1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
|
/* Definitions of target machine for GNU compiler, for Intel 80960
Copyright (C) 1992, 1993, 1995, 1996 Free Software Foundation, Inc.
Contributed by Steven McGeady, Intel Corp.
Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Note that some other tm.h files may include this one and then override
many of the definitions that relate to assembler syntax. */
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
/* Name to predefine in the preprocessor for processor variations. */
#define CPP_SPEC "%{mic*:-D__i960\
%{mka:-D__i960KA}%{mkb:-D__i960KB}\
%{msa:-D__i960SA}%{msb:-D__i960SB}\
%{mmc:-D__i960MC}\
%{mca:-D__i960CA}%{mcc:-D__i960CC}\
%{mcf:-D__i960CF}}\
%{mka:-D__i960KA__ -D__i960_KA__}\
%{mkb:-D__i960KB__ -D__i960_KB__}\
%{msa:-D__i960SA__ -D__i960_SA__}\
%{msb:-D__i960SB__ -D__i960_SB__}\
%{mmc:-D__i960MC__ -D__i960_MC__}\
%{mca:-D__i960CA__ -D__i960_CA__}\
%{mcc:-D__i960CC__ -D__i960_CC__}\
%{mcf:-D__i960CF__ -D__i960_CF__}\
%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
%{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
/* -mic* options make characters signed by default. */
/* Use #if rather than ?: because MIPS C compiler rejects ?: in
initializers. */
#if DEFAULT_SIGNED_CHAR
#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
#else
#define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
#endif
/* Specs for the compiler, to handle processor variations.
If the user gives an explicit -gstabs or -gcoff option, then do not
try to add an implicit one, as this will fail. */
#define CC1_SPEC \
"%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-mkb}}}}}}}}\
%{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
%{mcoff:%{g*:-gcoff}}\
%{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
/* Specs for the assembler, to handle processor variations.
For compatibility with Intel's gnu960 tool chain, pass -A options to
the assembler. */
#define ASM_SPEC \
"%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
%{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
%{mlink-relax:-linkrelax}"
/* Specs for the linker, to handle processor variations.
For compatibility with Intel's gnu960 tool chain, pass -F and -A options
to the linker. */
#define LINK_SPEC \
"%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
%{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
%{mbout:-Fbout}%{mcoff:-Fcoff}\
%{mlink-relax:-relax}"
/* Specs for the libraries to link with, to handle processor variations.
Compatible with Intel's gnu960 tool chain. */
#define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
%{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* Do leaf procedure and tail call optimizations for -O2 and higher. */
#define OPTIMIZATION_OPTIONS(LEVEL) \
{ \
if ((LEVEL) >= 2) \
{ \
target_flags |= TARGET_FLAG_LEAFPROC; \
target_flags |= TARGET_FLAG_TAILCALL; \
} \
}
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr," (intel 80960)");
/* Generate DBX debugging information. */
#define DBX_DEBUGGING_INFO
/* Generate SDB style debugging information. */
#define SDB_DEBUGGING_INFO
/* Generate DBX_DEBUGGING_INFO by default. */
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
/* Redefine this to print in hex and adjust values like GNU960. The extra
bit is used to handle the type long double. Gcc does not support long
double in sdb output, but we do support the non-standard format. */
#define PUT_SDB_TYPE(A) \
fprintf (asm_out_file, "\t.type\t0x%x;", (A & 0xf) + 2 * (A & ~0xf))
/* Handle pragmas for compatibility with Intel's compilers. */
#define HANDLE_PRAGMA(FILE, CH) process_pragma (FILE, CH)
/* Run-time compilation parameters selecting different hardware subsets. */
/* 960 architecture with floating-point. */
#define TARGET_FLAG_NUMERICS 0x01
#define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
/* 960 architecture with memory management. */
/* ??? Not used currently. */
#define TARGET_FLAG_PROTECTED 0x02
#define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
/* The following three are mainly used to provide a little sanity checking
against the -mARCH flags given. */
/* Nonzero if we should generate code for the KA and similar processors.
No FPU, no microcode instructions. */
#define TARGET_FLAG_K_SERIES 0x04
#define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
/* Nonzero if we should generate code for the MC processor.
Not really different from KB for our purposes. */
#define TARGET_FLAG_MC 0x08
#define TARGET_MC (target_flags & TARGET_FLAG_MC)
/* Nonzero if we should generate code for the CA processor.
Enables different optimization strategies. */
#define TARGET_FLAG_C_SERIES 0x10
#define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
/* Nonzero if we should generate leaf-procedures when we find them.
You may not want to do this because leaf-proc entries are
slower when not entered via BAL - this would be true when
a linker not supporting the optimization is used. */
#define TARGET_FLAG_LEAFPROC 0x20
#define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
/* Nonzero if we should perform tail-call optimizations when we find them.
You may not want to do this because the detection of cases where
this is not valid is not totally complete. */
#define TARGET_FLAG_TAILCALL 0x40
#define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
/* Nonzero if use of a complex addressing mode is a win on this implementation.
Complex addressing modes are probably not worthwhile on the K-series,
but they definitely are on the C-series. */
#define TARGET_FLAG_COMPLEX_ADDR 0x80
#define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
/* Align code to 8 byte boundaries for faster fetching. */
#define TARGET_FLAG_CODE_ALIGN 0x100
#define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
/* Append branch prediction suffixes to branch opcodes. */
/* ??? Not used currently. */
#define TARGET_FLAG_BRANCH_PREDICT 0x200
#define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
/* Forces prototype and return promotions. */
/* ??? This does not work. */
#define TARGET_FLAG_CLEAN_LINKAGE 0x400
#define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
/* For compatibility with iC960 v3.0. */
#define TARGET_FLAG_IC_COMPAT3_0 0x800
#define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
/* For compatibility with iC960 v2.0. */
#define TARGET_FLAG_IC_COMPAT2_0 0x1000
#define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
/* If no unaligned accesses are to be permitted. */
#define TARGET_FLAG_STRICT_ALIGN 0x2000
#define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
/* For compatibility with iC960 assembler. */
#define TARGET_FLAG_ASM_COMPAT 0x4000
#define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
/* For compatibility with the gcc960 v1.2 compiler. Use the old structure
alignment rules. Also, turns on STRICT_ALIGNMENT. */
#define TARGET_FLAG_OLD_ALIGN 0x8000
#define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
extern int target_flags;
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
/* ??? Not all ten of these architecture variations actually exist, but I
am not sure which are real and which aren't. */
#define TARGET_SWITCHES \
{ {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
{"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
TARGET_FLAG_COMPLEX_ADDR)},\
/* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
{"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
{"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
TARGET_FLAG_COMPLEX_ADDR)},\
/* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
{"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
{"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
/* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
{"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
TARGET_FLAG_CODE_ALIGN)}, */ \
{"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
{"numerics", (TARGET_FLAG_NUMERICS)}, \
{"soft-float", -(TARGET_FLAG_NUMERICS)}, \
{"leaf-procedures", TARGET_FLAG_LEAFPROC}, \
{"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)}, \
{"tail-call",TARGET_FLAG_TAILCALL}, \
{"no-tail-call",-(TARGET_FLAG_TAILCALL)}, \
{"complex-addr",TARGET_FLAG_COMPLEX_ADDR}, \
{"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)}, \
{"code-align",TARGET_FLAG_CODE_ALIGN}, \
{"no-code-align",-(TARGET_FLAG_CODE_ALIGN)}, \
{"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)}, \
{"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)}, \
{"ic-compat", TARGET_FLAG_IC_COMPAT2_0}, \
{"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0}, \
{"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0}, \
{"asm-compat",TARGET_FLAG_ASM_COMPAT}, \
{"intel-asm",TARGET_FLAG_ASM_COMPAT}, \
{"strict-align", TARGET_FLAG_STRICT_ALIGN}, \
{"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)}, \
{"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
{"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
{"link-relax", 0}, \
{"no-link-relax", 0}, \
{ "", TARGET_DEFAULT}}
/* Override conflicting target switch options.
Doesn't actually detect if more than one -mARCH option is given, but
does handle the case of two blatantly conflicting -mARCH options. */
#define OVERRIDE_OPTIONS \
{ \
if (TARGET_K_SERIES && TARGET_C_SERIES) \
{ \
warning ("conflicting architectures defined - using C series", 0); \
target_flags &= ~TARGET_FLAG_K_SERIES; \
} \
if (TARGET_K_SERIES && TARGET_MC) \
{ \
warning ("conflicting architectures defined - using K series", 0); \
target_flags &= ~TARGET_FLAG_MC; \
} \
if (TARGET_C_SERIES && TARGET_MC) \
{ \
warning ("conflicting architectures defined - using C series", 0);\
target_flags &= ~TARGET_FLAG_MC; \
} \
if (TARGET_IC_COMPAT3_0) \
{ \
flag_short_enums = 1; \
flag_signed_char = 1; \
target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
if (TARGET_IC_COMPAT2_0) \
{ \
warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
} \
} \
if (TARGET_IC_COMPAT2_0) \
{ \
flag_signed_char = 1; \
target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
} \
i960_initialize (); \
}
/* Don't enable anything by default. The user is expected to supply a -mARCH
option. If none is given, then -mkb is added by CC1_SPEC. */
#define TARGET_DEFAULT 0
/* Target machine storage layout. */
/* Define for cross-compilation from a host with a different float format
or endianness, as well as to support 80 bit long doubles on the i960. */
#define REAL_ARITHMETIC
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered.
The i960 case be either big endian or little endian. We only support
little endian, which is the most common. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered. */
#define WORDS_BIG_ENDIAN 0
/* Number of bits in an addressable storage unit. */
#define BITS_PER_UNIT 8
/* Bitfields cannot cross word boundaries. */
#define BITFIELD_NBYTES_LIMITED 1
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer. See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Width in bits of a long double. Identical to double for now. */
#define LONG_DOUBLE_TYPE_SIZE 64
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 128
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 128
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* This makes zero-length anonymous fields lay the next field
at a word boundary. It also makes the whole struct have
at least word alignment if there are any bitfields at all. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* No data type wants to be aligned rounder than this.
Extended precision floats gets 4-word alignment. */
#define BIGGEST_ALIGNMENT 128
/* Define this if move instructions will actually fail to work
when given unaligned data.
80960 will work even with unaligned data, but it is slow. */
#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
/* Specify alignment for string literals (which might be higher than the
base type's minimal alignment requirement. This allows strings to be
aligned on word boundaries, and optimizes calls to the str* and mem*
library functions. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == STRING_CST \
&& i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
: (ALIGN))
/* Make XFmode floating point quantities be 128 bit aligned. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == XFmode \
&& (ALIGN) < 128 ? 128 : (ALIGN))
/* Macros to determine size of aggregates (structures and unions
in C). Normally, these may be defined to simply return the maximum
alignment and simple rounded-up size, but on some machines (like
the i960), the total size of a structure is based on a non-trivial
rounding method. */
#define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
? 128 /* Put 80 bit floating point elements on 128 bit boundaries. */ \
: ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
? i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE_SIZE (TYPE)) \
: MAX ((COMPUTED), (SPECIFIED))))
#define ROUND_TYPE_SIZE(TYPE, COMPUTED, SPECIFIED) \
((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
? build_int_2 (128, 0) : round_up (COMPUTED, SPECIFIED))
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
Registers 0-15 are the global registers (g0-g15).
Registers 16-31 are the local registers (r0-r15).
Register 32-35 are the fp registers (fp0-fp3).
Register 36 is the condition code register.
Register 37 is unused. */
#define FIRST_PSEUDO_REGISTER 38
/* 1 for registers that have pervasive standard uses and are not available
for the register allocator. On 80960, this includes the frame pointer
(g15), the previous FP (r0), the stack pointer (r1), the return
instruction pointer (r2), and the argument pointer (g14). */
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 1, 1, \
1, 1, 1, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
/* On the 80960, note that:
g0..g3 are used for return values,
g0..g7 may always be used for parameters,
g8..g11 may be used for parameters, but are preserved if they aren't,
g12 is always preserved, but otherwise unused,
g13 is the struct return ptr if used, or temp, but may be trashed,
g14 is the leaf return ptr or the arg block ptr otherwise zero,
must be reset to zero before returning if it was used,
g15 is the frame pointer,
r0 is the previous FP,
r1 is the stack pointer,
r2 is the return instruction pointer,
r3-r15 are always available,
r3 is clobbered by calls in functions that use the arg pointer
r4-r11 may be clobbered by the mcount call when profiling
r4-r15 if otherwise unused may be used for preserving global registers
fp0..fp3 are never available. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 1, 1, 1, \
1, 1, 1, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1}
/* If no fp unit, make all of the fp registers fixed so that they can't
be used. */
#define CONDITIONAL_REGISTER_USAGE \
if (! TARGET_NUMERICS) { \
fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
} \
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On 80960, ordinary registers hold 32 bits worth, but can be ganged
together to hold double or extended precision floating point numbers,
and the floating point registers hold any size floating point number */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((REGNO) < 32 \
? (((MODE) == VOIDmode) \
? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
: ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On 80960, the cpu registers can hold any mode but the float registers
can only hold SFmode, DFmode, or XFmode. */
extern unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((hard_regno_mode_ok[REGNO] & (1 << (int) (MODE))) != 0)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* 80960 pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 17
/* Actual top-of-stack address is same as
the contents of the stack pointer register. */
#define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 15
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
/* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
caused this to fail. */
#define FRAME_POINTER_REQUIRED (! leaf_function_p ())
/* C statement to store the difference between the frame pointer
and the stack pointer values immediately after the function prologue.
Since the stack grows upward on the i960, this must be a negative number.
This includes the 64 byte hardware register save area and the size of
the frame. */
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 14
/* Register in which static-chain is passed to a function.
On i960, we use r3. */
#define STATIC_CHAIN_REGNUM 19
/* Functions which return large structures get the address
to place the wanted value at in g13. */
#define STRUCT_VALUE_REGNUM 13
/* The order in which to allocate registers. */
#define REG_ALLOC_ORDER \
{ 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
11, 12, /* g11, g12 */ \
32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
/* We can't actually allocate these. */ \
16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The 80960 has four kinds of registers, global, local, floating point,
and condition code. The cc register is never allocated, so no class
needs to be defined for it. */
enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
FP_REGS, ALL_REGS, LIM_REG_CLASSES };
/* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
does. */
#define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
"FP_REGS", "ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) < 16 ? GLOBAL_REGS \
: (REGNO) < 32 ? LOCAL_REGS \
: (REGNO) < 36 ? FP_REGS \
: NO_REGS)
/* The class value for index registers, and the one for base regs.
There is currently no difference between base and index registers on the
i960, but this distinction may one day be useful. */
#define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
#define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
/* Get reg_class from a letter such as appears in the machine description.
'f' is a floating point register (fp0..fp3)
'l' is a local register (r0-r15)
'b' is a global register (g0-g15)
'd' is any local or global register
'r' or 'g' are pre-defined to the class GENERAL_REGS. */
/* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
the same thing, since 'r' may include the fp registers. */
#define REG_CLASS_FROM_LETTER(C) \
(((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
(C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
For 80960:
'I' is used for literal values 0..31
'J' means literal 0
'K' means 0..-31. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
: (C) == 'J' ? ((VALUE) == 0) \
: (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
: (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
For the 80960, G is 0.0 and H is 1.0. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((TARGET_NUMERICS) && \
(((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
|| ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
/* On 960, can't load constant into floating-point reg except
0.0 or 1.0.
Any hard reg is ok as a src operand of a reload insn. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
? (CLASS) \
: ((CLASS) == FP_REGS && CONSTANT_P (X) \
&& (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
&& (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
? NO_REGS \
: (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class (CLASS, MODE, IN)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
/* On 80960, this is the size of MODE in words,
except in the FP regs, where a single reg is always enough. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
/* #define STACK_GROWS_DOWNWARD */
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated.
The i960 has a 64 byte register save area, plus possibly some extra
bytes allocated for varargs functions. */
#define STARTING_FRAME_OFFSET 64
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On 80960, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) BYTES */
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* When a parameter is passed in a register, no stack space is
allocated for it. However, when args are passed in the
stack, space is allocated for every register parameter. */
#define MAYBE_REG_PARM_STACK_SPACE 48
#define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
#define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
#define OUTGOING_REG_PARM_STACK_SPACE
/* Keep the stack pointer constant throughout the function. */
#define ACCUMULATE_OUTGOING_ARGS
/* Value is 1 if returning from a function call automatically
pops the arguments described by the number-of-args field in the call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
/* 1 if N is a possible register number for a function value
as seen by the caller.
On 80960, returns are in g0..g3 */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
/* 1 if N is a possible register number for function argument passing.
On 80960, parameters are passed in g0..g11 */
#define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
CUM is as above.
MODE and TYPE are the mode and type of the current parameter.
PRETEND_SIZE is a variable that should be set to the amount of stack
that must be pushed by the prolog to pretend that our caller pushed
it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed. */
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On 80960, this is two integers, which count the number of register
parameters and the number of stack parameters seen so far. */
struct cum_args { int ca_nregparms; int ca_nstackparms; };
#define CUMULATIVE_ARGS struct cum_args
/* Define the number of registers that can hold parameters.
This macro is used only in macro definitions below and/or i960.c. */
#define NPARM_REGS 12
/* Define how to round to the next parameter boundary.
This macro is used only in macro definitions below and/or i960.c. */
#define ROUND_PARM(X, MULTIPLE_OF) \
((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On 80960, the offset always starts at 0; the first parm reg is g0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
CUM should be advanced to align with the data type accessed and
also the size of that data type in # of regs.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
/* Indicate the alignment boundary for an argument of the specified mode and
type. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) != 0) \
? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: TYPE_ALIGN (TYPE)) \
: ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: GET_MODE_ALIGNMENT (MODE)))
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
extern struct rtx_def *i960_function_arg ();
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
i960_function_arg(&CUM, MODE, TYPE, NAMED)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(TYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (TYPE), 0)
/* Force aggregates and objects larger than 16 bytes to be returned in memory,
since we only have 4 registers available for return values. */
#define RETURN_IN_MEMORY(TYPE) \
(TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
/* Don't default to pcc-struct-return, because we have already specified
exactly how to return structures in the RETURN_IN_MEMORY macro. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
This never happens on 80960. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* Output the label for a function definition.
This handles leaf functions and a few other things for the i960. */
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
i960_function_name_declare (FILE, NAME, DECL)
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
output_function_profiler ((FILE), (LABELNO));
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
#define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT */
/* #define HAVE_POST_DECREMENT */
/* #define HAVE_PRE_DECREMENT */
/* #define HAVE_PRE_INCREMENT */
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
#define REGNO_OK_FOR_FP_P(REGNO) \
((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
/* Now macros that check whether X is a register and also,
strictly, whether it is in a specified class.
These macros are specific to the 960, and may be used only
in code for printing assembler insns and in conditions for
define_optimization. */
/* 1 if X is an fp register. */
#define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == HIGH)
/* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
is a legitimate general operand.
It is given that X satisfies CONSTANT_P.
Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
??? This probably should be defined to 1. */
#define LEGITIMATE_CONSTANT_P(X) \
((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On 80960, legitimate addresses are:
base ld (g0),r0
disp (12 or 32 bit) ld foo,r0
base + index ld (g0)[g1*1],r0
base + displ ld 0xf00(g0),r0
base + index*scale + displ ld 0xf00(g0)[g1*4],r0
index*scale + base ld (g0)[g1*4],r0
index*scale + displ ld 0xf00[g1*4],r0
index*scale ld [g1*4],r0
index + base + displ ld 0xf00(g0)[g1*1],r0
In each case, scale can be 1, 2, 4, 8, or 16. */
/* Returns 1 if the scale factor of an index term is valid. */
#define SCALE_TERM_P(X) \
(GET_CODE (X) == CONST_INT \
&& (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
|| INTVAL(X) == 8 || INTVAL (X) == 16))
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
#endif
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
/* On 80960, convert non-canonical addresses to canonical form. */
extern struct rtx_def *legitimize_address ();
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ rtx orig_x = (X); \
(X) = legitimize_address (X, OLDX, MODE); \
if ((X) != orig_x && memory_address_p (MODE, X)) \
goto WIN; }
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the 960 this is never true. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* Allow and ignore #sccs directives. */
#define SCCS_DIRECTIVE
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 16
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Nonzero if access to memory by bytes is no faster than for words.
Defining this results in worse code on the i960. */
#define SLOW_BYTE_ACCESS 0
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 0
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* Specify the widest mode that BLKmode objects can be promoted to */
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
/* These global variables are used to pass information between
cc setter and cc user at insn emit time. */
extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
/* Define the function that build the compare insn for scc and bcc. */
extern struct rtx_def *gen_compare_reg ();
/* Add any extra modes needed to represent the condition code.
Also, signed and unsigned comparisons are distinguished, as
are operations which are compatible with chkbit insns. */
#define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
/* Define the names for the modes specified above. */
#define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point, CCFPmode
should be used. CC_NOOVmode should be used when the first operand is a
PLUS, MINUS, or NEG. CCmode should be used when no special processing is
needed. */
#define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
/* A function address in a call instruction is a byte address
(for indexing purposes) so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE SImode
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
#define NO_FUNCTION_CSE
/* Use memcpy, etc. instead of bcopy. */
#ifndef WIND_RIVER
#define TARGET_MEM_FUNCTIONS 1
#endif
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
/* Constants that can be (non-ldconst) insn operands are cost 0. Constants
that can be non-ldconst operands in rare cases are cost 1. Other constants
have higher costs. */
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
case CONST_INT: \
if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
|| power2_operand (RTX, VOIDmode)) \
return 0; \
else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
return 1; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return (TARGET_FLAG_C_SERIES ? 6 : 8); \
case CONST_DOUBLE: \
if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
|| (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
return 1; \
return 12;
/* The i960 offers addressing modes which are "as cheap as a register".
See i960.c (or gcc.texinfo) for details. */
#define ADDRESS_COST(RTX) \
(GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
/* Control the assembler format that we output. */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(file)
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* Output before read-only data. */
#define TEXT_SECTION_ASM_OP ".text"
/* Output before writable data. */
#define DATA_SECTION_ASM_OP ".data"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES { \
"g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
"g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
"pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"fp0","fp1","fp2", "fp3", "cc", "fake" }
/* How to renumber registers for dbx and gdb.
In the 960 encoding, g0..g15 are registers 16..31. */
#define DBX_REGISTER_NUMBER(REGNO) \
(((REGNO) < 16) ? (REGNO) + 16 \
: (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
/* Don't emit dbx records longer than this. This is an arbitrary value. */
#define DBX_CONTIN_LENGTH 1500
/* This is how to output a note to DBX telling it the line number
to which the following sequence of instructions corresponds. */
#define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
{ if (write_symbols == SDB_DEBUG) { \
fprintf ((FILE), "\t.ln %d\n", \
(sdb_begin_function_line \
? (LINE) - sdb_begin_function_line : 1)); \
} else if (write_symbols == DBX_DEBUG) { \
fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
} }
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
{ fputs ("\t.globl ", FILE); \
assemble_name (FILE, NAME); \
fputs ("\n", FILE); }
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) fprintf (FILE, "_%s", NAME)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s%d", PREFIX, NUM)
/* This is how to output an assembler line defining a `long double'
constant. */
#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) i960_output_long_double(FILE, VALUE)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t.word "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t.short "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.word L%d\n", VALUE)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
/* This is how to output an assembler line that says to advance the
location counter to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf (FILE, "\t.align %d\n", (LOG))
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
/* For common objects, output unpadded size... gld960 & lnk960 both
have code to align each common object at link time. Also, if size
is 0, treat this as a declaration, not a definition - i.e.,
do nothing at all. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
{ if ((SIZE) != 0) \
{ \
fputs (".globl ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fputs ("\n.comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d\n", (SIZE)); \
} \
}
/* This says how to output an assembler line to define a local common symbol.
Output unpadded size, with request to linker to align as requested.
0 size should not be possible here. */
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
( fputs (".bss\t", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d,%d\n", (SIZE), \
((ALIGN) <= 8 ? 0 \
: ((ALIGN) <= 16 ? 1 \
: ((ALIGN) <= 32 ? 2 \
: ((ALIGN <= 64 ? 3 : 4)))))))
/* Output text for an #ident directive. */
#define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
/* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
#define ASM_OUTPUT_ALIGN_CODE(FILE) \
{ if (TARGET_CODE_ALIGN) fputs("\t.align 3\n",FILE); }
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Output assembler code to FILE to initialize this source file's
basic block profiling info, if that has not already been done. */
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
{ fprintf (FILE, "\tld LPBX0,g12\n"); \
fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
fprintf (FILE, "\tlda LPBX0,g12\n"); \
fprintf (FILE, "\tcall ___bb_init_func\n"); \
fprintf (FILE, "LPY%d:\n",LABELNO); }
/* Output assembler code to FILE to increment the entry-count for
the BLOCKNO'th basic block in this source file. */
#define BLOCK_PROFILER(FILE, BLOCKNO) \
{ int blockn = (BLOCKNO); \
fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
fprintf (FILE, "\taddo g12,1,g12\n"); \
fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(FILE, X, CODE) \
i960_print_operand (FILE, X, CODE);
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
i960_print_operand_addr (FILE, ADDR)
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
/* On the i960, the trampoline contains three instructions:
ldconst _function, r4
ldconst static addr, r3
jump (r4) */
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C203000)); \
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C183000)); \
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x84212000)); \
}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 20
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
FNADDR); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), \
CXT); \
}
#if 0
/* Promote char and short arguments to ints, when want compatibility with
the iC960 compilers. */
/* ??? In order for this to work, all users would need to be changed
to test the value of the macro at run time. */
#define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
/* ??? This does not exist. */
#define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
#endif
/* Instruction type definitions. Used to alternate instructions types for
better performance on the C series chips. */
enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
/* Holds the insn type of the last insn output to the assembly file. */
extern enum insn_types i960_last_insn_type;
/* Parse opcodes, and set the insn last insn type based on them. */
#define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
/* Table listing what rtl codes each predicate in i960.c will accept. */
#define PREDICATE_CODES \
{"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
LABEL_REF, SUBREG, REG, MEM}}, \
{"arith_operand", {SUBREG, REG, CONST_INT}}, \
{"logic_operand", {SUBREG, REG, CONST_INT}}, \
{"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
{"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
{"literal", {CONST_INT}}, \
{"fp_literal_one", {CONST_DOUBLE}}, \
{"fp_literal_double", {CONST_DOUBLE}}, \
{"fp_literal", {CONST_DOUBLE}}, \
{"signed_literal", {CONST_INT}}, \
{"symbolic_memory_operand", {SUBREG, MEM}}, \
{"eq_or_neq", {EQ, NE}}, \
{"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
CONST_DOUBLE, CONST}}, \
{"power2_operand", {CONST_INT}}, \
{"cmplpower2_operand", {CONST_INT}},
/* Define functions in i960.c and used in insn-output.c. */
extern char *i960_output_ldconst ();
extern char *i960_output_call_insn ();
extern char *i960_output_ret_insn ();
/* Defined in reload.c, and used in insn-recog.c. */
extern int rtx_equal_function_value_matters;
|