1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
|
/* Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you include this header file into source
files compiled by GCC, this header file does not by itself cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General
Public License. */
/* Implemented from the specification included in the Intel C++ Compiler
User Guide and Reference, version 8.0. */
#ifndef _XMMINTRIN_H_INCLUDED
#define _XMMINTRIN_H_INCLUDED
#ifndef __SSE__
# error "SSE instruction set not enabled"
#else
/* We need type definitions from the MMX header file. */
#include <mmintrin.h>
/* The data type intended for user use. */
typedef float __m128 __attribute__ ((vector_size (16)));
/* Internal data types for implementing the intrinsics. */
typedef float __v4sf __attribute__ ((vector_size (16)));
/* Create a selector for use with the SHUFPS instruction. */
#define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | (fp0))
/* Constants for use with _mm_prefetch. */
enum _mm_hint
{
_MM_HINT_T0 = 3,
_MM_HINT_T1 = 2,
_MM_HINT_T2 = 1,
_MM_HINT_NTA = 0
};
/* Bits in the MXCSR. */
#define _MM_EXCEPT_MASK 0x003f
#define _MM_EXCEPT_INVALID 0x0001
#define _MM_EXCEPT_DENORM 0x0002
#define _MM_EXCEPT_DIV_ZERO 0x0004
#define _MM_EXCEPT_OVERFLOW 0x0008
#define _MM_EXCEPT_UNDERFLOW 0x0010
#define _MM_EXCEPT_INEXACT 0x0020
#define _MM_MASK_MASK 0x1f80
#define _MM_MASK_INVALID 0x0080
#define _MM_MASK_DENORM 0x0100
#define _MM_MASK_DIV_ZERO 0x0200
#define _MM_MASK_OVERFLOW 0x0400
#define _MM_MASK_UNDERFLOW 0x0800
#define _MM_MASK_INEXACT 0x1000
#define _MM_ROUND_MASK 0x6000
#define _MM_ROUND_NEAREST 0x0000
#define _MM_ROUND_DOWN 0x2000
#define _MM_ROUND_UP 0x4000
#define _MM_ROUND_TOWARD_ZERO 0x6000
#define _MM_FLUSH_ZERO_MASK 0x8000
#define _MM_FLUSH_ZERO_ON 0x8000
#define _MM_FLUSH_ZERO_OFF 0x0000
/* Perform the respective operation on the lower SPFP (single-precision
floating-point) values of A and B; the upper three SPFP values are
passed through from A. */
static __inline __m128
_mm_add_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_addss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_sub_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_subss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_mul_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_mulss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_div_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_divss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_sqrt_ss (__m128 __A)
{
return (__m128) __builtin_ia32_sqrtss ((__v4sf)__A);
}
static __inline __m128
_mm_rcp_ss (__m128 __A)
{
return (__m128) __builtin_ia32_rcpss ((__v4sf)__A);
}
static __inline __m128
_mm_rsqrt_ss (__m128 __A)
{
return (__m128) __builtin_ia32_rsqrtss ((__v4sf)__A);
}
static __inline __m128
_mm_min_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_minss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_max_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_maxss ((__v4sf)__A, (__v4sf)__B);
}
/* Perform the respective operation on the four SPFP values in A and B. */
static __inline __m128
_mm_add_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_addps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_sub_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_subps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_mul_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_mulps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_div_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_divps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_sqrt_ps (__m128 __A)
{
return (__m128) __builtin_ia32_sqrtps ((__v4sf)__A);
}
static __inline __m128
_mm_rcp_ps (__m128 __A)
{
return (__m128) __builtin_ia32_rcpps ((__v4sf)__A);
}
static __inline __m128
_mm_rsqrt_ps (__m128 __A)
{
return (__m128) __builtin_ia32_rsqrtps ((__v4sf)__A);
}
static __inline __m128
_mm_min_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_minps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_max_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_maxps ((__v4sf)__A, (__v4sf)__B);
}
/* Perform logical bit-wise operations on 128-bit values. */
static __inline __m128
_mm_and_ps (__m128 __A, __m128 __B)
{
return __builtin_ia32_andps (__A, __B);
}
static __inline __m128
_mm_andnot_ps (__m128 __A, __m128 __B)
{
return __builtin_ia32_andnps (__A, __B);
}
static __inline __m128
_mm_or_ps (__m128 __A, __m128 __B)
{
return __builtin_ia32_orps (__A, __B);
}
static __inline __m128
_mm_xor_ps (__m128 __A, __m128 __B)
{
return __builtin_ia32_xorps (__A, __B);
}
/* Perform a comparison on the lower SPFP values of A and B. If the
comparison is true, place a mask of all ones in the result, otherwise a
mask of zeros. The upper three SPFP values are passed through from A. */
static __inline __m128
_mm_cmpeq_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpeqss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmplt_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpltss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmple_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpless ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpgt_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movss ((__v4sf) __A,
(__v4sf)
__builtin_ia32_cmpltss ((__v4sf) __B,
(__v4sf)
__A));
}
static __inline __m128
_mm_cmpge_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movss ((__v4sf) __A,
(__v4sf)
__builtin_ia32_cmpless ((__v4sf) __B,
(__v4sf)
__A));
}
static __inline __m128
_mm_cmpneq_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpneqss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpnlt_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpnltss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpnle_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpnless ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpngt_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movss ((__v4sf) __A,
(__v4sf)
__builtin_ia32_cmpnltss ((__v4sf) __B,
(__v4sf)
__A));
}
static __inline __m128
_mm_cmpnge_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movss ((__v4sf) __A,
(__v4sf)
__builtin_ia32_cmpnless ((__v4sf) __B,
(__v4sf)
__A));
}
static __inline __m128
_mm_cmpord_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpordss ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpunord_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpunordss ((__v4sf)__A, (__v4sf)__B);
}
/* Perform a comparison on the four SPFP values of A and B. For each
element, if the comparison is true, place a mask of all ones in the
result, otherwise a mask of zeros. */
static __inline __m128
_mm_cmpeq_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpeqps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmplt_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpltps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmple_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpleps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpgt_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpgtps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpge_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpgeps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpneq_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpneqps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpnlt_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpnltps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpnle_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpnleps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpngt_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpngtps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpnge_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpngeps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpord_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpordps ((__v4sf)__A, (__v4sf)__B);
}
static __inline __m128
_mm_cmpunord_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_cmpunordps ((__v4sf)__A, (__v4sf)__B);
}
/* Compare the lower SPFP values of A and B and return 1 if true
and 0 if false. */
static __inline int
_mm_comieq_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_comieq ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_comilt_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_comilt ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_comile_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_comile ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_comigt_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_comigt ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_comige_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_comige ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_comineq_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_comineq ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_ucomieq_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_ucomieq ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_ucomilt_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_ucomilt ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_ucomile_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_ucomile ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_ucomigt_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_ucomigt ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_ucomige_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_ucomige ((__v4sf)__A, (__v4sf)__B);
}
static __inline int
_mm_ucomineq_ss (__m128 __A, __m128 __B)
{
return __builtin_ia32_ucomineq ((__v4sf)__A, (__v4sf)__B);
}
/* Convert the lower SPFP value to a 32-bit integer according to the current
rounding mode. */
static __inline int
_mm_cvtss_si32 (__m128 __A)
{
return __builtin_ia32_cvtss2si ((__v4sf) __A);
}
static __inline int
_mm_cvt_ss2si (__m128 __A)
{
return _mm_cvtss_si32 (__A);
}
#ifdef __x86_64__
/* Convert the lower SPFP value to a 32-bit integer according to the current
rounding mode. */
static __inline long long
_mm_cvtss_si64x (__m128 __A)
{
return __builtin_ia32_cvtss2si64 ((__v4sf) __A);
}
#endif
/* Convert the two lower SPFP values to 32-bit integers according to the
current rounding mode. Return the integers in packed form. */
static __inline __m64
_mm_cvtps_pi32 (__m128 __A)
{
return (__m64) __builtin_ia32_cvtps2pi ((__v4sf) __A);
}
static __inline __m64
_mm_cvt_ps2pi (__m128 __A)
{
return _mm_cvtps_pi32 (__A);
}
/* Truncate the lower SPFP value to a 32-bit integer. */
static __inline int
_mm_cvttss_si32 (__m128 __A)
{
return __builtin_ia32_cvttss2si ((__v4sf) __A);
}
static __inline int
_mm_cvtt_ss2si (__m128 __A)
{
return _mm_cvttss_si32 (__A);
}
#ifdef __x86_64__
/* Truncate the lower SPFP value to a 32-bit integer. */
static __inline long long
_mm_cvttss_si64x (__m128 __A)
{
return __builtin_ia32_cvttss2si64 ((__v4sf) __A);
}
#endif
/* Truncate the two lower SPFP values to 32-bit integers. Return the
integers in packed form. */
static __inline __m64
_mm_cvttps_pi32 (__m128 __A)
{
return (__m64) __builtin_ia32_cvttps2pi ((__v4sf) __A);
}
static __inline __m64
_mm_cvtt_ps2pi (__m128 __A)
{
return _mm_cvttps_pi32 (__A);
}
/* Convert B to a SPFP value and insert it as element zero in A. */
static __inline __m128
_mm_cvtsi32_ss (__m128 __A, int __B)
{
return (__m128) __builtin_ia32_cvtsi2ss ((__v4sf) __A, __B);
}
static __inline __m128
_mm_cvt_si2ss (__m128 __A, int __B)
{
return _mm_cvtsi32_ss (__A, __B);
}
#ifdef __x86_64__
/* Convert B to a SPFP value and insert it as element zero in A. */
static __inline __m128
_mm_cvtsi64x_ss (__m128 __A, long long __B)
{
return (__m128) __builtin_ia32_cvtsi642ss ((__v4sf) __A, __B);
}
#endif
/* Convert the two 32-bit values in B to SPFP form and insert them
as the two lower elements in A. */
static __inline __m128
_mm_cvtpi32_ps (__m128 __A, __m64 __B)
{
return (__m128) __builtin_ia32_cvtpi2ps ((__v4sf) __A, (__v2si)__B);
}
static __inline __m128
_mm_cvt_pi2ps (__m128 __A, __m64 __B)
{
return _mm_cvtpi32_ps (__A, __B);
}
/* Convert the four signed 16-bit values in A to SPFP form. */
static __inline __m128
_mm_cvtpi16_ps (__m64 __A)
{
__v4hi __sign;
__v2si __hisi, __losi;
__v4sf __r;
/* This comparison against zero gives us a mask that can be used to
fill in the missing sign bits in the unpack operations below, so
that we get signed values after unpacking. */
__sign = (__v4hi) __builtin_ia32_mmx_zero ();
__sign = __builtin_ia32_pcmpgtw (__sign, (__v4hi)__A);
/* Convert the four words to doublewords. */
__hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, __sign);
__losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, __sign);
/* Convert the doublewords to floating point two at a time. */
__r = (__v4sf) __builtin_ia32_setzerops ();
__r = __builtin_ia32_cvtpi2ps (__r, __hisi);
__r = __builtin_ia32_movlhps (__r, __r);
__r = __builtin_ia32_cvtpi2ps (__r, __losi);
return (__m128) __r;
}
/* Convert the four unsigned 16-bit values in A to SPFP form. */
static __inline __m128
_mm_cvtpu16_ps (__m64 __A)
{
__v4hi __zero = (__v4hi) __builtin_ia32_mmx_zero ();
__v2si __hisi, __losi;
__v4sf __r;
/* Convert the four words to doublewords. */
__hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, __zero);
__losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, __zero);
/* Convert the doublewords to floating point two at a time. */
__r = (__v4sf) __builtin_ia32_setzerops ();
__r = __builtin_ia32_cvtpi2ps (__r, __hisi);
__r = __builtin_ia32_movlhps (__r, __r);
__r = __builtin_ia32_cvtpi2ps (__r, __losi);
return (__m128) __r;
}
/* Convert the low four signed 8-bit values in A to SPFP form. */
static __inline __m128
_mm_cvtpi8_ps (__m64 __A)
{
__v8qi __sign;
/* This comparison against zero gives us a mask that can be used to
fill in the missing sign bits in the unpack operations below, so
that we get signed values after unpacking. */
__sign = (__v8qi) __builtin_ia32_mmx_zero ();
__sign = __builtin_ia32_pcmpgtb (__sign, (__v8qi)__A);
/* Convert the four low bytes to words. */
__A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, __sign);
return _mm_cvtpi16_ps(__A);
}
/* Convert the low four unsigned 8-bit values in A to SPFP form. */
static __inline __m128
_mm_cvtpu8_ps(__m64 __A)
{
__v8qi __zero = (__v8qi) __builtin_ia32_mmx_zero ();
__A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, __zero);
return _mm_cvtpu16_ps(__A);
}
/* Convert the four signed 32-bit values in A and B to SPFP form. */
static __inline __m128
_mm_cvtpi32x2_ps(__m64 __A, __m64 __B)
{
__v4sf __zero = (__v4sf) __builtin_ia32_setzerops ();
__v4sf __sfa = __builtin_ia32_cvtpi2ps (__zero, (__v2si)__A);
__v4sf __sfb = __builtin_ia32_cvtpi2ps (__zero, (__v2si)__B);
return (__m128) __builtin_ia32_movlhps (__sfa, __sfb);
}
/* Convert the four SPFP values in A to four signed 16-bit integers. */
static __inline __m64
_mm_cvtps_pi16(__m128 __A)
{
__v4sf __hisf = (__v4sf)__A;
__v4sf __losf = __builtin_ia32_movhlps (__hisf, __hisf);
__v2si __hisi = __builtin_ia32_cvtps2pi (__hisf);
__v2si __losi = __builtin_ia32_cvtps2pi (__losf);
return (__m64) __builtin_ia32_packssdw (__hisi, __losi);
}
/* Convert the four SPFP values in A to four signed 8-bit integers. */
static __inline __m64
_mm_cvtps_pi8(__m128 __A)
{
__v4hi __tmp = (__v4hi) _mm_cvtps_pi16 (__A);
__v4hi __zero = (__v4hi) __builtin_ia32_mmx_zero ();
return (__m64) __builtin_ia32_packsswb (__tmp, __zero);
}
/* Selects four specific SPFP values from A and B based on MASK. */
#if 0
static __inline __m128
_mm_shuffle_ps (__m128 __A, __m128 __B, int __mask)
{
return (__m128) __builtin_ia32_shufps ((__v4sf)__A, (__v4sf)__B, __mask);
}
#else
#define _mm_shuffle_ps(A, B, MASK) \
((__m128) __builtin_ia32_shufps ((__v4sf)(A), (__v4sf)(B), (MASK)))
#endif
/* Selects and interleaves the upper two SPFP values from A and B. */
static __inline __m128
_mm_unpackhi_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_unpckhps ((__v4sf)__A, (__v4sf)__B);
}
/* Selects and interleaves the lower two SPFP values from A and B. */
static __inline __m128
_mm_unpacklo_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_unpcklps ((__v4sf)__A, (__v4sf)__B);
}
/* Sets the upper two SPFP values with 64-bits of data loaded from P;
the lower two values are passed through from A. */
static __inline __m128
_mm_loadh_pi (__m128 __A, __m64 const *__P)
{
return (__m128) __builtin_ia32_loadhps ((__v4sf)__A, (__v2si *)__P);
}
/* Stores the upper two SPFP values of A into P. */
static __inline void
_mm_storeh_pi (__m64 *__P, __m128 __A)
{
__builtin_ia32_storehps ((__v2si *)__P, (__v4sf)__A);
}
/* Moves the upper two values of B into the lower two values of A. */
static __inline __m128
_mm_movehl_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movhlps ((__v4sf)__A, (__v4sf)__B);
}
/* Moves the lower two values of B into the upper two values of A. */
static __inline __m128
_mm_movelh_ps (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movlhps ((__v4sf)__A, (__v4sf)__B);
}
/* Sets the lower two SPFP values with 64-bits of data loaded from P;
the upper two values are passed through from A. */
static __inline __m128
_mm_loadl_pi (__m128 __A, __m64 const *__P)
{
return (__m128) __builtin_ia32_loadlps ((__v4sf)__A, (__v2si *)__P);
}
/* Stores the lower two SPFP values of A into P. */
static __inline void
_mm_storel_pi (__m64 *__P, __m128 __A)
{
__builtin_ia32_storelps ((__v2si *)__P, (__v4sf)__A);
}
/* Creates a 4-bit mask from the most significant bits of the SPFP values. */
static __inline int
_mm_movemask_ps (__m128 __A)
{
return __builtin_ia32_movmskps ((__v4sf)__A);
}
/* Return the contents of the control register. */
static __inline unsigned int
_mm_getcsr (void)
{
return __builtin_ia32_stmxcsr ();
}
/* Read exception bits from the control register. */
static __inline unsigned int
_MM_GET_EXCEPTION_STATE (void)
{
return _mm_getcsr() & _MM_EXCEPT_MASK;
}
static __inline unsigned int
_MM_GET_EXCEPTION_MASK (void)
{
return _mm_getcsr() & _MM_MASK_MASK;
}
static __inline unsigned int
_MM_GET_ROUNDING_MODE (void)
{
return _mm_getcsr() & _MM_ROUND_MASK;
}
static __inline unsigned int
_MM_GET_FLUSH_ZERO_MODE (void)
{
return _mm_getcsr() & _MM_FLUSH_ZERO_MASK;
}
/* Set the control register to I. */
static __inline void
_mm_setcsr (unsigned int __I)
{
__builtin_ia32_ldmxcsr (__I);
}
/* Set exception bits in the control register. */
static __inline void
_MM_SET_EXCEPTION_STATE(unsigned int __mask)
{
_mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | __mask);
}
static __inline void
_MM_SET_EXCEPTION_MASK (unsigned int __mask)
{
_mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | __mask);
}
static __inline void
_MM_SET_ROUNDING_MODE (unsigned int __mode)
{
_mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | __mode);
}
static __inline void
_MM_SET_FLUSH_ZERO_MODE (unsigned int __mode)
{
_mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | __mode);
}
/* Create a vector with element 0 as *P and the rest zero. */
static __inline __m128
_mm_load_ss (float const *__P)
{
return (__m128) __builtin_ia32_loadss (__P);
}
/* Create a vector with all four elements equal to *P. */
static __inline __m128
_mm_load1_ps (float const *__P)
{
__v4sf __tmp = __builtin_ia32_loadss (__P);
return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,0,0,0));
}
static __inline __m128
_mm_load_ps1 (float const *__P)
{
return _mm_load1_ps (__P);
}
/* Load four SPFP values from P. The address must be 16-byte aligned. */
static __inline __m128
_mm_load_ps (float const *__P)
{
return (__m128) __builtin_ia32_loadaps (__P);
}
/* Load four SPFP values from P. The address need not be 16-byte aligned. */
static __inline __m128
_mm_loadu_ps (float const *__P)
{
return (__m128) __builtin_ia32_loadups (__P);
}
/* Load four SPFP values in reverse order. The address must be aligned. */
static __inline __m128
_mm_loadr_ps (float const *__P)
{
__v4sf __tmp = __builtin_ia32_loadaps (__P);
return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,1,2,3));
}
/* Create a vector with element 0 as F and the rest zero. */
static __inline __m128
_mm_set_ss (float __F)
{
return (__m128) __builtin_ia32_loadss (&__F);
}
/* Create a vector with all four elements equal to F. */
static __inline __m128
_mm_set1_ps (float __F)
{
__v4sf __tmp = __builtin_ia32_loadss (&__F);
return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,0,0,0));
}
static __inline __m128
_mm_set_ps1 (float __F)
{
return _mm_set1_ps (__F);
}
/* Create the vector [Z Y X W]. */
static __inline __m128
_mm_set_ps (const float __Z, const float __Y, const float __X, const float __W)
{
return (__v4sf) {__W, __X, __Y, __Z};
}
/* Create the vector [W X Y Z]. */
static __inline __m128
_mm_setr_ps (float __Z, float __Y, float __X, float __W)
{
return _mm_set_ps (__W, __X, __Y, __Z);
}
/* Create a vector of zeros. */
static __inline __m128
_mm_setzero_ps (void)
{
return (__m128) __builtin_ia32_setzerops ();
}
/* Stores the lower SPFP value. */
static __inline void
_mm_store_ss (float *__P, __m128 __A)
{
__builtin_ia32_storess (__P, (__v4sf)__A);
}
/* Store the lower SPFP value across four words. */
static __inline void
_mm_store1_ps (float *__P, __m128 __A)
{
__v4sf __va = (__v4sf)__A;
__v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,0,0,0));
__builtin_ia32_storeaps (__P, __tmp);
}
static __inline void
_mm_store_ps1 (float *__P, __m128 __A)
{
_mm_store1_ps (__P, __A);
}
/* Store four SPFP values. The address must be 16-byte aligned. */
static __inline void
_mm_store_ps (float *__P, __m128 __A)
{
__builtin_ia32_storeaps (__P, (__v4sf)__A);
}
/* Store four SPFP values. The address need not be 16-byte aligned. */
static __inline void
_mm_storeu_ps (float *__P, __m128 __A)
{
__builtin_ia32_storeups (__P, (__v4sf)__A);
}
/* Store four SPFP values in reverse order. The address must be aligned. */
static __inline void
_mm_storer_ps (float *__P, __m128 __A)
{
__v4sf __va = (__v4sf)__A;
__v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,1,2,3));
__builtin_ia32_storeaps (__P, __tmp);
}
/* Sets the low SPFP value of A from the low value of B. */
static __inline __m128
_mm_move_ss (__m128 __A, __m128 __B)
{
return (__m128) __builtin_ia32_movss ((__v4sf)__A, (__v4sf)__B);
}
/* Extracts one of the four words of A. The selector N must be immediate. */
#if 0
static __inline int
_mm_extract_pi16 (__m64 __A, int __N)
{
return __builtin_ia32_pextrw ((__v4hi)__A, __N);
}
static __inline int
_m_pextrw (__m64 __A, int __N)
{
return _mm_extract_pi16 (__A, __N);
}
#else
#define _mm_extract_pi16(A, N) \
__builtin_ia32_pextrw ((__v4hi)(A), (N))
#define _m_pextrw(A, N) _mm_extract_pi16((A), (N))
#endif
/* Inserts word D into one of four words of A. The selector N must be
immediate. */
#if 0
static __inline __m64
_mm_insert_pi16 (__m64 __A, int __D, int __N)
{
return (__m64)__builtin_ia32_pinsrw ((__v4hi)__A, __D, __N);
}
static __inline __m64
_m_pinsrw (__m64 __A, int __D, int __N)
{
return _mm_insert_pi16 (__A, __D, __N);
}
#else
#define _mm_insert_pi16(A, D, N) \
((__m64) __builtin_ia32_pinsrw ((__v4hi)(A), (D), (N)))
#define _m_pinsrw(A, D, N) _mm_insert_pi16((A), (D), (N))
#endif
/* Compute the element-wise maximum of signed 16-bit values. */
static __inline __m64
_mm_max_pi16 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pmaxsw ((__v4hi)__A, (__v4hi)__B);
}
static __inline __m64
_m_pmaxsw (__m64 __A, __m64 __B)
{
return _mm_max_pi16 (__A, __B);
}
/* Compute the element-wise maximum of unsigned 8-bit values. */
static __inline __m64
_mm_max_pu8 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pmaxub ((__v8qi)__A, (__v8qi)__B);
}
static __inline __m64
_m_pmaxub (__m64 __A, __m64 __B)
{
return _mm_max_pu8 (__A, __B);
}
/* Compute the element-wise minimum of signed 16-bit values. */
static __inline __m64
_mm_min_pi16 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pminsw ((__v4hi)__A, (__v4hi)__B);
}
static __inline __m64
_m_pminsw (__m64 __A, __m64 __B)
{
return _mm_min_pi16 (__A, __B);
}
/* Compute the element-wise minimum of unsigned 8-bit values. */
static __inline __m64
_mm_min_pu8 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pminub ((__v8qi)__A, (__v8qi)__B);
}
static __inline __m64
_m_pminub (__m64 __A, __m64 __B)
{
return _mm_min_pu8 (__A, __B);
}
/* Create an 8-bit mask of the signs of 8-bit values. */
static __inline int
_mm_movemask_pi8 (__m64 __A)
{
return __builtin_ia32_pmovmskb ((__v8qi)__A);
}
static __inline int
_m_pmovmskb (__m64 __A)
{
return _mm_movemask_pi8 (__A);
}
/* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values
in B and produce the high 16 bits of the 32-bit results. */
static __inline __m64
_mm_mulhi_pu16 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pmulhuw ((__v4hi)__A, (__v4hi)__B);
}
static __inline __m64
_m_pmulhuw (__m64 __A, __m64 __B)
{
return _mm_mulhi_pu16 (__A, __B);
}
/* Return a combination of the four 16-bit values in A. The selector
must be an immediate. */
#if 0
static __inline __m64
_mm_shuffle_pi16 (__m64 __A, int __N)
{
return (__m64) __builtin_ia32_pshufw ((__v4hi)__A, __N);
}
static __inline __m64
_m_pshufw (__m64 __A, int __N)
{
return _mm_shuffle_pi16 (__A, __N);
}
#else
#define _mm_shuffle_pi16(A, N) \
((__m64) __builtin_ia32_pshufw ((__v4hi)(A), (N)))
#define _m_pshufw(A, N) _mm_shuffle_pi16 ((A), (N))
#endif
/* Conditionally store byte elements of A into P. The high bit of each
byte in the selector N determines whether the corresponding byte from
A is stored. */
static __inline void
_mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P)
{
__builtin_ia32_maskmovq ((__v8qi)__A, (__v8qi)__N, __P);
}
static __inline void
_m_maskmovq (__m64 __A, __m64 __N, char *__P)
{
_mm_maskmove_si64 (__A, __N, __P);
}
/* Compute the rounded averages of the unsigned 8-bit values in A and B. */
static __inline __m64
_mm_avg_pu8 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pavgb ((__v8qi)__A, (__v8qi)__B);
}
static __inline __m64
_m_pavgb (__m64 __A, __m64 __B)
{
return _mm_avg_pu8 (__A, __B);
}
/* Compute the rounded averages of the unsigned 16-bit values in A and B. */
static __inline __m64
_mm_avg_pu16 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pavgw ((__v4hi)__A, (__v4hi)__B);
}
static __inline __m64
_m_pavgw (__m64 __A, __m64 __B)
{
return _mm_avg_pu16 (__A, __B);
}
/* Compute the sum of the absolute differences of the unsigned 8-bit
values in A and B. Return the value in the lower 16-bit word; the
upper words are cleared. */
static __inline __m64
_mm_sad_pu8 (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_psadbw ((__v8qi)__A, (__v8qi)__B);
}
static __inline __m64
_m_psadbw (__m64 __A, __m64 __B)
{
return _mm_sad_pu8 (__A, __B);
}
/* Loads one cache line from address P to a location "closer" to the
processor. The selector I specifies the type of prefetch operation. */
#if 0
static __inline void
_mm_prefetch (void *__P, enum _mm_hint __I)
{
__builtin_prefetch (__P, 0, __I);
}
#else
#define _mm_prefetch(P, I) \
__builtin_prefetch ((P), 0, (I))
#endif
/* Stores the data in A to the address P without polluting the caches. */
static __inline void
_mm_stream_pi (__m64 *__P, __m64 __A)
{
__builtin_ia32_movntq ((unsigned long long *)__P, (unsigned long long)__A);
}
/* Likewise. The address must be 16-byte aligned. */
static __inline void
_mm_stream_ps (float *__P, __m128 __A)
{
__builtin_ia32_movntps (__P, (__v4sf)__A);
}
/* Guarantees that every preceding store is globally visible before
any subsequent store. */
static __inline void
_mm_sfence (void)
{
__builtin_ia32_sfence ();
}
/* The execution of the next instruction is delayed by an implementation
specific amount of time. The instruction does not modify the
architectural state. */
static __inline void
_mm_pause (void)
{
__asm__ __volatile__ ("rep; nop" : : );
}
/* Transpose the 4x4 matrix composed of row[0-3]. */
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
do { \
__v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \
__v4sf __t0 = __builtin_ia32_shufps (__r0, __r1, 0x44); \
__v4sf __t2 = __builtin_ia32_shufps (__r0, __r1, 0xEE); \
__v4sf __t1 = __builtin_ia32_shufps (__r2, __r3, 0x44); \
__v4sf __t3 = __builtin_ia32_shufps (__r2, __r3, 0xEE); \
(row0) = __builtin_ia32_shufps (__t0, __t1, 0x88); \
(row1) = __builtin_ia32_shufps (__t0, __t1, 0xDD); \
(row2) = __builtin_ia32_shufps (__t2, __t3, 0x88); \
(row3) = __builtin_ia32_shufps (__t2, __t3, 0xDD); \
} while (0)
/* For backward source compatibility. */
#include <emmintrin.h>
#endif /* __SSE__ */
#endif /* _XMMINTRIN_H_INCLUDED */
|