1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
|
/* Definitions of target machine for GNU compiler, for the HP Spectrum.
Copyright (C) 1992, 1993 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@mcc.com)
and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
Software Science at the University of Utah.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
enum cmp_type /* comparison type */
{
CMP_SI, /* compare integers */
CMP_SF, /* compare single precision floats */
CMP_DF, /* compare double precision floats */
CMP_MAX /* max comparison type */
};
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (hppa)");
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* compile code for HP-PA 1.1 ("Snake") */
#define TARGET_SNAKE (target_flags & 1)
/* Disable all FP registers (they all become fixed). This may be necessary
for compiling kernels which perform lazy context switching of FP regs.
Note if you use this option and try to perform floating point operations
the compiler will abort! */
#define TARGET_DISABLE_FPREGS (target_flags & 2)
/* Allow unconditional jumps in the delay slots of call instructions. */
#define TARGET_JUMP_IN_DELAY (target_flags & 8)
/* Force all function calls to indirect addressing via a register. This
avoids lossage when the function is very far away from the current PC.
??? What about simple jumps, they can suffer from the same problem.
Would require significant surgery in pa.md. */
#define TARGET_LONG_CALLS (target_flags & 16)
/* Disable indexed addressing modes. */
#define TARGET_DISABLE_INDEXING (target_flags & 32)
/* Emit directives only understood by GAS. This allows parameter
relocations to work for static functions. There is no way
to make them work the HP assembler at this time.
Also forces a colon to be tacked onto the end of local and
global labes. */
#define TARGET_GAS (target_flags & 128)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{{"snake", 1}, \
{"nosnake", -1}, \
{"pa-risc-1-0", -1}, \
{"pa-risc-1-1", 1}, \
{"disable-fpregs", 2}, \
{"no-disable-fpregs", 2}, \
{"jump-in-delay", 8}, \
{"no-jump-in-delay", -8}, \
{"long-calls", 16}, \
{"no-long-calls", -16}, \
{"disable-indexing", 32}, \
{"no-disable-indexing", -32},\
{"gas", 128}, \
{"no-gas", -128}, \
{ "", TARGET_DEFAULT}}
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 128 /* TARGET_GAS + TARGET_JUMP_IN_DELAY */
#endif
#define DBX_DEBUGGING_INFO
#define DEFAULT_GDB_EXTENSIONS 1
#if (TARGET_DEFAULT & 1) == 0
#define CPP_SPEC "%{msnake:-D__hp9000s700 -D_PA_RISC1_1}\
%{mpa-risc-1-1:-D__hp9000s700 -D_PA_RISC1_1}"
#else
#define CPP_SPEC "%{!mpa-risc-1-0:%{!mnosnake:-D__hp9000s700 -D_PA_RISC1_1}}"
#endif
/* Defines for a K&R CC */
#define CC1_SPEC "%{pg:} %{p:}"
#define LINK_SPEC "-u main"
/* Allow $ in identifiers. */
#define DOLLARS_IN_IDENTIFIERS 2
/* Make gcc agree with <machine/ansi.h> */
#define SIZE_TYPE "unsigned int"
#define PTRDIFF_TYPE "int"
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
On the PA, it is used to explicitly warn the user that -fpic and -fPIC
do not work. */
#define OVERRIDE_OPTIONS \
{ \
if (flag_pic != 0) \
warning ("-fpic and -fPIC are not supported on the PA."); \
}
/* Omit frame pointer at high optimization levels. */
#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
{ \
if (OPTIMIZE >= 2) \
flag_omit_frame_pointer = 1; \
}
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -D_HPUX_SOURCE -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem(unix) -Asystem(bsd) -Acpu(hppa) -Amachine(hppa)"
/* target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on the HP-PA. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is lowest
numbered. */
/* For the HP-PA we can decide arbitrarily
since there are no machine instructions for them. */
#define WORDS_BIG_ENDIAN 1
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Largest alignment required for any stack parameter, in bits.
Don't define this if it is equal to PARM_BOUNDARY */
#define MAX_PARM_BOUNDARY 64
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 512
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 64
/* Get around hp-ux assembler bug, and make strcpy of constants fast. */
#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Generate calls to memcpy, memcmp and memset. */
#define TARGET_MEM_FUNCTIONS
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
HP-PA 1.0 has 32 fullword registers and 16 floating point
registers. The floating point registers hold either word or double
word values.
16 additional registers are reserved.
HP-PA 1.1 has 32 fullword registers and 32 floating point
registers. However, the floating point registers behave
differently: the left and right halves of registers are addressable
as 32 bit registers. So, we will set things up like the 68k which
has different fp units: define separate register sets for the 1.0
and 1.1 fp units. */
#define FIRST_PSEUDO_REGISTER 101 /* 32 + 12 1.0 regs + 56 1.1 regs + */
/* 1 shift reg */
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the HP-PA, these are:
Reg 0 = 0 (hardware). However, 0 is used for condition code,
so is not fixed.
Reg 1 = ADDIL target/Temporary (hardware).
Reg 2 = Return Pointer
Reg 3 = Preserved Register (Gnu). Frame Pointer (> 8k frames HP.)
Reg 4 = Frame Pointer (Gnu)
Reg 5-18 = Preserved Registers
Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
Reg 20-22 = Temporary Registers
Reg 23-26 = Temporary/Parameter Registers
Reg 27 = Global Data Pointer (hp)
Reg 28 = Temporary/???/Return Value register
Reg 29 = Temporary/Static Chain/Return Value register
Reg 30 = stack pointer
Reg 31 = Temporary/Millicode Return Pointer (hp)
Freg 0-3 = Status Registers -- Not known to the compiler.
Freg 4-7 = Arguments/Return Value
Freg 8-11 = Temporary Registers
Freg 12-15 = Preserved Registers
Freg 16-31 = Reserved
On the Snake, fp regs are
Freg 0-3 = Status Registers -- Not known to the compiler.
Freg 4L-7R = Arguments/Return Value
Freg 8L-11R = Temporary Registers
Freg 12L-21R = Preserved Registers
Freg 22L-31R = Temporary Registers
*/
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 1, 0, \
/* 1.0 fp registers */ \
0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* 1.1 fp registers */ \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
/* 1.0 fp registers */ \
1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
/* 1.1 fp registers */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1}
/* Make sure everything's fine if we *don't* have a given processor.
This assumes that putting a register in fixed_regs will keep the
compiler's mitts completely off it. We don't bother to zero it out
of register classes. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
int i; \
HARD_REG_SET x; \
if (!TARGET_SNAKE) \
{ \
COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
else if (TARGET_DISABLE_FPREGS) \
{ \
COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);\
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
else \
{ \
COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
if (flag_pic) \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
}
/* Allocated the call used registers first. This should minimize
the number of registers that need to be saved (as call used
registers will generally not be allocated across a call).
Experimentation has shown slightly better results by allocating
FP registers first. */
#define REG_ALLOC_ORDER \
/* 1.0 caller-saved fp regs. */ \
{36, 37, 38, 39, 32, 33, 34, 35, \
/* 1.1 caller-saved fp regs. */ \
52, 53, 54, 55, 56, 57, 58, 59, \
80, 81, 82, 83, 84, 85, 86, 87, \
88, 89, 90, 91, 92, 93, 94, 95, \
96, 97, 98, 99, \
44, 45, 46, 47, 48, 49, 50, 51, \
/* caller-saved general regs. */ \
19, 20, 21, 22, 23, 24, 25, 26, \
27, 28, 29, 31, 2, \
/* 1.0 callee-saved fp regs. */ \
40, 41, 42, 43, \
/* 1.1 callee-saved fp regs. */ \
60, 61, 62, 63, 64, 65, 66, 67, \
68, 69, 70, 71, 72, 73, 74, 75, \
76, 77, 78, 79, \
/* callee-saved general regs. */ \
3, 4, 5, 6, 7, 8, 9, 10, \
11, 12, 13, 14, 15, 16, 17, 18, \
/* special registers. */ \
1, 30, 0, 100}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the HP-PA, ordinary registers hold 32 bits worth;
The floating point registers are 64 bits wide. Snake fp regs are 32
bits wide */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(((REGNO) < 32 || (REGNO) >= 44) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the HP-PA, the cpu registers can hold any mode. We
force this to be an even register is it cannot hold the full mode. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
: (REGNO) < 32 ? ((GET_MODE_SIZE (MODE) <= 4) ? 1 : ((REGNO) & 1) == 0)\
: (REGNO) < 44 ? (GET_MODE_SIZE (MODE) <= 4 \
|| (GET_MODE_SIZE (MODE) > 4 \
&& GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
: (GET_MODE_SIZE (MODE) > 4 ? ((REGNO) & 1) == 0 \
: 1))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 30
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 4
/* Value should be nonzero if functions must have frame pointers. */
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
/* C statement to store the difference between the frame pointer
and the stack pointer values immediately after the function prologue.
Note, we always pretend that this is a leaf function because if
it's not, there's no point in trying to eliminate the
frame pointer. If it is a leaf function, we guessed right! */
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 4
/* Register in which static-chain is passed to a function. */
/* ??? */
#define STATIC_CHAIN_REGNUM 29
/* Register which holds offset table for position-independent
data references. */
#define PIC_OFFSET_TABLE_REGNUM 19
#define INITIALIZE_PIC initialize_pic ()
#define FINALIZE_PIC finalize_pic ()
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 28
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
1.1 fp regs, and the high 1.1 fp regs, to which the operands of
fmpyadd and fmpysub are restricted.
FP_OR_SNAKE_FP_REGS is for reload_{in,out}di only and isn't used
anywhere else. */
enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FP_REGS, GENERAL_OR_FP_REGS,
HI_SNAKE_FP_REGS, SNAKE_FP_REGS, GENERAL_OR_SNAKE_FP_REGS,
FP_OR_SNAKE_FP_REGS, NON_SHIFT_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "R1_REGS", "GENERAL_REGS", "FP_REGS", "GENERAL_OR_FP_REGS",\
"HI_SNAKE_FP_REGS", "SNAKE_FP_REGS", "GENERAL_OR_SNAKE_FP_REGS",\
"FP_OR_SNAKE_FP_REGS", "NON_SHIFT_REGS", "SHIFT_REGS", "ALL_REGS"}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. Register 0, the "condition code" register,
is in no class. */
#define REG_CLASS_CONTENTS \
{ {0, 0, 0, 0}, /* NO_REGS */ \
{0x2, 0, 0, 0}, /* R1_REGS */ \
{-2, 0, 0, 0}, /* GENERAL_REGS */ \
{0, 0xfff, 0, 0}, /* FP_REGS */ \
{-2, 0xfff, 0, 0}, /* GENERAL_OR_FP_REGS */\
{0, 0, 0xfffffff0, 0xf}, /* HI_SNAKE_FP_REGS */ \
{0, 0xfffff000, ~0, 0xf}, /* SNAKE_FP_REGS */ \
{-2, 0xfffff000, ~0, 0xf}, /* GENERAL_OR_SNAKE_FP_REGS */\
{0, ~0, ~0, 0xf}, /* FP_OR_SNAKE_FP_REGS */\
{-2, ~0, ~0, ~0x10}, /* NON_SHIFT_REGS */ \
{0, 0, 0, 0x10}, /* SHIFT_REGS */ \
{-2, ~0, ~0, 0x1f}} /* ALL_REGS */
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == 0 ? NO_REGS \
: (REGNO) == 1 ? R1_REGS \
: (REGNO) < 32 ? GENERAL_REGS \
: (REGNO) < 44 ? FP_REGS \
: (REGNO) < 68 ? SNAKE_FP_REGS \
: (REGNO) < 100 ? HI_SNAKE_FP_REGS \
: SHIFT_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS
#define FP_REG_CLASS_P(CLASS) \
(CLASS == FP_REGS || CLASS == SNAKE_FP_REGS || CLASS == HI_SNAKE_FP_REGS)
/* Get reg_class from a letter such as appears in the machine description.
Note 'Z' is not the same as 'r' since SHIFT_REGS is not part of
GENERAL_REGS. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'f' ? (!TARGET_SNAKE ? FP_REGS : NO_REGS) : \
((C) == 'x' ? (TARGET_SNAKE ? SNAKE_FP_REGS : NO_REGS) : \
((C) == 'y' ? (TARGET_SNAKE ? HI_SNAKE_FP_REGS : NO_REGS) : \
((C) == 'q' ? SHIFT_REGS : \
((C) == 'a' ? R1_REGS : \
((C) == 'z' ? FP_OR_SNAKE_FP_REGS : \
((C) == 'Z' ? ALL_REGS : NO_REGS)))))))
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
`I' is used for the 11 bit constants.
`J' is used for the 14 bit constants.
`K' is used for values that can be moved with a zdepi insn.
`L' is used for the 5 bit constants.
`M' is used for 0.
`N' is used for values with the least significant 11 bits equal to zero.
`O' is used for numbers n such that n+1 is a power of 2.
*/
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? VAL_11_BITS_P (VALUE) \
: (C) == 'J' ? VAL_14_BITS_P (VALUE) \
: (C) == 'K' ? zdepi_cint_p (VALUE) \
: (C) == 'L' ? VAL_5_BITS_P (VALUE) \
: (C) == 'M' ? (VALUE) == 0 \
: (C) == 'N' ? ((VALUE) & 0x7ff) == 0 \
: (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
: (C) == 'P' ? and_mask_p (VALUE) \
: 0)
/* Similar, but for floating or large integer constants, and defining letters
G and H. Here VALUE is the CONST_DOUBLE rtx itself.
For PA, `G' is the floating-point constant zero. `H' is undefined. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
: 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class (CLASS, MODE, IN)
/* On the PA it is not possible to directly move data between
GENERAL_REGS and FP_REGS. */
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
((FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2)) \
|| (! FP_REG_CLASS_P (CLASS1) && FP_REG_CLASS_P (CLASS2)))
/* Return the stack location to use for secondary memory needed reloads. */
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (-16)))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FP_REGS ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
/* #define STACK_GROWS_DOWNWARD */
/* Believe it or not. */
#define ARGS_GROW_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 8
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the HP-PA, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) */
/* Offset of first parameter from the argument pointer register value.
This value will be negated because the arguments grow down.
Also note that on STACK_GROWS_UPWARD machines (such as this one)
this is the distance from the frame pointer to the end of the first
argument, not it's beginning. To get the real offset of the first
argument, the size of the argument must be added.
??? Have to check on this.*/
#define FIRST_PARM_OFFSET(FNDECL) -32
/* Absolute value of offset from top-of-stack address to location to store the
function parameter if it can't go in a register.
Addresses for following parameters are computed relative to this one. */
#define FIRST_PARM_CALLER_OFFSET(FNDECL) -32
/* When a parameter is passed in a register, stack space is still
allocated for it. */
#define REG_PARM_STACK_SPACE(DECL) 16
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE
/* Keep the stack pointer constant throughout the function.
This is both an optimization and a necessity: longjmp
doesn't behave itself when the stack pointer moves within
the function! */
#define ACCUMULATE_OUTGOING_ARGS
/* The weird HPPA calling conventions require a minimum of 48 bytes on
the stack: 16 bytes for register saves, and 32 bytes for magic.
This is the difference between the logical top of stack and the
actual sp. */
#define STACK_POINTER_OFFSET -32
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)
/* Value is 1 if returning from a function call automatically
pops the arguments described by the number-of-args field in the call.
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name. */
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
/* On the HP-PA the value is found in register(s) 28(-29), unless
the mode is SF or DF. Then the value is returned in fr4 (32, ) */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), ((TYPE_MODE (VALTYPE) == SFmode ||\
TYPE_MODE (VALTYPE) == DFmode) ? \
(TARGET_SNAKE ? 44 : 32) : 28))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, (MODE == SFmode || MODE == DFmode ?\
(TARGET_SNAKE ? 44 : 32) : 28))
/* 1 if N is a possible register number for a function value
as seen by the caller. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 28 || (N) == (TARGET_SNAKE ? 44 : 32))
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) \
(((N) >= 23 && (N) <= 26) \
|| ((N) >= 32 && (N) <= 35 && ! TARGET_SNAKE) \
|| ((N) >= 44 && (N) <= 51 && TARGET_SNAKE))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the HP-PA, this is a single integer, which is a number of words
of arguments scanned so far (including the invisible argument,
if any, which holds the structure-value-address).
Thus 4 or more means all following args should go on the stack. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
*/
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
/* Figure out the size in words of the function argument. */
#define FUNCTION_ARG_SIZE(MODE, TYPE) \
((((MODE) != BLKmode ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))+3)/4)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(((((CUM) & 01) && (TYPE) != 0 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1)\
&& (CUM)++), (CUM) += FUNCTION_ARG_SIZE(MODE, TYPE))
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the HP-PA the first four words of args are normally in registers
and the rest are pushed. But any arg that won't entirely fit in regs
is pushed.
Arguments passed in registers are either 1 or 2 words long.
The caller must make a distinction between calls to explicitly named
functions and calls through pointers to functions -- the conventions
are different! Calls through pointers to functions only use general
registers for the first four argument words. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(4 >= ((CUM) + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \
? gen_rtx (REG, (MODE), \
(FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
? ((! current_call_is_indirect \
&& (MODE) == DFmode) \
? ((CUM) ? (TARGET_SNAKE ? 50 : 35) \
: (TARGET_SNAKE ? 46 : 33)) \
: ((CUM) ? 23 : 25)) \
: ((! current_call_is_indirect \
&& (MODE) == SFmode) \
? (TARGET_SNAKE ? 44 + 2 * (CUM) : 32 + (CUM)) \
: (27 - (CUM) - FUNCTION_ARG_SIZE ((MODE), (TYPE))))))\
: 0)
/* Define where a function finds its arguments.
This would be different from FUNCTION_ARG if we had register windows. */
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* If defined, a C expression that gives the alignment boundary, in
bits, of an argument with the specified mode and type. If it is
not defined, `PARM_BOUNDARY' is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) != 0) \
? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: TYPE_ALIGN(TYPE)) \
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: GET_MODE_ALIGNMENT(MODE)))
/* Arguments larger than eight bytes are passed by invisible reference */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1;
extern enum cmp_type hppa_branch_type;
/* Output the label for a function definition. */
#ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
#define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
do { fprintf (FILE, ",ARGW%d=FR", (ARG0)); \
fprintf (FILE, ",ARGW%d=FU", (ARG1));} while (0)
#else
#define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
do { fprintf (FILE, ",ARGW%d=FU", (ARG0)); \
fprintf (FILE, ",ARGW%d=FR", (ARG1));} while (0)
#endif
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
do { tree fntype = TREE_TYPE (TREE_TYPE (DECL)); \
tree tree_type = TREE_TYPE (DECL); \
tree parm; \
int i; \
if (TREE_PUBLIC (DECL) || TARGET_GAS) \
{ extern int current_function_varargs; \
if (TREE_PUBLIC (DECL)) \
{ \
fputs ("\t.EXPORT ", FILE); \
assemble_name (FILE, NAME); \
fputs (",ENTRY,PRIV_LEV=3", FILE); \
} \
else \
{ \
fputs ("\t.PARAM ", FILE); \
assemble_name (FILE, NAME); \
} \
for (parm = DECL_ARGUMENTS (DECL), i = 0; parm && i < 4; \
parm = TREE_CHAIN (parm)) \
{ \
if (TYPE_MODE (DECL_ARG_TYPE (parm)) == SFmode) \
fprintf (FILE, ",ARGW%d=FR", i++); \
else if (TYPE_MODE (DECL_ARG_TYPE (parm)) == DFmode) \
{ \
if (i <= 2) \
{ \
if (i == 1) i++; \
ASM_DOUBLE_ARG_DESCRIPTORS (FILE, i++, i++); \
} \
else \
break; \
} \
else \
{ \
int arg_size = \
FUNCTION_ARG_SIZE (TYPE_MODE (DECL_ARG_TYPE (parm)),\
DECL_ARG_TYPE (parm)); \
if (arg_size == 2 && i <= 2) \
{ \
if (i == 1) i++; \
fprintf (FILE, ",ARGW%d=GR", i++); \
fprintf (FILE, ",ARGW%d=GR", i++); \
} \
else if (arg_size == 1) \
fprintf (FILE, ",ARGW%d=GR", i++); \
else \
i += arg_size; \
} \
} \
/* anonymous args */ \
if ((TYPE_ARG_TYPES (tree_type) != 0 \
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (tree_type)))\
!= void_type_node)) \
|| current_function_varargs) \
{ \
for (; i < 4; i++) \
fprintf (FILE, ",ARGW%d=GR", i); \
} \
if (TYPE_MODE (fntype) == DFmode) \
fprintf (FILE, ",RTNVAL=FR"); \
else if (TYPE_MODE (fntype) == SFmode) \
fprintf (FILE, ",RTNVAL=FU"); \
else if (fntype != void_type_node) \
fprintf (FILE, ",RTNVAL=GR"); \
fputs ("\n", FILE); \
} \
ASM_OUTPUT_LABEL (FILE, NAME);} while (0)
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
/* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
of memory. If any fpu reg is used in the function, we allocate
such a block here, at the bottom of the frame, just in case it's needed.
If this function is a leaf procedure, then we may choose not
to do a "save" insn. The decision about whether or not
to do this is made in regclass.c. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
output_function_prologue (FILE, SIZE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry.
Because HPUX _mcount is so different, we actually emit the
profiling code in function_prologue. This just stores LABELNO for
that. */
#define PROFILE_BEFORE_PROLOGUE
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);}
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
extern int may_call_alloca;
extern int current_function_pretend_args_size;
#define EXIT_IGNORE_STACK \
(get_frame_size () != 0 \
|| current_function_calls_alloca || current_function_outgoing_args_size)
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
/* This declaration is needed due to traditional/ANSI
incompatibilities which cannot be #ifdefed away
because they occur inside of macros. Sigh. */
extern union tree_node *current_function_decl;
#define FUNCTION_EPILOGUE(FILE, SIZE) \
output_function_epilogue (FILE, SIZE)
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts.\
The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
and then branches to the specified routine.
This code template is copied from text segment to stack location
and then patched with INITIALIZE_TRAMPOLINE to contain
valid values, and then entered as a subroutine.
It is best to keep this as small as possible to avoid having to
flush multiple lines in the cache. */
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
fprintf (FILE, "\tldw 12(0,%%r22),%%r21\n"); \
fprintf (FILE, "\tbe 0(4,%%r21)\n"); \
fprintf (FILE, "\tldw 16(0,%%r22),%%r29\n"); \
fprintf (FILE, "\t.word 0\n"); \
fprintf (FILE, "\t.word 0\n"); \
}
/* Length in units of the trampoline for entering a nested function.
Flush the cache entries corresponding to the first and last addresses
of the trampoline. This is necessary as the trampoline may cross two
cache lines.
If the trampoline ever grows to > 32 bytes, then it will become
necessary to hack on the cacheflush pattern in pa.md. */
#define TRAMPOLINE_SIZE (5 * 4)
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function.
Move the function address to the trampoline template at offset 12.
Move the static chain value to trampoline template at offset 16. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
rtx start_addr, end_addr, mem; \
\
start_addr = memory_address (Pmode, plus_constant ((TRAMP), 12));\
emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (FNADDR)); \
start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16));\
emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (CXT)); \
/* fdc and fic only use registers for the address to flush, \
they do not accept integer displacements. */ \
start_addr = force_reg (SImode, (TRAMP)); \
end_addr = force_reg (SImode, plus_constant ((TRAMP), 8)); \
emit_insn (gen_cacheflush (start_addr, end_addr)); \
}
/* Emit code for a call to builtin_saveregs. We must emit USE insns which
reference the 4 integer arg registers and 4 fp arg registers.
Ordinarily they are not call used registers, but they are for
_builtin_saveregs, so we must make this explicit. */
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) (rtx)hppa_builtin_saveregs (ARGLIST)
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT
#define HAVE_POST_DECREMENT
#define HAVE_PRE_DECREMENT
#define HAVE_PRE_INCREMENT
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
#define REGNO_OK_FOR_FP_P(REGNO) \
(((REGNO) >= 32 && (REGNO) <= 99)\
|| (reg_renumber[REGNO] >= 32 && reg_renumber[REGNO] <= 99))
/* Now macros that check whether X is a register and also,
strictly, whether it is in a specified class.
These macros are specific to the the HP-PA, and may be used only
in code for printing assembler insns and in conditions for
define_optimization. */
/* 1 if X is an fp register. */
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address except
for symbolic addresses. We get better CSE by rejecting them
here and allowing hppa_legitimize_address to break them up. We
use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
#define CONSTANT_ADDRESS_P(X) \
((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == HIGH) \
&& (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
/* Include all constant integers and constant doubles, but not
floating-point, except for floating-point zero.
Also reject function labels as reload can not handle them correctly
right now. (Fix this for 2.5). */
#define LEGITIMATE_CONSTANT_P(X) \
((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
|| (X) == CONST0_RTX (GET_MODE (X))) \
&& ! function_label_operand (X, VOIDmode))
/* Subroutine for EXTRA_CONSTRAINT.
Return 1 iff OP is a pseudo which did not get a hard register and
we are running the reload pass. */
#define IS_RELOADING_PSEUDO_P(OP) \
((reload_in_progress \
&& GET_CODE (OP) == REG \
&& REGNO (OP) >= FIRST_PSEUDO_REGISTER \
&& reg_renumber [REGNO (OP)] < 0))
/* Optional extra constraints for this machine. Borrowed from sparc.h.
For the HPPA, `Q' means that this is a memory operand but not a
symbolic memory operand. Note that an unassigned pseudo register
is such a memory operand. Needed because reload will generate
these things in insns and then not re-recognize the insns, causing
constrain_operands to fail.
Also note `Q' accepts any memory operand during the reload pass.
This includes out-of-range displacements in reg+d addressing.
This makes for better code. (??? For 2.5 address this issue).
`R' is unused.
`S' is unused.
`T' is for fp loads and stores. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? \
(IS_RELOADING_PSEUDO_P (OP) \
|| (GET_CODE (OP) == MEM \
&& reload_in_progress) \
|| (GET_CODE (OP) == MEM \
&& memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
&& ! symbolic_memory_operand (OP, VOIDmode))) \
: ((C) == 'T' ? \
(GET_CODE (OP) == MEM \
/* Using DFmode forces only short displacements \
to be recognized as valid in reg+d addresses. */\
&& memory_address_p (DFmode, XEXP (OP, 0))) : 0))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On the HP-PA, the actual legitimate addresses must be
REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
But we can treat a SYMBOL_REF as legitimate if it is part of this
function's constant-pool, because such addresses can actually
be output as REG+SMALLINT. */
#define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20)
#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
#define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20)
#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
#define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800)
#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
#define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000)
#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|| ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
|| GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
&& REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
goto ADDR; \
else if (GET_CODE (X) == PLUS) \
{ \
rtx base = 0, index; \
if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
{ \
if (GET_CODE (XEXP (X, 1)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
goto ADDR; \
else if (flag_pic == 1 \
&& GET_CODE (XEXP (X, 1)) != REG \
&& GET_CODE (XEXP (X, 1)) != LO_SUM \
&& GET_CODE (XEXP (X, 1)) != MEM) \
goto ADDR; \
} \
else if (REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
base = XEXP (X, 0), index = XEXP (X, 1); \
else if (REG_P (XEXP (X, 1)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
base = XEXP (X, 1), index = XEXP (X, 0); \
if (base != 0) \
if (GET_CODE (index) == CONST_INT \
&& ((INT_14_BITS (index) && (MODE) != SFmode && (MODE) != DFmode) \
|| INT_5_BITS (index))) \
goto ADDR; \
} \
else if (GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_P (XEXP (X, 1)) \
&& (MODE) != SFmode \
&& (MODE) != DFmode) \
goto ADDR; \
else if (GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == SUBREG \
&& GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
&& REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
&& CONSTANT_P (XEXP (X, 1)) \
&& (MODE) != SFmode \
&& (MODE) != DFmode) \
goto ADDR; \
else if (GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST_INT \
&& INT_14_BITS (X))) \
goto ADDR; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
extern struct rtx_def *hppa_legitimize_address ();
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ rtx orig_x = (X); \
(X) = hppa_legitimize_address (X, OLDX, MODE); \
if ((X) != orig_x && memory_address_p (MODE, X)) \
goto WIN; }
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
if (GET_CODE (ADDR) == PRE_DEC \
|| GET_CODE (ADDR) == POST_DEC \
|| GET_CODE (ADDR) == PRE_INC \
|| GET_CODE (ADDR) == POST_INC) \
goto LABEL
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
The macro definition, if any, is executed immediately after the
rtl for DECL or other node is created.
The value of the rtl will be a `mem' whose address is a
`symbol_ref'.
The usual thing for this macro to do is to a flag in the
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
name string in the `symbol_ref' (if one bit is not enough
information).
On the HP-PA we use this to indicate if a symbol is in text or
data space. Also, function labels need special treatment. */
#define TEXT_SPACE_P(DECL)\
(TREE_CODE (DECL) == FUNCTION_DECL \
|| (TREE_CODE (DECL) == VAR_DECL \
&& TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
&& !flag_pic) \
|| (*tree_code_type[(int) TREE_CODE (DECL)] == 'c' \
&& !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
#define FUNCTION_NAME_P(NAME) \
(*(NAME) == '@' || (*(NAME) == '*' && *((NAME) + 1) == '@'))
#define ENCODE_SECTION_INFO(DECL)\
do \
{ if (TEXT_SPACE_P (DECL)) \
{ rtx _rtl; \
if (TREE_CODE (DECL) == FUNCTION_DECL \
|| TREE_CODE (DECL) == VAR_DECL) \
_rtl = DECL_RTL (DECL); \
else \
_rtl = TREE_CST_RTL (DECL); \
SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \
if (TREE_CODE (DECL) == FUNCTION_DECL) \
hppa_encode_label (XEXP (DECL_RTL (DECL), 0));\
} \
} \
while (0)
/* Store the user-specified part of SYMBOL_NAME in VAR.
This is sort of inverse to ENCODE_SECTION_INFO. */
#define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
(VAR) = ((SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' ? \
1 + (SYMBOL_NAME)[1] == '@'\
: (SYMBOL_NAME)[0] == '@'))
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE DImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
#define CASE_DROPS_THROUGH
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 8
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 1
/* Do not break .stabs pseudos into continuations. */
#define DBX_CONTIN_LENGTH 0
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* When a prototype says `char' or `short', really pass an `int'. */
#define PROMOTE_PROTOTYPES
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* Add any extra modes needed to represent the condition code.
HPPA floating comparisons produce condition codes. */
#define EXTRA_CC_MODES CCFPmode
/* Define the names for the modes specified above. */
#define EXTRA_CC_NAMES "CCFP"
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point, CCFPmode
should be used. CC_NOOVmode should be used when the first operand is a
PLUS, MINUS, or NEG. CCmode should be used when no special processing is
needed. */
#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE SImode
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
#define NO_FUNCTION_CSE
/* Define this if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED
/* Use atexit for static constructors/destructors, instead of defining
our own exit function. */
#define HAVE_ATEXIT
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
if (INTVAL (RTX) == 0) return 0; \
if (INT_14_BITS (RTX)) return 1; \
case HIGH: \
return 2; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 4; \
case CONST_DOUBLE: \
if (RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)\
&& OUTER_CODE != SET) \
return 0; \
else \
return 8;
#define ADDRESS_COST(RTX) \
(GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
/* Compute extra cost of moving data between one register class
and another.
Make moves from SAR so expensive they should never happen.
Copies involving a FP register and a non-FP register are relatively
expensive because they must go through memory.
Other copies are reasonably cheap. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
(CLASS1 == SHIFT_REGS ? 0xffff \
: FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
: FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
: 2)
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE. The purpose for the cost of MULT is to encourage
`synth_mult' to find a synthetic multiply when reasonable. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case MULT: \
return TARGET_SNAKE && ! TARGET_DISABLE_FPREGS \
? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
case DIV: \
case UDIV: \
case MOD: \
case UMOD: \
return COSTS_N_INSNS (60); \
case PLUS: /* this includes shNadd insns */ \
return COSTS_N_INSNS (1) + 2;
/* Adjust the cost of dependencies. */
#define ADJUST_COST(INSN,LINK,DEP,COST) \
(COST) = pa_adjust_cost (INSN, LINK, DEP, COST)
/* Handling the special cases is going to get too complicated for a macro,
just call `pa_adjust_insn_length' to do the real work. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
LENGTH += pa_adjust_insn_length (INSN, LENGTH);
/* Enable a bug fix. (This is for extra caution.) */
#define SHORTEN_WITH_ADJUST_INSN_LENGTH
/* Millicode insns are actually function calls with some special
constraints on arguments and register usage.
Millicode calls always expect their arguments in the integer argument
registers, and always return their result in %r29 (ret1). They
are expected to clobber their arguments, %r1, %r29, and %r31 and
nothing else.
These macros tell reorg that the references to arguments and
register clobbers for millicode calls do not appear to happen
until after the millicode call. This allows reorg to put insns
which set the argument registers into the delay slot of the millicode
call -- thus they act more like traditional CALL_INSNs.
get_attr_type will try to recognize the given insn, so make sure to
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
in particular. */
#define INSN_SETS_ARE_DELAYED(X) \
((GET_CODE (X) == INSN \
&& GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER \
&& get_attr_type (X) == TYPE_MILLI))
#define INSN_REFERENCES_ARE_DELAYED(X) \
((GET_CODE (X) == INSN \
&& GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER \
&& get_attr_type (X) == TYPE_MILLI))
/* Control the assembler format that we output. */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) \
do { fprintf (FILE, "\t.SPACE $PRIVATE$\n\
\t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31\n\
\t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82\n\
\t.SPACE $TEXT$\n\
\t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44\n\
\t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n\
\t.IMPORT $global$,DATA\n\
\t.IMPORT $$dyncall,MILLICODE\n");\
if (profile_flag)\
fprintf (FILE, "\t.IMPORT _mcount, CODE\n");\
} while (0)
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* We don't yet know how to identify GCC to HP-PA machines. */
#define ASM_IDENTIFY_GCC(FILE) fprintf (FILE, "; gcc_compiled.:\n")
/* Output before code. */
/* Supposedly the assembler rejects the command if there is no tab! */
#define TEXT_SECTION_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $CODE$\n"
/* Output before read-only data. */
/* Supposedly the assembler rejects the command if there is no tab! */
#define READONLY_DATA_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n"
#define READONLY_DATA_SECTION readonly_data
/* Output before writable data. */
/* Supposedly the assembler rejects the command if there is no tab! */
#define DATA_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $DATA$\n"
/* Output before uninitialized data. */
#define BSS_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $BSS$\n"
/* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
#define EXTRA_SECTIONS in_bss, in_readonly_data
#define EXTRA_SECTION_FUNCTIONS \
void \
bss_section () \
{ \
if (in_section != in_bss) \
{ \
fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
in_section = in_bss; \
} \
} \
void \
readonly_data () \
{ \
if (in_section != in_readonly_data) \
{ \
fprintf (asm_out_file, "%s\n", READONLY_DATA_ASM_OP); \
in_section = in_readonly_data; \
} \
}
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
"%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
"%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
"%fr4", "%fr5", "%fr6", "%fr7", \
"%fr8", "%fr9", "%fr10", "%fr11", "%fr12", "%fr13", "%fr14", "%fr15", \
"%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
"%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R",\
"%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R",\
"%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R",\
"%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R",\
"%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R",\
"%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R",\
"SAR"}
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); \
if (TARGET_GAS) \
fputc (':', FILE); \
fputc ('\n', FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
do { fputs ("\t.IMPORT ", FILE); \
assemble_name (FILE, NAME); \
if (FUNCTION_NAME_P (NAME)) \
fputs (",CODE\n", FILE); \
else \
fputs (",DATA\n", FILE); \
} while (0)
/* hpux ld doesn't output the object file name, or anything useful at
all, to indicate the start of an object file's symbols. This screws
up gdb, so we'll output this magic cookie at the end of an object
file with debugging symbols */
#define ASM_FILE_END(FILE) \
do { if (write_symbols == DBX_DEBUG)\
{ fputs (TEXT_SECTION_ASM_OP, FILE);\
fputs (".stabs \"end_file.\",4,0,0,Ltext_end\nLtext_end:\n",\
(FILE));\
}\
} while (0)
/* The bogus HP assembler requires ALL external references to be
"imported", even library calls. They look a bit different, so
here's this macro. */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, RTL) \
do { fputs ("\t.IMPORT ", FILE); \
assemble_name (FILE, XSTR ((RTL), 0)); \
fputs (",CODE\n", FILE); \
} while (0)
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { fputs ("\t.EXPORT ", FILE); assemble_name (FILE, NAME); \
if (FUNCTION_NAME_P (NAME)) \
fputs (",CODE\n", FILE); \
else \
fputs (",DATA\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
{fprintf (FILE, "%s$%04d", PREFIX, NUM); \
if (TARGET_GAS) \
fputs (":\n", FILE); \
else \
fputs ("\n", FILE);}
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s$%04d", PREFIX, NUM)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { union { double d; int i[2];} __u; \
__u.d = (VALUE); \
fprintf (FILE, "\t; .double %.20e\n\t.word %d ; = 0x%x\n\t.word %d ; = 0x%x\n", \
__u.d, __u.i[0], __u.i[0], __u.i[1], __u.i[1]); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { union { float f; int i;} __u; \
__u.f = (VALUE); \
fprintf (FILE, "\t; .float %.12e\n\t.word %d ; = 0x%x\n", __u.f, __u.i, __u.i); \
} while (0)
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
{ fprintf (FILE, "\t.word "); \
if (function_label_operand (VALUE, VOIDmode)) \
fprintf (FILE, "P%%"); \
output_addr_const (FILE, (VALUE)); \
fprintf (FILE, "\n");}
/* Likewise for `short' and `char' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t.half "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
output_ascii ((FILE), (P), (SIZE))
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
/* This is how to output an element of a case-vector that is absolute.
Note that this method makes filling these branch delay slots
impossible. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
/* Jump tables are executable code and live in the TEXT section on the PA. */
#define JUMP_TABLES_IN_TEXT_SECTION
/* This is how to output an element of a case-vector that is relative.
(The HP-PA does not use such vectors,
but we must define this macro anyway.) */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\tword L%d-L%d\n", VALUE, REL)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.blockz %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
/* Supposedly the assembler rejects the command if there is no tab! */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
{ bss_section (); \
assemble_name ((FILE), (NAME)); \
if (TARGET_GAS) \
fputc (':', (FILE)); \
fputs ("\t.comm ", (FILE)); \
fprintf ((FILE), "%d\n", (ROUNDED));}
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
{ bss_section (); \
fprintf ((FILE), "\t.align %d\n", (SIZE) <= 4 ? 4 : 8); \
assemble_name ((FILE), (NAME)); \
if (TARGET_GAS) \
fputc (':', (FILE)); \
fprintf ((FILE), "\n\t.block %d\n", (ROUNDED));}
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null.
On the HP-PA, the CODE can be `r', meaning this is a register-only operand
and an immediate zero should be represented as `r0'.
Several % codes are defined:
O an operation
C compare conditions
N extract conditions
M modifier to handle preincrement addressing for memory refs.
F modifier to handle preincrement addressing for fp memory refs */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
{ register rtx addr = ADDR; \
register rtx base; \
int offset; \
switch (GET_CODE (addr)) \
{ \
case REG: \
fprintf (FILE, "0(0,%s)", reg_names [REGNO (addr)]); \
break; \
case PLUS: \
if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
else \
abort (); \
fprintf (FILE, "%d(0,%s)", offset, reg_names [REGNO (base)]); \
break; \
case LO_SUM: \
fputs ("R'", FILE); \
output_global_address (FILE, XEXP (addr, 1)); \
fputs ("(", FILE); \
output_operand (XEXP (addr, 0), 0); \
fputs (")", FILE); \
break; \
case CONST_INT: \
fprintf (FILE, "%d(0,0)", INTVAL (addr)); \
break; \
default: \
output_addr_const (FILE, addr); \
}}
/* Define functions in pa.c and used in insn-output.c. */
extern char *output_and ();
extern char *output_ior ();
extern char *output_move_double ();
extern char *output_fp_move_double ();
extern char *output_block_move ();
extern char *output_scc_insn ();
extern char *output_cbranch ();
extern char *output_bb ();
extern char *output_dbra ();
extern char *output_movb ();
extern char *output_return ();
extern char *output_call ();
extern char *output_floatsisf2 ();
extern char *output_floatsidf2 ();
extern char *output_mul_insn ();
extern char *output_div_insn ();
extern char *output_mod_insn ();
extern char *singlemove_string ();
extern void output_arg_descriptor ();
extern void output_global_address ();
extern struct rtx_def *legitimize_pic_address ();
extern struct rtx_def *gen_cmp_fp ();
extern void hppa_encode_label ();
extern struct rtx_def *hppa_save_pic_table_rtx;
|