aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/rs6000/rs6000-string.c
blob: b71a4a3aa114214e8949e2a3e75c2c599d18b8cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
/* Subroutines used to expand string and block move, clear,
   compare and other operations for PowerPC.
   Copyright (C) 1991-2017 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ira.h"
#include "print-tree.h"
#include "varasm.h"
#include "explow.h"
#include "expr.h"
#include "output.h"

/* Expand a block clear operation, and return 1 if successful.  Return 0
   if we should let the compiler generate normal code.

   operands[0] is the destination
   operands[1] is the length
   operands[3] is the alignment */

int
expand_block_clear (rtx operands[])
{
  rtx orig_dest = operands[0];
  rtx bytes_rtx	= operands[1];
  rtx align_rtx = operands[3];
  bool constp	= (GET_CODE (bytes_rtx) == CONST_INT);
  HOST_WIDE_INT align;
  HOST_WIDE_INT bytes;
  int offset;
  int clear_bytes;
  int clear_step;

  /* If this is not a fixed size move, just call memcpy */
  if (! constp)
    return 0;

  /* This must be a fixed size alignment  */
  gcc_assert (GET_CODE (align_rtx) == CONST_INT);
  align = INTVAL (align_rtx) * BITS_PER_UNIT;

  /* Anything to clear? */
  bytes = INTVAL (bytes_rtx);
  if (bytes <= 0)
    return 1;

  /* Use the builtin memset after a point, to avoid huge code bloat.
     When optimize_size, avoid any significant code bloat; calling
     memset is about 4 instructions, so allow for one instruction to
     load zero and three to do clearing.  */
  if (TARGET_ALTIVEC && align >= 128)
    clear_step = 16;
  else if (TARGET_POWERPC64 && (align >= 64 || !STRICT_ALIGNMENT))
    clear_step = 8;
  else
    clear_step = 4;

  if (optimize_size && bytes > 3 * clear_step)
    return 0;
  if (! optimize_size && bytes > 8 * clear_step)
    return 0;

  for (offset = 0; bytes > 0; offset += clear_bytes, bytes -= clear_bytes)
    {
      machine_mode mode = BLKmode;
      rtx dest;

      if (bytes >= 16 && TARGET_ALTIVEC && align >= 128)
	{
	  clear_bytes = 16;
	  mode = V4SImode;
	}
      else if (bytes >= 8 && TARGET_POWERPC64
	       && (align >= 64 || !STRICT_ALIGNMENT))
	{
	  clear_bytes = 8;
	  mode = DImode;
	  if (offset == 0 && align < 64)
	    {
	      rtx addr;

	      /* If the address form is reg+offset with offset not a
		 multiple of four, reload into reg indirect form here
		 rather than waiting for reload.  This way we get one
		 reload, not one per store.  */
	      addr = XEXP (orig_dest, 0);
	      if ((GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
		  && GET_CODE (XEXP (addr, 1)) == CONST_INT
		  && (INTVAL (XEXP (addr, 1)) & 3) != 0)
		{
		  addr = copy_addr_to_reg (addr);
		  orig_dest = replace_equiv_address (orig_dest, addr);
		}
	    }
	}
      else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
	{			/* move 4 bytes */
	  clear_bytes = 4;
	  mode = SImode;
	}
      else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
	{			/* move 2 bytes */
	  clear_bytes = 2;
	  mode = HImode;
	}
      else /* move 1 byte at a time */
	{
	  clear_bytes = 1;
	  mode = QImode;
	}

      dest = adjust_address (orig_dest, mode, offset);

      emit_move_insn (dest, CONST0_RTX (mode));
    }

  return 1;
}

/* Figure out the correct instructions to generate to load data for
   block compare.  MODE is used for the read from memory, and
   data is zero extended if REG is wider than MODE.  If LE code
   is being generated, bswap loads are used.

   REG is the destination register to move the data into.
   MEM is the memory block being read.
   MODE is the mode of memory to use for the read.  */
static void
do_load_for_compare (rtx reg, rtx mem, machine_mode mode)
{
  switch (GET_MODE (reg))
    {
    case E_DImode:
      switch (mode)
	{
	case E_QImode:
	  emit_insn (gen_zero_extendqidi2 (reg, mem));
	  break;
	case E_HImode:
	  {
	    rtx src = mem;
	    if (!BYTES_BIG_ENDIAN)
	      {
		src = gen_reg_rtx (HImode);
		emit_insn (gen_bswaphi2 (src, mem));
	      }
	    emit_insn (gen_zero_extendhidi2 (reg, src));
	    break;
	  }
	case E_SImode:
	  {
	    rtx src = mem;
	    if (!BYTES_BIG_ENDIAN)
	      {
		src = gen_reg_rtx (SImode);
		emit_insn (gen_bswapsi2 (src, mem));
	      }
	    emit_insn (gen_zero_extendsidi2 (reg, src));
	  }
	  break;
	case E_DImode:
	  if (!BYTES_BIG_ENDIAN)
	    emit_insn (gen_bswapdi2 (reg, mem));
	  else
	    emit_insn (gen_movdi (reg, mem));
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case E_SImode:
      switch (mode)
	{
	case E_QImode:
	  emit_insn (gen_zero_extendqisi2 (reg, mem));
	  break;
	case E_HImode:
	  {
	    rtx src = mem;
	    if (!BYTES_BIG_ENDIAN)
	      {
		src = gen_reg_rtx (HImode);
		emit_insn (gen_bswaphi2 (src, mem));
	      }
	    emit_insn (gen_zero_extendhisi2 (reg, src));
	    break;
	  }
	case E_SImode:
	  if (!BYTES_BIG_ENDIAN)
	    emit_insn (gen_bswapsi2 (reg, mem));
	  else
	    emit_insn (gen_movsi (reg, mem));
	  break;
	case E_DImode:
	  /* DImode is larger than the destination reg so is not expected.  */
	  gcc_unreachable ();
	  break;
	default:
	  gcc_unreachable ();
	}
      break;
    default:
      gcc_unreachable ();
      break;
    }
}

/* Select the mode to be used for reading the next chunk of bytes
   in the compare.

   OFFSET is the current read offset from the beginning of the block.
   BYTES is the number of bytes remaining to be read.
   ALIGN is the minimum alignment of the memory blocks being compared in bytes.
   WORD_MODE_OK indicates using WORD_MODE is allowed, else SImode is
   the largest allowable mode.  */
static machine_mode
select_block_compare_mode (unsigned HOST_WIDE_INT offset,
			   unsigned HOST_WIDE_INT bytes,
			   unsigned HOST_WIDE_INT align, bool word_mode_ok)
{
  /* First see if we can do a whole load unit
     as that will be more efficient than a larger load + shift.  */

  /* If big, use biggest chunk.
     If exactly chunk size, use that size.
     If remainder can be done in one piece with shifting, do that.
     Do largest chunk possible without violating alignment rules.  */

  /* The most we can read without potential page crossing.  */
  unsigned HOST_WIDE_INT maxread = ROUND_UP (bytes, align);

  if (word_mode_ok && bytes >= UNITS_PER_WORD)
    return word_mode;
  else if (bytes == GET_MODE_SIZE (SImode))
    return SImode;
  else if (bytes == GET_MODE_SIZE (HImode))
    return HImode;
  else if (bytes == GET_MODE_SIZE (QImode))
    return QImode;
  else if (bytes < GET_MODE_SIZE (SImode)
	   && offset >= GET_MODE_SIZE (SImode) - bytes)
    /* This matches the case were we have SImode and 3 bytes
       and offset >= 1 and permits us to move back one and overlap
       with the previous read, thus avoiding having to shift
       unwanted bytes off of the input.  */
    return SImode;
  else if (word_mode_ok && bytes < UNITS_PER_WORD
	   && offset >= UNITS_PER_WORD-bytes)
    /* Similarly, if we can use DImode it will get matched here and
       can do an overlapping read that ends at the end of the block.  */
    return word_mode;
  else if (word_mode_ok && maxread >= UNITS_PER_WORD)
    /* It is safe to do all remaining in one load of largest size,
       possibly with a shift to get rid of unwanted bytes.  */
    return word_mode;
  else if (maxread >= GET_MODE_SIZE (SImode))
    /* It is safe to do all remaining in one SImode load,
       possibly with a shift to get rid of unwanted bytes.  */
    return SImode;
  else if (bytes > GET_MODE_SIZE (SImode))
    return SImode;
  else if (bytes > GET_MODE_SIZE (HImode))
    return HImode;

  /* final fallback is do one byte */
  return QImode;
}

/* Compute the alignment of pointer+OFFSET where the original alignment
   of pointer was BASE_ALIGN.  */
static unsigned HOST_WIDE_INT
compute_current_alignment (unsigned HOST_WIDE_INT base_align,
			   unsigned HOST_WIDE_INT offset)
{
  if (offset == 0)
    return base_align;
  return MIN (base_align, offset & -offset);
}

/* Expand a block compare operation, and return true if successful.
   Return false if we should let the compiler generate normal code,
   probably a memcmp call.

   OPERANDS[0] is the target (result).
   OPERANDS[1] is the first source.
   OPERANDS[2] is the second source.
   OPERANDS[3] is the length.
   OPERANDS[4] is the alignment.  */
bool
expand_block_compare (rtx operands[])
{
  rtx target = operands[0];
  rtx orig_src1 = operands[1];
  rtx orig_src2 = operands[2];
  rtx bytes_rtx = operands[3];
  rtx align_rtx = operands[4];
  HOST_WIDE_INT cmp_bytes = 0;
  rtx src1 = orig_src1;
  rtx src2 = orig_src2;

  /* This case is complicated to handle because the subtract
     with carry instructions do not generate the 64-bit
     carry and so we must emit code to calculate it ourselves.
     We choose not to implement this yet.  */
  if (TARGET_32BIT && TARGET_POWERPC64)
    return false;

  /* If this is not a fixed size compare, just call memcmp.  */
  if (!CONST_INT_P (bytes_rtx))
    return false;

  /* This must be a fixed size alignment.  */
  if (!CONST_INT_P (align_rtx))
    return false;

  unsigned int base_align = UINTVAL (align_rtx) / BITS_PER_UNIT;

  /* SLOW_UNALIGNED_ACCESS -- don't do unaligned stuff.  */
  if (SLOW_UNALIGNED_ACCESS (word_mode, MEM_ALIGN (orig_src1))
      || SLOW_UNALIGNED_ACCESS (word_mode, MEM_ALIGN (orig_src2)))
    return false;

  gcc_assert (GET_MODE (target) == SImode);

  /* Anything to move?  */
  unsigned HOST_WIDE_INT bytes = UINTVAL (bytes_rtx);
  if (bytes == 0)
    return true;

  /* The code generated for p7 and older is not faster than glibc
     memcmp if alignment is small and length is not short, so bail
     out to avoid those conditions.  */
  if (!TARGET_EFFICIENT_OVERLAPPING_UNALIGNED
      && ((base_align == 1 && bytes > 16)
	  || (base_align == 2 && bytes > 32)))
    return false;

  rtx tmp_reg_src1 = gen_reg_rtx (word_mode);
  rtx tmp_reg_src2 = gen_reg_rtx (word_mode);
  /* P7/P8 code uses cond for subfc. but P9 uses
     it for cmpld which needs CCUNSmode. */
  rtx cond;
  if (TARGET_P9_MISC)
    cond = gen_reg_rtx (CCUNSmode);
  else
    cond = gen_reg_rtx (CCmode);

  /* If we have an LE target without ldbrx and word_mode is DImode,
     then we must avoid using word_mode.  */
  int word_mode_ok = !(!BYTES_BIG_ENDIAN && !TARGET_LDBRX
		       && word_mode == DImode);

  /* Strategy phase.  How many ops will this take and should we expand it?  */

  unsigned HOST_WIDE_INT offset = 0;
  machine_mode load_mode =
    select_block_compare_mode (offset, bytes, base_align, word_mode_ok);
  unsigned int load_mode_size = GET_MODE_SIZE (load_mode);

  /* We don't want to generate too much code.  */
  unsigned HOST_WIDE_INT max_bytes =
    load_mode_size * (unsigned HOST_WIDE_INT) rs6000_block_compare_inline_limit;
  if (!IN_RANGE (bytes, 1, max_bytes))
    return false;

  bool generate_6432_conversion = false;
  rtx convert_label = NULL;
  rtx final_label = NULL;

  /* Example of generated code for 18 bytes aligned 1 byte.
     Compiled with -fno-reorder-blocks for clarity.
             ldbrx 10,31,8
             ldbrx 9,7,8
             subfc. 9,9,10
             bne 0,.L6487
             addi 9,12,8
             addi 5,11,8
             ldbrx 10,0,9
             ldbrx 9,0,5
             subfc. 9,9,10
             bne 0,.L6487
             addi 9,12,16
             lhbrx 10,0,9
             addi 9,11,16
             lhbrx 9,0,9
             subf 9,9,10
             b .L6488
             .p2align 4,,15
     .L6487: #convert_label
             popcntd 9,9
             subfe 10,10,10
             or 9,9,10
     .L6488: #final_label
             extsw 10,9

     We start off with DImode for two blocks that jump to the DI->SI conversion
     if the difference is found there, then a final block of HImode that skips
     the DI->SI conversion.  */

  while (bytes > 0)
    {
      unsigned int align = compute_current_alignment (base_align, offset);
      if (TARGET_EFFICIENT_OVERLAPPING_UNALIGNED)
	load_mode = select_block_compare_mode (offset, bytes, align,
					       word_mode_ok);
      else
	load_mode = select_block_compare_mode (0, bytes, align, word_mode_ok);
      load_mode_size = GET_MODE_SIZE (load_mode);
      if (bytes >= load_mode_size)
	cmp_bytes = load_mode_size;
      else if (TARGET_EFFICIENT_OVERLAPPING_UNALIGNED)
	{
	  /* Move this load back so it doesn't go past the end.
	     P8/P9 can do this efficiently.  */
	  unsigned int extra_bytes = load_mode_size - bytes;
	  cmp_bytes = bytes;
	  if (extra_bytes < offset)
	    {
	      offset -= extra_bytes;
	      cmp_bytes = load_mode_size;
	      bytes = cmp_bytes;
	    }
	}
      else
	/* P7 and earlier can't do the overlapping load trick fast,
	   so this forces a non-overlapping load and a shift to get
	   rid of the extra bytes.  */
	cmp_bytes = bytes;

      src1 = adjust_address (orig_src1, load_mode, offset);
      src2 = adjust_address (orig_src2, load_mode, offset);

      if (!REG_P (XEXP (src1, 0)))
	{
	  rtx src1_reg = copy_addr_to_reg (XEXP (src1, 0));
	  src1 = replace_equiv_address (src1, src1_reg);
	}
      set_mem_size (src1, cmp_bytes);

      if (!REG_P (XEXP (src2, 0)))
	{
	  rtx src2_reg = copy_addr_to_reg (XEXP (src2, 0));
	  src2 = replace_equiv_address (src2, src2_reg);
	}
      set_mem_size (src2, cmp_bytes);

      do_load_for_compare (tmp_reg_src1, src1, load_mode);
      do_load_for_compare (tmp_reg_src2, src2, load_mode);

      if (cmp_bytes < load_mode_size)
	{
	  /* Shift unneeded bytes off.  */
	  rtx sh = GEN_INT (BITS_PER_UNIT * (load_mode_size - cmp_bytes));
	  if (word_mode == DImode)
	    {
	      emit_insn (gen_lshrdi3 (tmp_reg_src1, tmp_reg_src1, sh));
	      emit_insn (gen_lshrdi3 (tmp_reg_src2, tmp_reg_src2, sh));
	    }
	  else
	    {
	      emit_insn (gen_lshrsi3 (tmp_reg_src1, tmp_reg_src1, sh));
	      emit_insn (gen_lshrsi3 (tmp_reg_src2, tmp_reg_src2, sh));
	    }
	}

      int remain = bytes - cmp_bytes;
      if (GET_MODE_SIZE (GET_MODE (target)) > GET_MODE_SIZE (load_mode))
	{
	  /* Target is larger than load size so we don't need to
	     reduce result size.  */

	  /* We previously did a block that need 64->32 conversion but
	     the current block does not, so a label is needed to jump
	     to the end.  */
	  if (generate_6432_conversion && !final_label)
	    final_label = gen_label_rtx ();

	  if (remain > 0)
	    {
	      /* This is not the last block, branch to the end if the result
		 of this subtract is not zero.  */
	      if (!final_label)
		final_label = gen_label_rtx ();
	      rtx fin_ref = gen_rtx_LABEL_REF (VOIDmode, final_label);
	      rtx tmp = gen_rtx_MINUS (word_mode, tmp_reg_src1, tmp_reg_src2);
	      rtx cr = gen_reg_rtx (CCmode);
	      rs6000_emit_dot_insn (tmp_reg_src2, tmp, 2, cr);
	      emit_insn (gen_movsi (target,
				    gen_lowpart (SImode, tmp_reg_src2)));
	      rtx ne_rtx = gen_rtx_NE (VOIDmode, cr, const0_rtx);
	      rtx ifelse = gen_rtx_IF_THEN_ELSE (VOIDmode, ne_rtx,
						 fin_ref, pc_rtx);
	      rtx j = emit_jump_insn (gen_rtx_SET (pc_rtx, ifelse));
	      JUMP_LABEL (j) = final_label;
	      LABEL_NUSES (final_label) += 1;
	    }
	  else
	    {
	      if (word_mode == DImode)
		{
		  emit_insn (gen_subdi3 (tmp_reg_src2, tmp_reg_src1,
					 tmp_reg_src2));
		  emit_insn (gen_movsi (target,
					gen_lowpart (SImode, tmp_reg_src2)));
		}
	      else
		emit_insn (gen_subsi3 (target, tmp_reg_src1, tmp_reg_src2));

	      if (final_label)
		{
		  rtx fin_ref = gen_rtx_LABEL_REF (VOIDmode, final_label);
		  rtx j = emit_jump_insn (gen_rtx_SET (pc_rtx, fin_ref));
		  JUMP_LABEL(j) = final_label;
		  LABEL_NUSES (final_label) += 1;
		  emit_barrier ();
		}
	    }
	}
      else
	{
	  /* Do we need a 64->32 conversion block? We need the 64->32
	     conversion even if target size == load_mode size because
	     the subtract generates one extra bit.  */
	  generate_6432_conversion = true;

	  if (remain > 0)
	    {
	      if (!convert_label)
		convert_label = gen_label_rtx ();

	      /* Compare to zero and branch to convert_label if not zero.  */
	      rtx cvt_ref = gen_rtx_LABEL_REF (VOIDmode, convert_label);
	      if (TARGET_P9_MISC)
		{
		/* Generate a compare, and convert with a setb later.  */
		  rtx cmp = gen_rtx_COMPARE (CCUNSmode, tmp_reg_src1,
					     tmp_reg_src2);
		  emit_insn (gen_rtx_SET (cond, cmp));
		}
	      else
		/* Generate a subfc. and use the longer
		   sequence for conversion.  */
		if (TARGET_64BIT)
		  emit_insn (gen_subfdi3_carry_dot2 (tmp_reg_src2, tmp_reg_src2,
						     tmp_reg_src1, cond));
		else
		  emit_insn (gen_subfsi3_carry_dot2 (tmp_reg_src2, tmp_reg_src2,
						     tmp_reg_src1, cond));
	      rtx ne_rtx = gen_rtx_NE (VOIDmode, cond, const0_rtx);
	      rtx ifelse = gen_rtx_IF_THEN_ELSE (VOIDmode, ne_rtx,
						 cvt_ref, pc_rtx);
	      rtx j = emit_jump_insn (gen_rtx_SET (pc_rtx, ifelse));
	      JUMP_LABEL(j) = convert_label;
	      LABEL_NUSES (convert_label) += 1;
	    }
	  else
	    {
	      /* Just do the subtract/compare.  Since this is the last block
		 the convert code will be generated immediately following.  */
	      if (TARGET_P9_MISC)
		{
		  rtx cmp = gen_rtx_COMPARE (CCUNSmode, tmp_reg_src1,
					     tmp_reg_src2);
		  emit_insn (gen_rtx_SET (cond, cmp));
		}
	      else
		if (TARGET_64BIT)
		  emit_insn (gen_subfdi3_carry (tmp_reg_src2, tmp_reg_src2,
						tmp_reg_src1));
		else
		  emit_insn (gen_subfsi3_carry (tmp_reg_src2, tmp_reg_src2,
						tmp_reg_src1));
	    }
	}

      offset += cmp_bytes;
      bytes -= cmp_bytes;
    }

  if (generate_6432_conversion)
    {
      if (convert_label)
	emit_label (convert_label);

      /* We need to produce DI result from sub, then convert to target SI
	 while maintaining <0 / ==0 / >0 properties. This sequence works:
	 subfc L,A,B
	 subfe H,H,H
	 popcntd L,L
	 rldimi L,H,6,0

	 This is an alternate one Segher cooked up if somebody
	 wants to expand this for something that doesn't have popcntd:
	 subfc L,a,b
	 subfe H,x,x
	 addic t,L,-1
	 subfe v,t,L
	 or z,v,H

	 And finally, p9 can just do this:
	 cmpld A,B
	 setb r */

      if (TARGET_P9_MISC)
	{
	  emit_insn (gen_setb_unsigned (target, cond));
	}
      else
	{
	  if (TARGET_64BIT)
	    {
	      rtx tmp_reg_ca = gen_reg_rtx (DImode);
	      emit_insn (gen_subfdi3_carry_in_xx (tmp_reg_ca));
	      emit_insn (gen_popcntddi2 (tmp_reg_src2, tmp_reg_src2));
	      emit_insn (gen_iordi3 (tmp_reg_src2, tmp_reg_src2, tmp_reg_ca));
	      emit_insn (gen_movsi (target, gen_lowpart (SImode, tmp_reg_src2)));
	    }
	  else
	    {
	      rtx tmp_reg_ca = gen_reg_rtx (SImode);
	      emit_insn (gen_subfsi3_carry_in_xx (tmp_reg_ca));
	      emit_insn (gen_popcntdsi2 (tmp_reg_src2, tmp_reg_src2));
	      emit_insn (gen_iorsi3 (target, tmp_reg_src2, tmp_reg_ca));
	    }
	}
    }

  if (final_label)
    emit_label (final_label);

  gcc_assert (bytes == 0);
  return true;
}

/* Generate alignment check and branch code to set up for
   strncmp when we don't have DI alignment.
   STRNCMP_LABEL is the label to branch if there is a page crossing.
   SRC is the string pointer to be examined.
   BYTES is the max number of bytes to compare.  */
static void
expand_strncmp_align_check (rtx strncmp_label, rtx src, HOST_WIDE_INT bytes)
{
  rtx lab_ref = gen_rtx_LABEL_REF (VOIDmode, strncmp_label);
  rtx src_check = copy_addr_to_reg (XEXP (src, 0));
  if (GET_MODE (src_check) == SImode)
    emit_insn (gen_andsi3 (src_check, src_check, GEN_INT (0xfff)));
  else
    emit_insn (gen_anddi3 (src_check, src_check, GEN_INT (0xfff)));
  rtx cond = gen_reg_rtx (CCmode);
  emit_move_insn (cond, gen_rtx_COMPARE (CCmode, src_check,
					 GEN_INT (4096 - bytes)));

  rtx cmp_rtx = gen_rtx_LT (VOIDmode, cond, const0_rtx);

  rtx ifelse = gen_rtx_IF_THEN_ELSE (VOIDmode, cmp_rtx,
				     pc_rtx, lab_ref);
  rtx j = emit_jump_insn (gen_rtx_SET (pc_rtx, ifelse));
  JUMP_LABEL (j) = strncmp_label;
  LABEL_NUSES (strncmp_label) += 1;
}

/* Expand a string compare operation with length, and return
   true if successful. Return false if we should let the
   compiler generate normal code, probably a strncmp call.

   OPERANDS[0] is the target (result).
   OPERANDS[1] is the first source.
   OPERANDS[2] is the second source.
   If NO_LENGTH is zero, then:
   OPERANDS[3] is the length.
   OPERANDS[4] is the alignment in bytes.
   If NO_LENGTH is nonzero, then:
   OPERANDS[3] is the alignment in bytes.  */
bool
expand_strn_compare (rtx operands[], int no_length)
{
  rtx target = operands[0];
  rtx orig_src1 = operands[1];
  rtx orig_src2 = operands[2];
  rtx bytes_rtx, align_rtx;
  if (no_length)
    {
      bytes_rtx = NULL;
      align_rtx = operands[3];
    }
  else
    {
      bytes_rtx = operands[3];
      align_rtx = operands[4];
    }
  unsigned HOST_WIDE_INT cmp_bytes = 0;
  rtx src1 = orig_src1;
  rtx src2 = orig_src2;

  /* If we have a length, it must be constant. This simplifies things
     a bit as we don't have to generate code to check if we've exceeded
     the length. Later this could be expanded to handle this case.  */
  if (!no_length && !CONST_INT_P (bytes_rtx))
    return false;

  /* This must be a fixed size alignment.  */
  if (!CONST_INT_P (align_rtx))
    return false;

  unsigned int base_align = UINTVAL (align_rtx);
  int align1 = MEM_ALIGN (orig_src1) / BITS_PER_UNIT;
  int align2 = MEM_ALIGN (orig_src2) / BITS_PER_UNIT;

  /* SLOW_UNALIGNED_ACCESS -- don't do unaligned stuff.  */
  if (SLOW_UNALIGNED_ACCESS (word_mode, align1)
      || SLOW_UNALIGNED_ACCESS (word_mode, align2))
    return false;

  gcc_assert (GET_MODE (target) == SImode);

  /* If we have an LE target without ldbrx and word_mode is DImode,
     then we must avoid using word_mode.  */
  int word_mode_ok = !(!BYTES_BIG_ENDIAN && !TARGET_LDBRX
		       && word_mode == DImode);

  unsigned int word_mode_size = GET_MODE_SIZE (word_mode);

  unsigned HOST_WIDE_INT offset = 0;
  unsigned HOST_WIDE_INT bytes; /* N from the strncmp args if available.  */
  unsigned HOST_WIDE_INT compare_length; /* How much to compare inline.  */
  if (no_length)
    /* Use this as a standin to determine the mode to use.  */
    bytes = rs6000_string_compare_inline_limit * word_mode_size;
  else
    bytes = UINTVAL (bytes_rtx);

  machine_mode load_mode =
    select_block_compare_mode (offset, bytes, base_align, word_mode_ok);
  unsigned int load_mode_size = GET_MODE_SIZE (load_mode);
  compare_length = rs6000_string_compare_inline_limit * load_mode_size;

  /* If we have equality at the end of the last compare and we have not
     found the end of the string, we need to call strcmp/strncmp to
     compare the remainder.  */
  bool equality_compare_rest = false;

  if (no_length)
    {
      bytes = compare_length;
      equality_compare_rest = true;
    }
  else
    {
      if (bytes <= compare_length)
	compare_length = bytes;
      else
	equality_compare_rest = true;
    }

  rtx result_reg = gen_reg_rtx (word_mode);
  rtx final_move_label = gen_label_rtx ();
  rtx final_label = gen_label_rtx ();
  rtx begin_compare_label = NULL;

  if (base_align < 8)
    {
      /* Generate code that checks distance to 4k boundary for this case.  */
      begin_compare_label = gen_label_rtx ();
      rtx strncmp_label = gen_label_rtx ();
      rtx jmp;

      /* Strncmp for power8 in glibc does this:
	 rldicl	r8,r3,0,52
	 cmpldi	cr7,r8,4096-16
	 bgt	cr7,L(pagecross) */

      /* Make sure that the length we use for the alignment test and
         the subsequent code generation are in agreement so we do not
         go past the length we tested for a 4k boundary crossing.  */
      unsigned HOST_WIDE_INT align_test = compare_length;
      if (align_test < 8)
        {
          align_test = HOST_WIDE_INT_1U << ceil_log2 (align_test);
          base_align = align_test;
        }
      else
        {
          align_test = ROUND_UP (align_test, 8);
          base_align = 8;
        }

      if (align1 < 8)
        expand_strncmp_align_check (strncmp_label, src1, align_test);
      if (align2 < 8)
        expand_strncmp_align_check (strncmp_label, src2, align_test);

      /* Now generate the following sequence:
	 - branch to begin_compare
	 - strncmp_label
	 - call to strncmp
	 - branch to final_label
	 - begin_compare_label */

      rtx cmp_ref = gen_rtx_LABEL_REF (VOIDmode, begin_compare_label);
      jmp = emit_jump_insn (gen_rtx_SET (pc_rtx, cmp_ref));
      JUMP_LABEL (jmp) = begin_compare_label;
      LABEL_NUSES (begin_compare_label) += 1;
      emit_barrier ();

      emit_label (strncmp_label);

      if (!REG_P (XEXP (src1, 0)))
	{
	  rtx src1_reg = copy_addr_to_reg (XEXP (src1, 0));
	  src1 = replace_equiv_address (src1, src1_reg);
	}

      if (!REG_P (XEXP (src2, 0)))
	{
	  rtx src2_reg = copy_addr_to_reg (XEXP (src2, 0));
	  src2 = replace_equiv_address (src2, src2_reg);
	}

      if (no_length)
	{
	  tree fun = builtin_decl_explicit (BUILT_IN_STRCMP);
	  emit_library_call_value (XEXP (DECL_RTL (fun), 0),
				   target, LCT_NORMAL, GET_MODE (target), 2,
				   force_reg (Pmode, XEXP (src1, 0)), Pmode,
				   force_reg (Pmode, XEXP (src2, 0)), Pmode);
	}
      else
	{
	  /* -m32 -mpowerpc64 results in word_mode being DImode even
	     though otherwise it is 32-bit. The length arg to strncmp
	     is a size_t which will be the same size as pointers.  */
	  rtx len_rtx;
	  if (TARGET_64BIT)
	    len_rtx = gen_reg_rtx (DImode);
	  else
	    len_rtx = gen_reg_rtx (SImode);

	  emit_move_insn (len_rtx, bytes_rtx);

	  tree fun = builtin_decl_explicit (BUILT_IN_STRNCMP);
	  emit_library_call_value (XEXP (DECL_RTL (fun), 0),
				   target, LCT_NORMAL, GET_MODE (target), 3,
				   force_reg (Pmode, XEXP (src1, 0)), Pmode,
				   force_reg (Pmode, XEXP (src2, 0)), Pmode,
				   len_rtx, GET_MODE (len_rtx));
	}

      rtx fin_ref = gen_rtx_LABEL_REF (VOIDmode, final_label);
      jmp = emit_jump_insn (gen_rtx_SET (pc_rtx, fin_ref));
      JUMP_LABEL (jmp) = final_label;
      LABEL_NUSES (final_label) += 1;
      emit_barrier ();
      emit_label (begin_compare_label);
    }

  rtx cleanup_label = NULL;
  rtx tmp_reg_src1 = gen_reg_rtx (word_mode);
  rtx tmp_reg_src2 = gen_reg_rtx (word_mode);

  /* Generate sequence of ld/ldbrx, cmpb to compare out
     to the length specified.  */
  unsigned HOST_WIDE_INT bytes_to_compare = compare_length;
  while (bytes_to_compare > 0)
    {
      /* Compare sequence:
         check each 8B with: ld/ld cmpd bne
	 If equal, use rldicr/cmpb to check for zero byte.
         cleanup code at end:
         cmpb          get byte that differs
         cmpb          look for zero byte
         orc           combine
         cntlzd        get bit of first zero/diff byte
         subfic        convert for rldcl use
         rldcl rldcl   extract diff/zero byte
         subf          subtract for final result

         The last compare can branch around the cleanup code if the
         result is zero because the strings are exactly equal.  */
      unsigned int align = compute_current_alignment (base_align, offset);
      if (TARGET_EFFICIENT_OVERLAPPING_UNALIGNED)
	load_mode = select_block_compare_mode (offset, bytes_to_compare, align,
					       word_mode_ok);
      else
	load_mode = select_block_compare_mode (0, bytes_to_compare, align,
					       word_mode_ok);
      load_mode_size = GET_MODE_SIZE (load_mode);
      if (bytes_to_compare >= load_mode_size)
	cmp_bytes = load_mode_size;
      else if (TARGET_EFFICIENT_OVERLAPPING_UNALIGNED)
	{
	  /* Move this load back so it doesn't go past the end.
	     P8/P9 can do this efficiently.  */
	  unsigned int extra_bytes = load_mode_size - bytes_to_compare;
	  cmp_bytes = bytes_to_compare;
	  if (extra_bytes < offset)
	    {
	      offset -= extra_bytes;
	      cmp_bytes = load_mode_size;
	      bytes_to_compare = cmp_bytes;
	    }
	}
      else
	/* P7 and earlier can't do the overlapping load trick fast,
	   so this forces a non-overlapping load and a shift to get
	   rid of the extra bytes.  */
	cmp_bytes = bytes_to_compare;

      src1 = adjust_address (orig_src1, load_mode, offset);
      src2 = adjust_address (orig_src2, load_mode, offset);

      if (!REG_P (XEXP (src1, 0)))
	{
	  rtx src1_reg = copy_addr_to_reg (XEXP (src1, 0));
	  src1 = replace_equiv_address (src1, src1_reg);
	}
      set_mem_size (src1, cmp_bytes);

      if (!REG_P (XEXP (src2, 0)))
	{
	  rtx src2_reg = copy_addr_to_reg (XEXP (src2, 0));
	  src2 = replace_equiv_address (src2, src2_reg);
	}
      set_mem_size (src2, cmp_bytes);

      do_load_for_compare (tmp_reg_src1, src1, load_mode);
      do_load_for_compare (tmp_reg_src2, src2, load_mode);

      /* We must always left-align the data we read, and
	 clear any bytes to the right that are beyond the string.
	 Otherwise the cmpb sequence won't produce the correct
	 results.  The beginning of the compare will be done
	 with word_mode so will not have any extra shifts or
	 clear rights.  */

      if (load_mode_size < word_mode_size)
	{
	  /* Rotate left first. */
	  rtx sh = GEN_INT (BITS_PER_UNIT * (word_mode_size - load_mode_size));
	  if (word_mode == DImode)
	    {
	      emit_insn (gen_rotldi3 (tmp_reg_src1, tmp_reg_src1, sh));
	      emit_insn (gen_rotldi3 (tmp_reg_src2, tmp_reg_src2, sh));
	    }
	  else
	    {
	      emit_insn (gen_rotlsi3 (tmp_reg_src1, tmp_reg_src1, sh));
	      emit_insn (gen_rotlsi3 (tmp_reg_src2, tmp_reg_src2, sh));
	    }
	}

      if (cmp_bytes < word_mode_size)
	{
	  /* Now clear right.  This plus the rotate can be
	     turned into a rldicr instruction. */
	  HOST_WIDE_INT mb = BITS_PER_UNIT * (word_mode_size - cmp_bytes);
	  rtx mask = GEN_INT (HOST_WIDE_INT_M1U << mb);
	  if (word_mode == DImode)
	    {
	      emit_insn (gen_anddi3_mask (tmp_reg_src1, tmp_reg_src1, mask));
	      emit_insn (gen_anddi3_mask (tmp_reg_src2, tmp_reg_src2, mask));
	    }
	  else
	    {
	      emit_insn (gen_andsi3_mask (tmp_reg_src1, tmp_reg_src1, mask));
	      emit_insn (gen_andsi3_mask (tmp_reg_src2, tmp_reg_src2, mask));
	    }
	}

      /* Cases to handle.  A and B are chunks of the two strings.
	 1: Not end of comparison:
	 A != B: branch to cleanup code to compute result.
	 A == B: check for 0 byte, next block if not found.
	 2: End of the inline comparison:
	 A != B: branch to cleanup code to compute result.
	 A == B: check for 0 byte, call strcmp/strncmp
	 3: compared requested N bytes:
	 A == B: branch to result 0.
	 A != B: cleanup code to compute result.  */

      unsigned HOST_WIDE_INT remain = bytes_to_compare - cmp_bytes;

      rtx dst_label;
      if (remain > 0 || equality_compare_rest)
	{
	  /* Branch to cleanup code, otherwise fall through to do
	     more compares.  */
	  if (!cleanup_label)
	    cleanup_label = gen_label_rtx ();
	  dst_label = cleanup_label;
	}
      else
	/* Branch to end and produce result of 0.  */
	dst_label = final_move_label;

      rtx lab_ref = gen_rtx_LABEL_REF (VOIDmode, dst_label);
      rtx cond = gen_reg_rtx (CCmode);

      /* Always produce the 0 result, it is needed if
	 cmpb finds a 0 byte in this chunk.  */
      rtx tmp = gen_rtx_MINUS (word_mode, tmp_reg_src1, tmp_reg_src2);
      rs6000_emit_dot_insn (result_reg, tmp, 1, cond);

      rtx cmp_rtx;
      if (remain == 0 && !equality_compare_rest)
	cmp_rtx = gen_rtx_EQ (VOIDmode, cond, const0_rtx);
      else
	cmp_rtx = gen_rtx_NE (VOIDmode, cond, const0_rtx);

      rtx ifelse = gen_rtx_IF_THEN_ELSE (VOIDmode, cmp_rtx,
					 lab_ref, pc_rtx);
      rtx j = emit_jump_insn (gen_rtx_SET (pc_rtx, ifelse));
      JUMP_LABEL (j) = dst_label;
      LABEL_NUSES (dst_label) += 1;

      if (remain > 0 || equality_compare_rest)
	{
	  /* Generate a cmpb to test for a 0 byte and branch
	     to final result if found.  */
	  rtx cmpb_zero = gen_reg_rtx (word_mode);
	  rtx lab_ref_fin = gen_rtx_LABEL_REF (VOIDmode, final_move_label);
	  rtx condz = gen_reg_rtx (CCmode);
	  rtx zero_reg = gen_reg_rtx (word_mode);
	  if (word_mode == SImode)
	    {
	      emit_insn (gen_movsi (zero_reg, GEN_INT (0)));
	      emit_insn (gen_cmpbsi3 (cmpb_zero, tmp_reg_src1, zero_reg));
	      if (cmp_bytes < word_mode_size)
		{
		  /* Don't want to look at zero bytes past end.  */
		  HOST_WIDE_INT mb =
		    BITS_PER_UNIT * (word_mode_size - cmp_bytes);
		  rtx mask = GEN_INT (HOST_WIDE_INT_M1U << mb);
		  emit_insn (gen_andsi3_mask (cmpb_zero, cmpb_zero, mask));
		}
	    }
	  else
	    {
	      emit_insn (gen_movdi (zero_reg, GEN_INT (0)));
	      emit_insn (gen_cmpbdi3 (cmpb_zero, tmp_reg_src1, zero_reg));
	      if (cmp_bytes < word_mode_size)
		{
		  /* Don't want to look at zero bytes past end.  */
		  HOST_WIDE_INT mb =
		    BITS_PER_UNIT * (word_mode_size - cmp_bytes);
		  rtx mask = GEN_INT (HOST_WIDE_INT_M1U << mb);
		  emit_insn (gen_anddi3_mask (cmpb_zero, cmpb_zero, mask));
		}
	    }

	  emit_move_insn (condz, gen_rtx_COMPARE (CCmode, cmpb_zero, zero_reg));
	  rtx cmpnz_rtx = gen_rtx_NE (VOIDmode, condz, const0_rtx);
	  rtx ifelse = gen_rtx_IF_THEN_ELSE (VOIDmode, cmpnz_rtx,
					     lab_ref_fin, pc_rtx);
	  rtx j2 = emit_jump_insn (gen_rtx_SET (pc_rtx, ifelse));
	  JUMP_LABEL (j2) = final_move_label;
	  LABEL_NUSES (final_move_label) += 1;

	}

      offset += cmp_bytes;
      bytes_to_compare -= cmp_bytes;
    }

  if (equality_compare_rest)
    {
      /* Update pointers past what has been compared already.  */
      src1 = adjust_address (orig_src1, load_mode, offset);
      src2 = adjust_address (orig_src2, load_mode, offset);

      if (!REG_P (XEXP (src1, 0)))
	{
	  rtx src1_reg = copy_addr_to_reg (XEXP (src1, 0));
	  src1 = replace_equiv_address (src1, src1_reg);
	}
      set_mem_size (src1, cmp_bytes);

      if (!REG_P (XEXP (src2, 0)))
	{
	  rtx src2_reg = copy_addr_to_reg (XEXP (src2, 0));
	  src2 = replace_equiv_address (src2, src2_reg);
	}
      set_mem_size (src2, cmp_bytes);

      /* Construct call to strcmp/strncmp to compare the rest of the string.  */
      if (no_length)
	{
	  tree fun = builtin_decl_explicit (BUILT_IN_STRCMP);
	  emit_library_call_value (XEXP (DECL_RTL (fun), 0),
				   target, LCT_NORMAL, GET_MODE (target), 2,
				   force_reg (Pmode, XEXP (src1, 0)), Pmode,
				   force_reg (Pmode, XEXP (src2, 0)), Pmode);
	}
      else
	{
	  rtx len_rtx;
	  if (TARGET_64BIT)
	    len_rtx = gen_reg_rtx (DImode);
	  else
	    len_rtx = gen_reg_rtx (SImode);

	  emit_move_insn (len_rtx, GEN_INT (bytes - compare_length));
	  tree fun = builtin_decl_explicit (BUILT_IN_STRNCMP);
	  emit_library_call_value (XEXP (DECL_RTL (fun), 0),
				   target, LCT_NORMAL, GET_MODE (target), 3,
				   force_reg (Pmode, XEXP (src1, 0)), Pmode,
				   force_reg (Pmode, XEXP (src2, 0)), Pmode,
				   len_rtx, GET_MODE (len_rtx));
	}

      rtx fin_ref = gen_rtx_LABEL_REF (VOIDmode, final_label);
      rtx jmp = emit_jump_insn (gen_rtx_SET (pc_rtx, fin_ref));
      JUMP_LABEL (jmp) = final_label;
      LABEL_NUSES (final_label) += 1;
      emit_barrier ();
    }

  if (cleanup_label)
    emit_label (cleanup_label);

  /* Generate the final sequence that identifies the differing
     byte and generates the final result, taking into account
     zero bytes:

     cmpb              cmpb_result1, src1, src2
     cmpb              cmpb_result2, src1, zero
     orc               cmpb_result1, cmp_result1, cmpb_result2
     cntlzd            get bit of first zero/diff byte
     addi              convert for rldcl use
     rldcl rldcl       extract diff/zero byte
     subf              subtract for final result
  */

  rtx cmpb_diff = gen_reg_rtx (word_mode);
  rtx cmpb_zero = gen_reg_rtx (word_mode);
  rtx rot_amt = gen_reg_rtx (word_mode);
  rtx zero_reg = gen_reg_rtx (word_mode);

  rtx rot1_1 = gen_reg_rtx (word_mode);
  rtx rot1_2 = gen_reg_rtx (word_mode);
  rtx rot2_1 = gen_reg_rtx (word_mode);
  rtx rot2_2 = gen_reg_rtx (word_mode);

  if (word_mode == SImode)
    {
      emit_insn (gen_cmpbsi3 (cmpb_diff, tmp_reg_src1, tmp_reg_src2));
      emit_insn (gen_movsi (zero_reg, GEN_INT (0)));
      emit_insn (gen_cmpbsi3 (cmpb_zero, tmp_reg_src1, zero_reg));
      emit_insn (gen_one_cmplsi2 (cmpb_diff,cmpb_diff));
      emit_insn (gen_iorsi3 (cmpb_diff, cmpb_diff, cmpb_zero));
      emit_insn (gen_clzsi2 (rot_amt, cmpb_diff));
      emit_insn (gen_addsi3 (rot_amt, rot_amt, GEN_INT (8)));
      emit_insn (gen_rotlsi3 (rot1_1, tmp_reg_src1,
			      gen_lowpart (SImode, rot_amt)));
      emit_insn (gen_andsi3_mask (rot1_2, rot1_1, GEN_INT (0xff)));
      emit_insn (gen_rotlsi3 (rot2_1, tmp_reg_src2,
			      gen_lowpart (SImode, rot_amt)));
      emit_insn (gen_andsi3_mask (rot2_2, rot2_1, GEN_INT (0xff)));
      emit_insn (gen_subsi3 (result_reg, rot1_2, rot2_2));
    }
  else
    {
      emit_insn (gen_cmpbdi3 (cmpb_diff, tmp_reg_src1, tmp_reg_src2));
      emit_insn (gen_movdi (zero_reg, GEN_INT (0)));
      emit_insn (gen_cmpbdi3 (cmpb_zero, tmp_reg_src1, zero_reg));
      emit_insn (gen_one_cmpldi2 (cmpb_diff,cmpb_diff));
      emit_insn (gen_iordi3 (cmpb_diff, cmpb_diff, cmpb_zero));
      emit_insn (gen_clzdi2 (rot_amt, cmpb_diff));
      emit_insn (gen_adddi3 (rot_amt, rot_amt, GEN_INT (8)));
      emit_insn (gen_rotldi3 (rot1_1, tmp_reg_src1,
			      gen_lowpart (SImode, rot_amt)));
      emit_insn (gen_anddi3_mask (rot1_2, rot1_1, GEN_INT (0xff)));
      emit_insn (gen_rotldi3 (rot2_1, tmp_reg_src2,
			      gen_lowpart (SImode, rot_amt)));
      emit_insn (gen_anddi3_mask (rot2_2, rot2_1, GEN_INT (0xff)));
      emit_insn (gen_subdi3 (result_reg, rot1_2, rot2_2));
    }

  emit_label (final_move_label);
  emit_insn (gen_movsi (target,
			gen_lowpart (SImode, result_reg)));
  emit_label (final_label);
  return true;
}

/* Expand a block move operation, and return 1 if successful.  Return 0
   if we should let the compiler generate normal code.

   operands[0] is the destination
   operands[1] is the source
   operands[2] is the length
   operands[3] is the alignment */

#define MAX_MOVE_REG 4

int
expand_block_move (rtx operands[])
{
  rtx orig_dest = operands[0];
  rtx orig_src	= operands[1];
  rtx bytes_rtx	= operands[2];
  rtx align_rtx = operands[3];
  int constp	= (GET_CODE (bytes_rtx) == CONST_INT);
  int align;
  int bytes;
  int offset;
  int move_bytes;
  rtx stores[MAX_MOVE_REG];
  int num_reg = 0;

  /* If this is not a fixed size move, just call memcpy */
  if (! constp)
    return 0;

  /* This must be a fixed size alignment */
  gcc_assert (GET_CODE (align_rtx) == CONST_INT);
  align = INTVAL (align_rtx) * BITS_PER_UNIT;

  /* Anything to move? */
  bytes = INTVAL (bytes_rtx);
  if (bytes <= 0)
    return 1;

  if (bytes > rs6000_block_move_inline_limit)
    return 0;

  for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes)
    {
      union {
	rtx (*movmemsi) (rtx, rtx, rtx, rtx);
	rtx (*mov) (rtx, rtx);
      } gen_func;
      machine_mode mode = BLKmode;
      rtx src, dest;

      /* Altivec first, since it will be faster than a string move
	 when it applies, and usually not significantly larger.  */
      if (TARGET_ALTIVEC && bytes >= 16 && align >= 128)
	{
	  move_bytes = 16;
	  mode = V4SImode;
	  gen_func.mov = gen_movv4si;
	}
      else if (TARGET_STRING
	  && bytes > 24		/* move up to 32 bytes at a time */
	  && ! fixed_regs[5]
	  && ! fixed_regs[6]
	  && ! fixed_regs[7]
	  && ! fixed_regs[8]
	  && ! fixed_regs[9]
	  && ! fixed_regs[10]
	  && ! fixed_regs[11]
	  && ! fixed_regs[12])
	{
	  move_bytes = (bytes > 32) ? 32 : bytes;
	  gen_func.movmemsi = gen_movmemsi_8reg;
	}
      else if (TARGET_STRING
	       && bytes > 16	/* move up to 24 bytes at a time */
	       && ! fixed_regs[5]
	       && ! fixed_regs[6]
	       && ! fixed_regs[7]
	       && ! fixed_regs[8]
	       && ! fixed_regs[9]
	       && ! fixed_regs[10])
	{
	  move_bytes = (bytes > 24) ? 24 : bytes;
	  gen_func.movmemsi = gen_movmemsi_6reg;
	}
      else if (TARGET_STRING
	       && bytes > 8	/* move up to 16 bytes at a time */
	       && ! fixed_regs[5]
	       && ! fixed_regs[6]
	       && ! fixed_regs[7]
	       && ! fixed_regs[8])
	{
	  move_bytes = (bytes > 16) ? 16 : bytes;
	  gen_func.movmemsi = gen_movmemsi_4reg;
	}
      else if (bytes >= 8 && TARGET_POWERPC64
	       && (align >= 64 || !STRICT_ALIGNMENT))
	{
	  move_bytes = 8;
	  mode = DImode;
	  gen_func.mov = gen_movdi;
	  if (offset == 0 && align < 64)
	    {
	      rtx addr;

	      /* If the address form is reg+offset with offset not a
		 multiple of four, reload into reg indirect form here
		 rather than waiting for reload.  This way we get one
		 reload, not one per load and/or store.  */
	      addr = XEXP (orig_dest, 0);
	      if ((GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
		  && GET_CODE (XEXP (addr, 1)) == CONST_INT
		  && (INTVAL (XEXP (addr, 1)) & 3) != 0)
		{
		  addr = copy_addr_to_reg (addr);
		  orig_dest = replace_equiv_address (orig_dest, addr);
		}
	      addr = XEXP (orig_src, 0);
	      if ((GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
		  && GET_CODE (XEXP (addr, 1)) == CONST_INT
		  && (INTVAL (XEXP (addr, 1)) & 3) != 0)
		{
		  addr = copy_addr_to_reg (addr);
		  orig_src = replace_equiv_address (orig_src, addr);
		}
	    }
	}
      else if (TARGET_STRING && bytes > 4 && !TARGET_POWERPC64)
	{			/* move up to 8 bytes at a time */
	  move_bytes = (bytes > 8) ? 8 : bytes;
	  gen_func.movmemsi = gen_movmemsi_2reg;
	}
      else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
	{			/* move 4 bytes */
	  move_bytes = 4;
	  mode = SImode;
	  gen_func.mov = gen_movsi;
	}
      else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
	{			/* move 2 bytes */
	  move_bytes = 2;
	  mode = HImode;
	  gen_func.mov = gen_movhi;
	}
      else if (TARGET_STRING && bytes > 1)
	{			/* move up to 4 bytes at a time */
	  move_bytes = (bytes > 4) ? 4 : bytes;
	  gen_func.movmemsi = gen_movmemsi_1reg;
	}
      else /* move 1 byte at a time */
	{
	  move_bytes = 1;
	  mode = QImode;
	  gen_func.mov = gen_movqi;
	}

      src = adjust_address (orig_src, mode, offset);
      dest = adjust_address (orig_dest, mode, offset);

      if (mode != BLKmode)
	{
	  rtx tmp_reg = gen_reg_rtx (mode);

	  emit_insn ((*gen_func.mov) (tmp_reg, src));
	  stores[num_reg++] = (*gen_func.mov) (dest, tmp_reg);
	}

      if (mode == BLKmode || num_reg >= MAX_MOVE_REG || bytes == move_bytes)
	{
	  int i;
	  for (i = 0; i < num_reg; i++)
	    emit_insn (stores[i]);
	  num_reg = 0;
	}

      if (mode == BLKmode)
	{
	  /* Move the address into scratch registers.  The movmemsi
	     patterns require zero offset.  */
	  if (!REG_P (XEXP (src, 0)))
	    {
	      rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
	      src = replace_equiv_address (src, src_reg);
	    }
	  set_mem_size (src, move_bytes);

	  if (!REG_P (XEXP (dest, 0)))
	    {
	      rtx dest_reg = copy_addr_to_reg (XEXP (dest, 0));
	      dest = replace_equiv_address (dest, dest_reg);
	    }
	  set_mem_size (dest, move_bytes);

	  emit_insn ((*gen_func.movmemsi) (dest, src,
					   GEN_INT (move_bytes & 31),
					   align_rtx));
	}
    }

  return 1;
}


/* Return a string to perform a load_multiple operation.
   operands[0] is the vector.
   operands[1] is the source address.
   operands[2] is the first destination register.  */

const char *
rs6000_output_load_multiple (rtx operands[3])
{
  /* We have to handle the case where the pseudo used to contain the address
     is assigned to one of the output registers.  */
  int i, j;
  int words = XVECLEN (operands[0], 0);
  rtx xop[10];

  if (XVECLEN (operands[0], 0) == 1)
    return "lwz %2,0(%1)";

  for (i = 0; i < words; i++)
    if (refers_to_regno_p (REGNO (operands[2]) + i, operands[1]))
      {
	if (i == words-1)
	  {
	    xop[0] = GEN_INT (4 * (words-1));
	    xop[1] = operands[1];
	    xop[2] = operands[2];
	    output_asm_insn ("lswi %2,%1,%0\n\tlwz %1,%0(%1)", xop);
	    return "";
	  }
	else if (i == 0)
	  {
	    xop[0] = GEN_INT (4 * (words-1));
	    xop[1] = operands[1];
	    xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
	    output_asm_insn ("addi %1,%1,4\n\tlswi %2,%1,%0\n\tlwz %1,-4(%1)", xop);
	    return "";
	  }
	else
	  {
	    for (j = 0; j < words; j++)
	      if (j != i)
		{
		  xop[0] = GEN_INT (j * 4);
		  xop[1] = operands[1];
		  xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + j);
		  output_asm_insn ("lwz %2,%0(%1)", xop);
		}
	    xop[0] = GEN_INT (i * 4);
	    xop[1] = operands[1];
	    output_asm_insn ("lwz %1,%0(%1)", xop);
	    return "";
	  }
      }

  return "lswi %2,%1,%N0";
}