /* la */
{
insn = emit_move_insn (target, gen_rtx_PLUS (Pmode, reg,
offset));
}
else
{
if (!satisfies_constraint_K (offset) /* ahi/aghi */
&& (!TARGET_EXTIMM
|| (!satisfies_constraint_Op (offset) /* alfi/algfi */
&& !satisfies_constraint_On (offset)))) /* slfi/slgfi */
offset = force_const_mem (Pmode, offset);
if (target != reg)
{
insn = emit_move_insn (target, reg);
RTX_FRAME_RELATED_P (insn) = frame_related_p ? 1 : 0;
}
insn = emit_insn (gen_add2_insn (target, offset));
if (!CONST_INT_P (offset))
{
annotate_constant_pool_refs (insn);
if (frame_related_p)
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_SET (target,
gen_rtx_PLUS (Pmode, target,
orig_offset)));
}
}
RTX_FRAME_RELATED_P (insn) = frame_related_p ? 1 : 0;
/* If this is a stack adjustment and we are generating a stack clash
prologue, then add a REG_STACK_CHECK note to signal that this insn
should be left alone. */
if (flag_stack_clash_protection && target == stack_pointer_rtx)
add_reg_note (insn, REG_STACK_CHECK, const0_rtx);
return insn;
}
/* Emit a compare instruction with a volatile memory access as stack
probe. It does not waste store tags and does not clobber any
registers apart from the condition code. */
static void
s390_emit_stack_probe (rtx addr)
{
rtx mem = gen_rtx_MEM (word_mode, addr);
MEM_VOLATILE_P (mem) = 1;
emit_insn (gen_probe_stack (mem));
}
/* Use a runtime loop if we have to emit more probes than this. */
#define MIN_UNROLL_PROBES 3
/* Allocate SIZE bytes of stack space, using TEMP_REG as a temporary
if necessary. LAST_PROBE_OFFSET contains the offset of the closest
probe relative to the stack pointer.
Note that SIZE is negative.
The return value is true if TEMP_REG has been clobbered. */
static bool
allocate_stack_space (rtx size, HOST_WIDE_INT last_probe_offset,
rtx temp_reg)
{
bool temp_reg_clobbered_p = false;
HOST_WIDE_INT probe_interval
= 1 << param_stack_clash_protection_probe_interval;
HOST_WIDE_INT guard_size
= 1 << param_stack_clash_protection_guard_size;
if (flag_stack_clash_protection)
{
if (last_probe_offset + -INTVAL (size) < guard_size)
dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
else
{
rtx offset = GEN_INT (probe_interval - UNITS_PER_LONG);
HOST_WIDE_INT rounded_size = -INTVAL (size) & -probe_interval;
HOST_WIDE_INT num_probes = rounded_size / probe_interval;
HOST_WIDE_INT residual = -INTVAL (size) - rounded_size;
if (num_probes < MIN_UNROLL_PROBES)
{
/* Emit unrolled probe statements. */
for (unsigned int i = 0; i < num_probes; i++)
{
s390_prologue_plus_offset (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-probe_interval), true);
s390_emit_stack_probe (gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
offset));
}
if (num_probes > 0)
last_probe_offset = INTVAL (offset);
dump_stack_clash_frame_info (PROBE_INLINE, residual != 0);
}
else
{
/* Emit a loop probing the pages. */
rtx_code_label *loop_start_label = gen_label_rtx ();
/* From now on temp_reg will be the CFA register. */
s390_prologue_plus_offset (temp_reg, stack_pointer_rtx,
GEN_INT (-rounded_size), true);
emit_label (loop_start_label);
s390_prologue_plus_offset (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-probe_interval), false);
s390_emit_stack_probe (gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
offset));
emit_cmp_and_jump_insns (stack_pointer_rtx, temp_reg,
GT, NULL_RTX,
Pmode, 1, loop_start_label);
/* Without this make_edges ICEes. */
JUMP_LABEL (get_last_insn ()) = loop_start_label;
LABEL_NUSES (loop_start_label) = 1;
/* That's going to be a NOP since stack pointer and
temp_reg are supposed to be the same here. We just
emit it to set the CFA reg back to r15. */
s390_prologue_plus_offset (stack_pointer_rtx, temp_reg,
const0_rtx, true);
temp_reg_clobbered_p = true;
last_probe_offset = INTVAL (offset);
dump_stack_clash_frame_info (PROBE_LOOP, residual != 0);
}
/* Handle any residual allocation request. */
s390_prologue_plus_offset (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-residual), true);
last_probe_offset += residual;
if (last_probe_offset >= probe_interval)
s390_emit_stack_probe (gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
GEN_INT (residual
- UNITS_PER_LONG)));
return temp_reg_clobbered_p;
}
}
/* Subtract frame size from stack pointer. */
s390_prologue_plus_offset (stack_pointer_rtx,
stack_pointer_rtx,
size, true);
return temp_reg_clobbered_p;
}
/* Expand the prologue into a bunch of separate insns. */
void
s390_emit_prologue (void)
{
rtx insn, addr;
rtx temp_reg;
int i;
int offset;
int next_fpr = 0;
/* Choose best register to use for temp use within prologue.
TPF with profiling must avoid the register 14 - the tracing function
needs the original contents of r14 to be preserved. */
if (!has_hard_reg_initial_val (Pmode, RETURN_REGNUM)
&& !crtl->is_leaf
&& !TARGET_TPF_PROFILING)
temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
else if (flag_split_stack && cfun->stdarg)
temp_reg = gen_rtx_REG (Pmode, 12);
else
temp_reg = gen_rtx_REG (Pmode, 1);
/* When probing for stack-clash mitigation, we have to track the distance
between the stack pointer and closest known reference.
Most of the time we have to make a worst case assumption. The
only exception is when TARGET_BACKCHAIN is active, in which case
we know *sp (offset 0) was written. */
HOST_WIDE_INT probe_interval
= 1 << param_stack_clash_protection_probe_interval;
HOST_WIDE_INT last_probe_offset
= (TARGET_BACKCHAIN
? (TARGET_PACKED_STACK ? STACK_POINTER_OFFSET - UNITS_PER_LONG : 0)
: probe_interval - (STACK_BOUNDARY / UNITS_PER_WORD));
s390_save_gprs_to_fprs ();
/* Save call saved gprs. */
if (cfun_frame_layout.first_save_gpr != -1)
{
save_gprs (stack_pointer_rtx,
cfun_frame_layout.gprs_offset +
UNITS_PER_LONG * (cfun_frame_layout.first_save_gpr
- cfun_frame_layout.first_save_gpr_slot),
cfun_frame_layout.first_save_gpr,
cfun_frame_layout.last_save_gpr);
/* This is not 100% correct. If we have more than one register saved,
then LAST_PROBE_OFFSET can move even closer to sp. */
last_probe_offset
= (cfun_frame_layout.gprs_offset +
UNITS_PER_LONG * (cfun_frame_layout.first_save_gpr
- cfun_frame_layout.first_save_gpr_slot));
}
/* Dummy insn to mark literal pool slot. */
if (cfun->machine->base_reg)
emit_insn (gen_main_pool (cfun->machine->base_reg));
offset = cfun_frame_layout.f0_offset;
/* Save f0 and f2. */
for (i = FPR0_REGNUM; i <= FPR0_REGNUM + 1; i++)
{
if (cfun_fpr_save_p (i))
{
save_fpr (stack_pointer_rtx, offset, i);
if (offset < last_probe_offset)
last_probe_offset = offset;
offset += 8;
}
else if (!TARGET_PACKED_STACK || cfun->stdarg)
offset += 8;
}
/* Save f4 and f6. */
offset = cfun_frame_layout.f4_offset;
for (i = FPR4_REGNUM; i <= FPR4_REGNUM + 1; i++)
{
if (cfun_fpr_save_p (i))
{
save_fpr (stack_pointer_rtx, offset, i);
if (offset < last_probe_offset)
last_probe_offset = offset;
offset += 8;
}
else if (!TARGET_PACKED_STACK || call_used_regs[i])
offset += 8;
}
if (TARGET_PACKED_STACK
&& cfun_save_high_fprs_p
&& cfun_frame_layout.f8_offset + cfun_frame_layout.high_fprs * 8 > 0)
{
offset = (cfun_frame_layout.f8_offset
+ (cfun_frame_layout.high_fprs - 1) * 8);
for (i = FPR15_REGNUM; i >= FPR8_REGNUM && offset >= 0; i--)
if (cfun_fpr_save_p (i))
{
save_fpr (stack_pointer_rtx, offset, i);
if (offset < last_probe_offset)
last_probe_offset = offset;
offset -= 8;
}
if (offset >= cfun_frame_layout.f8_offset)
next_fpr = i;
}
if (!TARGET_PACKED_STACK)
next_fpr = cfun_save_high_fprs_p ? FPR15_REGNUM : 0;
if (flag_stack_usage_info)
current_function_static_stack_size = cfun_frame_layout.frame_size;
/* Decrement stack pointer. */
if (cfun_frame_layout.frame_size > 0)
{
rtx frame_off = GEN_INT (-cfun_frame_layout.frame_size);
rtx_insn *stack_pointer_backup_loc;
bool temp_reg_clobbered_p;
if (s390_stack_size)
{
HOST_WIDE_INT stack_guard;
if (s390_stack_guard)
stack_guard = s390_stack_guard;
else
{
/* If no value for stack guard is provided the smallest power of 2
larger than the current frame size is chosen. */
stack_guard = 1;
while (stack_guard < cfun_frame_layout.frame_size)
stack_guard <<= 1;
}
if (cfun_frame_layout.frame_size >= s390_stack_size)
{
warning (0, "frame size of function %qs is %wd"
" bytes exceeding user provided stack limit of "
"%d bytes; "
"an unconditional trap is added",
current_function_name(), cfun_frame_layout.frame_size,
s390_stack_size);
emit_insn (gen_trap ());
emit_barrier ();
}
else
{
/* stack_guard has to be smaller than s390_stack_size.
Otherwise we would emit an AND with zero which would
not match the test under mask pattern. */
if (stack_guard >= s390_stack_size)
{
warning (0, "frame size of function %qs is %wd"
" bytes which is more than half the stack size; "
"the dynamic check would not be reliable; "
"no check emitted for this function",
current_function_name(),
cfun_frame_layout.frame_size);
}
else
{
HOST_WIDE_INT stack_check_mask = ((s390_stack_size - 1)
& ~(stack_guard - 1));
rtx t = gen_rtx_AND (Pmode, stack_pointer_rtx,
GEN_INT (stack_check_mask));
if (TARGET_64BIT)
emit_insn (gen_ctrapdi4 (gen_rtx_EQ (VOIDmode,
t, const0_rtx),
t, const0_rtx, const0_rtx));
else
emit_insn (gen_ctrapsi4 (gen_rtx_EQ (VOIDmode,
t, const0_rtx),
t, const0_rtx, const0_rtx));
}
}
}
if (s390_warn_framesize > 0
&& cfun_frame_layout.frame_size >= s390_warn_framesize)
warning (0, "frame size of %qs is %wd bytes",
current_function_name (), cfun_frame_layout.frame_size);
if (s390_warn_dynamicstack_p && cfun->calls_alloca)
warning (0, "%qs uses dynamic stack allocation", current_function_name ());
/* Save the location where we could backup the incoming stack
pointer. */
stack_pointer_backup_loc = get_last_insn ();
temp_reg_clobbered_p = allocate_stack_space (frame_off, last_probe_offset,
temp_reg);
if (TARGET_BACKCHAIN || next_fpr)
{
if (temp_reg_clobbered_p)
{
/* allocate_stack_space had to make use of temp_reg and
we need it to hold a backup of the incoming stack
pointer. Calculate back that value from the current
stack pointer. */
s390_prologue_plus_offset (temp_reg, stack_pointer_rtx,
GEN_INT (cfun_frame_layout.frame_size),
false);
}
else
{
/* allocate_stack_space didn't actually required
temp_reg. Insert the stack pointer backup insn
before the stack pointer decrement code - knowing now
that the value will survive. */
emit_insn_after (gen_move_insn (temp_reg, stack_pointer_rtx),
stack_pointer_backup_loc);
}
}
/* Set backchain. */
if (TARGET_BACKCHAIN)
{
if (cfun_frame_layout.backchain_offset)
addr = gen_rtx_MEM (Pmode,
plus_constant (Pmode, stack_pointer_rtx,
cfun_frame_layout.backchain_offset));
else
addr = gen_rtx_MEM (Pmode, stack_pointer_rtx);
set_mem_alias_set (addr, get_frame_alias_set ());
insn = emit_insn (gen_move_insn (addr, temp_reg));
}
/* If we support non-call exceptions (e.g. for Java),
we need to make sure the backchain pointer is set up
before any possibly trapping memory access. */
if (TARGET_BACKCHAIN && cfun->can_throw_non_call_exceptions)
{
addr = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
emit_clobber (addr);
}
}
else if (flag_stack_clash_protection)
dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
/* Save fprs 8 - 15 (64 bit ABI). */
if (cfun_save_high_fprs_p && next_fpr)
{
/* If the stack might be accessed through a different register
we have to make sure that the stack pointer decrement is not
moved below the use of the stack slots. */
s390_emit_stack_tie ();
insn = emit_insn (gen_add2_insn (temp_reg,
GEN_INT (cfun_frame_layout.f8_offset)));
offset = 0;
for (i = FPR8_REGNUM; i <= next_fpr; i++)
if (cfun_fpr_save_p (i))
{
rtx addr = plus_constant (Pmode, stack_pointer_rtx,
cfun_frame_layout.frame_size
+ cfun_frame_layout.f8_offset
+ offset);
insn = save_fpr (temp_reg, offset, i);
offset += 8;
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_SET (gen_rtx_MEM (DFmode, addr),
gen_rtx_REG (DFmode, i)));
}
}
/* Set frame pointer, if needed. */
if (frame_pointer_needed)
{
s390_emit_stack_tie ();
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Set up got pointer, if needed. */
if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
{
rtx_insn *insns = s390_load_got ();
for (rtx_insn *insn = insns; insn; insn = NEXT_INSN (insn))
annotate_constant_pool_refs (insn);
emit_insn (insns);
}
#if TARGET_TPF != 0
if (TARGET_TPF_PROFILING)
{
/* Generate a BAS instruction to serve as a function entry
intercept to facilitate the use of tracing algorithms located
at the branch target. */
emit_insn (gen_prologue_tpf (
GEN_INT (s390_tpf_trace_hook_prologue_check),
GEN_INT (s390_tpf_trace_hook_prologue_target)));
/* Emit a blockage here so that all code lies between the
profiling mechanisms. */
emit_insn (gen_blockage ());
}
#endif
}
/* Expand the epilogue into a bunch of separate insns. */
void
s390_emit_epilogue (bool sibcall)
{
rtx frame_pointer, return_reg = NULL_RTX, cfa_restores = NULL_RTX;
int area_bottom, area_top, offset = 0;
int next_offset;
int i;
#if TARGET_TPF != 0
if (TARGET_TPF_PROFILING)
{
/* Generate a BAS instruction to serve as a function entry
intercept to facilitate the use of tracing algorithms located
at the branch target. */
/* Emit a blockage here so that all code lies between the
profiling mechanisms. */
emit_insn (gen_blockage ());
emit_insn (gen_epilogue_tpf (
GEN_INT (s390_tpf_trace_hook_epilogue_check),
GEN_INT (s390_tpf_trace_hook_epilogue_target)));
}
#endif
/* Check whether to use frame or stack pointer for restore. */
frame_pointer = (frame_pointer_needed
? hard_frame_pointer_rtx : stack_pointer_rtx);
s390_frame_area (&area_bottom, &area_top);
/* Check whether we can access the register save area.
If not, increment the frame pointer as required. */
if (area_top <= area_bottom)
{
/* Nothing to restore. */
}
else if (DISP_IN_RANGE (cfun_frame_layout.frame_size + area_bottom)
&& DISP_IN_RANGE (cfun_frame_layout.frame_size + area_top - 1))
{
/* Area is in range. */
offset = cfun_frame_layout.frame_size;
}
else
{
rtx_insn *insn;
rtx frame_off, cfa;
offset = area_bottom < 0 ? -area_bottom : 0;
frame_off = GEN_INT (cfun_frame_layout.frame_size - offset);
cfa = gen_rtx_SET (frame_pointer,
gen_rtx_PLUS (Pmode, frame_pointer, frame_off));
if (DISP_IN_RANGE (INTVAL (frame_off)))
{
rtx set;
set = gen_rtx_SET (frame_pointer,
gen_rtx_PLUS (Pmode, frame_pointer, frame_off));
insn = emit_insn (set);
}
else
{
if (!CONST_OK_FOR_K (INTVAL (frame_off)))
frame_off = force_const_mem (Pmode, frame_off);
insn = emit_insn (gen_add2_insn (frame_pointer, frame_off));
annotate_constant_pool_refs (insn);
}
add_reg_note (insn, REG_CFA_ADJUST_CFA, cfa);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Restore call saved fprs. */
if (TARGET_64BIT)
{
if (cfun_save_high_fprs_p)
{
next_offset = cfun_frame_layout.f8_offset;
for (i = FPR8_REGNUM; i <= FPR15_REGNUM; i++)
{
if (cfun_fpr_save_p (i))
{
restore_fpr (frame_pointer,
offset + next_offset, i);
cfa_restores
= alloc_reg_note (REG_CFA_RESTORE,
gen_rtx_REG (DFmode, i), cfa_restores);
next_offset += 8;
}
}
}
}
else
{
next_offset = cfun_frame_layout.f4_offset;
/* f4, f6 */
for (i = FPR4_REGNUM; i <= FPR4_REGNUM + 1; i++)
{
if (cfun_fpr_save_p (i))
{
restore_fpr (frame_pointer,
offset + next_offset, i);
cfa_restores
= alloc_reg_note (REG_CFA_RESTORE,
gen_rtx_REG (DFmode, i), cfa_restores);
next_offset += 8;
}
else if (!TARGET_PACKED_STACK)
next_offset += 8;
}
}
/* Restore call saved gprs. */
if (cfun_frame_layout.first_restore_gpr != -1)
{
rtx insn, addr;
int i;
/* Check for global register and save them
to stack location from where they get restored. */
for (i = cfun_frame_layout.first_restore_gpr;
i <= cfun_frame_layout.last_restore_gpr;
i++)
{
if (global_not_special_regno_p (i))
{
addr = plus_constant (Pmode, frame_pointer,
offset + cfun_frame_layout.gprs_offset
+ (i - cfun_frame_layout.first_save_gpr_slot)
* UNITS_PER_LONG);
addr = gen_rtx_MEM (Pmode, addr);
set_mem_alias_set (addr, get_frame_alias_set ());
emit_move_insn (addr, gen_rtx_REG (Pmode, i));
}
else
cfa_restores
= alloc_reg_note (REG_CFA_RESTORE,
gen_rtx_REG (Pmode, i), cfa_restores);
}
/* Fetch return address from stack before load multiple,
this will do good for scheduling.
Only do this if we already decided that r14 needs to be
saved to a stack slot. (And not just because r14 happens to
be in between two GPRs which need saving.) Otherwise it
would be difficult to take that decision back in
s390_optimize_prologue.
This optimization is only helpful on in-order machines. */
if (! sibcall
&& cfun_gpr_save_slot (RETURN_REGNUM) == SAVE_SLOT_STACK
&& s390_tune <= PROCESSOR_2097_Z10)
{
int return_regnum = find_unused_clobbered_reg();
if (!return_regnum
|| (TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION
&& !TARGET_CPU_Z10
&& return_regnum == INDIRECT_BRANCH_THUNK_REGNUM))
{
gcc_assert (INDIRECT_BRANCH_THUNK_REGNUM != 4);
return_regnum = 4;
}
return_reg = gen_rtx_REG (Pmode, return_regnum);
addr = plus_constant (Pmode, frame_pointer,
offset + cfun_frame_layout.gprs_offset
+ (RETURN_REGNUM
- cfun_frame_layout.first_save_gpr_slot)
* UNITS_PER_LONG);
addr = gen_rtx_MEM (Pmode, addr);
set_mem_alias_set (addr, get_frame_alias_set ());
emit_move_insn (return_reg, addr);
/* Once we did that optimization we have to make sure
s390_optimize_prologue does not try to remove the store
of r14 since we will not be able to find the load issued
here. */
cfun_frame_layout.save_return_addr_p = true;
}
insn = restore_gprs (frame_pointer,
offset + cfun_frame_layout.gprs_offset
+ (cfun_frame_layout.first_restore_gpr
- cfun_frame_layout.first_save_gpr_slot)
* UNITS_PER_LONG,
cfun_frame_layout.first_restore_gpr,
cfun_frame_layout.last_restore_gpr);
insn = emit_insn (insn);
REG_NOTES (insn) = cfa_restores;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
STACK_POINTER_OFFSET));
RTX_FRAME_RELATED_P (insn) = 1;
}
s390_restore_gprs_from_fprs ();
if (! sibcall)
{
if (!return_reg && !s390_can_use_return_insn ())
/* We planned to emit (return), be we are not allowed to. */
return_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
if (return_reg)
/* Emit (return) and (use). */
emit_jump_insn (gen_return_use (return_reg));
else
/* The fact that RETURN_REGNUM is used is already reflected by
EPILOGUE_USES. Emit plain (return). */
emit_jump_insn (gen_return ());
}
}
/* Implement TARGET_SET_UP_BY_PROLOGUE. */
static void
s300_set_up_by_prologue (hard_reg_set_container *regs)
{
if (cfun->machine->base_reg
&& !call_used_regs[REGNO (cfun->machine->base_reg)])
SET_HARD_REG_BIT (regs->set, REGNO (cfun->machine->base_reg));
}
/* -fsplit-stack support. */
/* A SYMBOL_REF for __morestack. */
static GTY(()) rtx morestack_ref;
/* When using -fsplit-stack, the allocation routines set a field in
the TCB to the bottom of the stack plus this much space, measured
in bytes. */
#define SPLIT_STACK_AVAILABLE 1024
/* Emit the parmblock for __morestack into .rodata section. It
consists of 3 pointer size entries:
- frame size
- size of stack arguments
- offset between parm block and __morestack return label */
void
s390_output_split_stack_data (rtx parm_block, rtx call_done,
rtx frame_size, rtx args_size)
{
rtx ops[] = { parm_block, call_done };
switch_to_section (targetm.asm_out.function_rodata_section
(current_function_decl, false));
if (TARGET_64BIT)
output_asm_insn (".align\t8", NULL);
else
output_asm_insn (".align\t4", NULL);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (parm_block));
if (TARGET_64BIT)
{
output_asm_insn (".quad\t%0", &frame_size);
output_asm_insn (".quad\t%0", &args_size);
output_asm_insn (".quad\t%1-%0", ops);
}
else
{
output_asm_insn (".long\t%0", &frame_size);
output_asm_insn (".long\t%0", &args_size);
output_asm_insn (".long\t%1-%0", ops);
}
switch_to_section (current_function_section ());
}
/* Emit -fsplit-stack prologue, which goes before the regular function
prologue. */
void
s390_expand_split_stack_prologue (void)
{
rtx r1, guard, cc = NULL;
rtx_insn *insn;
/* Offset from thread pointer to __private_ss. */
int psso = TARGET_64BIT ? 0x38 : 0x20;
/* Pointer size in bytes. */
/* Frame size and argument size - the two parameters to __morestack. */
HOST_WIDE_INT frame_size = cfun_frame_layout.frame_size;
/* Align argument size to 8 bytes - simplifies __morestack code. */
HOST_WIDE_INT args_size = crtl->args.size >= 0
? ((crtl->args.size + 7) & ~7)
: 0;
/* Label to be called by __morestack. */
rtx_code_label *call_done = NULL;
rtx_code_label *parm_base = NULL;
rtx tmp;
gcc_assert (flag_split_stack && reload_completed);
r1 = gen_rtx_REG (Pmode, 1);
/* If no stack frame will be allocated, don't do anything. */
if (!frame_size)
{
if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
{
/* If va_start is used, just use r15. */
emit_move_insn (r1,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (STACK_POINTER_OFFSET)));
}
return;
}
if (morestack_ref == NULL_RTX)
{
morestack_ref = gen_rtx_SYMBOL_REF (Pmode, "__morestack");
SYMBOL_REF_FLAGS (morestack_ref) |= (SYMBOL_FLAG_LOCAL
| SYMBOL_FLAG_FUNCTION);
}
if (CONST_OK_FOR_K (frame_size) || CONST_OK_FOR_Op (frame_size))
{
/* If frame_size will fit in an add instruction, do a stack space
check, and only call __morestack if there's not enough space. */
/* Get thread pointer. r1 is the only register we can always destroy - r0
could contain a static chain (and cannot be used to address memory
anyway), r2-r6 can contain parameters, and r6-r15 are callee-saved. */
emit_insn (gen_get_thread_pointer (Pmode, r1));
/* Aim at __private_ss. */
guard = gen_rtx_MEM (Pmode, plus_constant (Pmode, r1, psso));
/* If less that 1kiB used, skip addition and compare directly with
__private_ss. */
if (frame_size > SPLIT_STACK_AVAILABLE)
{
emit_move_insn (r1, guard);
if (TARGET_64BIT)
emit_insn (gen_adddi3 (r1, r1, GEN_INT (frame_size)));
else
emit_insn (gen_addsi3 (r1, r1, GEN_INT (frame_size)));
guard = r1;
}
/* Compare the (maybe adjusted) guard with the stack pointer. */
cc = s390_emit_compare (LT, stack_pointer_rtx, guard);
}
call_done = gen_label_rtx ();
parm_base = gen_label_rtx ();
LABEL_NUSES (parm_base)++;
LABEL_NUSES (call_done)++;
/* %r1 = litbase. */
insn = emit_move_insn (r1, gen_rtx_LABEL_REF (VOIDmode, parm_base));
add_reg_note (insn, REG_LABEL_OPERAND, parm_base);
LABEL_NUSES (parm_base)++;
/* Now, we need to call __morestack. It has very special calling
conventions: it preserves param/return/static chain registers for
calling main function body, and looks for its own parameters at %r1. */
if (cc != NULL)
tmp = gen_split_stack_cond_call (Pmode,
morestack_ref,
parm_base,
call_done,
GEN_INT (frame_size),
GEN_INT (args_size),
cc);
else
tmp = gen_split_stack_call (Pmode,
morestack_ref,
parm_base,
call_done,
GEN_INT (frame_size),
GEN_INT (args_size));
insn = emit_jump_insn (tmp);
JUMP_LABEL (insn) = call_done;
add_reg_note (insn, REG_LABEL_OPERAND, parm_base);
add_reg_note (insn, REG_LABEL_OPERAND, call_done);
if (cc != NULL)
{
/* Mark the jump as very unlikely to be taken. */
add_reg_br_prob_note (insn,
profile_probability::very_unlikely ());
if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
{
/* If va_start is used, and __morestack was not called, just use
r15. */
emit_move_insn (r1,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (STACK_POINTER_OFFSET)));
}
}
else
{
emit_barrier ();
}
/* __morestack will call us here. */
emit_label (call_done);
}
/* We may have to tell the dataflow pass that the split stack prologue
is initializing a register. */
static void
s390_live_on_entry (bitmap regs)
{
if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
{
gcc_assert (flag_split_stack);
bitmap_set_bit (regs, 1);
}
}
/* Return true if the function can use simple_return to return outside
of a shrink-wrapped region. At present shrink-wrapping is supported
in all cases. */
bool
s390_can_use_simple_return_insn (void)
{
return true;
}
/* Return true if the epilogue is guaranteed to contain only a return
instruction and if a direct return can therefore be used instead.
One of the main advantages of using direct return instructions
is that we can then use conditional returns. */
bool
s390_can_use_return_insn (void)
{
int i;
if (!reload_completed)
return false;
if (crtl->profile)
return false;
if (TARGET_TPF_PROFILING)
return false;
for (i = 0; i < 16; i++)
if (cfun_gpr_save_slot (i) != SAVE_SLOT_NONE)
return false;
/* For 31 bit this is not covered by the frame_size check below
since f4, f6 are saved in the register save area without needing
additional stack space. */
if (!TARGET_64BIT
&& (cfun_fpr_save_p (FPR4_REGNUM) || cfun_fpr_save_p (FPR6_REGNUM)))
return false;
if (cfun->machine->base_reg
&& !call_used_regs[REGNO (cfun->machine->base_reg)])
return false;
return cfun_frame_layout.frame_size == 0;
}
/* The VX ABI differs for vararg functions. Therefore we need the
prototype of the callee to be available when passing vector type
values. */
static const char *
s390_invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
{
return ((TARGET_VX_ABI
&& typelist == 0
&& VECTOR_TYPE_P (TREE_TYPE (val))
&& (funcdecl == NULL_TREE
|| (TREE_CODE (funcdecl) == FUNCTION_DECL
&& DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD
&& !fndecl_built_in_p (funcdecl, BUILT_IN_CLASSIFY_TYPE))))
? N_("vector argument passed to unprototyped function")
: NULL);
}
/* Return the size in bytes of a function argument of
type TYPE and/or mode MODE. At least one of TYPE or
MODE must be specified. */
static int
s390_function_arg_size (machine_mode mode, const_tree type)
{
if (type)
return int_size_in_bytes (type);
/* No type info available for some library calls ... */
if (mode != BLKmode)
return GET_MODE_SIZE (mode);
/* If we have neither type nor mode, abort */
gcc_unreachable ();
}
/* Return true if a variable of TYPE should be passed as single value
with type CODE. If STRICT_SIZE_CHECK_P is true the sizes of the
record type and the field type must match.
The ABI says that record types with a single member are treated
just like that member would be. This function is a helper to
detect such cases. The function also produces the proper
diagnostics for cases where the outcome might be different
depending on the GCC version. */
static bool
s390_single_field_struct_p (enum tree_code code, const_tree type,
bool strict_size_check_p)
{
int empty_base_seen = 0;
bool zero_width_bf_skipped_p = false;
const_tree orig_type = type;
while (TREE_CODE (type) == RECORD_TYPE)
{
tree field, single_type = NULL_TREE;
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
if (DECL_FIELD_ABI_IGNORED (field))
{
if (lookup_attribute ("no_unique_address",
DECL_ATTRIBUTES (field)))
empty_base_seen |= 2;
else
empty_base_seen |= 1;
continue;
}
if (DECL_FIELD_CXX_ZERO_WIDTH_BIT_FIELD (field))
{
zero_width_bf_skipped_p = true;
continue;
}
if (single_type == NULL_TREE)
single_type = TREE_TYPE (field);
else
return false;
}
if (single_type == NULL_TREE)
return false;
/* Reaching this point we have a struct with a single member and
zero or more zero-sized bit-fields which have been skipped in the
past. */
/* If ZERO_WIDTH_BF_SKIPPED_P then the struct will not be accepted. In case
we are not supposed to emit a warning exit early. */
if (zero_width_bf_skipped_p && !warn_psabi)
return false;
/* If the field declaration adds extra bytes due to padding this
is not accepted with STRICT_SIZE_CHECK_P. */
if (strict_size_check_p
&& (int_size_in_bytes (single_type) <= 0
|| int_size_in_bytes (single_type) != int_size_in_bytes (type)))
return false;
type = single_type;
}
if (TREE_CODE (type) != code)
return false;
if (warn_psabi)
{
unsigned uid = TYPE_UID (TYPE_MAIN_VARIANT (orig_type));
if (empty_base_seen)
{
static unsigned last_reported_type_uid_empty_base;
if (uid != last_reported_type_uid_empty_base)
{
last_reported_type_uid_empty_base = uid;
const char *url = CHANGES_ROOT_URL "gcc-10/changes.html#empty_base";
if (empty_base_seen & 1)
inform (input_location,
"parameter passing for argument of type %qT when C++17 "
"is enabled changed to match C++14 %{in GCC 10.1%}",
orig_type, url);
else
inform (input_location,
"parameter passing for argument of type %qT with "
"%<[[no_unique_address]]%> members changed "
"%{in GCC 10.1%}", orig_type, url);
}
}
/* For C++ older GCCs ignored zero width bitfields and therefore
passed structs more often as single values than GCC 12 does.
So diagnostics are only required in cases where we do NOT
accept the struct to be passed as single value. */
if (zero_width_bf_skipped_p)
{
static unsigned last_reported_type_uid_zero_width;
if (uid != last_reported_type_uid_zero_width)
{
last_reported_type_uid_zero_width = uid;
inform (input_location,
"parameter passing for argument of type %qT with "
"zero-width bit fields members changed in GCC 12",
orig_type);
}
}
}
return !zero_width_bf_skipped_p;
}
/* Return true if a function argument of type TYPE and mode MODE
is to be passed in a vector register, if available. */
static bool
s390_function_arg_vector (machine_mode mode, const_tree type)
{
if (!TARGET_VX_ABI)
return false;
if (s390_function_arg_size (mode, type) > 16)
return false;
/* No type info available for some library calls ... */
if (!type)
return VECTOR_MODE_P (mode);
if (!s390_single_field_struct_p (VECTOR_TYPE, type, true))
return false;
return true;
}
/* Return true if a function argument of type TYPE and mode MODE
is to be passed in a floating-point register, if available. */
static bool
s390_function_arg_float (machine_mode mode, const_tree type)
{
if (s390_function_arg_size (mode, type) > 8)
return false;
/* Soft-float changes the ABI: no floating-point registers are used. */
if (TARGET_SOFT_FLOAT)
return false;
/* No type info available for some library calls ... */
if (!type)
return mode == SFmode || mode == DFmode || mode == SDmode || mode == DDmode;
if (!s390_single_field_struct_p (REAL_TYPE, type, false))
return false;
return true;
}
/* Return true if a function argument of type TYPE and mode MODE
is to be passed in an integer register, or a pair of integer
registers, if available. */
static bool
s390_function_arg_integer (machine_mode mode, const_tree type)
{
int size = s390_function_arg_size (mode, type);
if (size > 8)
return false;
/* No type info available for some library calls ... */
if (!type)
return GET_MODE_CLASS (mode) == MODE_INT
|| (TARGET_SOFT_FLOAT && SCALAR_FLOAT_MODE_P (mode));
/* We accept small integral (and similar) types. */
if (INTEGRAL_TYPE_P (type)
|| POINTER_TYPE_P (type)
|| TREE_CODE (type) == NULLPTR_TYPE
|| TREE_CODE (type) == OFFSET_TYPE
|| (TARGET_SOFT_FLOAT && SCALAR_FLOAT_TYPE_P (type)))
return true;
/* We also accept structs of size 1, 2, 4, 8 that are not
passed in floating-point registers. */
if (AGGREGATE_TYPE_P (type)
&& exact_log2 (size) >= 0
&& !s390_function_arg_float (mode, type))
return true;
return false;
}
/* Return 1 if a function argument ARG is to be passed by reference.
The ABI specifies that only structures of size 1, 2, 4, or 8 bytes
are passed by value, all other structures (and complex numbers) are
passed by reference. */
static bool
s390_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
{
int size = s390_function_arg_size (arg.mode, arg.type);
if (s390_function_arg_vector (arg.mode, arg.type))
return false;
if (size > 8)
return true;
if (tree type = arg.type)
{
if (AGGREGATE_TYPE_P (type) && exact_log2 (size) < 0)
return true;
if (TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == VECTOR_TYPE)
return true;
}
return false;
}
/* Update the data in CUM to advance over argument ARG. */
static void
s390_function_arg_advance (cumulative_args_t cum_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
if (s390_function_arg_vector (arg.mode, arg.type))
{
/* We are called for unnamed vector stdarg arguments which are
passed on the stack. In this case this hook does not have to
do anything since stack arguments are tracked by common
code. */
if (!arg.named)
return;
cum->vrs += 1;
}
else if (s390_function_arg_float (arg.mode, arg.type))
{
cum->fprs += 1;
}
else if (s390_function_arg_integer (arg.mode, arg.type))
{
int size = s390_function_arg_size (arg.mode, arg.type);
cum->gprs += ((size + UNITS_PER_LONG - 1) / UNITS_PER_LONG);
}
else
gcc_unreachable ();
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
ARG is a description of the argument.
On S/390, we use general purpose registers 2 through 6 to
pass integer, pointer, and certain structure arguments, and
floating point registers 0 and 2 (0, 2, 4, and 6 on 64-bit)
to pass floating point arguments. All remaining arguments
are pushed to the stack. */
static rtx
s390_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
if (!arg.named)
s390_check_type_for_vector_abi (arg.type, true, false);
if (s390_function_arg_vector (arg.mode, arg.type))
{
/* Vector arguments being part of the ellipsis are passed on the
stack. */
if (!arg.named || (cum->vrs + 1 > VEC_ARG_NUM_REG))
return NULL_RTX;
return gen_rtx_REG (arg.mode, cum->vrs + FIRST_VEC_ARG_REGNO);
}
else if (s390_function_arg_float (arg.mode, arg.type))
{
if (cum->fprs + 1 > FP_ARG_NUM_REG)
return NULL_RTX;
else
return gen_rtx_REG (arg.mode, cum->fprs + 16);
}
else if (s390_function_arg_integer (arg.mode, arg.type))
{
int size = s390_function_arg_size (arg.mode, arg.type);
int n_gprs = (size + UNITS_PER_LONG - 1) / UNITS_PER_LONG;
if (cum->gprs + n_gprs > GP_ARG_NUM_REG)
return NULL_RTX;
else if (n_gprs == 1 || UNITS_PER_WORD == UNITS_PER_LONG)
return gen_rtx_REG (arg.mode, cum->gprs + 2);
else if (n_gprs == 2)
{
rtvec p = rtvec_alloc (2);
RTVEC_ELT (p, 0)
= gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, cum->gprs + 2),
const0_rtx);
RTVEC_ELT (p, 1)
= gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, cum->gprs + 3),
GEN_INT (4));
return gen_rtx_PARALLEL (arg.mode, p);
}
}
/* After the real arguments, expand_call calls us once again with an
end marker. Whatever we return here is passed as operand 2 to the
call expanders.
We don't need this feature ... */
else if (arg.end_marker_p ())
return const0_rtx;
gcc_unreachable ();
}
/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Vector arguments are
left-justified when placed on the stack during parameter passing. */
static pad_direction
s390_function_arg_padding (machine_mode mode, const_tree type)
{
if (s390_function_arg_vector (mode, type))
return PAD_UPWARD;
return default_function_arg_padding (mode, type);
}
/* Return true if return values of type TYPE should be returned
in a memory buffer whose address is passed by the caller as
hidden first argument. */
static bool
s390_return_in_memory (const_tree type, const_tree fundecl ATTRIBUTE_UNUSED)
{
/* We accept small integral (and similar) types. */
if (INTEGRAL_TYPE_P (type)
|| POINTER_TYPE_P (type)
|| TREE_CODE (type) == OFFSET_TYPE
|| SCALAR_FLOAT_TYPE_P (type))
return int_size_in_bytes (type) > 8;
/* vector types which fit into a VR. */
if (TARGET_VX_ABI
&& VECTOR_TYPE_P (type)
&& int_size_in_bytes (type) <= 16)
return false;
/* Aggregates and similar constructs are always returned
in memory. */
if (AGGREGATE_TYPE_P (type)
|| TREE_CODE (type) == COMPLEX_TYPE
|| VECTOR_TYPE_P (type))
return true;
/* ??? We get called on all sorts of random stuff from
aggregate_value_p. We can't abort, but it's not clear
what's safe to return. Pretend it's a struct I guess. */
return true;
}
/* Function arguments and return values are promoted to word size. */
static machine_mode
s390_promote_function_mode (const_tree type, machine_mode mode,
int *punsignedp,
const_tree fntype ATTRIBUTE_UNUSED,
int for_return ATTRIBUTE_UNUSED)
{
if (INTEGRAL_MODE_P (mode)
&& GET_MODE_SIZE (mode) < UNITS_PER_LONG)
{
if (type != NULL_TREE && POINTER_TYPE_P (type))
*punsignedp = POINTERS_EXTEND_UNSIGNED;
return Pmode;
}
return mode;
}
/* Define where to return a (scalar) value of type RET_TYPE.
If RET_TYPE is null, define where to return a (scalar)
value of mode MODE from a libcall. */
static rtx
s390_function_and_libcall_value (machine_mode mode,
const_tree ret_type,
const_tree fntype_or_decl,
bool outgoing ATTRIBUTE_UNUSED)
{
/* For vector return types it is important to use the RET_TYPE
argument whenever available since the middle-end might have
changed the mode to a scalar mode. */
bool vector_ret_type_p = ((ret_type && VECTOR_TYPE_P (ret_type))
|| (!ret_type && VECTOR_MODE_P (mode)));
/* For normal functions perform the promotion as
promote_function_mode would do. */
if (ret_type)
{
int unsignedp = TYPE_UNSIGNED (ret_type);
mode = promote_function_mode (ret_type, mode, &unsignedp,
fntype_or_decl, 1);
}
gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
|| SCALAR_FLOAT_MODE_P (mode)
|| (TARGET_VX_ABI && vector_ret_type_p));
gcc_assert (GET_MODE_SIZE (mode) <= (TARGET_VX_ABI ? 16 : 8));
if (TARGET_VX_ABI && vector_ret_type_p)
return gen_rtx_REG (mode, FIRST_VEC_ARG_REGNO);
else if (TARGET_HARD_FLOAT && SCALAR_FLOAT_MODE_P (mode))
return gen_rtx_REG (mode, 16);
else if (GET_MODE_SIZE (mode) <= UNITS_PER_LONG
|| UNITS_PER_LONG == UNITS_PER_WORD)
return gen_rtx_REG (mode, 2);
else if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_LONG)
{
/* This case is triggered when returning a 64 bit value with
-m31 -mzarch. Although the value would fit into a single
register it has to be forced into a 32 bit register pair in
order to match the ABI. */
rtvec p = rtvec_alloc (2);
RTVEC_ELT (p, 0)
= gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, 2), const0_rtx);
RTVEC_ELT (p, 1)
= gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, 3), GEN_INT (4));
return gen_rtx_PARALLEL (mode, p);
}
gcc_unreachable ();
}
/* Define where to return a scalar return value of type RET_TYPE. */
static rtx
s390_function_value (const_tree ret_type, const_tree fn_decl_or_type,
bool outgoing)
{
return s390_function_and_libcall_value (TYPE_MODE (ret_type), ret_type,
fn_decl_or_type, outgoing);
}
/* Define where to return a scalar libcall return value of mode
MODE. */
static rtx
s390_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
return s390_function_and_libcall_value (mode, NULL_TREE,
NULL_TREE, true);
}
/* Create and return the va_list datatype.
On S/390, va_list is an array type equivalent to
typedef struct __va_list_tag
{
long __gpr;
long __fpr;
void *__overflow_arg_area;
void *__reg_save_area;
} va_list[1];
where __gpr and __fpr hold the number of general purpose
or floating point arguments used up to now, respectively,
__overflow_arg_area points to the stack location of the
next argument passed on the stack, and __reg_save_area
always points to the start of the register area in the
call frame of the current function. The function prologue
saves all registers used for argument passing into this
area if the function uses variable arguments. */
static tree
s390_build_builtin_va_list (void)
{
tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
record = lang_hooks.types.make_type (RECORD_TYPE);
type_decl =
build_decl (BUILTINS_LOCATION,
TYPE_DECL, get_identifier ("__va_list_tag"), record);
f_gpr = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__gpr"),
long_integer_type_node);
f_fpr = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__fpr"),
long_integer_type_node);
f_ovf = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__overflow_arg_area"),
ptr_type_node);
f_sav = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__reg_save_area"),
ptr_type_node);
va_list_gpr_counter_field = f_gpr;
va_list_fpr_counter_field = f_fpr;
DECL_FIELD_CONTEXT (f_gpr) = record;
DECL_FIELD_CONTEXT (f_fpr) = record;
DECL_FIELD_CONTEXT (f_ovf) = record;
DECL_FIELD_CONTEXT (f_sav) = record;
TYPE_STUB_DECL (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_gpr;
DECL_CHAIN (f_gpr) = f_fpr;
DECL_CHAIN (f_fpr) = f_ovf;
DECL_CHAIN (f_ovf) = f_sav;
layout_type (record);
/* The correct type is an array type of one element. */
return build_array_type (record, build_index_type (size_zero_node));
}
/* Implement va_start by filling the va_list structure VALIST.
STDARG_P is always true, and ignored.
NEXTARG points to the first anonymous stack argument.
The following global variables are used to initialize
the va_list structure:
crtl->args.info:
holds number of gprs and fprs used for named arguments.
crtl->args.arg_offset_rtx:
holds the offset of the first anonymous stack argument
(relative to the virtual arg pointer). */
static void
s390_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
HOST_WIDE_INT n_gpr, n_fpr;
int off;
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, t;
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_fpr = DECL_CHAIN (f_gpr);
f_ovf = DECL_CHAIN (f_fpr);
f_sav = DECL_CHAIN (f_ovf);
valist = build_simple_mem_ref (valist);
gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE);
ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE);
sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE);
/* Count number of gp and fp argument registers used. */
n_gpr = crtl->args.info.gprs;
n_fpr = crtl->args.info.fprs;
if (cfun->va_list_gpr_size)
{
t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
build_int_cst (NULL_TREE, n_gpr));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
if (cfun->va_list_fpr_size)
{
t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
build_int_cst (NULL_TREE, n_fpr));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
if (flag_split_stack
&& (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
== NULL)
&& cfun->machine->split_stack_varargs_pointer == NULL_RTX)
{
rtx reg;
rtx_insn *seq;
reg = gen_reg_rtx (Pmode);
cfun->machine->split_stack_varargs_pointer = reg;
start_sequence ();
emit_move_insn (reg, gen_rtx_REG (Pmode, 1));
seq = get_insns ();
end_sequence ();
push_topmost_sequence ();
emit_insn_after (seq, entry_of_function ());
pop_topmost_sequence ();
}
/* Find the overflow area.
FIXME: This currently is too pessimistic when the vector ABI is
enabled. In that case we *always* set up the overflow area
pointer. */
if (n_gpr + cfun->va_list_gpr_size > GP_ARG_NUM_REG
|| n_fpr + cfun->va_list_fpr_size > FP_ARG_NUM_REG
|| TARGET_VX_ABI)
{
if (cfun->machine->split_stack_varargs_pointer == NULL_RTX)
t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
else
t = make_tree (TREE_TYPE (ovf), cfun->machine->split_stack_varargs_pointer);
off = INTVAL (crtl->args.arg_offset_rtx);
off = off < 0 ? 0 : off;
if (TARGET_DEBUG_ARG)
fprintf (stderr, "va_start: n_gpr = %d, n_fpr = %d off %d\n",
(int)n_gpr, (int)n_fpr, off);
t = fold_build_pointer_plus_hwi (t, off);
t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Find the register save area. */
if ((cfun->va_list_gpr_size && n_gpr < GP_ARG_NUM_REG)
|| (cfun->va_list_fpr_size && n_fpr < FP_ARG_NUM_REG))
{
t = make_tree (TREE_TYPE (sav), return_address_pointer_rtx);
t = fold_build_pointer_plus_hwi (t, -RETURN_REGNUM * UNITS_PER_LONG);
t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
}
/* Implement va_arg by updating the va_list structure
VALIST as required to retrieve an argument of type
TYPE, and returning that argument.
Generates code equivalent to:
if (integral value) {
if (size <= 4 && args.gpr < 5 ||
size > 4 && args.gpr < 4 )
ret = args.reg_save_area[args.gpr+8]
else
ret = *args.overflow_arg_area++;
} else if (vector value) {
ret = *args.overflow_arg_area;
args.overflow_arg_area += size / 8;
} else if (float value) {
if (args.fgpr < 2)
ret = args.reg_save_area[args.fpr+64]
else
ret = *args.overflow_arg_area++;
} else if (aggregate value) {
if (args.gpr < 5)
ret = *args.reg_save_area[args.gpr]
else
ret = **args.overflow_arg_area++;
} */
static tree
s390_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
gimple_seq *post_p ATTRIBUTE_UNUSED)
{
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, reg, t, u;
int indirect_p, size, n_reg, sav_ofs, sav_scale, max_reg;
tree lab_false, lab_over = NULL_TREE;
tree addr = create_tmp_var (ptr_type_node, "addr");
bool left_align_p; /* How a value < UNITS_PER_LONG is aligned within
a stack slot. */
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_fpr = DECL_CHAIN (f_gpr);
f_ovf = DECL_CHAIN (f_fpr);
f_sav = DECL_CHAIN (f_ovf);
gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE);
sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE);
/* The tree for args* cannot be shared between gpr/fpr and ovf since
both appear on a lhs. */
valist = unshare_expr (valist);
ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE);
size = int_size_in_bytes (type);
s390_check_type_for_vector_abi (type, true, false);
if (pass_va_arg_by_reference (type))
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: aggregate type");
debug_tree (type);
}
/* Aggregates are passed by reference. */
indirect_p = 1;
reg = gpr;
n_reg = 1;
/* kernel stack layout on 31 bit: It is assumed here that no padding
will be added by s390_frame_info because for va_args always an even
number of gprs has to be saved r15-r2 = 14 regs. */
sav_ofs = 2 * UNITS_PER_LONG;
sav_scale = UNITS_PER_LONG;
size = UNITS_PER_LONG;
max_reg = GP_ARG_NUM_REG - n_reg;
left_align_p = false;
}
else if (s390_function_arg_vector (TYPE_MODE (type), type))
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: vector type");
debug_tree (type);
}
indirect_p = 0;
reg = NULL_TREE;
n_reg = 0;
sav_ofs = 0;
sav_scale = 8;
max_reg = 0;
left_align_p = true;
}
else if (s390_function_arg_float (TYPE_MODE (type), type))
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: float type");
debug_tree (type);
}
/* FP args go in FP registers, if present. */
indirect_p = 0;
reg = fpr;
n_reg = 1;
sav_ofs = 16 * UNITS_PER_LONG;
sav_scale = 8;
max_reg = FP_ARG_NUM_REG - n_reg;
left_align_p = false;
}
else
{
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "va_arg: other type");
debug_tree (type);
}
/* Otherwise into GP registers. */
indirect_p = 0;
reg = gpr;
n_reg = (size + UNITS_PER_LONG - 1) / UNITS_PER_LONG;
/* kernel stack layout on 31 bit: It is assumed here that no padding
will be added by s390_frame_info because for va_args always an even
number of gprs has to be saved r15-r2 = 14 regs. */
sav_ofs = 2 * UNITS_PER_LONG;
if (size < UNITS_PER_LONG)
sav_ofs += UNITS_PER_LONG - size;
sav_scale = UNITS_PER_LONG;
max_reg = GP_ARG_NUM_REG - n_reg;
left_align_p = false;
}
/* Pull the value out of the saved registers ... */
if (reg != NULL_TREE)
{
/*
if (reg > ((typeof (reg))max_reg))
goto lab_false;
addr = sav + sav_ofs + reg * save_scale;
goto lab_over;
lab_false:
*/
lab_false = create_artificial_label (UNKNOWN_LOCATION);
lab_over = create_artificial_label (UNKNOWN_LOCATION);
t = fold_convert (TREE_TYPE (reg), size_int (max_reg));
t = build2 (GT_EXPR, boolean_type_node, reg, t);
u = build1 (GOTO_EXPR, void_type_node, lab_false);
t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
gimplify_and_add (t, pre_p);
t = fold_build_pointer_plus_hwi (sav, sav_ofs);
u = build2 (MULT_EXPR, TREE_TYPE (reg), reg,
fold_convert (TREE_TYPE (reg), size_int (sav_scale)));
t = fold_build_pointer_plus (t, u);
gimplify_assign (addr, t, pre_p);
gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false));
}
/* ... Otherwise out of the overflow area. */
t = ovf;
if (size < UNITS_PER_LONG && !left_align_p)
t = fold_build_pointer_plus_hwi (t, UNITS_PER_LONG - size);
gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
gimplify_assign (addr, t, pre_p);
if (size < UNITS_PER_LONG && left_align_p)
t = fold_build_pointer_plus_hwi (t, UNITS_PER_LONG);
else
t = fold_build_pointer_plus_hwi (t, size);
gimplify_assign (ovf, t, pre_p);
if (reg != NULL_TREE)
gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over));
/* Increment register save count. */
if (n_reg > 0)
{
u = build2 (PREINCREMENT_EXPR, TREE_TYPE (reg), reg,
fold_convert (TREE_TYPE (reg), size_int (n_reg)));
gimplify_and_add (u, pre_p);
}
if (indirect_p)
{
t = build_pointer_type_for_mode (build_pointer_type (type),
ptr_mode, true);
addr = fold_convert (t, addr);
addr = build_va_arg_indirect_ref (addr);
}
else
{
t = build_pointer_type_for_mode (type, ptr_mode, true);
addr = fold_convert (t, addr);
}
return build_va_arg_indirect_ref (addr);
}
/* Emit rtl for the tbegin or tbegin_retry (RETRY != NULL_RTX)
expanders.
DEST - Register location where CC will be stored.
TDB - Pointer to a 256 byte area where to store the transaction.
diagnostic block. NULL if TDB is not needed.
RETRY - Retry count value. If non-NULL a retry loop for CC2
is emitted
CLOBBER_FPRS_P - If true clobbers for all FPRs are emitted as part
of the tbegin instruction pattern. */
void
s390_expand_tbegin (rtx dest, rtx tdb, rtx retry, bool clobber_fprs_p)
{
rtx retry_plus_two = gen_reg_rtx (SImode);
rtx retry_reg = gen_reg_rtx (SImode);
rtx_code_label *retry_label = NULL;
if (retry != NULL_RTX)
{
emit_move_insn (retry_reg, retry);
emit_insn (gen_addsi3 (retry_plus_two, retry_reg, const2_rtx));
emit_insn (gen_addsi3 (retry_reg, retry_reg, const1_rtx));
retry_label = gen_label_rtx ();
emit_label (retry_label);
}
if (clobber_fprs_p)
{
if (TARGET_VX)
emit_insn (gen_tbegin_1_z13 (gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK),
tdb));
else
emit_insn (gen_tbegin_1 (gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK),
tdb));
}
else
emit_insn (gen_tbegin_nofloat_1 (gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK),
tdb));
emit_move_insn (dest, gen_rtx_UNSPEC (SImode,
gen_rtvec (1, gen_rtx_REG (CCRAWmode,
CC_REGNUM)),
UNSPEC_CC_TO_INT));
if (retry != NULL_RTX)
{
const int CC0 = 1 << 3;
const int CC1 = 1 << 2;
const int CC3 = 1 << 0;
rtx jump;
rtx count = gen_reg_rtx (SImode);
rtx_code_label *leave_label = gen_label_rtx ();
/* Exit for success and permanent failures. */
jump = s390_emit_jump (leave_label,
gen_rtx_EQ (VOIDmode,
gen_rtx_REG (CCRAWmode, CC_REGNUM),
gen_rtx_CONST_INT (VOIDmode, CC0 | CC1 | CC3)));
LABEL_NUSES (leave_label) = 1;
/* CC2 - transient failure. Perform retry with ppa. */
emit_move_insn (count, retry_plus_two);
emit_insn (gen_subsi3 (count, count, retry_reg));
emit_insn (gen_tx_assist (count));
jump = emit_jump_insn (gen_doloop_si64 (retry_label,
retry_reg,
retry_reg));
JUMP_LABEL (jump) = retry_label;
LABEL_NUSES (retry_label) = 1;
emit_label (leave_label);
}
}
/* Return the decl for the target specific builtin with the function
code FCODE. */
static tree
s390_builtin_decl (unsigned fcode, bool initialized_p ATTRIBUTE_UNUSED)
{
if (fcode >= S390_BUILTIN_MAX)
return error_mark_node;
return s390_builtin_decls[fcode];
}
/* We call mcount before the function prologue. So a profiled leaf
function should stay a leaf function. */
static bool
s390_keep_leaf_when_profiled ()
{
return true;
}
/* Output assembly code for the trampoline template to
stdio stream FILE.
On S/390, we use gpr 1 internally in the trampoline code;
gpr 0 is used to hold the static chain. */
static void
s390_asm_trampoline_template (FILE *file)
{
rtx op[2];
op[0] = gen_rtx_REG (Pmode, 0);
op[1] = gen_rtx_REG (Pmode, 1);
if (TARGET_64BIT)
{
output_asm_insn ("basr\t%1,0", op); /* 2 byte */
output_asm_insn ("lmg\t%0,%1,14(%1)", op); /* 6 byte */
output_asm_insn ("br\t%1", op); /* 2 byte */
ASM_OUTPUT_SKIP (file, (HOST_WIDE_INT)(TRAMPOLINE_SIZE - 10));
}
else
{
output_asm_insn ("basr\t%1,0", op); /* 2 byte */
output_asm_insn ("lm\t%0,%1,6(%1)", op); /* 4 byte */
output_asm_insn ("br\t%1", op); /* 2 byte */
ASM_OUTPUT_SKIP (file, (HOST_WIDE_INT)(TRAMPOLINE_SIZE - 8));
}
}
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
static void
s390_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
rtx mem;
emit_block_move (m_tramp, assemble_trampoline_template (),
GEN_INT (2 * UNITS_PER_LONG), BLOCK_OP_NORMAL);
mem = adjust_address (m_tramp, Pmode, 2 * UNITS_PER_LONG);
emit_move_insn (mem, cxt);
mem = adjust_address (m_tramp, Pmode, 3 * UNITS_PER_LONG);
emit_move_insn (mem, fnaddr);
}
static void
output_asm_nops (const char *user, int hw)
{
asm_fprintf (asm_out_file, "\t# NOPs for %s (%d halfwords)\n", user, hw);
while (hw > 0)
{
if (hw >= 3)
{
output_asm_insn ("brcl\t0,0", NULL);
hw -= 3;
}
else if (hw >= 2)
{
output_asm_insn ("bc\t0,0", NULL);
hw -= 2;
}
else
{
output_asm_insn ("bcr\t0,0", NULL);
hw -= 1;
}
}
}
/* Output assembler code to FILE to call a profiler hook. */
void
s390_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED)
{
rtx op[4];
fprintf (file, "# function profiler \n");
op[0] = gen_rtx_REG (Pmode, RETURN_REGNUM);
op[1] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
op[1] = gen_rtx_MEM (Pmode, plus_constant (Pmode, op[1], UNITS_PER_LONG));
op[3] = GEN_INT (UNITS_PER_LONG);
op[2] = gen_rtx_SYMBOL_REF (Pmode, flag_fentry ? "__fentry__" : "_mcount");
SYMBOL_REF_FLAGS (op[2]) |= SYMBOL_FLAG_FUNCTION;
if (flag_pic && !TARGET_64BIT)
{
op[2] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[2]), UNSPEC_PLT31);
op[2] = gen_rtx_CONST (Pmode, op[2]);
}
if (flag_record_mcount)
fprintf (file, "1:\n");
if (flag_fentry)
{
if (flag_nop_mcount)
output_asm_nops ("-mnop-mcount", /* brasl */ 3);
else if (cfun->static_chain_decl)
warning (OPT_Wcannot_profile, "nested functions cannot be profiled "
"with %<-mfentry%> on s390");
else
output_asm_insn ("brasl\t0,%2%K2", op);
}
else if (TARGET_64BIT)
{
if (flag_nop_mcount)
output_asm_nops ("-mnop-mcount", /* stg */ 3 + /* brasl */ 3 +
/* lg */ 3);
else
{
output_asm_insn ("stg\t%0,%1", op);
if (flag_dwarf2_cfi_asm)
output_asm_insn (".cfi_rel_offset\t%0,%3", op);
output_asm_insn ("brasl\t%0,%2%K2", op);
output_asm_insn ("lg\t%0,%1", op);
if (flag_dwarf2_cfi_asm)
output_asm_insn (".cfi_restore\t%0", op);
}
}
else
{
if (flag_nop_mcount)
output_asm_nops ("-mnop-mcount", /* st */ 2 + /* brasl */ 3 +
/* l */ 2);
else
{
output_asm_insn ("st\t%0,%1", op);
if (flag_dwarf2_cfi_asm)
output_asm_insn (".cfi_rel_offset\t%0,%3", op);
output_asm_insn ("brasl\t%0,%2%K2", op);
output_asm_insn ("l\t%0,%1", op);
if (flag_dwarf2_cfi_asm)
output_asm_insn (".cfi_restore\t%0", op);
}
}
if (flag_record_mcount)
{
fprintf (file, "\t.section __mcount_loc, \"a\",@progbits\n");
fprintf (file, "\t.%s 1b\n", TARGET_64BIT ? "quad" : "long");
fprintf (file, "\t.previous\n");
}
}
/* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
into its SYMBOL_REF_FLAGS. */
static void
s390_encode_section_info (tree decl, rtx rtl, int first)
{
default_encode_section_info (decl, rtl, first);
if (VAR_P (decl))
{
/* Store the alignment to be able to check if we can use
a larl/load-relative instruction. We only handle the cases
that can go wrong (i.e. no FUNC_DECLs).
All symbols without an explicit alignment are assumed to be 2
byte aligned as mandated by our ABI. This behavior can be
overridden for external and weak symbols with the
-munaligned-symbols switch.
For all external symbols without explicit alignment
DECL_ALIGN is already trimmed down to 8, however for weak
symbols this does not happen. These cases are catched by the
type size check. */
const_tree size = TYPE_SIZE (TREE_TYPE (decl));
unsigned HOST_WIDE_INT size_num = (tree_fits_uhwi_p (size)
? tree_to_uhwi (size) : 0);
if ((DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) % 16)
|| (s390_unaligned_symbols_p
&& !decl_binds_to_current_def_p (decl)
&& (DECL_USER_ALIGN (decl) ? DECL_ALIGN (decl) % 16 : size_num < 16)))
SYMBOL_FLAG_SET_NOTALIGN2 (XEXP (rtl, 0));
else if (DECL_ALIGN (decl) % 32)
SYMBOL_FLAG_SET_NOTALIGN4 (XEXP (rtl, 0));
else if (DECL_ALIGN (decl) % 64)
SYMBOL_FLAG_SET_NOTALIGN8 (XEXP (rtl, 0));
}
/* Literal pool references don't have a decl so they are handled
differently here. We rely on the information in the MEM_ALIGN
entry to decide upon the alignment. */
if (MEM_P (rtl)
&& GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF
&& TREE_CONSTANT_POOL_ADDRESS_P (XEXP (rtl, 0)))
{
if (MEM_ALIGN (rtl) == 0 || MEM_ALIGN (rtl) % 16)
SYMBOL_FLAG_SET_NOTALIGN2 (XEXP (rtl, 0));
else if (MEM_ALIGN (rtl) % 32)
SYMBOL_FLAG_SET_NOTALIGN4 (XEXP (rtl, 0));
else if (MEM_ALIGN (rtl) % 64)
SYMBOL_FLAG_SET_NOTALIGN8 (XEXP (rtl, 0));
}
}
/* Output thunk to FILE that implements a C++ virtual function call (with
multiple inheritance) to FUNCTION. The thunk adjusts the this pointer
by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
stored at VCALL_OFFSET in the vtable whose address is located at offset 0
relative to the resulting this pointer. */
static void
s390_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));
rtx op[10];
int nonlocal = 0;
assemble_start_function (thunk, fnname);
/* Make sure unwind info is emitted for the thunk if needed. */
final_start_function (emit_barrier (), file, 1);
/* Operand 0 is the target function. */
op[0] = XEXP (DECL_RTL (function), 0);
if (flag_pic && !SYMBOL_REF_LOCAL_P (op[0]))
{
nonlocal = 1;
if (!TARGET_64BIT)
{
op[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[0]), UNSPEC_GOT);
op[0] = gen_rtx_CONST (Pmode, op[0]);
}
}
/* Operand 1 is the 'this' pointer. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
op[1] = gen_rtx_REG (Pmode, 3);
else
op[1] = gen_rtx_REG (Pmode, 2);
/* Operand 2 is the delta. */
op[2] = GEN_INT (delta);
/* Operand 3 is the vcall_offset. */
op[3] = GEN_INT (vcall_offset);
/* Operand 4 is the temporary register. */
op[4] = gen_rtx_REG (Pmode, 1);
/* Operands 5 to 8 can be used as labels. */
op[5] = NULL_RTX;
op[6] = NULL_RTX;
op[7] = NULL_RTX;
op[8] = NULL_RTX;
/* Operand 9 can be used for temporary register. */
op[9] = NULL_RTX;
/* Generate code. */
if (TARGET_64BIT)
{
/* Setup literal pool pointer if required. */
if ((!DISP_IN_RANGE (delta)
&& !CONST_OK_FOR_K (delta)
&& !CONST_OK_FOR_Os (delta))
|| (!DISP_IN_RANGE (vcall_offset)
&& !CONST_OK_FOR_K (vcall_offset)
&& !CONST_OK_FOR_Os (vcall_offset)))
{
op[5] = gen_label_rtx ();
output_asm_insn ("larl\t%4,%5", op);
}
/* Add DELTA to this pointer. */
if (delta)
{
if (CONST_OK_FOR_J (delta))
output_asm_insn ("la\t%1,%2(%1)", op);
else if (DISP_IN_RANGE (delta))
output_asm_insn ("lay\t%1,%2(%1)", op);
else if (CONST_OK_FOR_K (delta))
output_asm_insn ("aghi\t%1,%2", op);
else if (CONST_OK_FOR_Os (delta))
output_asm_insn ("agfi\t%1,%2", op);
else
{
op[6] = gen_label_rtx ();
output_asm_insn ("agf\t%1,%6-%5(%4)", op);
}
}
/* Perform vcall adjustment. */
if (vcall_offset)
{
if (DISP_IN_RANGE (vcall_offset))
{
output_asm_insn ("lg\t%4,0(%1)", op);
output_asm_insn ("ag\t%1,%3(%4)", op);
}
else if (CONST_OK_FOR_K (vcall_offset))
{
output_asm_insn ("lghi\t%4,%3", op);
output_asm_insn ("ag\t%4,0(%1)", op);
output_asm_insn ("ag\t%1,0(%4)", op);
}
else if (CONST_OK_FOR_Os (vcall_offset))
{
output_asm_insn ("lgfi\t%4,%3", op);
output_asm_insn ("ag\t%4,0(%1)", op);
output_asm_insn ("ag\t%1,0(%4)", op);
}
else
{
op[7] = gen_label_rtx ();
output_asm_insn ("llgf\t%4,%7-%5(%4)", op);
output_asm_insn ("ag\t%4,0(%1)", op);
output_asm_insn ("ag\t%1,0(%4)", op);
}
}
/* Jump to target. */
output_asm_insn ("jg\t%0%K0", op);
/* Output literal pool if required. */
if (op[5])
{
output_asm_insn (".align\t4", op);
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[5]));
}
if (op[6])
{
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[6]));
output_asm_insn (".long\t%2", op);
}
if (op[7])
{
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[7]));
output_asm_insn (".long\t%3", op);
}
}
else
{
/* Setup base pointer if required. */
if (!vcall_offset
|| (!DISP_IN_RANGE (delta)
&& !CONST_OK_FOR_K (delta)
&& !CONST_OK_FOR_Os (delta))
|| (!DISP_IN_RANGE (delta)
&& !CONST_OK_FOR_K (vcall_offset)
&& !CONST_OK_FOR_Os (vcall_offset)))
{
op[5] = gen_label_rtx ();
output_asm_insn ("basr\t%4,0", op);
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[5]));
}
/* Add DELTA to this pointer. */
if (delta)
{
if (CONST_OK_FOR_J (delta))
output_asm_insn ("la\t%1,%2(%1)", op);
else if (DISP_IN_RANGE (delta))
output_asm_insn ("lay\t%1,%2(%1)", op);
else if (CONST_OK_FOR_K (delta))
output_asm_insn ("ahi\t%1,%2", op);
else if (CONST_OK_FOR_Os (delta))
output_asm_insn ("afi\t%1,%2", op);
else
{
op[6] = gen_label_rtx ();
output_asm_insn ("a\t%1,%6-%5(%4)", op);
}
}
/* Perform vcall adjustment. */
if (vcall_offset)
{
if (CONST_OK_FOR_J (vcall_offset))
{
output_asm_insn ("l\t%4,0(%1)", op);
output_asm_insn ("a\t%1,%3(%4)", op);
}
else if (DISP_IN_RANGE (vcall_offset))
{
output_asm_insn ("l\t%4,0(%1)", op);
output_asm_insn ("ay\t%1,%3(%4)", op);
}
else if (CONST_OK_FOR_K (vcall_offset))
{
output_asm_insn ("lhi\t%4,%3", op);
output_asm_insn ("a\t%4,0(%1)", op);
output_asm_insn ("a\t%1,0(%4)", op);
}
else if (CONST_OK_FOR_Os (vcall_offset))
{
output_asm_insn ("iilf\t%4,%3", op);
output_asm_insn ("a\t%4,0(%1)", op);
output_asm_insn ("a\t%1,0(%4)", op);
}
else
{
op[7] = gen_label_rtx ();
output_asm_insn ("l\t%4,%7-%5(%4)", op);
output_asm_insn ("a\t%4,0(%1)", op);
output_asm_insn ("a\t%1,0(%4)", op);
}
/* We had to clobber the base pointer register.
Re-setup the base pointer (with a different base). */
op[5] = gen_label_rtx ();
output_asm_insn ("basr\t%4,0", op);
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[5]));
}
/* Jump to target. */
op[8] = gen_label_rtx ();
if (!flag_pic)
output_asm_insn ("l\t%4,%8-%5(%4)", op);
else if (!nonlocal)
output_asm_insn ("a\t%4,%8-%5(%4)", op);
/* We cannot call through .plt, since .plt requires %r12 loaded. */
else if (flag_pic == 1)
{
output_asm_insn ("a\t%4,%8-%5(%4)", op);
output_asm_insn ("l\t%4,%0(%4)", op);
}
else if (flag_pic == 2)
{
op[9] = gen_rtx_REG (Pmode, 0);
output_asm_insn ("l\t%9,%8-4-%5(%4)", op);
output_asm_insn ("a\t%4,%8-%5(%4)", op);
output_asm_insn ("ar\t%4,%9", op);
output_asm_insn ("l\t%4,0(%4)", op);
}
output_asm_insn ("br\t%4", op);
/* Output literal pool. */
output_asm_insn (".align\t4", op);
if (nonlocal && flag_pic == 2)
output_asm_insn (".long\t%0", op);
if (nonlocal)
{
op[0] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
SYMBOL_REF_FLAGS (op[0]) = SYMBOL_FLAG_LOCAL;
}
targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[8]));
if (!flag_pic)
output_asm_insn (".long\t%0", op);
else
output_asm_insn (".long\t%0-%5", op);
if (op[6])
{
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[6]));
output_asm_insn (".long\t%2", op);
}
if (op[7])
{
targetm.asm_out.internal_label (file, "L",
CODE_LABEL_NUMBER (op[7]));
output_asm_insn (".long\t%3", op);
}
}
final_end_function ();
assemble_end_function (thunk, fnname);
}
/* Output either an indirect jump or an indirect call
(RETURN_ADDR_REGNO != INVALID_REGNUM) with target register REGNO
using a branch trampoline disabling branch target prediction. */
void
s390_indirect_branch_via_thunk (unsigned int regno,
unsigned int return_addr_regno,
rtx comparison_operator,
enum s390_indirect_branch_type type)
{
enum s390_indirect_branch_option option;
if (type == s390_indirect_branch_type_return)
{
if (s390_return_addr_from_memory ())
option = s390_opt_function_return_mem;
else
option = s390_opt_function_return_reg;
}
else if (type == s390_indirect_branch_type_jump)
option = s390_opt_indirect_branch_jump;
else if (type == s390_indirect_branch_type_call)
option = s390_opt_indirect_branch_call;
else
gcc_unreachable ();
if (TARGET_INDIRECT_BRANCH_TABLE)
{
char label[32];
ASM_GENERATE_INTERNAL_LABEL (label,
indirect_branch_table_label[option],
indirect_branch_table_label_no[option]++);
ASM_OUTPUT_LABEL (asm_out_file, label);
}
if (return_addr_regno != INVALID_REGNUM)
{
gcc_assert (comparison_operator == NULL_RTX);
fprintf (asm_out_file, " \tbrasl\t%%r%d,", return_addr_regno);
}
else
{
fputs (" \tjg", asm_out_file);
if (comparison_operator != NULL_RTX)
print_operand (asm_out_file, comparison_operator, 'C');
fputs ("\t", asm_out_file);
}
if (TARGET_CPU_Z10)
fprintf (asm_out_file,
TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "\n",
regno);
else
fprintf (asm_out_file,
TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "\n",
INDIRECT_BRANCH_THUNK_REGNUM, regno);
if ((option == s390_opt_indirect_branch_jump
&& cfun->machine->indirect_branch_jump == indirect_branch_thunk)
|| (option == s390_opt_indirect_branch_call
&& cfun->machine->indirect_branch_call == indirect_branch_thunk)
|| (option == s390_opt_function_return_reg
&& cfun->machine->function_return_reg == indirect_branch_thunk)
|| (option == s390_opt_function_return_mem
&& cfun->machine->function_return_mem == indirect_branch_thunk))
{
if (TARGET_CPU_Z10)
indirect_branch_z10thunk_mask |= (1 << regno);
else
indirect_branch_prez10thunk_mask |= (1 << regno);
}
}
/* Output an inline thunk for indirect jumps. EXECUTE_TARGET can
either be an address register or a label pointing to the location
of the jump instruction. */
void
s390_indirect_branch_via_inline_thunk (rtx execute_target)
{
if (TARGET_INDIRECT_BRANCH_TABLE)
{
char label[32];
ASM_GENERATE_INTERNAL_LABEL (label,
indirect_branch_table_label[s390_opt_indirect_branch_jump],
indirect_branch_table_label_no[s390_opt_indirect_branch_jump]++);
ASM_OUTPUT_LABEL (asm_out_file, label);
}
if (!TARGET_ZARCH)
fputs ("\t.machinemode zarch\n", asm_out_file);
if (REG_P (execute_target))
fprintf (asm_out_file, "\tex\t%%r0,0(%%r%d)\n", REGNO (execute_target));
else
output_asm_insn ("\texrl\t%%r0,%0", &execute_target);
if (!TARGET_ZARCH)
fputs ("\t.machinemode esa\n", asm_out_file);
fputs ("0:\tj\t0b\n", asm_out_file);
}
static bool
s390_valid_pointer_mode (scalar_int_mode mode)
{
return (mode == SImode || (TARGET_64BIT && mode == DImode));
}
/* Checks whether the given CALL_EXPR would use a caller
saved register. This is used to decide whether sibling call
optimization could be performed on the respective function
call. */
static bool
s390_call_saved_register_used (tree call_expr)
{
CUMULATIVE_ARGS cum_v;
cumulative_args_t cum;
tree parameter;
rtx parm_rtx;
int reg, i;
INIT_CUMULATIVE_ARGS (cum_v, NULL, NULL, 0, 0);
cum = pack_cumulative_args (&cum_v);
for (i = 0; i < call_expr_nargs (call_expr); i++)
{
parameter = CALL_EXPR_ARG (call_expr, i);
gcc_assert (parameter);
/* For an undeclared variable passed as parameter we will get
an ERROR_MARK node here. */
if (TREE_CODE (parameter) == ERROR_MARK)
return true;
/* We assume that in the target function all parameters are
named. This only has an impact on vector argument register
usage none of which is call-saved. */
function_arg_info arg (TREE_TYPE (parameter), /*named=*/true);
apply_pass_by_reference_rules (&cum_v, arg);
parm_rtx = s390_function_arg (cum, arg);
s390_function_arg_advance (cum, arg);
if (!parm_rtx)
continue;
if (REG_P (parm_rtx))
{
int size = s390_function_arg_size (arg.mode, arg.type);
int nregs = (size + UNITS_PER_LONG - 1) / UNITS_PER_LONG;
for (reg = 0; reg < nregs; reg++)
if (!call_used_or_fixed_reg_p (reg + REGNO (parm_rtx)))
return true;
}
else if (GET_CODE (parm_rtx) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (parm_rtx, 0); i++)
{
rtx r = XEXP (XVECEXP (parm_rtx, 0, i), 0);
gcc_assert (REG_P (r));
gcc_assert (REG_NREGS (r) == 1);
if (!call_used_or_fixed_reg_p (REGNO (r)))
return true;
}
}
}
return false;
}
/* Return true if the given call expression can be
turned into a sibling call.
DECL holds the declaration of the function to be called whereas
EXP is the call expression itself. */
static bool
s390_function_ok_for_sibcall (tree decl, tree exp)
{
/* The TPF epilogue uses register 1. */
if (TARGET_TPF_PROFILING)
return false;
/* The 31 bit PLT code uses register 12 (GOT pointer - caller saved)
which would have to be restored before the sibcall. */
if (!TARGET_64BIT && flag_pic && decl && !targetm.binds_local_p (decl))
return false;
/* The thunks for indirect branches require r1 if no exrl is
available. r1 might not be available when doing a sibling
call. */
if (TARGET_INDIRECT_BRANCH_NOBP_CALL
&& !TARGET_CPU_Z10
&& !decl)
return false;
/* Register 6 on s390 is available as an argument register but unfortunately
"caller saved". This makes functions needing this register for arguments
not suitable for sibcalls. */
return !s390_call_saved_register_used (exp);
}
/* Return the fixed registers used for condition codes. */
static bool
s390_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = CC_REGNUM;
*p2 = INVALID_REGNUM;
return true;
}
/* This function is used by the call expanders of the machine description.
It emits the call insn itself together with the necessary operations
to adjust the target address and returns the emitted insn.
ADDR_LOCATION is the target address rtx
TLS_CALL the location of the thread-local symbol
RESULT_REG the register where the result of the call should be stored
RETADDR_REG the register where the return address should be stored
If this parameter is NULL_RTX the call is considered
to be a sibling call. */
rtx_insn *
s390_emit_call (rtx addr_location, rtx tls_call, rtx result_reg,
rtx retaddr_reg)
{
bool plt31_call_p = false;
rtx_insn *insn;
rtx vec[4] = { NULL_RTX };
int elts = 0;
rtx *call = &vec[0];
rtx *clobber_ret_reg = &vec[1];
rtx *use = &vec[2];
rtx *clobber_thunk_reg = &vec[3];
int i;
/* Direct function calls need special treatment. */
if (GET_CODE (addr_location) == SYMBOL_REF)
{
/* When calling a global routine in PIC mode, we must
replace the symbol itself with the PLT stub. */
if (flag_pic && !SYMBOL_REF_LOCAL_P (addr_location) && !TARGET_64BIT)
{
if (retaddr_reg != NULL_RTX)
{
addr_location = gen_rtx_UNSPEC (Pmode,
gen_rtvec (1, addr_location),
UNSPEC_PLT31);
addr_location = gen_rtx_CONST (Pmode, addr_location);
plt31_call_p = true;
}
else
/* For -fpic code the PLT entries might use r12 which is
call-saved. Therefore we cannot do a sibcall when
calling directly using a symbol ref. When reaching
this point we decided (in s390_function_ok_for_sibcall)
to do a sibcall for a function pointer but one of the
optimizers was able to get rid of the function pointer
by propagating the symbol ref into the call. This
optimization is illegal for S/390 so we turn the direct
call into a indirect call again. */
addr_location = force_reg (Pmode, addr_location);
}
}
/* If it is already an indirect call or the code above moved the
SYMBOL_REF to somewhere else make sure the address can be found in
register 1. */
if (retaddr_reg == NULL_RTX
&& GET_CODE (addr_location) != SYMBOL_REF
&& !plt31_call_p)
{
emit_move_insn (gen_rtx_REG (Pmode, SIBCALL_REGNUM), addr_location);
addr_location = gen_rtx_REG (Pmode, SIBCALL_REGNUM);
}
if (TARGET_INDIRECT_BRANCH_NOBP_CALL
&& GET_CODE (addr_location) != SYMBOL_REF
&& !plt31_call_p)
{
/* Indirect branch thunks require the target to be a single GPR. */
addr_location = force_reg (Pmode, addr_location);
/* Without exrl the indirect branch thunks need an additional
register for larl;ex */
if (!TARGET_CPU_Z10)
{
*clobber_thunk_reg = gen_rtx_REG (Pmode, INDIRECT_BRANCH_THUNK_REGNUM);
*clobber_thunk_reg = gen_rtx_CLOBBER (VOIDmode, *clobber_thunk_reg);
}
}
addr_location = gen_rtx_MEM (QImode, addr_location);
*call = gen_rtx_CALL (VOIDmode, addr_location, const0_rtx);
if (result_reg != NULL_RTX)
*call = gen_rtx_SET (result_reg, *call);
if (retaddr_reg != NULL_RTX)
{
*clobber_ret_reg = gen_rtx_CLOBBER (VOIDmode, retaddr_reg);
if (tls_call != NULL_RTX)
*use = gen_rtx_USE (VOIDmode, tls_call);
}
for (i = 0; i < 4; i++)
if (vec[i] != NULL_RTX)
elts++;
if (elts > 1)
{
rtvec v;
int e = 0;
v = rtvec_alloc (elts);
for (i = 0; i < 4; i++)
if (vec[i] != NULL_RTX)
{
RTVEC_ELT (v, e) = vec[i];
e++;
}
*call = gen_rtx_PARALLEL (VOIDmode, v);
}
insn = emit_call_insn (*call);
/* 31-bit PLT stubs and tls calls use the GOT register implicitly. */
if (plt31_call_p || tls_call != NULL_RTX)
{
/* s390_function_ok_for_sibcall should
have denied sibcalls in this case. */
gcc_assert (retaddr_reg != NULL_RTX);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), gen_rtx_REG (Pmode, 12));
}
return insn;
}
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
static void
s390_conditional_register_usage (void)
{
int i;
if (flag_pic)
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
fixed_regs[BASE_REGNUM] = 0;
fixed_regs[RETURN_REGNUM] = 0;
if (TARGET_64BIT)
{
for (i = FPR8_REGNUM; i <= FPR15_REGNUM; i++)
call_used_regs[i] = 0;
}
else
{
call_used_regs[FPR4_REGNUM] = 0;
call_used_regs[FPR6_REGNUM] = 0;
}
if (TARGET_SOFT_FLOAT)
{
for (i = FPR0_REGNUM; i <= FPR15_REGNUM; i++)
fixed_regs[i] = 1;
}
/* Disable v16 - v31 for non-vector target. */
if (!TARGET_VX)
{
for (i = VR16_REGNUM; i <= VR31_REGNUM; i++)
fixed_regs[i] = call_used_regs[i] = 1;
}
}
/* Corresponding function to eh_return expander. */
static GTY(()) rtx s390_tpf_eh_return_symbol;
void
s390_emit_tpf_eh_return (rtx target)
{
rtx_insn *insn;
rtx reg, orig_ra;
if (!s390_tpf_eh_return_symbol)
{
s390_tpf_eh_return_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tpf_eh_return");
SYMBOL_REF_FLAGS (s390_tpf_eh_return_symbol) |= SYMBOL_FLAG_FUNCTION;
}
reg = gen_rtx_REG (Pmode, 2);
orig_ra = gen_rtx_REG (Pmode, 3);
emit_move_insn (reg, target);
emit_move_insn (orig_ra, get_hard_reg_initial_val (Pmode, RETURN_REGNUM));
insn = s390_emit_call (s390_tpf_eh_return_symbol, NULL_RTX, reg,
gen_rtx_REG (Pmode, RETURN_REGNUM));
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), orig_ra);
emit_move_insn (EH_RETURN_HANDLER_RTX, reg);
}
/* Rework the prologue/epilogue to avoid saving/restoring
registers unnecessarily. */
static void
s390_optimize_prologue (void)
{
rtx_insn *insn, *new_insn, *next_insn;
/* Do a final recompute of the frame-related data. */
s390_optimize_register_info ();
/* If all special registers are in fact used, there's nothing we
can do, so no point in walking the insn list. */
if (cfun_frame_layout.first_save_gpr <= BASE_REGNUM
&& cfun_frame_layout.last_save_gpr >= BASE_REGNUM)
return;
/* Search for prologue/epilogue insns and replace them. */
for (insn = get_insns (); insn; insn = next_insn)
{
int first, last, off;
rtx set, base, offset;
rtx pat;
next_insn = NEXT_INSN (insn);
if (! NONJUMP_INSN_P (insn) || ! RTX_FRAME_RELATED_P (insn))
continue;
pat = PATTERN (insn);
/* Remove ldgr/lgdr instructions used for saving and restore
GPRs if possible. */
if (TARGET_Z10)
{
rtx tmp_pat = pat;
if (INSN_CODE (insn) == CODE_FOR_stack_restore_from_fpr)
tmp_pat = XVECEXP (pat, 0, 0);
if (GET_CODE (tmp_pat) == SET
&& GET_MODE (SET_SRC (tmp_pat)) == DImode
&& REG_P (SET_SRC (tmp_pat))
&& REG_P (SET_DEST (tmp_pat)))
{
int src_regno = REGNO (SET_SRC (tmp_pat));
int dest_regno = REGNO (SET_DEST (tmp_pat));
int gpr_regno;
int fpr_regno;
if (!((GENERAL_REGNO_P (src_regno)
&& FP_REGNO_P (dest_regno))
|| (FP_REGNO_P (src_regno)
&& GENERAL_REGNO_P (dest_regno))))
continue;
gpr_regno = GENERAL_REGNO_P (src_regno) ? src_regno : dest_regno;
fpr_regno = FP_REGNO_P (src_regno) ? src_regno : dest_regno;
/* GPR must be call-saved, FPR must be call-clobbered. */
if (!call_used_regs[fpr_regno]
|| call_used_regs[gpr_regno])
continue;
/* It must not happen that what we once saved in an FPR now
needs a stack slot. */
gcc_assert (cfun_gpr_save_slot (gpr_regno) != SAVE_SLOT_STACK);
if (cfun_gpr_save_slot (gpr_regno) == SAVE_SLOT_NONE)
{
remove_insn (insn);
continue;
}
}
}
if (GET_CODE (pat) == PARALLEL
&& store_multiple_operation (pat, VOIDmode))
{
set = XVECEXP (pat, 0, 0);
first = REGNO (SET_SRC (set));
last = first + XVECLEN (pat, 0) - 1;
offset = const0_rtx;
base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset);
off = INTVAL (offset);
if (GET_CODE (base) != REG || off < 0)
continue;
if (cfun_frame_layout.first_save_gpr != -1
&& (cfun_frame_layout.first_save_gpr < first
|| cfun_frame_layout.last_save_gpr > last))
continue;
if (REGNO (base) != STACK_POINTER_REGNUM
&& REGNO (base) != HARD_FRAME_POINTER_REGNUM)
continue;
if (first > BASE_REGNUM || last < BASE_REGNUM)
continue;
if (cfun_frame_layout.first_save_gpr != -1)
save_gprs (base,
off + (cfun_frame_layout.first_save_gpr
- first) * UNITS_PER_LONG,
cfun_frame_layout.first_save_gpr,
cfun_frame_layout.last_save_gpr, insn);
remove_insn (insn);
continue;
}
if (cfun_frame_layout.first_save_gpr == -1
&& GET_CODE (pat) == SET
&& GENERAL_REG_P (SET_SRC (pat))
&& GET_CODE (SET_DEST (pat)) == MEM)
{
set = pat;
first = REGNO (SET_SRC (set));
offset = const0_rtx;
base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset);
off = INTVAL (offset);
if (GET_CODE (base) != REG || off < 0)
continue;
if (REGNO (base) != STACK_POINTER_REGNUM
&& REGNO (base) != HARD_FRAME_POINTER_REGNUM)
continue;
remove_insn (insn);
continue;
}
if (GET_CODE (pat) == PARALLEL
&& load_multiple_operation (pat, VOIDmode))
{
set = XVECEXP (pat, 0, 0);
first = REGNO (SET_DEST (set));
last = first + XVECLEN (pat, 0) - 1;
offset = const0_rtx;
base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset);
off = INTVAL (offset);
if (GET_CODE (base) != REG || off < 0)
continue;
if (cfun_frame_layout.first_restore_gpr != -1
&& (cfun_frame_layout.first_restore_gpr < first
|| cfun_frame_layout.last_restore_gpr > last))
continue;
if (REGNO (base) != STACK_POINTER_REGNUM
&& REGNO (base) != HARD_FRAME_POINTER_REGNUM)
continue;
if (first > BASE_REGNUM || last < BASE_REGNUM)
continue;
if (cfun_frame_layout.first_restore_gpr != -1)
{
rtx rpat = restore_gprs (base,
off + (cfun_frame_layout.first_restore_gpr
- first) * UNITS_PER_LONG,
cfun_frame_layout.first_restore_gpr,
cfun_frame_layout.last_restore_gpr);
/* Remove REG_CFA_RESTOREs for registers that we no
longer need to save. */
REG_NOTES (rpat) = REG_NOTES (insn);
for (rtx *ptr = ®_NOTES (rpat); *ptr; )
if (REG_NOTE_KIND (*ptr) == REG_CFA_RESTORE
&& ((int) REGNO (XEXP (*ptr, 0))
< cfun_frame_layout.first_restore_gpr))
*ptr = XEXP (*ptr, 1);
else
ptr = &XEXP (*ptr, 1);
new_insn = emit_insn_before (rpat, insn);
RTX_FRAME_RELATED_P (new_insn) = 1;
INSN_ADDRESSES_NEW (new_insn, -1);
}
remove_insn (insn);
continue;
}
if (cfun_frame_layout.first_restore_gpr == -1
&& GET_CODE (pat) == SET
&& GENERAL_REG_P (SET_DEST (pat))
&& GET_CODE (SET_SRC (pat)) == MEM)
{
set = pat;
first = REGNO (SET_DEST (set));
offset = const0_rtx;
base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset);
off = INTVAL (offset);
if (GET_CODE (base) != REG || off < 0)
continue;
if (REGNO (base) != STACK_POINTER_REGNUM
&& REGNO (base) != HARD_FRAME_POINTER_REGNUM)
continue;
remove_insn (insn);
continue;
}
}
}
/* On z10 and later the dynamic branch prediction must see the
backward jump within a certain windows. If not it falls back to
the static prediction. This function rearranges the loop backward
branch in a way which makes the static prediction always correct.
The function returns true if it added an instruction. */
static bool
s390_fix_long_loop_prediction (rtx_insn *insn)
{
rtx set = single_set (insn);
rtx code_label, label_ref;
rtx_insn *uncond_jump;
rtx_insn *cur_insn;
rtx tmp;
int distance;
/* This will exclude branch on count and branch on index patterns
since these are correctly statically predicted.
The additional check for a PARALLEL is required here since
single_set might be != NULL for PARALLELs where the set of the
iteration variable is dead. */
if (GET_CODE (PATTERN (insn)) == PARALLEL
|| !set
|| SET_DEST (set) != pc_rtx
|| GET_CODE (SET_SRC(set)) != IF_THEN_ELSE)
return false;
/* Skip conditional returns. */
if (ANY_RETURN_P (XEXP (SET_SRC (set), 1))
&& XEXP (SET_SRC (set), 2) == pc_rtx)
return false;
label_ref = (GET_CODE (XEXP (SET_SRC (set), 1)) == LABEL_REF ?
XEXP (SET_SRC (set), 1) : XEXP (SET_SRC (set), 2));
gcc_assert (GET_CODE (label_ref) == LABEL_REF);
code_label = XEXP (label_ref, 0);
if (INSN_ADDRESSES (INSN_UID (code_label)) == -1
|| INSN_ADDRESSES (INSN_UID (insn)) == -1
|| (INSN_ADDRESSES (INSN_UID (insn))
- INSN_ADDRESSES (INSN_UID (code_label)) < PREDICT_DISTANCE))
return false;
for (distance = 0, cur_insn = PREV_INSN (insn);
distance < PREDICT_DISTANCE - 6;
distance += get_attr_length (cur_insn), cur_insn = PREV_INSN (cur_insn))
if (!cur_insn || JUMP_P (cur_insn) || LABEL_P (cur_insn))
return false;
rtx_code_label *new_label = gen_label_rtx ();
uncond_jump = emit_jump_insn_after (
gen_rtx_SET (pc_rtx,
gen_rtx_LABEL_REF (VOIDmode, code_label)),
insn);
emit_label_after (new_label, uncond_jump);
tmp = XEXP (SET_SRC (set), 1);
XEXP (SET_SRC (set), 1) = XEXP (SET_SRC (set), 2);
XEXP (SET_SRC (set), 2) = tmp;
INSN_CODE (insn) = -1;
XEXP (label_ref, 0) = new_label;
JUMP_LABEL (insn) = new_label;
JUMP_LABEL (uncond_jump) = code_label;
return true;
}
/* Returns 1 if INSN reads the value of REG for purposes not related
to addressing of memory, and 0 otherwise. */
static int
s390_non_addr_reg_read_p (rtx reg, rtx_insn *insn)
{
return reg_referenced_p (reg, PATTERN (insn))
&& !reg_used_in_mem_p (REGNO (reg), PATTERN (insn));
}
/* Starting from INSN find_cond_jump looks downwards in the insn
stream for a single jump insn which is the last user of the
condition code set in INSN. */
static rtx_insn *
find_cond_jump (rtx_insn *insn)
{
for (; insn; insn = NEXT_INSN (insn))
{
rtx ite, cc;
if (LABEL_P (insn))
break;
if (!JUMP_P (insn))
{
if (reg_mentioned_p (gen_rtx_REG (CCmode, CC_REGNUM), insn))
break;
continue;
}
/* This will be triggered by a return. */
if (GET_CODE (PATTERN (insn)) != SET)
break;
gcc_assert (SET_DEST (PATTERN (insn)) == pc_rtx);
ite = SET_SRC (PATTERN (insn));
if (GET_CODE (ite) != IF_THEN_ELSE)
break;
cc = XEXP (XEXP (ite, 0), 0);
if (!REG_P (cc) || !CC_REGNO_P (REGNO (cc)))
break;
if (find_reg_note (insn, REG_DEAD, cc))
return insn;
break;
}
return NULL;
}
/* Swap the condition in COND and the operands in OP0 and OP1 so that
the semantics does not change. If NULL_RTX is passed as COND the
function tries to find the conditional jump starting with INSN. */
static void
s390_swap_cmp (rtx cond, rtx *op0, rtx *op1, rtx_insn *insn)
{
rtx tmp = *op0;
if (cond == NULL_RTX)
{
rtx_insn *jump = find_cond_jump (NEXT_INSN (insn));
rtx set = jump ? single_set (jump) : NULL_RTX;
if (set == NULL_RTX)
return;
cond = XEXP (SET_SRC (set), 0);
}
*op0 = *op1;
*op1 = tmp;
PUT_CODE (cond, swap_condition (GET_CODE (cond)));
}
/* On z10, instructions of the compare-and-branch family have the
property to access the register occurring as second operand with
its bits complemented. If such a compare is grouped with a second
instruction that accesses the same register non-complemented, and
if that register's value is delivered via a bypass, then the
pipeline recycles, thereby causing significant performance decline.
This function locates such situations and exchanges the two
operands of the compare. The function return true whenever it
added an insn. */
static bool
s390_z10_optimize_cmp (rtx_insn *insn)
{
rtx_insn *prev_insn, *next_insn;
bool insn_added_p = false;
rtx cond, *op0, *op1;
if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
/* Handle compare and branch and branch on count
instructions. */
rtx pattern = single_set (insn);
if (!pattern
|| SET_DEST (pattern) != pc_rtx
|| GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE)
return false;
cond = XEXP (SET_SRC (pattern), 0);
op0 = &XEXP (cond, 0);
op1 = &XEXP (cond, 1);
}
else if (GET_CODE (PATTERN (insn)) == SET)
{
rtx src, dest;
/* Handle normal compare instructions. */
src = SET_SRC (PATTERN (insn));
dest = SET_DEST (PATTERN (insn));
if (!REG_P (dest)
|| !CC_REGNO_P (REGNO (dest))
|| GET_CODE (src) != COMPARE)
return false;
/* s390_swap_cmp will try to find the conditional
jump when passing NULL_RTX as condition. */
cond = NULL_RTX;
op0 = &XEXP (src, 0);
op1 = &XEXP (src, 1);
}
else
return false;
if (!REG_P (*op0) || !REG_P (*op1))
return false;
if (GET_MODE_CLASS (GET_MODE (*op0)) != MODE_INT)
return false;
/* Swap the COMPARE arguments and its mask if there is a
conflicting access in the previous insn. */
prev_insn = prev_active_insn (insn);
if (prev_insn != NULL_RTX && INSN_P (prev_insn)
&& reg_referenced_p (*op1, PATTERN (prev_insn)))
s390_swap_cmp (cond, op0, op1, insn);
/* Check if there is a conflict with the next insn. If there
was no conflict with the previous insn, then swap the
COMPARE arguments and its mask. If we already swapped
the operands, or if swapping them would cause a conflict
with the previous insn, issue a NOP after the COMPARE in
order to separate the two instuctions. */
next_insn = next_active_insn (insn);
if (next_insn != NULL_RTX && INSN_P (next_insn)
&& s390_non_addr_reg_read_p (*op1, next_insn))
{
if (prev_insn != NULL_RTX && INSN_P (prev_insn)
&& s390_non_addr_reg_read_p (*op0, prev_insn))
{
if (REGNO (*op1) == 0)
emit_insn_after (gen_nop_lr1 (), insn);
else
emit_insn_after (gen_nop_lr0 (), insn);
insn_added_p = true;
}
else
s390_swap_cmp (cond, op0, op1, insn);
}
return insn_added_p;
}
/* Number of INSNs to be scanned backward in the last BB of the loop
and forward in the first BB of the loop. This usually should be a
bit more than the number of INSNs which could go into one
group. */
#define S390_OSC_SCAN_INSN_NUM 5
/* Scan LOOP for static OSC collisions and return true if a osc_break
should be issued for this loop. */
static bool
s390_adjust_loop_scan_osc (struct loop* loop)
{
HARD_REG_SET modregs, newregs;
rtx_insn *insn, *store_insn = NULL;
rtx set;
struct s390_address addr_store, addr_load;
subrtx_iterator::array_type array;
int insn_count;
CLEAR_HARD_REG_SET (modregs);
insn_count = 0;
FOR_BB_INSNS_REVERSE (loop->latch, insn)
{
if (!INSN_P (insn) || INSN_CODE (insn) <= 0)
continue;
insn_count++;
if (insn_count > S390_OSC_SCAN_INSN_NUM)
return false;
find_all_hard_reg_sets (insn, &newregs, true);
modregs |= newregs;
set = single_set (insn);
if (!set)
continue;
if (MEM_P (SET_DEST (set))
&& s390_decompose_address (XEXP (SET_DEST (set), 0), &addr_store))
{
store_insn = insn;
break;
}
}
if (store_insn == NULL_RTX)
return false;
insn_count = 0;
FOR_BB_INSNS (loop->header, insn)
{
if (!INSN_P (insn) || INSN_CODE (insn) <= 0)
continue;
if (insn == store_insn)
return false;
insn_count++;
if (insn_count > S390_OSC_SCAN_INSN_NUM)
return false;
find_all_hard_reg_sets (insn, &newregs, true);
modregs |= newregs;
set = single_set (insn);
if (!set)
continue;
/* An intermediate store disrupts static OSC checking
anyway. */
if (MEM_P (SET_DEST (set))
&& s390_decompose_address (XEXP (SET_DEST (set), 0), NULL))
return false;
FOR_EACH_SUBRTX (iter, array, SET_SRC (set), NONCONST)
if (MEM_P (*iter)
&& s390_decompose_address (XEXP (*iter, 0), &addr_load)
&& rtx_equal_p (addr_load.base, addr_store.base)
&& rtx_equal_p (addr_load.indx, addr_store.indx)
&& rtx_equal_p (addr_load.disp, addr_store.disp))
{
if ((addr_load.base != NULL_RTX
&& TEST_HARD_REG_BIT (modregs, REGNO (addr_load.base)))
|| (addr_load.indx != NULL_RTX
&& TEST_HARD_REG_BIT (modregs, REGNO (addr_load.indx))))
return true;
}
}
return false;
}
/* Look for adjustments which can be done on simple innermost
loops. */
static void
s390_adjust_loops ()
{
df_analyze ();
compute_bb_for_insn ();
/* Find the loops. */
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
{
if (dump_file)
{
flow_loop_dump (loop, dump_file, NULL, 0);
fprintf (dump_file, ";; OSC loop scan Loop: ");
}
if (loop->latch == NULL
|| pc_set (BB_END (loop->latch)) == NULL_RTX
|| !s390_adjust_loop_scan_osc (loop))
{
if (dump_file)
{
if (loop->latch == NULL)
fprintf (dump_file, " muliple backward jumps\n");
else
{
fprintf (dump_file, " header insn: %d latch insn: %d ",
INSN_UID (BB_HEAD (loop->header)),
INSN_UID (BB_END (loop->latch)));
if (pc_set (BB_END (loop->latch)) == NULL_RTX)
fprintf (dump_file, " loop does not end with jump\n");
else
fprintf (dump_file, " not instrumented\n");
}
}
}
else
{
rtx_insn *new_insn;
if (dump_file)
fprintf (dump_file, " adding OSC break insn: ");
new_insn = emit_insn_before (gen_osc_break (),
BB_END (loop->latch));
INSN_ADDRESSES_NEW (new_insn, -1);
}
}
loop_optimizer_finalize ();
df_finish_pass (false);
}
/* Perform machine-dependent processing. */
static void
s390_reorg (void)
{
struct constant_pool *pool;
rtx_insn *insn;
int hw_before, hw_after;
if (s390_tune == PROCESSOR_2964_Z13)
s390_adjust_loops ();
/* Make sure all splits have been performed; splits after
machine_dependent_reorg might confuse insn length counts. */
split_all_insns_noflow ();
/* Install the main literal pool and the associated base
register load insns. The literal pool might be > 4096 bytes in
size, so that some of its elements cannot be directly accessed.
To fix this, we split the single literal pool into multiple
pool chunks, reloading the pool base register at various
points throughout the function to ensure it always points to
the pool chunk the following code expects. */
/* Collect the literal pool. */
pool = s390_mainpool_start ();
if (pool)
{
/* Finish up literal pool related changes. */
s390_mainpool_finish (pool);
}
else
{
/* If literal pool overflowed, chunkify it. */
pool = s390_chunkify_start ();
s390_chunkify_finish (pool);
}
/* Generate out-of-pool execute target insns. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx label;
rtx_insn *target;
label = s390_execute_label (insn);
if (!label)
continue;
gcc_assert (label != const0_rtx);
target = emit_label (XEXP (label, 0));
INSN_ADDRESSES_NEW (target, -1);
if (JUMP_P (insn))
{
target = emit_jump_insn (s390_execute_target (insn));
/* This is important in order to keep a table jump
pointing at the jump table label. Only this makes it
being recognized as table jump. */
JUMP_LABEL (target) = JUMP_LABEL (insn);
}
else
target = emit_insn (s390_execute_target (insn));
INSN_ADDRESSES_NEW (target, -1);
}
/* Try to optimize prologue and epilogue further. */
s390_optimize_prologue ();
/* Walk over the insns and do some >=z10 specific changes. */
if (s390_tune >= PROCESSOR_2097_Z10)
{
rtx_insn *insn;
bool insn_added_p = false;
/* The insn lengths and addresses have to be up to date for the
following manipulations. */
shorten_branches (get_insns ());
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (!INSN_P (insn) || INSN_CODE (insn) <= 0)
continue;
if (JUMP_P (insn))
insn_added_p |= s390_fix_long_loop_prediction (insn);
if ((GET_CODE (PATTERN (insn)) == PARALLEL
|| GET_CODE (PATTERN (insn)) == SET)
&& s390_tune == PROCESSOR_2097_Z10)
insn_added_p |= s390_z10_optimize_cmp (insn);
}
/* Adjust branches if we added new instructions. */
if (insn_added_p)
shorten_branches (get_insns ());
}
s390_function_num_hotpatch_hw (current_function_decl, &hw_before, &hw_after);
if (hw_after > 0)
{
rtx_insn *insn;
/* Insert NOPs for hotpatching. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
/* Emit NOPs
1. inside the area covered by debug information to allow setting
breakpoints at the NOPs,
2. before any insn which results in an asm instruction,
3. before in-function labels to avoid jumping to the NOPs, for
example as part of a loop,
4. before any barrier in case the function is completely empty
(__builtin_unreachable ()) and has neither internal labels nor
active insns.
*/
if (active_insn_p (insn) || BARRIER_P (insn) || LABEL_P (insn))
break;
/* Output a series of NOPs before the first active insn. */
while (insn && hw_after > 0)
{
if (hw_after >= 3)
{
emit_insn_before (gen_nop_6_byte (), insn);
hw_after -= 3;
}
else if (hw_after >= 2)
{
emit_insn_before (gen_nop_4_byte (), insn);
hw_after -= 2;
}
else
{
emit_insn_before (gen_nop_2_byte (), insn);
hw_after -= 1;
}
}
}
}
/* Return true if INSN is a fp load insn writing register REGNO. */
static inline bool
s390_fpload_toreg (rtx_insn *insn, unsigned int regno)
{
rtx set;
enum attr_type flag = s390_safe_attr_type (insn);
if (flag != TYPE_FLOADSF && flag != TYPE_FLOADDF)
return false;
set = single_set (insn);
if (set == NULL_RTX)
return false;
if (!REG_P (SET_DEST (set)) || !MEM_P (SET_SRC (set)))
return false;
if (REGNO (SET_DEST (set)) != regno)
return false;
return true;
}
/* This value describes the distance to be avoided between an
arithmetic fp instruction and an fp load writing the same register.
Z10_EARLYLOAD_DISTANCE - 1 as well as Z10_EARLYLOAD_DISTANCE + 1 is
fine but the exact value has to be avoided. Otherwise the FP
pipeline will throw an exception causing a major penalty. */
#define Z10_EARLYLOAD_DISTANCE 7
/* Rearrange the ready list in order to avoid the situation described
for Z10_EARLYLOAD_DISTANCE. A problematic load instruction is
moved to the very end of the ready list. */
static void
s390_z10_prevent_earlyload_conflicts (rtx_insn **ready, int *nready_p)
{
unsigned int regno;
int nready = *nready_p;
rtx_insn *tmp;
int i;
rtx_insn *insn;
rtx set;
enum attr_type flag;
int distance;
/* Skip DISTANCE - 1 active insns. */
for (insn = last_scheduled_insn, distance = Z10_EARLYLOAD_DISTANCE - 1;
distance > 0 && insn != NULL_RTX;
distance--, insn = prev_active_insn (insn))
if (CALL_P (insn) || JUMP_P (insn))
return;
if (insn == NULL_RTX)
return;
set = single_set (insn);
if (set == NULL_RTX || !REG_P (SET_DEST (set))
|| GET_MODE_CLASS (GET_MODE (SET_DEST (set))) != MODE_FLOAT)
return;
flag = s390_safe_attr_type (insn);
if (flag == TYPE_FLOADSF || flag == TYPE_FLOADDF)
return;
regno = REGNO (SET_DEST (set));
i = nready - 1;
while (!s390_fpload_toreg (ready[i], regno) && i > 0)
i--;
if (!i)
return;
tmp = ready[i];
memmove (&ready[1], &ready[0], sizeof (rtx_insn *) * i);
ready[0] = tmp;
}
struct s390_sched_state
{
/* Number of insns in the group. */
int group_state;
/* Execution side of the group. */
int side;
/* Group can only hold two insns. */
bool group_of_two;
} s390_sched_state;
static struct s390_sched_state sched_state;
#define S390_SCHED_ATTR_MASK_CRACKED 0x1
#define S390_SCHED_ATTR_MASK_EXPANDED 0x2
#define S390_SCHED_ATTR_MASK_ENDGROUP 0x4
#define S390_SCHED_ATTR_MASK_GROUPALONE 0x8
#define S390_SCHED_ATTR_MASK_GROUPOFTWO 0x10
static unsigned int
s390_get_sched_attrmask (rtx_insn *insn)
{
unsigned int mask = 0;
switch (s390_tune)
{
case PROCESSOR_2827_ZEC12:
if (get_attr_zEC12_cracked (insn))
mask |= S390_SCHED_ATTR_MASK_CRACKED;
if (get_attr_zEC12_expanded (insn))
mask |= S390_SCHED_ATTR_MASK_EXPANDED;
if (get_attr_zEC12_endgroup (insn))
mask |= S390_SCHED_ATTR_MASK_ENDGROUP;
if (get_attr_zEC12_groupalone (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPALONE;
break;
case PROCESSOR_2964_Z13:
if (get_attr_z13_cracked (insn))
mask |= S390_SCHED_ATTR_MASK_CRACKED;
if (get_attr_z13_expanded (insn))
mask |= S390_SCHED_ATTR_MASK_EXPANDED;
if (get_attr_z13_endgroup (insn))
mask |= S390_SCHED_ATTR_MASK_ENDGROUP;
if (get_attr_z13_groupalone (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPALONE;
if (get_attr_z13_groupoftwo (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPOFTWO;
break;
case PROCESSOR_3906_Z14:
if (get_attr_z14_cracked (insn))
mask |= S390_SCHED_ATTR_MASK_CRACKED;
if (get_attr_z14_expanded (insn))
mask |= S390_SCHED_ATTR_MASK_EXPANDED;
if (get_attr_z14_endgroup (insn))
mask |= S390_SCHED_ATTR_MASK_ENDGROUP;
if (get_attr_z14_groupalone (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPALONE;
if (get_attr_z14_groupoftwo (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPOFTWO;
break;
case PROCESSOR_8561_Z15:
if (get_attr_z15_cracked (insn))
mask |= S390_SCHED_ATTR_MASK_CRACKED;
if (get_attr_z15_expanded (insn))
mask |= S390_SCHED_ATTR_MASK_EXPANDED;
if (get_attr_z15_endgroup (insn))
mask |= S390_SCHED_ATTR_MASK_ENDGROUP;
if (get_attr_z15_groupalone (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPALONE;
if (get_attr_z15_groupoftwo (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPOFTWO;
break;
case PROCESSOR_3931_Z16:
if (get_attr_z16_cracked (insn))
mask |= S390_SCHED_ATTR_MASK_CRACKED;
if (get_attr_z16_expanded (insn))
mask |= S390_SCHED_ATTR_MASK_EXPANDED;
if (get_attr_z16_endgroup (insn))
mask |= S390_SCHED_ATTR_MASK_ENDGROUP;
if (get_attr_z16_groupalone (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPALONE;
if (get_attr_z16_groupoftwo (insn))
mask |= S390_SCHED_ATTR_MASK_GROUPOFTWO;
break;
default:
gcc_unreachable ();
}
return mask;
}
static unsigned int
s390_get_unit_mask (rtx_insn *insn, int *units)
{
unsigned int mask = 0;
switch (s390_tune)
{
case PROCESSOR_2964_Z13:
*units = 4;
if (get_attr_z13_unit_lsu (insn))
mask |= 1 << 0;
if (get_attr_z13_unit_fxa (insn))
mask |= 1 << 1;
if (get_attr_z13_unit_fxb (insn))
mask |= 1 << 2;
if (get_attr_z13_unit_vfu (insn))
mask |= 1 << 3;
break;
case PROCESSOR_3906_Z14:
*units = 4;
if (get_attr_z14_unit_lsu (insn))
mask |= 1 << 0;
if (get_attr_z14_unit_fxa (insn))
mask |= 1 << 1;
if (get_attr_z14_unit_fxb (insn))
mask |= 1 << 2;
if (get_attr_z14_unit_vfu (insn))
mask |= 1 << 3;
break;
case PROCESSOR_8561_Z15:
*units = 4;
if (get_attr_z15_unit_lsu (insn))
mask |= 1 << 0;
if (get_attr_z15_unit_fxa (insn))
mask |= 1 << 1;
if (get_attr_z15_unit_fxb (insn))
mask |= 1 << 2;
if (get_attr_z15_unit_vfu (insn))
mask |= 1 << 3;
break;
case PROCESSOR_3931_Z16:
*units = 4;
if (get_attr_z16_unit_lsu (insn))
mask |= 1 << 0;
if (get_attr_z16_unit_fxa (insn))
mask |= 1 << 1;
if (get_attr_z16_unit_fxb (insn))
mask |= 1 << 2;
if (get_attr_z16_unit_vfu (insn))
mask |= 1 << 3;
break;
default:
gcc_unreachable ();
}
return mask;
}
static bool
s390_is_fpd (rtx_insn *insn)
{
if (insn == NULL_RTX)
return false;
return get_attr_z13_unit_fpd (insn) || get_attr_z14_unit_fpd (insn)
|| get_attr_z15_unit_fpd (insn) || get_attr_z16_unit_fpd (insn);
}
static bool
s390_is_fxd (rtx_insn *insn)
{
if (insn == NULL_RTX)
return false;
return get_attr_z13_unit_fxd (insn) || get_attr_z14_unit_fxd (insn)
|| get_attr_z15_unit_fxd (insn) || get_attr_z16_unit_fxd (insn);
}
/* Returns TRUE if INSN is a long-running instruction. */
static bool
s390_is_longrunning (rtx_insn *insn)
{
if (insn == NULL_RTX)
return false;
return s390_is_fxd (insn) || s390_is_fpd (insn);
}
/* Return the scheduling score for INSN. The higher the score the
better. The score is calculated from the OOO scheduling attributes
of INSN and the scheduling state sched_state. */
static int
s390_sched_score (rtx_insn *insn)
{
unsigned int mask = s390_get_sched_attrmask (insn);
int score = 0;
switch (sched_state.group_state)
{
case 0:
/* Try to put insns into the first slot which would otherwise
break a group. */
if ((mask & S390_SCHED_ATTR_MASK_CRACKED) != 0
|| (mask & S390_SCHED_ATTR_MASK_EXPANDED) != 0)
score += 5;
if ((mask & S390_SCHED_ATTR_MASK_GROUPALONE) != 0)
score += 10;
break;
case 1:
/* Prefer not cracked insns while trying to put together a
group. */
if ((mask & S390_SCHED_ATTR_MASK_CRACKED) == 0
&& (mask & S390_SCHED_ATTR_MASK_EXPANDED) == 0
&& (mask & S390_SCHED_ATTR_MASK_GROUPALONE) == 0)
score += 10;
if ((mask & S390_SCHED_ATTR_MASK_ENDGROUP) == 0)
score += 5;
/* If we are in a group of two already, try to schedule another
group-of-two insn to avoid shortening another group. */
if (sched_state.group_of_two
&& (mask & S390_SCHED_ATTR_MASK_GROUPOFTWO) != 0)
score += 15;
break;
case 2:
/* Prefer not cracked insns while trying to put together a
group. */
if ((mask & S390_SCHED_ATTR_MASK_CRACKED) == 0
&& (mask & S390_SCHED_ATTR_MASK_EXPANDED) == 0
&& (mask & S390_SCHED_ATTR_MASK_GROUPALONE) == 0)
score += 10;
/* Prefer endgroup insns in the last slot. */
if ((mask & S390_SCHED_ATTR_MASK_ENDGROUP) != 0)
score += 10;
/* Try to avoid group-of-two insns in the last slot as they will
shorten this group as well as the next one. */
if ((mask & S390_SCHED_ATTR_MASK_GROUPOFTWO) != 0)
score = MAX (0, score - 15);
break;
}
if (s390_tune >= PROCESSOR_2964_Z13)
{
int units, i;
unsigned unit_mask, m = 1;
unit_mask = s390_get_unit_mask (insn, &units);
gcc_assert (units <= MAX_SCHED_UNITS);
/* Add a score in range 0..MAX_SCHED_MIX_SCORE depending on how long
ago the last insn of this unit type got scheduled. This is
supposed to help providing a proper instruction mix to the
CPU. */
for (i = 0; i < units; i++, m <<= 1)
if (m & unit_mask)
score += (last_scheduled_unit_distance[i][sched_state.side]
* MAX_SCHED_MIX_SCORE / MAX_SCHED_MIX_DISTANCE);
int other_side = 1 - sched_state.side;
/* Try to delay long-running insns when side is busy. */
if (s390_is_longrunning (insn))
{
if (s390_is_fxd (insn))
{
if (fxd_longrunning[sched_state.side]
&& fxd_longrunning[other_side]
<= fxd_longrunning[sched_state.side])
score = MAX (0, score - 10);
else if (fxd_longrunning[other_side]
>= fxd_longrunning[sched_state.side])
score += 10;
}
if (s390_is_fpd (insn))
{
if (fpd_longrunning[sched_state.side]
&& fpd_longrunning[other_side]
<= fpd_longrunning[sched_state.side])
score = MAX (0, score - 10);
else if (fpd_longrunning[other_side]
>= fpd_longrunning[sched_state.side])
score += 10;
}
}
}
return score;
}
/* This function is called via hook TARGET_SCHED_REORDER before
issuing one insn from list READY which contains *NREADYP entries.
For target z10 it reorders load instructions to avoid early load
conflicts in the floating point pipeline */
static int
s390_sched_reorder (FILE *file, int verbose,
rtx_insn **ready, int *nreadyp, int clock ATTRIBUTE_UNUSED)
{
if (s390_tune == PROCESSOR_2097_Z10
&& reload_completed
&& *nreadyp > 1)
s390_z10_prevent_earlyload_conflicts (ready, nreadyp);
if (s390_tune >= PROCESSOR_2827_ZEC12
&& reload_completed
&& *nreadyp > 1)
{
int i;
int last_index = *nreadyp - 1;
int max_index = -1;
int max_score = -1;
rtx_insn *tmp;
/* Just move the insn with the highest score to the top (the
end) of the list. A full sort is not needed since a conflict
in the hazard recognition cannot happen. So the top insn in
the ready list will always be taken. */
for (i = last_index; i >= 0; i--)
{
int score;
if (recog_memoized (ready[i]) < 0)
continue;
score = s390_sched_score (ready[i]);
if (score > max_score)
{
max_score = score;
max_index = i;
}
}
if (max_index != -1)
{
if (max_index != last_index)
{
tmp = ready[max_index];
ready[max_index] = ready[last_index];
ready[last_index] = tmp;
if (verbose > 5)
fprintf (file,
";;\t\tBACKEND: move insn %d to the top of list\n",
INSN_UID (ready[last_index]));
}
else if (verbose > 5)
fprintf (file,
";;\t\tBACKEND: best insn %d already on top\n",
INSN_UID (ready[last_index]));
}
if (verbose > 5)
{
fprintf (file, "ready list ooo attributes - sched state: %d\n",
sched_state.group_state);
for (i = last_index; i >= 0; i--)
{
unsigned int sched_mask;
rtx_insn *insn = ready[i];
if (recog_memoized (insn) < 0)
continue;
sched_mask = s390_get_sched_attrmask (insn);
fprintf (file, ";;\t\tBACKEND: insn %d score: %d: ",
INSN_UID (insn),
s390_sched_score (insn));
#define PRINT_SCHED_ATTR(M, ATTR) fprintf (file, "%s ",\
((M) & sched_mask) ? #ATTR : "");
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_CRACKED, cracked);
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_EXPANDED, expanded);
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_ENDGROUP, endgroup);
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_GROUPALONE, groupalone);
#undef PRINT_SCHED_ATTR
if (s390_tune >= PROCESSOR_2964_Z13)
{
unsigned int unit_mask, m = 1;
int units, j;
unit_mask = s390_get_unit_mask (insn, &units);
fprintf (file, "(units:");
for (j = 0; j < units; j++, m <<= 1)
if (m & unit_mask)
fprintf (file, " u%d", j);
fprintf (file, ")");
}
fprintf (file, "\n");
}
}
}
return s390_issue_rate ();
}
/* This function is called via hook TARGET_SCHED_VARIABLE_ISSUE after
the scheduler has issued INSN. It stores the last issued insn into
last_scheduled_insn in order to make it available for
s390_sched_reorder. */
static int
s390_sched_variable_issue (FILE *file, int verbose, rtx_insn *insn, int more)
{
last_scheduled_insn = insn;
bool ends_group = false;
if (s390_tune >= PROCESSOR_2827_ZEC12
&& reload_completed
&& recog_memoized (insn) >= 0)
{
unsigned int mask = s390_get_sched_attrmask (insn);
if ((mask & S390_SCHED_ATTR_MASK_GROUPOFTWO) != 0)
sched_state.group_of_two = true;
/* If this is a group-of-two insn, we actually ended the last group
and this insn is the first one of the new group. */
if (sched_state.group_state == 2 && sched_state.group_of_two)
{
sched_state.side = sched_state.side ? 0 : 1;
sched_state.group_state = 0;
}
/* Longrunning and side bookkeeping. */
for (int i = 0; i < 2; i++)
{
fxd_longrunning[i] = MAX (0, fxd_longrunning[i] - 1);
fpd_longrunning[i] = MAX (0, fpd_longrunning[i] - 1);
}
unsigned latency = insn_default_latency (insn);
if (s390_is_longrunning (insn))
{
if (s390_is_fxd (insn))
fxd_longrunning[sched_state.side] = latency;
else
fpd_longrunning[sched_state.side] = latency;
}
if (s390_tune >= PROCESSOR_2964_Z13)
{
int units, i;
unsigned unit_mask, m = 1;
unit_mask = s390_get_unit_mask (insn, &units);
gcc_assert (units <= MAX_SCHED_UNITS);
for (i = 0; i < units; i++, m <<= 1)
if (m & unit_mask)
last_scheduled_unit_distance[i][sched_state.side] = 0;
else if (last_scheduled_unit_distance[i][sched_state.side]
< MAX_SCHED_MIX_DISTANCE)
last_scheduled_unit_distance[i][sched_state.side]++;
}
if ((mask & S390_SCHED_ATTR_MASK_CRACKED) != 0
|| (mask & S390_SCHED_ATTR_MASK_EXPANDED) != 0
|| (mask & S390_SCHED_ATTR_MASK_GROUPALONE) != 0
|| (mask & S390_SCHED_ATTR_MASK_ENDGROUP) != 0)
{
sched_state.group_state = 0;
ends_group = true;
}
else
{
switch (sched_state.group_state)
{
case 0:
sched_state.group_state++;
break;
case 1:
sched_state.group_state++;
if (sched_state.group_of_two)
{
sched_state.group_state = 0;
ends_group = true;
}
break;
case 2:
sched_state.group_state++;
ends_group = true;
break;
}
}
if (verbose > 5)
{
unsigned int sched_mask;
sched_mask = s390_get_sched_attrmask (insn);
fprintf (file, ";;\t\tBACKEND: insn %d: ", INSN_UID (insn));
#define PRINT_SCHED_ATTR(M, ATTR) fprintf (file, "%s ", ((M) & sched_mask) ? #ATTR : "");
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_CRACKED, cracked);
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_EXPANDED, expanded);
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_ENDGROUP, endgroup);
PRINT_SCHED_ATTR (S390_SCHED_ATTR_MASK_GROUPALONE, groupalone);
#undef PRINT_SCHED_ATTR
if (s390_tune >= PROCESSOR_2964_Z13)
{
unsigned int unit_mask, m = 1;
int units, j;
unit_mask = s390_get_unit_mask (insn, &units);
fprintf (file, "(units:");
for (j = 0; j < units; j++, m <<= 1)
if (m & unit_mask)
fprintf (file, " %d", j);
fprintf (file, ")");
}
fprintf (file, " sched state: %d\n", sched_state.group_state);
if (s390_tune >= PROCESSOR_2964_Z13)
{
int units, j;
s390_get_unit_mask (insn, &units);
fprintf (file, ";;\t\tBACKEND: units on this side (%d) unused for: ", sched_state.side);
for (j = 0; j < units; j++)
fprintf (file, "%d:%d ", j,
last_scheduled_unit_distance[j][sched_state.side]);
fprintf (file, "\n");
}
}
/* If this insn ended a group, the next will be on the other side. */
if (ends_group)
{
sched_state.group_state = 0;
sched_state.side = sched_state.side ? 0 : 1;
sched_state.group_of_two = false;
}
}
if (GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
return more - 1;
else
return more;
}
static void
s390_sched_init (FILE *file ATTRIBUTE_UNUSED,
int verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{
/* If the next basic block is most likely entered via a fallthru edge
we keep the last sched state. Otherwise we start a new group.
The scheduler traverses basic blocks in "instruction stream" ordering
so if we see a fallthru edge here, sched_state will be of its
source block.
current_sched_info->prev_head is the insn before the first insn of the
block of insns to be scheduled.
*/
last_scheduled_insn = NULL;
memset (last_scheduled_unit_distance, 0,
MAX_SCHED_UNITS * NUM_SIDES * sizeof (int));
memset (fpd_longrunning, 0, NUM_SIDES * sizeof (int));
memset (fxd_longrunning, 0, NUM_SIDES * sizeof (int));
sched_state = {};
}
/* This target hook implementation for TARGET_LOOP_UNROLL_ADJUST calculates
a new number struct loop *loop should be unrolled if tuned for cpus with
a built-in stride prefetcher.
The loop is analyzed for memory accesses by calling check_dpu for
each rtx of the loop. Depending on the loop_depth and the amount of
memory accesses a new number <=nunroll is returned to improve the
behavior of the hardware prefetch unit. */
static unsigned
s390_loop_unroll_adjust (unsigned nunroll, struct loop *loop)
{
basic_block *bbs;
rtx_insn *insn;
unsigned i;
unsigned mem_count = 0;
if (s390_tune < PROCESSOR_2097_Z10)
return nunroll;
if (unroll_only_small_loops)
{
/* Only unroll loops smaller than or equal to 12 insns. */
const unsigned int small_threshold = 12;
if (loop->ninsns > small_threshold)
return 0;
/* ???: Make this dependent on the type of registers in
the loop. Increase the limit for vector registers. */
const unsigned int max_insns = optimize >= 3 ? 36 : 24;
nunroll = MIN (nunroll, max_insns / loop->ninsns);
}
/* Count the number of memory references within the loop body. */
bbs = get_loop_body (loop);
subrtx_iterator::array_type array;
for (i = 0; i < loop->num_nodes; i++)
FOR_BB_INSNS (bbs[i], insn)
if (INSN_P (insn) && INSN_CODE (insn) != -1)
{
rtx set;
/* The runtime of small loops with memory block operations
will be determined by the memory operation. Doing
unrolling doesn't help here. Measurements to confirm
this where only done on recent CPU levels. So better do
not change anything for older CPUs. */
if (s390_tune >= PROCESSOR_2964_Z13
&& loop->ninsns <= BLOCK_MEM_OPS_LOOP_INSNS
&& ((set = single_set (insn)) != NULL_RTX)
&& ((GET_MODE (SET_DEST (set)) == BLKmode
&& (GET_MODE (SET_SRC (set)) == BLKmode
|| SET_SRC (set) == const0_rtx))
|| (GET_CODE (SET_SRC (set)) == COMPARE
&& GET_MODE (XEXP (SET_SRC (set), 0)) == BLKmode
&& GET_MODE (XEXP (SET_SRC (set), 1)) == BLKmode)))
{
free (bbs);
return 1;
}
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
if (MEM_P (*iter))
mem_count += 1;
}
free (bbs);
/* Prevent division by zero, and we do not need to adjust nunroll in this case. */
if (mem_count == 0)
return nunroll;
switch (loop_depth(loop))
{
case 1:
return MIN (nunroll, 28 / mem_count);
case 2:
return MIN (nunroll, 22 / mem_count);
default:
return MIN (nunroll, 16 / mem_count);
}
}
/* Restore the current options. This is a hook function and also called
internally. */
static void
s390_function_specific_restore (struct gcc_options *opts,
struct gcc_options */* opts_set */,
struct cl_target_option *ptr ATTRIBUTE_UNUSED)
{
opts->x_s390_cost_pointer = (long)processor_table[opts->x_s390_tune].cost;
}
static void
s390_default_align (struct gcc_options *opts)
{
/* Set the default function alignment to 16 in order to get rid of
some unwanted performance effects. */
if (opts->x_flag_align_functions && !opts->x_str_align_functions
&& opts->x_s390_tune >= PROCESSOR_2964_Z13)
opts->x_str_align_functions = "16";
}
static void
s390_override_options_after_change (void)
{
s390_default_align (&global_options);
/* Explicit -funroll-loops turns -munroll-only-small-loops off. */
if ((OPTION_SET_P (flag_unroll_loops) && flag_unroll_loops)
|| (OPTION_SET_P (flag_unroll_all_loops)
&& flag_unroll_all_loops))
{
if (!OPTION_SET_P (unroll_only_small_loops))
unroll_only_small_loops = 0;
if (!OPTION_SET_P (flag_cunroll_grow_size))
flag_cunroll_grow_size = 1;
}
else if (!OPTION_SET_P (flag_cunroll_grow_size))
flag_cunroll_grow_size = flag_peel_loops || optimize >= 3;
}
static void
s390_option_override_internal (struct gcc_options *opts,
struct gcc_options *opts_set)
{
/* Architecture mode defaults according to ABI. */
if (!(opts_set->x_target_flags & MASK_ZARCH))
{
if (TARGET_64BIT)
opts->x_target_flags |= MASK_ZARCH;
else
opts->x_target_flags &= ~MASK_ZARCH;
}
/* Set the march default in case it hasn't been specified on cmdline. */
if (!opts_set->x_s390_arch)
opts->x_s390_arch = PROCESSOR_2064_Z900;
opts->x_s390_arch_flags = processor_flags_table[(int) opts->x_s390_arch];
/* Determine processor to tune for. */
if (!opts_set->x_s390_tune)
opts->x_s390_tune = opts->x_s390_arch;
opts->x_s390_tune_flags = processor_flags_table[opts->x_s390_tune];
/* Sanity checks. */
if (opts->x_s390_arch == PROCESSOR_NATIVE
|| opts->x_s390_tune == PROCESSOR_NATIVE)
gcc_unreachable ();
if (TARGET_64BIT && !TARGET_ZARCH_P (opts->x_target_flags))
error ("64-bit ABI not supported in ESA/390 mode");
if (opts->x_s390_indirect_branch == indirect_branch_thunk_inline
|| opts->x_s390_indirect_branch_call == indirect_branch_thunk_inline
|| opts->x_s390_function_return == indirect_branch_thunk_inline
|| opts->x_s390_function_return_reg == indirect_branch_thunk_inline
|| opts->x_s390_function_return_mem == indirect_branch_thunk_inline)
error ("thunk-inline is only supported with %<-mindirect-branch-jump%>");
if (opts->x_s390_indirect_branch != indirect_branch_keep)
{
if (!opts_set->x_s390_indirect_branch_call)
opts->x_s390_indirect_branch_call = opts->x_s390_indirect_branch;
if (!opts_set->x_s390_indirect_branch_jump)
opts->x_s390_indirect_branch_jump = opts->x_s390_indirect_branch;
}
if (opts->x_s390_function_return != indirect_branch_keep)
{
if (!opts_set->x_s390_function_return_reg)
opts->x_s390_function_return_reg = opts->x_s390_function_return;
if (!opts_set->x_s390_function_return_mem)
opts->x_s390_function_return_mem = opts->x_s390_function_return;
}
/* Enable hardware transactions if available and not explicitly
disabled by user. E.g. with -m31 -march=zEC12 -mzarch */
if (!TARGET_OPT_HTM_P (opts_set->x_target_flags))
{
if (TARGET_CPU_HTM_P (opts) && TARGET_ZARCH_P (opts->x_target_flags))
opts->x_target_flags |= MASK_OPT_HTM;
else
opts->x_target_flags &= ~MASK_OPT_HTM;
}
if (TARGET_OPT_VX_P (opts_set->x_target_flags))
{
if (TARGET_OPT_VX_P (opts->x_target_flags))
{
if (!TARGET_CPU_VX_P (opts))
error ("hardware vector support not available on %s",
processor_table[(int)opts->x_s390_arch].name);
if (TARGET_SOFT_FLOAT_P (opts->x_target_flags))
error ("hardware vector support not available with "
"%<-msoft-float%>");
}
}
else
{
if (TARGET_CPU_VX_P (opts) && TARGET_ZARCH_P (opts->x_target_flags))
/* Enable vector support if available and not explicitly disabled
by user. E.g. with -m31 -march=z13 -mzarch */
opts->x_target_flags |= MASK_OPT_VX;
else
opts->x_target_flags &= ~MASK_OPT_VX;
}
/* Use hardware DFP if available and not explicitly disabled by
user. E.g. with -m31 -march=z10 -mzarch */
if (!TARGET_HARD_DFP_P (opts_set->x_target_flags))
{
if (TARGET_DFP_P (opts))
opts->x_target_flags |= MASK_HARD_DFP;
else
opts->x_target_flags &= ~MASK_HARD_DFP;
}
if (TARGET_HARD_DFP_P (opts->x_target_flags) && !TARGET_DFP_P (opts))
{
if (TARGET_HARD_DFP_P (opts_set->x_target_flags))
{
if (!TARGET_CPU_DFP_P (opts))
error ("hardware decimal floating-point instructions"
" not available on %s",
processor_table[(int)opts->x_s390_arch].name);
if (!TARGET_ZARCH_P (opts->x_target_flags))
error ("hardware decimal floating-point instructions"
" not available in ESA/390 mode");
}
else
opts->x_target_flags &= ~MASK_HARD_DFP;
}
if (TARGET_SOFT_FLOAT_P (opts_set->x_target_flags)
&& TARGET_SOFT_FLOAT_P (opts->x_target_flags))
{
if (TARGET_HARD_DFP_P (opts_set->x_target_flags)
&& TARGET_HARD_DFP_P (opts->x_target_flags))
error ("%<-mhard-dfp%> cannot be used in conjunction with "
"%<-msoft-float%>");
opts->x_target_flags &= ~MASK_HARD_DFP;
}
if (TARGET_BACKCHAIN_P (opts->x_target_flags)
&& TARGET_PACKED_STACK_P (opts->x_target_flags)
&& TARGET_HARD_FLOAT_P (opts->x_target_flags))
error ("%<-mbackchain%> %<-mpacked-stack%> %<-mhard-float%> are not "
"supported in combination");
if (opts->x_s390_stack_size)
{
if (opts->x_s390_stack_guard >= opts->x_s390_stack_size)
error ("stack size must be greater than the stack guard value");
else if (opts->x_s390_stack_size > 1 << 16)
error ("stack size must not be greater than 64k");
}
else if (opts->x_s390_stack_guard)
error ("%<-mstack-guard%> implies use of %<-mstack-size%>");
/* Our implementation of the stack probe requires the probe interval
to be used as displacement in an address operand. The maximum
probe interval currently is 64k. This would exceed short
displacements. Trim that value down to 4k if that happens. This
might result in too many probes being generated only on the
oldest supported machine level z900. */
if (!DISP_IN_RANGE ((1 << param_stack_clash_protection_probe_interval)))
param_stack_clash_protection_probe_interval = 12;
#if TARGET_TPF != 0
if (!CONST_OK_FOR_J (opts->x_s390_tpf_trace_hook_prologue_check))
error ("%<-mtpf-trace-hook-prologue-check%> requires integer in range 0-4095");
if (!CONST_OK_FOR_J (opts->x_s390_tpf_trace_hook_prologue_target))
error ("%<-mtpf-trace-hook-prologue-target%> requires integer in range 0-4095");
if (!CONST_OK_FOR_J (opts->x_s390_tpf_trace_hook_epilogue_check))
error ("%<-mtpf-trace-hook-epilogue-check%> requires integer in range 0-4095");
if (!CONST_OK_FOR_J (opts->x_s390_tpf_trace_hook_epilogue_target))
error ("%<-mtpf-trace-hook-epilogue-target%> requires integer in range 0-4095");
if (s390_tpf_trace_skip)
{
opts->x_s390_tpf_trace_hook_prologue_target = TPF_TRACE_PROLOGUE_SKIP_TARGET;
opts->x_s390_tpf_trace_hook_epilogue_target = TPF_TRACE_EPILOGUE_SKIP_TARGET;
}
#endif
#ifdef TARGET_DEFAULT_LONG_DOUBLE_128
if (!TARGET_LONG_DOUBLE_128_P (opts_set->x_target_flags))
opts->x_target_flags |= MASK_LONG_DOUBLE_128;
#endif
if (opts->x_s390_tune >= PROCESSOR_2097_Z10)
{
SET_OPTION_IF_UNSET (opts, opts_set, param_max_unrolled_insns,
100);
SET_OPTION_IF_UNSET (opts, opts_set, param_max_unroll_times, 32);
SET_OPTION_IF_UNSET (opts, opts_set, param_max_completely_peeled_insns,
2000);
SET_OPTION_IF_UNSET (opts, opts_set, param_max_completely_peel_times,
64);
}
SET_OPTION_IF_UNSET (opts, opts_set, param_max_pending_list_length,
256);
/* values for loop prefetching */
SET_OPTION_IF_UNSET (opts, opts_set, param_l1_cache_line_size, 256);
SET_OPTION_IF_UNSET (opts, opts_set, param_l1_cache_size, 128);
/* s390 has more than 2 levels and the size is much larger. Since
we are always running virtualized assume that we only get a small
part of the caches above l1. */
SET_OPTION_IF_UNSET (opts, opts_set, param_l2_cache_size, 1500);
SET_OPTION_IF_UNSET (opts, opts_set,
param_prefetch_min_insn_to_mem_ratio, 2);
SET_OPTION_IF_UNSET (opts, opts_set, param_simultaneous_prefetches, 6);
/* Use the alternative scheduling-pressure algorithm by default. */
SET_OPTION_IF_UNSET (opts, opts_set, param_sched_pressure_algorithm, 2);
/* Allow simple vector masking using vll/vstl for epilogues. */
if (TARGET_Z13)
SET_OPTION_IF_UNSET (opts, opts_set, param_vect_partial_vector_usage, 1);
else
SET_OPTION_IF_UNSET (opts, opts_set, param_vect_partial_vector_usage, 0);
/* Do not vectorize loops with a low trip count for now. */
SET_OPTION_IF_UNSET (opts, opts_set, param_min_vect_loop_bound, 2);
/* Set the default alignment. */
s390_default_align (opts);
/* Set unroll options. */
s390_override_options_after_change ();
/* Call target specific restore function to do post-init work. At the moment,
this just sets opts->x_s390_cost_pointer. */
s390_function_specific_restore (opts, opts_set, NULL);
/* Check whether -mfentry is supported. It cannot be used in 31-bit mode,
because 31-bit PLT stubs assume that %r12 contains GOT address, which is
not the case when the code runs before the prolog. */
if (opts->x_flag_fentry && !TARGET_64BIT)
error ("%<-mfentry%> is supported only for 64-bit CPUs");
}
static void
s390_option_override (void)
{
unsigned int i;
cl_deferred_option *opt;
vec<cl_deferred_option> *v =
(vec<cl_deferred_option> *) s390_deferred_options;
if (v)
FOR_EACH_VEC_ELT (*v, i, opt)
{
switch (opt->opt_index)
{
case OPT_mhotpatch_:
{
int val1;
int val2;
char *s = strtok (ASTRDUP (opt->arg), ",");
char *t = strtok (NULL, "\0");
if (t != NULL)
{
val1 = integral_argument (s);
val2 = integral_argument (t);
}
else
{
val1 = -1;
val2 = -1;
}
if (val1 == -1 || val2 == -1)
{
/* argument is not a plain number */
error ("arguments to %qs should be non-negative integers",
"-mhotpatch=n,m");
break;
}
else if (val1 > s390_hotpatch_hw_max
|| val2 > s390_hotpatch_hw_max)
{
error ("argument to %qs is too large (max. %d)",
"-mhotpatch=n,m", s390_hotpatch_hw_max);
break;
}
s390_hotpatch_hw_before_label = val1;
s390_hotpatch_hw_after_label = val2;
break;
}
default:
gcc_unreachable ();
}
}
/* Set up function hooks. */
init_machine_status = s390_init_machine_status;
s390_option_override_internal (&global_options, &global_options_set);
/* Save the initial options in case the user does function specific
options. */
target_option_default_node
= build_target_option_node (&global_options, &global_options_set);
target_option_current_node = target_option_default_node;
/* This cannot reside in s390_option_optimization_table since HAVE_prefetch
requires the arch flags to be evaluated already. Since prefetching
is beneficial on s390, we enable it if available. */
if (flag_prefetch_loop_arrays < 0 && HAVE_prefetch && optimize >= 3)
flag_prefetch_loop_arrays = 1;
if (!s390_pic_data_is_text_relative && !flag_pic)
error ("%<-mno-pic-data-is-text-relative%> cannot be used without "
"%<-fpic%>/%<-fPIC%>");
if (TARGET_TPF)
{
/* Don't emit DWARF3/4 unless specifically selected. The TPF
debuggers do not yet support DWARF 3/4. */
if (!OPTION_SET_P (dwarf_strict))
dwarf_strict = 1;
if (!OPTION_SET_P (dwarf_version))
dwarf_version = 2;
}
}
#if S390_USE_TARGET_ATTRIBUTE
/* Inner function to process the attribute((target(...))), take an argument and
set the current options from the argument. If we have a list, recursively go
over the list. */
static bool
s390_valid_target_attribute_inner_p (tree args,
struct gcc_options *opts,
struct gcc_options *new_opts_set,
bool force_pragma)
{
char *next_optstr;
bool ret = true;
#define S390_ATTRIB(S,O,A) { S, sizeof (S)-1, O, A, 0 }
#define S390_PRAGMA(S,O,A) { S, sizeof (S)-1, O, A, 1 }
static const struct
{
const char *string;
size_t len;
int opt;
int has_arg;
int only_as_pragma;
} attrs[] = {
/* enum options */
S390_ATTRIB ("arch=", OPT_march_, 1),
S390_ATTRIB ("tune=", OPT_mtune_, 1),
/* uinteger options */
S390_ATTRIB ("stack-guard=", OPT_mstack_guard_, 1),
S390_ATTRIB ("stack-size=", OPT_mstack_size_, 1),
S390_ATTRIB ("branch-cost=", OPT_mbranch_cost_, 1),
S390_ATTRIB ("warn-framesize=", OPT_mwarn_framesize_, 1),
/* flag options */
S390_ATTRIB ("backchain", OPT_mbackchain, 0),
S390_ATTRIB ("hard-dfp", OPT_mhard_dfp, 0),
S390_ATTRIB ("hard-float", OPT_mhard_float, 0),
S390_ATTRIB ("htm", OPT_mhtm, 0),
S390_ATTRIB ("vx", OPT_mvx, 0),
S390_ATTRIB ("packed-stack", OPT_mpacked_stack, 0),
S390_ATTRIB ("small-exec", OPT_msmall_exec, 0),
S390_ATTRIB ("soft-float", OPT_msoft_float, 0),
S390_ATTRIB ("mvcle", OPT_mmvcle, 0),
S390_PRAGMA ("zvector", OPT_mzvector, 0),
/* boolean options */
S390_ATTRIB ("warn-dynamicstack", OPT_mwarn_dynamicstack, 0),
};
#undef S390_ATTRIB
#undef S390_PRAGMA
/* If this is a list, recurse to get the options. */
if (TREE_CODE (args) == TREE_LIST)
{
bool ret = true;
int num_pragma_values;
int i;
/* Note: attribs.cc:decl_attributes prepends the values from
current_target_pragma to the list of target attributes. To determine
whether we're looking at a value of the attribute or the pragma we
assume that the first [list_length (current_target_pragma)] values in
the list are the values from the pragma. */
num_pragma_values = (!force_pragma && current_target_pragma != NULL)
? list_length (current_target_pragma) : 0;
for (i = 0; args; args = TREE_CHAIN (args), i++)
{
bool is_pragma;
is_pragma = (force_pragma || i < num_pragma_values);
if (TREE_VALUE (args)
&& !s390_valid_target_attribute_inner_p (TREE_VALUE (args),
opts, new_opts_set,
is_pragma))
{
ret = false;
}
}
return ret;
}
else if (TREE_CODE (args) != STRING_CST)
{
error ("attribute %<target%> argument not a string");
return false;
}
/* Handle multiple arguments separated by commas. */
next_optstr = ASTRDUP (TREE_STRING_POINTER (args));
while (next_optstr && *next_optstr != '\0')
{
char *p = next_optstr;
char *orig_p = p;
char *comma = strchr (next_optstr, ',');
size_t len, opt_len;
int opt;
bool opt_set_p;
char ch;
unsigned i;
int mask = 0;
enum cl_var_type var_type;
bool found;
if (comma)
{
*comma = '\0';
len = comma - next_optstr;
next_optstr = comma + 1;
}
else
{
len = strlen (p);
next_optstr = NULL;
}
/* Recognize no-xxx. */
if (len > 3 && p[0] == 'n' && p[1] == 'o' && p[2] == '-')
{
opt_set_p = false;
p += 3;
len -= 3;
}
else
opt_set_p = true;
/* Find the option. */
ch = *p;
found = false;
for (i = 0; i < ARRAY_SIZE (attrs); i++)
{
opt_len = attrs[i].len;
if (ch == attrs[i].string[0]
&& ((attrs[i].has_arg) ? len > opt_len : len == opt_len)
&& memcmp (p, attrs[i].string, opt_len) == 0)
{
opt = attrs[i].opt;
if (!opt_set_p && cl_options[opt].cl_reject_negative)
continue;
mask = cl_options[opt].var_value;
var_type = cl_options[opt].var_type;
found = true;
break;
}
}
/* Process the option. */
if (!found)
{
error ("attribute %<target%> argument %qs is unknown", orig_p);
return false;
}
else if (attrs[i].only_as_pragma && !force_pragma)
{
/* Value is not allowed for the target attribute. */
error ("value %qs is not supported by attribute %<target%>",
attrs[i].string);
return false;
}
else if (var_type == CLVC_BIT_SET || var_type == CLVC_BIT_CLEAR)
{
if (var_type == CLVC_BIT_CLEAR)
opt_set_p = !opt_set_p;
if (opt_set_p)
opts->x_target_flags |= mask;
else
opts->x_target_flags &= ~mask;
new_opts_set->x_target_flags |= mask;
}
else if (cl_options[opt].var_type == CLVC_INTEGER)
{
int value;
if (cl_options[opt].cl_uinteger)
{
/* Unsigned integer argument. Code based on the function
decode_cmdline_option () in opts-common.cc. */
value = integral_argument (p + opt_len);
}
else
value = (opt_set_p) ? 1 : 0;
if (value != -1)
{
struct cl_decoded_option decoded;
/* Value range check; only implemented for numeric and boolean
options at the moment. */
generate_option (opt, NULL, value, CL_TARGET, &decoded);
s390_handle_option (opts, new_opts_set, &decoded, input_location);
set_option (opts, new_opts_set, opt, value,
p + opt_len, DK_UNSPECIFIED, input_location,
global_dc);
}
else
{
error ("attribute %<target%> argument %qs is unknown", orig_p);
ret = false;
}
}
else if (cl_options[opt].var_type == CLVC_ENUM)
{
bool arg_ok;
int value;
arg_ok = opt_enum_arg_to_value (opt, p + opt_len, &value, CL_TARGET);
if (arg_ok)
set_option (opts, new_opts_set, opt, value,
p + opt_len, DK_UNSPECIFIED, input_location,
global_dc);
else
{
error ("attribute %<target%> argument %qs is unknown", orig_p);
ret = false;
}
}
else
gcc_unreachable ();
}
return ret;
}
/* Return a TARGET_OPTION_NODE tree of the target options listed or NULL. */
tree
s390_valid_target_attribute_tree (tree args,
struct gcc_options *opts,
const struct gcc_options *opts_set,
bool force_pragma)
{
tree t = NULL_TREE;
struct gcc_options new_opts_set;
memset (&new_opts_set, 0, sizeof (new_opts_set));
/* Process each of the options on the chain. */
if (! s390_valid_target_attribute_inner_p (args, opts, &new_opts_set,
force_pragma))
return error_mark_node;
/* If some option was set (even if it has not changed), rerun
s390_option_override_internal, and then save the options away. */
if (new_opts_set.x_target_flags
|| new_opts_set.x_s390_arch
|| new_opts_set.x_s390_tune
|| new_opts_set.x_s390_stack_guard
|| new_opts_set.x_s390_stack_size
|| new_opts_set.x_s390_branch_cost
|| new_opts_set.x_s390_warn_framesize
|| new_opts_set.x_s390_warn_dynamicstack_p)
{
const unsigned char *src = (const unsigned char *)opts_set;
unsigned char *dest = (unsigned char *)&new_opts_set;
unsigned int i;
/* Merge the original option flags into the new ones. */
for (i = 0; i < sizeof(*opts_set); i++)
dest[i] |= src[i];
/* Do any overrides, such as arch=xxx, or tune=xxx support. */
s390_option_override_internal (opts, &new_opts_set);
/* Save the current options unless we are validating options for
#pragma. */
t = build_target_option_node (opts, &new_opts_set);
}
return t;
}
/* Hook to validate attribute((target("string"))). */
static bool
s390_valid_target_attribute_p (tree fndecl,
tree ARG_UNUSED (name),
tree args,
int ARG_UNUSED (flags))
{
struct gcc_options func_options, func_options_set;
tree new_target, new_optimize;
bool ret = true;
/* attribute((target("default"))) does nothing, beyond
affecting multi-versioning. */
if (TREE_VALUE (args)
&& TREE_CODE (TREE_VALUE (args)) == STRING_CST
&& TREE_CHAIN (args) == NULL_TREE
&& strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0)
return true;
tree old_optimize
= build_optimization_node (&global_options, &global_options_set);
/* Get the optimization options of the current function. */
tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);
if (!func_optimize)
func_optimize = old_optimize;
/* Init func_options. */
memset (&func_options, 0, sizeof (func_options));
init_options_struct (&func_options, NULL);
lang_hooks.init_options_struct (&func_options);
memset (&func_options_set, 0, sizeof (func_options_set));
cl_optimization_restore (&func_options, &func_options_set,
TREE_OPTIMIZATION (func_optimize));
/* Initialize func_options to the default before its target options can
be set. */
cl_target_option_restore (&func_options, &func_options_set,
TREE_TARGET_OPTION (target_option_default_node));
new_target = s390_valid_target_attribute_tree (args, &func_options,
&global_options_set,
(args ==
current_target_pragma));
new_optimize = build_optimization_node (&func_options, &func_options_set);
if (new_target == error_mark_node)
ret = false;
else if (fndecl && new_target)
{
DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;
if (old_optimize != new_optimize)
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
}
return ret;
}
/* Hook to determine if one function can safely inline another. */
static bool
s390_can_inline_p (tree caller, tree callee)
{
/* Flags which if present in the callee are required in the caller as well. */
const unsigned HOST_WIDE_INT caller_required_masks = MASK_OPT_HTM;
/* Flags which affect the ABI and in general prevent inlining. */
unsigned HOST_WIDE_INT must_match_masks
= (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP | MASK_SOFT_FLOAT
| MASK_LONG_DOUBLE_128 | MASK_OPT_VX);
/* Flags which we in general want to prevent inlining but accept for
always_inline. */
const unsigned HOST_WIDE_INT always_inline_safe_masks
= MASK_MVCLE | MASK_BACKCHAIN | MASK_SMALL_EXEC;
const HOST_WIDE_INT all_masks
= (caller_required_masks | must_match_masks | always_inline_safe_masks
| MASK_DEBUG_ARG | MASK_PACKED_STACK | MASK_ZVECTOR);
tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
if (!callee_tree)
callee_tree = target_option_default_node;
if (!caller_tree)
caller_tree = target_option_default_node;
if (callee_tree == caller_tree)
return true;
struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
/* If one of these triggers make sure to add proper handling of your
new flag to this hook. */
gcc_assert (!(caller_opts->x_target_flags & ~all_masks));
gcc_assert (!(callee_opts->x_target_flags & ~all_masks));
bool always_inline
= (DECL_DISREGARD_INLINE_LIMITS (callee)
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)));
if (!always_inline)
must_match_masks |= always_inline_safe_masks;
/* Inlining a hard float function into a soft float function is only
allowed if the hard float function doesn't actually make use of
floating point.
We are called from FEs for multi-versioning call optimization, so
beware of ipa_fn_summaries not available. */
if (always_inline && ipa_fn_summaries
&& !ipa_fn_summaries->get(cgraph_node::get (callee))->fp_expressions)
must_match_masks &= ~(MASK_HARD_DFP | MASK_SOFT_FLOAT);
if ((caller_opts->x_target_flags & must_match_masks)
!= (callee_opts->x_target_flags & must_match_masks))
return false;
if (~(caller_opts->x_target_flags & caller_required_masks)
& (callee_opts->x_target_flags & caller_required_masks))
return false;
/* Don't inline functions to be compiled for a more recent arch into a
function for an older arch. */
if (caller_opts->x_s390_arch < callee_opts->x_s390_arch)
return false;
if (!always_inline && caller_opts->x_s390_tune != callee_opts->x_s390_tune)
return false;
return true;
}
#endif
/* Set VAL to correct enum value according to the indirect-branch or
function-return attribute in ATTR. */
static inline void
s390_indirect_branch_attrvalue (tree attr, enum indirect_branch *val)
{
const char *str = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
if (strcmp (str, "keep") == 0)
*val = indirect_branch_keep;
else if (strcmp (str, "thunk") == 0)
*val = indirect_branch_thunk;
else if (strcmp (str, "thunk-inline") == 0)
*val = indirect_branch_thunk_inline;
else if (strcmp (str, "thunk-extern") == 0)
*val = indirect_branch_thunk_extern;
}
/* Memorize the setting for -mindirect-branch* and -mfunction-return*
from either the cmdline or the function attributes in
cfun->machine. */
static void
s390_indirect_branch_settings (tree fndecl)
{
tree attr;
if (!fndecl)
return;
/* Initialize with the cmdline options and let the attributes
override it. */
cfun->machine->indirect_branch_jump = s390_indirect_branch_jump;
cfun->machine->indirect_branch_call = s390_indirect_branch_call;
cfun->machine->function_return_reg = s390_function_return_reg;
cfun->machine->function_return_mem = s390_function_return_mem;
if ((attr = lookup_attribute ("indirect_branch",
DECL_ATTRIBUTES (fndecl))))
{
s390_indirect_branch_attrvalue (attr,
&cfun->machine->indirect_branch_jump);
s390_indirect_branch_attrvalue (attr,
&cfun->machine->indirect_branch_call);
}
if ((attr = lookup_attribute ("indirect_branch_jump",
DECL_ATTRIBUTES (fndecl))))
s390_indirect_branch_attrvalue (attr, &cfun->machine->indirect_branch_jump);
if ((attr = lookup_attribute ("indirect_branch_call",
DECL_ATTRIBUTES (fndecl))))
s390_indirect_branch_attrvalue (attr, &cfun->machine->indirect_branch_call);
if ((attr = lookup_attribute ("function_return",
DECL_ATTRIBUTES (fndecl))))
{
s390_indirect_branch_attrvalue (attr,
&cfun->machine->function_return_reg);
s390_indirect_branch_attrvalue (attr,
&cfun->machine->function_return_mem);
}
if ((attr = lookup_attribute ("function_return_reg",
DECL_ATTRIBUTES (fndecl))))
s390_indirect_branch_attrvalue (attr, &cfun->machine->function_return_reg);
if ((attr = lookup_attribute ("function_return_mem",
DECL_ATTRIBUTES (fndecl))))
s390_indirect_branch_attrvalue (attr, &cfun->machine->function_return_mem);
}
#if S390_USE_TARGET_ATTRIBUTE
/* Restore targets globals from NEW_TREE and invalidate s390_previous_fndecl
cache. */
void
s390_activate_target_options (tree new_tree)
{
cl_target_option_restore (&global_options, &global_options_set,
TREE_TARGET_OPTION (new_tree));
if (TREE_TARGET_GLOBALS (new_tree))
restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
else if (new_tree == target_option_default_node)
restore_target_globals (&default_target_globals);
else
TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
s390_previous_fndecl = NULL_TREE;
}
#endif
/* Establish appropriate back-end context for processing the function
FNDECL. The argument might be NULL to indicate processing at top
level, outside of any function scope. */
static void
s390_set_current_function (tree fndecl)
{
#if S390_USE_TARGET_ATTRIBUTE
/* Only change the context if the function changes. This hook is called
several times in the course of compiling a function, and we don't want to
slow things down too much or call target_reinit when it isn't safe. */
if (fndecl == s390_previous_fndecl)
{
s390_indirect_branch_settings (fndecl);
return;
}
tree old_tree;
if (s390_previous_fndecl == NULL_TREE)
old_tree = target_option_current_node;
else if (DECL_FUNCTION_SPECIFIC_TARGET (s390_previous_fndecl))
old_tree = DECL_FUNCTION_SPECIFIC_TARGET (s390_previous_fndecl);
else
old_tree = target_option_default_node;
if (fndecl == NULL_TREE)
{
if (old_tree != target_option_current_node)
s390_activate_target_options (target_option_current_node);
return;
}
tree new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
if (new_tree == NULL_TREE)
new_tree = target_option_default_node;
if (old_tree != new_tree)
s390_activate_target_options (new_tree);
s390_previous_fndecl = fndecl;
#endif
s390_indirect_branch_settings (fndecl);
}
/* Implement TARGET_USE_BY_PIECES_INFRASTRUCTURE_P. */
static bool
s390_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
unsigned int align ATTRIBUTE_UNUSED,
enum by_pieces_operation op ATTRIBUTE_UNUSED,
bool speed_p ATTRIBUTE_UNUSED)
{
return (size == 1 || size == 2
|| size == 4 || (TARGET_ZARCH && size == 8));
}
/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */
static void
s390_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
tree sfpc = s390_builtin_decls[S390_BUILTIN_s390_sfpc];
tree efpc = s390_builtin_decls[S390_BUILTIN_s390_efpc];
tree call_efpc = build_call_expr (efpc, 0);
tree fenv_var = create_tmp_var_raw (unsigned_type_node);
#define FPC_EXCEPTION_MASK HOST_WIDE_INT_UC (0xf8000000)
#define FPC_FLAGS_MASK HOST_WIDE_INT_UC (0x00f80000)
#define FPC_DXC_MASK HOST_WIDE_INT_UC (0x0000ff00)
#define FPC_EXCEPTION_MASK_SHIFT HOST_WIDE_INT_UC (24)
#define FPC_FLAGS_SHIFT HOST_WIDE_INT_UC (16)
#define FPC_DXC_SHIFT HOST_WIDE_INT_UC (8)
/* Generates the equivalent of feholdexcept (&fenv_var)
fenv_var = __builtin_s390_efpc ();
__builtin_s390_sfpc (fenv_var & mask) */
tree old_fpc = build4 (TARGET_EXPR, unsigned_type_node, fenv_var, call_efpc,
NULL_TREE, NULL_TREE);
tree new_fpc
= build2 (BIT_AND_EXPR, unsigned_type_node, fenv_var,
build_int_cst (unsigned_type_node,
~(FPC_DXC_MASK | FPC_FLAGS_MASK
| FPC_EXCEPTION_MASK)));
tree set_new_fpc = build_call_expr (sfpc, 1, new_fpc);
*hold = build2 (COMPOUND_EXPR, void_type_node, old_fpc, set_new_fpc);
/* Generates the equivalent of feclearexcept (FE_ALL_EXCEPT)
__builtin_s390_sfpc (__builtin_s390_efpc () & mask) */
new_fpc = build2 (BIT_AND_EXPR, unsigned_type_node, call_efpc,
build_int_cst (unsigned_type_node,
~(FPC_DXC_MASK | FPC_FLAGS_MASK)));
*clear = build_call_expr (sfpc, 1, new_fpc);
/* Generates the equivalent of feupdateenv (fenv_var)
old_fpc = __builtin_s390_efpc ();
__builtin_s390_sfpc (fenv_var);
__atomic_feraiseexcept ((old_fpc & FPC_FLAGS_MASK) >> FPC_FLAGS_SHIFT); */
old_fpc = create_tmp_var_raw (unsigned_type_node);
tree store_old_fpc = build4 (TARGET_EXPR, void_type_node, old_fpc, call_efpc,
NULL_TREE, NULL_TREE);
set_new_fpc = build_call_expr (sfpc, 1, fenv_var);
tree raise_old_except = build2 (BIT_AND_EXPR, unsigned_type_node, old_fpc,
build_int_cst (unsigned_type_node,
FPC_FLAGS_MASK));
raise_old_except = build2 (RSHIFT_EXPR, unsigned_type_node, raise_old_except,
build_int_cst (unsigned_type_node,
FPC_FLAGS_SHIFT));
tree atomic_feraiseexcept
= builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
raise_old_except = build_call_expr (atomic_feraiseexcept,
1, raise_old_except);
*update = build2 (COMPOUND_EXPR, void_type_node,
build2 (COMPOUND_EXPR, void_type_node,
store_old_fpc, set_new_fpc),
raise_old_except);
#undef FPC_EXCEPTION_MASK
#undef FPC_FLAGS_MASK
#undef FPC_DXC_MASK
#undef FPC_EXCEPTION_MASK_SHIFT
#undef FPC_FLAGS_SHIFT
#undef FPC_DXC_SHIFT
}
/* Return the vector mode to be used for inner mode MODE when doing
vectorization. */
static machine_mode
s390_preferred_simd_mode (scalar_mode mode)
{
if (TARGET_VXE)
switch (mode)
{
case E_SFmode:
return V4SFmode;
default:;
}
if (TARGET_VX)
switch (mode)
{
case E_DFmode:
return V2DFmode;
case E_DImode:
return V2DImode;
case E_SImode:
return V4SImode;
case E_HImode:
return V8HImode;
case E_QImode:
return V16QImode;
default:;
}
return word_mode;
}
/* Our hardware does not require vectors to be strictly aligned. */
static bool
s390_support_vector_misalignment (machine_mode mode ATTRIBUTE_UNUSED,
const_tree type ATTRIBUTE_UNUSED,
int misalignment ATTRIBUTE_UNUSED,
bool is_packed ATTRIBUTE_UNUSED)
{
if (TARGET_VX)
return true;
return default_builtin_support_vector_misalignment (mode, type, misalignment,
is_packed);
}
/* The vector ABI requires vector types to be aligned on an 8 byte
boundary (our stack alignment). However, we allow this to be
overriden by the user, while this definitely breaks the ABI. */
static HOST_WIDE_INT
s390_vector_alignment (const_tree type)
{
tree size = TYPE_SIZE (type);
if (!TARGET_VX_ABI)
return default_vector_alignment (type);
if (TYPE_USER_ALIGN (type))
return TYPE_ALIGN (type);
if (tree_fits_uhwi_p (size)
&& tree_to_uhwi (size) < BIGGEST_ALIGNMENT)
return tree_to_uhwi (size);
return BIGGEST_ALIGNMENT;
}
/* Implement TARGET_CONSTANT_ALIGNMENT. Alignment on even addresses for
LARL instruction. */
static HOST_WIDE_INT
s390_constant_alignment (const_tree, HOST_WIDE_INT align)
{
return MAX (align, 16);
}
#ifdef HAVE_AS_MACHINE_MACHINEMODE
/* Implement TARGET_ASM_FILE_START. */
static void
s390_asm_file_start (void)
{
default_file_start ();
s390_asm_output_machine_for_arch (asm_out_file);
}
#endif
/* Implement TARGET_ASM_FILE_END. */
static void
s390_asm_file_end (void)
{
#ifdef HAVE_AS_GNU_ATTRIBUTE
varpool_node *vnode;
cgraph_node *cnode;
FOR_EACH_VARIABLE (vnode)
if (TREE_PUBLIC (vnode->decl))
s390_check_type_for_vector_abi (TREE_TYPE (vnode->decl), false, false);
FOR_EACH_FUNCTION (cnode)
if (TREE_PUBLIC (cnode->decl))
s390_check_type_for_vector_abi (TREE_TYPE (cnode->decl), false, false);
if (s390_vector_abi != 0)
fprintf (asm_out_file, "\t.gnu_attribute 8, %d\n",
s390_vector_abi);
#endif
file_end_indicate_exec_stack ();
if (flag_split_stack)
file_end_indicate_split_stack ();
}
/* Return true if TYPE is a vector bool type. */
static inline bool
s390_vector_bool_type_p (const_tree type)
{
return TYPE_VECTOR_OPAQUE (type);
}
/* Return the diagnostic message string if the binary operation OP is
not permitted on TYPE1 and TYPE2, NULL otherwise. */
static const char*
s390_invalid_binary_op (int op ATTRIBUTE_UNUSED, const_tree type1, const_tree type2)
{
bool bool1_p, bool2_p;
bool plusminus_p;
bool muldiv_p;
bool compare_p;
machine_mode mode1, mode2;
if (!TARGET_ZVECTOR)
return NULL;
if (!VECTOR_TYPE_P (type1) || !VECTOR_TYPE_P (type2))
return NULL;
bool1_p = s390_vector_bool_type_p (type1);
bool2_p = s390_vector_bool_type_p (type2);
/* Mixing signed and unsigned types is forbidden for all
operators. */
if (!bool1_p && !bool2_p
&& TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2))
return N_("types differ in signedness");
plusminus_p = (op == PLUS_EXPR || op == MINUS_EXPR);
muldiv_p = (op == MULT_EXPR || op == RDIV_EXPR || op == TRUNC_DIV_EXPR
|| op == CEIL_DIV_EXPR || op == FLOOR_DIV_EXPR
|| op == ROUND_DIV_EXPR);
compare_p = (op == LT_EXPR || op == LE_EXPR || op == GT_EXPR || op == GE_EXPR
|| op == EQ_EXPR || op == NE_EXPR);
if (bool1_p && bool2_p && (plusminus_p || muldiv_p))
return N_("binary operator does not support two vector bool operands");
if (bool1_p != bool2_p && (muldiv_p || compare_p))
return N_("binary operator does not support vector bool operand");
mode1 = TYPE_MODE (type1);
mode2 = TYPE_MODE (type2);
if (bool1_p != bool2_p && plusminus_p
&& (GET_MODE_CLASS (mode1) == MODE_VECTOR_FLOAT
|| GET_MODE_CLASS (mode2) == MODE_VECTOR_FLOAT))
return N_("binary operator does not support mixing vector "
"bool with floating point vector operands");
return NULL;
}
#if ENABLE_S390_EXCESS_FLOAT_PRECISION == 1
/* Implement TARGET_C_EXCESS_PRECISION to maintain historic behavior with older
glibc versions
For historical reasons, float_t and double_t had been typedef'ed to
double on s390, causing operations on float_t to operate in a higher
precision than is necessary. However, it is not the case that SFmode
operations have implicit excess precision, and we generate more optimal
code if we let the compiler know no implicit extra precision is added.
With a glibc with that "historic" definition, configure will enable this hook
to set FLT_EVAL_METHOD to 1 for -fexcess-precision=standard (e.g., as implied
by -std=cXY). That means when we are compiling with -fexcess-precision=fast,
the value we set for FLT_EVAL_METHOD will be out of line with the actual
precision of float_t.
Newer versions of glibc will be modified to derive the definition of float_t
from FLT_EVAL_METHOD on s390x, as on many other architectures. There,
configure will disable this hook by default, so that we defer to the default
of FLT_EVAL_METHOD_PROMOTE_TO_FLOAT and a resulting typedef of float_t to
float. Note that in that scenario, float_t and FLT_EVAL_METHOD will be in
line independent of -fexcess-precision. */
static enum flt_eval_method
s390_excess_precision (enum excess_precision_type type)
{
switch (type)
{
case EXCESS_PRECISION_TYPE_IMPLICIT:
case EXCESS_PRECISION_TYPE_FAST:
/* The fastest type to promote to will always be the native type,
whether that occurs with implicit excess precision or
otherwise. */
return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
case EXCESS_PRECISION_TYPE_STANDARD:
/* Otherwise, when we are in a standards compliant mode, to
ensure consistency with the implementation in glibc, report that
float is evaluated to the range and precision of double. */
return FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE;
case EXCESS_PRECISION_TYPE_FLOAT16:
error ("%<-fexcess-precision=16%> is not supported on this target");
break;
default:
gcc_unreachable ();
}
return FLT_EVAL_METHOD_UNPREDICTABLE;
}
#endif
void
s390_rawmemchr (machine_mode elt_mode, rtx dst, rtx src, rtx pat)
{
machine_mode vec_mode = mode_for_vector (as_a <scalar_int_mode> (elt_mode),
16 / GET_MODE_SIZE (elt_mode)).require();
rtx lens = gen_reg_rtx (V16QImode);
rtx pattern = gen_reg_rtx (vec_mode);
rtx loop_start = gen_label_rtx ();
rtx loop_end = gen_label_rtx ();
rtx addr = gen_reg_rtx (Pmode);
rtx offset = gen_reg_rtx (Pmode);
rtx loadlen = gen_reg_rtx (SImode);
rtx matchlen = gen_reg_rtx (SImode);
rtx mem;
pat = GEN_INT (trunc_int_for_mode (INTVAL (pat), elt_mode));
emit_insn (gen_rtx_SET (pattern, gen_rtx_VEC_DUPLICATE (vec_mode, pat)));
emit_move_insn (addr, XEXP (src, 0));
// alignment
emit_insn (gen_vlbb (lens, gen_rtx_MEM (BLKmode, addr), GEN_INT (6)));
emit_insn (gen_lcbb (loadlen, addr, GEN_INT (6)));
lens = convert_to_mode (vec_mode, lens, 1);
emit_insn (gen_vec_vfees (vec_mode, lens, lens, pattern, GEN_INT (0)));
lens = convert_to_mode (V4SImode, lens, 1);
emit_insn (gen_vec_extractv4sisi (matchlen, lens, GEN_INT (1)));
lens = convert_to_mode (vec_mode, lens, 1);
emit_cmp_and_jump_insns (matchlen, loadlen, LT, NULL_RTX, SImode, 1, loop_end);
force_expand_binop (Pmode, add_optab, addr, GEN_INT(16), addr, 1, OPTAB_DIRECT);
force_expand_binop (Pmode, and_optab, addr, GEN_INT(~HOST_WIDE_INT_UC(0xf)), addr, 1, OPTAB_DIRECT);
// now, addr is 16-byte aligned
mem = gen_rtx_MEM (vec_mode, addr);
set_mem_align (mem, 128);
emit_move_insn (lens, mem);
emit_insn (gen_vec_vfees (vec_mode, lens, lens, pattern, GEN_INT (VSTRING_FLAG_CS)));
add_int_reg_note (s390_emit_ccraw_jump (4, EQ, loop_end),
REG_BR_PROB,
profile_probability::very_unlikely ().to_reg_br_prob_note ());
emit_label (loop_start);
LABEL_NUSES (loop_start) = 1;
force_expand_binop (Pmode, add_optab, addr, GEN_INT (16), addr, 1, OPTAB_DIRECT);
mem = gen_rtx_MEM (vec_mode, addr);
set_mem_align (mem, 128);
emit_move_insn (lens, mem);
emit_insn (gen_vec_vfees (vec_mode, lens, lens, pattern, GEN_INT (VSTRING_FLAG_CS)));
add_int_reg_note (s390_emit_ccraw_jump (4, NE, loop_start),
REG_BR_PROB,
profile_probability::very_likely ().to_reg_br_prob_note ());
emit_label (loop_end);
LABEL_NUSES (loop_end) = 1;
if (TARGET_64BIT)
{
lens = convert_to_mode (V2DImode, lens, 1);
emit_insn (gen_vec_extractv2didi (offset, lens, GEN_INT (0)));
}
else
{
lens = convert_to_mode (V4SImode, lens, 1);
emit_insn (gen_vec_extractv4sisi (offset, lens, GEN_INT (1)));
}
force_expand_binop (Pmode, add_optab, addr, offset, dst, 1, OPTAB_DIRECT);
}
/* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */
static unsigned HOST_WIDE_INT
s390_asan_shadow_offset (void)
{
return TARGET_64BIT ? HOST_WIDE_INT_1U << 52 : HOST_WIDE_INT_UC (0x20000000);
}
#ifdef HAVE_GAS_HIDDEN
# define USE_HIDDEN_LINKONCE 1
#else
# define USE_HIDDEN_LINKONCE 0
#endif
/* Output an indirect branch trampoline for target register REGNO. */
static void
s390_output_indirect_thunk_function (unsigned int regno, bool z10_p)
{
tree decl;
char thunk_label[32];
int i;
if (z10_p)
sprintf (thunk_label, TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL, regno);
else
sprintf (thunk_label, TARGET_INDIRECT_BRANCH_THUNK_NAME_EX,
INDIRECT_BRANCH_THUNK_REGNUM, regno);
decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
get_identifier (thunk_label),
build_function_type_list (void_type_node, NULL_TREE));
DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
NULL_TREE, void_type_node);
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
DECL_IGNORED_P (decl) = 1;
if (USE_HIDDEN_LINKONCE)
{
cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
targetm.asm_out.unique_section (decl, 0);
switch_to_section (get_named_section (decl, NULL, 0));
targetm.asm_out.globalize_label (asm_out_file, thunk_label);
fputs ("\t.hidden\t", asm_out_file);
assemble_name (asm_out_file, thunk_label);
putc ('\n', asm_out_file);
ASM_DECLARE_FUNCTION_NAME (asm_out_file, thunk_label, decl);
}
else
{
switch_to_section (text_section);
ASM_OUTPUT_LABEL (asm_out_file, thunk_label);
}
DECL_INITIAL (decl) = make_node (BLOCK);
current_function_decl = decl;
allocate_struct_function (decl, false);
init_function_start (decl);
cfun->is_thunk = true;
first_function_block_is_cold = false;
final_start_function (emit_barrier (), asm_out_file, 1);
/* This makes CFI at least usable for indirect jumps.
Stopping in the thunk: backtrace will point to the thunk target
is if it was interrupted by a signal. For a call this means that
the call chain will be: caller->callee->thunk */
if (flag_asynchronous_unwind_tables && flag_dwarf2_cfi_asm)
{
fputs ("\t.cfi_signal_frame\n", asm_out_file);
fprintf (asm_out_file, "\t.cfi_return_column %d\n", regno);
for (i = 0; i < FPR15_REGNUM; i++)
fprintf (asm_out_file, "\t.cfi_same_value %s\n", reg_names[i]);
}
if (z10_p)
{
/* exrl 0,1f */
/* We generate a thunk for z10 compiled code although z10 is
currently not enabled. Tell the assembler to accept the
instruction. */
if (!TARGET_CPU_Z10)
{
fputs ("\t.machine push\n", asm_out_file);
fputs ("\t.machine z10\n", asm_out_file);
}
/* We use exrl even if -mzarch hasn't been specified on the
command line so we have to tell the assembler to accept
it. */
if (!TARGET_ZARCH)
fputs ("\t.machinemode zarch\n", asm_out_file);
fputs ("\texrl\t0,1f\n", asm_out_file);
if (!TARGET_ZARCH)
fputs ("\t.machinemode esa\n", asm_out_file);
if (!TARGET_CPU_Z10)
fputs ("\t.machine pop\n", asm_out_file);
}
else
{
/* larl %r1,1f */
fprintf (asm_out_file, "\tlarl\t%%r%d,1f\n",
INDIRECT_BRANCH_THUNK_REGNUM);
/* ex 0,0(%r1) */
fprintf (asm_out_file, "\tex\t0,0(%%r%d)\n",
INDIRECT_BRANCH_THUNK_REGNUM);
}
/* 0: j 0b */
fputs ("0:\tj\t0b\n", asm_out_file);
/* 1: br <regno> */
fprintf (asm_out_file, "1:\tbr\t%%r%d\n", regno);
final_end_function ();
init_insn_lengths ();
free_after_compilation (cfun);
set_cfun (NULL);
current_function_decl = NULL;
}
/* Implement the asm.code_end target hook. */
static void
s390_code_end (void)
{
int i;
for (i = 1; i < 16; i++)
{
if (indirect_branch_z10thunk_mask & (1 << i))
s390_output_indirect_thunk_function (i, true);
if (indirect_branch_prez10thunk_mask & (1 << i))
s390_output_indirect_thunk_function (i, false);
}
if (TARGET_INDIRECT_BRANCH_TABLE)
{
int o;
int i;
for (o = 0; o < INDIRECT_BRANCH_NUM_OPTIONS; o++)
{
if (indirect_branch_table_label_no[o] == 0)
continue;
switch_to_section (get_section (indirect_branch_table_name[o],
0,
NULL_TREE));
for (i = 0; i < indirect_branch_table_label_no[o]; i++)
{
char label_start[32];
ASM_GENERATE_INTERNAL_LABEL (label_start,
indirect_branch_table_label[o], i);
fputs ("\t.long\t", asm_out_file);
assemble_name_raw (asm_out_file, label_start);
fputs ("-.\n", asm_out_file);
}
}
}
}
/* Implement the TARGET_CASE_VALUES_THRESHOLD target hook. */
unsigned int
s390_case_values_threshold (void)
{
/* Disabling branch prediction for indirect jumps makes jump tables
much more expensive. */
if (TARGET_INDIRECT_BRANCH_NOBP_JUMP)
return 20;
return default_case_values_threshold ();
}
/* Evaluate the insns between HEAD and TAIL and do back-end to install
back-end specific dependencies.
Establish an ANTI dependency between r11 and r15 restores from FPRs
to prevent the instructions scheduler from reordering them since
this would break CFI. No further handling in the sched_reorder
hook is required since the r11 and r15 restore will never appear in
the same ready list with that change. */
void
s390_sched_dependencies_evaluation (rtx_insn *head, rtx_insn *tail)
{
if (!frame_pointer_needed || !epilogue_completed)
return;
while (head != tail && DEBUG_INSN_P (head))
head = NEXT_INSN (head);
rtx_insn *r15_restore = NULL, *r11_restore = NULL;
for (rtx_insn *insn = tail; insn != head; insn = PREV_INSN (insn))
{
rtx set = single_set (insn);
if (!INSN_P (insn)
|| !RTX_FRAME_RELATED_P (insn)
|| set == NULL_RTX
|| !REG_P (SET_DEST (set))
|| !FP_REG_P (SET_SRC (set)))
continue;
if (REGNO (SET_DEST (set)) == HARD_FRAME_POINTER_REGNUM)
r11_restore = insn;
if (REGNO (SET_DEST (set)) == STACK_POINTER_REGNUM)
r15_restore = insn;
}
if (r11_restore == NULL || r15_restore == NULL)
return;
add_dependence (r11_restore, r15_restore, REG_DEP_ANTI);
}
/* Implement TARGET_SHIFT_TRUNCATION_MASK for integer shifts. */
static unsigned HOST_WIDE_INT
s390_shift_truncation_mask (machine_mode mode)
{
return mode == DImode || mode == SImode ? 63 : 0;
}
/* Return TRUE iff CONSTRAINT is an "f" constraint, possibly with additional
modifiers. */
static bool
f_constraint_p (const char *constraint)
{
bool seen_f_p = false;
bool seen_v_p = false;
for (size_t i = 0, c_len = strlen (constraint); i < c_len;
i += CONSTRAINT_LEN (constraint[i], constraint + i))
{
if (constraint[i] == 'f')
seen_f_p = true;
if (constraint[i] == 'v')
seen_v_p = true;
}
/* Treat "fv" constraints as "v", because LRA will choose the widest register
* class. */
return seen_f_p && !seen_v_p;
}
/* Return TRUE iff X is a hard floating-point (and not a vector) register. */
static bool
s390_hard_fp_reg_p (rtx x)
{
if (!(REG_P (x) && HARD_REGISTER_P (x) && REG_ATTRS (x)))
return false;
tree decl = REG_EXPR (x);
if (!(HAS_DECL_ASSEMBLER_NAME_P (decl) && DECL_ASSEMBLER_NAME_SET_P (decl)))
return false;
const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
return name[0] == '*' && name[1] == 'f';
}
/* Implement TARGET_MD_ASM_ADJUST hook in order to fix up "f"
constraints when long doubles are stored in vector registers. */
static rtx_insn *
s390_md_asm_adjust (vec<rtx> &outputs, vec<rtx> &inputs,
vec<machine_mode> &input_modes,
vec<const char *> &constraints,
vec<rtx> &/*uses*/, vec<rtx> &/*clobbers*/,
HARD_REG_SET &clobbered_regs, location_t loc)
{
rtx_insn *after_md_seq = NULL, *after_md_end = NULL;
bool saw_cc = false;
unsigned ninputs = inputs.length ();
unsigned noutputs = outputs.length ();
for (unsigned i = 0; i < noutputs; i++)
{
const char *constraint = constraints[i];
if (strncmp (constraint, "=@cc", 4) == 0)
{
if (constraint[4] != 0)
{
error_at (loc, "invalid cc output constraint: %qs", constraint);
continue;
}
if (saw_cc)
{
error_at (loc, "multiple cc output constraints not supported");
continue;
}
if (TEST_HARD_REG_BIT (clobbered_regs, CC_REGNUM))
{
error_at (loc, "%<asm%> specifier for cc output conflicts with %<asm%> clobber list");
continue;
}
rtx dest = outputs[i];
if (GET_MODE (dest) != SImode)
{
error ("invalid type for cc output constraint");
continue;
}
saw_cc = true;
constraints[i] = "=c";
outputs[i] = gen_rtx_REG (CCRAWmode, CC_REGNUM);
push_to_sequence2 (after_md_seq, after_md_end);
emit_insn (gen_rtx_SET (dest,
gen_rtx_UNSPEC (SImode,
gen_rtvec (1, outputs[i]),
UNSPEC_CC_TO_INT)));
after_md_seq = get_insns ();
after_md_end = get_last_insn ();
end_sequence ();
continue;
}
if (!TARGET_VXE)
/* Long doubles are stored in FPR pairs - nothing to do. */
continue;
if (GET_MODE (outputs[i]) != TFmode)
/* Not a long double - nothing to do. */
continue;
bool allows_mem, allows_reg, is_inout;
bool ok = parse_output_constraint (&constraint, i, ninputs, noutputs,
&allows_mem, &allows_reg, &is_inout);
gcc_assert (ok);
if (!f_constraint_p (constraint))
/* Long double with a constraint other than "=f" - nothing to do. */
continue;
gcc_assert (allows_reg);
gcc_assert (!is_inout);
/* Copy output value from a FPR pair into a vector register. */
rtx fprx2;
push_to_sequence2 (after_md_seq, after_md_end);
if (s390_hard_fp_reg_p (outputs[i]))
{
fprx2 = gen_rtx_REG (FPRX2mode, REGNO (outputs[i]));
/* The first half is already at the correct location, copy only the
* second one. Use the UNSPEC pattern instead of the SUBREG one,
* since s390_can_change_mode_class() rejects
* (subreg:DF (reg:TF %fN) 8) and thus subreg validation fails. */
rtx v1 = gen_rtx_REG (V2DFmode, REGNO (outputs[i]));
rtx v3 = gen_rtx_REG (V2DFmode, REGNO (outputs[i]) + 1);
emit_insn (gen_vec_permiv2df (v1, v1, v3, const0_rtx));
}
else
{
fprx2 = gen_reg_rtx (FPRX2mode);
emit_insn (gen_fprx2_to_tf (outputs[i], fprx2));
}
after_md_seq = get_insns ();
after_md_end = get_last_insn ();
end_sequence ();
outputs[i] = fprx2;
}
if (!TARGET_VXE)
/* Long doubles are stored in FPR pairs - nothing left to do. */
return after_md_seq;
for (unsigned i = 0; i < ninputs; i++)
{
if (GET_MODE (inputs[i]) != TFmode)
/* Not a long double - nothing to do. */
continue;
const char *constraint = constraints[noutputs + i];
bool allows_mem, allows_reg;
bool ok = parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
constraints.address (), &allows_mem,
&allows_reg);
gcc_assert (ok);
if (!f_constraint_p (constraint))
/* Long double with a constraint other than "f" (or "=f" for inout
operands) - nothing to do. */
continue;
gcc_assert (allows_reg);
/* Copy input value from a vector register into a FPR pair. */
rtx fprx2;
if (s390_hard_fp_reg_p (inputs[i]))
{
fprx2 = gen_rtx_REG (FPRX2mode, REGNO (inputs[i]));
/* Copy only the second half. */
rtx v1 = gen_rtx_REG (V2DFmode, REGNO (inputs[i]) + 1);
rtx v2 = gen_rtx_REG (V2DFmode, REGNO (inputs[i]));
emit_insn (gen_vec_permiv2df (v1, v2, v1, GEN_INT (3)));
}
else
{
fprx2 = gen_reg_rtx (FPRX2mode);
emit_insn (gen_tf_to_fprx2 (fprx2, inputs[i]));
}
inputs[i] = fprx2;
input_modes[i] = FPRX2mode;
}
return after_md_seq;
}
#define MAX_VECT_LEN 16
struct expand_vec_perm_d
{
rtx target, op0, op1;
unsigned char perm[MAX_VECT_LEN];
machine_mode vmode;
unsigned char nelt;
bool testing_p;
bool only_op0;
bool only_op1;
};
/* Try to expand the vector permute operation described by D using the
vector merge instructions vml and vmh. Return true if vector merge
could be used. */
static bool
expand_perm_with_merge (const struct expand_vec_perm_d &d)
{
static const unsigned char hi_perm_di[2] = {0, 2};
static const unsigned char hi_perm_si[4] = {0, 4, 1, 5};
static const unsigned char hi_perm_hi[8] = {0, 8, 1, 9, 2, 10, 3, 11};
static const unsigned char hi_perm_qi[16]
= {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};
static const unsigned char hi_perm_di_swap[2] = {2, 0};
static const unsigned char hi_perm_si_swap[4] = {4, 0, 6, 2};
static const unsigned char hi_perm_hi_swap[8] = {8, 0, 10, 2, 12, 4, 14, 6};
static const unsigned char hi_perm_qi_swap[16]
= {16, 0, 18, 2, 20, 4, 22, 6, 24, 8, 26, 10, 28, 12, 30, 14};
static const unsigned char lo_perm_di[2] = {1, 3};
static const unsigned char lo_perm_si[4] = {2, 6, 3, 7};
static const unsigned char lo_perm_hi[8] = {4, 12, 5, 13, 6, 14, 7, 15};
static const unsigned char lo_perm_qi[16]
= {8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31};
static const unsigned char lo_perm_di_swap[2] = {3, 1};
static const unsigned char lo_perm_si_swap[4] = {5, 1, 7, 3};
static const unsigned char lo_perm_hi_swap[8] = {9, 1, 11, 3, 13, 5, 15, 7};
static const unsigned char lo_perm_qi_swap[16]
= {17, 1, 19, 3, 21, 5, 23, 7, 25, 9, 27, 11, 29, 13, 31, 15};
bool merge_lo_p = false;
bool merge_hi_p = false;
bool swap_operands_p = false;
if ((d.nelt == 2 && memcmp (d.perm, hi_perm_di, 2) == 0)
|| (d.nelt == 4 && memcmp (d.perm, hi_perm_si, 4) == 0)
|| (d.nelt == 8 && memcmp (d.perm, hi_perm_hi, 8) == 0)
|| (d.nelt == 16 && memcmp (d.perm, hi_perm_qi, 16) == 0))
{
merge_hi_p = true;
}
else if ((d.nelt == 2 && memcmp (d.perm, hi_perm_di_swap, 2) == 0)
|| (d.nelt == 4 && memcmp (d.perm, hi_perm_si_swap, 4) == 0)
|| (d.nelt == 8 && memcmp (d.perm, hi_perm_hi_swap, 8) == 0)
|| (d.nelt == 16 && memcmp (d.perm, hi_perm_qi_swap, 16) == 0))
{
merge_hi_p = true;
swap_operands_p = true;
}
else if ((d.nelt == 2 && memcmp (d.perm, lo_perm_di, 2) == 0)
|| (d.nelt == 4 && memcmp (d.perm, lo_perm_si, 4) == 0)
|| (d.nelt == 8 && memcmp (d.perm, lo_perm_hi, 8) == 0)
|| (d.nelt == 16 && memcmp (d.perm, lo_perm_qi, 16) == 0))
{
merge_lo_p = true;
}
else if ((d.nelt == 2 && memcmp (d.perm, lo_perm_di_swap, 2) == 0)
|| (d.nelt == 4 && memcmp (d.perm, lo_perm_si_swap, 4) == 0)
|| (d.nelt == 8 && memcmp (d.perm, lo_perm_hi_swap, 8) == 0)
|| (d.nelt == 16 && memcmp (d.perm, lo_perm_qi_swap, 16) == 0))
{
merge_lo_p = true;
swap_operands_p = true;
}
if (!merge_lo_p && !merge_hi_p)
return false;
if (d.testing_p)
return merge_lo_p || merge_hi_p;
rtx op0, op1;
if (swap_operands_p)
{
op0 = d.op1;
op1 = d.op0;
}
else
{
op0 = d.op0;
op1 = d.op1;
}
s390_expand_merge (d.target, op0, op1, merge_hi_p);
return true;
}
/* Try to expand the vector permute operation described by D using the
vector permute doubleword immediate instruction vpdi. Return true
if vpdi could be used.
VPDI allows 4 different immediate values (0, 1, 4, 5). The 0 and 5
cases are covered by vmrhg and vmrlg already. So we only care
about the 1, 4 cases here.
1 - First element of src1 and second of src2
4 - Second element of src1 and first of src2 */
static bool
expand_perm_with_vpdi (const struct expand_vec_perm_d &d)
{
bool vpdi1_p = false;
bool vpdi4_p = false;
bool swap_operands_p = false;
rtx op0_reg, op1_reg;
// Only V2DI and V2DF are supported here.
if (d.nelt != 2)
return false;
if (d.perm[0] == 0 && d.perm[1] == 3)
vpdi1_p = true;
else if (d.perm[0] == 2 && d.perm[1] == 1)
{
vpdi1_p = true;
swap_operands_p = true;
}
else if ((d.perm[0] == 1 && d.perm[1] == 2)
|| (d.perm[0] == 1 && d.perm[1] == 0)
|| (d.perm[0] == 3 && d.perm[1] == 2))
vpdi4_p = true;
else if (d.perm[0] == 3 && d.perm[1] == 0)
{
vpdi4_p = true;
swap_operands_p = true;
}
if (!vpdi1_p && !vpdi4_p)
return false;
if (d.testing_p)
return true;
op0_reg = force_reg (GET_MODE (d.op0), d.op0);
op1_reg = force_reg (GET_MODE (d.op1), d.op1);
/* If we only reference either of the operands in
the permute mask, just use one of them. */
if (d.only_op0)
op1_reg = op0_reg;
else if (d.only_op1)
op0_reg = op1_reg;
else if (swap_operands_p)
{
rtx tmp = op0_reg;
op0_reg = op1_reg;
op1_reg = tmp;
}
if (vpdi1_p)
emit_insn (gen_vpdi1 (d.vmode, d.target, op0_reg, op1_reg));
if (vpdi4_p)
emit_insn (gen_vpdi4 (d.vmode, d.target, op0_reg, op1_reg));
return true;
}
/* Helper that checks if a vector permutation mask D
represents a reversal of the vector's elements. */
static inline bool
is_reverse_perm_mask (const struct expand_vec_perm_d &d)
{
for (int i = 0; i < d.nelt; i++)
if (d.perm[i] != d.nelt - i - 1)
return false;
return true;
}
static bool
expand_perm_reverse_elements (const struct expand_vec_perm_d &d)
{
if (d.op0 != d.op1 || !is_reverse_perm_mask (d))
return false;
if (d.testing_p)
return true;
switch (d.vmode)
{
case V1TImode: emit_move_insn (d.target, d.op0); break;
case V2DImode: emit_insn (gen_eltswapv2di (d.target, d.op0)); break;
case V4SImode: emit_insn (gen_eltswapv4si (d.target, d.op0)); break;
case V8HImode: emit_insn (gen_eltswapv8hi (d.target, d.op0)); break;
case V16QImode: emit_insn (gen_eltswapv16qi (d.target, d.op0)); break;
case V2DFmode: emit_insn (gen_eltswapv2df (d.target, d.op0)); break;
case V4SFmode: emit_insn (gen_eltswapv4sf (d.target, d.op0)); break;
default: gcc_unreachable();
}
return true;
}
/* Try to emit vlbr/vstbr. Note, this is only a candidate insn since
TARGET_VECTORIZE_VEC_PERM_CONST operates on vector registers only. Thus,
either fwprop, combine et al. "fixes" one of the input/output operands into
a memory operand or a splitter has to reverse this into a general vperm
operation. */
static bool
expand_perm_as_a_vlbr_vstbr_candidate (const struct expand_vec_perm_d &d)
{
static const char perm[4][MAX_VECT_LEN]
= { { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14 },
{ 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 },
{ 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 },
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 } };
if (!TARGET_VXE2 || d.vmode != V16QImode || d.op0 != d.op1)
return false;
if (memcmp (d.perm, perm[0], MAX_VECT_LEN) == 0)
{
if (!d.testing_p)
{
rtx target = gen_rtx_SUBREG (V8HImode, d.target, 0);
rtx op0 = gen_rtx_SUBREG (V8HImode, d.op0, 0);
emit_insn (gen_bswapv8hi (target, op0));
}
return true;
}
if (memcmp (d.perm, perm[1], MAX_VECT_LEN) == 0)
{
if (!d.testing_p)
{
rtx target = gen_rtx_SUBREG (V4SImode, d.target, 0);
rtx op0 = gen_rtx_SUBREG (V4SImode, d.op0, 0);
emit_insn (gen_bswapv4si (target, op0));
}
return true;
}
if (memcmp (d.perm, perm[2], MAX_VECT_LEN) == 0)
{
if (!d.testing_p)
{
rtx target = gen_rtx_SUBREG (V2DImode, d.target, 0);
rtx op0 = gen_rtx_SUBREG (V2DImode, d.op0, 0);
emit_insn (gen_bswapv2di (target, op0));
}
return true;
}
if (memcmp (d.perm, perm[3], MAX_VECT_LEN) == 0)
{
if (!d.testing_p)
{
rtx target = gen_rtx_SUBREG (V1TImode, d.target, 0);
rtx op0 = gen_rtx_SUBREG (V1TImode, d.op0, 0);
emit_insn (gen_bswapv1ti (target, op0));
}
return true;
}
return false;
}
static bool
expand_perm_as_replicate (const struct expand_vec_perm_d &d)
{
unsigned char i;
unsigned char elem;
rtx base = d.op0;
rtx insn = NULL_RTX;
/* Needed to silence maybe-uninitialized warning. */
gcc_assert (d.nelt > 0);
elem = d.perm[0];
for (i = 1; i < d.nelt; ++i)
if (d.perm[i] != elem)
return false;
if (!d.testing_p)
{
if (elem >= d.nelt)
{
base = d.op1;
elem -= d.nelt;
}
if (memory_operand (base, d.vmode))
{
/* Try to use vector load and replicate. */
rtx new_base = adjust_address (base, GET_MODE_INNER (d.vmode),
elem * GET_MODE_UNIT_SIZE (d.vmode));
insn = maybe_gen_vec_splats (d.vmode, d.target, new_base);
}
if (insn == NULL_RTX)
{
base = force_reg (d.vmode, base);
insn = maybe_gen_vec_splat (d.vmode, d.target, base, GEN_INT (elem));
}
if (insn == NULL_RTX)
return false;
emit_insn (insn);
return true;
}
else
return maybe_code_for_vec_splat (d.vmode) != CODE_FOR_nothing;
}
/* Try to find the best sequence for the vector permute operation
described by D. Return true if the operation could be
expanded. */
static bool
vectorize_vec_perm_const_1 (const struct expand_vec_perm_d &d)
{
if (expand_perm_reverse_elements (d))
return true;
if (expand_perm_with_merge (d))
return true;
if (expand_perm_with_vpdi (d))
return true;
if (expand_perm_as_a_vlbr_vstbr_candidate (d))
return true;
if (expand_perm_as_replicate (d))
return true;
return false;
}
/* Return true if we can emit instructions for the constant
permutation vector in SEL. If OUTPUT, IN0, IN1 are non-null the
hook is supposed to emit the required INSNs. */
bool
s390_vectorize_vec_perm_const (machine_mode vmode, machine_mode op_mode,
rtx target, rtx op0, rtx op1,
const vec_perm_indices &sel)
{
if (vmode != op_mode)
return false;
struct expand_vec_perm_d d;
unsigned int i, nelt;
if (!s390_vector_mode_supported_p (vmode) || GET_MODE_SIZE (vmode) != 16)
return false;
d.target = target;
d.op0 = op0;
d.op1 = op1;
d.vmode = vmode;
gcc_assert (VECTOR_MODE_P (d.vmode));
d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
d.testing_p = target == NULL_RTX;
d.only_op0 = false;
d.only_op1 = false;
gcc_assert (target == NULL_RTX || REG_P (target));
gcc_assert (sel.length () == nelt);
unsigned int highest = 0, lowest = 2 * nelt - 1;
for (i = 0; i < nelt; i++)
{
unsigned char e = sel[i];
lowest = MIN (lowest, e);
highest = MAX (highest, e);
gcc_assert (e < 2 * nelt);
d.perm[i] = e;
}
if (lowest < nelt && highest < nelt)
d.only_op0 = true;
else if (lowest >= nelt && highest >= nelt)
d.only_op1 = true;
return vectorize_vec_perm_const_1 (d);
}
/* Consider a NOCE conversion as profitable if there is at least one
conditional move. */
static bool
s390_noce_conversion_profitable_p (rtx_insn *seq, struct noce_if_info *if_info)
{
if (if_info->speed_p)
{
for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn))
{
rtx set = single_set (insn);
if (set == NULL)
continue;
if (GET_CODE (SET_SRC (set)) != IF_THEN_ELSE)
continue;
rtx src = SET_SRC (set);
machine_mode mode = GET_MODE (src);
if (GET_MODE_CLASS (mode) != MODE_INT
&& GET_MODE_CLASS (mode) != MODE_FLOAT)
continue;
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
continue;
return true;
}
}
return default_noce_conversion_profitable_p (seq, if_info);
}
/* Implement TARGET_C_MODE_FOR_FLOATING_TYPE. Return TFmode or DFmode
for TI_LONG_DOUBLE_TYPE which is for long double type, go with the
default one for the others. */
static machine_mode
s390_c_mode_for_floating_type (enum tree_index ti)
{
if (ti == TI_LONG_DOUBLE_TYPE)
return TARGET_LONG_DOUBLE_128 ? TFmode : DFmode;
return default_mode_for_floating_type (ti);
}
/* Initialize GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER s390_assemble_integer
#undef TARGET_ASM_OPEN_PAREN
#define TARGET_ASM_OPEN_PAREN ""
#undef TARGET_ASM_CLOSE_PAREN
#define TARGET_ASM_CLOSE_PAREN ""
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE s390_option_override
#ifdef TARGET_THREAD_SSP_OFFSET
#undef TARGET_STACK_PROTECT_GUARD
#define TARGET_STACK_PROTECT_GUARD hook_tree_void_null
#endif
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO s390_encode_section_info
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P s390_scalar_mode_supported_p
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM s390_cannot_force_const_mem
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS s390_delegitimize_address
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS s390_legitimize_address
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY s390_return_in_memory
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS s390_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN s390_expand_builtin
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL s390_builtin_decl
#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA s390_output_addr_const_extra
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK s390_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#if ENABLE_S390_EXCESS_FLOAT_PRECISION == 1
/* This hook is only needed to maintain the historic behavior with glibc
versions that typedef float_t to double. */
#undef TARGET_C_EXCESS_PRECISION
#define TARGET_C_EXCESS_PRECISION s390_excess_precision
#endif
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY s390_adjust_priority
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE s390_issue_rate
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD s390_first_cycle_multipass_dfa_lookahead
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE s390_sched_variable_issue
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER s390_sched_reorder
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT s390_sched_init
#undef TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P s390_cannot_copy_insn_p
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS s390_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST s390_address_cost
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST s390_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST s390_memory_move_cost
#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
s390_builtin_vectorization_cost
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG s390_reorg
#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE s390_valid_pointer_mode
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST s390_build_builtin_va_list
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START s390_va_start
#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET s390_asan_shadow_offset
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR s390_gimplify_va_arg
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE s390_promote_function_mode
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE s390_pass_by_reference
#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE s390_override_options_after_change
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL s390_function_ok_for_sibcall
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG s390_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE s390_function_arg_advance
#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING s390_function_arg_padding
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE s390_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE s390_libcall_value
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_KEEP_LEAF_WHEN_PROFILED
#define TARGET_KEEP_LEAF_WHEN_PROFILED s390_keep_leaf_when_profiled
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS s390_fixed_condition_code_regs
#undef TARGET_CC_MODES_COMPATIBLE
#define TARGET_CC_MODES_COMPATIBLE s390_cc_modes_compatible
#undef TARGET_INVALID_WITHIN_DOLOOP
#define TARGET_INVALID_WITHIN_DOLOOP hook_constcharptr_const_rtx_insn_null
#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL s390_output_dwarf_dtprel
#endif
#undef TARGET_DWARF_FRAME_REG_MODE
#define TARGET_DWARF_FRAME_REG_MODE s390_dwarf_frame_reg_mode
#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE s390_mangle_type
#endif
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P s390_scalar_mode_supported_p
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P s390_vector_mode_supported_p
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS s390_preferred_reload_class
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD s390_secondary_reload
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED s390_secondary_memory_needed
#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
#define TARGET_SECONDARY_MEMORY_NEEDED_MODE s390_secondary_memory_needed_mode
#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE s390_libgcc_cmp_return_mode
#undef TARGET_LIBGCC_SHIFT_COUNT_MODE
#define TARGET_LIBGCC_SHIFT_COUNT_MODE s390_libgcc_shift_count_mode
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P s390_legitimate_address_p
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P s390_legitimate_constant_p
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE s390_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage
#undef TARGET_LOOP_UNROLL_ADJUST
#define TARGET_LOOP_UNROLL_ADJUST s390_loop_unroll_adjust
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE s390_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT s390_trampoline_init
/* PR 79421 */
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
#undef TARGET_UNWIND_WORD_MODE
#define TARGET_UNWIND_WORD_MODE s390_unwind_word_mode
#undef TARGET_CANONICALIZE_COMPARISON
#define TARGET_CANONICALIZE_COMPARISON s390_canonicalize_comparison
#undef TARGET_HARD_REGNO_SCRATCH_OK
#define TARGET_HARD_REGNO_SCRATCH_OK s390_hard_regno_scratch_ok
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS s390_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK s390_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P s390_modes_tieable_p
#undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
#define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
s390_hard_regno_call_part_clobbered
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE s390_attribute_table
#undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
#define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
#undef TARGET_SET_UP_BY_PROLOGUE
#define TARGET_SET_UP_BY_PROLOGUE s300_set_up_by_prologue
#undef TARGET_EXTRA_LIVE_ON_ENTRY
#define TARGET_EXTRA_LIVE_ON_ENTRY s390_live_on_entry
#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
s390_use_by_pieces_infrastructure_p
#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV s390_atomic_assign_expand_fenv
#undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
#define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN s390_invalid_arg_for_unprototyped_fn
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE s390_preferred_simd_mode
#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT s390_support_vector_misalignment
#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT s390_vector_alignment
#undef TARGET_INVALID_BINARY_OP
#define TARGET_INVALID_BINARY_OP s390_invalid_binary_op
#ifdef HAVE_AS_MACHINE_MACHINEMODE
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START s390_asm_file_start
#endif
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END s390_asm_file_end
#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION s390_set_current_function
#if S390_USE_TARGET_ATTRIBUTE
#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P s390_valid_target_attribute_p
#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P s390_can_inline_p
#endif
#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE s390_function_specific_restore
#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS s390_can_change_mode_class
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT s390_constant_alignment
#undef TARGET_ASM_CODE_END
#define TARGET_ASM_CODE_END s390_code_end
#undef TARGET_CASE_VALUES_THRESHOLD
#define TARGET_CASE_VALUES_THRESHOLD s390_case_values_threshold
#undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
#define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK \
s390_sched_dependencies_evaluation
#undef TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK s390_shift_truncation_mask
/* Use only short displacement, since long displacement is not available for
the floating point instructions. */
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 0xfff
#undef TARGET_MD_ASM_ADJUST
#define TARGET_MD_ASM_ADJUST s390_md_asm_adjust
#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST s390_vectorize_vec_perm_const
#undef TARGET_NOCE_CONVERSION_PROFITABLE_P
#define TARGET_NOCE_CONVERSION_PROFITABLE_P s390_noce_conversion_profitable_p
#undef TARGET_C_MODE_FOR_FLOATING_TYPE
#define TARGET_C_MODE_FOR_FLOATING_TYPE s390_c_mode_for_floating_type
#undef TARGET_DOCUMENTATION_NAME
#define TARGET_DOCUMENTATION_NAME "S/390"
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-s390.h"
|