aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/rs6000/predicates.md
blob: 018b5f95f6bf424312380dcf84246b6bfc9cd55a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
;; Predicate definitions for POWER and PowerPC.
;; Copyright (C) 2005-2018 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.

;; Return 1 for anything except PARALLEL.
(define_predicate "any_operand"
  (match_code "const_int,const_double,const_wide_int,const,symbol_ref,label_ref,subreg,reg,mem"))

;; Return 1 for any PARALLEL.
(define_predicate "any_parallel_operand"
  (match_code "parallel"))

;; Return 1 if op is COUNT register.
(define_predicate "count_register_operand"
  (and (match_code "reg")
       (match_test "REGNO (op) == CTR_REGNO
		    || REGNO (op) > LAST_VIRTUAL_REGISTER")))

;; Return 1 if op is a SUBREG that is used to look at a SFmode value as
;; and integer or vice versa.
;;
;; In the normal case where SFmode is in a floating point/vector register, it
;; is stored as a DFmode and has a different format.  If we don't transform the
;; value, things that use logical operations on the values will get the wrong
;; value.
;;
;; If we don't have 64-bit and direct move, this conversion will be done by
;; store and load, instead of by fiddling with the bits within the register.
(define_predicate "sf_subreg_operand"
  (match_code "subreg")
{
  rtx inner_reg = SUBREG_REG (op);
  machine_mode inner_mode = GET_MODE (inner_reg);

  if (TARGET_ALLOW_SF_SUBREG || !REG_P (inner_reg))
    return 0;

  if ((mode == SFmode && GET_MODE_CLASS (inner_mode) == MODE_INT)
       || (GET_MODE_CLASS (mode) == MODE_INT && inner_mode == SFmode))
    {
      if (INT_REGNO_P (REGNO (inner_reg)))
	return 0;

      return 1;
    }
  return 0;
})

;; Return 1 if op is an Altivec register.
(define_predicate "altivec_register_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return ALTIVEC_REGNO_P (REGNO (op));
})

;; Return 1 if op is a VSX register.
(define_predicate "vsx_register_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return VSX_REGNO_P (REGNO (op));
})

;; Like vsx_register_operand, but allow SF SUBREGS
(define_predicate "vsx_reg_sfsubreg_ok"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return VSX_REGNO_P (REGNO (op));
})

;; Return 1 if op is a vector register that operates on floating point vectors
;; (either altivec or VSX).
(define_predicate "vfloat_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return VFLOAT_REGNO_P (REGNO (op));
})

;; Return 1 if op is a vector register that operates on integer vectors
;; (only altivec, VSX doesn't support integer vectors)
(define_predicate "vint_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return VINT_REGNO_P (REGNO (op));
})

;; Return 1 if op is a vector register to do logical operations on (and, or,
;; xor, etc.)
(define_predicate "vlogical_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }


  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return VLOGICAL_REGNO_P (REGNO (op));
})

;; Return 1 if op is the carry register.
(define_predicate "ca_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  return CA_REGNO_P (REGNO (op));
})

;; Return 1 if operand is constant zero (scalars and vectors).
(define_predicate "zero_constant"
  (and (match_code "const_int,const_double,const_wide_int,const_vector")
       (match_test "op == CONST0_RTX (mode)")))

;; Return 1 if operand is constant -1 (scalars and vectors).
(define_predicate "all_ones_constant"
  (and (match_code "const_int,const_double,const_wide_int,const_vector")
       (match_test "op == CONSTM1_RTX (mode) && !FLOAT_MODE_P (mode)")))

;; Return 1 if op is a signed 5-bit constant integer.
(define_predicate "s5bit_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))

;; Return 1 if op is a unsigned 3-bit constant integer.
(define_predicate "u3bit_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 7")))

;; Return 1 if op is a unsigned 5-bit constant integer.
(define_predicate "u5bit_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))

;; Return 1 if op is a unsigned 6-bit constant integer.
(define_predicate "u6bit_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 63")))

;; Return 1 if op is an unsigned 7-bit constant integer.
(define_predicate "u7bit_cint_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 127)")))

;; Return 1 if op is a signed 8-bit constant integer.
;; Integer multiplication complete more quickly
(define_predicate "s8bit_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))

;; Return 1 if op is a unsigned 10-bit constant integer.
(define_predicate "u10bit_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 1023")))

;; Return 1 if op is a constant integer that can fit in a D field.
(define_predicate "short_cint_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_I (op)")))

;; Return 1 if op is a constant integer that can fit in an unsigned D field.
(define_predicate "u_short_cint_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_K (op)")))

;; Return 1 if op is a constant integer that is a signed 16-bit constant
;; shifted left 16 bits
(define_predicate "upper16_cint_operand"
  (and (match_code "const_int")
       (match_test "satisfies_constraint_L (op)")))

;; Return 1 if op is a constant integer that cannot fit in a signed D field.
(define_predicate "non_short_cint_operand"
  (and (match_code "const_int")
       (match_test "(unsigned HOST_WIDE_INT)
		    (INTVAL (op) + 0x8000) >= 0x10000")))

;; Return 1 if op is a positive constant integer that is an exact power of 2.
(define_predicate "exact_log2_cint_operand"
  (and (match_code "const_int")
       (match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))

;; Match op = 0 or op = 1.
(define_predicate "const_0_to_1_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 1)")))

;; Match op = 0..3.
(define_predicate "const_0_to_3_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 3)")))

;; Match op = 2 or op = 3.
(define_predicate "const_2_to_3_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 2, 3)")))

;; Match op = 0..7.
(define_predicate "const_0_to_7_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 7)")))

;; Match op = 0..11
(define_predicate "const_0_to_12_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 12)")))

;; Match op = 0..15
(define_predicate "const_0_to_15_operand"
  (and (match_code "const_int")
       (match_test "IN_RANGE (INTVAL (op), 0, 15)")))

;; Return 1 if op is a register that is not special.
;; Disallow (SUBREG:SF (REG:SI)) and (SUBREG:SI (REG:SF)) on VSX systems where
;; you need to be careful in moving a SFmode to SImode and vice versa due to
;; the fact that SFmode is represented as DFmode in the VSX registers.
(define_predicate "gpc_reg_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  if (TARGET_ALTIVEC && ALTIVEC_REGNO_P (REGNO (op)))
    return 1;

  if (TARGET_VSX && VSX_REGNO_P (REGNO (op)))
    return 1;

  return INT_REGNO_P (REGNO (op)) || FP_REGNO_P (REGNO (op));
})

;; Return 1 if op is a general purpose register.  Unlike gpc_reg_operand, don't
;; allow floating point or vector registers.  Since vector registers are not
;; allowed, we don't have to reject SFmode/SImode subregs.
(define_predicate "int_reg_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    {
      if (TARGET_NO_SF_SUBREG && sf_subreg_operand (op, mode))
	return 0;

      op = SUBREG_REG (op);
    }

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 1;

  return INT_REGNO_P (REGNO (op));
})

;; Like int_reg_operand, but don't return true for pseudo registers
;; We don't have to check for SF SUBREGS because pseudo registers
;; are not allowed, and SF SUBREGs are ok within GPR registers.
(define_predicate "int_reg_operand_not_pseudo"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  if (REGNO (op) >= FIRST_PSEUDO_REGISTER)
    return 0;

  return INT_REGNO_P (REGNO (op));
})

;; Like int_reg_operand, but only return true for base registers
(define_predicate "base_reg_operand"
  (match_operand 0 "int_reg_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  return (REGNO (op) != FIRST_GPR_REGNO);
})


;; Return true if this is a traditional floating point register
(define_predicate "fpr_reg_operand"
  (match_code "reg,subreg")
{
  HOST_WIDE_INT r;

  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  r = REGNO (op);
  if (r >= FIRST_PSEUDO_REGISTER)
    return 1;

  return FP_REGNO_P (r);
})

;; Return true if this is a register that can has D-form addressing (GPR and
;; traditional FPR registers for scalars).  ISA 3.0 (power9) adds D-form
;; addressing for scalars in Altivec registers.
;;
;; If this is a pseudo only allow for GPR fusion in power8.  If we have the
;; power9 fusion allow the floating point types.
(define_predicate "toc_fusion_or_p9_reg_operand"
  (match_code "reg,subreg")
{
  HOST_WIDE_INT r;
  bool gpr_p = (mode == QImode || mode == HImode || mode == SImode
		|| mode == SFmode
		|| (TARGET_POWERPC64 && (mode == DImode || mode == DFmode)));
  bool fpr_p = (TARGET_P9_FUSION
		&& (mode == DFmode || mode == SFmode
		    || (TARGET_POWERPC64 && mode == DImode)));
  bool vmx_p = (TARGET_P9_FUSION && TARGET_P9_VECTOR
		&& (mode == DFmode || mode == SFmode));

  if (!TARGET_P8_FUSION)
    return 0;

  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  r = REGNO (op);
  if (r >= FIRST_PSEUDO_REGISTER)
    return (gpr_p || fpr_p || vmx_p);

  if (INT_REGNO_P (r))
    return gpr_p;

  if (FP_REGNO_P (r))
    return fpr_p;

  if (ALTIVEC_REGNO_P (r))
    return vmx_p;

  return 0;
})

;; Return 1 if op is a HTM specific SPR register.
(define_predicate "htm_spr_reg_operand"
  (match_operand 0 "register_operand")
{
  if (!TARGET_HTM)
    return 0;

  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  switch (REGNO (op))
    {
      case TFHAR_REGNO:
      case TFIAR_REGNO:
      case TEXASR_REGNO:
	return 1;
      default:
	break;
    }
  
  /* Unknown SPR.  */
  return 0;
})

;; Return 1 if op is a general purpose register that is an even register
;; which suitable for a load/store quad operation
;; Subregs are not allowed here because when they are combine can
;; create (subreg:PTI (reg:TI pseudo)) which will cause reload to
;; think the innermost reg needs reloading, in TImode instead of
;; PTImode.  So reload will choose a reg in TImode which has no
;; requirement that the reg be even.
(define_predicate "quad_int_reg_operand"
  (match_code "reg")
{
  HOST_WIDE_INT r;

  if (!TARGET_QUAD_MEMORY && !TARGET_QUAD_MEMORY_ATOMIC)
    return 0;

  r = REGNO (op);
  if (r >= FIRST_PSEUDO_REGISTER)
    return 1;

  return (INT_REGNO_P (r) && ((r & 1) == 0));
})

;; Return 1 if op is a register that is a condition register field.
(define_predicate "cc_reg_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  if (REGNO (op) > LAST_VIRTUAL_REGISTER)
    return 1;

  return CR_REGNO_P (REGNO (op));
})

;; Return 1 if op is a register that is a condition register field not cr0.
(define_predicate "cc_reg_not_cr0_operand"
  (match_operand 0 "register_operand")
{
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);

  if (!REG_P (op))
    return 0;

  if (REGNO (op) > LAST_VIRTUAL_REGISTER)
    return 1;

  return CR_REGNO_NOT_CR0_P (REGNO (op));
})

;; Return 1 if op is a constant integer valid for D field
;; or non-special register register.
(define_predicate "reg_or_short_operand"
  (if_then_else (match_code "const_int")
    (match_operand 0 "short_cint_operand")
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is a constant integer valid for DS field
;; or non-special register.
(define_predicate "reg_or_aligned_short_operand"
  (if_then_else (match_code "const_int")
    (and (match_operand 0 "short_cint_operand")
	 (match_test "!(INTVAL (op) & 3)"))
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is a constant integer whose high-order 16 bits are zero
;; or non-special register.
(define_predicate "reg_or_u_short_operand"
  (if_then_else (match_code "const_int")
    (match_operand 0 "u_short_cint_operand")
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is any constant integer or a non-special register.
(define_predicate "reg_or_cint_operand"
  (ior (match_code "const_int")
       (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is constant zero or a non-special register.
(define_predicate "reg_or_zero_operand"
  (ior (match_operand 0 "zero_constant")
       (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is a constant integer valid for addition with addis, addi.
(define_predicate "add_cint_operand"
  (and (match_code "const_int")
       (match_test "((unsigned HOST_WIDE_INT) INTVAL (op)
		       + (mode == SImode ? 0x80000000 : 0x80008000))
		    < (unsigned HOST_WIDE_INT) 0x100000000ll")))

;; Return 1 if op is a constant integer valid for addition
;; or non-special register.
(define_predicate "reg_or_add_cint_operand"
  (if_then_else (match_code "const_int")
    (match_operand 0 "add_cint_operand")
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is a constant integer valid for subtraction
;; or non-special register.
(define_predicate "reg_or_sub_cint_operand"
  (if_then_else (match_code "const_int")
    (match_test "(unsigned HOST_WIDE_INT)
		   (- UINTVAL (op) + (mode == SImode ? 0x80000000 : 0x80008000))
		 < (unsigned HOST_WIDE_INT) 0x100000000ll")
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if op is any 32-bit unsigned constant integer
;; or non-special register.
(define_predicate "reg_or_logical_cint_operand"
  (if_then_else (match_code "const_int")
    (match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
		  && INTVAL (op) >= 0)
		 || ((INTVAL (op) & GET_MODE_MASK (mode)
		      & (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
    (match_operand 0 "gpc_reg_operand")))

;; Like reg_or_logical_cint_operand, but allow vsx registers
(define_predicate "vsx_reg_or_cint_operand"
  (ior (match_operand 0 "vsx_register_operand")
       (match_operand 0 "reg_or_logical_cint_operand")))

;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
;; with no more than one instruction per word.
(define_predicate "easy_fp_constant"
  (match_code "const_double")
{
  if (GET_MODE (op) != mode
      || (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode))
    return 0;

  /* Consider all constants with -msoft-float to be easy.  */
  if (TARGET_SOFT_FLOAT && mode != DImode)
    return 1;

  /* 0.0D is not all zero bits.  */
  if (DECIMAL_FLOAT_MODE_P (mode))
    return 0;

  /* The constant 0.0 is easy under VSX.  */
  if (TARGET_VSX && SCALAR_FLOAT_MODE_P (mode) && op == CONST0_RTX (mode))
    return 1;

  /* If we are using V.4 style PIC, consider all constants to be hard.  */
  if (flag_pic && DEFAULT_ABI == ABI_V4)
    return 0;

  /* If we have real FPRs, consider floating point constants hard (other than
     0.0 under VSX), so that the constant gets pushed to memory during the
     early RTL phases.  This has the advantage that double precision constants
     that can be represented in single precision without a loss of precision
     will use single precision loads.  */

  switch (mode)
    {
    case E_KFmode:
    case E_IFmode:
    case E_TFmode:
    case E_DFmode:
    case E_SFmode:
      return 0;

    case E_DImode:
      return (num_insns_constant (op, DImode) <= 2);

    case E_SImode:
      return 1;

    default:
      gcc_unreachable ();
    }
})

;; Return 1 if the operand is a constant that can loaded with a XXSPLTIB
;; instruction and then a VUPKHSB, VECSB2W or VECSB2D instruction.

(define_predicate "xxspltib_constant_split"
  (match_code "const_vector,vec_duplicate,const_int")
{
  int value = 256;
  int num_insns = -1;

  if (!xxspltib_constant_p (op, mode, &num_insns, &value))
    return false;

  return num_insns > 1;
})


;; Return 1 if the operand is constant that can loaded directly with a XXSPLTIB
;; instruction.

(define_predicate "xxspltib_constant_nosplit"
  (match_code "const_vector,vec_duplicate,const_int")
{
  int value = 256;
  int num_insns = -1;

  if (!xxspltib_constant_p (op, mode, &num_insns, &value))
    return false;

  return num_insns == 1;
})

;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
;; vector register without using memory.
(define_predicate "easy_vector_constant"
  (match_code "const_vector")
{
  /* Because IEEE 128-bit floating point is considered a vector type
     in order to pass it in VSX registers, it might use this function
     instead of easy_fp_constant.  */
  if (FLOAT128_VECTOR_P (mode))
    return easy_fp_constant (op, mode);

  if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
    {
      int value = 256;
      int num_insns = -1;

      if (zero_constant (op, mode) || all_ones_constant (op, mode))
	return true;

      if (TARGET_P9_VECTOR
          && xxspltib_constant_p (op, mode, &num_insns, &value))
	return true;

      return easy_altivec_constant (op, mode);
    }

  return false;
})

;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
(define_predicate "easy_vector_constant_add_self"
  (and (match_code "const_vector")
       (and (match_test "TARGET_ALTIVEC")
	    (match_test "easy_altivec_constant (op, mode)")))
{
  HOST_WIDE_INT val;
  int elt;
  if (mode == V2DImode || mode == V2DFmode)
    return 0;
  elt = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 : 0;
  val = const_vector_elt_as_int (op, elt);
  val = ((val & 0xff) ^ 0x80) - 0x80;
  return EASY_VECTOR_15_ADD_SELF (val);
})

;; Same as easy_vector_constant but only for EASY_VECTOR_MSB.
(define_predicate "easy_vector_constant_msb"
  (and (match_code "const_vector")
       (and (match_test "TARGET_ALTIVEC")
	    (match_test "easy_altivec_constant (op, mode)")))
{
  HOST_WIDE_INT val;
  int elt;
  if (mode == V2DImode || mode == V2DFmode)
    return 0;
  elt = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 : 0;
  val = const_vector_elt_as_int (op, elt);
  return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode));
})

;; Return true if this is an easy altivec constant that we form
;; by using VSLDOI.
(define_predicate "easy_vector_constant_vsldoi"
  (and (match_code "const_vector")
       (and (match_test "TARGET_ALTIVEC")
	    (and (match_test "easy_altivec_constant (op, mode)")
		 (match_test "vspltis_shifted (op) != 0")))))

;; Return 1 if operand is a vector int register or is either a vector constant
;; of all 0 bits of a vector constant of all 1 bits.
(define_predicate "vector_int_reg_or_same_bit"
  (match_code "reg,subreg,const_vector")
{
  if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
    return 0;

  else if (REG_P (op) || SUBREG_P (op))
    return vint_operand (op, mode);

  else
    return op == CONST0_RTX (mode) || op == CONSTM1_RTX (mode);
})

;; Return 1 if operand is 0.0.
(define_predicate "zero_fp_constant"
  (and (match_code "const_double")
       (match_test "SCALAR_FLOAT_MODE_P (mode)
		    && op == CONST0_RTX (mode)")))

;; Return 1 if the operand is in volatile memory.  Note that during the
;; RTL generation phase, memory_operand does not return TRUE for volatile
;; memory references.  So this function allows us to recognize volatile
;; references where it's safe.
(define_predicate "volatile_mem_operand"
  (and (and (match_code "mem")
	    (match_test "MEM_VOLATILE_P (op)"))
       (if_then_else (match_test "reload_completed")
	 (match_operand 0 "memory_operand")
	 (match_test "memory_address_p (mode, XEXP (op, 0))"))))

;; Return 1 if the operand is an offsettable memory operand.
(define_predicate "offsettable_mem_operand"
  (and (match_operand 0 "memory_operand")
       (match_test "offsettable_nonstrict_memref_p (op)")))

;; Return 1 if the operand is a simple offsettable memory operand
;; that does not include pre-increment, post-increment, etc.
(define_predicate "simple_offsettable_mem_operand"
  (match_operand 0 "offsettable_mem_operand")
{
  rtx addr = XEXP (op, 0);

  if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
    return 0;

  if (!CONSTANT_P (XEXP (addr, 1)))
    return 0;

  return base_reg_operand (XEXP (addr, 0), Pmode);
})

;; Return 1 if the operand is suitable for load/store quad memory.
;; This predicate only checks for non-atomic loads/stores (not lqarx/stqcx).
(define_predicate "quad_memory_operand"
  (match_code "mem")
{
  if (!TARGET_QUAD_MEMORY && !TARGET_SYNC_TI)
    return false;

  if (GET_MODE_SIZE (mode) != 16 || !MEM_P (op) || MEM_ALIGN (op) < 128)
    return false;

  return quad_address_p (XEXP (op, 0), mode, false);
})

;; Return 1 if the operand is suitable for load/store to vector registers with
;; d-form addressing (register+offset), which was added in ISA 3.0.
;; Unlike quad_memory_operand, we do not have to check for alignment.
(define_predicate "vsx_quad_dform_memory_operand"
  (match_code "mem")
{
  if (!TARGET_P9_VECTOR || !MEM_P (op) || GET_MODE_SIZE (mode) != 16)
    return false;

  return quad_address_p (XEXP (op, 0), mode, false);
})

;; Return 1 if the operand is an indexed or indirect memory operand.
(define_predicate "indexed_or_indirect_operand"
  (match_code "mem")
{
  op = XEXP (op, 0);
  if (VECTOR_MEM_ALTIVEC_P (mode)
      && GET_CODE (op) == AND
      && GET_CODE (XEXP (op, 1)) == CONST_INT
      && INTVAL (XEXP (op, 1)) == -16)
    op = XEXP (op, 0);

  return indexed_or_indirect_address (op, mode);
})

;; Like indexed_or_indirect_operand, but also allow a GPR register if direct
;; moves are supported.
(define_predicate "reg_or_indexed_operand"
  (match_code "mem,reg,subreg")
{
  if (MEM_P (op))
    return indexed_or_indirect_operand (op, mode);
  else if (TARGET_DIRECT_MOVE)
    return register_operand (op, mode);
  return
    0;
})

;; Return 1 if the operand is an indexed or indirect memory operand with an
;; AND -16 in it, used to recognize when we need to switch to Altivec loads
;; to realign loops instead of VSX (altivec silently ignores the bottom bits,
;; while VSX uses the full address and traps)
(define_predicate "altivec_indexed_or_indirect_operand"
  (match_code "mem")
{
  op = XEXP (op, 0);
  if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
      && GET_CODE (op) == AND
      && GET_CODE (XEXP (op, 1)) == CONST_INT
      && INTVAL (XEXP (op, 1)) == -16)
    return indexed_or_indirect_address (XEXP (op, 0), mode);

  return 0;
})

;; Return 1 if the operand is an indexed or indirect address.
(define_special_predicate "indexed_or_indirect_address"
  (and (match_test "REG_P (op)
		    || (GET_CODE (op) == PLUS
			/* Omit testing REG_P (XEXP (op, 0)).  */
			&& REG_P (XEXP (op, 1)))")
       (match_operand 0 "address_operand")))

;; Return 1 if the operand is an index-form address.
(define_special_predicate "indexed_address"
  (match_test "(GET_CODE (op) == PLUS
		&& REG_P (XEXP (op, 0))
		&& REG_P (XEXP (op, 1)))"))

;; Return 1 if the operand is a MEM with an update-form address. This may
;; also include update-indexed form.
(define_special_predicate "update_address_mem"
  (match_test "(MEM_P (op)
		&& (GET_CODE (XEXP (op, 0)) == PRE_INC
		    || GET_CODE (XEXP (op, 0)) == PRE_DEC
		    || GET_CODE (XEXP (op, 0)) == PRE_MODIFY))"))

;; Return 1 if the operand is a MEM with an indexed-form address.
(define_special_predicate "indexed_address_mem"
  (match_test "(MEM_P (op)
		&& (indexed_address (XEXP (op, 0), mode)
		    || (GET_CODE (XEXP (op, 0)) == PRE_MODIFY
			&& indexed_address (XEXP (XEXP (op, 0), 1), mode))))"))

;; Return 1 if the operand is either a non-special register or can be used
;; as the operand of a `mode' add insn.
(define_predicate "add_operand"
  (if_then_else (match_code "const_int")
    (match_test "satisfies_constraint_I (op)
		 || satisfies_constraint_L (op)")
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if the operand is either a non-special register, or 0, or -1.
(define_predicate "adde_operand"
  (if_then_else (match_code "const_int")
    (match_test "INTVAL (op) == 0 || INTVAL (op) == -1")
    (match_operand 0 "gpc_reg_operand")))

;; Return 1 if OP is a constant but not a valid add_operand.
(define_predicate "non_add_cint_operand"
  (and (match_code "const_int")
       (match_test "!satisfies_constraint_I (op)
		    && !satisfies_constraint_L (op)")))

;; Return 1 if the operand is a constant that can be used as the operand
;; of an OR or XOR.
(define_predicate "logical_const_operand"
  (match_code "const_int")
{
  HOST_WIDE_INT opl;

  opl = INTVAL (op) & GET_MODE_MASK (mode);

  return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
	  || (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
})

;; Return 1 if the operand is a non-special register or a constant that
;; can be used as the operand of an OR or XOR.
(define_predicate "logical_operand"
  (ior (match_operand 0 "gpc_reg_operand")
       (match_operand 0 "logical_const_operand")))

;; Return 1 if op is a constant that is not a logical operand, but could
;; be split into one.
(define_predicate "non_logical_cint_operand"
  (and (match_code "const_int,const_wide_int")
       (and (not (match_operand 0 "logical_operand"))
	    (match_operand 0 "reg_or_logical_cint_operand"))))

;; Return 1 if the operand is either a non-special register or a
;; constant that can be used as the operand of a logical AND.
(define_predicate "and_operand"
  (ior (and (match_code "const_int")
	    (match_test "rs6000_is_valid_and_mask (op, mode)"))
       (if_then_else (match_test "fixed_regs[CR0_REGNO]")
	 (match_operand 0 "gpc_reg_operand")
	 (match_operand 0 "logical_operand"))))

;; Return 1 if the operand is either a logical operand or a short cint operand.
(define_predicate "scc_eq_operand"
  (ior (match_operand 0 "logical_operand")
       (match_operand 0 "short_cint_operand")))

;; Return 1 if the operand is a general non-special register or memory operand.
(define_predicate "reg_or_mem_operand"
  (ior (match_operand 0 "memory_operand")
       (and (match_code "mem")
	    (match_test "macho_lo_sum_memory_operand (op, mode)"))
       (match_operand 0 "volatile_mem_operand")
       (match_operand 0 "gpc_reg_operand")))

;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
(define_predicate "zero_reg_mem_operand"
  (ior (and (match_test "TARGET_VSX")
	    (match_operand 0 "zero_fp_constant"))
       (match_operand 0 "reg_or_mem_operand")))

;; Return 1 if the operand is a CONST_INT and it is the element for 64-bit
;; data types inside of a vector that scalar instructions operate on
(define_predicate "vsx_scalar_64bit"
  (match_code "const_int")
{
  return (INTVAL (op) == VECTOR_ELEMENT_SCALAR_64BIT);
})

;; Return 1 if the operand is a general register or memory operand without
;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC
;; lwa instruction.
(define_predicate "lwa_operand"
  (match_code "reg,subreg,mem")
{
  rtx inner, addr, offset;

  inner = op;
  if (reload_completed && GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);

  if (gpc_reg_operand (inner, mode))
    return true;
  if (!memory_operand (inner, mode))
    return false;

  addr = XEXP (inner, 0);
  if (GET_CODE (addr) == PRE_INC
      || GET_CODE (addr) == PRE_DEC
      || (GET_CODE (addr) == PRE_MODIFY
	  && !legitimate_indexed_address_p (XEXP (addr, 1), 0)))
    return false;
  if (GET_CODE (addr) == LO_SUM
      && GET_CODE (XEXP (addr, 0)) == REG
      && GET_CODE (XEXP (addr, 1)) == CONST)
    addr = XEXP (XEXP (addr, 1), 0);
  if (GET_CODE (addr) != PLUS)
    return true;
  offset = XEXP (addr, 1);
  if (GET_CODE (offset) != CONST_INT)
    return true;
  return INTVAL (offset) % 4 == 0;
})

;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
(define_predicate "symbol_ref_operand"
  (and (match_code "symbol_ref")
       (match_test "(mode == VOIDmode || GET_MODE (op) == mode)
		    && (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))

;; Return 1 if op is an operand that can be loaded via the GOT.
;; or non-special register register field no cr0
(define_predicate "got_operand"
  (match_code "symbol_ref,const,label_ref"))

;; Return 1 if op is a simple reference that can be loaded via the GOT,
;; excluding labels involving addition.
(define_predicate "got_no_const_operand"
  (match_code "symbol_ref,label_ref"))

;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
(define_predicate "rs6000_tls_symbol_ref"
  (and (match_code "symbol_ref")
       (match_test "RS6000_SYMBOL_REF_TLS_P (op)")))

;; Return 1 if the operand, used inside a MEM, is a valid first argument
;; to CALL.  This is a SYMBOL_REF, a pseudo-register, LR or CTR.
(define_predicate "call_operand"
  (if_then_else (match_code "reg")
     (match_test "REGNO (op) == LR_REGNO
		  || REGNO (op) == CTR_REGNO
		  || REGNO (op) >= FIRST_PSEUDO_REGISTER")
     (match_code "symbol_ref")))

;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
;; this file.
(define_predicate "current_file_function_operand"
  (and (match_code "symbol_ref")
       (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
		    && (SYMBOL_REF_LOCAL_P (op)
			|| (op == XEXP (DECL_RTL (current_function_decl), 0)
			    && !decl_replaceable_p (current_function_decl)))
		    && !((DEFAULT_ABI == ABI_AIX
			  || DEFAULT_ABI == ABI_ELFv2)
			 && (SYMBOL_REF_EXTERNAL_P (op)
			     || SYMBOL_REF_WEAK (op)))")))

;; Return 1 if this operand is a valid input for a move insn.
(define_predicate "input_operand"
  (match_code "symbol_ref,const,reg,subreg,mem,
	       const_double,const_wide_int,const_vector,const_int")
{
  /* Memory is always valid.  */
  if (memory_operand (op, mode))
    return 1;

  /* For floating-point, easy constants are valid.  */
  if (SCALAR_FLOAT_MODE_P (mode)
      && easy_fp_constant (op, mode))
    return 1;

  /* Allow any integer constant.  */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && CONST_SCALAR_INT_P (op))
    return 1;

  /* Allow easy vector constants.  */
  if (GET_CODE (op) == CONST_VECTOR
      && easy_vector_constant (op, mode))
    return 1;

  /* For floating-point or multi-word mode, the only remaining valid type
     is a register.  */
  if (SCALAR_FLOAT_MODE_P (mode)
      || GET_MODE_SIZE (mode) > UNITS_PER_WORD)
    return register_operand (op, mode);

  /* We don't allow moving the carry bit around.  */
  if (ca_operand (op, mode))
    return 0;

  /* The only cases left are integral modes one word or smaller (we
     do not get called for MODE_CC values).  These can be in any
     register.  */
  if (register_operand (op, mode))
    return 1;

  /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
     to be valid.  */
  if (DEFAULT_ABI == ABI_V4
      && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
      && small_data_operand (op, Pmode))
    return 1;

  return 0;
})

;; Return 1 if this operand is a valid input for a vsx_splat insn.
(define_predicate "splat_input_operand"
  (match_code "reg,subreg,mem")
{
  machine_mode vmode;

  if (mode == DFmode)
    vmode = V2DFmode;
  else if (mode == DImode)
    vmode = V2DImode;
  else if (mode == SImode && TARGET_P9_VECTOR)
    vmode = V4SImode;
  else if (mode == SFmode && TARGET_P9_VECTOR)
    vmode = V4SFmode;
  else
    return false;

  if (MEM_P (op))
    {
      rtx addr = XEXP (op, 0);

      if (! volatile_ok && MEM_VOLATILE_P (op))
	return 0;

      if (lra_in_progress || reload_completed)
	return indexed_or_indirect_address (addr, vmode);
      else
	return memory_address_addr_space_p (vmode, addr, MEM_ADDR_SPACE (op));
    }
  return gpc_reg_operand (op, mode);
})

;; Return true if operand is an operator used in rotate-and-mask instructions.
(define_predicate "rotate_mask_operator"
  (match_code "rotate,ashift,lshiftrt"))

;; Return true if operand is boolean operator.
(define_predicate "boolean_operator"
  (match_code "and,ior,xor"))

;; Return true if operand is OR-form of boolean operator.
(define_predicate "boolean_or_operator"
  (match_code "ior,xor"))

;; Return true if operand is an equality operator.
(define_special_predicate "equality_operator"
  (match_code "eq,ne"))

;; Return 1 if OP is a comparison operation that is valid for a branch
;; instruction.  We check the opcode against the mode of the CC value.
;; validate_condition_mode is an assertion.
(define_predicate "branch_comparison_operator"
   (and (match_operand 0 "comparison_operator")
	(and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
	     (match_test "validate_condition_mode (GET_CODE (op),
						   GET_MODE (XEXP (op, 0))),
			  1"))))

;; Return 1 if OP is an unsigned comparison operator.
(define_predicate "unsigned_comparison_operator"
  (match_code "ltu,gtu,leu,geu"))

;; Return 1 if OP is a signed comparison operator.
(define_predicate "signed_comparison_operator"
  (match_code "lt,gt,le,ge"))

;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
;; it must be a positive comparison.
(define_predicate "scc_comparison_operator"
  (and (match_operand 0 "branch_comparison_operator")
       (match_code "eq,lt,gt,ltu,gtu,unordered")))

;; Return 1 if OP is a comparison operation whose inverse would be valid for
;; an SCC insn.
(define_predicate "scc_rev_comparison_operator"
  (and (match_operand 0 "branch_comparison_operator")
       (match_code "ne,le,ge,leu,geu,ordered")))

;; Return 1 if OP is a comparison operator suitable for floating point
;; vector/scalar comparisons that generate a -1/0 mask.
(define_predicate "fpmask_comparison_operator"
  (match_code "eq,gt,ge"))

;; Return 1 if OP is a comparison operator suitable for vector/scalar
;; comparisons that generate a 0/-1 mask (i.e. the inverse of
;; fpmask_comparison_operator).
(define_predicate "invert_fpmask_comparison_operator"
  (match_code "ne,unlt,unle"))

;; Return 1 if OP is a comparison operation suitable for integer vector/scalar
;; comparisons that generate a -1/0 mask.
(define_predicate "vecint_comparison_operator"
  (match_code "eq,gt,gtu"))

;; Return 1 if OP is a comparison operation that is valid for a branch
;; insn, which is true if the corresponding bit in the CC register is set.
(define_predicate "branch_positive_comparison_operator"
  (and (match_operand 0 "branch_comparison_operator")
       (match_code "eq,lt,gt,ltu,gtu,unordered")))

;; Return 1 if OP is valid for a save_world call in prologue, known to be
;; a PARLLEL.
(define_predicate "save_world_operation"
  (match_code "parallel")
{
  int index;
  int i;
  rtx elt;
  int count = XVECLEN (op, 0);

  if (count != 54)
    return 0;

  index = 0;
  if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
      || GET_CODE (XVECEXP (op, 0, index++)) != USE)
    return 0;

  for (i=1; i <= 18; i++)
    {
      elt = XVECEXP (op, 0, index++);
      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != MEM
	  || ! memory_operand (SET_DEST (elt), DFmode)
	  || GET_CODE (SET_SRC (elt)) != REG
	  || GET_MODE (SET_SRC (elt)) != DFmode)
	return 0;
    }

  for (i=1; i <= 12; i++)
    {
      elt = XVECEXP (op, 0, index++);
      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != MEM
	  || GET_CODE (SET_SRC (elt)) != REG
	  || GET_MODE (SET_SRC (elt)) != V4SImode)
	return 0;
    }

  for (i=1; i <= 19; i++)
    {
      elt = XVECEXP (op, 0, index++);
      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != MEM
	  || ! memory_operand (SET_DEST (elt), Pmode)
	  || GET_CODE (SET_SRC (elt)) != REG
	  || GET_MODE (SET_SRC (elt)) != Pmode)
	return 0;
    }

  elt = XVECEXP (op, 0, index++);
  if (GET_CODE (elt) != SET
      || GET_CODE (SET_DEST (elt)) != MEM
      || ! memory_operand (SET_DEST (elt), Pmode)
      || GET_CODE (SET_SRC (elt)) != REG
      || REGNO (SET_SRC (elt)) != CR2_REGNO
      || GET_MODE (SET_SRC (elt)) != Pmode)
    return 0;

  if (GET_CODE (XVECEXP (op, 0, index++)) != SET
      || GET_CODE (XVECEXP (op, 0, index++)) != SET)
    return 0;
  return 1;
})

;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
;; a PARLLEL.
(define_predicate "restore_world_operation"
  (match_code "parallel")
{
  int index;
  int i;
  rtx elt;
  int count = XVECLEN (op, 0);

  if (count != 58)
    return 0;

  index = 0;
  if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
      || GET_CODE (XVECEXP (op, 0, index++)) != USE
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
    return 0;

  elt = XVECEXP (op, 0, index++);
  if (GET_CODE (elt) != SET
      || GET_CODE (SET_SRC (elt)) != MEM
      || ! memory_operand (SET_SRC (elt), Pmode)
      || GET_CODE (SET_DEST (elt)) != REG
      || REGNO (SET_DEST (elt)) != CR2_REGNO
      || GET_MODE (SET_DEST (elt)) != Pmode)
    return 0;

  for (i=1; i <= 19; i++)
    {
      elt = XVECEXP (op, 0, index++);
      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_SRC (elt)) != MEM
	  || ! memory_operand (SET_SRC (elt), Pmode)
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != Pmode)
	return 0;
    }

  for (i=1; i <= 12; i++)
    {
      elt = XVECEXP (op, 0, index++);
      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_SRC (elt)) != MEM
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != V4SImode)
	return 0;
    }

  for (i=1; i <= 18; i++)
    {
      elt = XVECEXP (op, 0, index++);
      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_SRC (elt)) != MEM
	  || ! memory_operand (SET_SRC (elt), DFmode)
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != DFmode)
	return 0;
    }

  if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
      || GET_CODE (XVECEXP (op, 0, index++)) != USE)
    return 0;
  return 1;
})

;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
(define_predicate "vrsave_operation"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  unsigned int dest_regno, src_regno;
  int i;

  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE
      || XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE)
    return 0;

  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
  src_regno  = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1));

  if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO)
    return 0;

  for (i = 1; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i);

      if (GET_CODE (elt) != CLOBBER
	  && GET_CODE (elt) != SET)
	return 0;
    }

  return 1;
})

;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
(define_predicate "mfcr_operation"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count < 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
      || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
    return 0;

  for (i = 0; i < count; i++)
    {
      rtx exp = XVECEXP (op, 0, i);
      rtx unspec;
      int maskval;
      rtx src_reg;

      src_reg = XVECEXP (SET_SRC (exp), 0, 0);

      if (GET_CODE (src_reg) != REG
	  || GET_MODE (src_reg) != CCmode
	  || ! CR_REGNO_P (REGNO (src_reg)))
	return 0;

      if (GET_CODE (exp) != SET
	  || GET_CODE (SET_DEST (exp)) != REG
	  || GET_MODE (SET_DEST (exp)) != SImode
	  || ! INT_REGNO_P (REGNO (SET_DEST (exp))))
	return 0;
      unspec = SET_SRC (exp);
      maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));

      if (GET_CODE (unspec) != UNSPEC
	  || XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
	  || XVECLEN (unspec, 0) != 2
	  || XVECEXP (unspec, 0, 0) != src_reg
	  || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
	  || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
	return 0;
    }
  return 1;
})

;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
(define_predicate "mtcrf_operation"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;
  rtx src_reg;

  /* Perform a quick check so we don't blow up below.  */
  if (count < 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
      || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
    return 0;
  src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);

  if (GET_CODE (src_reg) != REG
      || GET_MODE (src_reg) != SImode
      || ! INT_REGNO_P (REGNO (src_reg)))
    return 0;

  for (i = 0; i < count; i++)
    {
      rtx exp = XVECEXP (op, 0, i);
      rtx unspec;
      int maskval;

      if (GET_CODE (exp) != SET
	  || GET_CODE (SET_DEST (exp)) != REG
	  || GET_MODE (SET_DEST (exp)) != CCmode
	  || ! CR_REGNO_P (REGNO (SET_DEST (exp))))
	return 0;
      unspec = SET_SRC (exp);
      maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));

      if (GET_CODE (unspec) != UNSPEC
	  || XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
	  || XVECLEN (unspec, 0) != 2
	  || XVECEXP (unspec, 0, 0) != src_reg
	  || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
	  || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
	return 0;
    }
  return 1;
})

;; Return 1 if OP is valid for crsave insn, known to be a PARALLEL.
(define_predicate "crsave_operation"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;

  for (i = 1; i < count; i++)
    {
      rtx exp = XVECEXP (op, 0, i);

      if (GET_CODE (exp) != USE
	  || GET_CODE (XEXP (exp, 0)) != REG
	  || GET_MODE (XEXP (exp, 0)) != CCmode
	  || ! CR_REGNO_P (REGNO (XEXP (exp, 0))))
	return 0;
    }
  return 1;
})

;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
(define_predicate "lmw_operation"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  unsigned int dest_regno;
  rtx src_addr;
  unsigned int base_regno;
  HOST_WIDE_INT offset;
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
    return 0;

  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
  src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);

  if (dest_regno > 31
      || count != 32 - (int) dest_regno)
    return 0;

  if (legitimate_indirect_address_p (src_addr, 0))
    {
      offset = 0;
      base_regno = REGNO (src_addr);
      if (base_regno == 0)
	return 0;
    }
  else if (rs6000_legitimate_offset_address_p (SImode, src_addr, false, false))
    {
      offset = INTVAL (XEXP (src_addr, 1));
      base_regno = REGNO (XEXP (src_addr, 0));
    }
  else
    return 0;

  for (i = 0; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i);
      rtx newaddr;
      rtx addr_reg;
      HOST_WIDE_INT newoffset;

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != SImode
	  || REGNO (SET_DEST (elt)) != dest_regno + i
	  || GET_CODE (SET_SRC (elt)) != MEM
	  || GET_MODE (SET_SRC (elt)) != SImode)
	return 0;
      newaddr = XEXP (SET_SRC (elt), 0);
      if (legitimate_indirect_address_p (newaddr, 0))
	{
	  newoffset = 0;
	  addr_reg = newaddr;
	}
      else if (rs6000_legitimate_offset_address_p (SImode, newaddr, false, false))
	{
	  addr_reg = XEXP (newaddr, 0);
	  newoffset = INTVAL (XEXP (newaddr, 1));
	}
      else
	return 0;
      if (REGNO (addr_reg) != base_regno
	  || newoffset != offset + 4 * i)
	return 0;
    }

  return 1;
})

;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
(define_predicate "stmw_operation"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  unsigned int src_regno;
  rtx dest_addr;
  unsigned int base_regno;
  HOST_WIDE_INT offset;
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
    return 0;

  src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
  dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);

  if (src_regno > 31
      || count != 32 - (int) src_regno)
    return 0;

  if (legitimate_indirect_address_p (dest_addr, 0))
    {
      offset = 0;
      base_regno = REGNO (dest_addr);
      if (base_regno == 0)
	return 0;
    }
  else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, false, false))
    {
      offset = INTVAL (XEXP (dest_addr, 1));
      base_regno = REGNO (XEXP (dest_addr, 0));
    }
  else
    return 0;

  for (i = 0; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i);
      rtx newaddr;
      rtx addr_reg;
      HOST_WIDE_INT newoffset;

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_SRC (elt)) != REG
	  || GET_MODE (SET_SRC (elt)) != SImode
	  || REGNO (SET_SRC (elt)) != src_regno + i
	  || GET_CODE (SET_DEST (elt)) != MEM
	  || GET_MODE (SET_DEST (elt)) != SImode)
	return 0;
      newaddr = XEXP (SET_DEST (elt), 0);
      if (legitimate_indirect_address_p (newaddr, 0))
	{
	  newoffset = 0;
	  addr_reg = newaddr;
	}
      else if (rs6000_legitimate_offset_address_p (SImode, newaddr, false, false))
	{
	  addr_reg = XEXP (newaddr, 0);
	  newoffset = INTVAL (XEXP (newaddr, 1));
	}
      else
	return 0;
      if (REGNO (addr_reg) != base_regno
	  || newoffset != offset + 4 * i)
	return 0;
    }

  return 1;
})

;; Return 1 if OP is a stack tie operand.
(define_predicate "tie_operand"
  (match_code "parallel")
{
  return (GET_CODE (XVECEXP (op, 0, 0)) == SET
	  && GET_CODE (XEXP (XVECEXP (op, 0, 0), 0)) == MEM
	  && GET_MODE (XEXP (XVECEXP (op, 0, 0), 0)) == BLKmode
	  && XEXP (XVECEXP (op, 0, 0), 1) == const0_rtx);
})

;; Match a small code model toc reference (or medium and large
;; model toc references before reload).
(define_predicate "small_toc_ref"
  (match_code "unspec,plus")
{
  if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), mode))
    op = XEXP (op, 0);

  return GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_TOCREL;
})

;; Match the TOC memory operand that can be fused with an addis instruction.
;; This is used in matching a potential fused address before register
;; allocation.
(define_predicate "toc_fusion_mem_raw"
  (match_code "mem")
{
  if (!TARGET_TOC_FUSION_INT || !can_create_pseudo_p ())
    return false;

  return small_toc_ref (XEXP (op, 0), Pmode);
})

;; Match the memory operand that has been fused with an addis instruction and
;; wrapped inside of an (unspec [...] UNSPEC_FUSION_ADDIS) wrapper.
(define_predicate "toc_fusion_mem_wrapped"
  (match_code "mem")
{
  rtx addr;

  if (!TARGET_TOC_FUSION_INT)
    return false;

  if (!MEM_P (op))
    return false;

  addr = XEXP (op, 0);
  return (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_FUSION_ADDIS);
})

;; Match the first insn (addis) in fusing the combination of addis and loads to
;; GPR registers on power8.
(define_predicate "fusion_gpr_addis"
  (match_code "const_int,high,plus")
{
  HOST_WIDE_INT value;
  rtx int_const;

  if (GET_CODE (op) == HIGH)
    return 1;

  if (CONST_INT_P (op))
    int_const = op;

  else if (GET_CODE (op) == PLUS
	   && base_reg_operand (XEXP (op, 0), Pmode)
	   && CONST_INT_P (XEXP (op, 1)))
    int_const = XEXP (op, 1);

  else
    return 0;

  value = INTVAL (int_const);
  if ((value & (HOST_WIDE_INT)0xffff) != 0)
    return 0;

  if ((value & (HOST_WIDE_INT)0xffff0000) == 0)
    return 0;

  /* Power8 currently will only do the fusion if the top 11 bits of the addis
     value are all 1's or 0's.  Ignore this restriction if we are testing
     advanced fusion.  */
  if (TARGET_P9_FUSION)
    return 1;

  return (IN_RANGE (value >> 16, -32, 31));
})

;; Match the second insn (lbz, lhz, lwz, ld) in fusing the combination of addis
;; and loads to GPR registers on power8.
(define_predicate "fusion_gpr_mem_load"
  (match_code "mem,sign_extend,zero_extend")
{
  rtx addr, base, offset;

  /* Handle sign/zero extend.  */
  if (GET_CODE (op) == ZERO_EXTEND
      || (TARGET_P8_FUSION_SIGN && GET_CODE (op) == SIGN_EXTEND))
    {
      op = XEXP (op, 0);
      mode = GET_MODE (op);
    }

  if (!MEM_P (op))
    return 0;

  switch (mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      break;

    case E_DImode:
      if (!TARGET_POWERPC64)
	return 0;
      break;

    default:
      return 0;
    }

  addr = XEXP (op, 0);
  if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
    return 0;

  base = XEXP (addr, 0);
  if (!base_reg_operand (base, GET_MODE (base)))
    return 0;

  offset = XEXP (addr, 1);

  if (GET_CODE (addr) == PLUS)
    return satisfies_constraint_I (offset);

  else if (GET_CODE (addr) == LO_SUM)
    {
      if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
	return small_toc_ref (offset, GET_MODE (offset));

      else if (TARGET_ELF && !TARGET_POWERPC64)
	return CONSTANT_P (offset);
    }

  return 0;
})

;; Match a GPR load (lbz, lhz, lwz, ld) that uses a combined address in the
;; memory field with both the addis and the memory offset.  Sign extension
;; is not handled here, since lha and lwa are not fused.
;; With P9 fusion, also match a fpr/vector load and float_extend
(define_predicate "fusion_addis_mem_combo_load"
  (match_code "mem,zero_extend,float_extend")
{
  rtx addr, base, offset;

  /* Handle zero/float extend.  */
  if (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == FLOAT_EXTEND)
    {
      op = XEXP (op, 0);
      mode = GET_MODE (op);
    }

  if (!MEM_P (op))
    return 0;

  switch (mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      break;

    /* Do not fuse 64-bit DImode in 32-bit since it splits into two
       separate instructions.  */
    case E_DImode:
      if (!TARGET_POWERPC64)
	return 0;
      break;

    /* ISA 2.08/power8 only had fusion of GPR loads.  */
    case E_SFmode:
      if (!TARGET_P9_FUSION)
	return 0;
      break;

    /* ISA 2.08/power8 only had fusion of GPR loads.  Do not allow 64-bit
       DFmode in 32-bit if -msoft-float since it splits into two separate
       instructions.  */
    case E_DFmode:
      if ((!TARGET_POWERPC64 && !TARGET_HARD_FLOAT) || !TARGET_P9_FUSION)
	return 0;
      break;

    default:
      return 0;
    }

  addr = XEXP (op, 0);
  if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
    return 0;

  base = XEXP (addr, 0);
  if (!fusion_gpr_addis (base, GET_MODE (base)))
    return 0;

  offset = XEXP (addr, 1);
  if (GET_CODE (addr) == PLUS)
    return satisfies_constraint_I (offset);

  else if (GET_CODE (addr) == LO_SUM)
    {
      if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
	return small_toc_ref (offset, GET_MODE (offset));

      else if (TARGET_ELF && !TARGET_POWERPC64)
	return CONSTANT_P (offset);
    }

  return 0;
})

;; Like fusion_addis_mem_combo_load, but for stores
(define_predicate "fusion_addis_mem_combo_store"
  (match_code "mem")
{
  rtx addr, base, offset;

  if (!MEM_P (op) || !TARGET_P9_FUSION)
    return 0;

  switch (mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
    case E_SFmode:
      break;

    /* Do not fuse 64-bit DImode in 32-bit since it splits into two
       separate instructions.  */
    case E_DImode:
      if (!TARGET_POWERPC64)
	return 0;
      break;

    /* Do not allow 64-bit DFmode in 32-bit if -msoft-float since it splits
       into two separate instructions.  Do allow fusion if we have hardware
       floating point.  */
    case E_DFmode:
      if (!TARGET_POWERPC64 && !TARGET_HARD_FLOAT)
	return 0;
      break;

    default:
      return 0;
    }

  addr = XEXP (op, 0);
  if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
    return 0;

  base = XEXP (addr, 0);
  if (!fusion_gpr_addis (base, GET_MODE (base)))
    return 0;

  offset = XEXP (addr, 1);
  if (GET_CODE (addr) == PLUS)
    return satisfies_constraint_I (offset);

  else if (GET_CODE (addr) == LO_SUM)
    {
      if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
	return small_toc_ref (offset, GET_MODE (offset));

      else if (TARGET_ELF && !TARGET_POWERPC64)
	return CONSTANT_P (offset);
    }

  return 0;
})

;; Return true if the operand is a float_extend or zero extend of an
;; offsettable memory operand suitable for use in fusion
(define_predicate "fusion_offsettable_mem_operand"
  (match_code "mem,zero_extend,float_extend")
{
  if (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == FLOAT_EXTEND)
    {
      op = XEXP (op, 0);
      mode = GET_MODE (op);
    }

  if (!memory_operand (op, mode))
    return 0;

  return offsettable_nonstrict_memref_p (op);
})