aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/rs6000/rs6000.c
blob: 7d6faf5cb6c5b681796a96f262882d6dfc2b2790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
/* Subroutines used for code generation on IBM RS/6000.
   Copyright (C) 1991, 93-8, 1999 Free Software Foundation, Inc.
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#include "tree.h"
#include "except.h"
#include "function.h"
#include "output.h"
#include "toplev.h"

#ifndef TARGET_NO_PROTOTYPE
#define TARGET_NO_PROTOTYPE 0
#endif

extern char *language_string;
extern int profile_block_flag;

#define min(A,B)	((A) < (B) ? (A) : (B))
#define max(A,B)	((A) > (B) ? (A) : (B))

/* Target cpu type */

enum processor_type rs6000_cpu;
struct rs6000_cpu_select rs6000_select[3] =
{
  /* switch		name,			tune	arch */
  { (const char *)0,	"--with-cpu=",		1,	1 },
  { (const char *)0,	"-mcpu=",		1,	1 },
  { (const char *)0,	"-mtune=",		1,	0 },
};

/* Set to non-zero by "fix" operation to indicate that itrunc and
   uitrunc must be defined.  */

int rs6000_trunc_used;

/* Set to non-zero once they have been defined.  */

static int trunc_defined;

/* Set to non-zero once AIX common-mode calls have been defined.  */
static int common_mode_defined;

/* Save information from a "cmpxx" operation until the branch or scc is
   emitted.  */
rtx rs6000_compare_op0, rs6000_compare_op1;
int rs6000_compare_fp_p;

#ifdef USING_SVR4_H
/* Label number of label created for -mrelocatable, to call to so we can
   get the address of the GOT section */
int rs6000_pic_labelno;
int rs6000_pic_func_labelno;

/* Which abi to adhere to */
const char *rs6000_abi_name = RS6000_ABI_NAME;

/* Semantics of the small data area */
enum rs6000_sdata_type rs6000_sdata = SDATA_DATA;

/* Which small data model to use */
const char *rs6000_sdata_name = (char *)0;
#endif

/* Whether a System V.4 varargs area was created.  */
int rs6000_sysv_varargs_p;

/* ABI enumeration available for subtarget to use.  */
enum rs6000_abi rs6000_current_abi;

/* Offset & size for fpmem stack locations used for converting between
   float and integral types.  */
int rs6000_fpmem_offset;
int rs6000_fpmem_size;

/* Debug flags */
const char *rs6000_debug_name;
int rs6000_debug_stack;		/* debug stack applications */
int rs6000_debug_arg;		/* debug argument handling */

/* Flag to say the TOC is initialized */
int toc_initialized;


/* Default register names.  */
char rs6000_reg_names[][8] =
{
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
     "mq", "lr", "ctr","ap",
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
  "fpmem"
};

#ifdef TARGET_REGNAMES
static char alt_reg_names[][8] =
{
   "%r0",   "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",
   "%r8",   "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
  "%r16",  "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
  "%r24",  "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
   "%f0",   "%f1",  "%f2",  "%f3",  "%f4",  "%f5",  "%f6",  "%f7",
   "%f8",   "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
  "%f16",  "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
  "%f24",  "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
    "mq",    "lr",  "ctr",   "ap",
  "%cr0",  "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
 "fpmem"
};
#endif

#ifndef MASK_STRICT_ALIGN
#define MASK_STRICT_ALIGN 0
#endif

/* Override command line options.  Mostly we process the processor
   type and sometimes adjust other TARGET_ options.  */

void
rs6000_override_options (default_cpu)
     const char *default_cpu;
{
  size_t i, j;
  struct rs6000_cpu_select *ptr;

  /* Simplify the entries below by making a mask for any POWER
     variant and any PowerPC variant.  */

#define POWER_MASKS (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING)
#define POWERPC_MASKS (MASK_POWERPC | MASK_PPC_GPOPT \
		       | MASK_PPC_GFXOPT | MASK_POWERPC64)
#define POWERPC_OPT_MASKS (MASK_PPC_GPOPT | MASK_PPC_GFXOPT)

  static struct ptt
    {
      const char *name;		/* Canonical processor name.  */
      enum processor_type processor; /* Processor type enum value.  */
      int target_enable;	/* Target flags to enable.  */
      int target_disable;	/* Target flags to disable.  */
    } processor_target_table[]
      = {{"common", PROCESSOR_COMMON, MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_MASKS},
	 {"power", PROCESSOR_POWER,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"power2", PROCESSOR_POWER,
	    MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING,
	    POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"powerpc", PROCESSOR_POWERPC,
	    MASK_POWERPC | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"rios", PROCESSOR_RIOS1,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rios1", PROCESSOR_RIOS1,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rsc", PROCESSOR_PPC601,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rsc1", PROCESSOR_PPC601,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rios2", PROCESSOR_RIOS2,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING | MASK_POWER2,
	    POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"401", PROCESSOR_PPC403,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"403", PROCESSOR_PPC403,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS | MASK_STRICT_ALIGN,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"505", PROCESSOR_MPCCORE,
	    MASK_POWERPC | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"601", PROCESSOR_PPC601,
	    MASK_POWER | MASK_POWERPC | MASK_NEW_MNEMONICS | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"602", PROCESSOR_PPC603,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"603", PROCESSOR_PPC603,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"603e", PROCESSOR_PPC603,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"ec603e", PROCESSOR_PPC603,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"604", PROCESSOR_PPC604,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"604e", PROCESSOR_PPC604e,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"620", PROCESSOR_PPC620,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT},
	 {"740", PROCESSOR_PPC750,
 	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
 	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"750", PROCESSOR_PPC750,
 	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
 	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"801", PROCESSOR_MPCCORE,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"821", PROCESSOR_MPCCORE,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"823", PROCESSOR_MPCCORE,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"860", PROCESSOR_MPCCORE,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64}};

  size_t ptt_size = sizeof (processor_target_table) / sizeof (struct ptt);

  int multiple = TARGET_MULTIPLE;	/* save current -mmultiple/-mno-multiple status */
  int string   = TARGET_STRING;		/* save current -mstring/-mno-string status */

  profile_block_flag = 0;

  /* Identify the processor type */
  rs6000_select[0].string = default_cpu;
  rs6000_cpu = PROCESSOR_DEFAULT;

  for (i = 0; i < sizeof (rs6000_select) / sizeof (rs6000_select[0]); i++)
    {
      ptr = &rs6000_select[i];
      if (ptr->string != (char *)0 && ptr->string[0] != '\0')
	{
	  for (j = 0; j < ptt_size; j++)
	    if (! strcmp (ptr->string, processor_target_table[j].name))
	      {
		if (ptr->set_tune_p)
		  rs6000_cpu = processor_target_table[j].processor;

		if (ptr->set_arch_p)
		  {
		    target_flags |= processor_target_table[j].target_enable;
		    target_flags &= ~processor_target_table[j].target_disable;
		  }
		break;
	      }

	  if (i == ptt_size)
	    error ("bad value (%s) for %s switch", ptr->string, ptr->name);
	}
    }

  /* If we are optimizing big endian systems for space, use the
     store multiple instructions.  */
  if (BYTES_BIG_ENDIAN && optimize_size)
    target_flags |= MASK_MULTIPLE;

  /* If -mmultiple or -mno-multiple was explicitly used, don't
     override with the processor default */
  if (TARGET_MULTIPLE_SET)
    target_flags = (target_flags & ~MASK_MULTIPLE) | multiple;

  /* If -mstring or -mno-string was explicitly used, don't
     override with the processor default */
  if (TARGET_STRING_SET)
    target_flags = (target_flags & ~MASK_STRING) | string;

  /* Don't allow -mmultiple or -mstring on little endian systems unless the cpu
     is a 750, because the hardware doesn't support the instructions used in
     little endian mode, and causes an alignment trap.  The 750 does not cause
     an alignment trap (except when the target is unaligned).  */

  if (! BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750)
    {
      if (TARGET_MULTIPLE)
	{
	  target_flags &= ~MASK_MULTIPLE;
	  if (TARGET_MULTIPLE_SET)
	    warning ("-mmultiple is not supported on little endian systems");
	}

      if (TARGET_STRING)
	{
	  target_flags &= ~MASK_STRING;
	  if (TARGET_STRING_SET)
	    warning ("-mstring is not supported on little endian systems");
	}
    }

  if (flag_pic && (DEFAULT_ABI == ABI_AIX))
    {
      warning ("-f%s ignored for AIX (all code is position independent)",
	       (flag_pic > 1) ? "PIC" : "pic");
      flag_pic = 0;
    }

  /* Set debug flags */
  if (rs6000_debug_name)
    {
      if (! strcmp (rs6000_debug_name, "all"))
	rs6000_debug_stack = rs6000_debug_arg = 1;
      else if (! strcmp (rs6000_debug_name, "stack"))
	rs6000_debug_stack = 1;
      else if (! strcmp (rs6000_debug_name, "arg"))
	rs6000_debug_arg = 1;
      else
	error ("Unknown -mdebug-%s switch", rs6000_debug_name);
    }

#ifdef TARGET_REGNAMES
  /* If the user desires alternate register names, copy in the alternate names
     now.  */
  if (TARGET_REGNAMES)
    bcopy ((char *)alt_reg_names, (char *)rs6000_reg_names,
	   sizeof (rs6000_reg_names));
#endif

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif
}

void
optimization_options (level, size)
     int level;
     int size ATTRIBUTE_UNUSED;
{
#ifdef HAVE_decrement_and_branch_on_count
  /* When optimizing, enable use of BCT instruction.  */
  if (level >= 1)
      flag_branch_on_count_reg = 1;
#endif
}

/* Do anything needed at the start of the asm file.  */

void
rs6000_file_start (file, default_cpu)
     FILE *file;
     const char *default_cpu;
{
  size_t i;
  char buffer[80];
  const char *start = buffer;
  struct rs6000_cpu_select *ptr;

  if (flag_verbose_asm)
    {
      sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
      rs6000_select[0].string = default_cpu;

      for (i = 0; i < sizeof (rs6000_select) / sizeof (rs6000_select[0]); i++)
	{
	  ptr = &rs6000_select[i];
	  if (ptr->string != (char *)0 && ptr->string[0] != '\0')
	    {
	      fprintf (file, "%s %s%s", start, ptr->name, ptr->string);
	      start = "";
	    }
	}

#ifdef USING_SVR4_H
      switch (rs6000_sdata)
	{
	case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
	case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
	case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
	case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
	}

      if (rs6000_sdata && g_switch_value)
	{
	  fprintf (file, "%s -G %d", start, g_switch_value);
	  start = "";
	}
#endif

      if (*start == '\0')
	putc ('\n', file);
    }
}


/* Create a CONST_DOUBLE from a string.  */

struct rtx_def *
rs6000_float_const (string, mode)
     const char *string;
     enum machine_mode mode;
{
  REAL_VALUE_TYPE value = REAL_VALUE_ATOF (string, mode);
  return immed_real_const_1 (value, mode);
}

/* Return non-zero if this function is known to have a null epilogue.  */

int
direct_return ()
{
  if (reload_completed)
    {
      rs6000_stack_t *info = rs6000_stack_info ();

      if (info->first_gp_reg_save == 32
	  && info->first_fp_reg_save == 64
	  && !info->lr_save_p
	  && !info->cr_save_p
	  && !info->push_p)
	return 1;
    }

  return 0;
}

/* Returns 1 always.  */

int
any_operand (op, mode)
     register rtx op ATTRIBUTE_UNUSED;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return 1;
}

/* Returns 1 if op is the count register */
int
count_register_operand(op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) != REG)
    return 0;

  if (REGNO (op) == COUNT_REGISTER_REGNUM)
    return 1;

  if (REGNO (op) > FIRST_PSEUDO_REGISTER)
    return 1;

  return 0;
}

/* Returns 1 if op is memory location for float/int conversions that masquerades
   as a register.  */
int
fpmem_operand(op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) != REG)
    return 0;

  if (FPMEM_REGNO_P (REGNO (op)))
    return 1;

#if 0
  if (REGNO (op) > FIRST_PSEUDO_REGISTER)
    return 1;
#endif

  return 0;
}

/* Return 1 if OP is a constant that can fit in a D field.  */

int
short_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return ((GET_CODE (op) == CONST_INT
	   && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x8000) < 0x10000));
}

/* Similar for a unsigned D field.  */

int
u_short_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == CONST_INT
	   && (INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff)) == 0);
}

/* Return 1 if OP is a CONST_INT that cannot fit in a signed D field.  */

int
non_short_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == CONST_INT
	  && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x8000) >= 0x10000);
}

/* Returns 1 if OP is a register that is not special (i.e., not MQ,
   ctr, or lr).  */

int
gpc_reg_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  && (GET_CODE (op) != REG
	      || (REGNO (op) >= 67 && !FPMEM_REGNO_P (REGNO (op)))
	      || REGNO (op) < 64));
}

/* Returns 1 if OP is either a pseudo-register or a register denoting a
   CR field.  */

int
cc_reg_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  && (GET_CODE (op) != REG
	      || REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || CR_REGNO_P (REGNO (op))));
}

/* Returns 1 if OP is either a pseudo-register or a register denoting a
   CR field that isn't CR0.  */

int
cc_reg_not_cr0_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  && (GET_CODE (op) != REG
	      || REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || CR_REGNO_NOT_CR0_P (REGNO (op))));
}

/* Returns 1 if OP is either a constant integer valid for a D-field or a
   non-special register.  If a register, it must be in the proper mode unless
   MODE is VOIDmode.  */

int
reg_or_short_operand (op, mode)
      register rtx op;
      enum machine_mode mode;
{
  return short_cint_operand (op, mode) || gpc_reg_operand (op, mode);
}

/* Similar, except check if the negation of the constant would be valid for
   a D-field.  */

int
reg_or_neg_short_operand (op, mode)
      register rtx op;
      enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    return CONST_OK_FOR_LETTER_P (INTVAL (op), 'P');

  return gpc_reg_operand (op, mode);
}

/* Return 1 if the operand is either a register or an integer whose high-order
   16 bits are zero.  */

int
reg_or_u_short_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return u_short_cint_operand (op, mode) || gpc_reg_operand (op, mode);
}

/* Return 1 is the operand is either a non-special register or ANY
   constant integer.  */

int
reg_or_cint_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
     return (GET_CODE (op) == CONST_INT
	     || gpc_reg_operand (op, mode));
}

/* Return 1 if the operand is an operand that can be loaded via the GOT */

int
got_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == SYMBOL_REF
	  || GET_CODE (op) == CONST
	  || GET_CODE (op) == LABEL_REF);
}

/* Return 1 if the operand is a simple references that can be loaded via
   the GOT (labels involving addition aren't allowed).  */

int
got_no_const_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF);
}

/* Return the number of instructions it takes to form a constant in an
   integer register.  */

static int
num_insns_constant_wide (value)
     HOST_WIDE_INT value;
{
  /* signed constant loadable with {cal|addi} */
  if (((unsigned HOST_WIDE_INT)value + 0x8000) < 0x10000)
    return 1;

#if HOST_BITS_PER_WIDE_INT == 32
  /* constant loadable with {cau|addis} */
  else if ((value & 0xffff) == 0)
    return 1;

#else
  /* constant loadable with {cau|addis} */
  else if ((value & 0xffff) == 0 && (value & ~0xffffffff) == 0)
    return 1;

  else if (TARGET_64BIT)
    {
      HOST_WIDE_INT low  = value & 0xffffffff;
      HOST_WIDE_INT high = value >> 32;

      if (high == 0 && (low & 0x80000000) == 0)
	return 2;

      else if (high == 0xffffffff && (low & 0x80000000) != 0)
	return 2;

      else if (!low)
	return num_insns_constant_wide (high) + 1;

      else
	return (num_insns_constant_wide (high)
		+ num_insns_constant_wide (low) + 1);
    }
#endif

  else
    return 2;
}

int
num_insns_constant (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    return num_insns_constant_wide (INTVAL (op));

  else if (GET_CODE (op) == CONST_DOUBLE && mode == SFmode)
    {
      long l;
      REAL_VALUE_TYPE rv;

      REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
      REAL_VALUE_TO_TARGET_SINGLE (rv, l);
      return num_insns_constant_wide ((HOST_WIDE_INT)l);
    }

  else if (GET_CODE (op) == CONST_DOUBLE)
    {
      HOST_WIDE_INT low;
      HOST_WIDE_INT high;
      long l[2];
      REAL_VALUE_TYPE rv;
      int endian = (WORDS_BIG_ENDIAN == 0);

      if (mode == VOIDmode || mode == DImode)
	{
	  high = CONST_DOUBLE_HIGH (op);
	  low  = CONST_DOUBLE_LOW (op);
	}
      else
	{
	  REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
	  REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
	  high = l[endian];
	  low  = l[1 - endian];
	}

      if (TARGET_32BIT)
	return (num_insns_constant_wide (low)
		+ num_insns_constant_wide (high));

      else
	{
	  if (high == 0 && (low & 0x80000000) == 0)
	    return num_insns_constant_wide (low);

	  else if (((high & 0xffffffff) == 0xffffffff)
		   && ((low & 0x80000000) != 0))
	    return num_insns_constant_wide (low);

	  else if (mask64_operand (op, mode))
	    return 2;

	  else if (low == 0)
	    return num_insns_constant_wide (high) + 1;

	  else
	    return (num_insns_constant_wide (high)
		    + num_insns_constant_wide (low) + 1);
	}
    }

  else
    abort ();
}

/* Return 1 if the operand is a CONST_DOUBLE and it can be put into a register
   with one instruction per word.  We only do this if we can safely read
   CONST_DOUBLE_{LOW,HIGH}.  */

int
easy_fp_constant (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  if (GET_CODE (op) != CONST_DOUBLE
      || GET_MODE (op) != mode
      || (GET_MODE_CLASS (mode) != MODE_FLOAT && mode != DImode))
    return 0;

  /* Consider all constants with -msoft-float to be easy */
  if (TARGET_SOFT_FLOAT && mode != DImode)
    return 1;

  /* If we are using V.4 style PIC, consider all constants to be hard */
  if (flag_pic && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS))
    return 0;

#ifdef TARGET_RELOCATABLE
  /* Similarly if we are using -mrelocatable, consider all constants to be hard */
  if (TARGET_RELOCATABLE)
    return 0;
#endif

  if (mode == DFmode)
    {
      long k[2];
      REAL_VALUE_TYPE rv;

      REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
      REAL_VALUE_TO_TARGET_DOUBLE (rv, k);

      return (num_insns_constant_wide ((HOST_WIDE_INT)k[0]) == 1
	      && num_insns_constant_wide ((HOST_WIDE_INT)k[1]) == 1);
    }

  else if (mode == SFmode)
    {
      long l;
      REAL_VALUE_TYPE rv;

      REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
      REAL_VALUE_TO_TARGET_SINGLE (rv, l);

      return num_insns_constant_wide (l) == 1;
    }

  else if (mode == DImode)
    return ((TARGET_64BIT
	     && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
	    || (num_insns_constant (op, DImode) <= 2));

  else
    abort ();
}

/* Return 1 if the operand is in volatile memory.  Note that during the
   RTL generation phase, memory_operand does not return TRUE for
   volatile memory references.  So this function allows us to
   recognize volatile references where its safe.  */

int
volatile_mem_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return 0;

  if (!MEM_VOLATILE_P (op))
    return 0;

  if (mode != GET_MODE (op))
    return 0;

  if (reload_completed)
    return memory_operand (op, mode);

  if (reload_in_progress)
    return strict_memory_address_p (mode, XEXP (op, 0));

  return memory_address_p (mode, XEXP (op, 0));
}

/* Return 1 if the operand is an offsettable memory operand.  */

int
offsettable_mem_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return ((GET_CODE (op) == MEM)
	  && offsettable_address_p (reload_completed || reload_in_progress,
				    mode, XEXP (op, 0)));
}

/* Return 1 if the operand is either an easy FP constant (see above) or
   memory.  */

int
mem_or_easy_const_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return memory_operand (op, mode) || easy_fp_constant (op, mode);
}

/* Return 1 if the operand is either a non-special register or an item
   that can be used as the operand of an SI add insn.  */

int
add_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return (reg_or_short_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT
	      && (INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff0000)) == 0));
}

/* Return 1 if OP is a constant but not a valid add_operand.  */

int
non_add_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == CONST_INT
	  && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x8000) >= 0x10000
	  && (INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff0000)) != 0);
}

/* Return 1 if the operand is a non-special register or a constant that
   can be used as the operand of an OR or XOR insn on the RS/6000.  */

int
logical_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (gpc_reg_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT
	      && ((INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff)) == 0
		  || (INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff0000)) == 0)));
}

/* Return 1 if C is a constant that is not a logical operand (as
   above).  */

int
non_logical_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == CONST_INT
	  && (INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff)) != 0
	  && (INTVAL (op) & (~ (HOST_WIDE_INT) 0xffff0000)) != 0);
}

/* Return 1 if C is a constant that can be encoded in a 32-bit mask on the
   RS/6000.  It is if there are no more than two 1->0 or 0->1 transitions.
   Reject all ones and all zeros, since these should have been optimized
   away and confuse the making of MB and ME.  */

int
mask_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  HOST_WIDE_INT c;
  int i;
  int last_bit_value;
  int transitions = 0;

  if (GET_CODE (op) != CONST_INT)
    return 0;

  c = INTVAL (op);

  if (c == 0 || c == ~0)
    return 0;

  last_bit_value = c & 1;

  for (i = 1; i < 32; i++)
    if (((c >>= 1) & 1) != last_bit_value)
      last_bit_value ^= 1, transitions++;

  return transitions <= 2;
}

/* Return 1 if the operand is a constant that is a PowerPC64 mask.
   It is if there are no more than one 1->0 or 0->1 transitions.
   Reject all ones and all zeros, since these should have been optimized
   away and confuse the making of MB and ME.  */

int
mask64_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    {
      HOST_WIDE_INT c = INTVAL (op);
      int i;
      int last_bit_value;
      int transitions = 0;

      if (c == 0 || c == ~0)
	return 0;

      last_bit_value = c & 1;

      for (i = 1; i < HOST_BITS_PER_WIDE_INT; i++)
	if (((c >>= 1) & 1) != last_bit_value)
	  last_bit_value ^= 1, transitions++;

#if HOST_BITS_PER_WIDE_INT == 32
      /* Consider CONST_INT sign-extended.  */
      transitions += (last_bit_value != 1);
#endif

      return transitions <= 1;
    }
  else if (GET_CODE (op) == CONST_DOUBLE
	   && (mode == VOIDmode || mode == DImode))
    {
      HOST_WIDE_INT low = CONST_DOUBLE_LOW (op);
#if HOST_BITS_PER_WIDE_INT == 32
      HOST_WIDE_INT high = CONST_DOUBLE_HIGH (op);
#endif
      int i;
      int last_bit_value;
      int transitions = 0;

      if ((low == 0
#if HOST_BITS_PER_WIDE_INT == 32
	  && high == 0
#endif
	   )
	  || (low == ~0
#if HOST_BITS_PER_WIDE_INT == 32
	      && high == ~0
#endif
	      ))
	return 0;

      last_bit_value = low & 1;

      for (i = 1; i < HOST_BITS_PER_WIDE_INT; i++)
	if (((low >>= 1) & 1) != last_bit_value)
	  last_bit_value ^= 1, transitions++;

#if HOST_BITS_PER_WIDE_INT == 32
      if ((high & 1) != last_bit_value)
	last_bit_value ^= 1, transitions++;

      for (i = 1; i < HOST_BITS_PER_WIDE_INT; i++)
	if (((high >>= 1) & 1) != last_bit_value)
	  last_bit_value ^= 1, transitions++;
#endif

      return transitions <= 1;
    }
  else
    return 0;
}

/* Return 1 if the operand is either a non-special register or a constant
   that can be used as the operand of a PowerPC64 logical AND insn.  */

int
and64_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (fixed_regs[68])	/* CR0 not available, don't do andi./andis. */
    return (gpc_reg_operand (op, mode) || mask64_operand (op, mode));

  return (logical_operand (op, mode) || mask64_operand (op, mode));
}

/* Return 1 if the operand is either a non-special register or a
   constant that can be used as the operand of an RS/6000 logical AND insn.  */

int
and_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  if (fixed_regs[68])	/* CR0 not available, don't do andi./andis. */
    return (gpc_reg_operand (op, mode) || mask_operand (op, mode));

  return (logical_operand (op, mode) || mask_operand (op, mode));
}

/* Return 1 if the operand is a general register or memory operand.  */

int
reg_or_mem_operand (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  return (gpc_reg_operand (op, mode)
	  || memory_operand (op, mode)
	  || volatile_mem_operand (op, mode));
}

/* Return 1 if the operand is a general register or memory operand without
   pre-inc or pre_dec which produces invalid form of PowerPC lwa
   instruction.  */

int
lwa_operand (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  rtx inner = op;

  if (reload_completed && GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);
    
  return gpc_reg_operand (inner, mode)
    || (memory_operand (inner, mode)
	&& GET_CODE (XEXP (inner, 0)) != PRE_INC
	&& GET_CODE (XEXP (inner, 0)) != PRE_DEC);
}

/* Return 1 if the operand, used inside a MEM, is a valid first argument
   to CALL.  This is a SYMBOL_REF or a pseudo-register, which will be
   forced to lr.  */

int
call_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  return (GET_CODE (op) == SYMBOL_REF
	  || (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER));
}


/* Return 1 if the operand is a SYMBOL_REF for a function known to be in
   this file.  */

int
current_file_function_operand (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == SYMBOL_REF
	  && (SYMBOL_REF_FLAG (op)
	      || op == XEXP (DECL_RTL (current_function_decl), 0)));
}


/* Return 1 if this operand is a valid input for a move insn.  */

int
input_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Memory is always valid.  */
  if (memory_operand (op, mode))
    return 1;

  /* Only a tiny bit of handling for CONSTANT_P_RTX is necessary.  */
  if (GET_CODE (op) == CONSTANT_P_RTX)
    return 1;

  /* For floating-point, easy constants are valid.  */
  if (GET_MODE_CLASS (mode) == MODE_FLOAT
      && CONSTANT_P (op)
      && easy_fp_constant (op, mode))
    return 1;

  /* Allow any integer constant.  */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && (GET_CODE (op) == CONST_INT
	  || GET_CODE (op) == CONST_DOUBLE))
    return 1;

  /* For floating-point or multi-word mode, the only remaining valid type
     is a register.  */
  if (GET_MODE_CLASS (mode) == MODE_FLOAT
      || GET_MODE_SIZE (mode) > UNITS_PER_WORD)
    return register_operand (op, mode);

  /* The only cases left are integral modes one word or smaller (we
     do not get called for MODE_CC values).  These can be in any
     register.  */
  if (register_operand (op, mode))
    return 1;

  /* A SYMBOL_REF referring to the TOC is valid.  */
  if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (op))
    return 1;

  /* Windows NT allows SYMBOL_REFs and LABEL_REFs against the TOC
     directly in the instruction stream */
  if (DEFAULT_ABI == ABI_NT
      && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF))
    return 1;

  /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
     to be valid.  */
  if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
      && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
      && small_data_operand (op, Pmode))
    return 1;

  return 0;
}

/* Return 1 for an operand in small memory on V.4/eabi */

int
small_data_operand (op, mode)
     rtx op ATTRIBUTE_UNUSED;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
#if TARGET_ELF
  rtx sym_ref, const_part;

  if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
    return 0;

  if (DEFAULT_ABI != ABI_V4 && DEFAULT_ABI != ABI_SOLARIS)
    return 0;

  if (GET_CODE (op) == SYMBOL_REF)
    sym_ref = op;

  else if (GET_CODE (op) != CONST
	   || GET_CODE (XEXP (op, 0)) != PLUS
	   || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
	   || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
    return 0;

  else
    {
      rtx sum = XEXP (op, 0);
      HOST_WIDE_INT summand;

      /* We have to be careful here, because it is the referenced address
        that must be 32k from _SDA_BASE_, not just the symbol.  */
      summand = INTVAL (XEXP (sum, 1));
      if (summand < 0 || summand > g_switch_value)
       return 0;

      sym_ref = XEXP (sum, 0);
    }

  if (*XSTR (sym_ref, 0) != '@')
    return 0;

  return 1;

#else
  return 0;
#endif
}


/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.

   For incoming args we set the number of arguments in the prototype large
   so we never return a PARALLEL.  */

void
init_cumulative_args (cum, fntype, libname, incoming)
     CUMULATIVE_ARGS *cum;
     tree fntype;
     rtx libname ATTRIBUTE_UNUSED;
     int incoming;
{
  static CUMULATIVE_ARGS zero_cumulative;
  enum rs6000_abi abi = DEFAULT_ABI;

  *cum = zero_cumulative;
  cum->words = 0;
  cum->fregno = FP_ARG_MIN_REG;
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
  cum->call_cookie = CALL_NORMAL;

  if (incoming)
    cum->nargs_prototype = 1000;		/* don't return a PARALLEL */

  else if (cum->prototype)
    cum->nargs_prototype = (list_length (TYPE_ARG_TYPES (fntype)) - 1
			    + (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode
			       || RETURN_IN_MEMORY (TREE_TYPE (fntype))));

  else
    cum->nargs_prototype = 0;

  cum->orig_nargs = cum->nargs_prototype;

  /* Check for DLL import functions */
  if (abi == ABI_NT
      && fntype
      && lookup_attribute ("dllimport", TYPE_ATTRIBUTES (fntype)))
    cum->call_cookie = CALL_NT_DLLIMPORT;

  /* Also check for longcall's */
  else if (fntype && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype)))
    cum->call_cookie = CALL_LONG;

  if (TARGET_DEBUG_ARG)
    {
      fprintf (stderr, "\ninit_cumulative_args:");
      if (fntype)
	{
	  tree ret_type = TREE_TYPE (fntype);
	  fprintf (stderr, " ret code = %s,",
		   tree_code_name[ (int)TREE_CODE (ret_type) ]);
	}

      if (cum->call_cookie & CALL_NT_DLLIMPORT)
	fprintf (stderr, " dllimport,");

      if (cum->call_cookie & CALL_LONG)
	fprintf (stderr, " longcall,");

      fprintf (stderr, " proto = %d, nargs = %d\n",
	       cum->prototype, cum->nargs_prototype);
    }
}

/* If defined, a C expression which determines whether, and in which
   direction, to pad out an argument with extra space.  The value
   should be of type `enum direction': either `upward' to pad above
   the argument, `downward' to pad below, or `none' to inhibit
   padding.

   For the AIX ABI structs are always stored left shifted in their
   argument slot.  */

int
function_arg_padding (mode, type)
     enum machine_mode mode;
     tree type;
{
  if (type != 0 && AGGREGATE_TYPE_P (type))
    return (int)upward;

  /* This is the default definition.  */
  return (! BYTES_BIG_ENDIAN
          ? (int)upward
          : ((mode == BLKmode
              ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
                 && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT))
              : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
             ? (int)downward : (int)upward));
}

/* If defined, a C expression that gives the alignment boundary, in bits,
   of an argument with the specified mode and type.  If it is not defined, 
   PARM_BOUNDARY is used for all arguments.
   
   Windows NT wants anything >= 8 bytes to be double word aligned.

   V.4 wants long longs to be double word aligned.  */

int
function_arg_boundary (mode, type)
     enum machine_mode mode;
     tree type;
{
  if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) && mode == DImode)
    return 64;

  if (DEFAULT_ABI != ABI_NT || TARGET_64BIT)
    return PARM_BOUNDARY;

  if (mode != BLKmode)
    return (GET_MODE_SIZE (mode)) >= 8 ? 64 : 32;

  return (int_size_in_bytes (type) >= 8) ? 64 : 32;
}

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

void
function_arg_advance (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  int align = (TARGET_32BIT && (cum->words & 1) != 0
	       && function_arg_boundary (mode, type) == 64) ? 1 : 0;
  cum->words += align;
  cum->nargs_prototype--;

  if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
    {
      /* Long longs must not be split between registers and stack */
      if ((GET_MODE_CLASS (mode) != MODE_FLOAT || TARGET_SOFT_FLOAT)
	  && type && !AGGREGATE_TYPE_P (type)
	  && cum->words < GP_ARG_NUM_REG
	  && cum->words + RS6000_ARG_SIZE (mode, type, named) > GP_ARG_NUM_REG)
	{
	  cum->words = GP_ARG_NUM_REG;
	}

      /* Aggregates get passed as pointers */
      if (type && AGGREGATE_TYPE_P (type))
	cum->words++;

      /* Floats go in registers, & don't occupy space in the GP registers
	 like they do for AIX unless software floating point.  */
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT
	       && TARGET_HARD_FLOAT
	       && cum->fregno <= FP_ARG_V4_MAX_REG)
	cum->fregno++;

      else
	cum->words += RS6000_ARG_SIZE (mode, type, 1);
    }
  else
    if (named)
      {
	cum->words += RS6000_ARG_SIZE (mode, type, named);
	if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_HARD_FLOAT)
	  cum->fregno++;
      }

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "function_adv: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, named = %d, align = %d\n",
	     cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), named, align);
}

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).

   On RS/6000 the first eight words of non-FP are normally in registers
   and the rest are pushed.  Under AIX, the first 13 FP args are in registers.
   Under V.4, the first 8 FP args are in registers.

   If this is floating-point and no prototype is specified, we use
   both an FP and integer register (or possibly FP reg and stack).  Library
   functions (when TYPE is zero) always have the proper types for args,
   so we can pass the FP value just in one register.  emit_library_function
   doesn't support PARALLEL anyway.  */

struct rtx_def *
function_arg (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  int align = (TARGET_32BIT && (cum->words & 1) != 0
	       && function_arg_boundary (mode, type) == 64) ? 1 : 0;
  int align_words = cum->words + align;

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "function_arg: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, named = %d, align = %d\n",
	     cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), named, align);

  /* Return a marker to indicate whether CR1 needs to set or clear the bit that V.4
     uses to say fp args were passed in registers.  Assume that we don't need the
     marker for software floating point, or compiler generated library calls.  */
  if (mode == VOIDmode)
    {
      enum rs6000_abi abi = DEFAULT_ABI;

      if ((abi == ABI_V4 || abi == ABI_SOLARIS)
	  && TARGET_HARD_FLOAT
	  && cum->nargs_prototype < 0
	  && type && (cum->prototype || TARGET_NO_PROTOTYPE))
	{
	  return GEN_INT (cum->call_cookie
			  | ((cum->fregno == FP_ARG_MIN_REG)
			     ? CALL_V4_SET_FP_ARGS
			     : CALL_V4_CLEAR_FP_ARGS));
	}

      return GEN_INT (cum->call_cookie);
    }

  if (!named)
    {
      if (DEFAULT_ABI != ABI_V4 && DEFAULT_ABI != ABI_SOLARIS)
	return NULL_RTX;
    }

  if (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    return NULL_RTX;

  if (USE_FP_FOR_ARG_P (*cum, mode, type))
    {
      if (DEFAULT_ABI == ABI_V4 /* V.4 never passes FP values in GP registers */
	  || DEFAULT_ABI == ABI_SOLARIS
	  || ! type
	  || ((cum->nargs_prototype > 0)
	      /* IBM AIX extended its linkage convention definition always to
		 require FP args after register save area hole on the stack.  */
	      && (DEFAULT_ABI != ABI_AIX
		  || ! TARGET_XL_CALL
		  || (align_words < GP_ARG_NUM_REG))))
	return gen_rtx_REG (mode, cum->fregno);

      return gen_rtx_PARALLEL (mode,
		      gen_rtvec
		      (2,
		       gen_rtx_EXPR_LIST (VOIDmode,
				((align_words >= GP_ARG_NUM_REG)
				 ? NULL_RTX
				 : (align_words
				    + RS6000_ARG_SIZE (mode, type, named)
				    > GP_ARG_NUM_REG
				    /* If this is partially on the stack, then
				       we only include the portion actually
				       in registers here.  */
				    ? gen_rtx_REG (SImode,
					       GP_ARG_MIN_REG + align_words)
				    : gen_rtx_REG (mode,
					       GP_ARG_MIN_REG + align_words))),
				const0_rtx),
		       gen_rtx_EXPR_LIST (VOIDmode,
				gen_rtx_REG (mode, cum->fregno),
				const0_rtx)));
    }

  /* Long longs won't be split between register and stack;
     FP arguments get passed on the stack if they didn't get a register.  */
  else if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) &&
	   (align_words + RS6000_ARG_SIZE (mode, type, named) > GP_ARG_NUM_REG
	    || (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_HARD_FLOAT)))
    {
      return NULL_RTX;
    }

  else if (align_words < GP_ARG_NUM_REG)
    return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);

  return NULL_RTX;
}

/* For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.  */

int
function_arg_partial_nregs (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  if (! named)
    return 0;

  if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
    return 0;

  if (USE_FP_FOR_ARG_P (*cum, mode, type))
    {
      if (cum->nargs_prototype >= 0)
	return 0;
    }

  if (cum->words < GP_ARG_NUM_REG
      && GP_ARG_NUM_REG < (cum->words + RS6000_ARG_SIZE (mode, type, named)))
    {
      int ret = GP_ARG_NUM_REG - cum->words;
      if (ret && TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);

      return ret;
    }

  return 0;
}

/* A C expression that indicates when an argument must be passed by
   reference.  If nonzero for an argument, a copy of that argument is
   made in memory and a pointer to the argument is passed instead of
   the argument itself.  The pointer is passed in whatever way is
   appropriate for passing a pointer to that type.

   Under V.4, structures and unions are passed by reference.  */

int
function_arg_pass_by_reference (cum, mode, type, named)
     CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
     enum machine_mode mode ATTRIBUTE_UNUSED;
     tree type;
     int named ATTRIBUTE_UNUSED;
{
  if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
      && type && AGGREGATE_TYPE_P (type))
    {
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: aggregate\n");

      return 1;
    }

  return 0;
}


/* Perform any needed actions needed for a function that is receiving a
   variable number of arguments. 

   CUM is as above.

   MODE and TYPE are the mode and type of the current parameter.

   PRETEND_SIZE is a variable that should be set to the amount of stack
   that must be pushed by the prolog to pretend that our caller pushed
   it.

   Normally, this macro will push all remaining incoming registers on the
   stack and set PRETEND_SIZE to the length of the registers pushed.  */

void
setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int *pretend_size;
     int no_rtl;

{
  rtx save_area = virtual_incoming_args_rtx;
  int reg_size	= TARGET_32BIT ? 4 : 8;

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "setup_vararg: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, no_rtl= %d\n",
	     cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), no_rtl);

  if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
    {
      rs6000_sysv_varargs_p = 1;
      if (! no_rtl)
	save_area = plus_constant (virtual_stack_vars_rtx,
				   - RS6000_VARARGS_SIZE);
    }
  else
    rs6000_sysv_varargs_p = 0;

  if (cum->words < 8)
    {
      int first_reg_offset = cum->words;

      if (MUST_PASS_IN_STACK (mode, type))
	first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (type), type, 1);

      if (first_reg_offset > GP_ARG_NUM_REG)
	first_reg_offset = GP_ARG_NUM_REG;

      if (!no_rtl && first_reg_offset != GP_ARG_NUM_REG)
	move_block_from_reg
	  (GP_ARG_MIN_REG + first_reg_offset,
	   gen_rtx_MEM (BLKmode,
		    plus_constant (save_area, first_reg_offset * reg_size)),
	   GP_ARG_NUM_REG - first_reg_offset,
	   (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD);

      *pretend_size = (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD;
    }

  /* Save FP registers if needed.  */
  if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) && TARGET_HARD_FLOAT && !no_rtl)
    {
      int fregno     = cum->fregno;
      int num_fp_reg = FP_ARG_V4_MAX_REG + 1 - fregno;

      if (num_fp_reg >= 0)
	{
	  rtx cr1 = gen_rtx_REG (CCmode, 69);
	  rtx lab = gen_label_rtx ();
	  int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG) * 8);

	  emit_jump_insn (gen_rtx_SET (VOIDmode,
				   pc_rtx,
				   gen_rtx_IF_THEN_ELSE (VOIDmode,
					    gen_rtx_NE (VOIDmode, cr1, const0_rtx),
					    gen_rtx_LABEL_REF (VOIDmode, lab),
					    pc_rtx)));

	  while ( num_fp_reg-- >= 0)
	    {
	      emit_move_insn (gen_rtx_MEM (DFmode, plus_constant (save_area, off)),
			      gen_rtx_REG (DFmode, fregno++));
	      off += 8;
	    }

	  emit_label (lab);
	}
    }
}

/* If defined, is a C expression that produces the machine-specific
   code for a call to `__builtin_saveregs'.  This code will be moved
   to the very beginning of the function, before any parameter access
   are made.  The return value of this function should be an RTX that
   contains the value to use as the return of `__builtin_saveregs'.

   The argument ARGS is a `tree_list' containing the arguments that
   were passed to `__builtin_saveregs'.

   If this macro is not defined, the compiler will output an ordinary
   call to the library function `__builtin_saveregs'.
   
   On the Power/PowerPC return the address of the area on the stack
   used to hold arguments.  Under AIX, this includes the 8 word register
   save area. 

   Under V.4, things are more complicated.  We do not have access to
   all of the virtual registers required for va_start to do its job,
   so we construct the va_list in its entirity here, and reduce va_start
   to a block copy.  This is similar to the way we do things on Alpha.  */

struct rtx_def *
expand_builtin_saveregs (args)
     tree args ATTRIBUTE_UNUSED;
{
  rtx block, mem_gpr_fpr, mem_reg_save_area, mem_overflow, tmp;
  tree fntype;
  int stdarg_p;
  HOST_WIDE_INT words, gpr, fpr;

  if (DEFAULT_ABI != ABI_V4 && DEFAULT_ABI != ABI_SOLARIS)
    return virtual_incoming_args_rtx;

  fntype = TREE_TYPE (current_function_decl);
  stdarg_p = (TYPE_ARG_TYPES (fntype) != 0
	      && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
		  != void_type_node));

  /* Allocate the va_list constructor.  */
  block = assign_stack_local (BLKmode, 3 * UNITS_PER_WORD, BITS_PER_WORD);
  RTX_UNCHANGING_P (block) = 1;
  RTX_UNCHANGING_P (XEXP (block, 0)) = 1;

  mem_gpr_fpr = change_address (block, word_mode, XEXP (block, 0));
  mem_overflow = change_address (block, ptr_mode, 
			         plus_constant (XEXP (block, 0),
						UNITS_PER_WORD));
  mem_reg_save_area = change_address (block, ptr_mode, 
				      plus_constant (XEXP (block, 0),
						     2 * UNITS_PER_WORD));

  /* Construct the two characters of `gpr' and `fpr' as a unit.  */
  words = current_function_args_info.words - !stdarg_p;
  gpr = (words > 8 ? 8 : words);
  fpr = current_function_args_info.fregno - 33;

  if (BYTES_BIG_ENDIAN)
    {
      HOST_WIDE_INT bits = gpr << 8 | fpr;
      if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD)
        tmp = GEN_INT (bits << (BITS_PER_WORD - 16));
      else
	{
	  bits <<= BITS_PER_WORD - HOST_BITS_PER_WIDE_INT - 16;
	  tmp = immed_double_const (0, bits, word_mode);
	}
    }
  else
    tmp = GEN_INT (fpr << 8 | gpr);

  emit_move_insn (mem_gpr_fpr, tmp);

  /* Find the overflow area.  */
  if (words <= 8)
    tmp = virtual_incoming_args_rtx;
  else
    tmp = expand_binop (Pmode, add_optab, virtual_incoming_args_rtx,
		        GEN_INT ((words - 8) * UNITS_PER_WORD),
		        mem_overflow, 0, OPTAB_WIDEN);
  if (tmp != mem_overflow)
    emit_move_insn (mem_overflow, tmp);

  /* Find the register save area.  */
  tmp = expand_binop (Pmode, add_optab, virtual_stack_vars_rtx,
		      GEN_INT (-RS6000_VARARGS_SIZE),
		      mem_reg_save_area, 0, OPTAB_WIDEN);
  if (tmp != mem_reg_save_area)
    emit_move_insn (mem_reg_save_area, tmp);

  /* Return the address of the va_list constructor.  */
  return XEXP (block, 0);
}


/* Generate a memory reference for expand_block_move, copying volatile,
   and other bits from an original memory reference.  */

static rtx
expand_block_move_mem (mode, addr, orig_mem)
     enum machine_mode mode;
     rtx addr;
     rtx orig_mem;
{
  rtx mem = gen_rtx_MEM (mode, addr);

  RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (orig_mem);
  MEM_COPY_ATTRIBUTES (mem, orig_mem);
#ifdef MEM_UNALIGNED_P
  MEM_UNALIGNED_P (mem) = MEM_UNALIGNED_P (orig_mem);
#endif
  return mem;
}

/* Expand a block move operation, and return 1 if successful.  Return 0
   if we should let the compiler generate normal code.

   operands[0] is the destination
   operands[1] is the source
   operands[2] is the length
   operands[3] is the alignment */

#define MAX_MOVE_REG 4

int
expand_block_move (operands)
     rtx operands[];
{
  rtx orig_dest = operands[0];
  rtx orig_src	= operands[1];
  rtx bytes_rtx	= operands[2];
  rtx align_rtx = operands[3];
  int constp	= (GET_CODE (bytes_rtx) == CONST_INT);
  int align	= XINT (align_rtx, 0);
  int bytes;
  int offset;
  int num_reg;
  int i;
  rtx src_reg;
  rtx dest_reg;
  rtx src_addr;
  rtx dest_addr;
  rtx tmp_reg;
  rtx stores[MAX_MOVE_REG];
  int move_bytes;

  /* If this is not a fixed size move, just call memcpy */
  if (!constp)
    return 0;

  /* Anything to move? */
  bytes = INTVAL (bytes_rtx);
  if (bytes <= 0)
    return 1;

  /* Don't support real large moves.  If string instructions are not used,
     then don't generate more than 8 loads.  */
  if (TARGET_STRING)
    {
      if (bytes > 4*8)
	return 0;
    }
  else if (!STRICT_ALIGNMENT)
    {
      if (bytes > 4*8)
	return 0;
    }
  else if (bytes > 8*align)
    return 0;

  /* Move the address into scratch registers.  */
  dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
  src_reg  = copy_addr_to_reg (XEXP (orig_src,  0));

  if (TARGET_STRING)	/* string instructions are available */
    {
      for ( ; bytes > 0; bytes -= move_bytes)
	{
	  if (bytes > 24		/* move up to 32 bytes at a time */
	      && !fixed_regs[5]
	      && !fixed_regs[6]
	      && !fixed_regs[7]
	      && !fixed_regs[8]
	      && !fixed_regs[9]
	      && !fixed_regs[10]
	      && !fixed_regs[11]
	      && !fixed_regs[12])
	    {
	      move_bytes = (bytes > 32) ? 32 : bytes;
	      emit_insn (gen_movstrsi_8reg (expand_block_move_mem (BLKmode, dest_reg, orig_dest),
					    expand_block_move_mem (BLKmode, src_reg, orig_src),
					    GEN_INT ((move_bytes == 32) ? 0 : move_bytes),
					    align_rtx));
	    }
	  else if (bytes > 16	/* move up to 24 bytes at a time */
		   && !fixed_regs[7]
		   && !fixed_regs[8]
		   && !fixed_regs[9]
		   && !fixed_regs[10]
		   && !fixed_regs[11]
		   && !fixed_regs[12])
	    {
	      move_bytes = (bytes > 24) ? 24 : bytes;
	      emit_insn (gen_movstrsi_6reg (expand_block_move_mem (BLKmode, dest_reg, orig_dest),
					    expand_block_move_mem (BLKmode, src_reg, orig_src),
					    GEN_INT (move_bytes),
					    align_rtx));
	    }
	  else if (bytes > 8	/* move up to 16 bytes at a time */
		   && !fixed_regs[9]
		   && !fixed_regs[10]
		   && !fixed_regs[11]
		   && !fixed_regs[12])
	    {
	      move_bytes = (bytes > 16) ? 16 : bytes;
	      emit_insn (gen_movstrsi_4reg (expand_block_move_mem (BLKmode, dest_reg, orig_dest),
					    expand_block_move_mem (BLKmode, src_reg, orig_src),
					    GEN_INT (move_bytes),
					    align_rtx));
	    }
	  else if (bytes > 4 && !TARGET_64BIT)
	    {			/* move up to 8 bytes at a time */
	      move_bytes = (bytes > 8) ? 8 : bytes;
	      emit_insn (gen_movstrsi_2reg (expand_block_move_mem (BLKmode, dest_reg, orig_dest),
					    expand_block_move_mem (BLKmode, src_reg, orig_src),
					    GEN_INT (move_bytes),
					    align_rtx));
	    }
	  else if (bytes >= 4 && (align >= 4 || !STRICT_ALIGNMENT))
	    {			/* move 4 bytes */
	      move_bytes = 4;
	      tmp_reg = gen_reg_rtx (SImode);
	      emit_move_insn (tmp_reg, expand_block_move_mem (SImode, src_reg, orig_src));
	      emit_move_insn (expand_block_move_mem (SImode, dest_reg, orig_dest), tmp_reg);
	    }
	  else if (bytes == 2 && (align >= 2 || !STRICT_ALIGNMENT))
	    {			/* move 2 bytes */
	      move_bytes = 2;
	      tmp_reg = gen_reg_rtx (HImode);
	      emit_move_insn (tmp_reg, expand_block_move_mem (HImode, src_reg, orig_src));
	      emit_move_insn (expand_block_move_mem (HImode, dest_reg, orig_dest), tmp_reg);
	    }
	  else if (bytes == 1)	/* move 1 byte */
	    {
	      move_bytes = 1;
	      tmp_reg = gen_reg_rtx (QImode);
	      emit_move_insn (tmp_reg, expand_block_move_mem (QImode, src_reg, orig_src));
	      emit_move_insn (expand_block_move_mem (QImode, dest_reg, orig_dest), tmp_reg);
	    }
	  else
	    {			/* move up to 4 bytes at a time */
	      move_bytes = (bytes > 4) ? 4 : bytes;
	      emit_insn (gen_movstrsi_1reg (expand_block_move_mem (BLKmode, dest_reg, orig_dest),
					    expand_block_move_mem (BLKmode, src_reg, orig_src),
					    GEN_INT (move_bytes),
					    align_rtx));
	    }

	  if (bytes > move_bytes)
	    {
	      emit_insn (gen_addsi3 (src_reg, src_reg, GEN_INT (move_bytes)));
	      emit_insn (gen_addsi3 (dest_reg, dest_reg, GEN_INT (move_bytes)));
	    }
	}
    }

  else			/* string instructions not available */
    {
      num_reg = offset = 0;
      for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
	{
	  /* Calculate the correct offset for src/dest */
	  if (offset == 0)
	    {
	      src_addr  = src_reg;
	      dest_addr = dest_reg;
	    }
	  else
	    {
	      src_addr  = gen_rtx_PLUS (Pmode, src_reg,  GEN_INT (offset));
	      dest_addr = gen_rtx_PLUS (Pmode, dest_reg, GEN_INT (offset));
	    }

	  /* Generate the appropriate load and store, saving the stores for later */
	  if (bytes >= 8 && TARGET_64BIT && (align >= 8 || !STRICT_ALIGNMENT))
	    {
	      move_bytes = 8;
	      tmp_reg = gen_reg_rtx (DImode);
	      emit_insn (gen_movdi (tmp_reg, expand_block_move_mem (DImode, src_addr, orig_src)));
	      stores[ num_reg++ ] = gen_movdi (expand_block_move_mem (DImode, dest_addr, orig_dest), tmp_reg);
	    }
	  else if (bytes >= 4 && (align >= 4 || !STRICT_ALIGNMENT))
	    {
	      move_bytes = 4;
	      tmp_reg = gen_reg_rtx (SImode);
	      emit_insn (gen_movsi (tmp_reg, expand_block_move_mem (SImode, src_addr, orig_src)));
	      stores[ num_reg++ ] = gen_movsi (expand_block_move_mem (SImode, dest_addr, orig_dest), tmp_reg);
	    }
	  else if (bytes >= 2 && (align >= 2 || !STRICT_ALIGNMENT))
	    {
	      move_bytes = 2;
	      tmp_reg = gen_reg_rtx (HImode);
	      emit_insn (gen_movsi (tmp_reg, expand_block_move_mem (HImode, src_addr, orig_src)));
	      stores[ num_reg++ ] = gen_movhi (expand_block_move_mem (HImode, dest_addr, orig_dest), tmp_reg);
	    }
	  else
	    {
	      move_bytes = 1;
	      tmp_reg = gen_reg_rtx (QImode);
	      emit_insn (gen_movsi (tmp_reg, expand_block_move_mem (QImode, src_addr, orig_src)));
	      stores[ num_reg++ ] = gen_movqi (expand_block_move_mem (QImode, dest_addr, orig_dest), tmp_reg);
	    }

	  if (num_reg >= MAX_MOVE_REG)
	    {
	      for (i = 0; i < num_reg; i++)
		emit_insn (stores[i]);
	      num_reg = 0;
	    }
	}

      for (i = 0; i < num_reg; i++)
	emit_insn (stores[i]);
    }

  return 1;
}


/* Return 1 if OP is a load multiple operation.  It is known to be a
   PARALLEL and the first section will be tested.  */

int
load_multiple_operation (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  int count = XVECLEN (op, 0);
  int dest_regno;
  rtx src_addr;
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
    return 0;

  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
  src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);

  for (i = 1; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i);

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != SImode
	  || REGNO (SET_DEST (elt)) != dest_regno + i
	  || GET_CODE (SET_SRC (elt)) != MEM
	  || GET_MODE (SET_SRC (elt)) != SImode
	  || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
	  || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
	  || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
	  || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
	return 0;
    }

  return 1;
}

/* Similar, but tests for store multiple.  Here, the second vector element
   is a CLOBBER.  It will be tested later.  */

int
store_multiple_operation (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  int count = XVECLEN (op, 0) - 1;
  int src_regno;
  rtx dest_addr;
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
    return 0;

  src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
  dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);

  for (i = 1; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i + 1);

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_SRC (elt)) != REG
	  || GET_MODE (SET_SRC (elt)) != SImode
	  || REGNO (SET_SRC (elt)) != src_regno + i
	  || GET_CODE (SET_DEST (elt)) != MEM
	  || GET_MODE (SET_DEST (elt)) != SImode
	  || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
	  || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
	  || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
	  || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
	return 0;
    }

  return 1;
}

/* Return 1 if OP is a comparison operation that is valid for a branch insn.
   We only check the opcode against the mode of the CC value here.  */

int
branch_comparison_operator (op, mode)
     register rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  cc_mode = GET_MODE (XEXP (op, 0));
  if (GET_MODE_CLASS (cc_mode) != MODE_CC)
    return 0;

  if ((code == GT || code == LT || code == GE || code == LE)
      && cc_mode == CCUNSmode)
    return 0;

  if ((code == GTU || code == LTU || code == GEU || code == LEU)
      && (cc_mode != CCUNSmode))
    return 0;

  return 1;
}

/* Return 1 if OP is a comparison operation that is valid for an scc insn.
   We check the opcode against the mode of the CC value and disallow EQ or
   NE comparisons for integers.  */

int
scc_comparison_operator (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  cc_mode = GET_MODE (XEXP (op, 0));
  if (GET_MODE_CLASS (cc_mode) != MODE_CC)
    return 0;

  if (code == NE && cc_mode != CCFPmode)
    return 0;

  if ((code == GT || code == LT || code == GE || code == LE)
      && cc_mode == CCUNSmode)
    return 0;

  if ((code == GTU || code == LTU || code == GEU || code == LEU)
      && (cc_mode != CCUNSmode))
    return 0;

  if (cc_mode == CCEQmode && code != EQ && code != NE)
    return 0;

  return 1;
}

int
trap_comparison_operator (op, mode)
    rtx op;
    enum machine_mode mode;
{
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
  return (GET_RTX_CLASS (GET_CODE (op)) == '<'
          || GET_CODE (op) == EQ || GET_CODE (op) == NE);
}

/* Return 1 if ANDOP is a mask that has no bits on that are not in the
   mask required to convert the result of a rotate insn into a shift
   left insn of SHIFTOP bits.  Both are known to be CONST_INT.  */

int
includes_lshift_p (shiftop, andop)
     register rtx shiftop;
     register rtx andop;
{
  int shift_mask = (~0 << INTVAL (shiftop));

  return (INTVAL (andop) & ~shift_mask) == 0;
}

/* Similar, but for right shift.  */

int
includes_rshift_p (shiftop, andop)
     register rtx shiftop;
     register rtx andop;
{
  unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;

  shift_mask >>= INTVAL (shiftop);

  return (INTVAL (andop) & ~ shift_mask) == 0;
}

/* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
   for lfq and stfq insns.

   Note reg1 and reg2 *must* be hard registers.  To be sure we will
   abort if we are passed pseudo registers.  */

int
registers_ok_for_quad_peep (reg1, reg2)
     rtx reg1, reg2;
{
  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) 
    return 0;

  return (REGNO (reg1) == REGNO (reg2) - 1);
}

/* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.  addr1 and
   addr2 must be in consecutive memory locations (addr2 == addr1 + 8).  */

int
addrs_ok_for_quad_peep (addr1, addr2)
     register rtx addr1;
     register rtx addr2;
{
  int reg1;
  int offset1;

  /* Extract an offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr1, 0)) != REG)
	return 0;
      else
	{
          reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
            return 0;
          offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (GET_CODE (addr1) != REG)
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* Make sure the second address is a (mem (plus (reg) (const_int).  */
  if (GET_CODE (addr2) != PLUS)
    return 0;

  if (GET_CODE (XEXP (addr2, 0)) != REG
      || GET_CODE (XEXP (addr2, 1)) != CONST_INT)
    return 0;

  if (reg1 != REGNO (XEXP (addr2, 0)))
    return 0;

  /* The offset for the second addr must be 8 more than the first addr.  */
  if (INTVAL (XEXP (addr2, 1)) != offset1 + 8)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for lfq or stfq
     instructions.  */
  return 1;
}

/* Return the register class of a scratch register needed to copy IN into
   or out of a register in CLASS in MODE.  If it can be done directly,
   NO_REGS is returned.  */

enum reg_class
secondary_reload_class (class, mode, in)
     enum reg_class class;
     enum machine_mode mode ATTRIBUTE_UNUSED;
     rtx in;
{
  int regno;

  /* We can not copy a symbolic operand directly into anything other than
     BASE_REGS for TARGET_ELF.  So indicate that a register from BASE_REGS
     is needed as an intermediate register.  */
  if (TARGET_ELF
      && class != BASE_REGS
      && (GET_CODE (in) == SYMBOL_REF
	  || GET_CODE (in) == LABEL_REF
	  || GET_CODE (in) == CONST))
    return BASE_REGS;

  if (GET_CODE (in) == REG)
    {
      regno = REGNO (in);
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  regno = true_regnum (in);
	  if (regno >= FIRST_PSEUDO_REGISTER)
	    regno = -1;
	}
    }
  else if (GET_CODE (in) == SUBREG)
    {
      regno = true_regnum (in);
      if (regno >= FIRST_PSEUDO_REGISTER)
	regno = -1;
    }
  else
    regno = -1;

  /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
     into anything.  */
  if (class == GENERAL_REGS || class == BASE_REGS
      || (regno >= 0 && INT_REGNO_P (regno)))
    return NO_REGS;

  /* Constants, memory, and FP registers can go into FP registers.  */
  if ((regno == -1 || FP_REGNO_P (regno))
      && (class == FLOAT_REGS || class == NON_SPECIAL_REGS))
    return NO_REGS;

  /* We can copy among the CR registers.  */
  if ((class == CR_REGS || class == CR0_REGS)
      && regno >= 0 && CR_REGNO_P (regno))
    return NO_REGS;

  /* Otherwise, we need GENERAL_REGS.  */
  return GENERAL_REGS;
}

/* Given a comparison operation, return the bit number in CCR to test.  We
   know this is a valid comparison.  

   SCC_P is 1 if this is for an scc.  That means that %D will have been
   used instead of %C, so the bits will be in different places.

   Return -1 if OP isn't a valid comparison for some reason.  */

int
ccr_bit (op, scc_p)
     register rtx op;
     int scc_p;
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;
  int cc_regnum;
  int base_bit;

  if (GET_RTX_CLASS (code) != '<')
    return -1;

  cc_mode = GET_MODE (XEXP (op, 0));
  cc_regnum = REGNO (XEXP (op, 0));
  base_bit = 4 * (cc_regnum - 68);

  /* In CCEQmode cases we have made sure that the result is always in the
     third bit of the CR field.  */

  if (cc_mode == CCEQmode)
    return base_bit + 3;

  switch (code)
    {
    case NE:
      return scc_p ? base_bit + 3 : base_bit + 2;
    case EQ:
      return base_bit + 2;
    case GT:  case GTU:
      return base_bit + 1;
    case LT:  case LTU:
      return base_bit;

    case GE:  case GEU:
      /* If floating-point, we will have done a cror to put the bit in the
	 unordered position.  So test that bit.  For integer, this is ! LT
	 unless this is an scc insn.  */
      return cc_mode == CCFPmode || scc_p ? base_bit + 3 : base_bit;

    case LE:  case LEU:
      return cc_mode == CCFPmode || scc_p ? base_bit + 3 : base_bit + 1;

    default:
      abort ();
    }
}

/* Return the GOT register.  */

struct rtx_def *
rs6000_got_register (value)
     rtx value;
{
  /* The second flow pass currently (June 1999) can't update regs_ever_live
     without disturbing other parts of the compiler, so update it here to
     make the prolog/epilogue code happy. */
  if (no_new_pseudos && !regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
    regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;

  current_function_uses_pic_offset_table = 1;
  return pic_offset_table_rtx;
}

/* Search for any occurrence of the GOT_TOC register marker that should
   have been eliminated, but may have crept back in.

   This function could completely go away now (June 1999), but we leave it 
   in for a while until all the possible issues with the new -fpic handling 
   are resolved. */

void
rs6000_reorg (insn)
     rtx insn;
{
  if (flag_pic && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS))
    {
      rtx got_reg = gen_rtx_REG (Pmode, 2);
      for ( ; insn != NULL_RTX; insn = NEXT_INSN (insn))
	if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	    && reg_mentioned_p (got_reg, PATTERN (insn)))
	  fatal_insn ("GOT/TOC register marker not removed:", PATTERN (insn));
    }
}


/* Define the structure for the machine field in struct function.  */
struct machine_function
{
  int sysv_varargs_p;
  int save_toc_p;
  int fpmem_size;
  int fpmem_offset;
};

/* Functions to save and restore rs6000_fpmem_size.
   These will be called, via pointer variables,
   from push_function_context and pop_function_context.  */

void
rs6000_save_machine_status (p)
     struct function *p;
{
  struct machine_function *machine =
    (struct machine_function *) xmalloc (sizeof (struct machine_function));

  p->machine = machine;
  machine->sysv_varargs_p = rs6000_sysv_varargs_p;
  machine->fpmem_size     = rs6000_fpmem_size;
  machine->fpmem_offset   = rs6000_fpmem_offset;
}

void
rs6000_restore_machine_status (p)
     struct function *p;
{
  struct machine_function *machine = p->machine;

  rs6000_sysv_varargs_p = machine->sysv_varargs_p;
  rs6000_fpmem_size     = machine->fpmem_size;
  rs6000_fpmem_offset   = machine->fpmem_offset;

  free (machine);
  p->machine = (struct machine_function *)0;
}

/* Do anything needed before RTL is emitted for each function.  */

void
rs6000_init_expanders ()
{
  /* Reset varargs and save TOC indicator */
  rs6000_sysv_varargs_p = 0;
  rs6000_fpmem_size = 0;
  rs6000_fpmem_offset = 0;

  /* Arrange to save and restore machine status around nested functions.  */
  save_machine_status = rs6000_save_machine_status;
  restore_machine_status = rs6000_restore_machine_status;
}


/* Print an operand.  Recognize special options, documented below.  */

#if TARGET_ELF
#define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
#define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
#else
#define SMALL_DATA_RELOC "sda21"
#define SMALL_DATA_REG 0
#endif

void
print_operand (file, x, code)
    FILE *file;
    rtx x;
    char code;
{
  int i;
  HOST_WIDE_INT val;

  /* These macros test for integers and extract the low-order bits.  */
#define INT_P(X)  \
((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE)	\
 && GET_MODE (X) == VOIDmode)

#define INT_LOWPART(X) \
  (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))

  switch (code)
    {
    case '.':
      /* Write out an instruction after the call which may be replaced
	 with glue code by the loader.  This depends on the AIX version.  */
      asm_fprintf (file, RS6000_CALL_GLUE);
      return;

    case '*':
      /* Write the register number of the TOC register.  */
      fputs (TARGET_MINIMAL_TOC ? reg_names[30] : reg_names[2 /* PIC_OFFSET_TABLE_REGNUM? */ ], file);
      return;

    case '$':
      /* Write out either a '.' or '$' for the current location, depending
	 on whether this is Solaris or not.  */
      putc ((DEFAULT_ABI == ABI_SOLARIS) ? '.' : '$', file);
      return;

    case 'A':
      /* If X is a constant integer whose low-order 5 bits are zero,
	 write 'l'.  Otherwise, write 'r'.  This is a kludge to fix a bug
	 in the AIX assembler where "sri" with a zero shift count
	 write a trash instruction.  */
      if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0)
	putc ('l', file);
      else
	putc ('r', file);
      return;

    case 'b':
      /* Low-order 16 bits of constant, unsigned.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%b value");

      fprintf (file, "%d", INT_LOWPART (x) & 0xffff);
      return;

    case 'B':
      /* If the low-order bit is zero, write 'r'; otherwise, write 'l'
	 for 64-bit mask direction.  */
      putc (((INT_LOWPART(x) & 1) == 0 ? 'r' : 'l'), file);
      return;

    case 'C':
      /* This is an optional cror needed for LE or GE floating-point
	 comparisons.  Otherwise write nothing.  */
      if ((GET_CODE (x) == LE || GET_CODE (x) == GE)
	  && GET_MODE (XEXP (x, 0)) == CCFPmode)
	{
	  int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68);

	  fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3,
		   base_bit + 2, base_bit + (GET_CODE (x) == GE));
	}
      return;

    case 'D':
      /* Similar, except that this is for an scc, so we must be able to
	 encode the test in a single bit that is one.  We do the above
	 for any LE, GE, GEU, or LEU and invert the bit for NE.  */
      if (GET_CODE (x) == LE || GET_CODE (x) == GE
	  || GET_CODE (x) == LEU || GET_CODE (x) == GEU)
	{
	  int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68);

	  fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3,
		   base_bit + 2,
		   base_bit + (GET_CODE (x) == GE || GET_CODE (x) == GEU));
	}

      else if (GET_CODE (x) == NE)
	{
	  int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68);

	  fprintf (file, "crnor %d,%d,%d\n\t", base_bit + 3,
		   base_bit + 2, base_bit + 2);
	}
      return;

    case 'E':
      /* X is a CR register.  Print the number of the third bit of the CR */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%E value");

      fprintf(file, "%d", 4 * (REGNO (x) - 68) + 3);
      return;

    case 'f':
      /* X is a CR register.  Print the shift count needed to move it
	 to the high-order four bits.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%f value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - 68));
      return;

    case 'F':
      /* Similar, but print the count for the rotate in the opposite
	 direction.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%F value");
      else
	fprintf (file, "%d", 32 - 4 * (REGNO (x) - 68));
      return;

    case 'G':
      /* X is a constant integer.  If it is negative, print "m",
	 otherwise print "z".  This is to make a aze or ame insn.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%G value");
      else if (INTVAL (x) >= 0)
	putc ('z', file);
      else
	putc ('m', file);
      return;
	
    case 'h':
      /* If constant, output low-order five bits.  Otherwise,
	 write normally. */
      if (INT_P (x))
	fprintf (file, "%d", INT_LOWPART (x) & 31);
      else
	print_operand (file, x, 0);
      return;

    case 'H':
      /* If constant, output low-order six bits.  Otherwise,
	 write normally. */
      if (INT_P (x))
	fprintf (file, "%d", INT_LOWPART (x) & 63);
      else
	print_operand (file, x, 0);
      return;

    case 'I':
      /* Print `i' if this is a constant, else nothing.  */
      if (INT_P (x))
	putc ('i', file);
      return;

    case 'j':
      /* Write the bit number in CCR for jump.  */
      i = ccr_bit (x, 0);
      if (i == -1)
	output_operand_lossage ("invalid %%j code");
      else
	fprintf (file, "%d", i);
      return;

    case 'J':
      /* Similar, but add one for shift count in rlinm for scc and pass
	 scc flag to `ccr_bit'.  */
      i = ccr_bit (x, 1);
      if (i == -1)
	output_operand_lossage ("invalid %%J code");
      else
	/* If we want bit 31, write a shift count of zero, not 32.  */
	fprintf (file, "%d", i == 31 ? 0 : i + 1);
      return;

    case 'k':
      /* X must be a constant.  Write the 1's complement of the
	 constant.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%k value");

      fprintf (file, "%d", ~ INT_LOWPART (x));
      return;

    case 'L':
      /* Write second word of DImode or DFmode reference.  Works on register
	 or non-indexed memory only.  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x) + 1]);
      else if (GET_CODE (x) == MEM)
	{
	  /* Handle possible auto-increment.  Since it is pre-increment and
	     we have already done it, we can just use an offset of word.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0),
					   UNITS_PER_WORD));
	  else
	    output_address (plus_constant (XEXP (x, 0), UNITS_PER_WORD));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;
			    
    case 'm':
      /* MB value for a mask operand.  */
      if (! mask_operand (x, VOIDmode))
	output_operand_lossage ("invalid %%m value");

      val = INT_LOWPART (x);

      /* If the high bit is set and the low bit is not, the value is zero.
	 If the high bit is zero, the value is the first 1 bit we find from
	 the left.  */
      if ((val & 0x80000000) && ((val & 1) == 0))
	{
	  putc ('0', file);
	  return;
	}
      else if ((val & 0x80000000) == 0)
	{
	  for (i = 1; i < 32; i++)
	    if ((val <<= 1) & 0x80000000)
	      break;
	  fprintf (file, "%d", i);
	  return;
	}
	  
      /* Otherwise, look for the first 0 bit from the right.  The result is its
	 number plus 1. We know the low-order bit is one.  */
      for (i = 0; i < 32; i++)
	if (((val >>= 1) & 1) == 0)
	  break;

      /* If we ended in ...01, i would be 0.  The correct value is 31, so
	 we want 31 - i.  */
      fprintf (file, "%d", 31 - i);
      return;

    case 'M':
      /* ME value for a mask operand.  */
      if (! mask_operand (x, VOIDmode))
	output_operand_lossage ("invalid %%M value");

      val = INT_LOWPART (x);

      /* If the low bit is set and the high bit is not, the value is 31.
	 If the low bit is zero, the value is the first 1 bit we find from
	 the right.  */
      if ((val & 1) && ((val & 0x80000000) == 0))
	{
	  fputs ("31", file);
	  return;
	}
      else if ((val & 1) == 0)
	{
	  for (i = 0; i < 32; i++)
	    if ((val >>= 1) & 1)
	      break;

	  /* If we had ....10, i would be 0.  The result should be
	     30, so we need 30 - i.  */
	  fprintf (file, "%d", 30 - i);
	  return;
	}
	  
      /* Otherwise, look for the first 0 bit from the left.  The result is its
	 number minus 1. We know the high-order bit is one.  */
      for (i = 0; i < 32; i++)
	if (((val <<= 1) & 0x80000000) == 0)
	  break;

      fprintf (file, "%d", i);
      return;

    case 'N':
      /* Write the number of elements in the vector times 4.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%N value");

      fprintf (file, "%d", XVECLEN (x, 0) * 4);
      return;

    case 'O':
      /* Similar, but subtract 1 first.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%O value");

      fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
      return;

    case 'p':
      /* X is a CONST_INT that is a power of two.  Output the logarithm.  */
      if (! INT_P (x)
	  || (i = exact_log2 (INT_LOWPART (x))) < 0)
	output_operand_lossage ("invalid %%p value");

      fprintf (file, "%d", i);
      return;

    case 'P':
      /* The operand must be an indirect memory reference.  The result
	 is the register number. */
      if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
	  || REGNO (XEXP (x, 0)) >= 32)
	output_operand_lossage ("invalid %%P value");

      fprintf (file, "%d", REGNO (XEXP (x, 0)));
      return;

    case 'R':
      /* X is a CR register.  Print the mask for `mtcrf'.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%R value");
      else
	fprintf (file, "%d", 128 >> (REGNO (x) - 68));
      return;

    case 's':
      /* Low 5 bits of 32 - value */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%s value");

      fprintf (file, "%d", (32 - INT_LOWPART (x)) & 31);
      return;

    case 'S':
      /* PowerPC64 mask position.  All 0's and all 1's are excluded.
	 CONST_INT 32-bit mask is considered sign-extended so any
	 transition must occur within the CONST_INT, not on the boundary.  */
      if (! mask64_operand (x, VOIDmode))
	output_operand_lossage ("invalid %%S value");

      val = INT_LOWPART (x);

      if (val & 1)      /* Clear Left */
	{
	  for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
	    if (!((val >>= 1) & 1))
	      break;

#if HOST_BITS_PER_WIDE_INT == 32
	  if (GET_CODE (x) == CONST_DOUBLE && i == 32)
	    {
	      val = CONST_DOUBLE_HIGH (x);

	      if (val == 0)
		--i;
	      else
		for (i = 32; i < 64; i++)
		  if (!((val >>= 1) & 1))
		    break;
	    }
#endif
	/* i = index of last set bit from right
	   mask begins at 63 - i from left */
	  if (i > 63)
	    output_operand_lossage ("%%S computed all 1's mask");
	  fprintf (file, "%d", 63 - i);
	  return;
	}
      else	/* Clear Right */
	{
	  for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
	    if ((val >>= 1) & 1)
	      break;

#if HOST_BITS_PER_WIDE_INT == 32
	if (GET_CODE (x) == CONST_DOUBLE && i == 32)
	  {
	    val = CONST_DOUBLE_HIGH (x);

	    if (val == (HOST_WIDE_INT) -1)
	      --i;
	    else
	      for (i = 32; i < 64; i++)
		if ((val >>= 1) & 1)
		  break;
	  }
#endif
	/* i = index of last clear bit from right
	   mask ends at 62 - i from left */
	  if (i > 62)
	    output_operand_lossage ("%%S computed all 0's mask");
	  fprintf (file, "%d", 62 - i);
	  return;
	}

    case 't':
      /* Write 12 if this jump operation will branch if true, 4 otherwise. 
	 All floating-point operations except NE branch true and integer
	 EQ, LT, GT, LTU and GTU also branch true.  */
      if (GET_RTX_CLASS (GET_CODE (x)) != '<')
	output_operand_lossage ("invalid %%t value");

      else if ((GET_MODE (XEXP (x, 0)) == CCFPmode
		&& GET_CODE (x) != NE)
	       || GET_CODE (x) == EQ
	       || GET_CODE (x) == LT || GET_CODE (x) == GT
	       || GET_CODE (x) == LTU || GET_CODE (x) == GTU)
	fputs ("12", file);
      else
	putc ('4', file);
      return;
      
    case 'T':
      /* Opposite of 't': write 4 if this jump operation will branch if true,
	 12 otherwise.   */
      if (GET_RTX_CLASS (GET_CODE (x)) != '<')
	output_operand_lossage ("invalid %%T value");

      else if ((GET_MODE (XEXP (x, 0)) == CCFPmode
		&& GET_CODE (x) != NE)
	       || GET_CODE (x) == EQ
	       || GET_CODE (x) == LT || GET_CODE (x) == GT
	       || GET_CODE (x) == LTU || GET_CODE (x) == GTU)
	putc ('4', file);
      else
	fputs ("12", file);
      return;
      
    case 'u':
      /* High-order 16 bits of constant for use in unsigned operand.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%u value");

      fprintf (file, "0x%x", (INT_LOWPART (x) >> 16) & 0xffff);
      return;

    case 'v':
      /* High-order 16 bits of constant for use in signed operand.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%v value");

      {
	int value = (INT_LOWPART (x) >> 16) & 0xffff;

	/* Solaris assembler doesn't like lis 0,0x8000 */
	if (DEFAULT_ABI == ABI_SOLARIS && (value & 0x8000) != 0)
	  fprintf (file, "%d", value | (~0 << 16));
	else
	  fprintf (file, "0x%x", value);
	return;
      }

    case 'U':
      /* Print `u' if this has an auto-increment or auto-decrement.  */
      if (GET_CODE (x) == MEM
	  && (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC))
	putc ('u', file);
      return;

    case 'V':
      /* Print the trap code for this operand.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  fputs ("eq", file);   /* 4 */
	  break;
	case NE:
	  fputs ("ne", file);   /* 24 */
	  break;
	case LT:
	  fputs ("lt", file);   /* 16 */
	  break;
	case LE:
	  fputs ("le", file);   /* 20 */
	  break;
	case GT:
	  fputs ("gt", file);   /* 8 */
	  break;
	case GE:
	  fputs ("ge", file);   /* 12 */
	  break;
	case LTU:
	  fputs ("llt", file);  /* 2 */
	  break;
	case LEU:
	  fputs ("lle", file);  /* 6 */
	  break;
	case GTU:
	  fputs ("lgt", file);  /* 1 */
	  break;
	case GEU:
	  fputs ("lge", file);  /* 5 */
	  break;
	default:
	  abort ();
	}
      break;

    case 'w':
      /* If constant, low-order 16 bits of constant, signed.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, "%d", ((INT_LOWPART (x) & 0xffff) ^ 0x8000) - 0x8000);
      else
	print_operand (file, x, 0);
      return;

    case 'W':
      /* If constant, low-order 16 bits of constant, unsigned.
	 Otherwise, write normally.  */
      if (INT_P (x))
	fprintf (file, "%d", INT_LOWPART (x) & 0xffff);
      else
	print_operand (file, x, 0);
      return;

    case 'X':
      if (GET_CODE (x) == MEM
	  && LEGITIMATE_INDEXED_ADDRESS_P (XEXP (x, 0)))
	putc ('x', file);
      return;

    case 'Y':
      /* Like 'L', for third word of TImode  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x) + 2]);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
	  else
	    output_address (plus_constant (XEXP (x, 0), 8));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;
			    
    case 'z':
      /* X is a SYMBOL_REF.  Write out the name preceded by a
	 period and without any trailing data in brackets.  Used for function
	 names.  If we are configured for System V (or the embedded ABI) on
	 the PowerPC, do not emit the period, since those systems do not use
	 TOCs and the like.  */
      if (GET_CODE (x) != SYMBOL_REF)
	abort ();

      if (XSTR (x, 0)[0] != '.')
	{
	  switch (DEFAULT_ABI)
	    {
	    default:
	      abort ();

	    case ABI_AIX:
	      putc ('.', file);
	      break;

	    case ABI_V4:
	    case ABI_AIX_NODESC:
	    case ABI_SOLARIS:
	      break;

	    case ABI_NT:
	      fputs ("..", file);
	      break;
	    }
	}
      RS6000_OUTPUT_BASENAME (file, XSTR (x, 0));
      return;

    case 'Z':
      /* Like 'L', for last word of TImode.  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x) + 3]);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
	  else
	    output_address (plus_constant (XEXP (x, 0), 12));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;
			    
    case 0:
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x)]);
      else if (GET_CODE (x) == MEM)
	{
	  /* We need to handle PRE_INC and PRE_DEC here, since we need to
	     know the width from the mode.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC)
	    fprintf (file, "%d(%d)", GET_MODE_SIZE (GET_MODE (x)),
		     REGNO (XEXP (XEXP (x, 0), 0)));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    fprintf (file, "%d(%d)", - GET_MODE_SIZE (GET_MODE (x)),
		     REGNO (XEXP (XEXP (x, 0), 0)));
	  else
	    output_address (XEXP (x, 0));
	}
      else
	output_addr_const (file, x);
      return;

    default:
      output_operand_lossage ("invalid %%xn code");
    }
}

/* Print the address of an operand.  */

void
print_operand_address (file, x)
     FILE *file;
     register rtx x;
{
  if (GET_CODE (x) == REG)
    fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
  else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST || GET_CODE (x) == LABEL_REF)
    {
      output_addr_const (file, x);
      if (small_data_operand (x, GET_MODE (x)))
	fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		 reg_names[SMALL_DATA_REG]);

#ifdef TARGET_NO_TOC
      else if (TARGET_NO_TOC)
	;
#endif
      else
	fprintf (file, "(%s)", reg_names[ TARGET_MINIMAL_TOC ? 30 : 2 /* PIC_OFFSET_TABLE_REGNUM? */ ]);
    }
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG)
    {
      if (REGNO (XEXP (x, 0)) == 0)
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
		 reg_names[ REGNO (XEXP (x, 0)) ]);
      else
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
		 reg_names[ REGNO (XEXP (x, 1)) ]);
    }
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
    fprintf (file, "%d(%s)", INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
  else if (TARGET_ELF && !TARGET_64BIT && GET_CODE (x) == LO_SUM
	   && GET_CODE (XEXP (x, 0)) == REG && CONSTANT_P (XEXP (x, 1)))
    {
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
    }
  else
    abort ();
}

/* This page contains routines that are used to determine what the function
   prologue and epilogue code will do and write them out.  */

/*  Return the first fixed-point register that is required to be saved. 32 if
    none.  */

int
first_reg_to_save ()
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 13; first_reg <= 31; first_reg++)
    if (regs_ever_live[first_reg])
      break;

  if (profile_flag)
    {
      /* AIX must save/restore every register that contains a parameter
	 before/after the .__mcount call plus an additional register
	 for the static chain, if needed; use registers from 30 down to 22
	 to do this.  */
      if (DEFAULT_ABI == ABI_AIX)
	{
	  int last_parm_reg, profile_first_reg;

	  /* Figure out last used parameter register.  The proper thing
	     to do is to walk incoming args of the function.  A function
	     might have live parameter registers even if it has no
	     incoming args.  */
	  for (last_parm_reg = 10;
	       last_parm_reg > 2 && ! regs_ever_live [last_parm_reg];
	       last_parm_reg--)
	    ;

	  /* Calculate first reg for saving parameter registers
	     and static chain.
	     Skip reg 31 which may contain the frame pointer.  */
	  profile_first_reg = (33 - last_parm_reg
			       - (current_function_needs_context ? 1 : 0));
	  /* Do not save frame pointer if no parameters needs to be saved.  */
	  if (profile_first_reg == 31)
	    profile_first_reg = 32;

	  if (first_reg > profile_first_reg)
	    first_reg = profile_first_reg;
	}

      /* SVR4 may need one register to preserve the static chain.  */
      else if (current_function_needs_context)
	{
	  /* Skip reg 31 which may contain the frame pointer.  */
	  if (first_reg > 30)
	    first_reg = 30;
	}
    }

  return first_reg;
}

/* Similar, for FP regs.  */

int
first_fp_reg_to_save ()
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
    if (regs_ever_live[first_reg])
      break;

  return first_reg;
}

/* Return non-zero if this function makes calls.  */

int
rs6000_makes_calls ()
{
  rtx insn;

  /* If we are profiling, we will be making a call to __mcount.
     Under the System V ABI's, we store the LR directly, so
     we don't need to do it here.  */
  if (DEFAULT_ABI == ABI_AIX && profile_flag)
    return 1;

  for (insn = get_insns (); insn; insn = next_insn (insn))
    if (GET_CODE (insn) == CALL_INSN)
      return 1;

  return 0;
}


/* Calculate the stack information for the current function.  This is
   complicated by having two separate calling sequences, the AIX calling
   sequence and the V.4 calling sequence.

   AIX stack frames look like:
							  32-bit  64-bit
	SP---->	+---------------------------------------+
		| back chain to caller			| 0	  0
		+---------------------------------------+
		| saved CR				| 4       8 (8-11)
		+---------------------------------------+
		| saved LR				| 8       16
		+---------------------------------------+
		| reserved for compilers		| 12      24
		+---------------------------------------+
		| reserved for binders			| 16      32
		+---------------------------------------+
		| saved TOC pointer			| 20      40
		+---------------------------------------+
		| Parameter save area (P)		| 24      48
		+---------------------------------------+
		| Alloca space (A)			| 24+P    etc.
		+---------------------------------------+
		| Local variable space (L)		| 24+P+A
		+---------------------------------------+
		| Float/int conversion temporary (X)	| 24+P+A+L
		+---------------------------------------+
		| Save area for GP registers (G)	| 24+P+A+X+L
		+---------------------------------------+
		| Save area for FP registers (F)	| 24+P+A+X+L+G
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+

   The required alignment for AIX configurations is two words (i.e., 8
   or 16 bytes).


   V.4 stack frames look like:

	SP---->	+---------------------------------------+
		| back chain to caller			| 0
		+---------------------------------------+
		| caller's saved LR			| 4
		+---------------------------------------+
		| Parameter save area (P)		| 8
		+---------------------------------------+
		| Alloca space (A)			| 8+P
		+---------------------------------------+    
		| Varargs save area (V)			| 8+P+A
		+---------------------------------------+    
		| Local variable space (L)		| 8+P+A+V
		+---------------------------------------+    
		| Float/int conversion temporary (X)	| 8+P+A+V+L
		+---------------------------------------+
		| saved CR (C)				| 8+P+A+V+L+X
		+---------------------------------------+    
		| Save area for GP registers (G)	| 8+P+A+V+L+X+C
		+---------------------------------------+    
		| Save area for FP registers (F)	| 8+P+A+V+L+X+C+G
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+

   The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
   given.  (But note below and in sysv4.h that we require only 8 and
   may round up the size of our stack frame anyways.  The historical
   reason is early versions of powerpc-linux which didn't properly
   align the stack at program startup.  A happy side-effect is that
   -mno-eabi libraries can be used with -meabi programs.)


   A PowerPC Windows/NT frame looks like:

	SP---->	+---------------------------------------+
		| back chain to caller			| 0
		+---------------------------------------+
		| reserved				| 4
		+---------------------------------------+
		| reserved				| 8
		+---------------------------------------+
		| reserved				| 12
		+---------------------------------------+
		| reserved				| 16
		+---------------------------------------+
		| reserved				| 20
		+---------------------------------------+
		| Parameter save area (P)		| 24
		+---------------------------------------+
		| Alloca space (A)			| 24+P
		+---------------------------------------+     
		| Local variable space (L)		| 24+P+A
		+---------------------------------------+     
		| Float/int conversion temporary (X)	| 24+P+A+L
		+---------------------------------------+
		| Save area for FP registers (F)	| 24+P+A+L+X
		+---------------------------------------+     
		| Possible alignment area (Y)		| 24+P+A+L+X+F
		+---------------------------------------+     
		| Save area for GP registers (G)	| 24+P+A+L+X+F+Y
		+---------------------------------------+     
		| Save area for CR (C)			| 24+P+A+L+X+F+Y+G
		+---------------------------------------+     
		| Save area for TOC (T)			| 24+P+A+L+X+F+Y+G+C
		+---------------------------------------+     
		| Save area for LR (R)			| 24+P+A+L+X+F+Y+G+C+T
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+

   For NT, there is no specific order to save the registers, but in
   order to support __builtin_return_address, the save area for the
   link register needs to be in a known place, so we use -4 off of the
   old SP.  To support calls through pointers, we also allocate a
   fixed slot to store the TOC, -8 off the old SP.

   The required alignment for NT is 16 bytes.


   The EABI configuration defaults to the V.4 layout, unless
   -mcall-aix is used, in which case the AIX layout is used.  However,
   the stack alignment requirements may differ.  If -mno-eabi is not
   given, the required stack alignment is 8 bytes; if -mno-eabi is
   given, the required alignment is 16 bytes.  (But see V.4 comment
   above.)  */

#ifndef ABI_STACK_BOUNDARY
#define ABI_STACK_BOUNDARY STACK_BOUNDARY
#endif

rs6000_stack_t *
rs6000_stack_info ()
{
  static rs6000_stack_t info, zero_info;
  rs6000_stack_t *info_ptr = &info;
  int reg_size = TARGET_32BIT ? 4 : 8;
  enum rs6000_abi abi;
  int total_raw_size;

  /* Zero all fields portably */
  info = zero_info;

  /* Select which calling sequence */
  info_ptr->abi = abi = DEFAULT_ABI;

  /* Calculate which registers need to be saved & save area size */
  info_ptr->first_gp_reg_save = first_reg_to_save ();
  info_ptr->gp_size = reg_size * (32 - info_ptr->first_gp_reg_save);

  info_ptr->first_fp_reg_save = first_fp_reg_to_save ();
  info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save);

  /* Does this function call anything? */
  info_ptr->calls_p = rs6000_makes_calls ();

  /* Allocate space to save the toc. */
  if (abi == ABI_NT && info_ptr->calls_p)
    {
      info_ptr->toc_save_p = 1;
      info_ptr->toc_size = reg_size;
    }

  /* Does this machine need the float/int conversion area? */
  info_ptr->fpmem_p = regs_ever_live[FPMEM_REGNUM];

  /* If this is main and we need to call a function to set things up,
     save main's arguments around the call.  */
#ifdef TARGET_EABI
  if (TARGET_EABI)
#endif
    {
      if (strcmp (IDENTIFIER_POINTER (DECL_NAME (current_function_decl)), "main") == 0
	  && DECL_CONTEXT (current_function_decl) == NULL_TREE)
	{
	  info_ptr->main_p = 1;

#ifdef NAME__MAIN
	  info_ptr->calls_p = 1;

	  if (DECL_ARGUMENTS (current_function_decl))
	    {
	      int i;
	      tree arg;

	      info_ptr->main_save_p = 1;
	      info_ptr->main_size = 0;

	      for ((i = 0), (arg = DECL_ARGUMENTS (current_function_decl));
		   arg != NULL_TREE && i < 8;
		   (arg = TREE_CHAIN (arg)), i++)
		{
		  info_ptr->main_size += reg_size;
		}
	    }
#endif
	}
    }

  /* Determine if we need to save the link register */
  if (regs_ever_live[65]
      || (DEFAULT_ABI == ABI_AIX && profile_flag)
#ifdef TARGET_RELOCATABLE
      || (TARGET_RELOCATABLE && (get_pool_size () != 0))
#endif
      || (info_ptr->first_fp_reg_save != 64
	  && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save))
      || (abi == ABI_V4 && current_function_calls_alloca)
      || (abi == ABI_SOLARIS && current_function_calls_alloca)
      || info_ptr->calls_p)
    {
      info_ptr->lr_save_p = 1;
      regs_ever_live[65] = 1;
      if (abi == ABI_NT)
	info_ptr->lr_size = reg_size;
    }

  /* Determine if we need to save the condition code registers */
  if (regs_ever_live[70] || regs_ever_live[71] || regs_ever_live[72])
    {
      info_ptr->cr_save_p = 1;
      if (abi == ABI_V4 || abi == ABI_NT || abi == ABI_SOLARIS)
	info_ptr->cr_size = reg_size;
    }

  /* Determine various sizes */
  info_ptr->reg_size     = reg_size;
  info_ptr->fixed_size   = RS6000_SAVE_AREA;
  info_ptr->varargs_size = RS6000_VARARGS_AREA;
  info_ptr->vars_size    = RS6000_ALIGN (get_frame_size (), 8);
  info_ptr->parm_size    = RS6000_ALIGN (current_function_outgoing_args_size, 8);
  info_ptr->fpmem_size	 = (info_ptr->fpmem_p) ? 8 : 0;
  info_ptr->save_size    = RS6000_ALIGN (info_ptr->fp_size
				  + info_ptr->gp_size
				  + info_ptr->cr_size
				  + info_ptr->lr_size
				  + info_ptr->toc_size
				  + info_ptr->main_size, 8);

  /* Calculate the offsets */
  switch (abi)
    {
    case ABI_NONE:
    default:
      abort ();

    case ABI_AIX:
    case ABI_AIX_NODESC:
      info_ptr->fp_save_offset   = - info_ptr->fp_size;
      info_ptr->gp_save_offset   = info_ptr->fp_save_offset - info_ptr->gp_size;
      info_ptr->main_save_offset = info_ptr->gp_save_offset - info_ptr->main_size;
      info_ptr->cr_save_offset   = reg_size; /* first word when 64-bit.  */
      info_ptr->lr_save_offset   = 2*reg_size;
      break;

    case ABI_V4:
    case ABI_SOLARIS:
      info_ptr->fp_save_offset   = - info_ptr->fp_size;
      info_ptr->gp_save_offset   = info_ptr->fp_save_offset - info_ptr->gp_size;
      info_ptr->cr_save_offset   = info_ptr->gp_save_offset - info_ptr->cr_size;
      info_ptr->toc_save_offset  = info_ptr->cr_save_offset - info_ptr->toc_size;
      info_ptr->main_save_offset = info_ptr->toc_save_offset - info_ptr->main_size;
      info_ptr->lr_save_offset   = reg_size;
      break;

    case ABI_NT:
      info_ptr->lr_save_offset    = -reg_size;
      info_ptr->toc_save_offset   = info_ptr->lr_save_offset - info_ptr->lr_size;
      info_ptr->cr_save_offset    = info_ptr->toc_save_offset - info_ptr->toc_size;
      info_ptr->gp_save_offset    = info_ptr->cr_save_offset - info_ptr->cr_size - info_ptr->gp_size + reg_size;
      info_ptr->fp_save_offset    = info_ptr->gp_save_offset - info_ptr->fp_size;
      if (info_ptr->fp_size && ((- info_ptr->fp_save_offset) % 8) != 0)
	info_ptr->fp_save_offset -= reg_size;

      info_ptr->main_save_offset = info_ptr->fp_save_offset - info_ptr->main_size;
      break;
    }

  /* Ensure that fpmem_offset will be aligned to an 8-byte boundary. */
  if (info_ptr->fpmem_p
      && (info_ptr->main_save_offset - info_ptr->fpmem_size) % 8)
    info_ptr->fpmem_size += reg_size;

  total_raw_size	 = (info_ptr->vars_size
			    + info_ptr->parm_size
			    + info_ptr->fpmem_size
			    + info_ptr->save_size
			    + info_ptr->varargs_size
			    + info_ptr->fixed_size);

  info_ptr->total_size   = RS6000_ALIGN (total_raw_size, ABI_STACK_BOUNDARY / BITS_PER_UNIT);

  /* Determine if we need to allocate any stack frame:

     For AIX we need to push the stack if a frame pointer is needed (because
     the stack might be dynamically adjusted), if we are debugging, if we
     make calls, or if the sum of fp_save, gp_save, fpmem, and local variables
     are more than the space needed to save all non-volatile registers:
     32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8 + 18*8 = 288 (GPR13 reserved).

     For V.4 we don't have the stack cushion that AIX uses, but assume that
     the debugger can handle stackless frames.  */

  if (info_ptr->calls_p)
    info_ptr->push_p = 1;

  else if (abi == ABI_V4 || abi == ABI_NT || abi == ABI_SOLARIS)
    info_ptr->push_p = (total_raw_size > info_ptr->fixed_size
			|| (abi == ABI_NT ? info_ptr->lr_save_p
			    : info_ptr->calls_p));

  else
    info_ptr->push_p = (frame_pointer_needed
			|| write_symbols != NO_DEBUG
			|| ((total_raw_size - info_ptr->fixed_size)
			    > (TARGET_32BIT ? 220 : 288)));

  if (info_ptr->fpmem_p)
    {
      info_ptr->fpmem_offset = info_ptr->main_save_offset - info_ptr->fpmem_size;
      rs6000_fpmem_size   = info_ptr->fpmem_size;
      rs6000_fpmem_offset = (info_ptr->push_p
			     ? info_ptr->total_size + info_ptr->fpmem_offset
			     : info_ptr->fpmem_offset);
    }
  else
    info_ptr->fpmem_offset = 0;  

  /* Zero offsets if we're not saving those registers */
  if (info_ptr->fp_size == 0)
    info_ptr->fp_save_offset = 0;

  if (info_ptr->gp_size == 0)
    info_ptr->gp_save_offset = 0;

  if (!info_ptr->lr_save_p)
    info_ptr->lr_save_offset = 0;

  if (!info_ptr->cr_save_p)
    info_ptr->cr_save_offset = 0;

  if (!info_ptr->toc_save_p)
    info_ptr->toc_save_offset = 0;

  if (!info_ptr->main_save_p)
    info_ptr->main_save_offset = 0;

  return info_ptr;
}

void
debug_stack_info (info)
     rs6000_stack_t *info;
{
  const char *abi_string;

  if (!info)
    info = rs6000_stack_info ();

  fprintf (stderr, "\nStack information for function %s:\n",
	   ((current_function_decl && DECL_NAME (current_function_decl))
	    ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
	    : "<unknown>"));

  switch (info->abi)
    {
    default:		 abi_string = "Unknown";	break;
    case ABI_NONE:	 abi_string = "NONE";		break;
    case ABI_AIX:	 abi_string = "AIX";		break;
    case ABI_AIX_NODESC: abi_string = "AIX";		break;
    case ABI_V4:	 abi_string = "V.4";		break;
    case ABI_SOLARIS:	 abi_string = "Solaris";	break;
    case ABI_NT:	 abi_string = "NT";		break;
    }

  fprintf (stderr, "\tABI                 = %5s\n", abi_string);

  if (info->first_gp_reg_save != 32)
    fprintf (stderr, "\tfirst_gp_reg_save   = %5d\n", info->first_gp_reg_save);

  if (info->first_fp_reg_save != 64)
    fprintf (stderr, "\tfirst_fp_reg_save   = %5d\n", info->first_fp_reg_save);

  if (info->lr_save_p)
    fprintf (stderr, "\tlr_save_p           = %5d\n", info->lr_save_p);

  if (info->cr_save_p)
    fprintf (stderr, "\tcr_save_p           = %5d\n", info->cr_save_p);

  if (info->toc_save_p)
    fprintf (stderr, "\ttoc_save_p          = %5d\n", info->toc_save_p);

  if (info->push_p)
    fprintf (stderr, "\tpush_p              = %5d\n", info->push_p);

  if (info->calls_p)
    fprintf (stderr, "\tcalls_p             = %5d\n", info->calls_p);

  if (info->main_p)
    fprintf (stderr, "\tmain_p              = %5d\n", info->main_p);

  if (info->main_save_p)
    fprintf (stderr, "\tmain_save_p         = %5d\n", info->main_save_p);

  if (info->fpmem_p)
    fprintf (stderr, "\tfpmem_p             = %5d\n", info->fpmem_p);

  if (info->gp_save_offset)
    fprintf (stderr, "\tgp_save_offset      = %5d\n", info->gp_save_offset);

  if (info->fp_save_offset)
    fprintf (stderr, "\tfp_save_offset      = %5d\n", info->fp_save_offset);

  if (info->lr_save_offset)
    fprintf (stderr, "\tlr_save_offset      = %5d\n", info->lr_save_offset);

  if (info->cr_save_offset)
    fprintf (stderr, "\tcr_save_offset      = %5d\n", info->cr_save_offset);

  if (info->toc_save_offset)
    fprintf (stderr, "\ttoc_save_offset     = %5d\n", info->toc_save_offset);

  if (info->varargs_save_offset)
    fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);

  if (info->main_save_offset)
    fprintf (stderr, "\tmain_save_offset    = %5d\n", info->main_save_offset);

  if (info->fpmem_offset)
    fprintf (stderr, "\tfpmem_offset        = %5d\n", info->fpmem_offset);

  if (info->total_size)
    fprintf (stderr, "\ttotal_size          = %5d\n", info->total_size);

  if (info->varargs_size)
    fprintf (stderr, "\tvarargs_size        = %5d\n", info->varargs_size);

  if (info->vars_size)
    fprintf (stderr, "\tvars_size           = %5d\n", info->vars_size);

  if (info->parm_size)
    fprintf (stderr, "\tparm_size           = %5d\n", info->parm_size);

  if (info->fpmem_size)
    fprintf (stderr, "\tfpmem_size          = %5d\n", info->fpmem_size);

  if (info->fixed_size)
    fprintf (stderr, "\tfixed_size          = %5d\n", info->fixed_size);

  if (info->gp_size)
    fprintf (stderr, "\tgp_size             = %5d\n", info->gp_size);

  if (info->fp_size)
    fprintf (stderr, "\tfp_size             = %5d\n", info->fp_size);

 if (info->lr_size)
    fprintf (stderr, "\tlr_size             = %5d\n", info->cr_size);

  if (info->cr_size)
    fprintf (stderr, "\tcr_size             = %5d\n", info->cr_size);

 if (info->toc_size)
    fprintf (stderr, "\ttoc_size            = %5d\n", info->toc_size);

 if (info->main_size)
    fprintf (stderr, "\tmain_size           = %5d\n", info->main_size);

  if (info->save_size)
    fprintf (stderr, "\tsave_size           = %5d\n", info->save_size);

  if (info->reg_size != 4)
    fprintf (stderr, "\treg_size            = %5d\n", info->reg_size);

  fprintf (stderr, "\n");
}

/* Write out an instruction to load the TOC_TABLE address into register 30.
   This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
   a constant pool.  */

void
rs6000_output_load_toc_table (file, reg)
     FILE *file;
     int reg;
{
  char buf[256];

#ifdef USING_SVR4_H
  if (TARGET_RELOCATABLE)
    {
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
      fprintf (file, "\tbl ");
      assemble_name (file, buf);
      fprintf (file, "\n");

      /* possibly create the toc section */
      if (!toc_initialized)
	{
	  toc_section ();
	  function_section (current_function_decl);
	}

      /* If not first call in this function, we need to put the
	 different between .LCTOC1 and the address we get to right
	 after the bl.  It will mess up disassembling the instructions
	 but that can't be helped.  We will later need to bias the
	 address before loading.  */
      if (rs6000_pic_func_labelno != rs6000_pic_labelno)
	{
	  const char *init_ptr = TARGET_32BIT ? ".long" : ".quad";
	  char *buf_ptr;

	  ASM_OUTPUT_INTERNAL_LABEL (file, "LCL", rs6000_pic_labelno);

	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
	  STRIP_NAME_ENCODING (buf_ptr, buf);
	  fprintf (file, "\t%s %s-", init_ptr, buf_ptr);

	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
	  fprintf (file, "%s\n", buf_ptr);
	}

      ASM_OUTPUT_INTERNAL_LABEL (file, "LCF", rs6000_pic_labelno);
      fprintf (file, "\tmflr %s\n", reg_names[reg]);

      if (rs6000_pic_func_labelno != rs6000_pic_labelno)
	  asm_fprintf(file, "\t{cal|la} %s,%d(%s)\n", reg_names[reg],
		      (TARGET_32BIT ? 4 : 8), reg_names[reg]);

      asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s,(" : "\tld %s,(",
		   reg_names[0]);
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
      assemble_name (file, buf);
      putc ('-', file);
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
      assemble_name (file, buf);
      fprintf (file, ")(%s)\n", reg_names[reg]);
      asm_fprintf (file, "\t{cax|add} %s,%s,%s\n",
		   reg_names[reg], reg_names[0], reg_names[reg]);
      rs6000_pic_labelno++;
    }
  else if (! TARGET_64BIT)
    {
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
      asm_fprintf (file, "\t{liu|lis} %s,", reg_names[reg]);
      assemble_name (file, buf);
      fputs ("@ha\n", file);
      asm_fprintf (file, "\t{cal|la} %s,", reg_names[reg]);
      assemble_name (file, buf);
      asm_fprintf (file, "@l(%s)\n", reg_names[reg]);
    }
  else
    abort ();

#else	/* !USING_SVR4_H */
  ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 0);
  asm_fprintf (file, TARGET_32BIT ? "\t{l|lwz} %s," : "\tld %s,",
	       reg_names[reg]);
  assemble_name (file, buf);
  asm_fprintf (file, "(%s)\n", reg_names[2]);
#endif /* USING_SVR4_H */
}


/* Emit the correct code for allocating stack space.  If COPY_R12, make sure a copy
   of the old frame is left in r12.  */

void
rs6000_allocate_stack_space (file, size, copy_r12)
     FILE *file;
     int size;
     int copy_r12;
{
  int neg_size = -size;
  if (TARGET_UPDATE)
    {
      if (size < 32767)
	asm_fprintf (file,
		     (TARGET_32BIT) ? "\t{stu|stwu} %s,%d(%s)\n" : "\tstdu %s,%d(%s)\n",
		     reg_names[1], neg_size, reg_names[1]);
      else
	{
	  if (copy_r12)
	    fprintf (file, "\tmr %s,%s\n", reg_names[12], reg_names[1]);

	  asm_fprintf (file, "\t{liu|lis} %s,0x%x\n\t{oril|ori} %s,%s,%d\n",
		       reg_names[0], (neg_size >> 16) & 0xffff,
		       reg_names[0], reg_names[0], neg_size & 0xffff);
	  asm_fprintf (file,
		       (TARGET_32BIT) ? "\t{stux|stwux} %s,%s,%s\n" : "\tstdux %s,%s,%s\n",
		       reg_names[1], reg_names[1], reg_names[0]);
	}
    }
  else
    {
      fprintf (file, "\tmr %s,%s\n", reg_names[12], reg_names[1]);
      if (size < 32767)
	asm_fprintf (file, "\t{cal|la} %s,%d(%s)\n",
		 reg_names[1], neg_size, reg_names[1]);
      else
	{
	  asm_fprintf (file, "\t{liu|lis} %s,0x%x\n\t{oril|ori} %s,%s,%d\n",
		       reg_names[0], (neg_size >> 16) & 0xffff,
		       reg_names[0], reg_names[0], neg_size & 0xffff);
	  asm_fprintf (file, "\t{cax|add} %s,%s,%s\n", reg_names[1],
		       reg_names[0], reg_names[1]);
	}

      asm_fprintf (file,
		   (TARGET_32BIT) ? "\t{st|stw} %s,0(%s)\n" : "\tstd %s,0(%s)\n",
		   reg_names[12], reg_names[1]);
    }
}


/* Write function prologue.  */
void
output_prolog (file, size)
     FILE *file;
     int size ATTRIBUTE_UNUSED;
{
  rs6000_stack_t *info = rs6000_stack_info ();
  int reg_size = info->reg_size;
  const char *store_reg;
  const char *load_reg;
  int sp_reg = 1;
  int sp_offset = 0;

  if (TARGET_32BIT)
    {
      store_reg = "\t{st|stw} %s,%d(%s)\n";
      load_reg = "\t{l|lwz} %s,%d(%s)\n";
    }
  else
    {
      store_reg = "\tstd %s,%d(%s)\n";
      load_reg = "\tlld %s,%d(%s)\n";
    }

  if (TARGET_DEBUG_STACK)
    debug_stack_info (info);

  /* Write .extern for any function we will call to save and restore fp
     values.  */
  if (info->first_fp_reg_save < 64 && !FP_SAVE_INLINE (info->first_fp_reg_save))
    fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n",
	     SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX,
	     RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);

  /* Write .extern for truncation routines, if needed.  */
  if (rs6000_trunc_used && ! trunc_defined)
    {
      fprintf (file, "\t.extern .%s\n\t.extern .%s\n",
	       RS6000_ITRUNC, RS6000_UITRUNC);
      trunc_defined = 1;
    }

  /* Write .extern for AIX common mode routines, if needed.  */
  if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined)
    {
      fputs ("\t.extern __mulh\n", file);
      fputs ("\t.extern __mull\n", file);
      fputs ("\t.extern __divss\n", file);
      fputs ("\t.extern __divus\n", file);
      fputs ("\t.extern __quoss\n", file);
      fputs ("\t.extern __quous\n", file);
      common_mode_defined = 1;
    }

  /* For V.4, update stack before we do any saving and set back pointer.  */
  if (info->push_p && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS))
    {
      if (info->total_size < 32767)
	sp_offset = info->total_size;
      else
	sp_reg = 12;
      rs6000_allocate_stack_space (file, info->total_size, sp_reg == 12);
    }

  /* If we use the link register, get it into r0.  */
  if (info->lr_save_p)
    asm_fprintf (file, "\tmflr %s\n", reg_names[0]);

  /* If we need to save CR, put it into r12.  */
  if (info->cr_save_p && sp_reg != 12)
    asm_fprintf (file, "\tmfcr %s\n", reg_names[12]);

  /* Do any required saving of fpr's.  If only one or two to save, do it
     ourself.  Otherwise, call function.  Note that since they are statically
     linked, we do not need a nop following them.  */
  if (FP_SAVE_INLINE (info->first_fp_reg_save))
    {
      int regno = info->first_fp_reg_save;
      int loc   = info->fp_save_offset + sp_offset;

      for ( ; regno < 64; regno++, loc += 8)
	asm_fprintf (file, "\tstfd %s,%d(%s)\n", reg_names[regno], loc, reg_names[sp_reg]);
    }
  else if (info->first_fp_reg_save != 64)
    asm_fprintf (file, "\tbl %s%d%s\n", SAVE_FP_PREFIX,
		 info->first_fp_reg_save - 32, SAVE_FP_SUFFIX);

  /* Now save gpr's.  */
  if (! TARGET_MULTIPLE || info->first_gp_reg_save == 31 || TARGET_64BIT)
    {
      int regno    = info->first_gp_reg_save;
      int loc      = info->gp_save_offset + sp_offset;

      for ( ; regno < 32; regno++, loc += reg_size)
	asm_fprintf (file, store_reg, reg_names[regno], loc, reg_names[sp_reg]);
    }

  else if (info->first_gp_reg_save != 32)
    asm_fprintf (file, "\t{stm|stmw} %s,%d(%s)\n",
		 reg_names[info->first_gp_reg_save],
		 info->gp_save_offset + sp_offset,
		 reg_names[sp_reg]);

  /* Save main's arguments if we need to call a function */
#ifdef NAME__MAIN
  if (info->main_save_p)
    {
      int regno;
      int loc = info->main_save_offset + sp_offset;
      int size = info->main_size;

      for (regno = 3; size > 0; regno++, loc += reg_size, size -= reg_size)
	asm_fprintf (file, store_reg, reg_names[regno], loc, reg_names[sp_reg]);
    }
#endif

  /* Save lr if we used it.  */
  if (info->lr_save_p)
    asm_fprintf (file, store_reg, reg_names[0], info->lr_save_offset + sp_offset,
		 reg_names[sp_reg]);

  /* Save CR if we use any that must be preserved.  */
  if (info->cr_save_p)
    {
      if (sp_reg == 12)	/* If r12 is used to hold the original sp, copy cr now */
	{
	  asm_fprintf (file, "\tmfcr %s\n", reg_names[0]);
	  asm_fprintf (file, store_reg, reg_names[0],
		       info->cr_save_offset + sp_offset,
		       reg_names[sp_reg]);
	}
      else
	asm_fprintf (file, store_reg, reg_names[12], info->cr_save_offset + sp_offset,
		     reg_names[sp_reg]);
    }

  /* If we need PIC_OFFSET_TABLE_REGNUM, initialize it now */
  if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) 
      && flag_pic == 1 && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
    {
      if (!info->lr_save_p)
	asm_fprintf (file, "\tmflr %s\n", reg_names[0]);

      fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
      asm_fprintf (file, "\tmflr %s\n", reg_names[PIC_OFFSET_TABLE_REGNUM]);

      if (!info->lr_save_p)
	asm_fprintf (file, "\tmtlr %s\n", reg_names[0]);
    }

  /* NT needs us to probe the stack frame every 4k pages for large frames, so
     do it here.  */
  if (DEFAULT_ABI == ABI_NT && info->total_size > 4096)
    {
      if (info->total_size < 32768)
	{
	  int probe_offset = 4096;
	  while (probe_offset < info->total_size)
	    {
	      asm_fprintf (file, "\t{l|lwz} %s,%d(%s)\n", reg_names[0], -probe_offset, reg_names[1]);
	      probe_offset += 4096;
	    }
	}
      else
	{
	  int probe_iterations = info->total_size / 4096;
	  static int probe_labelno = 0;
	  char buf[256];

	  if (probe_iterations < 32768)
	    asm_fprintf (file, "\tli %s,%d\n", reg_names[12], probe_iterations);
	  else
	    {
	      asm_fprintf (file, "\tlis %s,%d\n", reg_names[12], probe_iterations >> 16);
	      if (probe_iterations & 0xffff)
		asm_fprintf (file, "\tori %s,%s,%d\n", reg_names[12], reg_names[12],
			     probe_iterations & 0xffff);
	    }
	  asm_fprintf (file, "\tmtctr %s\n", reg_names[12]);
	  asm_fprintf (file, "\tmr %s,%s\n", reg_names[12], reg_names[1]);
	  ASM_OUTPUT_INTERNAL_LABEL (file, "LCprobe", probe_labelno);
	  asm_fprintf (file, "\t{lu|lwzu} %s,-4096(%s)\n", reg_names[0], reg_names[12]);
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCprobe", probe_labelno++);
	  fputs ("\tbdnz ", file);
	  assemble_name (file, buf);
	  putc ('\n', file);
	}
    }

  /* Update stack and set back pointer unless this is V.4, which was done previously */
  if (info->push_p && DEFAULT_ABI != ABI_V4 && DEFAULT_ABI != ABI_SOLARIS)
    rs6000_allocate_stack_space (file, info->total_size, FALSE);

  /* Set frame pointer, if needed.  */
  if (frame_pointer_needed)
    asm_fprintf (file, "\tmr %s,%s\n", reg_names[31], reg_names[1]);

#ifdef NAME__MAIN
  /* If we need to call a function to set things up for main, do so now
     before dealing with the TOC.  */
  if (info->main_p)
    {
      const char *prefix = "";

      switch (DEFAULT_ABI)
	{
	case ABI_AIX:	prefix = ".";	break;
	case ABI_NT:	prefix = "..";	break;
	}

      fprintf (file, "\tbl %s%s\n", prefix, NAME__MAIN);
#ifdef RS6000_CALL_GLUE2
      fprintf (file, "\t%s%s%s\n", RS6000_CALL_GLUE2, prefix, NAME_MAIN);
#else
#ifdef RS6000_CALL_GLUE
      if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_NT)
	{
	  putc('\t', file);
	  asm_fprintf (file, RS6000_CALL_GLUE);
	  putc('\n', file);
	}
#endif
#endif

      if (info->main_save_p)
	{
	  int regno;
	  int loc;
	  int size = info->main_size;

	  if (info->total_size < 32767)
	    {
	      loc = info->total_size + info->main_save_offset;
	      for (regno = 3; size > 0; regno++, size -= reg_size, loc += reg_size)
		asm_fprintf (file, load_reg, reg_names[regno], loc, reg_names[1]);
	    }
	  else
	    {
	      int neg_size = info->main_save_offset - info->total_size;
	      loc = 0;
	      asm_fprintf (file, "\t{liu|lis} %s,0x%x\n\t{oril|ori} %s,%s,%d\n",
			   reg_names[0], (neg_size >> 16) & 0xffff,
			   reg_names[0], reg_names[0], neg_size & 0xffff);

	      asm_fprintf (file, "\t{sf|subf} %s,%s,%s\n", reg_names[0], reg_names[0],
			   reg_names[1]);

	      for (regno = 3; size > 0; regno++, size -= reg_size, loc += reg_size)
		asm_fprintf (file, load_reg, reg_names[regno], loc, reg_names[0]);
	    }
	}
    }
#endif


  /* If TARGET_MINIMAL_TOC, and the constant pool is needed, then load the
     TOC_TABLE address into register 30.  */
  if (TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0)
    {
#ifdef USING_SVR4_H
      if (!profile_flag)
	rs6000_pic_func_labelno = rs6000_pic_labelno;
#endif
      rs6000_output_load_toc_table (file, 30);
    }

  if (DEFAULT_ABI == ABI_NT)
    {
      assemble_name (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
      fputs (".b:\n", file);
    }
}

/* Write function epilogue.  */

void
output_epilog (file, size)
     FILE *file;
     int size ATTRIBUTE_UNUSED;
{
  rs6000_stack_t *info = rs6000_stack_info ();
  const char *load_reg = (TARGET_32BIT) ? "\t{l|lwz} %s,%d(%s)\n" : "\tld %s,%d(%s)\n";
  rtx insn = get_last_insn ();
  int sp_reg = 1;
  int sp_offset = 0;

  /* If the last insn was a BARRIER, we don't have to write anything except
     the trace table.  */
  if (GET_CODE (insn) == NOTE)
    insn = prev_nonnote_insn (insn);
  if (insn == 0 ||  GET_CODE (insn) != BARRIER)
    {
      /* If we have a frame pointer, a call to alloca,  or a large stack
	 frame, restore the old stack pointer using the backchain.  Otherwise,
	 we know what size to update it with.  */
      if (frame_pointer_needed || current_function_calls_alloca
	  || info->total_size > 32767)
	{
	  /* Under V.4, don't reset the stack pointer until after we're done
	     loading the saved registers.  */
	  if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
	    sp_reg = 11;

	  asm_fprintf (file, load_reg, reg_names[sp_reg], 0, reg_names[1]);
	}
      else if (info->push_p)
	{
	  if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
	    sp_offset = info->total_size;
	  else
	    asm_fprintf (file, "\t{cal|la} %s,%d(%s)\n",
			 reg_names[1], info->total_size, reg_names[1]);
	}

      /* Get the old lr if we saved it.  */
      if (info->lr_save_p)
	asm_fprintf (file, load_reg, reg_names[0], info->lr_save_offset + sp_offset, reg_names[sp_reg]);

      /* Get the old cr if we saved it.  */
      if (info->cr_save_p)
	asm_fprintf (file, load_reg, reg_names[12], info->cr_save_offset + sp_offset, reg_names[sp_reg]);

      /* Set LR here to try to overlap restores below.  */
      if (info->lr_save_p)
	asm_fprintf (file, "\tmtlr %s\n", reg_names[0]);

      /* Restore gpr's.  */
      if (! TARGET_MULTIPLE || info->first_gp_reg_save == 31 || TARGET_64BIT)
	{
	  int regno    = info->first_gp_reg_save;
	  int loc      = info->gp_save_offset + sp_offset;
	  int reg_size = (TARGET_32BIT) ? 4 : 8;

	  for ( ; regno < 32; regno++, loc += reg_size)
	    asm_fprintf (file, load_reg, reg_names[regno], loc, reg_names[sp_reg]);
	}

      else if (info->first_gp_reg_save != 32)
	asm_fprintf (file, "\t{lm|lmw} %s,%d(%s)\n",
		     reg_names[info->first_gp_reg_save],
		     info->gp_save_offset + sp_offset,
		     reg_names[sp_reg]);

      /* Restore fpr's if we can do it without calling a function.  */
      if (FP_SAVE_INLINE (info->first_fp_reg_save))
	{
	  int regno = info->first_fp_reg_save;
	  int loc   = info->fp_save_offset + sp_offset;

	  for ( ; regno < 64; regno++, loc += 8)
	    asm_fprintf (file, "\tlfd %s,%d(%s)\n", reg_names[regno], loc, reg_names[sp_reg]);
	}

      /* If we saved cr, restore it here.  Just those of cr2, cr3, and cr4
	 that were used.  */
      if (info->cr_save_p)
	asm_fprintf (file, "\tmtcrf %d,%s\n",
		     (regs_ever_live[70] != 0) * 0x20
		     + (regs_ever_live[71] != 0) * 0x10
		     + (regs_ever_live[72] != 0) * 0x8, reg_names[12]);

      /* If this is V.4, unwind the stack pointer after all of the loads
	 have been done */
      if (sp_offset != 0)
	asm_fprintf (file, "\t{cal|la} %s,%d(%s)\n",
		     reg_names[1], sp_offset, reg_names[1]);
      else if (sp_reg != 1)
	asm_fprintf (file, "\tmr %s,%s\n", reg_names[1], reg_names[sp_reg]);

      /* If we have to restore more than two FP registers, branch to the
	 restore function.  It will return to our caller.  */
      if (info->first_fp_reg_save != 64 && !FP_SAVE_INLINE (info->first_fp_reg_save))
	asm_fprintf (file, "\tb %s%d%s\n", RESTORE_FP_PREFIX,
		     info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);
      else
	asm_fprintf (file, "\t{br|blr}\n");
    }

  /* Output a traceback table here.  See /usr/include/sys/debug.h for info
     on its format.

     We don't output a traceback table if -finhibit-size-directive was
     used.  The documentation for -finhibit-size-directive reads
     ``don't output a @code{.size} assembler directive, or anything
     else that would cause trouble if the function is split in the
     middle, and the two halves are placed at locations far apart in
     memory.''  The traceback table has this property, since it
     includes the offset from the start of the function to the
     traceback table itself.

     System V.4 Powerpc's (and the embedded ABI derived from it) use a
     different traceback table.  */
  if (DEFAULT_ABI == ABI_AIX && ! flag_inhibit_size_directive)
    {
      char *fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
      int fixed_parms, float_parms, parm_info;
      int i;

      while (*fname == '.')	/* V.4 encodes . in the name */
	fname++;

      /* Need label immediately before tbtab, so we can compute its offset
	 from the function start.  */
      if (*fname == '*')
	++fname;
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
      ASM_OUTPUT_LABEL (file, fname);

      /* The .tbtab pseudo-op can only be used for the first eight
	 expressions, since it can't handle the possibly variable
	 length fields that follow.  However, if you omit the optional
	 fields, the assembler outputs zeros for all optional fields
	 anyways, giving each variable length field is minimum length
	 (as defined in sys/debug.h).  Thus we can not use the .tbtab
	 pseudo-op at all.  */

      /* An all-zero word flags the start of the tbtab, for debuggers
	 that have to find it by searching forward from the entry
	 point or from the current pc.  */
      fputs ("\t.long 0\n", file);

      /* Tbtab format type.  Use format type 0.  */
      fputs ("\t.byte 0,", file);

      /* Language type.  Unfortunately, there doesn't seem to be any
	 official way to get this info, so we use language_string.  C
	 is 0.  C++ is 9.  No number defined for Obj-C, so use the
	 value for C for now.  There is no official value for Java,
         although IBM appears to be using 13.  There is no official value
	 for Chill, so we've choosen 44 pseudo-randomly.  */
      if (! strcmp (language_string, "GNU C")
	  || ! strcmp (language_string, "GNU Obj-C"))
	i = 0;
      else if (! strcmp (language_string, "GNU F77"))
	i = 1;
      else if (! strcmp (language_string, "GNU Ada"))
	i = 3;
      else if (! strcmp (language_string, "GNU Pascal"))
	i = 2;
      else if (! strcmp (language_string, "GNU C++"))
	i = 9;
      else if (! strcmp (language_string, "GNU Java"))
	i = 13;
      else if (! strcmp (language_string, "GNU CHILL"))
	i = 44;
      else
	abort ();
      fprintf (file, "%d,", i);

      /* 8 single bit fields: global linkage (not set for C extern linkage,
	 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
	 from start of procedure stored in tbtab, internal function, function
	 has controlled storage, function has no toc, function uses fp,
	 function logs/aborts fp operations.  */
      /* Assume that fp operations are used if any fp reg must be saved.  */
      fprintf (file, "%d,", (1 << 5) | ((info->first_fp_reg_save != 64) << 1));

      /* 6 bitfields: function is interrupt handler, name present in
	 proc table, function calls alloca, on condition directives
	 (controls stack walks, 3 bits), saves condition reg, saves
	 link reg.  */
      /* The `function calls alloca' bit seems to be set whenever reg 31 is
	 set up as a frame pointer, even when there is no alloca call.  */
      fprintf (file, "%d,",
	       ((1 << 6) | (frame_pointer_needed << 5)
		| (info->cr_save_p << 1) | (info->lr_save_p)));

      /* 3 bitfields: saves backchain, spare bit, number of fpr saved
	 (6 bits).  */
      fprintf (file, "%d,",
	       (info->push_p << 7) | (64 - info->first_fp_reg_save));

      /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits).  */
      fprintf (file, "%d,", (32 - first_reg_to_save ()));

      {
	/* Compute the parameter info from the function decl argument
	   list.  */
	tree decl;
	int next_parm_info_bit;

	next_parm_info_bit = 31;
	parm_info = 0;
	fixed_parms = 0;
	float_parms = 0;

	for (decl = DECL_ARGUMENTS (current_function_decl);
	     decl; decl = TREE_CHAIN (decl))
	  {
	    rtx parameter = DECL_INCOMING_RTL (decl);
	    enum machine_mode mode = GET_MODE (parameter);

	    if (GET_CODE (parameter) == REG)
	      {
		if (GET_MODE_CLASS (mode) == MODE_FLOAT)
		  {
		    int bits;

		    float_parms++;

		    if (mode == SFmode)
		      bits = 0x2;
		    else if (mode == DFmode)
		      bits = 0x3;
		    else
		      abort ();

		    /* If only one bit will fit, don't or in this entry.  */
		    if (next_parm_info_bit > 0)
		      parm_info |= (bits << (next_parm_info_bit - 1));
		    next_parm_info_bit -= 2;
		  }
		else
		  {
		    fixed_parms += ((GET_MODE_SIZE (mode)
				     + (UNITS_PER_WORD - 1))
				    / UNITS_PER_WORD);
		    next_parm_info_bit -= 1;
		  }
	      }
	  }
      }

      /* Number of fixed point parameters.  */
      /* This is actually the number of words of fixed point parameters; thus
	 an 8 byte struct counts as 2; and thus the maximum value is 8.  */
      fprintf (file, "%d,", fixed_parms);

      /* 2 bitfields: number of floating point parameters (7 bits), parameters
	 all on stack.  */
      /* This is actually the number of fp registers that hold parameters;
	 and thus the maximum value is 13.  */
      /* Set parameters on stack bit if parameters are not in their original
	 registers, regardless of whether they are on the stack?  Xlc
	 seems to set the bit when not optimizing.  */
      fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));

      /* Optional fields follow.  Some are variable length.  */

      /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
	 11 double float.  */
      /* There is an entry for each parameter in a register, in the order that
	 they occur in the parameter list.  Any intervening arguments on the
	 stack are ignored.  If the list overflows a long (max possible length
	 34 bits) then completely leave off all elements that don't fit.  */
      /* Only emit this long if there was at least one parameter.  */
      if (fixed_parms || float_parms)
	fprintf (file, "\t.long %d\n", parm_info);

      /* Offset from start of code to tb table.  */
      fputs ("\t.long ", file);
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
      RS6000_OUTPUT_BASENAME (file, fname);
      fputs ("-.", file);
      RS6000_OUTPUT_BASENAME (file, fname);
      putc ('\n', file);

      /* Interrupt handler mask.  */
      /* Omit this long, since we never set the interrupt handler bit
	 above.  */

      /* Number of CTL (controlled storage) anchors.  */
      /* Omit this long, since the has_ctl bit is never set above.  */

      /* Displacement into stack of each CTL anchor.  */
      /* Omit this list of longs, because there are no CTL anchors.  */

      /* Length of function name.  */
      fprintf (file, "\t.short %d\n", (int) strlen (fname));

      /* Function name.  */
      assemble_string (fname, strlen (fname));

      /* Register for alloca automatic storage; this is always reg 31.
	 Only emit this if the alloca bit was set above.  */
      if (frame_pointer_needed)
	fputs ("\t.byte 31\n", file);
    }

  if (DEFAULT_ABI == ABI_NT)
    {
      RS6000_OUTPUT_BASENAME (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
      fputs (".e:\nFE_MOT_RESVD..", file);
      RS6000_OUTPUT_BASENAME (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
      fputs (":\n", file);
    }
}

/* A C compound statement that outputs the assembler code for a thunk function,
   used to implement C++ virtual function calls with multiple inheritance.  The
   thunk acts as a wrapper around a virtual function, adjusting the implicit
   object parameter before handing control off to the real function.

   First, emit code to add the integer DELTA to the location that contains the
   incoming first argument.  Assume that this argument contains a pointer, and
   is the one used to pass the `this' pointer in C++.  This is the incoming
   argument *before* the function prologue, e.g. `%o0' on a sparc.  The
   addition must preserve the values of all other incoming arguments.

   After the addition, emit code to jump to FUNCTION, which is a
   `FUNCTION_DECL'.  This is a direct pure jump, not a call, and does not touch
   the return address.  Hence returning from FUNCTION will return to whoever
   called the current `thunk'.

   The effect must be as if FUNCTION had been called directly with the adjusted
   first argument.  This macro is responsible for emitting all of the code for
   a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
   invoked.

   The THUNK_FNDECL is redundant.  (DELTA and FUNCTION have already been
   extracted from it.)  It might possibly be useful on some targets, but
   probably not.

   If you do not define this macro, the target-independent code in the C++
   frontend will generate a less efficient heavyweight thunk that calls
   FUNCTION instead of jumping to it.  The generic approach does not support
   varargs.  */

void
output_mi_thunk (file, thunk_fndecl, delta, function)
     FILE *file;
     tree thunk_fndecl ATTRIBUTE_UNUSED;
     int delta;
     tree function;
{
  const char *this_reg = reg_names[ aggregate_value_p (TREE_TYPE (TREE_TYPE (function))) ? 4 : 3 ];
  const char *prefix;
  char *fname;
  const char *r0	 = reg_names[0];
  const char *sp	 = reg_names[1];
  const char *toc	 = reg_names[2];
  const char *schain	 = reg_names[11];
  const char *r12	 = reg_names[12];
  char buf[512];
  static int labelno = 0;

  /* Small constants that can be done by one add instruction */
  if (delta >= -32768 && delta <= 32767)
    {
      if (! TARGET_NEW_MNEMONICS)
	fprintf (file, "\tcal %s,%d(%s)\n", this_reg, delta, this_reg);
      else
	fprintf (file, "\taddi %s,%s,%d\n", this_reg, this_reg, delta);
    }

  /* Large constants that can be done by one addis instruction */
  else if ((delta & 0xffff) == 0 && num_insns_constant_wide (delta) == 1)
    asm_fprintf (file, "\t{cau|addis} %s,%s,%d\n", this_reg, this_reg,
		 delta >> 16);

  /* 32-bit constants that can be done by an add and addis instruction.  */
  else if (TARGET_32BIT || num_insns_constant_wide (delta) == 1)
    {
      /* Break into two pieces, propagating the sign bit from the low word to
	 the upper word.  */
      int delta_high = delta >> 16;
      int delta_low  = delta & 0xffff;
      if ((delta_low & 0x8000) != 0)
	{
	  delta_high++;
	  delta_low = (delta_low ^ 0x8000) - 0x8000;	/* sign extend */
	}

      asm_fprintf (file, "\t{cau|addis} %s,%s,%d\n", this_reg, this_reg,
		   delta_high);

      if (! TARGET_NEW_MNEMONICS)
	fprintf (file, "\tcal %s,%d(%s)\n", this_reg, delta_low, this_reg);
      else
	fprintf (file, "\taddi %s,%s,%d\n", this_reg, this_reg, delta_low);
    }

  /* 64-bit constants, fixme */
  else
    abort ();

  /* Get the prefix in front of the names.  */
  switch (DEFAULT_ABI)
    {
    default:
      abort ();

    case ABI_AIX:
      prefix = ".";
      break;

    case ABI_V4:
    case ABI_AIX_NODESC:
    case ABI_SOLARIS:
      prefix = "";
      break;

    case ABI_NT:
      prefix = "..";
      break;
    }

  /* If the function is compiled in this module, jump to it directly.
     Otherwise, load up its address and jump to it.  */

  fname = XSTR (XEXP (DECL_RTL (function), 0), 0);

  if (current_file_function_operand (XEXP (DECL_RTL (function), 0))
      && ! lookup_attribute ("longcall",
			     TYPE_ATTRIBUTES (TREE_TYPE (function))))
    {
      fprintf (file, "\tb %s", prefix);
      assemble_name (file, fname);
      if (DEFAULT_ABI == ABI_V4 && flag_pic) fputs ("@local", file);
      putc ('\n', file);
    }

  else
    {
      switch (DEFAULT_ABI)
	{
	default:
	case ABI_NT:
	  abort ();

	case ABI_AIX:
	  /* Set up a TOC entry for the function.  */
	  ASM_GENERATE_INTERNAL_LABEL (buf, "Lthunk", labelno);
	  toc_section ();
	  ASM_OUTPUT_INTERNAL_LABEL (file, "Lthunk", labelno);
	  labelno++;

	  /* Note, MINIMAL_TOC doesn't make sense in the case of a thunk, since
	     there will be only one TOC entry for this function.  */
	  fputs ("\t.tc\t", file);
	  assemble_name (file, buf);
	  fputs ("[TC],", file);
	  assemble_name (file, buf);
	  putc ('\n', file);
	  text_section ();
	  asm_fprintf (file, (TARGET_32BIT) ? "\t{l|lwz} %s," : "\tld %s", r12);
	  assemble_name (file, buf);
	  asm_fprintf (file, "(%s)\n", reg_names[2]);
	  asm_fprintf (file,
		       (TARGET_32BIT) ? "\t{l|lwz} %s,0(%s)\n" : "\tld %s,0(%s)\n",
		       r0, r12);

	  asm_fprintf (file,
		       (TARGET_32BIT) ? "\t{l|lwz} %s,4(%s)\n" : "\tld %s,8(%s)\n",
		       toc, r12);

	  asm_fprintf (file, "\tmtctr %s\n", r0);
	  asm_fprintf (file,
		       (TARGET_32BIT) ? "\t{l|lwz} %s,8(%s)\n" : "\tld %s,16(%s)\n",
		       schain, r12);

	  asm_fprintf (file, "\tbctr\n");
	  break;

	case ABI_V4:
	  fprintf (file, "\tb %s", prefix);
	  assemble_name (file, fname);
	  if (flag_pic) fputs ("@plt", file);
	  putc ('\n', file);
	  break;
	      
	  /* Don't use r11, that contains the static chain, just use r0/r12.  */
	case ABI_AIX_NODESC:
	case ABI_SOLARIS:
	  if (flag_pic == 1)
	    {
	      fprintf (file, "\tmflr %s\n", r0);
	      fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
	      asm_fprintf (file, "\tmflr %s\n", r12);
	      asm_fprintf (file, "\tmtlr %s\n", r0);
	      asm_fprintf (file, "\t{l|lwz} %s,", r0);
	      assemble_name (file, fname);
	      asm_fprintf (file, "@got(%s)\n", r12);
	      asm_fprintf (file, "\tmtctr %s\n", r0);
	      asm_fprintf (file, "\tbctr\n");
	    }
#if TARGET_ELF
	  else if (flag_pic > 1 || TARGET_RELOCATABLE)
	    {
	      ASM_GENERATE_INTERNAL_LABEL (buf, "Lthunk", labelno);
	      labelno++;
	      fprintf (file, "\tmflr %s\n", r0);
	      asm_fprintf (file, "\t{st|stw} %s,4(%s)\n", r0, sp);
	      rs6000_pic_func_labelno = rs6000_pic_labelno;
	      rs6000_output_load_toc_table (file, 12);
	      asm_fprintf (file, "\t{l|lwz} %s,", r0);
	      assemble_name (file, buf);
	      asm_fprintf (file, "(%s)\n", r12);
	      asm_fprintf (file, "\t{l|lwz} %s,4(%s)\n", r12, sp);
	      asm_fprintf (file, "\tmtlr %s\n", r12);
	      asm_fprintf (file, "\tmtctr %s\n", r0);
	      asm_fprintf (file, "\tbctr\n");
	      asm_fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
	      assemble_name (file, buf);
	      fputs (" = .-.LCTOC1\n", file);
	      fputs ("\t.long ", file);
	      assemble_name (file, fname);
	      fputs ("\n\t.previous\n", file);
	    }
#endif	/* TARGET_ELF */

	  else
	    {
	      asm_fprintf (file, "\t{liu|lis} %s,", r12);
	      assemble_name (file, fname);
	      asm_fprintf (file, "@ha\n");
	      asm_fprintf (file, "\t{cal|la} %s,", r12);
	      assemble_name (file, fname);
	      asm_fprintf (file, "@l(%s)\n", r12);
	      asm_fprintf (file, "\tmtctr %s\n", r12);
	      asm_fprintf (file, "\tbctr\n");
	    }

	  break;
	}
    }
}


/* Output a TOC entry.  We derive the entry name from what is
   being written.  */

void
output_toc (file, x, labelno)
     FILE *file;
     rtx x;
     int labelno;
{
  char buf[256];
  char *name = buf;
  char *real_name;
  rtx base = x;
  int offset = 0;

  if (TARGET_NO_TOC)
    abort ();

  /* if we're going to put a double constant in the TOC, make sure it's
     aligned properly when strict alignment is on. */
  if (GET_CODE (x) == CONST_DOUBLE
      && STRICT_ALIGNMENT
      && GET_MODE (x) == DFmode
      && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
    ASM_OUTPUT_ALIGN (file, 3);
  }


  if (TARGET_ELF && TARGET_MINIMAL_TOC)
    {
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
      fprintf (file, "%d = .-", labelno);
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCTOC");
      fputs ("1\n", file);
    }
  else
    ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

  /* Handle FP constants specially.  Note that if we have a minimal
     TOC, things we put here aren't actually in the TOC, so we can allow
     FP constants.  */
  if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode
      && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC))
    {
      REAL_VALUE_TYPE rv;
      long k[2];

      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
      if (TARGET_64BIT)
	{
	  if (TARGET_MINIMAL_TOC)
	    fprintf (file, "\t.llong 0x%lx%08lx\n", k[0], k[1]);
	  else
	    fprintf (file, "\t.tc FD_%lx_%lx[TC],0x%lx%08lx\n",
		     k[0], k[1], k[0] & 0xffffffff, k[1] & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_MINIMAL_TOC)
	    fprintf (file, "\t.long %ld\n\t.long %ld\n", k[0], k[1]);
	  else
	    fprintf (file, "\t.tc FD_%lx_%lx[TC],%ld,%ld\n",
		     k[0], k[1], k[0], k[1]);
	  return;
	}
    }
  else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode
	   && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC))
    {
      REAL_VALUE_TYPE rv;
      long l;

      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      REAL_VALUE_TO_TARGET_SINGLE (rv, l);

      if (TARGET_MINIMAL_TOC)
	fprintf (file, TARGET_32BIT ? "\t.long %ld\n" : "\t.llong %ld\n", l);
      else
	fprintf (file, "\t.tc FS_%lx[TC],%ld\n", l, l);
      return;
    }
  else if (GET_MODE (x) == DImode
	   && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
	   && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC))
    {
      HOST_WIDE_INT low;
      HOST_WIDE_INT high;

      if (GET_CODE (x) == CONST_DOUBLE)
	{
	  low = CONST_DOUBLE_LOW (x);
	  high = CONST_DOUBLE_HIGH (x);
	}
      else
#if HOST_BITS_PER_WIDE_INT == 32
	{
	  low = INTVAL (x);
	  high = (low < 0) ? ~0 : 0;
	}
#else
	{
          low = INTVAL (x) & 0xffffffff;
          high = (HOST_WIDE_INT) INTVAL (x) >> 32;
	}
#endif

      if (TARGET_64BIT)
	{
	  if (TARGET_MINIMAL_TOC)
	    fprintf (file, "\t.llong 0x%lx%08lx\n", (long)high, (long)low);
	  else
	    fprintf (file, "\t.tc ID_%lx_%lx[TC],0x%lx%08lx\n",
		     (long)high, (long)low, (long)high, (long)low);
	  return;
	}
      else
	{
	  if (TARGET_MINIMAL_TOC)
	    fprintf (file, "\t.long %ld\n\t.long %ld\n",
		     (long)high, (long)low);
	  else
	    fprintf (file, "\t.tc ID_%lx_%lx[TC],%ld,%ld\n",
		     (long)high, (long)low, (long)high, (long)low);
	  return;
	}
    }

  if (GET_CODE (x) == CONST)
    {
      base = XEXP (XEXP (x, 0), 0);
      offset = INTVAL (XEXP (XEXP (x, 0), 1));
    }
  
  if (GET_CODE (base) == SYMBOL_REF)
    name = XSTR (base, 0);
  else if (GET_CODE (base) == LABEL_REF)
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (base, 0)));
  else if (GET_CODE (base) == CODE_LABEL)
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
  else
    abort ();

  STRIP_NAME_ENCODING (real_name, name);
  if (TARGET_MINIMAL_TOC)
    fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", file);
  else
    {
      fprintf (file, "\t.tc %s", real_name);

      if (offset < 0)
	fprintf (file, ".N%d", - offset);
      else if (offset)
	fprintf (file, ".P%d", offset);

      fputs ("[TC],", file);
    }

  /* Currently C++ toc references to vtables can be emitted before it
     is decided whether the vtable is public or private.  If this is
     the case, then the linker will eventually complain that there is
     a TOC reference to an unknown section.  Thus, for vtables only,
     we emit the TOC reference to reference the symbol and not the
     section.  */
  if (!strncmp ("_vt.", name, 4))
    {
      RS6000_OUTPUT_BASENAME (file, name);
      if (offset < 0)
	fprintf (file, "%d", offset);
      else if (offset > 0)
	fprintf (file, "+%d", offset);
    }
  else
    output_addr_const (file, x);
  putc ('\n', file);
}

/* Output an assembler pseudo-op to write an ASCII string of N characters
   starting at P to FILE.

   On the RS/6000, we have to do this using the .byte operation and
   write out special characters outside the quoted string.
   Also, the assembler is broken; very long strings are truncated,
   so we must artificially break them up early. */

void
output_ascii (file, p, n)
     FILE *file;
     const char *p;
     int n;
{
  char c;
  int i, count_string;
  const char *for_string = "\t.byte \"";
  const char *for_decimal = "\t.byte ";
  const char *to_close = NULL;

  count_string = 0;
  for (i = 0; i < n; i++)
    {
      c = *p++;
      if (c >= ' ' && c < 0177)
	{
	  if (for_string)
	    fputs (for_string, file);
	  putc (c, file);

	  /* Write two quotes to get one.  */
	  if (c == '"')
	    {
	      putc (c, file);
	      ++count_string;
	    }

	  for_string = NULL;
	  for_decimal = "\"\n\t.byte ";
	  to_close = "\"\n";
	  ++count_string;

	  if (count_string >= 512)
	    {
	      fputs (to_close, file);

	      for_string = "\t.byte \"";
	      for_decimal = "\t.byte ";
	      to_close = NULL;
	      count_string = 0;
	    }
	}
      else
	{
	  if (for_decimal)
	    fputs (for_decimal, file);
	  fprintf (file, "%d", c);

	  for_string = "\n\t.byte \"";
	  for_decimal = ", ";
	  to_close = "\n";
	  count_string = 0;
	}
    }

  /* Now close the string if we have written one.  Then end the line.  */
  if (to_close)
    fprintf (file, to_close);
}

/* Generate a unique section name for FILENAME for a section type
   represented by SECTION_DESC.  Output goes into BUF.

   SECTION_DESC can be any string, as long as it is different for each
   possible section type.

   We name the section in the same manner as xlc.  The name begins with an
   underscore followed by the filename (after stripping any leading directory
   names) with the last period replaced by the string SECTION_DESC.  If
   FILENAME does not contain a period, SECTION_DESC is appended to the end of
   the name.  */

void
rs6000_gen_section_name (buf, filename, section_desc)
     char **buf;
     char *filename;
     char *section_desc;
{
  char *q, *after_last_slash, *last_period = 0;
  char *p;
  int len;

  after_last_slash = filename;
  for (q = filename; *q; q++)
    {
      if (*q == '/')
	after_last_slash = q + 1;
      else if (*q == '.')
	last_period = q;
    }

  len = strlen (after_last_slash) + strlen (section_desc) + 2;
  *buf = (char *) permalloc (len);

  p = *buf;
  *p++ = '_';

  for (q = after_last_slash; *q; q++)
    {
      if (q == last_period)
        {
	  strcpy (p, section_desc);
	  p += strlen (section_desc);
        }

      else if (ISALNUM (*q))
        *p++ = *q;
    }

  if (last_period == 0)
    strcpy (p, section_desc);
  else
    *p = '\0';
}

/* Write function profiler code. */

void
output_function_profiler (file, labelno)
  FILE *file;
  int labelno;
{
  /* The last used parameter register.  */
  int last_parm_reg;
  int i, j;
  char buf[100];

  ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
  switch (DEFAULT_ABI)
    {
    default:
      abort ();

    case ABI_V4:
    case ABI_SOLARIS:
    case ABI_AIX_NODESC:
      fprintf (file, "\tmflr %s\n", reg_names[0]);
      if (flag_pic == 1)
	{
	  fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
	  asm_fprintf (file, "\t{l|lwz} %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@got(%s)\n", reg_names[12]);
	}
#if TARGET_ELF
      else if (flag_pic > 1 || TARGET_RELOCATABLE)
	{
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  rs6000_pic_func_labelno = rs6000_pic_labelno;
	  rs6000_output_load_toc_table (file, 12);
	  asm_fprintf (file, "\t{l|lwz} %s,", reg_names[12]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "X(%s)\n", reg_names[12]);
	  asm_fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
	  assemble_name (file, buf);
	  fputs ("X = .-.LCTOC1\n", file);
	  fputs ("\t.long ", file);
	  assemble_name (file, buf);
	  fputs ("\n\t.previous\n", file);
	}
#endif
      else
	{
	  asm_fprintf (file, "\t{liu|lis} %s,", reg_names[12]);
	  assemble_name (file, buf);
	  fputs ("@ha\n", file);
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\t{cal|la} %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@l(%s)\n", reg_names[12]);
	}

      if (current_function_needs_context)
	asm_fprintf (file, "\tmr %s,%s\n",
		     reg_names[30], reg_names[STATIC_CHAIN_REGNUM]);
      fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
      if (current_function_needs_context)
	asm_fprintf (file, "\tmr %s,%s\n",
		     reg_names[STATIC_CHAIN_REGNUM], reg_names[30]);
      break;

    case ABI_AIX:
      /* Set up a TOC entry for the profiler label.  */
      toc_section ();
      ASM_OUTPUT_INTERNAL_LABEL (file, "LPC", labelno);
      if (TARGET_MINIMAL_TOC)
	{
	  fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", file);
	  assemble_name (file, buf);
	  putc ('\n', file);
	}
      else
	{
	  fputs ("\t.tc\t", file);
	  assemble_name (file, buf);
	  fputs ("[TC],", file);
	  assemble_name (file, buf);
	  putc ('\n', file);
	}
      text_section ();

  /* Figure out last used parameter register.  The proper thing to do is
     to walk incoming args of the function.  A function might have live
     parameter registers even if it has no incoming args.  */

      for (last_parm_reg = 10;
	   last_parm_reg > 2 && ! regs_ever_live [last_parm_reg];
	   last_parm_reg--)
	;

  /* Save parameter registers in regs 23-30 and static chain in r22.
     Don't overwrite reg 31, since it might be set up as the frame pointer.  */

      for (i = 3, j = 30; i <= last_parm_reg; i++, j--)
	asm_fprintf (file, "\tmr %d,%d\n", j, i);
      if (current_function_needs_context)
	asm_fprintf (file, "\tmr %d,%d\n", j, STATIC_CHAIN_REGNUM);

  /* Load location address into r3, and call mcount.  */

      ASM_GENERATE_INTERNAL_LABEL (buf, "LPC", labelno);
      asm_fprintf (file, TARGET_32BIT ? "\t{l|lwz} %s," : "\tld %s,",
		   reg_names[3]);
      assemble_name (file, buf);
      asm_fprintf (file, "(%s)\n\tbl %s\n\t", reg_names[2], RS6000_MCOUNT);
      asm_fprintf (file, RS6000_CALL_GLUE);
      putc('\n', file);

  /* Restore parameter registers and static chain.  */

      for (i = 3, j = 30; i <= last_parm_reg; i++, j--)
	asm_fprintf (file, "\tmr %d,%d\n", i, j);
      if (current_function_needs_context)
	asm_fprintf (file, "\tmr %d,%d\n", STATIC_CHAIN_REGNUM, j);

      break;
    }
}

/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.  */

int
rs6000_adjust_cost (insn, link, dep_insn, cost)
     rtx insn;
     rtx link;
     rtx dep_insn ATTRIBUTE_UNUSED;
     int cost;
{
  if (! recog_memoized (insn))
    return 0;

  if (REG_NOTE_KIND (link) != 0)
    return 0;

  if (REG_NOTE_KIND (link) == 0)
    {
      /* Data dependency; DEP_INSN writes a register that INSN reads some
	 cycles later.  */

      /* Tell the first scheduling pass about the latency between a mtctr
	 and bctr (and mtlr and br/blr).  The first scheduling pass will not
	 know about this latency since the mtctr instruction, which has the
	 latency associated to it, will be generated by reload.  */
      if (get_attr_type (insn) == TYPE_JMPREG)
	return TARGET_POWER ? 5 : 4;

      /* Fall out to return default cost.  */
    }

  return cost;
}

/* A C statement (sans semicolon) to update the integer scheduling priority
   INSN_PRIORITY (INSN).  Reduce the priority to execute the INSN earlier,
   increase the priority to execute INSN later.  Do not define this macro if
   you do not need to adjust the scheduling priorities of insns.  */

int
rs6000_adjust_priority (insn, priority)
     rtx insn ATTRIBUTE_UNUSED;
     int priority;
{
  /* On machines (like the 750) which have asymetric integer units, where one
     integer unit can do multiply and divides and the other can't, reduce the
     priority of multiply/divide so it is scheduled before other integer
     operationss.  */

#if 0
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    return priority;

  if (GET_CODE (PATTERN (insn)) == USE)
    return priority;

  switch (rs6000_cpu_attr) {
  case CPU_PPC750:
    switch (get_attr_type (insn))
      {
      default:
	break;

      case TYPE_IMUL:
      case TYPE_IDIV:
	fprintf (stderr, "priority was %#x (%d) before adjustment\n", priority, priority);
	if (priority >= 0 && priority < 0x01000000)
	  priority >>= 3;
	break;
      }
  }
#endif

  return priority;
}

/* Return how many instructions the machine can issue per cycle */
int get_issue_rate()
{
  switch (rs6000_cpu_attr) {
  case CPU_RIOS1:
    return 3;       /* ? */
  case CPU_RIOS2:
    return 4;
  case CPU_PPC601:
    return 3;       /* ? */
  case CPU_PPC603:
    return 2; 
  case CPU_PPC750:
    return 2; 
  case CPU_PPC604:
    return 4;
  case CPU_PPC604E:
    return 4;
  case CPU_PPC620:
    return 4;
  default:
    return 1;
  }
}


/* Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.

   The trampoline should set the static chain pointer to value placed
   into the trampoline and should branch to the specified routine.  */

void
rs6000_trampoline_template (file)
     FILE *file;
{
  const char *sc = reg_names[STATIC_CHAIN_REGNUM];
  const char *r0 = reg_names[0];
  const char *r2 = reg_names[2];

  switch (DEFAULT_ABI)
    {
    default:
      abort ();

    /* Under AIX, this is not code at all, but merely a data area,
       since that is the way all functions are called.  The first word is
       the address of the function, the second word is the TOC pointer (r2),
       and the third word is the static chain value.  */
    case ABI_AIX:
      break;


    /* V.4/eabi function pointers are just a single pointer, so we need to
       do the full gory code to load up the static chain.  */
    case ABI_V4:
    case ABI_SOLARIS:
    case ABI_AIX_NODESC:
      break;

  /* NT function pointers point to a two word area (real address, TOC)
     which unfortunately does not include a static chain field.  So we
     use the function field to point to ..LTRAMP1 and the toc field
     to point to the whole table.  */
    case ABI_NT:
      if (STATIC_CHAIN_REGNUM == 0
	  || STATIC_CHAIN_REGNUM == 2
	  || TARGET_64BIT
	  || !TARGET_NEW_MNEMONICS)
	abort ();

      fprintf (file, "\t.ualong 0\n");			/* offset  0 */
      fprintf (file, "\t.ualong 0\n");			/* offset  4 */
      fprintf (file, "\t.ualong 0\n");			/* offset  8 */
      fprintf (file, "\t.ualong 0\n");			/* offset 12 */
      fprintf (file, "\t.ualong 0\n");			/* offset 16 */
      fprintf (file, "..LTRAMP1..0:\n");		/* offset 20 */
      fprintf (file, "\tlwz %s,8(%s)\n", r0, r2);	/* offset 24 */
      fprintf (file, "\tlwz %s,12(%s)\n", sc, r2);	/* offset 28 */
      fprintf (file, "\tmtctr %s\n", r0);		/* offset 32 */
      fprintf (file, "\tlwz %s,16(%s)\n", r2, r2);	/* offset 36 */
      fprintf (file, "\tbctr\n");			/* offset 40 */
      break;
    }

  return;
}

/* Length in units of the trampoline for entering a nested function.  */

int
rs6000_trampoline_size ()
{
  int ret = 0;

  switch (DEFAULT_ABI)
    {
    default:
      abort ();

    case ABI_AIX:
      ret = (TARGET_32BIT) ? 12 : 24;
      break;

    case ABI_V4:
    case ABI_SOLARIS:
    case ABI_AIX_NODESC:
      ret = (TARGET_32BIT) ? 40 : 48;
      break;

    case ABI_NT:
      ret = 20;
      break;
    }

  return ret;
}

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */

void
rs6000_initialize_trampoline (addr, fnaddr, cxt)
     rtx addr;
     rtx fnaddr;
     rtx cxt;
{
  enum machine_mode pmode = Pmode;
  int regsize = (TARGET_32BIT) ? 4 : 8;
  rtx ctx_reg = force_reg (pmode, cxt);

  switch (DEFAULT_ABI)
    {
    default:
      abort ();

/* Macros to shorten the code expansions below.  */
#define MEM_DEREF(addr) gen_rtx_MEM (pmode, memory_address (pmode, addr))
#define MEM_PLUS(addr,offset) gen_rtx_MEM (pmode, memory_address (pmode, plus_constant (addr, offset)))

    /* Under AIX, just build the 3 word function descriptor */
    case ABI_AIX:
      {
	rtx fn_reg = gen_reg_rtx (pmode);
	rtx toc_reg = gen_reg_rtx (pmode);
	emit_move_insn (fn_reg, MEM_DEREF (fnaddr));
	emit_move_insn (toc_reg, MEM_PLUS (fnaddr, 4));
	emit_move_insn (MEM_DEREF (addr), fn_reg);
	emit_move_insn (MEM_PLUS (addr, regsize), toc_reg);
	emit_move_insn (MEM_PLUS (addr, 2*regsize), ctx_reg);
      }
      break;

    /* Under V.4/eabi, call __trampoline_setup to do the real work.  */
    case ABI_V4:
    case ABI_SOLARIS:
    case ABI_AIX_NODESC:
      emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"),
			 FALSE, VOIDmode, 4,
			 addr, pmode,
			 GEN_INT (rs6000_trampoline_size ()), SImode,
			 fnaddr, pmode,
			 ctx_reg, pmode);
      break;

    /* Under NT, update the first word to point to the ..LTRAMP1..0 header,
       the second word will point to the whole trampoline, third-fifth words
       will then have the real address, static chain, and toc value.  */
    case ABI_NT:
      {
	rtx tramp_reg = gen_reg_rtx (pmode);
	rtx fn_reg = gen_reg_rtx (pmode);
	rtx toc_reg = gen_reg_rtx (pmode);

	emit_move_insn (tramp_reg, gen_rtx_SYMBOL_REF (pmode, "..LTRAMP1..0"));
	addr = force_reg (pmode, addr);
	emit_move_insn (fn_reg, MEM_DEREF (fnaddr));
	emit_move_insn (toc_reg, MEM_PLUS (fnaddr, regsize));
	emit_move_insn (MEM_DEREF (addr), tramp_reg);
	emit_move_insn (MEM_PLUS (addr, regsize), addr);
	emit_move_insn (MEM_PLUS (addr, 2*regsize), fn_reg);
	emit_move_insn (MEM_PLUS (addr, 3*regsize), ctx_reg);
	emit_move_insn (MEM_PLUS (addr, 4*regsize), gen_rtx_REG (pmode, 2));
      }
      break;
    }

  return;
}


/* If defined, a C expression whose value is nonzero if IDENTIFIER
   with arguments ARGS is a valid machine specific attribute for DECL.
   The attributes in ATTRIBUTES have previously been assigned to DECL.  */

int
rs6000_valid_decl_attribute_p (decl, attributes, identifier, args)
     tree decl ATTRIBUTE_UNUSED;
     tree attributes ATTRIBUTE_UNUSED;
     tree identifier ATTRIBUTE_UNUSED;
     tree args ATTRIBUTE_UNUSED;
{
  return 0;
}

/* If defined, a C expression whose value is nonzero if IDENTIFIER
   with arguments ARGS is a valid machine specific attribute for TYPE.
   The attributes in ATTRIBUTES have previously been assigned to TYPE.  */

int
rs6000_valid_type_attribute_p (type, attributes, identifier, args)
     tree type;
     tree attributes ATTRIBUTE_UNUSED;
     tree identifier;
     tree args;
{
  if (TREE_CODE (type) != FUNCTION_TYPE
      && TREE_CODE (type) != FIELD_DECL
      && TREE_CODE (type) != TYPE_DECL)
    return 0;

  /* Longcall attribute says that the function is not within 2**26 bytes
     of the current function, and to do an indirect call.  */
  if (is_attribute_p ("longcall", identifier))
    return (args == NULL_TREE);

  if (DEFAULT_ABI == ABI_NT)
    {
      /* Stdcall attribute says callee is responsible for popping arguments
	 if they are not variable.  */
      if (is_attribute_p ("stdcall", identifier))
	return (args == NULL_TREE);

      /* Cdecl attribute says the callee is a normal C declaration */
      if (is_attribute_p ("cdecl", identifier))
	return (args == NULL_TREE);

      /* Dllimport attribute says the caller is to call the function
	 indirectly through a __imp_<name> pointer.  */
      if (is_attribute_p ("dllimport", identifier))
	return (args == NULL_TREE);

      /* Dllexport attribute says the callee is to create a __imp_<name>
	 pointer.  */
      if (is_attribute_p ("dllexport", identifier))
	return (args == NULL_TREE);

      /* Exception attribute allows the user to specify 1-2 strings or identifiers
	 that will fill in the 3rd and 4th fields of the structured exception
	 table.  */
      if (is_attribute_p ("exception", identifier))
	{
	  int i;

	  if (args == NULL_TREE)
	    return 0;

	  for (i = 0; i < 2 && args != NULL_TREE; i++)
	    {
	      tree this_arg = TREE_VALUE (args);
	      args = TREE_PURPOSE (args);

	      if (TREE_CODE (this_arg) != STRING_CST
		  && TREE_CODE (this_arg) != IDENTIFIER_NODE)
		return 0;
	    }

	  return (args == NULL_TREE);
	}
    }

  return 0;
}

/* If defined, a C expression whose value is zero if the attributes on
   TYPE1 and TYPE2 are incompatible, one if they are compatible, and
   two if they are nearly compatible (which causes a warning to be
   generated).  */

int
rs6000_comp_type_attributes (type1, type2)
     tree type1 ATTRIBUTE_UNUSED;
     tree type2 ATTRIBUTE_UNUSED;
{
  return 1;
}

/* If defined, a C statement that assigns default attributes to newly
   defined TYPE.  */

void
rs6000_set_default_type_attributes (type)
     tree type ATTRIBUTE_UNUSED;
{
}

/* Return a dll import reference corresponding to a call's SYMBOL_REF */
struct rtx_def *
rs6000_dll_import_ref (call_ref)
     rtx call_ref;
{
  const char *call_name;
  int len;
  char *p;
  rtx reg1, reg2;
  tree node;

  if (GET_CODE (call_ref) != SYMBOL_REF)
    abort ();

  call_name = XSTR (call_ref, 0);
  len = sizeof ("__imp_") + strlen (call_name);
  p = alloca (len);
  reg2 = gen_reg_rtx (Pmode);

  strcpy (p, "__imp_");
  strcat (p, call_name);
  node = get_identifier (p);

  reg1 = force_reg (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node)));
  emit_move_insn (reg2, gen_rtx_MEM (Pmode, reg1));

  return reg2;
}

/* Return a reference suitable for calling a function with the longcall attribute.  */
struct rtx_def *
rs6000_longcall_ref (call_ref)
     rtx call_ref;
{
  const char *call_name;
  tree node;

  if (GET_CODE (call_ref) != SYMBOL_REF)
    return call_ref;

  /* System V adds '.' to the internal name, so skip them.  */
  call_name = XSTR (call_ref, 0);
  if (*call_name == '.')
    {
      while (*call_name == '.')
	call_name++;

      node = get_identifier (call_name);
      call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
    }

  return force_reg (Pmode, call_ref);
}


/* A C statement or statements to switch to the appropriate section
   for output of RTX in mode MODE.  You can assume that RTX is some
   kind of constant in RTL.  The argument MODE is redundant except in
   the case of a `const_int' rtx.  Select the section by calling
   `text_section' or one of the alternatives for other sections.

   Do not define this macro if you put all constants in the read-only
   data section.  */

#ifdef USING_SVR4_H

void
rs6000_select_rtx_section (mode, x)
     enum machine_mode mode;
     rtx x;
{
  if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x))
    toc_section ();
  else
    const_section ();
}

/* A C statement or statements to switch to the appropriate
   section for output of DECL.  DECL is either a `VAR_DECL' node
   or a constant of some sort.  RELOC indicates whether forming
   the initial value of DECL requires link-time relocations.  */

void
rs6000_select_section (decl, reloc)
     tree decl;
     int reloc;
{
  int size = int_size_in_bytes (TREE_TYPE (decl));

  if (TREE_CODE (decl) == STRING_CST)
    {
      if (! flag_writable_strings)
	const_section ();
      else
	data_section ();
    }
  else if (TREE_CODE (decl) == VAR_DECL)
    {
      if ((flag_pic && reloc)
	  || !TREE_READONLY (decl)
	  || TREE_SIDE_EFFECTS (decl)
	  || !DECL_INITIAL (decl)
	  || (DECL_INITIAL (decl) != error_mark_node
	      && !TREE_CONSTANT (DECL_INITIAL (decl))))
	{
	  if (rs6000_sdata != SDATA_NONE && (size > 0) && (size <= g_switch_value))
	    sdata_section ();
	  else
	    data_section ();
	}
      else
	{
	  if (rs6000_sdata != SDATA_NONE && (size > 0) && (size <= g_switch_value))
	    {
	      if (rs6000_sdata == SDATA_EABI)
		sdata2_section ();
	      else
		sdata_section ();	/* System V doesn't have .sdata2/.sbss2 */
	    }
	  else
	    const_section ();
	}
    }
  else
    const_section ();
}



/* If we are referencing a function that is static or is known to be
   in this file, make the SYMBOL_REF special.  We can use this to indicate
   that we can branch to this function without emitting a no-op after the
   call.  For real AIX and NT calling sequences, we also replace the
   function name with the real name (1 or 2 leading .'s), rather than
   the function descriptor name.  This saves a lot of overriding code
   to read the prefixes.  */

void
rs6000_encode_section_info (decl)
     tree decl;
{
  if (TREE_CODE (decl) == FUNCTION_DECL)
    {
      rtx sym_ref = XEXP (DECL_RTL (decl), 0);
      if (TREE_ASM_WRITTEN (decl) || ! TREE_PUBLIC (decl))
	SYMBOL_REF_FLAG (sym_ref) = 1;

      if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_NT)
	{
	  const char *prefix = (DEFAULT_ABI == ABI_AIX) ? "." : "..";
	  char *str = permalloc (strlen (prefix) + 1
				 + strlen (XSTR (sym_ref, 0)));
	  strcpy (str, prefix);
	  strcat (str, XSTR (sym_ref, 0));
	  XSTR (sym_ref, 0) = str;
	}
    }
  else if (rs6000_sdata != SDATA_NONE
	   && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS)
	   && TREE_CODE (decl) == VAR_DECL)
    {
      int size = int_size_in_bytes (TREE_TYPE (decl));
      tree section_name = DECL_SECTION_NAME (decl);
      const char *name = (char *)0;
      int len = 0;

      if (section_name)
	{
	  if (TREE_CODE (section_name) == STRING_CST)
	    {
	      name = TREE_STRING_POINTER (section_name);
	      len = TREE_STRING_LENGTH (section_name);
	    }
	  else
	    abort ();
	}

      if ((size > 0 && size <= g_switch_value)
	  || (name
	      && ((len == sizeof (".sdata")-1 && strcmp (name, ".sdata") == 0)
		  || (len == sizeof (".sdata2")-1 && strcmp (name, ".sdata2") == 0)
		  || (len == sizeof (".sbss")-1 && strcmp (name, ".sbss") == 0)
		  || (len == sizeof (".sbss2")-1 && strcmp (name, ".sbss2") == 0)
		  || (len == sizeof (".PPC.EMB.sdata0")-1 && strcmp (name, ".PPC.EMB.sdata0") == 0)
		  || (len == sizeof (".PPC.EMB.sbss0")-1 && strcmp (name, ".PPC.EMB.sbss0") == 0))))
	{
	  rtx sym_ref = XEXP (DECL_RTL (decl), 0);
	  char *str = permalloc (2 + strlen (XSTR (sym_ref, 0)));
	  strcpy (str, "@");
	  strcat (str, XSTR (sym_ref, 0));
	  XSTR (sym_ref, 0) = str;
	}
    }
}

#endif /* USING_SVR4_H */


/* Return a REG that occurs in ADDR with coefficient 1.
   ADDR can be effectively incremented by incrementing REG.  */

struct rtx_def *
find_addr_reg (addr)
     rtx addr;
{
  while (GET_CODE (addr) == PLUS)
    {
      if (GET_CODE (XEXP (addr, 0)) == REG)
	addr = XEXP (addr, 0);
      else if (GET_CODE (XEXP (addr, 1)) == REG)
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 0)))
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 1)))
	addr = XEXP (addr, 0);
      else
	abort ();
    }
  if (GET_CODE (addr) == REG)
    return addr;
  abort ();
}

void
rs6000_fatal_bad_address (op)
  rtx op;
{
  fatal_insn ("bad address", op);
}