aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/nds32/nds32-md-auxiliary.c
blob: 53ad24ea1fa98da9f11e07814c685aa8bbcc354d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* Auxiliary functions for output asm template or expand rtl
   pattern of Andes NDS32 cpu for GNU compiler
   Copyright (C) 2012-2015 Free Software Foundation, Inc.
   Contributed by Andes Technology Corporation.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

/* ------------------------------------------------------------------------ */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "optabs.h"		/* For GEN_FCN.  */
#include "recog.h"
#include "output.h"
#include "tm-constrs.h"

/* ------------------------------------------------------------------------ */

/* A helper function to return character based on byte size.  */
static char
nds32_byte_to_size (int byte)
{
  switch (byte)
    {
    case 4:
      return 'w';
    case 2:
      return 'h';
    case 1:
      return 'b';
    default:
      /* Normally it should not be here.  */
      gcc_unreachable ();
    }
}

/* A helper function to return memory format.  */
enum nds32_16bit_address_type
nds32_mem_format (rtx op)
{
  machine_mode mode_test;
  int val;
  int regno;

  if (!TARGET_16_BIT)
    return ADDRESS_NOT_16BIT_FORMAT;

  mode_test = GET_MODE (op);

  op = XEXP (op, 0);

  /* 45 format.  */
  if (GET_CODE (op) == REG && (mode_test == SImode))
    return ADDRESS_REG;

  /* 333 format for QI/HImode.  */
  if (GET_CODE (op) == REG && (REGNO (op) < R8_REGNUM))
    return ADDRESS_LO_REG_IMM3U;

  /* post_inc 333 format.  */
  if ((GET_CODE (op) == POST_INC) && (mode_test == SImode))
    {
      regno = REGNO(XEXP (op, 0));

      if (regno < 8)
	return ADDRESS_POST_INC_LO_REG_IMM3U;
    }

  /* post_inc 333 format.  */
  if ((GET_CODE (op) == POST_MODIFY)
      && (mode_test == SImode)
      && (REG_P (XEXP (XEXP (op, 1), 0)))
      && (CONST_INT_P (XEXP (XEXP (op, 1), 1))))
    {
      regno = REGNO (XEXP (XEXP (op, 1), 0));
      val = INTVAL (XEXP (XEXP (op, 1), 1));
      if (regno < 8 && val < 32)
	return ADDRESS_POST_INC_LO_REG_IMM3U;
    }

  if ((GET_CODE (op) == PLUS)
      && (GET_CODE (XEXP (op, 0)) == REG)
      && (GET_CODE (XEXP (op, 1)) == CONST_INT))
    {
      val = INTVAL (XEXP (op, 1));

      regno = REGNO(XEXP (op, 0));

      if (regno > 7
	  && regno != SP_REGNUM
	  && regno != FP_REGNUM)
	return ADDRESS_NOT_16BIT_FORMAT;

      switch (mode_test)
	{
	case QImode:
	  /* 333 format.  */
	  if (val >= 0 && val < 8 && regno < 8)
	    return ADDRESS_LO_REG_IMM3U;
	  break;

	case HImode:
	  /* 333 format.  */
	  if (val >= 0 && val < 16 && (val % 2 == 0) && regno < 8)
	    return ADDRESS_LO_REG_IMM3U;
	  break;

	case SImode:
	case SFmode:
	case DFmode:
	  /* fp imply 37 format.  */
	  if ((regno == FP_REGNUM) &&
	      (val >= 0 && val < 512 && (val % 4 == 0)))
	    return ADDRESS_FP_IMM7U;
	  /* sp imply 37 format.  */
	  else if ((regno == SP_REGNUM) &&
		   (val >= 0 && val < 512 && (val % 4 == 0)))
	    return ADDRESS_SP_IMM7U;
	  /* 333 format.  */
	  else if (val >= 0 && val < 32 && (val % 4 == 0) && regno < 8)
	    return ADDRESS_LO_REG_IMM3U;
	  break;

	default:
	  break;
	}
    }

  return ADDRESS_NOT_16BIT_FORMAT;
}

/* Output 16-bit store.  */
const char *
nds32_output_16bit_store (rtx *operands, int byte)
{
  char pattern[100];
  char size;
  rtx code = XEXP (operands[0], 0);

  size = nds32_byte_to_size (byte);

  switch (nds32_mem_format (operands[0]))
    {
    case ADDRESS_REG:
      operands[0] = code;
      output_asm_insn ("swi450\t%1, [%0]", operands);
      break;
    case ADDRESS_LO_REG_IMM3U:
      snprintf (pattern, sizeof (pattern), "s%ci333\t%%1, %%0", size);
      output_asm_insn (pattern, operands);
      break;
    case ADDRESS_POST_INC_LO_REG_IMM3U:
      snprintf (pattern, sizeof (pattern), "s%ci333.bi\t%%1, %%0", size);
      output_asm_insn (pattern, operands);
      break;
    case ADDRESS_FP_IMM7U:
      output_asm_insn ("swi37\t%1, %0", operands);
      break;
    case ADDRESS_SP_IMM7U:
      /* Get immediate value and set back to operands[1].  */
      operands[0] = XEXP (code, 1);
      output_asm_insn ("swi37.sp\t%1, [ + (%0)]", operands);
      break;
    default:
      break;
    }

  return "";
}

/* Output 16-bit load.  */
const char *
nds32_output_16bit_load (rtx *operands, int byte)
{
  char pattern[100];
  unsigned char size;
  rtx code = XEXP (operands[1], 0);

  size = nds32_byte_to_size (byte);

  switch (nds32_mem_format (operands[1]))
    {
    case ADDRESS_REG:
      operands[1] = code;
      output_asm_insn ("lwi450\t%0, [%1]", operands);
      break;
    case ADDRESS_LO_REG_IMM3U:
      snprintf (pattern, sizeof (pattern), "l%ci333\t%%0, %%1", size);
      output_asm_insn (pattern, operands);
      break;
    case ADDRESS_POST_INC_LO_REG_IMM3U:
      snprintf (pattern, sizeof (pattern), "l%ci333.bi\t%%0, %%1", size);
      output_asm_insn (pattern, operands);
      break;
    case ADDRESS_FP_IMM7U:
      output_asm_insn ("lwi37\t%0, %1", operands);
      break;
    case ADDRESS_SP_IMM7U:
      /* Get immediate value and set back to operands[0].  */
      operands[1] = XEXP (code, 1);
      output_asm_insn ("lwi37.sp\t%0, [ + (%1)]", operands);
      break;
    default:
      break;
    }

  return "";
}

/* Output 32-bit store.  */
const char *
nds32_output_32bit_store (rtx *operands, int byte)
{
  char pattern[100];
  unsigned char size;
  rtx code = XEXP (operands[0], 0);

  size = nds32_byte_to_size (byte);

  switch (GET_CODE (code))
    {
    case REG:
      /* (mem (reg X))
	 => access location by using register,
	 use "sbi / shi / swi" */
      snprintf (pattern, sizeof (pattern), "s%ci\t%%1, %%0", size);
      break;

    case SYMBOL_REF:
    case CONST:
      /* (mem (symbol_ref X))
	 (mem (const (...)))
	 => access global variables,
	 use "sbi.gp / shi.gp / swi.gp" */
      operands[0] = XEXP (operands[0], 0);
      snprintf (pattern, sizeof (pattern), "s%ci.gp\t%%1, [ + %%0]", size);
      break;

    case POST_INC:
      /* (mem (post_inc reg))
	 => access location by using register which will be post increment,
	 use "sbi.bi / shi.bi / swi.bi" */
      snprintf (pattern, sizeof (pattern),
		"s%ci.bi\t%%1, %%0, %d", size, byte);
      break;

    case POST_DEC:
      /* (mem (post_dec reg))
	 => access location by using register which will be post decrement,
	 use "sbi.bi / shi.bi / swi.bi" */
      snprintf (pattern, sizeof (pattern),
		"s%ci.bi\t%%1, %%0, -%d", size, byte);
      break;

    case POST_MODIFY:
      switch (GET_CODE (XEXP (XEXP (code, 1), 1)))
	{
	case REG:
	case SUBREG:
	  /* (mem (post_modify (reg) (plus (reg) (reg))))
	     => access location by using register which will be
	     post modified with reg,
	     use "sb.bi/ sh.bi / sw.bi" */
	  snprintf (pattern, sizeof (pattern), "s%c.bi\t%%1, %%0", size);
	  break;
	case CONST_INT:
	  /* (mem (post_modify (reg) (plus (reg) (const_int))))
	     => access location by using register which will be
	     post modified with const_int,
	     use "sbi.bi/ shi.bi / swi.bi" */
	  snprintf (pattern, sizeof (pattern), "s%ci.bi\t%%1, %%0", size);
	  break;
	default:
	  abort ();
	}
      break;

    case PLUS:
      switch (GET_CODE (XEXP (code, 1)))
	{
	case REG:
	case SUBREG:
	  /* (mem (plus reg reg)) or (mem (plus (mult reg const_int) reg))
	     => access location by adding two registers,
	     use "sb / sh / sw" */
	  snprintf (pattern, sizeof (pattern), "s%c\t%%1, %%0", size);
	  break;
	case CONST_INT:
	  /* (mem (plus reg const_int))
	     => access location by adding one register with const_int,
	     use "sbi / shi / swi" */
	  snprintf (pattern, sizeof (pattern), "s%ci\t%%1, %%0", size);
	  break;
	default:
	  abort ();
	}
      break;

    case LO_SUM:
      operands[2] = XEXP (code, 1);
      operands[0] = XEXP (code, 0);
      snprintf (pattern, sizeof (pattern),
		"s%ci\t%%1, [%%0 + lo12(%%2)]", size);
      break;

    default:
      abort ();
    }

  output_asm_insn (pattern, operands);
  return "";
}

/* Output 32-bit load.  */
const char *
nds32_output_32bit_load (rtx *operands, int byte)
{
  char pattern[100];
  unsigned char size;
  rtx code;

  code = XEXP (operands[1], 0);

  size = nds32_byte_to_size (byte);

  switch (GET_CODE (code))
    {
    case REG:
      /* (mem (reg X))
	 => access location by using register,
	 use "lbi / lhi / lwi" */
      snprintf (pattern, sizeof (pattern), "l%ci\t%%0, %%1", size);
      break;

    case SYMBOL_REF:
    case CONST:
      /* (mem (symbol_ref X))
	 (mem (const (...)))
	 => access global variables,
	 use "lbi.gp / lhi.gp / lwi.gp" */
      operands[1] = XEXP (operands[1], 0);
      snprintf (pattern, sizeof (pattern), "l%ci.gp\t%%0, [ + %%1]", size);
      break;

    case POST_INC:
      /* (mem (post_inc reg))
	 => access location by using register which will be post increment,
	 use "lbi.bi / lhi.bi / lwi.bi" */
      snprintf (pattern, sizeof (pattern),
		"l%ci.bi\t%%0, %%1, %d", size, byte);
      break;

    case POST_DEC:
      /* (mem (post_dec reg))
	 => access location by using register which will be post decrement,
	 use "lbi.bi / lhi.bi / lwi.bi" */
      snprintf (pattern, sizeof (pattern),
		"l%ci.bi\t%%0, %%1, -%d", size, byte);
      break;

    case POST_MODIFY:
      switch (GET_CODE (XEXP (XEXP (code, 1), 1)))
	{
	case REG:
	case SUBREG:
	  /* (mem (post_modify (reg) (plus (reg) (reg))))
	     => access location by using register which will be
	     post modified with reg,
	     use "lb.bi/ lh.bi / lw.bi" */
	  snprintf (pattern, sizeof (pattern), "l%c.bi\t%%0, %%1", size);
	  break;
	case CONST_INT:
	  /* (mem (post_modify (reg) (plus (reg) (const_int))))
	     => access location by using register which will be
	     post modified with const_int,
	     use "lbi.bi/ lhi.bi / lwi.bi" */
	  snprintf (pattern, sizeof (pattern), "l%ci.bi\t%%0, %%1", size);
	  break;
	default:
	  abort ();
	}
      break;

    case PLUS:
      switch (GET_CODE (XEXP (code, 1)))
	{
	case REG:
	case SUBREG:
	  /* (mem (plus reg reg)) or (mem (plus (mult reg const_int) reg))
	     use "lb / lh / lw" */
	  snprintf (pattern, sizeof (pattern), "l%c\t%%0, %%1", size);
	  break;
	case CONST_INT:
	  /* (mem (plus reg const_int))
	     => access location by adding one register with const_int,
	     use "lbi / lhi / lwi" */
	  snprintf (pattern, sizeof (pattern), "l%ci\t%%0, %%1", size);
	  break;
	default:
	  abort ();
	}
      break;

    case LO_SUM:
      operands[2] = XEXP (code, 1);
      operands[1] = XEXP (code, 0);
      snprintf (pattern, sizeof (pattern),
		"l%ci\t%%0, [%%1 + lo12(%%2)]", size);
      break;

    default:
      abort ();
    }

  output_asm_insn (pattern, operands);
  return "";
}

/* Output 32-bit load with signed extension.  */
const char *
nds32_output_32bit_load_s (rtx *operands, int byte)
{
  char pattern[100];
  unsigned char size;
  rtx code;

  code = XEXP (operands[1], 0);

  size = nds32_byte_to_size (byte);

  switch (GET_CODE (code))
    {
    case REG:
      /* (mem (reg X))
         => access location by using register,
         use "lbsi / lhsi" */
      snprintf (pattern, sizeof (pattern), "l%csi\t%%0, %%1", size);
      break;

    case SYMBOL_REF:
    case CONST:
      /* (mem (symbol_ref X))
         (mem (const (...)))
         => access global variables,
         use "lbsi.gp / lhsi.gp" */
      operands[1] = XEXP (operands[1], 0);
      snprintf (pattern, sizeof (pattern), "l%csi.gp\t%%0, [ + %%1]", size);
      break;

    case POST_INC:
      /* (mem (post_inc reg))
         => access location by using register which will be post increment,
         use "lbsi.bi / lhsi.bi" */
      snprintf (pattern, sizeof (pattern),
		"l%csi.bi\t%%0, %%1, %d", size, byte);
      break;

    case POST_DEC:
      /* (mem (post_dec reg))
         => access location by using register which will be post decrement,
         use "lbsi.bi / lhsi.bi" */
      snprintf (pattern, sizeof (pattern),
		"l%csi.bi\t%%0, %%1, -%d", size, byte);
      break;

    case POST_MODIFY:
      switch (GET_CODE (XEXP (XEXP (code, 1), 1)))
	{
	case REG:
	case SUBREG:
	  /* (mem (post_modify (reg) (plus (reg) (reg))))
	     => access location by using register which will be
	     post modified with reg,
	     use "lbs.bi/ lhs.bi" */
	  snprintf (pattern, sizeof (pattern), "l%cs.bi\t%%0, %%1", size);
	  break;
	case CONST_INT:
	  /* (mem (post_modify (reg) (plus (reg) (const_int))))
	     => access location by using register which will be
	     post modified with const_int,
	     use "lbsi.bi/ lhsi.bi" */
	  snprintf (pattern, sizeof (pattern), "l%csi.bi\t%%0, %%1", size);
	  break;
	default:
	  abort ();
	}
      break;

    case PLUS:
      switch (GET_CODE (XEXP (code, 1)))
	{
	case REG:
	case SUBREG:
	  /* (mem (plus reg reg)) or (mem (plus (mult reg const_int) reg))
	     use "lbs / lhs" */
	  snprintf (pattern, sizeof (pattern), "l%cs\t%%0, %%1", size);
	  break;
	case CONST_INT:
	  /* (mem (plus reg const_int))
	     => access location by adding one register with const_int,
	     use "lbsi / lhsi" */
	  snprintf (pattern, sizeof (pattern), "l%csi\t%%0, %%1", size);
	  break;
	default:
	  abort ();
	}
      break;

    case LO_SUM:
      operands[2] = XEXP (code, 1);
      operands[1] = XEXP (code, 0);
      snprintf (pattern, sizeof (pattern),
		"l%csi\t%%0, [%%1 + lo12(%%2)]", size);
      break;

    default:
      abort ();
    }

  output_asm_insn (pattern, operands);
  return "";
}

/* Function to output stack push operation.
   We need to deal with normal stack push multiple or stack v3push.  */
const char *
nds32_output_stack_push (rtx par_rtx)
{
  /* A string pattern for output_asm_insn().  */
  char pattern[100];
  /* The operands array which will be used in output_asm_insn().  */
  rtx operands[3];
  /* Pick up varargs first regno and last regno for further use.  */
  int rb_va_args = cfun->machine->va_args_first_regno;
  int re_va_args = cfun->machine->va_args_last_regno;
  int last_argument_regno = NDS32_FIRST_GPR_REGNUM
			    + NDS32_MAX_GPR_REGS_FOR_ARGS
			    - 1;
  /* Pick up callee-saved first regno and last regno for further use.  */
  int rb_callee_saved = cfun->machine->callee_saved_first_gpr_regno;
  int re_callee_saved = cfun->machine->callee_saved_last_gpr_regno;

  /* First we need to check if we are pushing argument registers not used
     for the named arguments.  If so, we have to create 'smw.adm' (push.s)
     instruction.  */
  if (reg_mentioned_p (gen_rtx_REG (SImode, last_argument_regno), par_rtx))
    {
      /* Set operands[0] and operands[1].  */
      operands[0] = gen_rtx_REG (SImode, rb_va_args);
      operands[1] = gen_rtx_REG (SImode, re_va_args);
      /* Create assembly code pattern: "Rb, Re, { }".  */
      snprintf (pattern, sizeof (pattern), "push.s\t%s", "%0, %1, { }");
      /* We use output_asm_insn() to output assembly code by ourself.  */
      output_asm_insn (pattern, operands);
      return "";
    }

  /* If we step here, we are going to do v3push or multiple push operation.  */

  /* The v3push/v3pop instruction should only be applied on
     none-isr and none-variadic function.  */
  if (TARGET_V3PUSH
      && !nds32_isr_function_p (current_function_decl)
      && (cfun->machine->va_args_size == 0))
    {
      /* For stack v3push:
           operands[0]: Re
           operands[1]: imm8u */

      /* This variable is to check if 'push25 Re,imm8u' is available.  */
      int sp_adjust;

      /* Set operands[0].  */
      operands[0] = gen_rtx_REG (SImode, re_callee_saved);

      /* Check if we can generate 'push25 Re,imm8u',
         otherwise, generate 'push25 Re,0'.  */
      sp_adjust = cfun->machine->local_size
		  + cfun->machine->out_args_size
		  + cfun->machine->callee_saved_area_gpr_padding_bytes;
      if (satisfies_constraint_Iu08 (GEN_INT (sp_adjust))
	  && NDS32_DOUBLE_WORD_ALIGN_P (sp_adjust))
	operands[1] = GEN_INT (sp_adjust);
      else
	operands[1] = GEN_INT (0);

      /* Create assembly code pattern.  */
      snprintf (pattern, sizeof (pattern), "push25\t%%0, %%1");
    }
  else
    {
      /* For normal stack push multiple:
         operands[0]: Rb
         operands[1]: Re
         operands[2]: En4 */

      /* This variable is used to check if we only need to generate En4 field.
         As long as Rb==Re=SP_REGNUM, we set this variable to 1.  */
      int push_en4_only_p = 0;

      /* Set operands[0] and operands[1].  */
      operands[0] = gen_rtx_REG (SImode, rb_callee_saved);
      operands[1] = gen_rtx_REG (SImode, re_callee_saved);

      /* 'smw.adm $sp,[$sp],$sp,0' means push nothing.  */
      if (!cfun->machine->fp_size
	  && !cfun->machine->gp_size
	  && !cfun->machine->lp_size
	  && REGNO (operands[0]) == SP_REGNUM
	  && REGNO (operands[1]) == SP_REGNUM)
	{
	  /* No need to generate instruction.  */
	  return "";
	}
      else
	{
	  /* If Rb==Re=SP_REGNUM, we only need to generate En4 field.  */
	  if (REGNO (operands[0]) == SP_REGNUM
	      && REGNO (operands[1]) == SP_REGNUM)
	    push_en4_only_p = 1;

	  /* Create assembly code pattern.
	     We need to handle the form: "Rb, Re, { $fp $gp $lp }".  */
	  snprintf (pattern, sizeof (pattern),
		    "push.s\t%s{%s%s%s }",
		    push_en4_only_p ? "" : "%0, %1, ",
		    cfun->machine->fp_size ? " $fp" : "",
		    cfun->machine->gp_size ? " $gp" : "",
		    cfun->machine->lp_size ? " $lp" : "");
	}
    }

  /* We use output_asm_insn() to output assembly code by ourself.  */
  output_asm_insn (pattern, operands);
  return "";
}

/* Function to output stack pop operation.
   We need to deal with normal stack pop multiple or stack v3pop.  */
const char *
nds32_output_stack_pop (rtx par_rtx ATTRIBUTE_UNUSED)
{
  /* A string pattern for output_asm_insn().  */
  char pattern[100];
  /* The operands array which will be used in output_asm_insn().  */
  rtx operands[3];
  /* Pick up callee-saved first regno and last regno for further use.  */
  int rb_callee_saved = cfun->machine->callee_saved_first_gpr_regno;
  int re_callee_saved = cfun->machine->callee_saved_last_gpr_regno;

  /* If we step here, we are going to do v3pop or multiple pop operation.  */

  /* The v3push/v3pop instruction should only be applied on
     none-isr and none-variadic function.  */
  if (TARGET_V3PUSH
      && !nds32_isr_function_p (current_function_decl)
      && (cfun->machine->va_args_size == 0))
    {
      /* For stack v3pop:
           operands[0]: Re
           operands[1]: imm8u */

      /* This variable is to check if 'pop25 Re,imm8u' is available.  */
      int sp_adjust;

      /* Set operands[0].  */
      operands[0] = gen_rtx_REG (SImode, re_callee_saved);

      /* Check if we can generate 'pop25 Re,imm8u',
         otherwise, generate 'pop25 Re,0'.
         We have to consider alloca issue as well.
         If the function does call alloca(), the stack pointer is not fixed.
         In that case, we cannot use 'pop25 Re,imm8u' directly.
         We have to caculate stack pointer from frame pointer
         and then use 'pop25 Re,0'.  */
      sp_adjust = cfun->machine->local_size
		  + cfun->machine->out_args_size
		  + cfun->machine->callee_saved_area_gpr_padding_bytes;
      if (satisfies_constraint_Iu08 (GEN_INT (sp_adjust))
	  && NDS32_DOUBLE_WORD_ALIGN_P (sp_adjust)
	  && !cfun->calls_alloca)
	operands[1] = GEN_INT (sp_adjust);
      else
	operands[1] = GEN_INT (0);

      /* Create assembly code pattern.  */
      snprintf (pattern, sizeof (pattern), "pop25\t%%0, %%1");
    }
  else
    {
      /* For normal stack pop multiple:
         operands[0]: Rb
         operands[1]: Re
         operands[2]: En4 */

      /* This variable is used to check if we only need to generate En4 field.
         As long as Rb==Re=SP_REGNUM, we set this variable to 1.  */
      int pop_en4_only_p = 0;

      /* Set operands[0] and operands[1].  */
      operands[0] = gen_rtx_REG (SImode, rb_callee_saved);
      operands[1] = gen_rtx_REG (SImode, re_callee_saved);

      /* 'lmw.bim $sp,[$sp],$sp,0' means pop nothing.  */
      if (!cfun->machine->fp_size
	  && !cfun->machine->gp_size
	  && !cfun->machine->lp_size
	  && REGNO (operands[0]) == SP_REGNUM
	  && REGNO (operands[1]) == SP_REGNUM)
	{
	  /* No need to generate instruction.  */
	  return "";
	}
      else
	{
	  /* If Rb==Re=SP_REGNUM, we only need to generate En4 field.  */
	  if (REGNO (operands[0]) == SP_REGNUM
	      && REGNO (operands[1]) == SP_REGNUM)
	    pop_en4_only_p = 1;

	  /* Create assembly code pattern.
	     We need to handle the form: "Rb, Re, { $fp $gp $lp }".  */
	  snprintf (pattern, sizeof (pattern),
		    "pop.s\t%s{%s%s%s }",
		    pop_en4_only_p ? "" : "%0, %1, ",
		    cfun->machine->fp_size ? " $fp" : "",
		    cfun->machine->gp_size ? " $gp" : "",
		    cfun->machine->lp_size ? " $lp" : "");
	}
    }

  /* We use output_asm_insn() to output assembly code by ourself.  */
  output_asm_insn (pattern, operands);
  return "";
}

/* Function to generate PC relative jump table.
   Refer to nds32.md for more details.

   The following is the sample for the case that diff value
   can be presented in '.short' size.

     addi    $r1, $r1, -(case_lower_bound)
     slti    $ta, $r1, (case_number)
     beqz    $ta, .L_skip_label

     la      $ta, .L35             ! get jump table address
     lh      $r1, [$ta + $r1 << 1] ! load symbol diff from jump table entry
     addi    $ta, $r1, $ta
     jr5     $ta

     ! jump table entry
   L35:
     .short  .L25-.L35
     .short  .L26-.L35
     .short  .L27-.L35
     .short  .L28-.L35
     .short  .L29-.L35
     .short  .L30-.L35
     .short  .L31-.L35
     .short  .L32-.L35
     .short  .L33-.L35
     .short  .L34-.L35 */
const char *
nds32_output_casesi_pc_relative (rtx *operands)
{
  machine_mode mode;
  rtx diff_vec;

  diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[1])));

  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);

  /* Step C: "t <-- operands[1]".  */
  output_asm_insn ("la\t$ta, %l1", operands);

  /* Get the mode of each element in the difference vector.  */
  mode = GET_MODE (diff_vec);

  /* Step D: "z <-- (mem (plus (operands[0] << m) t))",
     where m is 0, 1, or 2 to load address-diff value from table.  */
  switch (mode)
    {
    case QImode:
      output_asm_insn ("lb\t%2, [$ta + %0 << 0]", operands);
      break;
    case HImode:
      output_asm_insn ("lh\t%2, [$ta + %0 << 1]", operands);
      break;
    case SImode:
      output_asm_insn ("lw\t%2, [$ta + %0 << 2]", operands);
      break;
    default:
      gcc_unreachable ();
    }

  /* Step E: "t <-- z + t".
     Add table label_ref with address-diff value to
     obtain target case address.  */
  output_asm_insn ("add\t$ta, %2, $ta", operands);

  /* Step F: jump to target with register t.  */
  if (TARGET_16_BIT)
    return "jr5\t$ta";
  else
    return "jr\t$ta";
}

/* Function to generate normal jump table.  */
const char *
nds32_output_casesi (rtx *operands)
{
  /* Step C: "t <-- operands[1]".  */
  output_asm_insn ("la\t$ta, %l1", operands);

  /* Step D: "z <-- (mem (plus (operands[0] << 2) t))".  */
  output_asm_insn ("lw\t%2, [$ta + %0 << 2]", operands);

  /* No need to perform Step E, which is only used for
     pc relative jump table.  */

  /* Step F: jump to target with register z.  */
  if (TARGET_16_BIT)
    return "jr5\t%2";
  else
    return "jr\t%2";
}

/* ------------------------------------------------------------------------ */