aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/rs6000/rs6000-p8swap.c
blob: 071bc0c187dbcbe5826a3dd2d14c5979f694dda6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
/* Subroutines used to remove unnecessary doubleword swaps
   for p8 little-endian VSX code.
   Copyright (C) 1991-2018 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "df.h"
#include "tm_p.h"
#include "ira.h"
#include "print-tree.h"
#include "varasm.h"
#include "explow.h"
#include "expr.h"
#include "output.h"
#include "tree-pass.h"
#include "rtx-vector-builder.h"

/* Analyze vector computations and remove unnecessary doubleword
   swaps (xxswapdi instructions).  This pass is performed only
   for little-endian VSX code generation.

   For this specific case, loads and stores of 4x32 and 2x64 vectors
   are inefficient.  These are implemented using the lvx2dx and
   stvx2dx instructions, which invert the order of doublewords in
   a vector register.  Thus the code generation inserts an xxswapdi
   after each such load, and prior to each such store.  (For spill
   code after register assignment, an additional xxswapdi is inserted
   following each store in order to return a hard register to its
   unpermuted value.)

   The extra xxswapdi instructions reduce performance.  This can be
   particularly bad for vectorized code.  The purpose of this pass
   is to reduce the number of xxswapdi instructions required for
   correctness.

   The primary insight is that much code that operates on vectors
   does not care about the relative order of elements in a register,
   so long as the correct memory order is preserved.  If we have
   a computation where all input values are provided by lvxd2x/xxswapdi
   sequences, all outputs are stored using xxswapdi/stvxd2x sequences,
   and all intermediate computations are pure SIMD (independent of
   element order), then all the xxswapdi's associated with the loads
   and stores may be removed.

   This pass uses some of the infrastructure and logical ideas from
   the "web" pass in web.c.  We create maximal webs of computations
   fitting the description above using union-find.  Each such web is
   then optimized by removing its unnecessary xxswapdi instructions.

   The pass is placed prior to global optimization so that we can
   perform the optimization in the safest and simplest way possible;
   that is, by replacing each xxswapdi insn with a register copy insn.
   Subsequent forward propagation will remove copies where possible.

   There are some operations sensitive to element order for which we
   can still allow the operation, provided we modify those operations.
   These include CONST_VECTORs, for which we must swap the first and
   second halves of the constant vector; and SUBREGs, for which we
   must adjust the byte offset to account for the swapped doublewords.
   A remaining opportunity would be non-immediate-form splats, for
   which we should adjust the selected lane of the input.  We should
   also make code generation adjustments for sum-across operations,
   since this is a common vectorizer reduction.

   Because we run prior to the first split, we can see loads and stores
   here that match *vsx_le_perm_{load,store}_<mode>.  These are vanilla
   vector loads and stores that have not yet been split into a permuting
   load/store and a swap.  (One way this can happen is with a builtin
   call to vec_vsx_{ld,st}.)  We can handle these as well, but rather
   than deleting a swap, we convert the load/store into a permuting
   load/store (which effectively removes the swap).  */

/* Notes on Permutes

   We do not currently handle computations that contain permutes.  There
   is a general transformation that can be performed correctly, but it
   may introduce more expensive code than it replaces.  To handle these
   would require a cost model to determine when to perform the optimization.
   This commentary records how this could be done if desired.

   The most general permute is something like this (example for V16QI):

   (vec_select:V16QI (vec_concat:V32QI (op1:V16QI) (op2:V16QI))
                     (parallel [(const_int a0) (const_int a1)
                                 ...
                                (const_int a14) (const_int a15)]))

   where a0,...,a15 are in [0,31] and select elements from op1 and op2
   to produce in the result.

   Regardless of mode, we can convert the PARALLEL to a mask of 16
   byte-element selectors.  Let's call this M, with M[i] representing
   the ith byte-element selector value.  Then if we swap doublewords
   throughout the computation, we can get correct behavior by replacing
   M with M' as follows:

    M'[i] = { (M[i]+8)%16      : M[i] in [0,15]
            { ((M[i]+8)%16)+16 : M[i] in [16,31]

   This seems promising at first, since we are just replacing one mask
   with another.  But certain masks are preferable to others.  If M
   is a mask that matches a vmrghh pattern, for example, M' certainly
   will not.  Instead of a single vmrghh, we would generate a load of
   M' and a vperm.  So we would need to know how many xxswapd's we can
   remove as a result of this transformation to determine if it's
   profitable; and preferably the logic would need to be aware of all
   the special preferable masks.

   Another form of permute is an UNSPEC_VPERM, in which the mask is
   already in a register.  In some cases, this mask may be a constant
   that we can discover with ud-chains, in which case the above
   transformation is ok.  However, the common usage here is for the
   mask to be produced by an UNSPEC_LVSL, in which case the mask 
   cannot be known at compile time.  In such a case we would have to
   generate several instructions to compute M' as above at run time,
   and a cost model is needed again.

   However, when the mask M for an UNSPEC_VPERM is loaded from the
   constant pool, we can replace M with M' as above at no cost
   beyond adding a constant pool entry.  */

/* This is based on the union-find logic in web.c.  web_entry_base is
   defined in df.h.  */
class swap_web_entry : public web_entry_base
{
 public:
  /* Pointer to the insn.  */
  rtx_insn *insn;
  /* Set if insn contains a mention of a vector register.  All other
     fields are undefined if this field is unset.  */
  unsigned int is_relevant : 1;
  /* Set if insn is a load.  */
  unsigned int is_load : 1;
  /* Set if insn is a store.  */
  unsigned int is_store : 1;
  /* Set if insn is a doubleword swap.  This can either be a register swap
     or a permuting load or store (test is_load and is_store for this).  */
  unsigned int is_swap : 1;
  /* Set if the insn has a live-in use of a parameter register.  */
  unsigned int is_live_in : 1;
  /* Set if the insn has a live-out def of a return register.  */
  unsigned int is_live_out : 1;
  /* Set if the insn contains a subreg reference of a vector register.  */
  unsigned int contains_subreg : 1;
  /* Set if the insn contains a 128-bit integer operand.  */
  unsigned int is_128_int : 1;
  /* Set if this is a call-insn.  */
  unsigned int is_call : 1;
  /* Set if this insn does not perform a vector operation for which
     element order matters, or if we know how to fix it up if it does.
     Undefined if is_swap is set.  */
  unsigned int is_swappable : 1;
  /* A nonzero value indicates what kind of special handling for this
     insn is required if doublewords are swapped.  Undefined if
     is_swappable is not set.  */
  unsigned int special_handling : 4;
  /* Set if the web represented by this entry cannot be optimized.  */
  unsigned int web_not_optimizable : 1;
  /* Set if this insn should be deleted.  */
  unsigned int will_delete : 1;
};

enum special_handling_values {
  SH_NONE = 0,
  SH_CONST_VECTOR,
  SH_SUBREG,
  SH_NOSWAP_LD,
  SH_NOSWAP_ST,
  SH_EXTRACT,
  SH_SPLAT,
  SH_XXPERMDI,
  SH_CONCAT,
  SH_VPERM
};

/* Union INSN with all insns containing definitions that reach USE.
   Detect whether USE is live-in to the current function.  */
static void
union_defs (swap_web_entry *insn_entry, rtx insn, df_ref use)
{
  struct df_link *link = DF_REF_CHAIN (use);

  if (!link)
    insn_entry[INSN_UID (insn)].is_live_in = 1;

  while (link)
    {
      if (DF_REF_IS_ARTIFICIAL (link->ref))
	insn_entry[INSN_UID (insn)].is_live_in = 1;

      if (DF_REF_INSN_INFO (link->ref))
	{
	  rtx def_insn = DF_REF_INSN (link->ref);
	  (void)unionfind_union (insn_entry + INSN_UID (insn),
				 insn_entry + INSN_UID (def_insn));
	}

      link = link->next;
    }
}

/* Union INSN with all insns containing uses reached from DEF.
   Detect whether DEF is live-out from the current function.  */
static void
union_uses (swap_web_entry *insn_entry, rtx insn, df_ref def)
{
  struct df_link *link = DF_REF_CHAIN (def);

  if (!link)
    insn_entry[INSN_UID (insn)].is_live_out = 1;

  while (link)
    {
      /* This could be an eh use or some other artificial use;
	 we treat these all the same (killing the optimization).  */
      if (DF_REF_IS_ARTIFICIAL (link->ref))
	insn_entry[INSN_UID (insn)].is_live_out = 1;

      if (DF_REF_INSN_INFO (link->ref))
	{
	  rtx use_insn = DF_REF_INSN (link->ref);
	  (void)unionfind_union (insn_entry + INSN_UID (insn),
				 insn_entry + INSN_UID (use_insn));
	}

      link = link->next;
    }
}

/* Return 1 iff INSN is a load insn, including permuting loads that
   represent an lvxd2x instruction; else return 0.  */
static unsigned int
insn_is_load_p (rtx insn)
{
  rtx body = PATTERN (insn);

  if (GET_CODE (body) == SET)
    {
      if (GET_CODE (SET_SRC (body)) == MEM)
	return 1;

      if (GET_CODE (SET_SRC (body)) == VEC_SELECT
	  && GET_CODE (XEXP (SET_SRC (body), 0)) == MEM)
	return 1;

      return 0;
    }

  if (GET_CODE (body) != PARALLEL)
    return 0;

  rtx set = XVECEXP (body, 0, 0);

  if (GET_CODE (set) == SET && GET_CODE (SET_SRC (set)) == MEM)
    return 1;

  return 0;
}

/* Return 1 iff INSN is a store insn, including permuting stores that
   represent an stvxd2x instruction; else return 0.  */
static unsigned int
insn_is_store_p (rtx insn)
{
  rtx body = PATTERN (insn);
  if (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == MEM)
    return 1;
  if (GET_CODE (body) != PARALLEL)
    return 0;
  rtx set = XVECEXP (body, 0, 0);
  if (GET_CODE (set) == SET && GET_CODE (SET_DEST (set)) == MEM)
    return 1;
  return 0;
}

/* Return 1 iff INSN swaps doublewords.  This may be a reg-reg swap,
   a permuting load, or a permuting store.  */
static unsigned int
insn_is_swap_p (rtx insn)
{
  rtx body = PATTERN (insn);
  if (GET_CODE (body) != SET)
    return 0;
  rtx rhs = SET_SRC (body);
  if (GET_CODE (rhs) != VEC_SELECT)
    return 0;
  rtx parallel = XEXP (rhs, 1);
  if (GET_CODE (parallel) != PARALLEL)
    return 0;
  unsigned int len = XVECLEN (parallel, 0);
  if (len != 2 && len != 4 && len != 8 && len != 16)
    return 0;
  for (unsigned int i = 0; i < len / 2; ++i)
    {
      rtx op = XVECEXP (parallel, 0, i);
      if (GET_CODE (op) != CONST_INT || INTVAL (op) != len / 2 + i)
	return 0;
    }
  for (unsigned int i = len / 2; i < len; ++i)
    {
      rtx op = XVECEXP (parallel, 0, i);
      if (GET_CODE (op) != CONST_INT || INTVAL (op) != i - len / 2)
	return 0;
    }
  return 1;
}

/* Return true iff EXPR represents the sum of two registers.  */
bool
rs6000_sum_of_two_registers_p (const_rtx expr)
{
  if (GET_CODE (expr) == PLUS)
    {
      const_rtx operand1 = XEXP (expr, 0);
      const_rtx operand2 = XEXP (expr, 1);
      return (REG_P (operand1) && REG_P (operand2));
    }
  return false;
}

/* Return true iff EXPR represents an address expression that masks off
   the low-order 4 bits in the style of an lvx or stvx rtl pattern.  */
bool
rs6000_quadword_masked_address_p (const_rtx expr)
{
  if (GET_CODE (expr) == AND)
    {
      const_rtx operand1 = XEXP (expr, 0);
      const_rtx operand2 = XEXP (expr, 1);
      if ((REG_P (operand1) || rs6000_sum_of_two_registers_p (operand1))
	  && CONST_SCALAR_INT_P (operand2) && INTVAL (operand2) == -16)
	return true;
    }
  return false;
}

/* Return TRUE if INSN represents a swap of a swapped load from memory
   and the memory address is quad-word aligned.  */
static bool
quad_aligned_load_p (swap_web_entry *insn_entry, rtx_insn *insn)
{
  unsigned uid = INSN_UID (insn);
  if (!insn_entry[uid].is_swap || insn_entry[uid].is_load)
    return false;

  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);

  /* Since insn is known to represent a swap instruction, we know it
     "uses" only one input variable.  */
  df_ref use = DF_INSN_INFO_USES (insn_info);

  /* Figure out where this input variable is defined.  */
  struct df_link *def_link = DF_REF_CHAIN (use);

  /* If there is no definition or the definition is artificial or there are
     multiple definitions, punt.  */
  if (!def_link || !def_link->ref || DF_REF_IS_ARTIFICIAL (def_link->ref)
      || def_link->next)
    return false;

  rtx def_insn = DF_REF_INSN (def_link->ref);
  unsigned uid2 = INSN_UID (def_insn);
  /* We're looking for a load-with-swap insn.  If this is not that,
     return false.  */
  if (!insn_entry[uid2].is_load || !insn_entry[uid2].is_swap)
    return false;

  /* If the source of the rtl def is not a set from memory, return
     false.  */
  rtx body = PATTERN (def_insn);
  if (GET_CODE (body) != SET
      || GET_CODE (SET_SRC (body)) != VEC_SELECT
      || GET_CODE (XEXP (SET_SRC (body), 0)) != MEM)
    return false;

  rtx mem = XEXP (SET_SRC (body), 0);
  rtx base_reg = XEXP (mem, 0);
  return ((REG_P (base_reg) || rs6000_sum_of_two_registers_p (base_reg))
	  && MEM_ALIGN (mem) >= 128) ? true : false;
}

/* Return TRUE if INSN represents a store-with-swap of a swapped value
   and the memory address is quad-word aligned.  */
static bool
quad_aligned_store_p (swap_web_entry *insn_entry, rtx_insn *insn)
{
  unsigned uid = INSN_UID (insn);
  if (!insn_entry[uid].is_swap || !insn_entry[uid].is_store)
    return false;

  rtx body = PATTERN (insn);
  rtx dest_address = XEXP (SET_DEST (body), 0);
  rtx swap_reg = XEXP (SET_SRC (body), 0);

  /* If the base address for the memory expression is not represented
     by a single register and is not the sum of two registers, punt.  */
  if (!REG_P (dest_address) && !rs6000_sum_of_two_registers_p (dest_address))
    return false;

  /* Confirm that the value to be stored is produced by a swap
     instruction.  */
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref use;
  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      struct df_link *def_link = DF_REF_CHAIN (use);

      /* If this is not the definition of the candidate swap register,
	 then skip it.  I am interested in a different definition.  */
      if (!rtx_equal_p (DF_REF_REG (use), swap_reg))
	continue;

      /* If there is no def or the def is artifical or there are
	 multiple defs, punt.  */
      if (!def_link || !def_link->ref || DF_REF_IS_ARTIFICIAL (def_link->ref)
	  || def_link->next)
	return false;

      rtx def_insn = DF_REF_INSN (def_link->ref);
      unsigned uid2 = INSN_UID (def_insn);

      /* If this source value is not a simple swap, return false */
      if (!insn_entry[uid2].is_swap || insn_entry[uid2].is_load
	  || insn_entry[uid2].is_store)
	return false;

      /* I've processed the use that I care about, so break out of
	 this loop.  */
      break;
    }

  /* At this point, we know the source data comes from a swap.  The
     remaining question is whether the memory address is aligned.  */
  rtx set = single_set (insn);
  if (set)
    {
      rtx dest = SET_DEST (set);
      if (MEM_P (dest))
	return (MEM_ALIGN (dest) >= 128);
    }
  return false;
}

/* Return 1 iff UID, known to reference a swap, is both fed by a load
   and a feeder of a store.  */
static unsigned int
swap_feeds_both_load_and_store (swap_web_entry *insn_entry)
{
  rtx insn = insn_entry->insn;
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref def, use;
  struct df_link *link = 0;
  rtx_insn *load = 0, *store = 0;
  bool fed_by_load = 0;
  bool feeds_store = 0;

  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      link = DF_REF_CHAIN (use);
      load = DF_REF_INSN (link->ref);
      if (insn_is_load_p (load) && insn_is_swap_p (load))
	fed_by_load = 1;
    }

  FOR_EACH_INSN_INFO_DEF (def, insn_info)
    {
      link = DF_REF_CHAIN (def);
      store = DF_REF_INSN (link->ref);
      if (insn_is_store_p (store) && insn_is_swap_p (store))
	feeds_store = 1;
    }

  return fed_by_load && feeds_store;
}

/* Return TRUE if insn is a swap fed by a load from the constant pool.  */
static bool
const_load_sequence_p (swap_web_entry *insn_entry, rtx insn)
{
  unsigned uid = INSN_UID (insn);
  if (!insn_entry[uid].is_swap || insn_entry[uid].is_load)
    return false;

  const_rtx tocrel_base;

  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref use;

  /* Iterate over the definitions that are used by this insn.  Since
     this is known to be a swap insn, expect only one used definnition.  */
  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      struct df_link *def_link = DF_REF_CHAIN (use);

      /* If there is no def or the def is artificial or there are
	 multiple defs, punt.  */
      if (!def_link || !def_link->ref || DF_REF_IS_ARTIFICIAL (def_link->ref)
	  || def_link->next)
	return false;

      rtx def_insn = DF_REF_INSN (def_link->ref);
      unsigned uid2 = INSN_UID (def_insn);
      /* If this is not a load or is not a swap, return false.  */
      if (!insn_entry[uid2].is_load || !insn_entry[uid2].is_swap)
	return false;

      /* If the source of the rtl def is not a set from memory, return
	 false.  */
      rtx body = PATTERN (def_insn);
      if (GET_CODE (body) != SET
	  || GET_CODE (SET_SRC (body)) != VEC_SELECT
	  || GET_CODE (XEXP (SET_SRC (body), 0)) != MEM)
	return false;

      rtx mem = XEXP (SET_SRC (body), 0);
      rtx base_reg = XEXP (mem, 0);
      /* If the base address for the memory expression is not
	 represented by a register, punt.  */
      if (!REG_P (base_reg))
	return false;

      df_ref base_use;
      insn_info = DF_INSN_INFO_GET (def_insn);
      FOR_EACH_INSN_INFO_USE (base_use, insn_info)
	{
	  /* If base_use does not represent base_reg, look for another
	     use.  */
	  if (!rtx_equal_p (DF_REF_REG (base_use), base_reg))
	    continue;

	  struct df_link *base_def_link = DF_REF_CHAIN (base_use);
	  if (!base_def_link || base_def_link->next)
	    return false;

	  /* Constants held on the stack are not "true" constants
	     because their values are not part of the static load
	     image.  If this constant's base reference is a stack
	     or frame pointer, it is seen as an artificial
	     reference.  */
	  if (DF_REF_IS_ARTIFICIAL (base_def_link->ref))
	    return false;

	  rtx tocrel_insn = DF_REF_INSN (base_def_link->ref);
	  rtx tocrel_body = PATTERN (tocrel_insn);
	  rtx base, offset;
	  if (GET_CODE (tocrel_body) != SET)
	    return false;
	  /* There is an extra level of indirection for small/large
	     code models.  */
	  rtx tocrel_expr = SET_SRC (tocrel_body);
	  if (GET_CODE (tocrel_expr) == MEM)
	    tocrel_expr = XEXP (tocrel_expr, 0);
	  if (!toc_relative_expr_p (tocrel_expr, false, &tocrel_base, NULL))
	    return false;
	  split_const (XVECEXP (tocrel_base, 0, 0), &base, &offset);

	  if (GET_CODE (base) != SYMBOL_REF || !CONSTANT_POOL_ADDRESS_P (base))
	    return false;
	  else
	    {
	      /* FIXME: The conditions under which
	          ((GET_CODE (const_vector) == SYMBOL_REF) &&
	           !CONSTANT_POOL_ADDRESS_P (const_vector))
	         are not well understood.  This code prevents
	         an internal compiler error which will occur in
	         replace_swapped_load_constant () if we were to return
	         true.  Some day, we should figure out how to properly
	         handle this condition in
	         replace_swapped_load_constant () and then we can
	         remove this special test.  */
	      rtx const_vector = get_pool_constant (base);
	      if (GET_CODE (const_vector) == SYMBOL_REF
		  && CONSTANT_POOL_ADDRESS_P (const_vector))
		const_vector = get_pool_constant (const_vector);
	      if (GET_CODE (const_vector) != CONST_VECTOR)
		return false;
	    }
	}
    }
  return true;
}

/* Return TRUE iff OP matches a V2DF reduction pattern.  See the
   definition of vsx_reduc_<VEC_reduc_name>_v2df in vsx.md.  */
static bool
v2df_reduction_p (rtx op)
{
  if (GET_MODE (op) != V2DFmode)
    return false;
  
  enum rtx_code code = GET_CODE (op);
  if (code != PLUS && code != SMIN && code != SMAX)
    return false;

  rtx concat = XEXP (op, 0);
  if (GET_CODE (concat) != VEC_CONCAT)
    return false;

  rtx select0 = XEXP (concat, 0);
  rtx select1 = XEXP (concat, 1);
  if (GET_CODE (select0) != VEC_SELECT || GET_CODE (select1) != VEC_SELECT)
    return false;

  rtx reg0 = XEXP (select0, 0);
  rtx reg1 = XEXP (select1, 0);
  if (!rtx_equal_p (reg0, reg1) || !REG_P (reg0))
    return false;

  rtx parallel0 = XEXP (select0, 1);
  rtx parallel1 = XEXP (select1, 1);
  if (GET_CODE (parallel0) != PARALLEL || GET_CODE (parallel1) != PARALLEL)
    return false;

  if (!rtx_equal_p (XVECEXP (parallel0, 0, 0), const1_rtx)
      || !rtx_equal_p (XVECEXP (parallel1, 0, 0), const0_rtx))
    return false;

  return true;
}

/* Return 1 iff OP is an operand that will not be affected by having
   vector doublewords swapped in memory.  */
static unsigned int
rtx_is_swappable_p (rtx op, unsigned int *special)
{
  enum rtx_code code = GET_CODE (op);
  int i, j;
  rtx parallel;

  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CLOBBER:
    case REG:
      return 1;

    case VEC_CONCAT:
    case ASM_INPUT:
    case ASM_OPERANDS:
      return 0;

    case CONST_VECTOR:
      {
	*special = SH_CONST_VECTOR;
	return 1;
      }

    case VEC_DUPLICATE:
      /* Opportunity: If XEXP (op, 0) has the same mode as the result,
	 and XEXP (op, 1) is a PARALLEL with a single QImode const int,
	 it represents a vector splat for which we can do special
	 handling.  */
      if (GET_CODE (XEXP (op, 0)) == CONST_INT)
	return 1;
      else if (REG_P (XEXP (op, 0))
	       && GET_MODE_INNER (GET_MODE (op)) == GET_MODE (XEXP (op, 0)))
	/* This catches V2DF and V2DI splat, at a minimum.  */
	return 1;
      else if (GET_CODE (XEXP (op, 0)) == TRUNCATE
	       && REG_P (XEXP (XEXP (op, 0), 0))
	       && GET_MODE_INNER (GET_MODE (op)) == GET_MODE (XEXP (op, 0)))
	/* This catches splat of a truncated value.  */
	return 1;
      else if (GET_CODE (XEXP (op, 0)) == VEC_SELECT)
	/* If the duplicated item is from a select, defer to the select
	   processing to see if we can change the lane for the splat.  */
	return rtx_is_swappable_p (XEXP (op, 0), special);
      else
	return 0;

    case VEC_SELECT:
      /* A vec_extract operation is ok if we change the lane.  */
      if (GET_CODE (XEXP (op, 0)) == REG
	  && GET_MODE_INNER (GET_MODE (XEXP (op, 0))) == GET_MODE (op)
	  && GET_CODE ((parallel = XEXP (op, 1))) == PARALLEL
	  && XVECLEN (parallel, 0) == 1
	  && GET_CODE (XVECEXP (parallel, 0, 0)) == CONST_INT)
	{
	  *special = SH_EXTRACT;
	  return 1;
	}
      /* An XXPERMDI is ok if we adjust the lanes.  Note that if the
	 XXPERMDI is a swap operation, it will be identified by
	 insn_is_swap_p and therefore we won't get here.  */
      else if (GET_CODE (XEXP (op, 0)) == VEC_CONCAT
	       && (GET_MODE (XEXP (op, 0)) == V4DFmode
		   || GET_MODE (XEXP (op, 0)) == V4DImode)
	       && GET_CODE ((parallel = XEXP (op, 1))) == PARALLEL
	       && XVECLEN (parallel, 0) == 2
	       && GET_CODE (XVECEXP (parallel, 0, 0)) == CONST_INT
	       && GET_CODE (XVECEXP (parallel, 0, 1)) == CONST_INT)
	{
	  *special = SH_XXPERMDI;
	  return 1;
	}
      else if (v2df_reduction_p (op))
	return 1;
      else
	return 0;

    case UNSPEC:
      {
	/* Various operations are unsafe for this optimization, at least
	   without significant additional work.  Permutes are obviously
	   problematic, as both the permute control vector and the ordering
	   of the target values are invalidated by doubleword swapping.
	   Vector pack and unpack modify the number of vector lanes.
	   Merge-high/low will not operate correctly on swapped operands.
	   Vector shifts across element boundaries are clearly uncool,
	   as are vector select and concatenate operations.  Vector
	   sum-across instructions define one operand with a specific
	   order-dependent element, so additional fixup code would be
	   needed to make those work.  Vector set and non-immediate-form
	   vector splat are element-order sensitive.  A few of these
	   cases might be workable with special handling if required.
	   Adding cost modeling would be appropriate in some cases.  */
	int val = XINT (op, 1);
	switch (val)
	  {
	  default:
	    break;
	  case UNSPEC_VBPERMQ:
	  case UNSPEC_VMRGH_DIRECT:
	  case UNSPEC_VMRGL_DIRECT:
	  case UNSPEC_VPACK_SIGN_SIGN_SAT:
	  case UNSPEC_VPACK_SIGN_UNS_SAT:
	  case UNSPEC_VPACK_UNS_UNS_MOD:
	  case UNSPEC_VPACK_UNS_UNS_MOD_DIRECT:
	  case UNSPEC_VPACK_UNS_UNS_SAT:
	  case UNSPEC_VPERM:
	  case UNSPEC_VPERM_UNS:
	  case UNSPEC_VPERMHI:
	  case UNSPEC_VPERMSI:
	  case UNSPEC_VPERMXOR:
	  case UNSPEC_VPKPX:
	  case UNSPEC_VSLDOI:
	  case UNSPEC_VSLO:
	  case UNSPEC_VSRO:
	  case UNSPEC_VSUM2SWS:
	  case UNSPEC_VSUM4S:
	  case UNSPEC_VSUM4UBS:
	  case UNSPEC_VSUMSWS:
	  case UNSPEC_VSUMSWS_DIRECT:
	  case UNSPEC_VSX_CONCAT:
	  case UNSPEC_VSX_CVDPSPN:
	  case UNSPEC_VSX_CVSPDP:
	  case UNSPEC_VSX_CVSPDPN:
	  case UNSPEC_VSX_EXTRACT:
	  case UNSPEC_VSX_SET:
	  case UNSPEC_VSX_SLDWI:
	  case UNSPEC_VSX_VEC_INIT:
	  case UNSPEC_VSX_VSLO:
	  case UNSPEC_VUNPACK_HI_SIGN:
	  case UNSPEC_VUNPACK_HI_SIGN_DIRECT:
	  case UNSPEC_VUNPACK_LO_SIGN:
	  case UNSPEC_VUNPACK_LO_SIGN_DIRECT:
	  case UNSPEC_VUPKHPX:
	  case UNSPEC_VUPKHS_V4SF:
	  case UNSPEC_VUPKHU_V4SF:
	  case UNSPEC_VUPKLPX:
	  case UNSPEC_VUPKLS_V4SF:
	  case UNSPEC_VUPKLU_V4SF:
	    return 0;
	  case UNSPEC_VSPLT_DIRECT:
	  case UNSPEC_VSX_XXSPLTD:
	    *special = SH_SPLAT;
	    return 1;
	  case UNSPEC_REDUC_PLUS:
	  case UNSPEC_REDUC:
	    return 1;
	  }
      }

    default:
      break;
    }

  const char *fmt = GET_RTX_FORMAT (code);
  int ok = 1;

  for (i = 0; i < GET_RTX_LENGTH (code); ++i)
    if (fmt[i] == 'e' || fmt[i] == 'u')
      {
	unsigned int special_op = SH_NONE;
	ok &= rtx_is_swappable_p (XEXP (op, i), &special_op);
	if (special_op == SH_NONE)
	  continue;
	/* Ensure we never have two kinds of special handling
	   for the same insn.  */
	if (*special != SH_NONE && *special != special_op)
	  return 0;
	*special = special_op;
      }
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (op, i); ++j)
	{
	  unsigned int special_op = SH_NONE;
	  ok &= rtx_is_swappable_p (XVECEXP (op, i, j), &special_op);
	  if (special_op == SH_NONE)
	    continue;
	  /* Ensure we never have two kinds of special handling
	     for the same insn.  */
	  if (*special != SH_NONE && *special != special_op)
	    return 0;
	  *special = special_op;
	}

  return ok;
}

/* Return 1 iff INSN is an operand that will not be affected by
   having vector doublewords swapped in memory (in which case
   *SPECIAL is unchanged), or that can be modified to be correct
   if vector doublewords are swapped in memory (in which case
   *SPECIAL is changed to a value indicating how).  */
static unsigned int
insn_is_swappable_p (swap_web_entry *insn_entry, rtx insn,
		     unsigned int *special)
{
  /* Calls are always bad.  */
  if (GET_CODE (insn) == CALL_INSN)
    return 0;

  /* Loads and stores seen here are not permuting, but we can still
     fix them up by converting them to permuting ones.  Exceptions:
     UNSPEC_LVE, UNSPEC_LVX, and UNSPEC_STVX, which have a PARALLEL
     body instead of a SET; and UNSPEC_STVE, which has an UNSPEC
     for the SET source.  Also we must now make an exception for lvx
     and stvx when they are not in the UNSPEC_LVX/STVX form (with the
     explicit "& -16") since this leads to unrecognizable insns.  */
  rtx body = PATTERN (insn);
  int i = INSN_UID (insn);

  if (insn_entry[i].is_load)
    {
      if (GET_CODE (body) == SET)
	{
	  rtx rhs = SET_SRC (body);
	  /* Even without a swap, the RHS might be a vec_select for, say,
	     a byte-reversing load.  */
	  if (GET_CODE (rhs) != MEM)
	    return 0;
	  if (GET_CODE (XEXP (rhs, 0)) == AND)
	    return 0;

	  *special = SH_NOSWAP_LD;
	  return 1;
	}
      else
	return 0;
    }

  if (insn_entry[i].is_store)
    {
      if (GET_CODE (body) == SET
	  && GET_CODE (SET_SRC (body)) != UNSPEC
	  && GET_CODE (SET_SRC (body)) != VEC_SELECT)
	{
	  rtx lhs = SET_DEST (body);
	  /* Even without a swap, the RHS might be a vec_select for, say,
	     a byte-reversing store.  */
	  if (GET_CODE (lhs) != MEM)
	    return 0;
	  if (GET_CODE (XEXP (lhs, 0)) == AND)
	    return 0;
	  
	  *special = SH_NOSWAP_ST;
	  return 1;
	}
      else
	return 0;
    }

  /* A convert to single precision can be left as is provided that
     all of its uses are in xxspltw instructions that splat BE element
     zero.  */
  if (GET_CODE (body) == SET
      && GET_CODE (SET_SRC (body)) == UNSPEC
      && XINT (SET_SRC (body), 1) == UNSPEC_VSX_CVDPSPN)
    {
      df_ref def;
      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);

      FOR_EACH_INSN_INFO_DEF (def, insn_info)
	{
	  struct df_link *link = DF_REF_CHAIN (def);
	  if (!link)
	    return 0;

	  for (; link; link = link->next) {
	    rtx use_insn = DF_REF_INSN (link->ref);
	    rtx use_body = PATTERN (use_insn);
	    if (GET_CODE (use_body) != SET
		|| GET_CODE (SET_SRC (use_body)) != UNSPEC
		|| XINT (SET_SRC (use_body), 1) != UNSPEC_VSX_XXSPLTW
		|| XVECEXP (SET_SRC (use_body), 0, 1) != const0_rtx)
	      return 0;
	  }
	}

      return 1;
    }

  /* A concatenation of two doublewords is ok if we reverse the
     order of the inputs.  */
  if (GET_CODE (body) == SET
      && GET_CODE (SET_SRC (body)) == VEC_CONCAT
      && (GET_MODE (SET_SRC (body)) == V2DFmode
	  || GET_MODE (SET_SRC (body)) == V2DImode))
    {
      *special = SH_CONCAT;
      return 1;
    }

  /* V2DF reductions are always swappable.  */
  if (GET_CODE (body) == PARALLEL)
    {
      rtx expr = XVECEXP (body, 0, 0);
      if (GET_CODE (expr) == SET
	  && v2df_reduction_p (SET_SRC (expr)))
	return 1;
    }

  /* An UNSPEC_VPERM is ok if the mask operand is loaded from the
     constant pool.  */
  if (GET_CODE (body) == SET
      && GET_CODE (SET_SRC (body)) == UNSPEC
      && XINT (SET_SRC (body), 1) == UNSPEC_VPERM
      && XVECLEN (SET_SRC (body), 0) == 3
      && GET_CODE (XVECEXP (SET_SRC (body), 0, 2)) == REG)
    {
      rtx mask_reg = XVECEXP (SET_SRC (body), 0, 2);
      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
      df_ref use;
      FOR_EACH_INSN_INFO_USE (use, insn_info)
	if (rtx_equal_p (DF_REF_REG (use), mask_reg))
	  {
	    struct df_link *def_link = DF_REF_CHAIN (use);
	    /* Punt if multiple definitions for this reg.  */
	    if (def_link && !def_link->next &&
		const_load_sequence_p (insn_entry,
				       DF_REF_INSN (def_link->ref)))
	      {
		*special = SH_VPERM;
		return 1;
	      }
	  }
    }

  /* Otherwise check the operands for vector lane violations.  */
  return rtx_is_swappable_p (body, special);
}

enum chain_purpose { FOR_LOADS, FOR_STORES };

/* Return true if the UD or DU chain headed by LINK is non-empty,
   and every entry on the chain references an insn that is a
   register swap.  Furthermore, if PURPOSE is FOR_LOADS, each such
   register swap must have only permuting loads as reaching defs.
   If PURPOSE is FOR_STORES, each such register swap must have only
   register swaps or permuting stores as reached uses.  */
static bool
chain_contains_only_swaps (swap_web_entry *insn_entry, struct df_link *link,
			   enum chain_purpose purpose)
{
  if (!link)
    return false;

  for (; link; link = link->next)
    {
      if (!ALTIVEC_OR_VSX_VECTOR_MODE (GET_MODE (DF_REF_REG (link->ref))))
	continue;

      if (DF_REF_IS_ARTIFICIAL (link->ref))
	return false;

      rtx reached_insn = DF_REF_INSN (link->ref);
      unsigned uid = INSN_UID (reached_insn);
      struct df_insn_info *insn_info = DF_INSN_INFO_GET (reached_insn);

      if (!insn_entry[uid].is_swap || insn_entry[uid].is_load
	  || insn_entry[uid].is_store)
	return false;

      if (purpose == FOR_LOADS)
	{
	  df_ref use;
	  FOR_EACH_INSN_INFO_USE (use, insn_info)
	    {
	      struct df_link *swap_link = DF_REF_CHAIN (use);

	      while (swap_link)
		{
		  if (DF_REF_IS_ARTIFICIAL (link->ref))
		    return false;

		  rtx swap_def_insn = DF_REF_INSN (swap_link->ref);
		  unsigned uid2 = INSN_UID (swap_def_insn);

		  /* Only permuting loads are allowed.  */
		  if (!insn_entry[uid2].is_swap || !insn_entry[uid2].is_load)
		    return false;

		  swap_link = swap_link->next;
		}
	    }
	}
      else if (purpose == FOR_STORES)
	{
	  df_ref def;
	  FOR_EACH_INSN_INFO_DEF (def, insn_info)
	    {
	      struct df_link *swap_link = DF_REF_CHAIN (def);

	      while (swap_link)
		{
		  if (DF_REF_IS_ARTIFICIAL (link->ref))
		    return false;

		  rtx swap_use_insn = DF_REF_INSN (swap_link->ref);
		  unsigned uid2 = INSN_UID (swap_use_insn);

		  /* Permuting stores or register swaps are allowed.  */
		  if (!insn_entry[uid2].is_swap || insn_entry[uid2].is_load)
		    return false;

		  swap_link = swap_link->next;
		}
	    }
	}
    }

  return true;
}

/* Mark the xxswapdi instructions associated with permuting loads and
   stores for removal.  Note that we only flag them for deletion here,
   as there is a possibility of a swap being reached from multiple
   loads, etc.  */
static void
mark_swaps_for_removal (swap_web_entry *insn_entry, unsigned int i)
{
  rtx insn = insn_entry[i].insn;
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);

  if (insn_entry[i].is_load)
    {
      df_ref def;
      FOR_EACH_INSN_INFO_DEF (def, insn_info)
	{
	  struct df_link *link = DF_REF_CHAIN (def);

	  /* We know by now that these are swaps, so we can delete
	     them confidently.  */
	  while (link)
	    {
	      rtx use_insn = DF_REF_INSN (link->ref);
	      insn_entry[INSN_UID (use_insn)].will_delete = 1;
	      link = link->next;
	    }
	}
    }
  else if (insn_entry[i].is_store)
    {
      df_ref use;
      FOR_EACH_INSN_INFO_USE (use, insn_info)
	{
	  /* Ignore uses for addressability.  */
	  machine_mode mode = GET_MODE (DF_REF_REG (use));
	  if (!ALTIVEC_OR_VSX_VECTOR_MODE (mode))
	    continue;

	  struct df_link *link = DF_REF_CHAIN (use);

	  /* We know by now that these are swaps, so we can delete
	     them confidently.  */
	  while (link)
	    {
	      rtx def_insn = DF_REF_INSN (link->ref);
	      insn_entry[INSN_UID (def_insn)].will_delete = 1;
	      link = link->next;
	    }
	}
    }
}

/* *OP_PTR is either a CONST_VECTOR or an expression containing one.
   Swap the first half of the vector with the second in the first
   case.  Recurse to find it in the second.  */
static void
swap_const_vector_halves (rtx *op_ptr)
{
  int i;
  rtx op = *op_ptr;
  enum rtx_code code = GET_CODE (op);
  if (GET_CODE (op) == CONST_VECTOR)
    {
      int units = GET_MODE_NUNITS (GET_MODE (op));
      rtx_vector_builder builder (GET_MODE (op), units, 1);
      for (i = 0; i < units / 2; ++i)
	builder.quick_push (CONST_VECTOR_ELT (op, i + units / 2));
      for (i = 0; i < units / 2; ++i)
	builder.quick_push (CONST_VECTOR_ELT (op, i));
      *op_ptr = builder.build ();
    }
  else
    {
      int j;
      const char *fmt = GET_RTX_FORMAT (code);
      for (i = 0; i < GET_RTX_LENGTH (code); ++i)
	if (fmt[i] == 'e' || fmt[i] == 'u')
	  swap_const_vector_halves (&XEXP (op, i));
	else if (fmt[i] == 'E')
	  for (j = 0; j < XVECLEN (op, i); ++j)
	    swap_const_vector_halves (&XVECEXP (op, i, j));
    }
}

/* Find all subregs of a vector expression that perform a narrowing,
   and adjust the subreg index to account for doubleword swapping.  */
static void
adjust_subreg_index (rtx op)
{
  enum rtx_code code = GET_CODE (op);
  if (code == SUBREG
      && (GET_MODE_SIZE (GET_MODE (op))
	  < GET_MODE_SIZE (GET_MODE (XEXP (op, 0)))))
    {
      unsigned int index = SUBREG_BYTE (op);
      if (index < 8)
	index += 8;
      else
	index -= 8;
      SUBREG_BYTE (op) = index;
    }

  const char *fmt = GET_RTX_FORMAT (code);
  int i,j;
  for (i = 0; i < GET_RTX_LENGTH (code); ++i)
    if (fmt[i] == 'e' || fmt[i] == 'u')
      adjust_subreg_index (XEXP (op, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (op, i); ++j)
	adjust_subreg_index (XVECEXP (op, i, j));
}

/* Convert the non-permuting load INSN to a permuting one.  */
static void
permute_load (rtx_insn *insn)
{
  rtx body = PATTERN (insn);
  rtx mem_op = SET_SRC (body);
  rtx tgt_reg = SET_DEST (body);
  machine_mode mode = GET_MODE (tgt_reg);
  int n_elts = GET_MODE_NUNITS (mode);
  int half_elts = n_elts / 2;
  rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
  int i, j;
  for (i = 0, j = half_elts; i < half_elts; ++i, ++j)
    XVECEXP (par, 0, i) = GEN_INT (j);
  for (i = half_elts, j = 0; j < half_elts; ++i, ++j)
    XVECEXP (par, 0, i) = GEN_INT (j);
  rtx sel = gen_rtx_VEC_SELECT (mode, mem_op, par);
  SET_SRC (body) = sel;
  INSN_CODE (insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (insn);

  if (dump_file)
    fprintf (dump_file, "Replacing load %d with permuted load\n",
	     INSN_UID (insn));
}

/* Convert the non-permuting store INSN to a permuting one.  */
static void
permute_store (rtx_insn *insn)
{
  rtx body = PATTERN (insn);
  rtx src_reg = SET_SRC (body);
  machine_mode mode = GET_MODE (src_reg);
  int n_elts = GET_MODE_NUNITS (mode);
  int half_elts = n_elts / 2;
  rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
  int i, j;
  for (i = 0, j = half_elts; i < half_elts; ++i, ++j)
    XVECEXP (par, 0, i) = GEN_INT (j);
  for (i = half_elts, j = 0; j < half_elts; ++i, ++j)
    XVECEXP (par, 0, i) = GEN_INT (j);
  rtx sel = gen_rtx_VEC_SELECT (mode, src_reg, par);
  SET_SRC (body) = sel;
  INSN_CODE (insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (insn);

  if (dump_file)
    fprintf (dump_file, "Replacing store %d with permuted store\n",
	     INSN_UID (insn));
}

/* Given OP that contains a vector extract operation, adjust the index
   of the extracted lane to account for the doubleword swap.  */
static void
adjust_extract (rtx_insn *insn)
{
  rtx pattern = PATTERN (insn);
  if (GET_CODE (pattern) == PARALLEL)
    pattern = XVECEXP (pattern, 0, 0);
  rtx src = SET_SRC (pattern);
  /* The vec_select may be wrapped in a vec_duplicate for a splat, so
     account for that.  */
  rtx sel = GET_CODE (src) == VEC_DUPLICATE ? XEXP (src, 0) : src;
  rtx par = XEXP (sel, 1);
  int half_elts = GET_MODE_NUNITS (GET_MODE (XEXP (sel, 0))) >> 1;
  int lane = INTVAL (XVECEXP (par, 0, 0));
  lane = lane >= half_elts ? lane - half_elts : lane + half_elts;
  XVECEXP (par, 0, 0) = GEN_INT (lane);
  INSN_CODE (insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (insn);

  if (dump_file)
    fprintf (dump_file, "Changing lane for extract %d\n", INSN_UID (insn));
}

/* Given OP that contains a vector direct-splat operation, adjust the index
   of the source lane to account for the doubleword swap.  */
static void
adjust_splat (rtx_insn *insn)
{
  rtx body = PATTERN (insn);
  rtx unspec = XEXP (body, 1);
  int half_elts = GET_MODE_NUNITS (GET_MODE (unspec)) >> 1;
  int lane = INTVAL (XVECEXP (unspec, 0, 1));
  lane = lane >= half_elts ? lane - half_elts : lane + half_elts;
  XVECEXP (unspec, 0, 1) = GEN_INT (lane);
  INSN_CODE (insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (insn);

  if (dump_file)
    fprintf (dump_file, "Changing lane for splat %d\n", INSN_UID (insn));
}

/* Given OP that contains an XXPERMDI operation (that is not a doubleword
   swap), reverse the order of the source operands and adjust the indices
   of the source lanes to account for doubleword reversal.  */
static void
adjust_xxpermdi (rtx_insn *insn)
{
  rtx set = PATTERN (insn);
  rtx select = XEXP (set, 1);
  rtx concat = XEXP (select, 0);
  rtx src0 = XEXP (concat, 0);
  XEXP (concat, 0) = XEXP (concat, 1);
  XEXP (concat, 1) = src0;
  rtx parallel = XEXP (select, 1);
  int lane0 = INTVAL (XVECEXP (parallel, 0, 0));
  int lane1 = INTVAL (XVECEXP (parallel, 0, 1));
  int new_lane0 = 3 - lane1;
  int new_lane1 = 3 - lane0;
  XVECEXP (parallel, 0, 0) = GEN_INT (new_lane0);
  XVECEXP (parallel, 0, 1) = GEN_INT (new_lane1);
  INSN_CODE (insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (insn);

  if (dump_file)
    fprintf (dump_file, "Changing lanes for xxpermdi %d\n", INSN_UID (insn));
}

/* Given OP that contains a VEC_CONCAT operation of two doublewords,
   reverse the order of those inputs.  */
static void
adjust_concat (rtx_insn *insn)
{
  rtx set = PATTERN (insn);
  rtx concat = XEXP (set, 1);
  rtx src0 = XEXP (concat, 0);
  XEXP (concat, 0) = XEXP (concat, 1);
  XEXP (concat, 1) = src0;
  INSN_CODE (insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (insn);

  if (dump_file)
    fprintf (dump_file, "Reversing inputs for concat %d\n", INSN_UID (insn));
}

/* Given an UNSPEC_VPERM insn, modify the mask loaded from the
   constant pool to reflect swapped doublewords.  */
static void
adjust_vperm (rtx_insn *insn)
{
  /* We previously determined that the UNSPEC_VPERM was fed by a
     swap of a swapping load of a TOC-relative constant pool symbol.
     Find the MEM in the swapping load and replace it with a MEM for
     the adjusted mask constant.  */
  rtx set = PATTERN (insn);
  rtx mask_reg = XVECEXP (SET_SRC (set), 0, 2);

  /* Find the swap.  */
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref use;
  rtx_insn *swap_insn = 0;
  FOR_EACH_INSN_INFO_USE (use, insn_info)
    if (rtx_equal_p (DF_REF_REG (use), mask_reg))
      {
	struct df_link *def_link = DF_REF_CHAIN (use);
	gcc_assert (def_link && !def_link->next);
	swap_insn = DF_REF_INSN (def_link->ref);
	break;
      }
  gcc_assert (swap_insn);
  
  /* Find the load.  */
  insn_info = DF_INSN_INFO_GET (swap_insn);
  rtx_insn *load_insn = 0;
  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      struct df_link *def_link = DF_REF_CHAIN (use);
      gcc_assert (def_link && !def_link->next);
      load_insn = DF_REF_INSN (def_link->ref);
      break;
    }
  gcc_assert (load_insn);

  /* Find the TOC-relative symbol access.  */
  insn_info = DF_INSN_INFO_GET (load_insn);
  rtx_insn *tocrel_insn = 0;
  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      struct df_link *def_link = DF_REF_CHAIN (use);
      gcc_assert (def_link && !def_link->next);
      tocrel_insn = DF_REF_INSN (def_link->ref);
      break;
    }
  gcc_assert (tocrel_insn);

  /* Find the embedded CONST_VECTOR.  We have to call toc_relative_expr_p
     to set tocrel_base; otherwise it would be unnecessary as we've
     already established it will return true.  */
  rtx base, offset;
  const_rtx tocrel_base;
  rtx tocrel_expr = SET_SRC (PATTERN (tocrel_insn));
  /* There is an extra level of indirection for small/large code models.  */
  if (GET_CODE (tocrel_expr) == MEM)
    tocrel_expr = XEXP (tocrel_expr, 0);
  if (!toc_relative_expr_p (tocrel_expr, false, &tocrel_base, NULL))
    gcc_unreachable ();
  split_const (XVECEXP (tocrel_base, 0, 0), &base, &offset);
  rtx const_vector = get_pool_constant (base);
  /* With the extra indirection, get_pool_constant will produce the
     real constant from the reg_equal expression, so get the real
     constant.  */
  if (GET_CODE (const_vector) == SYMBOL_REF)
    const_vector = get_pool_constant (const_vector);
  gcc_assert (GET_CODE (const_vector) == CONST_VECTOR);

  /* Create an adjusted mask from the initial mask.  */
  unsigned int new_mask[16], i, val;
  for (i = 0; i < 16; ++i) {
    val = INTVAL (XVECEXP (const_vector, 0, i));
    if (val < 16)
      new_mask[i] = (val + 8) % 16;
    else
      new_mask[i] = ((val + 8) % 16) + 16;
  }

  /* Create a new CONST_VECTOR and a MEM that references it.  */
  rtx vals = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
  for (i = 0; i < 16; ++i)
    XVECEXP (vals, 0, i) = GEN_INT (new_mask[i]);
  rtx new_const_vector = gen_rtx_CONST_VECTOR (V16QImode, XVEC (vals, 0));
  rtx new_mem = force_const_mem (V16QImode, new_const_vector);
  /* This gives us a MEM whose base operand is a SYMBOL_REF, which we
     can't recognize.  Force the SYMBOL_REF into a register.  */
  if (!REG_P (XEXP (new_mem, 0))) {
    rtx base_reg = force_reg (Pmode, XEXP (new_mem, 0));
    XEXP (new_mem, 0) = base_reg;
    /* Move the newly created insn ahead of the load insn.  */
    rtx_insn *force_insn = get_last_insn ();
    remove_insn (force_insn);
    rtx_insn *before_load_insn = PREV_INSN (load_insn);
    add_insn_after (force_insn, before_load_insn, BLOCK_FOR_INSN (load_insn));
    df_insn_rescan (before_load_insn);
    df_insn_rescan (force_insn);
  }

  /* Replace the MEM in the load instruction and rescan it.  */
  XEXP (SET_SRC (PATTERN (load_insn)), 0) = new_mem;
  INSN_CODE (load_insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (load_insn);

  if (dump_file)
    fprintf (dump_file, "Adjusting mask for vperm %d\n", INSN_UID (insn));
}

/* The insn described by INSN_ENTRY[I] can be swapped, but only
   with special handling.  Take care of that here.  */
static void
handle_special_swappables (swap_web_entry *insn_entry, unsigned i)
{
  rtx_insn *insn = insn_entry[i].insn;
  rtx body = PATTERN (insn);

  switch (insn_entry[i].special_handling)
    {
    default:
      gcc_unreachable ();
    case SH_CONST_VECTOR:
      {
	/* A CONST_VECTOR will only show up somewhere in the RHS of a SET.  */
	gcc_assert (GET_CODE (body) == SET);
	swap_const_vector_halves (&SET_SRC (body));
	if (dump_file)
	  fprintf (dump_file, "Swapping constant halves in insn %d\n", i);
	break;
      }
    case SH_SUBREG:
      /* A subreg of the same size is already safe.  For subregs that
	 select a smaller portion of a reg, adjust the index for
	 swapped doublewords.  */
      adjust_subreg_index (body);
      if (dump_file)
	fprintf (dump_file, "Adjusting subreg in insn %d\n", i);
      break;
    case SH_NOSWAP_LD:
      /* Convert a non-permuting load to a permuting one.  */
      permute_load (insn);
      break;
    case SH_NOSWAP_ST:
      /* Convert a non-permuting store to a permuting one.  */
      permute_store (insn);
      break;
    case SH_EXTRACT:
      /* Change the lane on an extract operation.  */
      adjust_extract (insn);
      break;
    case SH_SPLAT:
      /* Change the lane on a direct-splat operation.  */
      adjust_splat (insn);
      break;
    case SH_XXPERMDI:
      /* Change the lanes on an XXPERMDI operation.  */
      adjust_xxpermdi (insn);
      break;
    case SH_CONCAT:
      /* Reverse the order of a concatenation operation.  */
      adjust_concat (insn);
      break;
    case SH_VPERM:
      /* Change the mask loaded from the constant pool for a VPERM.  */
      adjust_vperm (insn);
      break;
    }
}

/* Find the insn from the Ith table entry, which is known to be a
   register swap Y = SWAP(X).  Replace it with a copy Y = X.  */
static void
replace_swap_with_copy (swap_web_entry *insn_entry, unsigned i)
{
  rtx_insn *insn = insn_entry[i].insn;
  rtx body = PATTERN (insn);
  rtx src_reg = XEXP (SET_SRC (body), 0);
  rtx copy = gen_rtx_SET (SET_DEST (body), src_reg);
  rtx_insn *new_insn = emit_insn_before (copy, insn);
  set_block_for_insn (new_insn, BLOCK_FOR_INSN (insn));
  df_insn_rescan (new_insn);

  if (dump_file)
    {
      unsigned int new_uid = INSN_UID (new_insn);
      fprintf (dump_file, "Replacing swap %d with copy %d\n", i, new_uid);
    }

  df_insn_delete (insn);
  remove_insn (insn);
  insn->set_deleted ();
}

/* Make NEW_MEM_EXP's attributes and flags resemble those of
   ORIGINAL_MEM_EXP.  */
static void
mimic_memory_attributes_and_flags (rtx new_mem_exp, const_rtx original_mem_exp)
{
  RTX_FLAG (new_mem_exp, jump) = RTX_FLAG (original_mem_exp, jump);
  RTX_FLAG (new_mem_exp, call) = RTX_FLAG (original_mem_exp, call);
  RTX_FLAG (new_mem_exp, unchanging) = RTX_FLAG (original_mem_exp, unchanging);
  RTX_FLAG (new_mem_exp, volatil) = RTX_FLAG (original_mem_exp, volatil);
  RTX_FLAG (new_mem_exp, frame_related) =
    RTX_FLAG (original_mem_exp, frame_related);

  /* The following fields may not be used with MEM subexpressions */
  RTX_FLAG (new_mem_exp, in_struct) = RTX_FLAG (original_mem_exp, in_struct);
  RTX_FLAG (new_mem_exp, return_val) = RTX_FLAG (original_mem_exp, return_val);

  struct mem_attrs original_attrs = *get_mem_attrs(original_mem_exp);

  alias_set_type set = original_attrs.alias;
  set_mem_alias_set (new_mem_exp, set);

  addr_space_t addrspace = original_attrs.addrspace;
  set_mem_addr_space (new_mem_exp, addrspace);

  unsigned int align = original_attrs.align;
  set_mem_align (new_mem_exp, align);

  tree expr = original_attrs.expr;
  set_mem_expr (new_mem_exp, expr);

  if (original_attrs.offset_known_p)
    {
      HOST_WIDE_INT offset = original_attrs.offset;
      set_mem_offset (new_mem_exp, offset);
    }
  else
    clear_mem_offset (new_mem_exp);

  if (original_attrs.size_known_p)
    {
      HOST_WIDE_INT size = original_attrs.size;
      set_mem_size (new_mem_exp, size);
    }
  else
    clear_mem_size (new_mem_exp);
}

/* Generate an rtx expression to represent use of the stvx insn to store
   the value represented by register SRC_EXP into the memory at address
   DEST_EXP, with vector mode MODE.  */
rtx
rs6000_gen_stvx (enum machine_mode mode, rtx dest_exp, rtx src_exp)
{
  rtx stvx;

  if (mode == V16QImode)
    stvx = gen_altivec_stvx_v16qi (src_exp, dest_exp);
  else if (mode == V8HImode)
    stvx = gen_altivec_stvx_v8hi (src_exp, dest_exp);
#ifdef HAVE_V8HFmode
  else if (mode == V8HFmode)
    stvx = gen_altivec_stvx_v8hf (src_exp, dest_exp);
#endif
  else if (mode == V4SImode)
    stvx = gen_altivec_stvx_v4si (src_exp, dest_exp);
  else if (mode == V4SFmode)
    stvx = gen_altivec_stvx_v4sf (src_exp, dest_exp);
  else if (mode == V2DImode)
    stvx = gen_altivec_stvx_v2di (src_exp, dest_exp);
  else if (mode == V2DFmode)
    stvx = gen_altivec_stvx_v2df (src_exp, dest_exp);
  else if (mode == V1TImode)
    stvx = gen_altivec_stvx_v1ti (src_exp, dest_exp);
  else
    /* KFmode, TFmode, other modes not expected in this context.  */
    gcc_unreachable ();

  rtx new_mem_exp = SET_DEST (PATTERN (stvx));
  mimic_memory_attributes_and_flags (new_mem_exp, dest_exp);
  return stvx;
}

/* Given that STORE_INSN represents an aligned store-with-swap of a
   swapped value, replace the store with an aligned store (without
   swap) and replace the swap with a copy insn.  */
static void
replace_swapped_aligned_store (swap_web_entry *insn_entry,
			       rtx_insn *store_insn)
{
  unsigned uid = INSN_UID (store_insn);
  gcc_assert (insn_entry[uid].is_swap && insn_entry[uid].is_store);

  rtx body = PATTERN (store_insn);
  rtx dest_address = XEXP (SET_DEST (body), 0);
  rtx swap_reg = XEXP (SET_SRC (body), 0);
  gcc_assert (REG_P (dest_address)
	      || rs6000_sum_of_two_registers_p (dest_address));

  /* Find the swap instruction that provides the value to be stored by
   * this store-with-swap instruction. */
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (store_insn);
  df_ref use;
  rtx_insn *swap_insn = NULL;
  unsigned uid2 = 0;
  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      struct df_link *def_link = DF_REF_CHAIN (use);

      /* if this is not the definition of the candidate swap register,
	 then skip it.  I am only interested in the swap insnd.  */
      if (!rtx_equal_p (DF_REF_REG (use), swap_reg))
	continue;

      /* If there is no def or the def is artifical or there are
	 multiple defs, we should not be here.  */
      gcc_assert (def_link && def_link->ref && !def_link->next
		  && !DF_REF_IS_ARTIFICIAL (def_link->ref));

      swap_insn = DF_REF_INSN (def_link->ref);
      uid2 = INSN_UID (swap_insn);

      /* If this source value is not a simple swap, we should not be here.  */
      gcc_assert (insn_entry[uid2].is_swap && !insn_entry[uid2].is_load
		  && !insn_entry[uid2].is_store);

      /* We've processed the use we care about, so break out of
	 this loop.  */
      break;
    }

  /* At this point, swap_insn and uid2 represent the swap instruction
     that feeds the store.  */
  gcc_assert (swap_insn);
  rtx set = single_set (store_insn);
  gcc_assert (set);
  rtx dest_exp = SET_DEST (set);
  rtx src_exp = XEXP (SET_SRC (body), 0);
  enum machine_mode mode = GET_MODE (dest_exp);
  gcc_assert (MEM_P (dest_exp));
  gcc_assert (MEM_ALIGN (dest_exp) >= 128);

  /* Replace the copy with a new insn.  */
  rtx stvx;
  stvx = rs6000_gen_stvx (mode, dest_exp, src_exp);

  rtx_insn *new_insn = emit_insn_before (stvx, store_insn);
  rtx new_body = PATTERN (new_insn);

  gcc_assert ((GET_CODE (new_body) == SET)
	      && (GET_CODE (SET_DEST (new_body)) == MEM));

  set_block_for_insn (new_insn, BLOCK_FOR_INSN (store_insn));
  df_insn_rescan (new_insn);

  df_insn_delete (store_insn);
  remove_insn (store_insn);
  store_insn->set_deleted ();

  /* Replace the swap with a copy.  */
  uid2 = INSN_UID (swap_insn);
  mark_swaps_for_removal (insn_entry, uid2);
  replace_swap_with_copy (insn_entry, uid2);
}

/* Generate an rtx expression to represent use of the lvx insn to load
   from memory SRC_EXP into register DEST_EXP with vector mode MODE. */
rtx
rs6000_gen_lvx (enum machine_mode mode, rtx dest_exp, rtx src_exp)
{
  rtx lvx;

  if (mode == V16QImode)
    lvx = gen_altivec_lvx_v16qi (dest_exp, src_exp);
  else if (mode == V8HImode)
    lvx = gen_altivec_lvx_v8hi (dest_exp, src_exp);
#ifdef HAVE_V8HFmode
  else if (mode == V8HFmode)
    lvx = gen_altivec_lvx_v8hf (dest_exp, src_exp);
#endif
  else if (mode == V4SImode)
    lvx = gen_altivec_lvx_v4si (dest_exp, src_exp);
  else if (mode == V4SFmode)
    lvx = gen_altivec_lvx_v4sf (dest_exp, src_exp);
  else if (mode == V2DImode)
    lvx = gen_altivec_lvx_v2di (dest_exp, src_exp);
  else if (mode == V2DFmode)
    lvx = gen_altivec_lvx_v2df (dest_exp, src_exp);
  else if (mode == V1TImode)
    lvx = gen_altivec_lvx_v1ti (dest_exp, src_exp);
  else
    /* KFmode, TFmode, other modes not expected in this context.  */
    gcc_unreachable ();

  rtx new_mem_exp = SET_SRC (PATTERN (lvx));
  mimic_memory_attributes_and_flags (new_mem_exp, src_exp);

  return lvx;
}

/* Given that SWAP_INSN represents a swap of an aligned
   load-with-swap, replace the load with an aligned load (without
   swap) and replace the swap with a copy insn.  */
static void
replace_swapped_aligned_load (swap_web_entry *insn_entry, rtx swap_insn)
{
  /* Find the load.  */
  unsigned uid = INSN_UID (swap_insn);
  /* Only call this if quad_aligned_load_p (swap_insn).  */
  gcc_assert (insn_entry[uid].is_swap && !insn_entry[uid].is_load);
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (swap_insn);

  /* Since insn is known to represent a swap instruction, we know it
     "uses" only one input variable.  */
  df_ref use = DF_INSN_INFO_USES (insn_info);

  /* Figure out where this input variable is defined.  */
  struct df_link *def_link = DF_REF_CHAIN (use);
  gcc_assert (def_link && !def_link->next);
  gcc_assert (def_link && def_link->ref &&
	      !DF_REF_IS_ARTIFICIAL (def_link->ref) && !def_link->next);

  rtx_insn *def_insn = DF_REF_INSN (def_link->ref);
  unsigned uid2 = INSN_UID (def_insn);

  /* We're expecting a load-with-swap insn.  */
  gcc_assert (insn_entry[uid2].is_load && insn_entry[uid2].is_swap);

  /* We expect this to be a set to memory, with source representing a
     swap (indicated by code VEC_SELECT).  */
  rtx body = PATTERN (def_insn);
  gcc_assert ((GET_CODE (body) == SET)
	      && (GET_CODE (SET_SRC (body)) == VEC_SELECT)
	      && (GET_CODE (XEXP (SET_SRC (body), 0)) == MEM));

  rtx src_exp = XEXP (SET_SRC (body), 0);
  enum machine_mode mode = GET_MODE (src_exp);
  rtx lvx = rs6000_gen_lvx (mode, SET_DEST (body), src_exp);

  rtx_insn *new_insn = emit_insn_before (lvx, def_insn);
  rtx new_body = PATTERN (new_insn);

  gcc_assert ((GET_CODE (new_body) == SET)
	      && (GET_CODE (SET_SRC (new_body)) == MEM));

  set_block_for_insn (new_insn, BLOCK_FOR_INSN (def_insn));
  df_insn_rescan (new_insn);

  df_insn_delete (def_insn);
  remove_insn (def_insn);
  def_insn->set_deleted ();

  /* Replace the swap with a copy.  */
  mark_swaps_for_removal (insn_entry, uid);
  replace_swap_with_copy (insn_entry, uid);
}

/* Given that SWAP_INSN represents a swap of a load of a constant
   vector value, replace with a single instruction that loads a
   swapped variant of the original constant.

   The "natural" representation of a byte array in memory is the same
   for big endian and little endian.

   unsigned char byte_array[] =
     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f };

   However, when loaded into a vector register, the representation
   depends on endian conventions.

   In big-endian mode, the register holds:

     MSB                                            LSB
     [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f ]

   In little-endian mode, the register holds:

     MSB                                            LSB
     [ f, e, d, c, b, a, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ]

   Word arrays require different handling.  Consider the word array:

   unsigned int word_array[] =
     { 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f };

   The in-memory representation depends on endian configuration.  The
   equivalent array, declared as a byte array, in memory would be:

   unsigned char big_endian_word_array_data[] =
     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f }

   unsigned char little_endian_word_array_data[] =
     { 3, 2, 1, 0, 7, 6, 5, 4, b, a, 9, 8, f, e, d, c }

   In big-endian mode, the register holds:

     MSB                                            LSB
     [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f ]

   In little-endian mode, the register holds:

     MSB                                            LSB
     [ c, d, e, f, 8, 9, a, b, 4, 5, 6, 7, 0, 1, 2, 3 ]


  Similar transformations apply to the vector of half-word and vector
  of double-word representations.

  For now, don't handle vectors of quad-precision values.  Just return.
  A better solution is to fix the code generator to emit lvx/stvx for
  those.  */
static void
replace_swapped_load_constant (swap_web_entry *insn_entry, rtx swap_insn)
{
  /* Find the load.  */
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (swap_insn);
  rtx_insn *load_insn;
  df_ref use  = DF_INSN_INFO_USES (insn_info);
  struct df_link *def_link = DF_REF_CHAIN (use);
  gcc_assert (def_link && !def_link->next);

  load_insn = DF_REF_INSN (def_link->ref);
  gcc_assert (load_insn);

  /* Find the TOC-relative symbol access.  */
  insn_info = DF_INSN_INFO_GET (load_insn);
  use = DF_INSN_INFO_USES (insn_info);

  def_link = DF_REF_CHAIN (use);
  gcc_assert (def_link && !def_link->next);

  rtx_insn *tocrel_insn = DF_REF_INSN (def_link->ref);
  gcc_assert (tocrel_insn);

  /* Find the embedded CONST_VECTOR.  We have to call toc_relative_expr_p
     to set tocrel_base; otherwise it would be unnecessary as we've
     already established it will return true.  */
  rtx base, offset;
  rtx tocrel_expr = SET_SRC (PATTERN (tocrel_insn));
  const_rtx tocrel_base;

  /* There is an extra level of indirection for small/large code models.  */
  if (GET_CODE (tocrel_expr) == MEM)
    tocrel_expr = XEXP (tocrel_expr, 0);

  if (!toc_relative_expr_p (tocrel_expr, false, &tocrel_base, NULL))
    gcc_unreachable ();

  split_const (XVECEXP (tocrel_base, 0, 0), &base, &offset);
  rtx const_vector = get_pool_constant (base);

  /* With the extra indirection, get_pool_constant will produce the
     real constant from the reg_equal expression, so get the real
     constant.  */
  if (GET_CODE (const_vector) == SYMBOL_REF)
    const_vector = get_pool_constant (const_vector);
  gcc_assert (GET_CODE (const_vector) == CONST_VECTOR);

  rtx new_mem;
  enum machine_mode mode = GET_MODE (const_vector);

  /* Create an adjusted constant from the original constant.  */
  if (mode == V1TImode)
    /* Leave this code as is.  */
    return;
  else if (mode == V16QImode)
    {
      rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (16));
      int i;

      for (i = 0; i < 16; i++)
	XVECEXP (vals, 0, ((i+8) % 16)) = XVECEXP (const_vector, 0, i);
      rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
      new_mem = force_const_mem (mode, new_const_vector);
    }
  else if ((mode == V8HImode)
#ifdef HAVE_V8HFmode
	   || (mode == V8HFmode)
#endif
	   )
    {
      rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (8));
      int i;

      for (i = 0; i < 8; i++)
	XVECEXP (vals, 0, ((i+4) % 8)) = XVECEXP (const_vector, 0, i);
      rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
      new_mem = force_const_mem (mode, new_const_vector);
    }
  else if ((mode == V4SImode) || (mode == V4SFmode))
    {
      rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (4));
      int i;

      for (i = 0; i < 4; i++)
	XVECEXP (vals, 0, ((i+2) % 4)) = XVECEXP (const_vector, 0, i);
      rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
      new_mem = force_const_mem (mode, new_const_vector);
    }
  else if ((mode == V2DImode) || (mode == V2DFmode))
    {
      rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (2));
      int i;

      for (i = 0; i < 2; i++)
	XVECEXP (vals, 0, ((i+1) % 2)) = XVECEXP (const_vector, 0, i);
      rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
      new_mem = force_const_mem (mode, new_const_vector);
    }
  else
    {
      /* We do not expect other modes to be constant-load-swapped.  */
      gcc_unreachable ();
    }

  /* This gives us a MEM whose base operand is a SYMBOL_REF, which we
     can't recognize.  Force the SYMBOL_REF into a register.  */
  if (!REG_P (XEXP (new_mem, 0))) {
    rtx base_reg = force_reg (Pmode, XEXP (new_mem, 0));
    XEXP (new_mem, 0) = base_reg;

    /* Move the newly created insn ahead of the load insn.  */
    /* The last insn is the the insn that forced new_mem into a register.  */
    rtx_insn *force_insn = get_last_insn ();
    /* Remove this insn from the end of the instruction sequence.  */
    remove_insn (force_insn);
    rtx_insn *before_load_insn = PREV_INSN (load_insn);

    /* And insert this insn back into the sequence before the previous
       load insn so this new expression will be available when the
       existing load is modified to load the swapped constant.  */
    add_insn_after (force_insn, before_load_insn, BLOCK_FOR_INSN (load_insn));
    df_insn_rescan (before_load_insn);
    df_insn_rescan (force_insn);
  }

  /* Replace the MEM in the load instruction and rescan it.  */
  XEXP (SET_SRC (PATTERN (load_insn)), 0) = new_mem;
  INSN_CODE (load_insn) = -1; /* Force re-recognition.  */
  df_insn_rescan (load_insn);

  unsigned int uid = INSN_UID (swap_insn);
  mark_swaps_for_removal (insn_entry, uid);
  replace_swap_with_copy (insn_entry, uid);
}

/* Dump the swap table to DUMP_FILE.  */
static void
dump_swap_insn_table (swap_web_entry *insn_entry)
{
  int e = get_max_uid ();
  fprintf (dump_file, "\nRelevant insns with their flag settings\n\n");

  for (int i = 0; i < e; ++i)
    if (insn_entry[i].is_relevant)
      {
	swap_web_entry *pred_entry = (swap_web_entry *)insn_entry[i].pred ();
	fprintf (dump_file, "%6d %6d  ", i,
		 pred_entry && pred_entry->insn
		 ? INSN_UID (pred_entry->insn) : 0);
	if (insn_entry[i].is_load)
	  fputs ("load ", dump_file);
	if (insn_entry[i].is_store)
	  fputs ("store ", dump_file);
	if (insn_entry[i].is_swap)
	  fputs ("swap ", dump_file);
	if (insn_entry[i].is_live_in)
	  fputs ("live-in ", dump_file);
	if (insn_entry[i].is_live_out)
	  fputs ("live-out ", dump_file);
	if (insn_entry[i].contains_subreg)
	  fputs ("subreg ", dump_file);
	if (insn_entry[i].is_128_int)
	  fputs ("int128 ", dump_file);
	if (insn_entry[i].is_call)
	  fputs ("call ", dump_file);
	if (insn_entry[i].is_swappable)
	  {
	    fputs ("swappable ", dump_file);
	    if (insn_entry[i].special_handling == SH_CONST_VECTOR)
	      fputs ("special:constvec ", dump_file);
	    else if (insn_entry[i].special_handling == SH_SUBREG)
	      fputs ("special:subreg ", dump_file);
	    else if (insn_entry[i].special_handling == SH_NOSWAP_LD)
	      fputs ("special:load ", dump_file);
	    else if (insn_entry[i].special_handling == SH_NOSWAP_ST)
	      fputs ("special:store ", dump_file);
	    else if (insn_entry[i].special_handling == SH_EXTRACT)
	      fputs ("special:extract ", dump_file);
	    else if (insn_entry[i].special_handling == SH_SPLAT)
	      fputs ("special:splat ", dump_file);
	    else if (insn_entry[i].special_handling == SH_XXPERMDI)
	      fputs ("special:xxpermdi ", dump_file);
	    else if (insn_entry[i].special_handling == SH_CONCAT)
	      fputs ("special:concat ", dump_file);
	    else if (insn_entry[i].special_handling == SH_VPERM)
	      fputs ("special:vperm ", dump_file);
	  }
	if (insn_entry[i].web_not_optimizable)
	  fputs ("unoptimizable ", dump_file);
	if (insn_entry[i].will_delete)
	  fputs ("delete ", dump_file);
	fputs ("\n", dump_file);
      }
  fputs ("\n", dump_file);
}

/* Return RTX with its address canonicalized to (reg) or (+ reg reg).
   Here RTX is an (& addr (const_int -16)).  Always return a new copy
   to avoid problems with combine.  */
static rtx
alignment_with_canonical_addr (rtx align)
{
  rtx canon;
  rtx addr = XEXP (align, 0);

  if (REG_P (addr))
    canon = addr;

  else if (GET_CODE (addr) == PLUS)
    {
      rtx addrop0 = XEXP (addr, 0);
      rtx addrop1 = XEXP (addr, 1);

      if (!REG_P (addrop0))
	addrop0 = force_reg (GET_MODE (addrop0), addrop0);

      if (!REG_P (addrop1))
	addrop1 = force_reg (GET_MODE (addrop1), addrop1);

      canon = gen_rtx_PLUS (GET_MODE (addr), addrop0, addrop1);
    }

  else
    canon = force_reg (GET_MODE (addr), addr);

  return gen_rtx_AND (GET_MODE (align), canon, GEN_INT (-16));
}

/* Check whether an rtx is an alignment mask, and if so, return 
   a fully-expanded rtx for the masking operation.  */
static rtx
alignment_mask (rtx_insn *insn)
{
  rtx body = PATTERN (insn);

  if (GET_CODE (body) != SET
      || GET_CODE (SET_SRC (body)) != AND
      || !REG_P (XEXP (SET_SRC (body), 0)))
    return 0;

  rtx mask = XEXP (SET_SRC (body), 1);

  if (GET_CODE (mask) == CONST_INT)
    {
      if (INTVAL (mask) == -16)
	return alignment_with_canonical_addr (SET_SRC (body));
      else
	return 0;
    }

  if (!REG_P (mask))
    return 0;

  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref use;
  rtx real_mask = 0;

  FOR_EACH_INSN_INFO_USE (use, insn_info)
    {
      if (!rtx_equal_p (DF_REF_REG (use), mask))
	continue;

      struct df_link *def_link = DF_REF_CHAIN (use);
      if (!def_link || def_link->next)
	return 0;

      rtx_insn *const_insn = DF_REF_INSN (def_link->ref);
      rtx const_body = PATTERN (const_insn);
      if (GET_CODE (const_body) != SET)
	return 0;

      real_mask = SET_SRC (const_body);

      if (GET_CODE (real_mask) != CONST_INT
	  || INTVAL (real_mask) != -16)
	return 0;
    }

  if (real_mask == 0)
    return 0;

  return alignment_with_canonical_addr (SET_SRC (body));
}

/* Given INSN that's a load or store based at BASE_REG, look for a
   feeding computation that aligns its address on a 16-byte boundary.
   Return the rtx and its containing AND_INSN.  */
static rtx
find_alignment_op (rtx_insn *insn, rtx base_reg, rtx_insn **and_insn)
{
  df_ref base_use;
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  rtx and_operation = 0;

  FOR_EACH_INSN_INFO_USE (base_use, insn_info)
    {
      if (!rtx_equal_p (DF_REF_REG (base_use), base_reg))
	continue;

      struct df_link *base_def_link = DF_REF_CHAIN (base_use);
      if (!base_def_link || base_def_link->next)
	break;

      /* With stack-protector code enabled, and possibly in other
	 circumstances, there may not be an associated insn for 
	 the def.  */
      if (DF_REF_IS_ARTIFICIAL (base_def_link->ref))
	break;

      *and_insn = DF_REF_INSN (base_def_link->ref);
      and_operation = alignment_mask (*and_insn);
      if (and_operation != 0)
	break;
    }

  return and_operation;
}

struct del_info { bool replace; rtx_insn *replace_insn; };

/* If INSN is the load for an lvx pattern, put it in canonical form.  */
static void
recombine_lvx_pattern (rtx_insn *insn, del_info *to_delete)
{
  rtx body = PATTERN (insn);
  gcc_assert (GET_CODE (body) == SET
	      && GET_CODE (SET_SRC (body)) == VEC_SELECT
	      && GET_CODE (XEXP (SET_SRC (body), 0)) == MEM);

  rtx mem = XEXP (SET_SRC (body), 0);
  rtx base_reg = XEXP (mem, 0);

  rtx_insn *and_insn;
  rtx and_operation = find_alignment_op (insn, base_reg, &and_insn);

  if (and_operation != 0)
    {
      df_ref def;
      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
      FOR_EACH_INSN_INFO_DEF (def, insn_info)
	{
	  struct df_link *link = DF_REF_CHAIN (def);
	  if (!link || link->next)
	    break;

	  rtx_insn *swap_insn = DF_REF_INSN (link->ref);
	  if (!insn_is_swap_p (swap_insn)
	      || insn_is_load_p (swap_insn)
	      || insn_is_store_p (swap_insn))
	    break;

	  /* Expected lvx pattern found.  Change the swap to
	     a copy, and propagate the AND operation into the
	     load.  */
	  to_delete[INSN_UID (swap_insn)].replace = true;
	  to_delete[INSN_UID (swap_insn)].replace_insn = swap_insn;

	  /* However, first we must be sure that we make the
	     base register from the AND operation available
	     in case the register has been overwritten.  Copy
	     the base register to a new pseudo and use that
	     as the base register of the AND operation in
	     the new LVX instruction.  */
	  rtx and_base = XEXP (and_operation, 0);
	  rtx new_reg = gen_reg_rtx (GET_MODE (and_base));
	  rtx copy = gen_rtx_SET (new_reg, and_base);
	  rtx_insn *new_insn = emit_insn_after (copy, and_insn);
	  set_block_for_insn (new_insn, BLOCK_FOR_INSN (and_insn));
	  df_insn_rescan (new_insn);

	  XEXP (mem, 0) = gen_rtx_AND (GET_MODE (and_base), new_reg,
				       XEXP (and_operation, 1));
	  SET_SRC (body) = mem;
	  INSN_CODE (insn) = -1; /* Force re-recognition.  */
	  df_insn_rescan (insn);
		  
	  if (dump_file)
	    fprintf (dump_file, "lvx opportunity found at %d\n",
		     INSN_UID (insn));
	}
    }
}

/* If INSN is the store for an stvx pattern, put it in canonical form.  */
static void
recombine_stvx_pattern (rtx_insn *insn, del_info *to_delete)
{
  rtx body = PATTERN (insn);
  gcc_assert (GET_CODE (body) == SET
	      && GET_CODE (SET_DEST (body)) == MEM
	      && GET_CODE (SET_SRC (body)) == VEC_SELECT);
  rtx mem = SET_DEST (body);
  rtx base_reg = XEXP (mem, 0);

  rtx_insn *and_insn;
  rtx and_operation = find_alignment_op (insn, base_reg, &and_insn);

  if (and_operation != 0)
    {
      rtx src_reg = XEXP (SET_SRC (body), 0);
      df_ref src_use;
      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
      FOR_EACH_INSN_INFO_USE (src_use, insn_info)
	{
	  if (!rtx_equal_p (DF_REF_REG (src_use), src_reg))
	    continue;

	  struct df_link *link = DF_REF_CHAIN (src_use);
	  if (!link || link->next)
	    break;

	  rtx_insn *swap_insn = DF_REF_INSN (link->ref);
	  if (!insn_is_swap_p (swap_insn)
	      || insn_is_load_p (swap_insn)
	      || insn_is_store_p (swap_insn))
	    break;

	  /* Expected stvx pattern found.  Change the swap to
	     a copy, and propagate the AND operation into the
	     store.  */
	  to_delete[INSN_UID (swap_insn)].replace = true;
	  to_delete[INSN_UID (swap_insn)].replace_insn = swap_insn;

	  /* However, first we must be sure that we make the
	     base register from the AND operation available
	     in case the register has been overwritten.  Copy
	     the base register to a new pseudo and use that
	     as the base register of the AND operation in
	     the new STVX instruction.  */
	  rtx and_base = XEXP (and_operation, 0);
	  rtx new_reg = gen_reg_rtx (GET_MODE (and_base));
	  rtx copy = gen_rtx_SET (new_reg, and_base);
	  rtx_insn *new_insn = emit_insn_after (copy, and_insn);
	  set_block_for_insn (new_insn, BLOCK_FOR_INSN (and_insn));
	  df_insn_rescan (new_insn);

	  XEXP (mem, 0) = gen_rtx_AND (GET_MODE (and_base), new_reg,
				       XEXP (and_operation, 1));
	  SET_SRC (body) = src_reg;
	  INSN_CODE (insn) = -1; /* Force re-recognition.  */
	  df_insn_rescan (insn);
		  
	  if (dump_file)
	    fprintf (dump_file, "stvx opportunity found at %d\n",
		     INSN_UID (insn));
	}
    }
}

/* Look for patterns created from builtin lvx and stvx calls, and
   canonicalize them to be properly recognized as such.  */
static void
recombine_lvx_stvx_patterns (function *fun)
{
  int i;
  basic_block bb;
  rtx_insn *insn;

  int num_insns = get_max_uid ();
  del_info *to_delete = XCNEWVEC (del_info, num_insns);

  FOR_ALL_BB_FN (bb, fun)
    FOR_BB_INSNS (bb, insn)
    {
      if (!NONDEBUG_INSN_P (insn))
	continue;

      if (insn_is_load_p (insn) && insn_is_swap_p (insn))
	recombine_lvx_pattern (insn, to_delete);
      else if (insn_is_store_p (insn) && insn_is_swap_p (insn))
	recombine_stvx_pattern (insn, to_delete);
    }

  /* Turning swaps into copies is delayed until now, to avoid problems
     with deleting instructions during the insn walk.  */
  for (i = 0; i < num_insns; i++)
    if (to_delete[i].replace)
      {
	rtx swap_body = PATTERN (to_delete[i].replace_insn);
	rtx src_reg = XEXP (SET_SRC (swap_body), 0);
	rtx copy = gen_rtx_SET (SET_DEST (swap_body), src_reg);
	rtx_insn *new_insn = emit_insn_before (copy,
					       to_delete[i].replace_insn);
	set_block_for_insn (new_insn,
			    BLOCK_FOR_INSN (to_delete[i].replace_insn));
	df_insn_rescan (new_insn);
	df_insn_delete (to_delete[i].replace_insn);
	remove_insn (to_delete[i].replace_insn);
	to_delete[i].replace_insn->set_deleted ();
      }
  
  free (to_delete);
}

/* Main entry point for this pass.  */
unsigned int
rs6000_analyze_swaps (function *fun)
{
  swap_web_entry *insn_entry;
  basic_block bb;
  rtx_insn *insn, *curr_insn = 0;

  /* Dataflow analysis for use-def chains.  */
  df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
  df_chain_add_problem (DF_DU_CHAIN | DF_UD_CHAIN);
  df_analyze ();
  df_set_flags (DF_DEFER_INSN_RESCAN);

  /* Pre-pass to recombine lvx and stvx patterns so we don't lose info.  */
  recombine_lvx_stvx_patterns (fun);
  df_process_deferred_rescans ();

  /* Allocate structure to represent webs of insns.  */
  insn_entry = XCNEWVEC (swap_web_entry, get_max_uid ());

  /* Walk the insns to gather basic data.  */
  FOR_ALL_BB_FN (bb, fun)
    FOR_BB_INSNS_SAFE (bb, insn, curr_insn)
    {
      unsigned int uid = INSN_UID (insn);
      if (NONDEBUG_INSN_P (insn))
	{
	  insn_entry[uid].insn = insn;

	  if (GET_CODE (insn) == CALL_INSN)
	    insn_entry[uid].is_call = 1;

	  /* Walk the uses and defs to see if we mention vector regs.
	     Record any constraints on optimization of such mentions.  */
	  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
	  df_ref mention;
	  FOR_EACH_INSN_INFO_USE (mention, insn_info)
	    {
	      /* We use DF_REF_REAL_REG here to get inside any subregs.  */
	      machine_mode mode = GET_MODE (DF_REF_REAL_REG (mention));

	      /* If a use gets its value from a call insn, it will be
		 a hard register and will look like (reg:V4SI 3 3).
		 The df analysis creates two mentions for GPR3 and GPR4,
		 both DImode.  We must recognize this and treat it as a
		 vector mention to ensure the call is unioned with this
		 use.  */
	      if (mode == DImode && DF_REF_INSN_INFO (mention))
		{
		  rtx feeder = DF_REF_INSN (mention);
		  /* FIXME:  It is pretty hard to get from the df mention
		     to the mode of the use in the insn.  We arbitrarily
		     pick a vector mode here, even though the use might
		     be a real DImode.  We can be too conservative
		     (create a web larger than necessary) because of
		     this, so consider eventually fixing this.  */
		  if (GET_CODE (feeder) == CALL_INSN)
		    mode = V4SImode;
		}

	      if (ALTIVEC_OR_VSX_VECTOR_MODE (mode) || mode == TImode)
		{
		  insn_entry[uid].is_relevant = 1;
		  if (mode == TImode || mode == V1TImode
		      || FLOAT128_VECTOR_P (mode))
		    insn_entry[uid].is_128_int = 1;
		  if (DF_REF_INSN_INFO (mention))
		    insn_entry[uid].contains_subreg
		      = !rtx_equal_p (DF_REF_REG (mention),
				      DF_REF_REAL_REG (mention));
		  union_defs (insn_entry, insn, mention);
		}
	    }
	  FOR_EACH_INSN_INFO_DEF (mention, insn_info)
	    {
	      /* We use DF_REF_REAL_REG here to get inside any subregs.  */
	      machine_mode mode = GET_MODE (DF_REF_REAL_REG (mention));

	      /* If we're loading up a hard vector register for a call,
		 it looks like (set (reg:V4SI 9 9) (...)).  The df
		 analysis creates two mentions for GPR9 and GPR10, both
		 DImode.  So relying on the mode from the mentions
		 isn't sufficient to ensure we union the call into the
		 web with the parameter setup code.  */
	      if (mode == DImode && GET_CODE (insn) == SET
		  && ALTIVEC_OR_VSX_VECTOR_MODE (GET_MODE (SET_DEST (insn))))
		mode = GET_MODE (SET_DEST (insn));

	      if (ALTIVEC_OR_VSX_VECTOR_MODE (mode) || mode == TImode)
		{
		  insn_entry[uid].is_relevant = 1;
		  if (mode == TImode || mode == V1TImode
		      || FLOAT128_VECTOR_P (mode))
		    insn_entry[uid].is_128_int = 1;
		  if (DF_REF_INSN_INFO (mention))
		    insn_entry[uid].contains_subreg
		      = !rtx_equal_p (DF_REF_REG (mention),
				      DF_REF_REAL_REG (mention));
		  /* REG_FUNCTION_VALUE_P is not valid for subregs. */
		  else if (REG_FUNCTION_VALUE_P (DF_REF_REG (mention)))
		    insn_entry[uid].is_live_out = 1;
		  union_uses (insn_entry, insn, mention);
		}
	    }

	  if (insn_entry[uid].is_relevant)
	    {
	      /* Determine if this is a load or store.  */
	      insn_entry[uid].is_load = insn_is_load_p (insn);
	      insn_entry[uid].is_store = insn_is_store_p (insn);

	      /* Determine if this is a doubleword swap.  If not,
		 determine whether it can legally be swapped.  */
	      if (insn_is_swap_p (insn))
		insn_entry[uid].is_swap = 1;
	      else
		{
		  unsigned int special = SH_NONE;
		  insn_entry[uid].is_swappable
		    = insn_is_swappable_p (insn_entry, insn, &special);
		  if (special != SH_NONE && insn_entry[uid].contains_subreg)
		    insn_entry[uid].is_swappable = 0;
		  else if (special != SH_NONE)
		    insn_entry[uid].special_handling = special;
		  else if (insn_entry[uid].contains_subreg)
		    insn_entry[uid].special_handling = SH_SUBREG;
		}
	    }
	}
    }

  if (dump_file)
    {
      fprintf (dump_file, "\nSwap insn entry table when first built\n");
      dump_swap_insn_table (insn_entry);
    }

  /* Record unoptimizable webs.  */
  unsigned e = get_max_uid (), i;
  for (i = 0; i < e; ++i)
    {
      if (!insn_entry[i].is_relevant)
	continue;

      swap_web_entry *root
	= (swap_web_entry*)(&insn_entry[i])->unionfind_root ();

      if (insn_entry[i].is_live_in || insn_entry[i].is_live_out
	  || (insn_entry[i].contains_subreg
	      && insn_entry[i].special_handling != SH_SUBREG)
	  || insn_entry[i].is_128_int || insn_entry[i].is_call
	  || !(insn_entry[i].is_swappable || insn_entry[i].is_swap))
	root->web_not_optimizable = 1;

      /* If we have loads or stores that aren't permuting then the
	 optimization isn't appropriate.  */
      else if ((insn_entry[i].is_load || insn_entry[i].is_store)
	  && !insn_entry[i].is_swap && !insn_entry[i].is_swappable)
	root->web_not_optimizable = 1;

      /* If we have a swap that is both fed by a permuting load
	 and a feeder of a permuting store, then the optimization
	 isn't appropriate.  (Consider vec_xl followed by vec_xst_be.)  */
      else if (insn_entry[i].is_swap && !insn_entry[i].is_load
	       && !insn_entry[i].is_store
	       && swap_feeds_both_load_and_store (&insn_entry[i]))
	root->web_not_optimizable = 1;

      /* If we have permuting loads or stores that are not accompanied
	 by a register swap, the optimization isn't appropriate.  */
      else if (insn_entry[i].is_load && insn_entry[i].is_swap)
	{
	  rtx insn = insn_entry[i].insn;
	  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
	  df_ref def;

	  FOR_EACH_INSN_INFO_DEF (def, insn_info)
	    {
	      struct df_link *link = DF_REF_CHAIN (def);

	      if (!chain_contains_only_swaps (insn_entry, link, FOR_LOADS))
		{
		  root->web_not_optimizable = 1;
		  break;
		}
	    }
	}
      else if (insn_entry[i].is_store && insn_entry[i].is_swap)
	{
	  rtx insn = insn_entry[i].insn;
	  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
	  df_ref use;

	  FOR_EACH_INSN_INFO_USE (use, insn_info)
	    {
	      struct df_link *link = DF_REF_CHAIN (use);

	      if (!chain_contains_only_swaps (insn_entry, link, FOR_STORES))
		{
		  root->web_not_optimizable = 1;
		  break;
		}
	    }
	}
    }

  if (dump_file)
    {
      fprintf (dump_file, "\nSwap insn entry table after web analysis\n");
      dump_swap_insn_table (insn_entry);
    }

  /* For each load and store in an optimizable web (which implies
     the loads and stores are permuting), find the associated
     register swaps and mark them for removal.  Due to various
     optimizations we may mark the same swap more than once.  Also
     perform special handling for swappable insns that require it.  */
  for (i = 0; i < e; ++i)
    if ((insn_entry[i].is_load || insn_entry[i].is_store)
	&& insn_entry[i].is_swap)
      {
	swap_web_entry* root_entry
	  = (swap_web_entry*)((&insn_entry[i])->unionfind_root ());
	if (!root_entry->web_not_optimizable)
	  mark_swaps_for_removal (insn_entry, i);
      }
    else if (insn_entry[i].is_swappable && insn_entry[i].special_handling)
      {
	swap_web_entry* root_entry
	  = (swap_web_entry*)((&insn_entry[i])->unionfind_root ());
	if (!root_entry->web_not_optimizable)
	  handle_special_swappables (insn_entry, i);
      }

  /* Now delete the swaps marked for removal.  */
  for (i = 0; i < e; ++i)
    if (insn_entry[i].will_delete)
      replace_swap_with_copy (insn_entry, i);

  /* Clean up.  */
  free (insn_entry);

  /* Use a second pass over rtl to detect that certain vector values
     fetched from or stored to memory on quad-word aligned addresses
     can use lvx/stvx without swaps.  */

  /* First, rebuild ud chains.  */
  df_remove_problem (df_chain);
  df_process_deferred_rescans ();
  df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
  df_chain_add_problem (DF_UD_CHAIN);
  df_analyze ();

  swap_web_entry *pass2_insn_entry;
  pass2_insn_entry = XCNEWVEC (swap_web_entry, get_max_uid ());

  /* Walk the insns to gather basic data.  */
  FOR_ALL_BB_FN (bb, fun)
    FOR_BB_INSNS_SAFE (bb, insn, curr_insn)
    {
      unsigned int uid = INSN_UID (insn);
      if (NONDEBUG_INSN_P (insn))
	{
	  pass2_insn_entry[uid].insn = insn;

	  pass2_insn_entry[uid].is_relevant = 1;
	  pass2_insn_entry[uid].is_load = insn_is_load_p (insn);
	  pass2_insn_entry[uid].is_store = insn_is_store_p (insn);

	  /* Determine if this is a doubleword swap.  If not,
	     determine whether it can legally be swapped.  */
	  if (insn_is_swap_p (insn))
	    pass2_insn_entry[uid].is_swap = 1;
	}
    }

  e = get_max_uid ();
  for (unsigned i = 0; i < e; ++i)
    if (pass2_insn_entry[i].is_swap && !pass2_insn_entry[i].is_load
	&& !pass2_insn_entry[i].is_store)
      {
	/* Replace swap of aligned load-swap with aligned unswapped
	   load.  */
	rtx_insn *rtx_insn = pass2_insn_entry[i].insn;
	if (quad_aligned_load_p (pass2_insn_entry, rtx_insn))
	  replace_swapped_aligned_load (pass2_insn_entry, rtx_insn);
      }
    else if (pass2_insn_entry[i].is_swap && pass2_insn_entry[i].is_store)
      {
	/* Replace aligned store-swap of swapped value with aligned
	   unswapped store.  */
	rtx_insn *rtx_insn = pass2_insn_entry[i].insn;
	if (quad_aligned_store_p (pass2_insn_entry, rtx_insn))
	  replace_swapped_aligned_store (pass2_insn_entry, rtx_insn);
      }

  /* Clean up.  */
  free (pass2_insn_entry);

  /* Use a third pass over rtl to replace swap(load(vector constant))
     with load(swapped vector constant).  */

  /* First, rebuild ud chains.  */
  df_remove_problem (df_chain);
  df_process_deferred_rescans ();
  df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
  df_chain_add_problem (DF_UD_CHAIN);
  df_analyze ();

  swap_web_entry *pass3_insn_entry;
  pass3_insn_entry = XCNEWVEC (swap_web_entry, get_max_uid ());

  /* Walk the insns to gather basic data.  */
  FOR_ALL_BB_FN (bb, fun)
    FOR_BB_INSNS_SAFE (bb, insn, curr_insn)
    {
      unsigned int uid = INSN_UID (insn);
      if (NONDEBUG_INSN_P (insn))
	{
	  pass3_insn_entry[uid].insn = insn;

	  pass3_insn_entry[uid].is_relevant = 1;
	  pass3_insn_entry[uid].is_load = insn_is_load_p (insn);
	  pass3_insn_entry[uid].is_store = insn_is_store_p (insn);

	  /* Determine if this is a doubleword swap.  If not,
	     determine whether it can legally be swapped.  */
	  if (insn_is_swap_p (insn))
	    pass3_insn_entry[uid].is_swap = 1;
	}
    }

  e = get_max_uid ();
  for (unsigned i = 0; i < e; ++i)
    if (pass3_insn_entry[i].is_swap && !pass3_insn_entry[i].is_load
	&& !pass3_insn_entry[i].is_store)
      {
	insn = pass3_insn_entry[i].insn;
	if (const_load_sequence_p (pass3_insn_entry, insn))
	  replace_swapped_load_constant (pass3_insn_entry, insn);
      }

  /* Clean up.  */
  free (pass3_insn_entry);
  return 0;
}

const pass_data pass_data_analyze_swaps =
{
  RTL_PASS, /* type */
  "swaps", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_analyze_swaps : public rtl_opt_pass
{
public:
  pass_analyze_swaps(gcc::context *ctxt)
    : rtl_opt_pass(pass_data_analyze_swaps, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
      return (optimize > 0 && !BYTES_BIG_ENDIAN && TARGET_VSX
	      && !TARGET_P9_VECTOR && rs6000_optimize_swaps);
    }

  virtual unsigned int execute (function *fun)
    {
      return rs6000_analyze_swaps (fun);
    }

  opt_pass *clone ()
    {
      return new pass_analyze_swaps (m_ctxt);
    }

}; // class pass_analyze_swaps

rtl_opt_pass *
make_pass_analyze_swaps (gcc::context *ctxt)
{
  return new pass_analyze_swaps (ctxt);
}