aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/m68k/m68k.h
blob: 434c25d76a971e759db3afa98e2a7a724367f668 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
/* Definitions of target machine for GCC for Motorola 680x0/ColdFire.
   Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

/* We need to have MOTOROLA always defined (either 0 or 1) because we use
   if-statements and ?: on it.  This way we have compile-time error checking
   for both the MOTOROLA and MIT code paths.  We do rely on the host compiler
   to optimize away all constant tests.  */
#if MOTOROLA  /* Use the Motorola assembly syntax.  */
# define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)")
#else
# define MOTOROLA 0  /* Use the MIT assembly syntax.  */
# define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)")
#endif

/* Handle --with-cpu default option from configure script.  */
#define OPTION_DEFAULT_SPECS						\
  { "cpu",   "%{!mc68000:%{!m68000:%{!m68302:%{!m68010:%{!mc68020:%{!m68020:\
%{!m68030:%{!m68040:%{!m68020-40:%{!m68020-60:%{!m68060:%{!mcpu32:\
%{!m68332:%{!m5200:%{!m5206e:%{!m528x:%{!m5307:%{!m5407:%{!mcfv4e:\
%{!mcpu=*:%{!march=*:-%(VALUE)}}}}}}}}}}}}}}}}}}}}}" },

/* Pass flags to gas indicating which type of processor we have.  This
   can be simplified when we can rely on the assembler supporting .cpu
   and .arch directives.  */

#define ASM_CPU_SPEC "\
%{m68851}%{mno-68851} %{m68881}%{mno-68881} %{msoft-float:-mno-float} \
%{m68000}%{m68302}%{mc68000}%{m68010}%{m68020}%{mc68020}%{m68030}\
%{m68040}%{m68020-40:-m68040}%{m68020-60:-m68040}\
%{m68060}%{mcpu32}%{m68332}%{m5200}%{m5206e}%{m528x}%{m5307}%{m5407}%{mcfv4e}\
%{mcpu=*:-mcpu=%*}%{march=*:-march=%*}\
"

#define ASM_SPEC "%(asm_cpu_spec)"

#define EXTRA_SPECS					\
  { "asm_cpu_spec", ASM_CPU_SPEC },			\
  SUBTARGET_EXTRA_SPECS

#define SUBTARGET_EXTRA_SPECS

/* Note that some other tm.h files include this one and then override
   many of the definitions that relate to assembler syntax.  */

#define TARGET_CPU_CPP_BUILTINS()					\
  do									\
    {									\
      builtin_define ("__m68k__");					\
      builtin_define_std ("mc68000");					\
      /* The other mc680x0 macros have traditionally been derived	\
	 from the tuning setting.  For example, -m68020-60 defines	\
	 m68060, even though it generates pure 68020 code.  */		\
      switch (m68k_tune)						\
	{								\
	case u68010:							\
	  builtin_define_std ("mc68010");				\
	  break;							\
									\
	case u68020:							\
	  builtin_define_std ("mc68020");				\
	  break;							\
									\
	case u68030:							\
	  builtin_define_std ("mc68030");				\
	  break;							\
									\
	case u68040:							\
	  builtin_define_std ("mc68040");				\
	  break;							\
									\
	case u68060:							\
	  builtin_define_std ("mc68060");				\
	  break;							\
									\
	case u68020_60:							\
	  builtin_define_std ("mc68060");				\
	  /* Fall through.  */						\
	case u68020_40:							\
	  builtin_define_std ("mc68040");				\
	  builtin_define_std ("mc68030");				\
	  builtin_define_std ("mc68020");				\
	  break;							\
									\
	case ucpu32:							\
	  builtin_define_std ("mc68332");				\
	  builtin_define_std ("mcpu32");				\
	  builtin_define_std ("mc68020");				\
	  break;							\
									\
	case ucfv2:							\
	  builtin_define ("__mcfv2__");					\
	  break;							\
									\
    	case ucfv3:							\
	  builtin_define ("__mcfv3__");					\
	  break;							\
									\
	case ucfv4:							\
	  builtin_define ("__mcfv4__");					\
	  break;							\
									\
	case ucfv4e:							\
	  builtin_define ("__mcfv4e__");				\
	  break;							\
									\
	case ucfv5:							\
	  builtin_define ("__mcfv5__");					\
	  break;							\
									\
	default:							\
	  break;							\
	}								\
									\
      if (TARGET_68881)							\
	builtin_define ("__HAVE_68881__");				\
									\
      if (TARGET_COLDFIRE)						\
	{								\
	  const char *tmp;						\
	  								\
	  tmp = m68k_cpp_cpu_ident ("cf");			   	\
	  if (tmp)							\
	    builtin_define (tmp);					\
	  tmp = m68k_cpp_cpu_family ("cf");				\
	  if (tmp)							\
	    builtin_define (tmp);					\
	  builtin_define ("__mcoldfire__");				\
									\
	  if (TARGET_ISAC)						\
	    builtin_define ("__mcfisac__");				\
	  else if (TARGET_ISAB)						\
	    {								\
	      builtin_define ("__mcfisab__");				\
	      /* ISA_B: Legacy 5407 defines.  */			\
	      builtin_define ("__mcf5400__");				\
	      builtin_define ("__mcf5407__");				\
	    }								\
	  else if (TARGET_ISAAPLUS)					\
	    {								\
	      builtin_define ("__mcfisaaplus__");			\
	      /* ISA_A+: legacy defines.  */				\
	      builtin_define ("__mcf528x__");				\
	      builtin_define ("__mcf5200__");				\
	    }								\
	  else 								\
	    {								\
	      builtin_define ("__mcfisaa__");				\
	      /* ISA_A: legacy defines.  */				\
	      switch (m68k_tune)					\
		{							\
		case ucfv2:						\
		  builtin_define ("__mcf5200__");			\
		  break;						\
									\
		case ucfv3:						\
		  builtin_define ("__mcf5307__");			\
		  builtin_define ("__mcf5300__");			\
		  break;						\
									\
		default:						\
		  break;						\
		}							\
    	    }								\
	}								\
									\
      if (TARGET_COLDFIRE_FPU)						\
	builtin_define ("__mcffpu__");					\
									\
      if (TARGET_CF_HWDIV)						\
	builtin_define ("__mcfhwdiv__");				\
									\
      builtin_assert ("cpu=m68k");					\
      builtin_assert ("machine=m68k");					\
    }									\
  while (0)

/* Classify the groups of pseudo-ops used to assemble QI, HI and SI
   quantities.  */
#define INT_OP_STANDARD	0	/* .byte, .short, .long */
#define INT_OP_DOT_WORD	1	/* .byte, .word, .long */
#define INT_OP_NO_DOT   2	/* byte, short, long */
#define INT_OP_DC	3	/* dc.b, dc.w, dc.l */

/* Set the default.  */
#define INT_OP_GROUP INT_OP_DOT_WORD

/* Bit values used by m68k-devices.def to identify processor capabilities.  */
#define FL_BITFIELD  (1 << 0)    /* Support bitfield instructions.  */
#define FL_68881     (1 << 1)    /* (Default) support for 68881/2.  */
#define FL_COLDFIRE  (1 << 2)    /* ColdFire processor.  */
#define FL_CF_HWDIV  (1 << 3)    /* ColdFire hardware divide supported.  */
#define FL_CF_MAC    (1 << 4)    /* ColdFire MAC unit supported.  */
#define FL_CF_EMAC   (1 << 5)    /* ColdFire eMAC unit supported.  */
#define FL_CF_EMAC_B (1 << 6)    /* ColdFire eMAC-B unit supported.  */
#define FL_CF_USP    (1 << 7)    /* ColdFire User Stack Pointer supported.  */
#define FL_CF_FPU    (1 << 8)    /* ColdFire FPU supported.  */
#define FL_ISA_68000 (1 << 9)
#define FL_ISA_68010 (1 << 10)
#define FL_ISA_68020 (1 << 11)
#define FL_ISA_68040 (1 << 12)
#define FL_ISA_A     (1 << 13)
#define FL_ISA_APLUS (1 << 14)
#define FL_ISA_B     (1 << 15)
#define FL_ISA_C     (1 << 16)
#define FL_MMU 	     0   /* Used by multilib machinery.  */

#define TARGET_68010		((m68k_cpu_flags & FL_ISA_68010) != 0)
#define TARGET_68020		((m68k_cpu_flags & FL_ISA_68020) != 0)
#define TARGET_68040		((m68k_cpu_flags & FL_ISA_68040) != 0)
#define TARGET_COLDFIRE		((m68k_cpu_flags & FL_COLDFIRE) != 0)
#define TARGET_COLDFIRE_FPU	(m68k_fpu == FPUTYPE_COLDFIRE)
#define TARGET_68881		(m68k_fpu == FPUTYPE_68881)

/* Size (in bytes) of FPU registers.  */
#define TARGET_FP_REG_SIZE	(TARGET_COLDFIRE ? 8 : 12)

#define TARGET_ISAAPLUS		((m68k_cpu_flags & FL_ISA_APLUS) != 0)
#define TARGET_ISAB		((m68k_cpu_flags & FL_ISA_B) != 0)
#define TARGET_ISAC		((m68k_cpu_flags & FL_ISA_C) != 0)

#define TUNE_68000	(m68k_tune == u68000)
#define TUNE_68010	(m68k_tune == u68010)
#define TUNE_68000_10	(TUNE_68000 || TUNE_68010)
#define TUNE_68030	(m68k_tune == u68030 \
			 || m68k_tune == u68020_40 \
			 || m68k_tune == u68020_60)
#define TUNE_68040	(m68k_tune == u68040 \
			 || m68k_tune == u68020_40 \
			 || m68k_tune == u68020_60)
#define TUNE_68060	(m68k_tune == u68060 || m68k_tune == u68020_60)
#define TUNE_68040_60	(TUNE_68040 || TUNE_68060)
#define TUNE_CPU32	(m68k_tune == ucpu32)
#define TUNE_CFV2	(m68k_tune == ucfv2)

#define OVERRIDE_OPTIONS   override_options()

/* These are meant to be redefined in the host dependent files */
#define SUBTARGET_OVERRIDE_OPTIONS

/* target machine storage layout */

/* "long double" is the same as "double" on ColdFire targets.  */

#define LONG_DOUBLE_TYPE_SIZE (TARGET_COLDFIRE ? 64 : 80)

/* We need to know the size of long double at compile-time in libgcc2.  */

#ifdef __mcoldfire__
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
#else
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
#endif

/* Set the value of FLT_EVAL_METHOD in float.h.  When using 68040 fp
   instructions, we get proper intermediate rounding, otherwise we
   get extended precision results.  */
#define TARGET_FLT_EVAL_METHOD ((TARGET_68040 || ! TARGET_68881) ? 0 : 2)

#define BITS_BIG_ENDIAN 1
#define BYTES_BIG_ENDIAN 1
#define WORDS_BIG_ENDIAN 1

#define UNITS_PER_WORD 4

#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
#define STACK_BOUNDARY 16
#define FUNCTION_BOUNDARY 16
#define EMPTY_FIELD_BOUNDARY 16

/* No data type wants to be aligned rounder than this.
   Most published ABIs say that ints should be aligned on 16 bit
   boundaries, but CPUs with 32-bit busses get better performance
   aligned on 32-bit boundaries.  ColdFires without a misalignment
   module require 32-bit alignment.  */
#define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)

#define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)

#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)

/* Define these to avoid dependence on meaning of `int'.  */
#define WCHAR_TYPE "long int"
#define WCHAR_TYPE_SIZE 32

/* Maximum number of library IDs we permit with -mid-shared-library.  */
#define MAX_LIBRARY_ID 255


/* Standard register usage.  */

/* For the m68k, we give the data registers numbers 0-7,
   the address registers numbers 010-017 (8-15),
   and the 68881 floating point registers numbers 020-027 (16-24).
   We also have a fake `arg-pointer' register 030 (25) used for
   register elimination.  */
#define FIRST_PSEUDO_REGISTER 25

/* All m68k targets (except AmigaOS) use %a5 as the PIC register  */
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 13 : INVALID_REGNUM)

/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.
   On the m68k, only the stack pointer is such.
   Our fake arg-pointer is obviously fixed as well.  */
#define FIXED_REGISTERS        \
 {/* Data registers.  */       \
  0, 0, 0, 0, 0, 0, 0, 0,      \
                               \
  /* Address registers.  */    \
  0, 0, 0, 0, 0, 0, 0, 1,      \
                               \
  /* Floating point registers  \
     (if available).  */       \
  0, 0, 0, 0, 0, 0, 0, 0,      \
                               \
  /* Arg pointer.  */          \
  1 }

/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you like.  */
#define CALL_USED_REGISTERS     \
 {/* Data registers.  */        \
  1, 1, 0, 0, 0, 0, 0, 0,       \
                                \
  /* Address registers.  */     \
  1, 1, 0, 0, 0, 0, 0, 1,       \
                                \
  /* Floating point registers   \
     (if available).  */        \
  1, 1, 0, 0, 0, 0, 0, 0,       \
                                \
  /* Arg pointer.  */           \
  1 }

#define REG_ALLOC_ORDER		\
{ /* d0/d1/a0/a1 */		\
  0, 1, 8, 9,			\
  /* d2-d7 */			\
  2, 3, 4, 5, 6, 7,		\
  /* a2-a7/arg */		\
  10, 11, 12, 13, 14, 15, 24,	\
  /* fp0-fp7 */			\
  16, 17, 18, 19, 20, 21, 22, 23\
}


/* Make sure everything's fine if we *don't* have a given processor.
   This assumes that putting a register in fixed_regs will keep the
   compiler's mitts completely off it.  We don't bother to zero it out
   of register classes.  */
#define CONDITIONAL_REGISTER_USAGE				\
{								\
  int i;							\
  HARD_REG_SET x;						\
  if (!TARGET_HARD_FLOAT)					\
    {								\
      COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);	\
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)		\
        if (TEST_HARD_REG_BIT (x, i))				\
	  fixed_regs[i] = call_used_regs[i] = 1;		\
    }								\
  if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
    fixed_regs[PIC_OFFSET_TABLE_REGNUM]				\
      = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
}

/* On the m68k, ordinary registers hold 32 bits worth;
   for the 68881 registers, a single register is always enough for
   anything that can be stored in them at all.  */
#define HARD_REGNO_NREGS(REGNO, MODE)   \
  ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE)	\
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))

/* A C expression that is nonzero if hard register NEW_REG can be
   considered for use as a rename register for OLD_REG register.  */

#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
  m68k_hard_regno_rename_ok (OLD_REG, NEW_REG)

/* Value is true if hard register REGNO can hold a value of machine-mode MODE.
   On the 68000, the cpu registers can hold any mode except bytes in
   address registers, the 68881 registers can hold only SFmode or DFmode.  */

#define HARD_REGNO_MODE_OK(REGNO, MODE) \
  m68k_regno_mode_ok ((REGNO), (MODE))

#define MODES_TIEABLE_P(MODE1, MODE2)			\
  (! TARGET_HARD_FLOAT					\
   || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
	|| GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)	\
       == (GET_MODE_CLASS (MODE2) == MODE_FLOAT		\
	   || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))

/* Specify the registers used for certain standard purposes.
   The values of these macros are register numbers.  */

#define STACK_POINTER_REGNUM 15

/* Most m68k targets use %a6 as a frame pointer.  The AmigaOS
   ABI uses %a6 for shared library calls, therefore the frame
   pointer is shifted to %a5 on this target.  */
#define FRAME_POINTER_REGNUM 14

#define FRAME_POINTER_REQUIRED 0

/* Base register for access to arguments of the function.
 * This isn't a hardware register. It will be eliminated to the
 * stack pointer or frame pointer.
 */
#define ARG_POINTER_REGNUM 24

#define STATIC_CHAIN_REGNUM 8

/* Register in which address to store a structure value
   is passed to a function.  */
#define M68K_STRUCT_VALUE_REGNUM 9



/* The m68k has three kinds of registers, so eight classes would be
   a complete set.  One of them is not needed.  */
enum reg_class {
  NO_REGS, DATA_REGS,
  ADDR_REGS, FP_REGS,
  GENERAL_REGS, DATA_OR_FP_REGS,
  ADDR_OR_FP_REGS, ALL_REGS,
  LIM_REG_CLASSES };

#define N_REG_CLASSES (int) LIM_REG_CLASSES

#define REG_CLASS_NAMES \
 { "NO_REGS", "DATA_REGS",              \
   "ADDR_REGS", "FP_REGS",              \
   "GENERAL_REGS", "DATA_OR_FP_REGS",   \
   "ADDR_OR_FP_REGS", "ALL_REGS" }

#define REG_CLASS_CONTENTS \
{					\
  {0x00000000},  /* NO_REGS */		\
  {0x000000ff},  /* DATA_REGS */	\
  {0x0100ff00},  /* ADDR_REGS */	\
  {0x00ff0000},  /* FP_REGS */		\
  {0x0100ffff},  /* GENERAL_REGS */	\
  {0x00ff00ff},  /* DATA_OR_FP_REGS */	\
  {0x01ffff00},  /* ADDR_OR_FP_REGS */	\
  {0x01ffffff},  /* ALL_REGS */		\
}

extern enum reg_class regno_reg_class[];
#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)])
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS ADDR_REGS

/* We do a trick here to modify the effective constraints on the
   machine description; we zorch the constraint letters that aren't
   appropriate for a specific target.  This allows us to guarantee
   that a specific kind of register will not be used for a given target
   without fiddling with the register classes above.  */
#define REG_CLASS_FROM_LETTER(C) \
  ((C) == 'a' ? ADDR_REGS :			\
   ((C) == 'd' ? DATA_REGS :			\
    ((C) == 'f' ? (TARGET_HARD_FLOAT ?		\
		   FP_REGS : NO_REGS) :		\
     NO_REGS)))

/* For the m68k, `I' is used for the range 1 to 8
   allowed as immediate shift counts and in addq.
   `J' is used for the range of signed numbers that fit in 16 bits.
   `K' is for numbers that moveq can't handle.
   `L' is for range -8 to -1, range of values that can be added with subq.
   `M' is for numbers that moveq+notb can't handle.
   'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
   'O' is for 16 (for rotate using swap).
   'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate.  */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
  ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
   (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
   (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
   (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
   (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
   (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
   (C) == 'O' ? (VALUE) == 16 : \
   (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)

/* "G" defines all of the floating constants that are *NOT* 68881
   constants.  This is so 68881 constants get reloaded and the
   fpmovecr is used.  */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
  ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )

/* `Q' means address register indirect addressing mode.
   `S' is for operands that satisfy 'm' when -mpcrel is in effect.
   `T' is for operands that satisfy 's' when -mpcrel is not in effect.
   `U' is for register offset addressing.  */
#define EXTRA_CONSTRAINT(OP,CODE)			\
  (((CODE) == 'S')					\
   ? (TARGET_PCREL					\
      && GET_CODE (OP) == MEM				\
      && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF		\
	  || GET_CODE (XEXP (OP, 0)) == LABEL_REF	\
	  || GET_CODE (XEXP (OP, 0)) == CONST))		\
   : 							\
  (((CODE) == 'T')					\
   ? ( !TARGET_PCREL 					\
      && (GET_CODE (OP) == SYMBOL_REF			\
	  || GET_CODE (OP) == LABEL_REF			\
	  || GET_CODE (OP) == CONST))			\
   :							\
  (((CODE) == 'Q')					\
   ? (GET_CODE (OP) == MEM 				\
      && GET_CODE (XEXP (OP, 0)) == REG)		\
   :							\
  (((CODE) == 'U')					\
   ? (GET_CODE (OP) == MEM 				\
      && GET_CODE (XEXP (OP, 0)) == PLUS		\
      && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG	\
      && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT) \
   :							\
   0))))

/* On the m68k, use a data reg if possible when the
   value is a constant in the range where moveq could be used
   and we ensure that QImodes are reloaded into data regs.  */
#define PREFERRED_RELOAD_CLASS(X,CLASS)  \
  ((GET_CODE (X) == CONST_INT			\
    && (unsigned) (INTVAL (X) + 0x80) < 0x100	\
    && (CLASS) != ADDR_REGS)			\
   ? DATA_REGS					\
   : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
   ? DATA_REGS					\
   : (GET_CODE (X) == CONST_DOUBLE					\
      && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
   ? (TARGET_HARD_FLOAT && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS) \
      ? FP_REGS : NO_REGS)						\
   : (TARGET_PCREL				\
      && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
	  || GET_CODE (X) == LABEL_REF))	\
   ? ADDR_REGS					\
   : (CLASS))

/* Force QImode output reloads from subregs to be allocated to data regs,
   since QImode stores from address regs are not supported.  We make the
   assumption that if the class is not ADDR_REGS, then it must be a superset
   of DATA_REGS.  */
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
  (((MODE) == QImode && (CLASS) != ADDR_REGS)	\
   ? DATA_REGS					\
   : (CLASS))

/* On the m68k, this is the size of MODE in words,
   except in the FP regs, where a single reg is always enough.  */
#define CLASS_MAX_NREGS(CLASS, MODE)	\
 ((CLASS) == FP_REGS ? 1 \
  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))

/* Moves between fp regs and other regs are two insns.  */
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
  (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)	        \
    || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)	\
    ? 4 : 2)

/* Stack layout; function entry, exit and calling.  */

#define STACK_GROWS_DOWNWARD
#define FRAME_GROWS_DOWNWARD 1
#define STARTING_FRAME_OFFSET 0

/* On the 680x0, sp@- in a byte insn really pushes a word.
   On the ColdFire, sp@- in a byte insn pushes just a byte.  */
#define PUSH_ROUNDING(BYTES) (TARGET_COLDFIRE ? BYTES : ((BYTES) + 1) & ~1)

#define FIRST_PARM_OFFSET(FNDECL) 8

/* On the 68000, the RTS insn cannot pop anything.
   On the 68010, the RTD insn may be used to pop them if the number
     of args is fixed, but if the number is variable then the caller
     must pop them all.  RTD can't be used for library calls now
     because the library is compiled with the Unix compiler.
   Use of RTD is a selectable option, since it is incompatible with
   standard Unix calling sequences.  If the option is not selected,
   the caller must always pop the args.  */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)   \
  ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE)	\
    && (TYPE_ARG_TYPES (FUNTYPE) == 0				\
	|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE)))	\
	    == void_type_node)))				\
   ? (SIZE) : 0)

/* On the m68k the return value is always in D0.  */
#define FUNCTION_VALUE(VALTYPE, FUNC)  \
  gen_rtx_REG (TYPE_MODE (VALTYPE), 0)

/* On the m68k the return value is always in D0.  */
#define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, 0)

/* On the m68k, D0 is the only register used.  */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

/* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
   more than one register.
   XXX This macro is m68k specific and used only for m68kemb.h.  */
#define NEEDS_UNTYPED_CALL 0

/* On the m68k, all arguments are usually pushed on the stack.  */
#define FUNCTION_ARG_REGNO_P(N) 0

/* On the m68k, this is a single integer, which is a number of bytes
   of arguments scanned so far.  */
#define CUMULATIVE_ARGS int

/* On the m68k, the offset starts at 0.  */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
 ((CUM) = 0)

#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
 ((CUM) += ((MODE) != BLKmode			\
	    ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
	    : (int_size_in_bytes (TYPE) + 3) & ~3))

/* On the m68k all args are always pushed.  */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0

#define FUNCTION_PROFILER(FILE, LABELNO)  \
  asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))

#define EXIT_IGNORE_STACK 1

/* Determine if the epilogue should be output as RTL.
   You should override this if you define FUNCTION_EXTRA_EPILOGUE.

   XXX This macro is m68k-specific and only used in m68k.md.  */
#define USE_RETURN_INSN use_return_insn ()

/* Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.

   On the m68k, the trampoline looks like this:
     movl #STATIC,a0
     jmp  FUNCTION

   WARNING: Targets that may run on 68040+ cpus must arrange for
   the instruction cache to be flushed.  Previous incarnations of
   the m68k trampoline code attempted to get around this by either
   using an out-of-line transfer function or pc-relative data, but
   the fact remains that the code to jump to the transfer function
   or the code to load the pc-relative data needs to be flushed
   just as much as the "variable" portion of the trampoline.
   Recognizing that a cache flush is going to be required anyway,
   dispense with such notions and build a smaller trampoline.

   Since more instructions are required to move a template into
   place than to create it on the spot, don't use a template.  */

#define TRAMPOLINE_SIZE 12
#define TRAMPOLINE_ALIGNMENT 16

/* Targets redefine this to invoke code to either flush the cache,
   or enable stack execution (or both).  */
#ifndef FINALIZE_TRAMPOLINE
#define FINALIZE_TRAMPOLINE(TRAMP)
#endif

/* We generate a two-instructions program at address TRAMP :
	movea.l &CXT,%a0
	jmp FNADDR  */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
{									\
  emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C));	\
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
  emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)),	\
		  GEN_INT(0x4EF9));					\
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
  FINALIZE_TRAMPOLINE(TRAMP);						\
}

/* This is the library routine that is used to transfer control from the
   trampoline to the actual nested function.  It is defined for backward
   compatibility, for linking with object code that used the old trampoline
   definition.

   A colon is used with no explicit operands to cause the template string
   to be scanned for %-constructs.

   The function name __transfer_from_trampoline is not actually used.
   The function definition just permits use of "asm with operands"
   (though the operand list is empty).  */
#define TRANSFER_FROM_TRAMPOLINE				\
void								\
__transfer_from_trampoline ()					\
{								\
  register char *a0 asm ("%a0");				\
  asm (GLOBAL_ASM_OP "___trampoline");				\
  asm ("___trampoline:");					\
  asm volatile ("move%.l %0,%@" : : "m" (a0[22]));		\
  asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18]));	\
  asm ("rts":);							\
}

/* There are two registers that can always be eliminated on the m68k.
   The frame pointer and the arg pointer can be replaced by either the
   hard frame pointer or to the stack pointer, depending upon the
   circumstances.  The hard frame pointer is not used before reload and
   so it is not eligible for elimination.  */
#define ELIMINABLE_REGS					\
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },		\
 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },		\
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }}

#define CAN_ELIMINATE(FROM, TO) \
  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
  (OFFSET) = m68k_initial_elimination_offset(FROM, TO)

/* Addressing modes, and classification of registers for them.  */

#define HAVE_POST_INCREMENT 1
#define HAVE_PRE_DECREMENT 1

/* Macros to check register numbers against specific register classes.  */

#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
#define REGNO_OK_FOR_BASE_P(REGNO) \
(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
#define REGNO_OK_FOR_DATA_P(REGNO) \
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
#define REGNO_OK_FOR_FP_P(REGNO) \
(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)

/* Now macros that check whether X is a register and also,
   strictly, whether it is in a specified class.

   These macros are specific to the m68k, and may be used only
   in code for printing assembler insns and in conditions for
   define_optimization.  */

/* 1 if X is a data register.  */
#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))

/* 1 if X is an fp register.  */
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))

/* 1 if X is an address register  */
#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))


#define MAX_REGS_PER_ADDRESS 2

#define CONSTANT_ADDRESS_P(X)   \
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
   || GET_CODE (X) == HIGH)

/* Nonzero if the constant value X is a legitimate general operand.
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
#define LEGITIMATE_CONSTANT_P(X) (GET_MODE (X) != XFmode)

#ifndef REG_OK_STRICT
#define PCREL_GENERAL_OPERAND_OK 0
#else
#define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
#endif

#define LEGITIMATE_PIC_OPERAND_P(X)	\
  (! symbolic_operand (X, VOIDmode)				\
   || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X))	\
   || PCREL_GENERAL_OPERAND_OK)

#ifndef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as an index
   or if it is a pseudo reg.  */
#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
/* Nonzero if X is a hard reg that can be used as a base reg
   or if it is a pseudo reg.  */
#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)

#else

/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))

#endif

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

   When generating PIC, an address involving a SYMBOL_REF is legitimate
   if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
   We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
   and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.

   Likewise for a LABEL_REF when generating PIC.

   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */

/* Allow SUBREG everywhere we allow REG.  This results in better code.  It
   also makes function inlining work when inline functions are called with
   arguments that are SUBREGs.  */

#define LEGITIMATE_BASE_REG_P(X)   \
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))	\
   || (GET_CODE (X) == SUBREG				\
       && GET_CODE (SUBREG_REG (X)) == REG		\
       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))

#define INDIRECTABLE_1_ADDRESS_P(X)  \
  ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
   || LEGITIMATE_BASE_REG_P (X)						\
   || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)		\
       && LEGITIMATE_BASE_REG_P (XEXP (X, 0)))				\
   || (GET_CODE (X) == PLUS						\
       && LEGITIMATE_BASE_REG_P (XEXP (X, 0))				\
       && GET_CODE (XEXP (X, 1)) == CONST_INT				\
       && (TARGET_68020							\
	   || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))	\
   || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
       && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)		\
   || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
       && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))

#define GO_IF_NONINDEXED_ADDRESS(X, ADDR)  \
{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }

/* Only labels on dispatch tables are valid for indexing from.  */
#define GO_IF_INDEXABLE_BASE(X, ADDR)				\
{ rtx temp;							\
  if (GET_CODE (X) == LABEL_REF					\
      && (temp = next_nonnote_insn (XEXP (X, 0))) != 0		\
      && GET_CODE (temp) == JUMP_INSN				\
      && (GET_CODE (PATTERN (temp)) == ADDR_VEC			\
	  || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC))	\
    goto ADDR;							\
  if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }

#define GO_IF_INDEXING(X, ADDR)	\
{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))		\
    { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }			\
  if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))		\
    { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }

#define GO_IF_INDEXED_ADDRESS(X, ADDR)	 \
{ GO_IF_INDEXING (X, ADDR);						\
  if (GET_CODE (X) == PLUS)						\
    { if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100))		\
	{ rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); }	\
      if (GET_CODE (XEXP (X, 0)) == CONST_INT				\
	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))		\
	{ rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }

/* ColdFire/5200 does not allow HImode index registers.  */
#define LEGITIMATE_INDEX_REG_P(X)   \
  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))	\
   || (! TARGET_COLDFIRE					\
       && GET_CODE (X) == SIGN_EXTEND			\
       && GET_CODE (XEXP (X, 0)) == REG			\
       && GET_MODE (XEXP (X, 0)) == HImode		\
       && REG_OK_FOR_INDEX_P (XEXP (X, 0)))		\
   || (GET_CODE (X) == SUBREG				\
       && GET_CODE (SUBREG_REG (X)) == REG		\
       && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))

#define LEGITIMATE_INDEX_P(X)   \
   (LEGITIMATE_INDEX_REG_P (X)				\
    || ((TARGET_68020 || TARGET_COLDFIRE) && GET_CODE (X) == MULT \
	&& LEGITIMATE_INDEX_REG_P (XEXP (X, 0))		\
	&& GET_CODE (XEXP (X, 1)) == CONST_INT		\
	&& (INTVAL (XEXP (X, 1)) == 2			\
	    || INTVAL (XEXP (X, 1)) == 4		\
	    || (INTVAL (XEXP (X, 1)) == 8		\
		&& (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE)))))

/* Coldfire FPU only accepts addressing modes 2-5 */
#define GO_IF_COLDFIRE_FPU_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
{ if (LEGITIMATE_BASE_REG_P (X)						\
      || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)		\
          && LEGITIMATE_BASE_REG_P (XEXP (X, 0)))			\
      || ((GET_CODE (X) == PLUS) && LEGITIMATE_BASE_REG_P (XEXP (X, 0))	\
          && (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
          && ((((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))	\
  goto ADDR;}

/* If pic, we accept INDEX+LABEL, which is what do_tablejump makes.  */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
{ if (TARGET_COLDFIRE_FPU && (GET_MODE_CLASS (MODE) == MODE_FLOAT))	\
    {									\
      GO_IF_COLDFIRE_FPU_LEGITIMATE_ADDRESS (MODE, X, ADDR);		\
    }									\
  else									\
    {									\
      GO_IF_NONINDEXED_ADDRESS (X, ADDR);				\
      GO_IF_INDEXED_ADDRESS (X, ADDR);					\
      if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS	\
	  && LEGITIMATE_INDEX_P (XEXP (X, 0))				\
	  && GET_CODE (XEXP (X, 1)) == LABEL_REF)			\
	goto ADDR;							\
    }}

/* Don't call memory_address_noforce for the address to fetch
   the switch offset.  This address is ok as it stands (see above),
   but memory_address_noforce would alter it.  */
#define PIC_CASE_VECTOR_ADDRESS(index) index

/* For the 68000, we handle X+REG by loading X into a register R and
   using R+REG.  R will go in an address reg and indexing will be used.
   However, if REG is a broken-out memory address or multiplication,
   nothing needs to be done because REG can certainly go in an address reg.  */
#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
{ register int ch = (X) != (OLDX);					\
  if (GET_CODE (X) == PLUS)						\
    { int copied = 0;							\
      if (GET_CODE (XEXP (X, 0)) == MULT)				\
	{ COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);}	\
      if (GET_CODE (XEXP (X, 1)) == MULT)				\
	{ COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);}	\
      if (ch && GET_CODE (XEXP (X, 1)) == REG				\
	  && GET_CODE (XEXP (X, 0)) == REG)				\
	{ if (TARGET_COLDFIRE_FPU					\
	      && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
	    { COPY_ONCE (X); X = force_operand (X, 0);}			\
	  goto WIN; }							\
      if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }		\
      if (GET_CODE (XEXP (X, 0)) == REG					\
	       || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND		\
		   && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG		\
		   && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode))	\
	{ register rtx temp = gen_reg_rtx (Pmode);			\
	  register rtx val = force_operand (XEXP (X, 1), 0);		\
	  emit_move_insn (temp, val);					\
	  COPY_ONCE (X);						\
	  XEXP (X, 1) = temp;						\
	  if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT \
	      && GET_CODE (XEXP (X, 0)) == REG)				\
	    X = force_operand (X, 0);					\
	  goto WIN; }							\
      else if (GET_CODE (XEXP (X, 1)) == REG				\
	       || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND		\
		   && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG		\
		   && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode))	\
	{ register rtx temp = gen_reg_rtx (Pmode);			\
	  register rtx val = force_operand (XEXP (X, 0), 0);		\
	  emit_move_insn (temp, val);					\
	  COPY_ONCE (X);						\
	  XEXP (X, 0) = temp;						\
	  if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT \
	      && GET_CODE (XEXP (X, 1)) == REG)				\
	    X = force_operand (X, 0);					\
	  goto WIN; }}}

/* On the 68000, only predecrement and postincrement address depend thus
   (the amount of decrement or increment being the length of the operand).
   These are now treated generically in recog.c.  */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)

#define CASE_VECTOR_MODE HImode
#define CASE_VECTOR_PC_RELATIVE 1

#define DEFAULT_SIGNED_CHAR 1
#define MOVE_MAX 4
#define SLOW_BYTE_ACCESS 0

#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

#define STORE_FLAG_VALUE (-1)

#define Pmode SImode
#define FUNCTION_MODE QImode


/* Tell final.c how to eliminate redundant test instructions.  */

/* Here we define machine-dependent flags and fields in cc_status
   (see `conditions.h').  */

/* Set if the cc value is actually in the 68881, so a floating point
   conditional branch must be output.  */
#define CC_IN_68881 04000

/* On the 68000, all the insns to store in an address register fail to
   set the cc's.  However, in some cases these instructions can make it
   possibly invalid to use the saved cc's.  In those cases we clear out
   some or all of the saved cc's so they won't be used.  */
#define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)

#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
do { if (cc_prev_status.flags & CC_IN_68881)			\
    return FLOAT;						\
  if (cc_prev_status.flags & CC_NO_OVERFLOW)			\
    return NO_OV;						\
  return NORMAL; } while (0)

/* Control the assembler format that we output.  */

#define ASM_APP_ON "#APP\n"
#define ASM_APP_OFF "#NO_APP\n"
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
#define GLOBAL_ASM_OP "\t.globl\t"
#define REGISTER_PREFIX ""
#define LOCAL_LABEL_PREFIX ""
#define USER_LABEL_PREFIX "_"
#define IMMEDIATE_PREFIX "#"

#define REGISTER_NAMES \
{REGISTER_PREFIX"d0", REGISTER_PREFIX"d1", REGISTER_PREFIX"d2",	\
 REGISTER_PREFIX"d3", REGISTER_PREFIX"d4", REGISTER_PREFIX"d5",	\
 REGISTER_PREFIX"d6", REGISTER_PREFIX"d7",			\
 REGISTER_PREFIX"a0", REGISTER_PREFIX"a1", REGISTER_PREFIX"a2", \
 REGISTER_PREFIX"a3", REGISTER_PREFIX"a4", REGISTER_PREFIX"a5", \
 REGISTER_PREFIX"a6", REGISTER_PREFIX"sp",			\
 REGISTER_PREFIX"fp0", REGISTER_PREFIX"fp1", REGISTER_PREFIX"fp2", \
 REGISTER_PREFIX"fp3", REGISTER_PREFIX"fp4", REGISTER_PREFIX"fp5", \
 REGISTER_PREFIX"fp6", REGISTER_PREFIX"fp7", REGISTER_PREFIX"argptr" }

#define M68K_FP_REG_NAME REGISTER_PREFIX"fp"

/* Return a register name by index, handling %fp nicely.
   We don't replace %fp for targets that don't map it to %a6
   since it may confuse GAS.  */
#define M68K_REGNAME(r) ( \
  ((FRAME_POINTER_REGNUM == 14) \
    && ((r) == FRAME_POINTER_REGNUM) \
    && frame_pointer_needed) ? \
    M68K_FP_REG_NAME : reg_names[(r)])

/* On the Sun-3, the floating point registers have numbers
   18 to 25, not 16 to 23 as they do in the compiler.  */
#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)

/* Before the prologue, RA is at 0(%sp).  */
#define INCOMING_RETURN_ADDR_RTX \
  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))

/* After the prologue, RA is at 4(AP) in the current frame.  */
#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
  ((COUNT) == 0								   \
   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, UNITS_PER_WORD)) \
   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))

/* We must not use the DBX register numbers for the DWARF 2 CFA column
   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
   Instead use the identity mapping.  */
#define DWARF_FRAME_REGNUM(REG) REG

/* Before the prologue, the top of the frame is at 4(%sp).  */
#define INCOMING_FRAME_SP_OFFSET 4

/* Describe how we implement __builtin_eh_return.  */
#define EH_RETURN_DATA_REGNO(N) \
  ((N) < 2 ? (N) : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 8)
#define EH_RETURN_HANDLER_RTX					    \
  gen_rtx_MEM (Pmode,						    \
	       gen_rtx_PLUS (Pmode, arg_pointer_rtx,		    \
			     plus_constant (EH_RETURN_STACKADJ_RTX, \
					    UNITS_PER_WORD)))

/* Select a format to encode pointers in exception handling data.  CODE
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
   true if the symbol may be affected by dynamic relocations.

   TARGET_ID_SHARED_LIBRARY and TARGET_SEP_DATA are designed to support
   a read-only text segment without imposing a fixed gap between the
   text and data segments.  As a result, the text segment cannot refer
   to anything in the data segment, even in PC-relative form.  Because
   .eh_frame refers to both code and data, it follows that .eh_frame
   must be in the data segment itself, and that the offset between
   .eh_frame and code will not be a link-time constant.

   In theory, we could create a read-only .eh_frame by using DW_EH_PE_pcrel
   | DW_EH_PE_indirect for all code references.  However, gcc currently
   handles indirect references using a per-TU constant pool.  This means
   that if a function and its eh_frame are removed by the linker, the
   eh_frame's indirect references to the removed function will not be
   removed, leading to an unresolved symbol error.

   It isn't clear that any -msep-data or -mid-shared-library target
   would benefit from a read-only .eh_frame anyway.  In particular,
   no known target that supports these options has a feature like
   PT_GNU_RELRO.  Without any such feature to motivate them, indirect
   references would be unnecessary bloat, so we simply use an absolute
   pointer for code and global references.  We still use pc-relative
   references to data, as this avoids a relocation.  */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			   \
  (flag_pic								   \
   && !((TARGET_ID_SHARED_LIBRARY || TARGET_SEP_DATA)			   \
	&& ((GLOBAL) || (CODE)))					   \
   ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
   : DW_EH_PE_absptr)

#define ASM_OUTPUT_LABELREF(FILE,NAME)	\
  asm_fprintf (FILE, "%U%s", NAME)

#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
  sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long)(NUM))

#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)			\
  asm_fprintf (FILE, (MOTOROLA				\
		      ? "\tmove.l %s,-(%Rsp)\n"		\
		      : "\tmovel %s,%Rsp@-\n"),		\
	       reg_names[REGNO])

#define ASM_OUTPUT_REG_POP(FILE,REGNO)			\
  asm_fprintf (FILE, (MOTOROLA				\
		      ? "\tmove.l (%Rsp)+,%s\n"		\
		      : "\tmovel %Rsp@+,%s\n"),		\
	       reg_names[REGNO])

/* The m68k does not use absolute case-vectors, but we must define this macro
   anyway.  */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
  asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
  asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)

/* We don't have a way to align to more than a two-byte boundary, so do the
   best we can and don't complain.  */
#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
  if ((LOG) >= 1)			\
    fprintf (FILE, "\t.even\n");

#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
  fprintf (FILE, "\t.skip %u\n", (int)(SIZE))

#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
( fputs (".comm ", (FILE)),			\
  assemble_name ((FILE), (NAME)),		\
  fprintf ((FILE), ",%u\n", (int)(ROUNDED)))

#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
( fputs (".lcomm ", (FILE)),			\
  assemble_name ((FILE), (NAME)),		\
  fprintf ((FILE), ",%u\n", (int)(ROUNDED)))

/* Output a float value (represented as a C double) as an immediate operand.
   This macro is m68k-specific.  */
#define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE)		\
 do {								\
      if (CODE == 'f')						\
        {							\
          char dstr[30];					\
	  real_to_decimal (dstr, &(VALUE), sizeof (dstr), 9, 0); \
          asm_fprintf ((FILE), "%I0r%s", dstr);			\
        }							\
      else							\
        {							\
          long l;						\
          REAL_VALUE_TO_TARGET_SINGLE (VALUE, l);		\
          asm_fprintf ((FILE), "%I0x%lx", l);			\
        }							\
     } while (0)

/* Output a double value (represented as a C double) as an immediate operand.
   This macro is m68k-specific.  */
#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)				\
 do { char dstr[30];							\
      real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
      asm_fprintf (FILE, "%I0r%s", dstr);				\
    } while (0)

/* Note, long double immediate operands are not actually
   generated by m68k.md.  */
#define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE)			\
 do { char dstr[30];							\
      real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
      asm_fprintf (FILE, "%I0r%s", dstr);				\
    } while (0)

/* On the 68000, we use several CODE characters:
   '.' for dot needed in Motorola-style opcode names.
   '-' for an operand pushing on the stack:
       sp@-, -(sp) or -(%sp) depending on the style of syntax.
   '+' for an operand pushing on the stack:
       sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
   '@' for a reference to the top word on the stack:
       sp@, (sp) or (%sp) depending on the style of syntax.
   '#' for an immediate operand prefix (# in MIT and Motorola syntax
       but & in SGS syntax).
   '!' for the fpcr register (used in some float-to-fixed conversions).
   '$' for the letter `s' in an op code, but only on the 68040.
   '&' for the letter `d' in an op code, but only on the 68040.
   '/' for register prefix needed by longlong.h.

   'b' for byte insn (no effect, on the Sun; this is for the ISI).
   'd' to force memory addressing to be absolute, not relative.
   'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
   'o' for operands to go directly to output_operand_address (bypassing
       print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
   'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
       or print pair of registers as rx:ry.  */

#define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
  ((CODE) == '.' || (CODE) == '#' || (CODE) == '-'			\
   || (CODE) == '+' || (CODE) == '@' || (CODE) == '!'			\
   || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')


/* See m68k.c for the m68k specific codes.  */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)

#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)

/* Values used in the MICROARCH argument to M68K_DEVICE.  */
enum uarch_type
{
  u68000,
  u68010,
  u68020,
  u68020_40,
  u68020_60,
  u68030,
  u68040,
  u68060,
  ucpu32,
  ucfv2,
  ucfv3,
  ucfv4,
  ucfv4e,
  ucfv5,
  unk_arch
};

/* An enumeration of all supported target devices.  */
enum target_device
{
#define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
  ENUM_VALUE,
#include "m68k-devices.def"
#undef M68K_DEVICE
  unk_device
};

enum fpu_type
{
  FPUTYPE_NONE,
  FPUTYPE_68881,
  FPUTYPE_COLDFIRE
};

/* Variables in m68k.c; see there for details.  */
extern const char *m68k_library_id_string;
extern int m68k_last_compare_had_fp_operands;
extern enum target_device m68k_cpu;
extern enum uarch_type m68k_tune;
extern enum fpu_type m68k_fpu;
extern unsigned int m68k_cpu_flags;