1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
|
/* Subroutines used to expand string operations for RISC-V.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ira.h"
#include "print-tree.h"
#include "varasm.h"
#include "explow.h"
#include "expr.h"
#include "output.h"
#include "target.h"
#include "predict.h"
#include "optabs.h"
#include "riscv-protos.h"
#include "recog.h"
#include "tm-constrs.h"
/* Emit proper instruction depending on mode of dest. */
#define GEN_EMIT_HELPER2(name) \
static rtx_insn * \
do_## name ## 2(rtx dest, rtx src) \
{ \
rtx_insn *insn; \
if (GET_MODE (dest) == DImode) \
insn = emit_insn (gen_ ## name ## di2 (dest, src)); \
else \
insn = emit_insn (gen_ ## name ## si2 (dest, src)); \
return insn; \
}
/* Emit proper instruction depending on mode of dest. */
#define GEN_EMIT_HELPER3(name) \
static rtx_insn * \
do_## name ## 3(rtx dest, rtx src1, rtx src2) \
{ \
rtx_insn *insn; \
if (GET_MODE (dest) == DImode) \
insn = emit_insn (gen_ ## name ## di3 (dest, src1, src2)); \
else \
insn = emit_insn (gen_ ## name ## si3 (dest, src1, src2)); \
return insn; \
}
GEN_EMIT_HELPER3(add) /* do_add3 */
GEN_EMIT_HELPER3(and) /* do_and3 */
GEN_EMIT_HELPER3(ashl) /* do_ashl3 */
GEN_EMIT_HELPER2(bswap) /* do_bswap2 */
GEN_EMIT_HELPER2(clz) /* do_clz2 */
GEN_EMIT_HELPER2(ctz) /* do_ctz2 */
GEN_EMIT_HELPER3(ior) /* do_ior3 */
GEN_EMIT_HELPER3(ior_not) /* do_ior_not3 */
GEN_EMIT_HELPER3(lshr) /* do_lshr3 */
GEN_EMIT_HELPER2(neg) /* do_neg2 */
GEN_EMIT_HELPER2(orcb) /* do_orcb2 */
GEN_EMIT_HELPER2(one_cmpl) /* do_one_cmpl2 */
GEN_EMIT_HELPER3(rotr) /* do_rotr3 */
GEN_EMIT_HELPER3(sub) /* do_sub3 */
GEN_EMIT_HELPER2(th_rev) /* do_th_rev2 */
GEN_EMIT_HELPER2(th_tstnbz) /* do_th_tstnbz2 */
GEN_EMIT_HELPER3(xor) /* do_xor3 */
GEN_EMIT_HELPER2(zero_extendqi) /* do_zero_extendqi2 */
#undef GEN_EMIT_HELPER2
#undef GEN_EMIT_HELPER3
/* Helper function to load a byte or a Pmode register.
MODE is the mode to use for the load (QImode or Pmode).
DEST is the destination register for the data.
ADDR_REG is the register that holds the address.
ADDR is the address expression to load from.
This function returns an rtx containing the register,
where the ADDR is stored. */
static rtx
do_load_from_addr (machine_mode mode, rtx dest, rtx addr_reg, rtx addr)
{
rtx mem = gen_rtx_MEM (mode, addr_reg);
MEM_COPY_ATTRIBUTES (mem, addr);
set_mem_size (mem, GET_MODE_SIZE (mode));
if (mode == QImode)
do_zero_extendqi2 (dest, mem);
else if (mode == Xmode)
emit_move_insn (dest, mem);
else
gcc_unreachable ();
return addr_reg;
}
/* Generate a sequence to compare single characters in data1 and data2.
RESULT is the register where the return value of str(n)cmp will be stored.
DATA1 is a register which contains character1.
DATA2 is a register which contains character2.
FINAL_LABEL is the location after the calculation of the return value. */
static void
emit_strcmp_scalar_compare_byte (rtx result, rtx data1, rtx data2,
rtx final_label)
{
rtx tmp = gen_reg_rtx (Xmode);
do_sub3 (tmp, data1, data2);
emit_insn (gen_movsi (result, gen_lowpart (SImode, tmp)));
emit_jump_insn (gen_jump (final_label));
emit_barrier (); /* No fall-through. */
}
/* Generate a sequence to compare two strings in data1 and data2.
DATA1 is a register which contains string1.
DATA2 is a register which contains string2.
ORC1 is a register where orc.b(data1) will be stored.
CMP_BYTES is the length of the strings.
END_LABEL is the location of the code that calculates the return value. */
static void
emit_strcmp_scalar_compare_subword (rtx data1, rtx data2, rtx orc1,
unsigned HOST_WIDE_INT cmp_bytes,
rtx end_label)
{
/* Set a NUL-byte after the relevant data (behind the string). */
long long im = -256ll;
rtx imask = gen_rtx_CONST_INT (Xmode, im);
rtx m_reg = gen_reg_rtx (Xmode);
emit_insn (gen_rtx_SET (m_reg, imask));
do_rotr3 (m_reg, m_reg, GEN_INT (64 - cmp_bytes * BITS_PER_UNIT));
do_and3 (data1, m_reg, data1);
do_and3 (data2, m_reg, data2);
if (TARGET_ZBB)
do_orcb2 (orc1, data1);
else
do_th_tstnbz2 (orc1, data1);
emit_jump_insn (gen_jump (end_label));
emit_barrier (); /* No fall-through. */
}
/* Generate a sequence to compare two strings in data1 and data2.
DATA1 is a register which contains string1.
DATA2 is a register which contains string2.
ORC1 is a register where orc.b(data1) will be stored.
TESTVAL is the value to test ORC1 against.
END_LABEL is the location of the code that calculates the return value.
NONUL_END_LABEL is the location of the code that calculates the return value
in case the first string does not contain a NULL-byte. */
static void
emit_strcmp_scalar_compare_word (rtx data1, rtx data2, rtx orc1, rtx testval,
rtx end_label, rtx nonul_end_label)
{
/* Check if data1 contains a NUL character. */
if (TARGET_ZBB)
do_orcb2 (orc1, data1);
else
do_th_tstnbz2 (orc1, data1);
rtx cond1 = gen_rtx_NE (VOIDmode, orc1, testval);
emit_unlikely_jump_insn (gen_cbranch4 (Pmode, cond1, orc1, testval,
end_label));
/* Break out if u1 != u2 */
rtx cond2 = gen_rtx_NE (VOIDmode, data1, data2);
emit_unlikely_jump_insn (gen_cbranch4 (Pmode, cond2, data1,
data2, nonul_end_label));
/* Fall-through on equality. */
}
/* Generate the sequence of compares for strcmp/strncmp using zbb instructions.
RESULT is the register where the return value of str(n)cmp will be stored.
The strings are referenced by SRC1 and SRC2.
The number of bytes to compare is defined by NBYTES.
DATA1 is a register where string1 will be stored.
DATA2 is a register where string2 will be stored.
ORC1 is a register where orc.b(data1) will be stored.
END_LABEL is the location of the code that calculates the return value.
NONUL_END_LABEL is the location of the code that calculates the return value
in case the first string does not contain a NULL-byte.
FINAL_LABEL is the location of the code that comes after the calculation
of the return value. */
static void
emit_strcmp_scalar_load_and_compare (rtx result, rtx src1, rtx src2,
unsigned HOST_WIDE_INT nbytes,
rtx data1, rtx data2, rtx orc1,
rtx end_label, rtx nonul_end_label,
rtx final_label)
{
const unsigned HOST_WIDE_INT xlen = GET_MODE_SIZE (Xmode);
rtx src1_addr = force_reg (Pmode, XEXP (src1, 0));
rtx src2_addr = force_reg (Pmode, XEXP (src2, 0));
unsigned HOST_WIDE_INT offset = 0;
rtx testval = gen_reg_rtx (Xmode);
if (TARGET_ZBB)
emit_insn (gen_rtx_SET (testval, constm1_rtx));
else
emit_insn (gen_rtx_SET (testval, const0_rtx));
while (nbytes > 0)
{
unsigned HOST_WIDE_INT cmp_bytes = xlen < nbytes ? xlen : nbytes;
machine_mode load_mode;
if (cmp_bytes == 1)
load_mode = QImode;
else
load_mode = Xmode;
rtx addr1 = gen_rtx_PLUS (Pmode, src1_addr, GEN_INT (offset));
do_load_from_addr (load_mode, data1, addr1, src1);
rtx addr2 = gen_rtx_PLUS (Pmode, src2_addr, GEN_INT (offset));
do_load_from_addr (load_mode, data2, addr2, src2);
if (cmp_bytes == 1)
{
emit_strcmp_scalar_compare_byte (result, data1, data2, final_label);
return;
}
else if (cmp_bytes < xlen)
{
emit_strcmp_scalar_compare_subword (data1, data2, orc1,
cmp_bytes, end_label);
return;
}
else
emit_strcmp_scalar_compare_word (data1, data2, orc1, testval,
end_label, nonul_end_label);
offset += cmp_bytes;
nbytes -= cmp_bytes;
}
}
/* Fixup pointers and generate a call to strcmp.
RESULT is the register where the return value of str(n)cmp will be stored.
The strings are referenced by SRC1 and SRC2.
The number of already compared bytes is defined by NBYTES. */
static void
emit_strcmp_scalar_call_to_libc (rtx result, rtx src1, rtx src2,
unsigned HOST_WIDE_INT nbytes)
{
/* Update pointers past what has been compared already. */
rtx src1_addr = force_reg (Pmode, XEXP (src1, 0));
rtx src2_addr = force_reg (Pmode, XEXP (src2, 0));
rtx src1_new = force_reg (Pmode,
gen_rtx_PLUS (Pmode, src1_addr, GEN_INT (nbytes)));
rtx src2_new = force_reg (Pmode,
gen_rtx_PLUS (Pmode, src2_addr, GEN_INT (nbytes)));
/* Construct call to strcmp to compare the rest of the string. */
tree fun = builtin_decl_explicit (BUILT_IN_STRCMP);
emit_library_call_value (XEXP (DECL_RTL (fun), 0),
result, LCT_NORMAL, GET_MODE (result),
src1_new, Pmode, src2_new, Pmode);
}
/* Fast strcmp-result calculation if no NULL-byte in string1.
RESULT is the register where the return value of str(n)cmp will be stored.
The mismatching strings are stored in DATA1 and DATA2. */
static void
emit_strcmp_scalar_result_calculation_nonul (rtx result, rtx data1, rtx data2)
{
/* Words don't match, and no NUL byte in one word.
Get bytes in big-endian order and compare as words. */
do_bswap2 (data1, data1);
do_bswap2 (data2, data2);
/* Synthesize (data1 >= data2) ? 1 : -1 in a branchless sequence. */
rtx tmp = gen_reg_rtx (Xmode);
emit_insn (gen_slt_3 (LTU, Xmode, Xmode, tmp, data1, data2));
do_neg2 (tmp, tmp);
do_ior3 (tmp, tmp, const1_rtx);
emit_insn (gen_movsi (result, gen_lowpart (SImode, tmp)));
}
/* strcmp-result calculation.
RESULT is the register where the return value of str(n)cmp will be stored.
The strings are stored in DATA1 and DATA2.
ORC1 contains orc.b(DATA1). */
static void
emit_strcmp_scalar_result_calculation (rtx result, rtx data1, rtx data2,
rtx orc1)
{
const unsigned HOST_WIDE_INT xlen = GET_MODE_SIZE (Xmode);
/* Convert non-equal bytes into non-NUL bytes. */
rtx diff = gen_reg_rtx (Xmode);
do_xor3 (diff, data1, data2);
rtx shift = gen_reg_rtx (Xmode);
if (TARGET_ZBB)
{
/* Convert non-equal or NUL-bytes into non-NUL bytes. */
rtx syndrome = gen_reg_rtx (Xmode);
do_orcb2 (diff, diff);
do_ior_not3 (syndrome, orc1, diff);
/* Count the number of equal bits from the beginning of the word. */
do_ctz2 (shift, syndrome);
}
else
{
/* Convert non-equal or NUL-bytes into non-NUL bytes. */
rtx syndrome = gen_reg_rtx (Xmode);
do_th_tstnbz2 (diff, diff);
do_one_cmpl2 (diff, diff);
do_ior3 (syndrome, orc1, diff);
/* Count the number of equal bits from the beginning of the word. */
do_th_rev2 (syndrome, syndrome);
do_clz2 (shift, syndrome);
}
do_bswap2 (data1, data1);
do_bswap2 (data2, data2);
/* The most-significant-non-zero bit of the syndrome marks either the
first bit that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
do_ashl3 (data1, data1, gen_lowpart (QImode, shift));
do_ashl3 (data2, data2, gen_lowpart (QImode, shift));
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
unsigned int shiftr = (xlen - 1) * BITS_PER_UNIT;
do_lshr3 (data1, data1, GEN_INT (shiftr));
do_lshr3 (data2, data2, GEN_INT (shiftr));
rtx tmp = gen_reg_rtx (Xmode);
do_sub3 (tmp, data1, data2);
emit_insn (gen_movsi (result, gen_lowpart (SImode, tmp)));
}
/* Expand str(n)cmp using Zbb/TheadBb instructions.
The result will be stored in RESULT.
The strings are referenced by SRC1 and SRC2.
The number of bytes to compare is defined by NBYTES.
The alignment is defined by ALIGNMENT.
If NCOMPARE is false then libc's strcmp() will be called if comparing
NBYTES of both strings did not find differences or NULL-bytes.
Return true if expansion was successful, or false otherwise. */
static bool
riscv_expand_strcmp_scalar (rtx result, rtx src1, rtx src2,
unsigned HOST_WIDE_INT nbytes,
unsigned HOST_WIDE_INT alignment,
bool ncompare)
{
const unsigned HOST_WIDE_INT xlen = GET_MODE_SIZE (Xmode);
gcc_assert (TARGET_ZBB || TARGET_XTHEADBB);
gcc_assert (nbytes > 0);
gcc_assert ((int)nbytes <= riscv_strcmp_inline_limit);
gcc_assert (ncompare || (nbytes & (xlen - 1)) == 0);
/* Limit to 12-bits (maximum load-offset). */
if (nbytes > IMM_REACH)
nbytes = IMM_REACH;
/* We don't support big endian. */
if (BYTES_BIG_ENDIAN)
return false;
/* We need xlen-aligned strings. */
if (alignment < xlen)
return false;
/* Overall structure of emitted code:
Load-and-compare:
- Load data1 and data2
- Set orc1 := orc.b (data1) (or th.tstnbz)
- Compare strings and either:
- Fall-through on equality
- Jump to nonul_end_label if data1 !or end_label
- Calculate result value and jump to final_label
// Fall-through
Call-to-libc or set result to 0 (depending on ncompare)
Jump to final_label
nonul_end_label: // words don't match, and no null byte in first word.
Calculate result value with the use of data1, data2 and orc1
Jump to final_label
end_label:
Calculate result value with the use of data1, data2 and orc1
Jump to final_label
final_label:
// Nothing. */
rtx data1 = gen_reg_rtx (Xmode);
rtx data2 = gen_reg_rtx (Xmode);
rtx orc1 = gen_reg_rtx (Xmode);
rtx nonul_end_label = gen_label_rtx ();
rtx end_label = gen_label_rtx ();
rtx final_label = gen_label_rtx ();
/* Generate a sequence of zbb instructions to compare out
to the length specified. */
emit_strcmp_scalar_load_and_compare (result, src1, src2, nbytes,
data1, data2, orc1,
end_label, nonul_end_label, final_label);
/* All compared and everything was equal. */
if (ncompare)
{
emit_insn (gen_rtx_SET (result, gen_rtx_CONST_INT (SImode, 0)));
emit_jump_insn (gen_jump (final_label));
emit_barrier (); /* No fall-through. */
}
else
{
emit_strcmp_scalar_call_to_libc (result, src1, src2, nbytes);
emit_jump_insn (gen_jump (final_label));
emit_barrier (); /* No fall-through. */
}
emit_label (nonul_end_label);
emit_strcmp_scalar_result_calculation_nonul (result, data1, data2);
emit_jump_insn (gen_jump (final_label));
emit_barrier (); /* No fall-through. */
emit_label (end_label);
emit_strcmp_scalar_result_calculation (result, data1, data2, orc1);
emit_jump_insn (gen_jump (final_label));
emit_barrier (); /* No fall-through. */
emit_label (final_label);
return true;
}
/* Expand a string compare operation.
The result will be stored in RESULT.
The strings are referenced by SRC1 and SRC2.
The argument BYTES_RTX either holds the number of characters to
compare, or is NULL_RTX. The argument ALIGN_RTX holds the alignment.
Return true if expansion was successful, or false otherwise. */
bool
riscv_expand_strcmp (rtx result, rtx src1, rtx src2,
rtx bytes_rtx, rtx align_rtx)
{
unsigned HOST_WIDE_INT compare_max;
unsigned HOST_WIDE_INT nbytes;
unsigned HOST_WIDE_INT alignment;
bool ncompare = bytes_rtx != NULL_RTX;
const unsigned HOST_WIDE_INT xlen = GET_MODE_SIZE (Xmode);
if (riscv_strcmp_inline_limit == 0)
return false;
/* Round down the comparision limit to a multiple of xlen. */
compare_max = riscv_strcmp_inline_limit & ~(xlen - 1);
/* Decide how many bytes to compare inline. */
if (bytes_rtx == NULL_RTX)
{
nbytes = compare_max;
}
else
{
/* If we have a length, it must be constant. */
if (!CONST_INT_P (bytes_rtx))
return false;
nbytes = UINTVAL (bytes_rtx);
/* We don't emit parts of a strncmp() call. */
if (nbytes > compare_max)
return false;
}
/* Guarantees:
- nbytes > 0
- nbytes <= riscv_strcmp_inline_limit
- nbytes is a multiple of xlen if !ncompare */
if (!CONST_INT_P (align_rtx))
return false;
alignment = UINTVAL (align_rtx);
if (TARGET_ZBB || TARGET_XTHEADBB)
{
return riscv_expand_strcmp_scalar (result, src1, src2, nbytes, alignment,
ncompare);
}
return false;
}
/* If the provided string is aligned, then read XLEN bytes
in a loop and use orc.b to find NUL-bytes. */
static bool
riscv_expand_strlen_scalar (rtx result, rtx src, rtx align)
{
rtx testval, addr, addr_plus_regsz, word, zeros;
rtx loop_label, cond;
gcc_assert (TARGET_ZBB || TARGET_XTHEADBB);
/* The alignment needs to be known and big enough. */
if (!CONST_INT_P (align) || UINTVAL (align) < GET_MODE_SIZE (Xmode))
return false;
testval = gen_reg_rtx (Xmode);
addr = copy_addr_to_reg (XEXP (src, 0));
addr_plus_regsz = gen_reg_rtx (Pmode);
word = gen_reg_rtx (Xmode);
zeros = gen_reg_rtx (Xmode);
if (TARGET_ZBB)
emit_insn (gen_rtx_SET (testval, constm1_rtx));
else
emit_insn (gen_rtx_SET (testval, const0_rtx));
do_add3 (addr_plus_regsz, addr, GEN_INT (UNITS_PER_WORD));
loop_label = gen_label_rtx ();
emit_label (loop_label);
/* Load a word and use orc.b/th.tstnbz to find a zero-byte. */
do_load_from_addr (Xmode, word, addr, src);
do_add3 (addr, addr, GEN_INT (UNITS_PER_WORD));
if (TARGET_ZBB)
do_orcb2 (word, word);
else
do_th_tstnbz2 (word, word);
cond = gen_rtx_EQ (VOIDmode, word, testval);
emit_unlikely_jump_insn (gen_cbranch4 (Xmode, cond, word, testval, loop_label));
/* Calculate the return value by counting zero-bits. */
if (TARGET_ZBB)
do_one_cmpl2 (word, word);
if (TARGET_BIG_ENDIAN)
do_clz2 (zeros, word);
else if (TARGET_ZBB)
do_ctz2 (zeros, word);
else
{
do_th_rev2 (word, word);
do_clz2 (zeros, word);
}
do_lshr3 (zeros, zeros, GEN_INT (exact_log2 (BITS_PER_UNIT)));
do_add3 (addr, addr, zeros);
do_sub3 (result, addr, addr_plus_regsz);
return true;
}
/* Expand a strlen operation and return true if successful.
Return false if we should let the compiler generate normal
code, probably a strlen call. */
bool
riscv_expand_strlen (rtx result, rtx src, rtx search_char, rtx align)
{
gcc_assert (search_char == const0_rtx);
if (TARGET_ZBB || TARGET_XTHEADBB)
return riscv_expand_strlen_scalar (result, src, align);
return false;
}
/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
Assume that the areas do not overlap. */
static void
riscv_block_move_straight (rtx dest, rtx src, unsigned HOST_WIDE_INT length)
{
unsigned HOST_WIDE_INT offset, delta;
unsigned HOST_WIDE_INT bits;
int i;
enum machine_mode mode;
rtx *regs;
bits = MAX (BITS_PER_UNIT,
MIN (BITS_PER_WORD, MIN (MEM_ALIGN (src), MEM_ALIGN (dest))));
mode = mode_for_size (bits, MODE_INT, 0).require ();
delta = bits / BITS_PER_UNIT;
/* Allocate a buffer for the temporary registers. */
regs = XALLOCAVEC (rtx, length / delta);
/* Load as many BITS-sized chunks as possible. Use a normal load if
the source has enough alignment, otherwise use left/right pairs. */
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
{
regs[i] = gen_reg_rtx (mode);
riscv_emit_move (regs[i], adjust_address (src, mode, offset));
}
/* Copy the chunks to the destination. */
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
riscv_emit_move (adjust_address (dest, mode, offset), regs[i]);
/* Mop up any left-over bytes. */
if (offset < length)
{
src = adjust_address (src, BLKmode, offset);
dest = adjust_address (dest, BLKmode, offset);
move_by_pieces (dest, src, length - offset,
MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), RETURN_BEGIN);
}
}
/* Helper function for doing a loop-based block operation on memory
reference MEM. Each iteration of the loop will operate on LENGTH
bytes of MEM.
Create a new base register for use within the loop and point it to
the start of MEM. Create a new memory reference that uses this
register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
static void
riscv_adjust_block_mem (rtx mem, unsigned HOST_WIDE_INT length,
rtx *loop_reg, rtx *loop_mem)
{
*loop_reg = copy_addr_to_reg (XEXP (mem, 0));
/* Although the new mem does not refer to a known location,
it does keep up to LENGTH bytes of alignment. */
*loop_mem = change_address (mem, BLKmode, *loop_reg);
set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
}
/* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
the memory regions do not overlap. */
static void
riscv_block_move_loop (rtx dest, rtx src, unsigned HOST_WIDE_INT length,
unsigned HOST_WIDE_INT bytes_per_iter)
{
rtx label, src_reg, dest_reg, final_src, test;
unsigned HOST_WIDE_INT leftover;
leftover = length % bytes_per_iter;
length -= leftover;
/* Create registers and memory references for use within the loop. */
riscv_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
riscv_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
/* Calculate the value that SRC_REG should have after the last iteration
of the loop. */
final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
0, 0, OPTAB_WIDEN);
/* Emit the start of the loop. */
label = gen_label_rtx ();
emit_label (label);
/* Emit the loop body. */
riscv_block_move_straight (dest, src, bytes_per_iter);
/* Move on to the next block. */
riscv_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
riscv_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
/* Emit the loop condition. */
test = gen_rtx_NE (VOIDmode, src_reg, final_src);
emit_jump_insn (gen_cbranch4 (Pmode, test, src_reg, final_src, label));
/* Mop up any left-over bytes. */
if (leftover)
riscv_block_move_straight (dest, src, leftover);
else
emit_insn(gen_nop ());
}
/* Expand a cpymemsi instruction, which copies LENGTH bytes from
memory reference SRC to memory reference DEST. */
bool
riscv_expand_block_move (rtx dest, rtx src, rtx length)
{
if (CONST_INT_P (length))
{
unsigned HOST_WIDE_INT hwi_length = UINTVAL (length);
unsigned HOST_WIDE_INT factor, align;
align = MIN (MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), BITS_PER_WORD);
factor = BITS_PER_WORD / align;
if (optimize_function_for_size_p (cfun)
&& hwi_length * factor * UNITS_PER_WORD > MOVE_RATIO (false))
return false;
if (hwi_length <= (RISCV_MAX_MOVE_BYTES_STRAIGHT / factor))
{
riscv_block_move_straight (dest, src, INTVAL (length));
return true;
}
else if (optimize && align >= BITS_PER_WORD)
{
unsigned min_iter_words
= RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD;
unsigned iter_words = min_iter_words;
unsigned HOST_WIDE_INT bytes = hwi_length;
unsigned HOST_WIDE_INT words = bytes / UNITS_PER_WORD;
/* Lengthen the loop body if it shortens the tail. */
for (unsigned i = min_iter_words; i < min_iter_words * 2 - 1; i++)
{
unsigned cur_cost = iter_words + words % iter_words;
unsigned new_cost = i + words % i;
if (new_cost <= cur_cost)
iter_words = i;
}
riscv_block_move_loop (dest, src, bytes, iter_words * UNITS_PER_WORD);
return true;
}
}
return false;
}
/* --- Vector expanders --- */
namespace riscv_vector {
/* Used by cpymemsi in riscv.md . */
bool
expand_block_move (rtx dst_in, rtx src_in, rtx length_in)
{
/*
memcpy:
mv a3, a0 # Copy destination
loop:
vsetvli t0, a2, e8, m8, ta, ma # Vectors of 8b
vle8.v v0, (a1) # Load bytes
add a1, a1, t0 # Bump pointer
sub a2, a2, t0 # Decrement count
vse8.v v0, (a3) # Store bytes
add a3, a3, t0 # Bump pointer
bnez a2, loop # Any more?
ret # Return
*/
if (!TARGET_VECTOR)
return false;
HOST_WIDE_INT potential_ew
= (MIN (MIN (MEM_ALIGN (src_in), MEM_ALIGN (dst_in)), BITS_PER_WORD)
/ BITS_PER_UNIT);
machine_mode vmode = VOIDmode;
bool need_loop = true;
bool size_p = optimize_function_for_size_p (cfun);
rtx src, dst;
rtx end = gen_reg_rtx (Pmode);
rtx vec;
rtx length_rtx = length_in;
if (CONST_INT_P (length_in))
{
HOST_WIDE_INT length = INTVAL (length_in);
/* By using LMUL=8, we can copy as many bytes in one go as there
are bits in a vector register. If the entire block thus fits,
we don't need a loop. */
if (length <= TARGET_MIN_VLEN)
{
need_loop = false;
/* If a single scalar load / store pair can do the job, leave it
to the scalar code to do that. */
/* ??? If fast unaligned access is supported, the scalar code could
use suitably sized scalars irrespective of alignemnt. If that
gets fixed, we have to adjust the test here. */
if (pow2p_hwi (length) && length <= potential_ew)
return false;
}
/* Find the vector mode to use. Using the largest possible element
size is likely to give smaller constants, and thus potentially
reducing code size. However, if we need a loop, we need to update
the pointers, and that is more complicated with a larger element
size, unless we use an immediate, which prevents us from dynamically
using the targets transfer size that the hart supports. And then,
unless we know the *exact* vector size of the hart, we'd need
multiple vsetvli / branch statements, so it's not even a size win.
If, in the future, we find an RISCV-V implementation that is slower
for small element widths, we might allow larger element widths for
loops too. */
if (need_loop)
potential_ew = 1;
for (; potential_ew; potential_ew >>= 1)
{
scalar_int_mode elem_mode;
unsigned HOST_WIDE_INT bits = potential_ew * BITS_PER_UNIT;
unsigned HOST_WIDE_INT per_iter;
HOST_WIDE_INT nunits;
if (need_loop)
per_iter = TARGET_MIN_VLEN;
else
per_iter = length;
nunits = per_iter / potential_ew;
/* Unless we get an implementation that's slow for small element
size / non-word-aligned accesses, we assume that the hardware
handles this well, and we don't want to complicate the code
with shifting word contents around or handling extra bytes at
the start and/or end. So we want the total transfer size and
alignment to fit with the element size. */
if (length % potential_ew != 0
|| !int_mode_for_size (bits, 0).exists (&elem_mode))
continue;
/* Find the mode to use for the copy inside the loop - or the
sole copy, if there is no loop. */
if (!need_loop)
{
/* Try if we have an exact mode for the copy. */
if (riscv_vector::get_vector_mode (elem_mode,
nunits).exists (&vmode))
break;
/* Since we don't have a mode that exactlty matches the transfer
size, we'll need to use pred_store, which is not available
for all vector modes, but only iE_RVV_M* modes, hence trying
to find a vector mode for a merely rounded-up size is
pointless.
Still, by choosing a lower LMUL factor that still allows
an entire transfer, we can reduce register pressure. */
for (unsigned lmul = 1; lmul <= 4; lmul <<= 1)
if (TARGET_MIN_VLEN * lmul <= nunits * BITS_PER_UNIT
/* Avoid loosing the option of using vsetivli . */
&& (nunits <= 31 * lmul || nunits > 31 * 8)
&& (riscv_vector::get_vector_mode
(elem_mode, exact_div (BYTES_PER_RISCV_VECTOR * lmul,
potential_ew)).exists (&vmode)))
break;
}
/* The RVVM8?I modes are notionally 8 * BYTES_PER_RISCV_VECTOR bytes
wide. BYTES_PER_RISCV_VECTOR can't be eavenly divided by
the sizes of larger element types; the LMUL factor of 8 can at
the moment be divided by the SEW, with SEW of up to 8 bytes,
but there are reserved encodings so there might be larger
SEW in the future. */
if (riscv_vector::get_vector_mode
(elem_mode, exact_div (BYTES_PER_RISCV_VECTOR * 8,
potential_ew)).exists (&vmode))
break;
/* We may get here if we tried an element size that's larger than
the hardware supports, but we should at least find a suitable
byte vector mode. */
gcc_assert (potential_ew > 1);
}
if (potential_ew > 1)
length_rtx = GEN_INT (length / potential_ew);
}
else
{
vmode = E_RVVM8QImode;
}
/* A memcpy libcall in the worst case takes 3 instructions to prepare the
arguments + 1 for the call. When RVV should take 7 instructions and
we're optimizing for size a libcall may be preferable. */
if (size_p && need_loop)
return false;
/* length_rtx holds the (remaining) length of the required copy.
cnt holds the length we copy with the current load/store pair. */
rtx cnt = length_rtx;
rtx label = NULL_RTX;
rtx dst_addr = copy_addr_to_reg (XEXP (dst_in, 0));
rtx src_addr = copy_addr_to_reg (XEXP (src_in, 0));
if (need_loop)
{
length_rtx = copy_to_mode_reg (Pmode, length_rtx);
cnt = gen_reg_rtx (Pmode);
label = gen_label_rtx ();
emit_label (label);
emit_insn (riscv_vector::gen_no_side_effects_vsetvl_rtx (vmode, cnt,
length_rtx));
}
vec = gen_reg_rtx (vmode);
src = change_address (src_in, vmode, src_addr);
dst = change_address (dst_in, vmode, dst_addr);
/* If we don't need a loop and have a suitable mode to describe the size,
just do a load / store pair and leave it up to the later lazy code
motion pass to insert the appropriate vsetvli. */
if (!need_loop && known_eq (GET_MODE_SIZE (vmode), INTVAL (length_in)))
{
emit_move_insn (vec, src);
emit_move_insn (dst, vec);
}
else
{
machine_mode mask_mode = riscv_vector::get_vector_mode
(BImode, GET_MODE_NUNITS (vmode)).require ();
rtx mask = CONSTM1_RTX (mask_mode);
if (!satisfies_constraint_K (cnt))
cnt= force_reg (Pmode, cnt);
rtx m_ops[] = {vec, mask, src};
emit_nonvlmax_insn (code_for_pred_mov (vmode),
riscv_vector::UNARY_OP_TAMA, m_ops, cnt);
emit_insn (gen_pred_store (vmode, dst, mask, vec, cnt,
get_avl_type_rtx (riscv_vector::NONVLMAX)));
}
if (need_loop)
{
emit_insn (gen_rtx_SET (src_addr, gen_rtx_PLUS (Pmode, src_addr, cnt)));
emit_insn (gen_rtx_SET (dst_addr, gen_rtx_PLUS (Pmode, dst_addr, cnt)));
emit_insn (gen_rtx_SET (length_rtx, gen_rtx_MINUS (Pmode, length_rtx, cnt)));
/* Emit the loop condition. */
rtx test = gen_rtx_NE (VOIDmode, end, const0_rtx);
emit_jump_insn (gen_cbranch4 (Pmode, test, length_rtx, const0_rtx, label));
emit_insn (gen_nop ());
}
return true;
}
/* Implement rawmemchr<mode> using vector instructions.
It can be assumed that the needle is in the haystack, otherwise the
behavior is undefined. */
void
expand_rawmemchr (machine_mode mode, rtx dst, rtx src, rtx pat)
{
/*
rawmemchr:
loop:
vsetvli a1, zero, e[8,16,32,64], m1, ta, ma
vle[8,16,32,64]ff.v v8, (a0) # Load.
csrr a1, vl # Get number of bytes read.
vmseq.vx v0, v8, pat # v0 = (v8 == {pat, pat, ...})
vfirst.m a2, v0 # Find first hit.
add a0, a0, a1 # Bump pointer.
bltz a2, loop # Not found?
sub a0, a0, a1 # Go back by a1.
shll a2, a2, [0,1,2,3] # Shift to get byte offset.
add a0, a0, a2 # Add the offset.
ret
*/
gcc_assert (TARGET_VECTOR);
unsigned int isize = GET_MODE_SIZE (mode).to_constant ();
int lmul = TARGET_MAX_LMUL;
poly_int64 nunits = exact_div (BYTES_PER_RISCV_VECTOR * lmul, isize);
machine_mode vmode;
if (!riscv_vector::get_vector_mode (GET_MODE_INNER (mode),
nunits).exists (&vmode))
gcc_unreachable ();
machine_mode mask_mode = riscv_vector::get_mask_mode (vmode);
rtx cnt = gen_reg_rtx (Pmode);
rtx end = gen_reg_rtx (Pmode);
rtx vec = gen_reg_rtx (vmode);
rtx mask = gen_reg_rtx (mask_mode);
/* After finding the first vector element matching the needle, we
need to multiply by the vector element width (SEW) in order to
return a pointer to the matching byte. */
unsigned int shift = exact_log2 (GET_MODE_SIZE (mode).to_constant ());
rtx src_addr = copy_addr_to_reg (XEXP (src, 0));
rtx loop = gen_label_rtx ();
emit_label (loop);
rtx vsrc = change_address (src, vmode, src_addr);
/* Emit a first-fault load. */
rtx vlops[] = {vec, vsrc};
emit_vlmax_insn (code_for_pred_fault_load (vmode),
riscv_vector::UNARY_OP, vlops);
/* Read how far we read. */
if (Pmode == SImode)
emit_insn (gen_read_vlsi (cnt));
else
emit_insn (gen_read_vldi_zero_extend (cnt));
/* Compare needle with haystack and store in a mask. */
rtx eq = gen_rtx_EQ (mask_mode, gen_const_vec_duplicate (vmode, pat), vec);
rtx vmsops[] = {mask, eq, vec, pat};
emit_nonvlmax_insn (code_for_pred_eqne_scalar (vmode),
riscv_vector::COMPARE_OP, vmsops, cnt);
/* Find the first bit in the mask. */
rtx vfops[] = {end, mask};
emit_nonvlmax_insn (code_for_pred_ffs (mask_mode, Pmode),
riscv_vector::CPOP_OP, vfops, cnt);
/* Bump the pointer. */
emit_insn (gen_rtx_SET (src_addr, gen_rtx_PLUS (Pmode, src_addr, cnt)));
/* Emit the loop condition. */
rtx test = gen_rtx_LT (VOIDmode, end, const0_rtx);
emit_jump_insn (gen_cbranch4 (Pmode, test, end, const0_rtx, loop));
/* We overran by CNT, subtract it. */
emit_insn (gen_rtx_SET (src_addr, gen_rtx_MINUS (Pmode, src_addr, cnt)));
/* We found something at SRC + END * [1,2,4,8]. */
emit_insn (gen_rtx_SET (end, gen_rtx_ASHIFT (Pmode, end, GEN_INT (shift))));
emit_insn (gen_rtx_SET (dst, gen_rtx_PLUS (Pmode, src_addr, end)));
}
}
|