1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
|
/* Definitions of target machine of Andes NDS32 cpu for GNU compiler
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Contributed by Andes Technology Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* ------------------------------------------------------------------------ */
/* The following are auxiliary macros or structure declarations
that are used all over the nds32.c and nds32.h. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
(LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
/* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
It is used in nds32_encode_section_info() to store flag in symbol_ref
in case the symbol should be placed in .rodata section.
So that we can check it in nds32_legitimate_address_p(). */
#define NDS32_SYMBOL_FLAG_RODATA \
(SYMBOL_FLAG_MACH_DEP << 0)
#define NDS32_SYMBOL_REF_RODATA_P(x) \
((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
enum nds32_relax_insn_type
{
RELAX_ORI,
RELAX_PLT_ADD,
RELAX_TLS_ADD_or_LW,
RELAX_TLS_ADD_LW,
RELAX_TLS_LW_JRAL,
RELAX_DONE
};
/* Classifies expand result for expand helper function. */
enum nds32_expand_result_type
{
EXPAND_DONE,
EXPAND_FAIL,
EXPAND_CREATE_TEMPLATE
};
/* Classifies address type to distinguish 16-bit/32-bit format. */
enum nds32_16bit_address_type
{
/* [reg]: 45 format address. */
ADDRESS_REG,
/* [lo_reg + imm3u]: 333 format address. */
ADDRESS_LO_REG_IMM3U,
/* post_inc [lo_reg + imm3u]: 333 format address. */
ADDRESS_POST_INC_LO_REG_IMM3U,
/* post_modify [lo_reg + imm3u]: 333 format address. */
ADDRESS_POST_MODIFY_LO_REG_IMM3U,
/* [$r8 + imm7u]: r8 imply address. */
ADDRESS_R8_IMM7U,
/* [$fp + imm7u]: fp imply address. */
ADDRESS_FP_IMM7U,
/* [$sp + imm7u]: sp imply address. */
ADDRESS_SP_IMM7U,
/* Other address format. */
ADDRESS_NOT_16BIT_FORMAT
};
/* ------------------------------------------------------------------------ */
/* Define maximum numbers of registers for passing arguments. */
#define NDS32_MAX_GPR_REGS_FOR_ARGS 6
#define NDS32_MAX_FPR_REGS_FOR_ARGS 6
/* Define the register number for first argument. */
#define NDS32_GPR_ARG_FIRST_REGNUM 0
#define NDS32_FPR_ARG_FIRST_REGNUM 34
/* Define the register number for return value. */
#define NDS32_GPR_RET_FIRST_REGNUM 0
#define NDS32_FPR_RET_FIRST_REGNUM 34
/* Define the first integer register number. */
#define NDS32_FIRST_GPR_REGNUM 0
/* Define the last integer register number. */
#define NDS32_LAST_GPR_REGNUM 31
#define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
#define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
(TARGET_REDUCED_REGS ? 10 : 14)
/* Define the floating-point number of registers. */
#define NDS32_FLOAT_REGISTER_NUMBER \
(((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
|| (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
: ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
|| (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
: ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
|| (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
: ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
|| (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
: 32)
#define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
/* Define the first floating-point register number. */
#define NDS32_FIRST_FPR_REGNUM 34
/* Define the last floating-point register number. */
#define NDS32_LAST_FPR_REGNUM \
(NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
#define NDS32_IS_EXT_FPR_REGNUM(regno) \
(((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
&& ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
#define NDS32_IS_FPR_REGNUM(regno) \
(((regno) >= NDS32_FIRST_FPR_REGNUM) \
&& ((regno) <= NDS32_LAST_FPR_REGNUM))
#define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
((regno) <= NDS32_LAST_FPR_REGNUM)
#define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
#define NDS32_IS_GPR_REGNUM(regno) \
(((regno) <= NDS32_LAST_GPR_REGNUM))
/* Define double word alignment bits. */
#define NDS32_DOUBLE_WORD_ALIGNMENT 64
/* Define alignment checking macros for convenience. */
#define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
#define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
#define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
/* Determine whether we would like to have code generation strictly aligned.
We set it strictly aligned when -malways-align is enabled.
Check gcc/common/config/nds32/nds32-common.c for the optimizations that
apply -malways-align. */
#define NDS32_ALIGN_P() (TARGET_ALWAYS_ALIGN)
#define NDS32_EXT_DSP_P() (TARGET_EXT_DSP && !TARGET_FORCE_NO_EXT_DSP)
/* Get alignment according to mode or type information.
When 'type' is nonnull, there is no need to look at 'mode'. */
#define NDS32_MODE_TYPE_ALIGN(mode, type) \
(type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
/* Round X up to the nearest double word. */
#define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
/* This macro is used to calculate the numbers of registers for
containing 'size' bytes of the argument.
The size of a register is a word in nds32 target.
So we use UNITS_PER_WORD to do the calculation. */
#define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
((mode == BLKmode) \
? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
: ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* This macro is used to return the register number for passing argument.
We need to obey the following rules:
1. If it is required MORE THAN one register,
we need to further check if it really needs to be
aligned on double words.
a) If double word alignment is necessary,
the register number must be even value.
b) Otherwise, the register number can be odd or even value.
2. If it is required ONLY one register,
the register number can be odd or even value. */
#define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
: ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
: ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
#define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
: ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
: ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
/* These two macros are to check if there are still available registers
for passing argument, which must be entirely in registers. */
#define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
<= (NDS32_GPR_ARG_FIRST_REGNUM \
+ NDS32_MAX_GPR_REGS_FOR_ARGS))
#define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
<= (NDS32_FPR_ARG_FIRST_REGNUM \
+ NDS32_MAX_FPR_REGS_FOR_ARGS))
/* These two macros are to check if there are still available registers
for passing argument, either entirely in registers or partially
in registers. */
#define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
(NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
< NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
#define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
(NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
< NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
/* This macro is to check if the register is required to be saved on stack.
If call_used_regs[regno] == 0, regno is the callee-saved register.
If df_regs_ever_live_p(regno) == true, it is used in the current function.
As long as the register satisfies both criteria above,
it is required to be saved. */
#define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
/* This macro is to check if the push25/pop25 are available to be used
for code generation. Because pop25 also performs return behavior,
the instructions may not be available for some cases.
If we want to use push25/pop25, all the following conditions must
be satisfied:
1. TARGET_V3PUSH is set.
2. Current function is not an ISR function.
3. Current function is not a variadic function.*/
#define NDS32_V3PUSH_AVAILABLE_P \
(TARGET_V3PUSH \
&& !nds32_isr_function_p (current_function_decl) \
&& (cfun->machine->va_args_size == 0))
/* ------------------------------------------------------------------------ */
/* A C structure for machine-specific, per-function data.
This is added to the cfun structure. */
struct GTY(()) machine_function
{
/* Number of bytes allocated on the stack for variadic args
if we want to push them into stack as pretend arguments by ourself. */
int va_args_size;
/* Number of bytes reserved on the stack for
local and temporary variables. */
int local_size;
/* Number of bytes allocated on the stack for outgoing arguments. */
int out_args_size;
/* Number of bytes on the stack for saving $fp. */
int fp_size;
/* Number of bytes on the stack for saving $gp. */
int gp_size;
/* Number of bytes on the stack for saving $lp. */
int lp_size;
/* Number of bytes on the stack for saving general purpose
callee-saved registers. */
int callee_saved_gpr_regs_size;
/* Number of bytes on the stack for saving floating-point
callee-saved registers. */
int callee_saved_fpr_regs_size;
/* The padding bytes in callee-saved area may be required. */
int callee_saved_area_gpr_padding_bytes;
/* The first required general purpose callee-saved register. */
int callee_saved_first_gpr_regno;
/* The last required general purpose callee-saved register. */
int callee_saved_last_gpr_regno;
/* The first required floating-point callee-saved register. */
int callee_saved_first_fpr_regno;
/* The last required floating-point callee-saved register. */
int callee_saved_last_fpr_regno;
/* The padding bytes in varargs area may be required. */
int va_args_area_padding_bytes;
/* The first required register that should be saved on stack for va_args. */
int va_args_first_regno;
/* The last required register that should be saved on stack for va_args. */
int va_args_last_regno;
/* Number of bytes on the stack for saving exception handling registers. */
int eh_return_data_regs_size;
/* The first register of passing exception handling information. */
int eh_return_data_first_regno;
/* The last register of passing exception handling information. */
int eh_return_data_last_regno;
/* Indicate that whether this function
calls __builtin_eh_return. */
int use_eh_return_p;
/* Indicate that whether this function needs
prologue/epilogue code generation. */
int naked_p;
/* Indicate that whether this function
uses fp_as_gp optimization. */
int fp_as_gp_p;
/* Indicate that whether this function is under strictly aligned
situation for legitimate address checking. This flag informs
nds32_legitimate_address_p() how to treat offset alignment:
1. The IVOPT phase needs to detect available range for memory access,
such as checking [base + 32767] ~ [base + (-32768)].
For this case we do not want address to be strictly aligned.
2. The rtl lowering and optimization are close to target code.
For this case we need address to be strictly aligned. */
int strict_aligned_p;
/* Record two similar attributes status. */
int attr_naked_p;
int attr_no_prologue_p;
};
/* A C structure that contains the arguments information. */
typedef struct
{
unsigned int gpr_offset;
unsigned int fpr_offset;
} nds32_cumulative_args;
/* ------------------------------------------------------------------------ */
/* The following we define C-ISR related stuff.
In nds32 architecture, we have 73 vectors for interrupt/exception.
For each vector (except for vector 0, which is used for reset behavior),
we allow users to set its register saving scheme and interrupt level. */
/* There are 73 vectors in nds32 architecture.
0 for reset handler,
1-8 for exception handler,
and 9-72 for interrupt handler.
We use an array, which is defined in nds32.c, to record
essential information for each vector. */
#define NDS32_N_ISR_VECTORS 73
/* Define possible isr category. */
enum nds32_isr_category
{
NDS32_ISR_NONE,
NDS32_ISR_INTERRUPT,
NDS32_ISR_EXCEPTION,
NDS32_ISR_RESET
};
/* Define isr register saving scheme. */
enum nds32_isr_save_reg
{
NDS32_SAVE_ALL,
NDS32_PARTIAL_SAVE
};
/* Define isr nested type. */
enum nds32_isr_nested_type
{
NDS32_NESTED,
NDS32_NOT_NESTED,
NDS32_NESTED_READY
};
/* Define structure to record isr information.
The isr vector array 'isr_vectors[]' with this structure
is defined in nds32.c. */
struct nds32_isr_info
{
/* The field to identify isr category.
It should be set to NDS32_ISR_NONE by default.
If user specifies a function as isr by using attribute,
this field will be set accordingly. */
enum nds32_isr_category category;
/* A string for the applied function name.
It should be set to empty string by default. */
char func_name[100];
/* The register saving scheme.
It should be set to NDS32_PARTIAL_SAVE by default
unless user specifies attribute to change it. */
enum nds32_isr_save_reg save_reg;
/* The nested type.
It should be set to NDS32_NOT_NESTED by default
unless user specifies attribute to change it. */
enum nds32_isr_nested_type nested_type;
/* Total vectors.
The total vectors = interrupt + exception numbers + reset.
It should be set to 0 by default.
This field is ONLY used in NDS32_ISR_RESET category. */
unsigned int total_n_vectors;
/* A string for nmi handler name.
It should be set to empty string by default.
This field is ONLY used in NDS32_ISR_RESET category. */
char nmi_name[100];
/* A string for warm handler name.
It should be set to empty string by default.
This field is ONLY used in NDS32_ISR_RESET category. */
char warm_name[100];
};
/* ------------------------------------------------------------------------ */
/* Define code for all nds32 builtins. */
enum nds32_builtins
{
NDS32_BUILTIN_ISYNC,
NDS32_BUILTIN_ISB,
NDS32_BUILTIN_DSB,
NDS32_BUILTIN_MSYNC_ALL,
NDS32_BUILTIN_MSYNC_STORE,
NDS32_BUILTIN_MFSR,
NDS32_BUILTIN_MFUSR,
NDS32_BUILTIN_MTSR,
NDS32_BUILTIN_MTSR_ISB,
NDS32_BUILTIN_MTSR_DSB,
NDS32_BUILTIN_MTUSR,
NDS32_BUILTIN_SETGIE_EN,
NDS32_BUILTIN_SETGIE_DIS,
NDS32_BUILTIN_FMFCFG,
NDS32_BUILTIN_FMFCSR,
NDS32_BUILTIN_FMTCSR,
NDS32_BUILTIN_FCPYNSS,
NDS32_BUILTIN_FCPYSS,
NDS32_BUILTIN_FCPYNSD,
NDS32_BUILTIN_FCPYSD,
NDS32_BUILTIN_ABS,
NDS32_BUILTIN_AVE,
NDS32_BUILTIN_BCLR,
NDS32_BUILTIN_BSET,
NDS32_BUILTIN_BTGL,
NDS32_BUILTIN_BTST,
NDS32_BUILTIN_CLIP,
NDS32_BUILTIN_CLIPS,
NDS32_BUILTIN_CLZ,
NDS32_BUILTIN_CLO,
NDS32_BUILTIN_MAX,
NDS32_BUILTIN_MIN,
NDS32_BUILTIN_PBSAD,
NDS32_BUILTIN_PBSADA,
NDS32_BUILTIN_BSE,
NDS32_BUILTIN_BSP,
NDS32_BUILTIN_FFB,
NDS32_BUILTIN_FFMISM,
NDS32_BUILTIN_FLMISM,
NDS32_BUILTIN_KADDW,
NDS32_BUILTIN_KSUBW,
NDS32_BUILTIN_KADDH,
NDS32_BUILTIN_KSUBH,
NDS32_BUILTIN_KDMBB,
NDS32_BUILTIN_V_KDMBB,
NDS32_BUILTIN_KDMBT,
NDS32_BUILTIN_V_KDMBT,
NDS32_BUILTIN_KDMTB,
NDS32_BUILTIN_V_KDMTB,
NDS32_BUILTIN_KDMTT,
NDS32_BUILTIN_V_KDMTT,
NDS32_BUILTIN_KHMBB,
NDS32_BUILTIN_V_KHMBB,
NDS32_BUILTIN_KHMBT,
NDS32_BUILTIN_V_KHMBT,
NDS32_BUILTIN_KHMTB,
NDS32_BUILTIN_V_KHMTB,
NDS32_BUILTIN_KHMTT,
NDS32_BUILTIN_V_KHMTT,
NDS32_BUILTIN_KSLRAW,
NDS32_BUILTIN_KSLRAW_U,
NDS32_BUILTIN_RDOV,
NDS32_BUILTIN_CLROV,
NDS32_BUILTIN_ROTR,
NDS32_BUILTIN_SVA,
NDS32_BUILTIN_SVS,
NDS32_BUILTIN_WSBH,
NDS32_BUILTIN_JR_ITOFF,
NDS32_BUILTIN_JR_TOFF,
NDS32_BUILTIN_JRAL_ITON,
NDS32_BUILTIN_JRAL_TON,
NDS32_BUILTIN_RET_ITOFF,
NDS32_BUILTIN_RET_TOFF,
NDS32_BUILTIN_STANDBY_NO_WAKE_GRANT,
NDS32_BUILTIN_STANDBY_WAKE_GRANT,
NDS32_BUILTIN_STANDBY_WAKE_DONE,
NDS32_BUILTIN_TEQZ,
NDS32_BUILTIN_TNEZ,
NDS32_BUILTIN_TRAP,
NDS32_BUILTIN_SETEND_BIG,
NDS32_BUILTIN_SETEND_LITTLE,
NDS32_BUILTIN_SYSCALL,
NDS32_BUILTIN_BREAK,
NDS32_BUILTIN_NOP,
NDS32_BUILTIN_SCHE_BARRIER,
NDS32_BUILTIN_GET_CURRENT_SP,
NDS32_BUILTIN_SET_CURRENT_SP,
NDS32_BUILTIN_RETURN_ADDRESS,
NDS32_BUILTIN_LLW,
NDS32_BUILTIN_LWUP,
NDS32_BUILTIN_LBUP,
NDS32_BUILTIN_SCW,
NDS32_BUILTIN_SWUP,
NDS32_BUILTIN_SBUP,
NDS32_BUILTIN_CCTL_VA_LCK,
NDS32_BUILTIN_CCTL_IDX_WBINVAL,
NDS32_BUILTIN_CCTL_VA_WBINVAL_L1,
NDS32_BUILTIN_CCTL_VA_WBINVAL_LA,
NDS32_BUILTIN_CCTL_IDX_READ,
NDS32_BUILTIN_CCTL_IDX_WRITE,
NDS32_BUILTIN_CCTL_L1D_INVALALL,
NDS32_BUILTIN_CCTL_L1D_WBALL_ALVL,
NDS32_BUILTIN_CCTL_L1D_WBALL_ONE_LVL,
NDS32_BUILTIN_DPREF_QW,
NDS32_BUILTIN_DPREF_HW,
NDS32_BUILTIN_DPREF_W,
NDS32_BUILTIN_DPREF_DW,
NDS32_BUILTIN_TLBOP_TRD,
NDS32_BUILTIN_TLBOP_TWR,
NDS32_BUILTIN_TLBOP_RWR,
NDS32_BUILTIN_TLBOP_RWLK,
NDS32_BUILTIN_TLBOP_UNLK,
NDS32_BUILTIN_TLBOP_PB,
NDS32_BUILTIN_TLBOP_INV,
NDS32_BUILTIN_TLBOP_FLUA,
NDS32_BUILTIN_UALOAD_HW,
NDS32_BUILTIN_UALOAD_W,
NDS32_BUILTIN_UALOAD_DW,
NDS32_BUILTIN_UASTORE_HW,
NDS32_BUILTIN_UASTORE_W,
NDS32_BUILTIN_UASTORE_DW,
NDS32_BUILTIN_GIE_DIS,
NDS32_BUILTIN_GIE_EN,
NDS32_BUILTIN_ENABLE_INT,
NDS32_BUILTIN_DISABLE_INT,
NDS32_BUILTIN_SET_PENDING_SWINT,
NDS32_BUILTIN_CLR_PENDING_SWINT,
NDS32_BUILTIN_CLR_PENDING_HWINT,
NDS32_BUILTIN_GET_ALL_PENDING_INT,
NDS32_BUILTIN_GET_PENDING_INT,
NDS32_BUILTIN_SET_INT_PRIORITY,
NDS32_BUILTIN_GET_INT_PRIORITY,
NDS32_BUILTIN_SET_TRIG_LEVEL,
NDS32_BUILTIN_SET_TRIG_EDGE,
NDS32_BUILTIN_GET_TRIG_TYPE,
NDS32_BUILTIN_DSP_BEGIN,
NDS32_BUILTIN_ADD16,
NDS32_BUILTIN_V_UADD16,
NDS32_BUILTIN_V_SADD16,
NDS32_BUILTIN_RADD16,
NDS32_BUILTIN_V_RADD16,
NDS32_BUILTIN_URADD16,
NDS32_BUILTIN_V_URADD16,
NDS32_BUILTIN_KADD16,
NDS32_BUILTIN_V_KADD16,
NDS32_BUILTIN_UKADD16,
NDS32_BUILTIN_V_UKADD16,
NDS32_BUILTIN_SUB16,
NDS32_BUILTIN_V_USUB16,
NDS32_BUILTIN_V_SSUB16,
NDS32_BUILTIN_RSUB16,
NDS32_BUILTIN_V_RSUB16,
NDS32_BUILTIN_URSUB16,
NDS32_BUILTIN_V_URSUB16,
NDS32_BUILTIN_KSUB16,
NDS32_BUILTIN_V_KSUB16,
NDS32_BUILTIN_UKSUB16,
NDS32_BUILTIN_V_UKSUB16,
NDS32_BUILTIN_CRAS16,
NDS32_BUILTIN_V_UCRAS16,
NDS32_BUILTIN_V_SCRAS16,
NDS32_BUILTIN_RCRAS16,
NDS32_BUILTIN_V_RCRAS16,
NDS32_BUILTIN_URCRAS16,
NDS32_BUILTIN_V_URCRAS16,
NDS32_BUILTIN_KCRAS16,
NDS32_BUILTIN_V_KCRAS16,
NDS32_BUILTIN_UKCRAS16,
NDS32_BUILTIN_V_UKCRAS16,
NDS32_BUILTIN_CRSA16,
NDS32_BUILTIN_V_UCRSA16,
NDS32_BUILTIN_V_SCRSA16,
NDS32_BUILTIN_RCRSA16,
NDS32_BUILTIN_V_RCRSA16,
NDS32_BUILTIN_URCRSA16,
NDS32_BUILTIN_V_URCRSA16,
NDS32_BUILTIN_KCRSA16,
NDS32_BUILTIN_V_KCRSA16,
NDS32_BUILTIN_UKCRSA16,
NDS32_BUILTIN_V_UKCRSA16,
NDS32_BUILTIN_ADD8,
NDS32_BUILTIN_V_UADD8,
NDS32_BUILTIN_V_SADD8,
NDS32_BUILTIN_RADD8,
NDS32_BUILTIN_V_RADD8,
NDS32_BUILTIN_URADD8,
NDS32_BUILTIN_V_URADD8,
NDS32_BUILTIN_KADD8,
NDS32_BUILTIN_V_KADD8,
NDS32_BUILTIN_UKADD8,
NDS32_BUILTIN_V_UKADD8,
NDS32_BUILTIN_SUB8,
NDS32_BUILTIN_V_USUB8,
NDS32_BUILTIN_V_SSUB8,
NDS32_BUILTIN_RSUB8,
NDS32_BUILTIN_V_RSUB8,
NDS32_BUILTIN_URSUB8,
NDS32_BUILTIN_V_URSUB8,
NDS32_BUILTIN_KSUB8,
NDS32_BUILTIN_V_KSUB8,
NDS32_BUILTIN_UKSUB8,
NDS32_BUILTIN_V_UKSUB8,
NDS32_BUILTIN_SRA16,
NDS32_BUILTIN_V_SRA16,
NDS32_BUILTIN_SRA16_U,
NDS32_BUILTIN_V_SRA16_U,
NDS32_BUILTIN_SRL16,
NDS32_BUILTIN_V_SRL16,
NDS32_BUILTIN_SRL16_U,
NDS32_BUILTIN_V_SRL16_U,
NDS32_BUILTIN_SLL16,
NDS32_BUILTIN_V_SLL16,
NDS32_BUILTIN_KSLL16,
NDS32_BUILTIN_V_KSLL16,
NDS32_BUILTIN_KSLRA16,
NDS32_BUILTIN_V_KSLRA16,
NDS32_BUILTIN_KSLRA16_U,
NDS32_BUILTIN_V_KSLRA16_U,
NDS32_BUILTIN_CMPEQ16,
NDS32_BUILTIN_V_SCMPEQ16,
NDS32_BUILTIN_V_UCMPEQ16,
NDS32_BUILTIN_SCMPLT16,
NDS32_BUILTIN_V_SCMPLT16,
NDS32_BUILTIN_SCMPLE16,
NDS32_BUILTIN_V_SCMPLE16,
NDS32_BUILTIN_UCMPLT16,
NDS32_BUILTIN_V_UCMPLT16,
NDS32_BUILTIN_UCMPLE16,
NDS32_BUILTIN_V_UCMPLE16,
NDS32_BUILTIN_CMPEQ8,
NDS32_BUILTIN_V_SCMPEQ8,
NDS32_BUILTIN_V_UCMPEQ8,
NDS32_BUILTIN_SCMPLT8,
NDS32_BUILTIN_V_SCMPLT8,
NDS32_BUILTIN_SCMPLE8,
NDS32_BUILTIN_V_SCMPLE8,
NDS32_BUILTIN_UCMPLT8,
NDS32_BUILTIN_V_UCMPLT8,
NDS32_BUILTIN_UCMPLE8,
NDS32_BUILTIN_V_UCMPLE8,
NDS32_BUILTIN_SMIN16,
NDS32_BUILTIN_V_SMIN16,
NDS32_BUILTIN_UMIN16,
NDS32_BUILTIN_V_UMIN16,
NDS32_BUILTIN_SMAX16,
NDS32_BUILTIN_V_SMAX16,
NDS32_BUILTIN_UMAX16,
NDS32_BUILTIN_V_UMAX16,
NDS32_BUILTIN_SCLIP16,
NDS32_BUILTIN_V_SCLIP16,
NDS32_BUILTIN_UCLIP16,
NDS32_BUILTIN_V_UCLIP16,
NDS32_BUILTIN_KHM16,
NDS32_BUILTIN_V_KHM16,
NDS32_BUILTIN_KHMX16,
NDS32_BUILTIN_V_KHMX16,
NDS32_BUILTIN_KABS16,
NDS32_BUILTIN_V_KABS16,
NDS32_BUILTIN_SMIN8,
NDS32_BUILTIN_V_SMIN8,
NDS32_BUILTIN_UMIN8,
NDS32_BUILTIN_V_UMIN8,
NDS32_BUILTIN_SMAX8,
NDS32_BUILTIN_V_SMAX8,
NDS32_BUILTIN_UMAX8,
NDS32_BUILTIN_V_UMAX8,
NDS32_BUILTIN_KABS8,
NDS32_BUILTIN_V_KABS8,
NDS32_BUILTIN_SUNPKD810,
NDS32_BUILTIN_V_SUNPKD810,
NDS32_BUILTIN_SUNPKD820,
NDS32_BUILTIN_V_SUNPKD820,
NDS32_BUILTIN_SUNPKD830,
NDS32_BUILTIN_V_SUNPKD830,
NDS32_BUILTIN_SUNPKD831,
NDS32_BUILTIN_V_SUNPKD831,
NDS32_BUILTIN_ZUNPKD810,
NDS32_BUILTIN_V_ZUNPKD810,
NDS32_BUILTIN_ZUNPKD820,
NDS32_BUILTIN_V_ZUNPKD820,
NDS32_BUILTIN_ZUNPKD830,
NDS32_BUILTIN_V_ZUNPKD830,
NDS32_BUILTIN_ZUNPKD831,
NDS32_BUILTIN_V_ZUNPKD831,
NDS32_BUILTIN_RADDW,
NDS32_BUILTIN_URADDW,
NDS32_BUILTIN_RSUBW,
NDS32_BUILTIN_URSUBW,
NDS32_BUILTIN_SRA_U,
NDS32_BUILTIN_KSLL,
NDS32_BUILTIN_PKBB16,
NDS32_BUILTIN_V_PKBB16,
NDS32_BUILTIN_PKBT16,
NDS32_BUILTIN_V_PKBT16,
NDS32_BUILTIN_PKTB16,
NDS32_BUILTIN_V_PKTB16,
NDS32_BUILTIN_PKTT16,
NDS32_BUILTIN_V_PKTT16,
NDS32_BUILTIN_SMMUL,
NDS32_BUILTIN_SMMUL_U,
NDS32_BUILTIN_KMMAC,
NDS32_BUILTIN_KMMAC_U,
NDS32_BUILTIN_KMMSB,
NDS32_BUILTIN_KMMSB_U,
NDS32_BUILTIN_KWMMUL,
NDS32_BUILTIN_KWMMUL_U,
NDS32_BUILTIN_SMMWB,
NDS32_BUILTIN_V_SMMWB,
NDS32_BUILTIN_SMMWB_U,
NDS32_BUILTIN_V_SMMWB_U,
NDS32_BUILTIN_SMMWT,
NDS32_BUILTIN_V_SMMWT,
NDS32_BUILTIN_SMMWT_U,
NDS32_BUILTIN_V_SMMWT_U,
NDS32_BUILTIN_KMMAWB,
NDS32_BUILTIN_V_KMMAWB,
NDS32_BUILTIN_KMMAWB_U,
NDS32_BUILTIN_V_KMMAWB_U,
NDS32_BUILTIN_KMMAWT,
NDS32_BUILTIN_V_KMMAWT,
NDS32_BUILTIN_KMMAWT_U,
NDS32_BUILTIN_V_KMMAWT_U,
NDS32_BUILTIN_SMBB,
NDS32_BUILTIN_V_SMBB,
NDS32_BUILTIN_SMBT,
NDS32_BUILTIN_V_SMBT,
NDS32_BUILTIN_SMTT,
NDS32_BUILTIN_V_SMTT,
NDS32_BUILTIN_KMDA,
NDS32_BUILTIN_V_KMDA,
NDS32_BUILTIN_KMXDA,
NDS32_BUILTIN_V_KMXDA,
NDS32_BUILTIN_SMDS,
NDS32_BUILTIN_V_SMDS,
NDS32_BUILTIN_SMDRS,
NDS32_BUILTIN_V_SMDRS,
NDS32_BUILTIN_SMXDS,
NDS32_BUILTIN_V_SMXDS,
NDS32_BUILTIN_KMABB,
NDS32_BUILTIN_V_KMABB,
NDS32_BUILTIN_KMABT,
NDS32_BUILTIN_V_KMABT,
NDS32_BUILTIN_KMATT,
NDS32_BUILTIN_V_KMATT,
NDS32_BUILTIN_KMADA,
NDS32_BUILTIN_V_KMADA,
NDS32_BUILTIN_KMAXDA,
NDS32_BUILTIN_V_KMAXDA,
NDS32_BUILTIN_KMADS,
NDS32_BUILTIN_V_KMADS,
NDS32_BUILTIN_KMADRS,
NDS32_BUILTIN_V_KMADRS,
NDS32_BUILTIN_KMAXDS,
NDS32_BUILTIN_V_KMAXDS,
NDS32_BUILTIN_KMSDA,
NDS32_BUILTIN_V_KMSDA,
NDS32_BUILTIN_KMSXDA,
NDS32_BUILTIN_V_KMSXDA,
NDS32_BUILTIN_SMAL,
NDS32_BUILTIN_V_SMAL,
NDS32_BUILTIN_BITREV,
NDS32_BUILTIN_WEXT,
NDS32_BUILTIN_BPICK,
NDS32_BUILTIN_INSB,
NDS32_BUILTIN_SADD64,
NDS32_BUILTIN_UADD64,
NDS32_BUILTIN_RADD64,
NDS32_BUILTIN_URADD64,
NDS32_BUILTIN_KADD64,
NDS32_BUILTIN_UKADD64,
NDS32_BUILTIN_SSUB64,
NDS32_BUILTIN_USUB64,
NDS32_BUILTIN_RSUB64,
NDS32_BUILTIN_URSUB64,
NDS32_BUILTIN_KSUB64,
NDS32_BUILTIN_UKSUB64,
NDS32_BUILTIN_SMAR64,
NDS32_BUILTIN_SMSR64,
NDS32_BUILTIN_UMAR64,
NDS32_BUILTIN_UMSR64,
NDS32_BUILTIN_KMAR64,
NDS32_BUILTIN_KMSR64,
NDS32_BUILTIN_UKMAR64,
NDS32_BUILTIN_UKMSR64,
NDS32_BUILTIN_SMALBB,
NDS32_BUILTIN_V_SMALBB,
NDS32_BUILTIN_SMALBT,
NDS32_BUILTIN_V_SMALBT,
NDS32_BUILTIN_SMALTT,
NDS32_BUILTIN_V_SMALTT,
NDS32_BUILTIN_SMALDA,
NDS32_BUILTIN_V_SMALDA,
NDS32_BUILTIN_SMALXDA,
NDS32_BUILTIN_V_SMALXDA,
NDS32_BUILTIN_SMALDS,
NDS32_BUILTIN_V_SMALDS,
NDS32_BUILTIN_SMALDRS,
NDS32_BUILTIN_V_SMALDRS,
NDS32_BUILTIN_SMALXDS,
NDS32_BUILTIN_V_SMALXDS,
NDS32_BUILTIN_SMUL16,
NDS32_BUILTIN_V_SMUL16,
NDS32_BUILTIN_SMULX16,
NDS32_BUILTIN_V_SMULX16,
NDS32_BUILTIN_UMUL16,
NDS32_BUILTIN_V_UMUL16,
NDS32_BUILTIN_UMULX16,
NDS32_BUILTIN_V_UMULX16,
NDS32_BUILTIN_SMSLDA,
NDS32_BUILTIN_V_SMSLDA,
NDS32_BUILTIN_SMSLXDA,
NDS32_BUILTIN_V_SMSLXDA,
NDS32_BUILTIN_UCLIP32,
NDS32_BUILTIN_SCLIP32,
NDS32_BUILTIN_KABS,
NDS32_BUILTIN_UALOAD_U16,
NDS32_BUILTIN_UALOAD_S16,
NDS32_BUILTIN_UALOAD_U8,
NDS32_BUILTIN_UALOAD_S8,
NDS32_BUILTIN_UASTORE_U16,
NDS32_BUILTIN_UASTORE_S16,
NDS32_BUILTIN_UASTORE_U8,
NDS32_BUILTIN_UASTORE_S8,
NDS32_BUILTIN_DSP_END,
NDS32_BUILTIN_UNALIGNED_FEATURE,
NDS32_BUILTIN_ENABLE_UNALIGNED,
NDS32_BUILTIN_DISABLE_UNALIGNED,
NDS32_BUILTIN_COUNT
};
/* ------------------------------------------------------------------------ */
#define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
#define TARGET_ISA_V3 \
(nds32_arch_option == ARCH_V3 \
|| nds32_arch_option == ARCH_V3F \
|| nds32_arch_option == ARCH_V3S)
#define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
#define TARGET_PIPELINE_N7 \
(nds32_cpu_option == CPU_N7)
#define TARGET_PIPELINE_N8 \
(nds32_cpu_option == CPU_N6 \
|| nds32_cpu_option == CPU_N8)
#define TARGET_PIPELINE_N9 \
(nds32_cpu_option == CPU_N9)
#define TARGET_PIPELINE_N10 \
(nds32_cpu_option == CPU_N10)
#define TARGET_PIPELINE_N13 \
(nds32_cpu_option == CPU_N12 || nds32_cpu_option == CPU_N13)
#define TARGET_PIPELINE_GRAYWOLF \
(nds32_cpu_option == CPU_GRAYWOLF)
#define TARGET_PIPELINE_SIMPLE \
(nds32_cpu_option == CPU_SIMPLE)
#define TARGET_CMODEL_SMALL \
(nds32_cmodel_option == CMODEL_SMALL)
#define TARGET_CMODEL_MEDIUM \
(nds32_cmodel_option == CMODEL_MEDIUM)
#define TARGET_CMODEL_LARGE \
(nds32_cmodel_option == CMODEL_LARGE)
#define TARGET_ICT_MODEL_SMALL \
(nds32_ict_model == ICT_MODEL_SMALL)
#define TARGET_ICT_MODEL_LARGE \
(nds32_ict_model == ICT_MODEL_LARGE)
/* When -mcmodel=small or -mcmodel=medium,
compiler may generate gp-base instruction directly. */
#define TARGET_GP_DIRECT \
(nds32_cmodel_option == CMODEL_SMALL\
|| nds32_cmodel_option == CMODEL_MEDIUM)
#define TARGET_MUL_SLOW \
(nds32_mul_config == MUL_TYPE_SLOW)
/* Run-time Target Specification. */
#define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
/* Use hardware floating point calling convention. */
#define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
/* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
1 means hard ABI and using full floating-point instruction,
2 means hard ABI and only using single-precision floating-point
instruction */
#if TARGET_ARCH_DEFAULT == 1
# define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
# define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
# define TARGET_DEFAULT_FPU_FMA 0
#else
# if TARGET_ARCH_DEFAULT == 2
# define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
# define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
# define TARGET_DEFAULT_FPU_FMA 0
# else
# define TARGET_DEFAULT_ABI NDS32_ABI_V2
# define TARGET_DEFAULT_FPU_ISA 0
# define TARGET_DEFAULT_FPU_FMA 0
# endif
#endif
#define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
/* ------------------------------------------------------------------------ */
#ifdef TARGET_DEFAULT_RELAX
# define NDS32_RELAX_SPEC " %{!mno-relax:--relax}"
#else
# define NDS32_RELAX_SPEC " %{mrelax:--relax}"
#endif
#ifdef TARGET_DEFAULT_EXT_DSP
# define NDS32_EXT_DSP_SPEC " %{!mno-ext-dsp:-mext-dsp}"
#else
# define NDS32_EXT_DSP_SPEC ""
#endif
/* ------------------------------------------------------------------------ */
/* Controlling the Compilation Driver. */
#define OPTION_DEFAULT_SPECS \
{"arch", " %{!march=*:-march=%(VALUE)}" \
" %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
" %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
" %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
" %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
" %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
{"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
{"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
#define CC1_SPEC \
NDS32_EXT_DSP_SPEC
#define ASM_SPEC \
" %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
" %{march=*:-march=%*}" \
" %{mno-16-bit|mno-16bit:-mno-16bit-ext}" \
" %{march=v3m:%{!mfull-regs:%{!mreduced-regs:-mreduced-regs}}}" \
" %{mfull-regs:-mno-reduced-regs}" \
" %{mreduced-regs:-mreduced-regs}" \
" %{mabi=*:-mabi=v%*}" \
" %{mconfig-fpu=*:-mfpu-freg=%*}" \
" %{mext-fpu-mac:-mmac}" \
" %{mno-ext-fpu-mac:-mno-mac}" \
" %{mext-fpu-sp:-mfpu-sp-ext}" \
" %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
" %{mext-fpu-dp:-mfpu-dp-ext}" \
" %{mno-ext-fpu-sp:-mno-fpu-dp-ext}" \
" %{mext-dsp:-mdsp-ext}" \
" %{O|O1|O2|O3|Ofast:-O1;:-Os}"
/* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
configure gcc with --target=nds32be-* setting.
Check gcc/config.gcc for more information. */
#ifdef TARGET_BIG_ENDIAN_DEFAULT
# define NDS32_ENDIAN_DEFAULT "mbig-endian"
#else
# define NDS32_ENDIAN_DEFAULT "mlittle-endian"
#endif
#if TARGET_ELF
# define NDS32_CMODEL_DEFAULT "mcmodel=medium"
#else
# define NDS32_CMODEL_DEFAULT "mcmodel=large"
#endif
#define MULTILIB_DEFAULTS \
{ NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
/* Run-time Target Specification. */
#define TARGET_CPU_CPP_BUILTINS() \
nds32_cpu_cpp_builtins (pfile)
/* Defining Data Structures for Per-function Information. */
/* This macro is called once per function,
before generation of any RTL has begun. */
#define INIT_EXPANDERS nds32_init_expanders ()
/* Storage Layout. */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
#define UNITS_PER_WORD 4
#define PROMOTE_MODE(m, unsignedp, type) \
if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
{ \
(m) = SImode; \
}
#define PARM_BOUNDARY 32
#define STACK_BOUNDARY 64
#define FUNCTION_BOUNDARY \
((NDS32_ALIGN_P () || TARGET_ALIGN_FUNCTION) ? 32 : 16)
#define BIGGEST_ALIGNMENT 64
#define DATA_ALIGNMENT(constant, basic_align) \
nds32_data_alignment (constant, basic_align)
#define LOCAL_ALIGNMENT(type, basic_align) \
nds32_local_alignment (type, basic_align)
#define EMPTY_FIELD_BOUNDARY 32
#define STRUCTURE_SIZE_BOUNDARY 8
#define STRICT_ALIGNMENT 1
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Layout of Source Language Data Types. */
#define INT_TYPE_SIZE 32
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
#define DEFAULT_SIGNED_CHAR 1
#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long int"
#define WCHAR_TYPE "unsigned int"
#define WCHAR_TYPE_SIZE 32
/* Register Usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 101
/* An initializer that says which registers are used for fixed
purposes all throughout the compiled code and are therefore
not available for general allocation.
$r28 : $fp
$r29 : $gp
$r30 : $lp
$r31 : $sp
caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
reserved for assembler : $r15
reserved for other use : $r24, $r25, $r26, $r27 */
#define FIXED_REGISTERS \
{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
0, 0, 0, 0, 0, 0, 0, 0, \
/* r8 r9 r10 r11 r12 r13 r14 r15 */ \
0, 0, 0, 0, 0, 0, 0, 1, \
/* r16 r17 r18 r19 r20 r21 r22 r23 */ \
0, 0, 0, 0, 0, 0, 0, 0, \
/* r24 r25 r26 r27 r28 r29 r30 r31 */ \
1, 1, 1, 1, 0, 1, 0, 1, \
/* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs30 fs31 fd16 fd17 fd18 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd19 fd20 fd21 fd22 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd23 fd24 fd25 fd26 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd27 fd28 fd29 fd30 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd31 Reserved..................... */ \
1, 1, 1, 1, 1 \
}
/* Identifies the registers that are not available for
general allocation of values that must live across
function calls -- so they are caller-save registers.
0 : callee-save registers
1 : caller-save registers */
#define CALL_USED_REGISTERS \
{ /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
1, 1, 1, 1, 1, 1, 0, 0, \
/* r8 r9 r10 r11 r12 r13 r14 r15 */ \
0, 0, 0, 0, 0, 0, 0, 1, \
/* r16 r17 r18 r19 r20 r21 r22 r23 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* r24 r25 r26 r27 r28 r29 r30 r31 */ \
1, 1, 1, 1, 0, 1, 0, 1, \
/* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fs30 fs31 fd16 fd17 fd18 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd19 fd20 fd21 fd22 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd23 fd24 fd25 fd26 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd27 fd28 fd29 fd30 */ \
1, 1, 1, 1, 1, 1, 1, 1, \
/* fd31 Reserved..................... */ \
1, 1, 1, 1, 1 \
}
/* In nds32 target, we have three levels of registers:
LOW_COST_REGS : $r0 ~ $r7
MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
#define REG_ALLOC_ORDER \
{ 0, 1, 2, 3, 4, 5, 6, 7, \
16, 17, 18, 19, 9, 10, 11, 12, \
13, 14, 8, 15, 20, 21, 22, 23, \
24, 25, 26, 27, 28, 29, 30, 31, \
32, 33, 34, 35, 36, 37, 38, 39, \
40, 41, 42, 43, 44, 45, 46, 47, \
48, 49, 50, 51, 52, 53, 54, 55, \
56, 57, 58, 59, 60, 61, 62, 63, \
64, 65, 66, 67, 68, 69, 70, 71, \
72, 73, 74, 75, 76, 77, 78, 79, \
80, 81, 82, 83, 84, 85, 86, 87, \
88, 89, 90, 91, 92, 93, 94, 95, \
96, 97, 98, 99, 100, \
}
/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
to be rearranged based on optimizing for speed or size. */
#define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
/* Tell IRA to use the order we define rather than messing it up with its
own cost calculations. */
#define HONOR_REG_ALLOC_ORDER optimize_size
/* Register Classes. */
/* In nds32 target, we have three levels of registers:
Low cost regsiters : $r0 ~ $r7
Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
High cost registers : $r12 ~ $r14, $r20 ~ $r31
In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
so that it provides more chance to use low cost registers. */
enum reg_class
{
NO_REGS,
R5_REG,
R8_REG,
R15_TA_REG,
STACK_REG,
FRAME_POINTER_REG,
LOW_REGS,
MIDDLE_REGS,
HIGH_REGS,
GENERAL_REGS,
FRAME_REGS,
FP_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"R5_REG", \
"R8_REG", \
"R15_TA_REG", \
"STACK_REG", \
"FRAME_POINTER_REG", \
"LOW_REGS", \
"MIDDLE_REGS", \
"HIGH_REGS", \
"GENERAL_REGS", \
"FRAME_REGS", \
"FP_REGS", \
"ALL_REGS" \
}
#define REG_CLASS_CONTENTS \
{ /* NO_REGS */ \
{0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
/* R5_REG : 5 */ \
{0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
/* R8_REG : 8 */ \
{0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
/* R15_TA_REG : 15 */ \
{0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
/* STACK_REG : 31 */ \
{0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
/* FRAME_POINTER_REG : 28 */ \
{0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
/* LOW_REGS : 0-7 */ \
{0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
/* MIDDLE_REGS : 0-11, 16-19 */ \
{0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
/* HIGH_REGS : 12-14, 20-31 */ \
{0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
/* GENERAL_REGS : 0-31 */ \
{0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
/* FRAME_REGS : 32, 33 */ \
{0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
/* FP_REGS : 34-98 */ \
{0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
/* ALL_REGS : 0-100 */ \
{0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
}
#define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
#define BASE_REG_CLASS GENERAL_REGS
#define INDEX_REG_CLASS GENERAL_REGS
#define TEST_REGNO(R, TEST, VALUE) \
((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
/* Return nonzero if it is suitable for use as a
base register in operand addresses.
So far, we return nonzero only if "num" is a hard reg
of the suitable class or a pseudo register which is
allocated to a suitable hard reg. */
#define REGNO_OK_FOR_BASE_P(num) \
(TEST_REGNO (num, <, 32) \
|| TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
|| TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
/* Return nonzero if it is suitable for use as a
index register in operand addresses.
So far, we return nonzero only if "num" is a hard reg
of the suitable class or a pseudo register which is
allocated to a suitable hard reg.
The difference between an index register and a base register is that
the index register may be scaled. */
#define REGNO_OK_FOR_INDEX_P(num) \
(TEST_REGNO (num, <, 32) \
|| TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
|| TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
/* Obsolete Macros for Defining Constraints. */
/* Stack Layout and Calling Conventions. */
#define STACK_GROWS_DOWNWARD 1
#define FRAME_GROWS_DOWNWARD 1
#define STACK_POINTER_OFFSET 0
#define FIRST_PARM_OFFSET(fundecl) \
(NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
/* A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller's frame is stored. */
#define DYNAMIC_CHAIN_ADDRESS(frameaddr) \
nds32_dynamic_chain_address (frameaddr)
#define RETURN_ADDR_RTX(count, frameaddr) \
nds32_return_addr_rtx (count, frameaddr)
/* A C expression whose value is RTL representing the location
of the incoming return address at the beginning of any function
before the prologue.
If this RTL is REG, you should also define
DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
/* Use $r0 $r1 to pass exception handling information. */
#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) : INVALID_REGNUM)
/* The register $r2 that represents a location in which to store a stack
adjustment to be applied before function return.
This is used to unwind the stack to an exception handler's call frame. */
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
#define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
#define STACK_POINTER_REGNUM SP_REGNUM
#define FRAME_POINTER_REGNUM 33
#define HARD_FRAME_POINTER_REGNUM FP_REGNUM
#define ARG_POINTER_REGNUM 32
#define STATIC_CHAIN_REGNUM 16
#define ELIMINABLE_REGS \
{ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
#define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
(offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
#define ACCUMULATE_OUTGOING_ARGS 1
#define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
#define CUMULATIVE_ARGS nds32_cumulative_args
#define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
#define FUNCTION_ARG_REGNO_P(regno) \
(IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
|| ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
&& IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
#define DEFAULT_PCC_STRUCT_RETURN 0
/* EXIT_IGNORE_STACK should be nonzero if, when returning
from a function, the stack pointer does not matter.
The value is tested only in functions that have frame pointers.
In nds32 target, the function epilogue recovers the
stack pointer from the frame. */
#define EXIT_IGNORE_STACK 1
#define FUNCTION_PROFILER(file, labelno) \
fprintf (file, "/* profiler %d */\n", (labelno))
#define PROFILE_HOOK(LABEL) \
{ \
rtx fun, lp; \
lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
}
/* Implementing the Varargs Macros. */
/* Trampolines for Nested Functions. */
/* Giving A-function and B-function,
if B-function wants to call A-function's nested function,
we need to fill trampoline code into A-function's stack
so that B-function can execute the code in stack to indirectly
jump to (like 'trampoline' action) desired nested function.
The trampoline code for nds32 target must contains following parts:
1. instructions (4 * 4 = 16 bytes):
get $pc first
load chain_value to static chain register via $pc
load nested function address to $r15 via $pc
jump to desired nested function via $r15
2. data (4 * 2 = 8 bytes):
chain_value
nested function address
Please check nds32.c implementation for more information. */
#define TRAMPOLINE_SIZE 24
/* Because all instructions/data in trampoline template are 4-byte size,
we set trampoline alignment 8*4=32 bits. */
#define TRAMPOLINE_ALIGNMENT 32
/* Implicit Calls to Library Routines. */
/* Addressing Modes. */
/* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
#define HAVE_POST_INCREMENT 1
/* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
#define HAVE_POST_DECREMENT 1
/* We have "LWI.bi Rt, [Ra], imm" instruction form. */
#define HAVE_POST_MODIFY_DISP 1
/* We have "LW.bi Rt, [Ra], Rb" instruction form. */
#define HAVE_POST_MODIFY_REG 1
#define USE_LOAD_POST_INCREMENT(mode) \
nds32_use_load_post_increment(mode)
#define USE_LOAD_POST_DECREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
#define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
#define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
#define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
#define MAX_REGS_PER_ADDRESS 3
/* Anchored Addresses. */
/* Condition Code Status. */
/* Describing Relative Costs of Operations. */
/* A C expression for the cost of a branch instruction.
A value of 1 is the default;
other values are interpreted relative to that. */
#define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
/* Override BRANCH_COST heuristic which empirically produces worse
performance for removing short circuiting from the logical ops. */
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
#define SLOW_BYTE_ACCESS 1
#define NO_FUNCTION_CSE 1
/* Adjusting the Instruction Scheduler. */
/* Dividing the Output into Sections (Texts, Data, . . . ). */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
/* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
So we use '.section .bss' alternatively. */
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
/* Define this macro to be an expression with a nonzero value if jump tables
(for tablejump insns) should be output in the text section,
along with the assembler instructions.
Otherwise, the readonly data section is used. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
/* Position Independent Code. */
#define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
#define SYMBOLIC_CONST_P(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
/* Defining the Output Assembler Language. */
#define ASM_COMMENT_START "!"
#define ASM_APP_ON "! #APP\n"
#define ASM_APP_OFF "! #NO_APP\n"
#define ASM_OUTPUT_LABELREF(stream, name) \
asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
#define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
assemble_name (stream, XSTR (sym, 0))
#define ASM_OUTPUT_LABEL_REF(stream, buf) \
assemble_name (stream, buf)
#define LOCAL_LABEL_PREFIX "."
#define REGISTER_NAMES \
{ "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
"$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
"$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
"$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
"$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
"$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
"$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
"$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
"$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
"$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
"$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
"$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
"$fs62","$fs63", "LB", "LE", "LC" \
}
#define ADDITIONAL_REGISTER_NAMES \
{ \
{"$r15", 15}, \
{"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
{"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
{"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
{"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
{"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
{"$s8", 14}, \
{"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
{"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
{"$t8", 24}, {"$t9", 25}, \
{"$p0", 26}, {"$p1", 27}, \
{"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
{"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
{"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
{"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
{"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
{"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
}
#define OVERLAPPING_REGISTER_NAMES \
{ \
{"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
{"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
{"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
{"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
{"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
{"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
{"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
{"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
{"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
{"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
{"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
{"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
{"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
{"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
{"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
{"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
{"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
{"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
{"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
{"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
{"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
{"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
{"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
{"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
{"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
{"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
{"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
{"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
{"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
{"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
{"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
{"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
}
/* Output normal jump table entry. */
#define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
asm_fprintf (stream, "\t.word\t%LL%d\n", value)
/* Output pc relative jump table entry. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
do \
{ \
switch (GET_MODE (body)) \
{ \
case E_QImode: \
asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
break; \
case E_HImode: \
asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
break; \
case E_SImode: \
asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
break; \
default: \
gcc_unreachable(); \
} \
} while (0)
/* We have to undef it first because elfos.h formerly define it
check gcc/config.gcc and gcc/config/elfos.h for more information. */
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
do \
{ \
asm_fprintf (stream, "\t! Jump Table Begin\n"); \
(*targetm.asm_out.internal_label) (stream, prefix, num); \
} while (0)
#define ASM_OUTPUT_CASE_END(stream, num, table) \
do \
{ \
/* Because our jump table is in text section, \
we need to make sure 2-byte alignment after \
the jump table for instructions fetch. */ \
if (GET_MODE (PATTERN (table)) == QImode) \
ASM_OUTPUT_ALIGN (stream, 1); \
asm_fprintf (stream, "\t! Jump Table End\n"); \
} while (0)
/* This macro is not documented yet.
But we do need it to make jump table vector aligned. */
#define ADDR_VEC_ALIGN(JUMPTABLE) 2
#define DWARF2_UNWIND_INFO 1
#define JUMP_ALIGN(x) \
(align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
#define LOOP_ALIGN(x) \
(align_loops_log ? align_loops_log : nds32_target_alignment (x))
#define LABEL_ALIGN(x) \
(align_labels_log ? align_labels_log : nds32_target_alignment (x))
#define ASM_OUTPUT_ALIGN(stream, power) \
fprintf (stream, "\t.align\t%d\n", power)
/* Controlling Debugging Information Format. */
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
#define DWARF2_DEBUGGING_INFO 1
#define DWARF2_ASM_LINE_DEBUG_INFO 1
/* Cross Compilation and Floating Point. */
/* Mode Switching Instructions. */
/* Defining target-specific uses of __attribute__. */
/* Emulating TLS. */
/* Defining coprocessor specifics for MIPS targets. */
/* Parameters for Precompiled Header Validity Checking. */
/* C++ ABI parameters. */
/* Adding support for named address spaces. */
/* Miscellaneous Parameters. */
/* This is the machine mode that elements of a jump-table should have. */
#define CASE_VECTOR_MODE Pmode
/* Return the preferred mode for and addr_diff_vec when the mininum
and maximum offset are known. */
#define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
nds32_case_vector_shorten_mode (min_offset, max_offset, body)
/* Generate pc relative jump table when -fpic or -Os. */
#define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
/* Define this macro if operations between registers with integral mode
smaller than a word are always performed on the entire register. */
#define WORD_REGISTER_OPERATIONS 1
/* A C expression indicating when insns that read memory in mem_mode,
an integral mode narrower than a word, set the bits outside of mem_mode
to be either the sign-extension or the zero-extension of the data read. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations. */
#define MOVE_MAX 4
/* A C expression that is nonzero if on this machine the number of bits
actually used for the count of a shift operation is equal to the number
of bits needed to represent the size of the object being shifted. */
#define SHIFT_COUNT_TRUNCATED 1
/* A C expression describing the value returned by a comparison operator with
an integral mode and stored by a store-flag instruction ('cstoremode4')
when the condition is true. */
#define STORE_FLAG_VALUE 1
/* A C expression that indicates whether the architecture defines a value for
clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
in ISA spec */
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
/* An alias for the machine mode for pointers. */
#define Pmode SImode
/* An alias for the machine mode used for memory references to functions
being called, in call RTL expressions. */
#define FUNCTION_MODE SImode
/* ------------------------------------------------------------------------ */
|