1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
|
;; GCC machine description for i386 synchronization instructions.
;; Copyright (C) 2005-2019 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_c_enum "unspec" [
UNSPEC_LFENCE
UNSPEC_SFENCE
UNSPEC_MFENCE
UNSPEC_FILD_ATOMIC
UNSPEC_FIST_ATOMIC
UNSPEC_LDX_ATOMIC
UNSPEC_STX_ATOMIC
;; __atomic support
UNSPEC_LDA
UNSPEC_STA
])
(define_c_enum "unspecv" [
UNSPECV_CMPXCHG
UNSPECV_XCHG
UNSPECV_LOCK
])
(define_expand "sse2_lfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
"TARGET_SSE2"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*sse2_lfence"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
"TARGET_SSE2"
"lfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "lfence")
(set_attr "memory" "unknown")])
(define_expand "sse_sfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
"TARGET_SSE || TARGET_3DNOW_A"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*sse_sfence"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
"TARGET_SSE || TARGET_3DNOW_A"
"sfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "fence")
(set_attr "memory" "unknown")])
(define_expand "sse2_mfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
"TARGET_SSE2"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "mfence_sse2"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
"TARGET_64BIT || TARGET_SSE2"
"mfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "fence")
(set_attr "memory" "unknown")])
(define_insn "mfence_nosse"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))
(clobber (reg:CC FLAGS_REG))]
"!(TARGET_64BIT || TARGET_SSE2)"
"lock{%;} or{l}\t{$0, (%%esp)|DWORD PTR [esp], 0}"
[(set_attr "memory" "unknown")])
(define_expand "mem_thread_fence"
[(match_operand:SI 0 "const_int_operand")] ;; model
""
{
enum memmodel model = memmodel_from_int (INTVAL (operands[0]));
/* Unless this is a SEQ_CST fence, the i386 memory model is strong
enough not to require barriers of any kind. */
if (is_mm_seq_cst (model))
{
rtx (*mfence_insn)(rtx);
rtx mem;
if (TARGET_64BIT || TARGET_SSE2)
mfence_insn = gen_mfence_sse2;
else
mfence_insn = gen_mfence_nosse;
mem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (mem) = 1;
emit_insn (mfence_insn (mem));
}
DONE;
})
;; ??? From volume 3 section 8.1.1 Guaranteed Atomic Operations,
;; Only beginning at Pentium family processors do we get any guarantee of
;; atomicity in aligned 64-bit quantities. Beginning at P6, we get a
;; guarantee for 64-bit accesses that do not cross a cacheline boundary.
;;
;; Note that the TARGET_CMPXCHG8B test below is a stand-in for "Pentium".
;;
;; Importantly, *no* processor makes atomicity guarantees for larger
;; accesses. In particular, there's no way to perform an atomic TImode
;; move, despite the apparent applicability of MOVDQA et al.
(define_mode_iterator ATOMIC
[QI HI SI
(DI "TARGET_64BIT || (TARGET_CMPXCHG8B && (TARGET_80387 || TARGET_SSE))")
])
(define_expand "atomic_load<mode>"
[(set (match_operand:ATOMIC 0 "nonimmediate_operand")
(unspec:ATOMIC [(match_operand:ATOMIC 1 "memory_operand")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_LDA))]
""
{
/* For DImode on 32-bit, we can use the FPU to perform the load. */
if (<MODE>mode == DImode && !TARGET_64BIT)
emit_insn (gen_atomic_loaddi_fpu
(operands[0], operands[1],
assign_386_stack_local (DImode, SLOT_TEMP)));
else
{
rtx dst = operands[0];
if (MEM_P (dst))
dst = gen_reg_rtx (<MODE>mode);
emit_move_insn (dst, operands[1]);
/* Fix up the destination if needed. */
if (dst != operands[0])
emit_move_insn (operands[0], dst);
}
DONE;
})
(define_insn_and_split "atomic_loaddi_fpu"
[(set (match_operand:DI 0 "nonimmediate_operand" "=x,m,?r")
(unspec:DI [(match_operand:DI 1 "memory_operand" "m,m,m")]
UNSPEC_LDA))
(clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
(clobber (match_scratch:DF 3 "=X,xf,xf"))]
"!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
"#"
"&& reload_completed"
[(const_int 0)]
{
rtx dst = operands[0], src = operands[1];
rtx mem = operands[2], tmp = operands[3];
if (SSE_REG_P (dst))
emit_move_insn (dst, src);
else
{
if (MEM_P (dst))
mem = dst;
if (STACK_REG_P (tmp))
{
emit_insn (gen_loaddi_via_fpu (tmp, src));
emit_insn (gen_storedi_via_fpu (mem, tmp));
}
else
{
emit_insn (gen_loaddi_via_sse (tmp, src));
emit_insn (gen_storedi_via_sse (mem, tmp));
}
if (mem != dst)
emit_move_insn (dst, mem);
}
DONE;
})
(define_peephole2
[(set (match_operand:DF 0 "fp_register_operand")
(unspec:DF [(match_operand:DI 1 "memory_operand")]
UNSPEC_FILD_ATOMIC))
(set (match_operand:DI 2 "memory_operand")
(unspec:DI [(match_dup 0)]
UNSPEC_FIST_ATOMIC))
(set (match_operand:DF 3 "any_fp_register_operand")
(match_operand:DF 4 "memory_operand"))]
"!TARGET_64BIT
&& peep2_reg_dead_p (2, operands[0])
&& rtx_equal_p (XEXP (operands[4], 0), XEXP (operands[2], 0))"
[(set (match_dup 3) (match_dup 5))]
"operands[5] = gen_lowpart (DFmode, operands[1]);")
(define_peephole2
[(set (match_operand:DF 0 "fp_register_operand")
(unspec:DF [(match_operand:DI 1 "memory_operand")]
UNSPEC_FILD_ATOMIC))
(set (match_operand:DI 2 "memory_operand")
(unspec:DI [(match_dup 0)]
UNSPEC_FIST_ATOMIC))
(set (mem:BLK (scratch:SI))
(unspec:BLK [(mem:BLK (scratch:SI))] UNSPEC_MEMORY_BLOCKAGE))
(set (match_operand:DF 3 "any_fp_register_operand")
(match_operand:DF 4 "memory_operand"))]
"!TARGET_64BIT
&& peep2_reg_dead_p (2, operands[0])
&& rtx_equal_p (XEXP (operands[4], 0), XEXP (operands[2], 0))"
[(const_int 0)]
{
emit_move_insn (operands[3], gen_lowpart (DFmode, operands[1]));
emit_insn (gen_memory_blockage ());
DONE;
})
(define_peephole2
[(set (match_operand:DF 0 "sse_reg_operand")
(unspec:DF [(match_operand:DI 1 "memory_operand")]
UNSPEC_LDX_ATOMIC))
(set (match_operand:DI 2 "memory_operand")
(unspec:DI [(match_dup 0)]
UNSPEC_STX_ATOMIC))
(set (match_operand:DF 3 "any_fp_register_operand")
(match_operand:DF 4 "memory_operand"))]
"!TARGET_64BIT
&& peep2_reg_dead_p (2, operands[0])
&& rtx_equal_p (XEXP (operands[4], 0), XEXP (operands[2], 0))"
[(set (match_dup 3) (match_dup 5))]
"operands[5] = gen_lowpart (DFmode, operands[1]);")
(define_peephole2
[(set (match_operand:DF 0 "sse_reg_operand")
(unspec:DF [(match_operand:DI 1 "memory_operand")]
UNSPEC_LDX_ATOMIC))
(set (match_operand:DI 2 "memory_operand")
(unspec:DI [(match_dup 0)]
UNSPEC_STX_ATOMIC))
(set (mem:BLK (scratch:SI))
(unspec:BLK [(mem:BLK (scratch:SI))] UNSPEC_MEMORY_BLOCKAGE))
(set (match_operand:DF 3 "any_fp_register_operand")
(match_operand:DF 4 "memory_operand"))]
"!TARGET_64BIT
&& peep2_reg_dead_p (2, operands[0])
&& rtx_equal_p (XEXP (operands[4], 0), XEXP (operands[2], 0))"
[(const_int 0)]
{
emit_move_insn (operands[3], gen_lowpart (DFmode, operands[1]));
emit_insn (gen_memory_blockage ());
DONE;
})
(define_expand "atomic_store<mode>"
[(set (match_operand:ATOMIC 0 "memory_operand")
(unspec:ATOMIC [(match_operand:ATOMIC 1 "nonimmediate_operand")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_STA))]
""
{
enum memmodel model = memmodel_from_int (INTVAL (operands[2]));
if (<MODE>mode == DImode && !TARGET_64BIT)
{
/* For DImode on 32-bit, we can use the FPU to perform the store. */
/* Note that while we could perform a cmpxchg8b loop, that turns
out to be significantly larger than this plus a barrier. */
emit_insn (gen_atomic_storedi_fpu
(operands[0], operands[1],
assign_386_stack_local (DImode, SLOT_TEMP)));
}
else
{
operands[1] = force_reg (<MODE>mode, operands[1]);
/* For seq-cst stores, when we lack MFENCE, use XCHG. */
if (is_mm_seq_cst (model) && !(TARGET_64BIT || TARGET_SSE2))
{
emit_insn (gen_atomic_exchange<mode> (gen_reg_rtx (<MODE>mode),
operands[0], operands[1],
operands[2]));
DONE;
}
/* Otherwise use a store. */
emit_insn (gen_atomic_store<mode>_1 (operands[0], operands[1],
operands[2]));
}
/* ... followed by an MFENCE, if required. */
if (is_mm_seq_cst (model))
emit_insn (gen_mem_thread_fence (operands[2]));
DONE;
})
(define_insn "atomic_store<mode>_1"
[(set (match_operand:SWI 0 "memory_operand" "=m")
(unspec:SWI [(match_operand:SWI 1 "<nonmemory_operand>" "<r><i>")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_STA))]
""
"%K2mov{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_insn_and_split "atomic_storedi_fpu"
[(set (match_operand:DI 0 "memory_operand" "=m,m,m")
(unspec:DI [(match_operand:DI 1 "nonimmediate_operand" "x,m,?r")]
UNSPEC_STA))
(clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
(clobber (match_scratch:DF 3 "=X,xf,xf"))]
"!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
"#"
"&& reload_completed"
[(const_int 0)]
{
rtx dst = operands[0], src = operands[1];
rtx mem = operands[2], tmp = operands[3];
if (SSE_REG_P (src))
emit_move_insn (dst, src);
else
{
if (REG_P (src))
{
emit_move_insn (mem, src);
src = mem;
}
if (STACK_REG_P (tmp))
{
emit_insn (gen_loaddi_via_fpu (tmp, src));
emit_insn (gen_storedi_via_fpu (dst, tmp));
}
else
{
emit_insn (gen_loaddi_via_sse (tmp, src));
emit_insn (gen_storedi_via_sse (dst, tmp));
}
}
DONE;
})
(define_peephole2
[(set (match_operand:DF 0 "memory_operand")
(match_operand:DF 1 "any_fp_register_operand"))
(set (match_operand:DF 2 "fp_register_operand")
(unspec:DF [(match_operand:DI 3 "memory_operand")]
UNSPEC_FILD_ATOMIC))
(set (match_operand:DI 4 "memory_operand")
(unspec:DI [(match_dup 2)]
UNSPEC_FIST_ATOMIC))]
"!TARGET_64BIT
&& peep2_reg_dead_p (3, operands[2])
&& rtx_equal_p (XEXP (operands[0], 0), XEXP (operands[3], 0))"
[(set (match_dup 5) (match_dup 1))]
"operands[5] = gen_lowpart (DFmode, operands[4]);")
(define_peephole2
[(set (match_operand:DF 0 "memory_operand")
(match_operand:DF 1 "any_fp_register_operand"))
(set (mem:BLK (scratch:SI))
(unspec:BLK [(mem:BLK (scratch:SI))] UNSPEC_MEMORY_BLOCKAGE))
(set (match_operand:DF 2 "fp_register_operand")
(unspec:DF [(match_operand:DI 3 "memory_operand")]
UNSPEC_FILD_ATOMIC))
(set (match_operand:DI 4 "memory_operand")
(unspec:DI [(match_dup 2)]
UNSPEC_FIST_ATOMIC))]
"!TARGET_64BIT
&& peep2_reg_dead_p (4, operands[2])
&& rtx_equal_p (XEXP (operands[0], 0), XEXP (operands[3], 0))"
[(const_int 0)]
{
emit_insn (gen_memory_blockage ());
emit_move_insn (gen_lowpart (DFmode, operands[4]), operands[1]);
DONE;
})
(define_peephole2
[(set (match_operand:DF 0 "memory_operand")
(match_operand:DF 1 "any_fp_register_operand"))
(set (match_operand:DF 2 "sse_reg_operand")
(unspec:DF [(match_operand:DI 3 "memory_operand")]
UNSPEC_LDX_ATOMIC))
(set (match_operand:DI 4 "memory_operand")
(unspec:DI [(match_dup 2)]
UNSPEC_STX_ATOMIC))]
"!TARGET_64BIT
&& peep2_reg_dead_p (3, operands[2])
&& rtx_equal_p (XEXP (operands[0], 0), XEXP (operands[3], 0))"
[(set (match_dup 5) (match_dup 1))]
"operands[5] = gen_lowpart (DFmode, operands[4]);")
(define_peephole2
[(set (match_operand:DF 0 "memory_operand")
(match_operand:DF 1 "any_fp_register_operand"))
(set (mem:BLK (scratch:SI))
(unspec:BLK [(mem:BLK (scratch:SI))] UNSPEC_MEMORY_BLOCKAGE))
(set (match_operand:DF 2 "sse_reg_operand")
(unspec:DF [(match_operand:DI 3 "memory_operand")]
UNSPEC_LDX_ATOMIC))
(set (match_operand:DI 4 "memory_operand")
(unspec:DI [(match_dup 2)]
UNSPEC_STX_ATOMIC))]
"!TARGET_64BIT
&& peep2_reg_dead_p (4, operands[2])
&& rtx_equal_p (XEXP (operands[0], 0), XEXP (operands[3], 0))"
[(const_int 0)]
{
emit_insn (gen_memory_blockage ());
emit_move_insn (gen_lowpart (DFmode, operands[4]), operands[1]);
DONE;
})
;; ??? You'd think that we'd be able to perform this via FLOAT + FIX_TRUNC
;; operations. But the fix_trunc patterns want way more setup than we want
;; to provide. Note that the scratch is DFmode instead of XFmode in order
;; to make it easy to allocate a scratch in either SSE or FP_REGs above.
(define_insn "loaddi_via_fpu"
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(match_operand:DI 1 "memory_operand" "m")]
UNSPEC_FILD_ATOMIC))]
"TARGET_80387"
"fild%Z1\t%1"
[(set_attr "type" "fmov")
(set_attr "mode" "DF")
(set_attr "fp_int_src" "true")])
(define_insn "storedi_via_fpu"
[(set (match_operand:DI 0 "memory_operand" "=m")
(unspec:DI [(match_operand:DF 1 "register_operand" "f")]
UNSPEC_FIST_ATOMIC))]
"TARGET_80387"
{
gcc_assert (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != NULL_RTX);
return "fistp%Z0\t%0";
}
[(set_attr "type" "fmov")
(set_attr "mode" "DI")])
(define_insn "loaddi_via_sse"
[(set (match_operand:DF 0 "register_operand" "=x")
(unspec:DF [(match_operand:DI 1 "memory_operand" "m")]
UNSPEC_LDX_ATOMIC))]
"TARGET_SSE"
{
if (TARGET_SSE2)
return "%vmovq\t{%1, %0|%0, %1}";
return "movlps\t{%1, %0|%0, %1}";
}
[(set_attr "type" "ssemov")
(set_attr "mode" "DI")])
(define_insn "storedi_via_sse"
[(set (match_operand:DI 0 "memory_operand" "=m")
(unspec:DI [(match_operand:DF 1 "register_operand" "x")]
UNSPEC_STX_ATOMIC))]
"TARGET_SSE"
{
if (TARGET_SSE2)
return "%vmovq\t{%1, %0|%0, %1}";
return "movlps\t{%1, %0|%0, %1}";
}
[(set_attr "type" "ssemov")
(set_attr "mode" "DI")])
(define_expand "atomic_compare_and_swap<mode>"
[(match_operand:QI 0 "register_operand") ;; bool success output
(match_operand:SWI124 1 "register_operand") ;; oldval output
(match_operand:SWI124 2 "memory_operand") ;; memory
(match_operand:SWI124 3 "register_operand") ;; expected input
(match_operand:SWI124 4 "register_operand") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_CMPXCHG"
{
emit_insn
(gen_atomic_compare_and_swap<mode>_1
(operands[1], operands[2], operands[3], operands[4], operands[6]));
ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
const0_rtx);
DONE;
})
(define_mode_iterator CASMODE
[(DI "TARGET_64BIT || TARGET_CMPXCHG8B")
(TI "TARGET_64BIT && TARGET_CMPXCHG16B")])
(define_mode_attr CASHMODE [(DI "SI") (TI "DI")])
(define_expand "atomic_compare_and_swap<mode>"
[(match_operand:QI 0 "register_operand") ;; bool success output
(match_operand:CASMODE 1 "register_operand") ;; oldval output
(match_operand:CASMODE 2 "memory_operand") ;; memory
(match_operand:CASMODE 3 "register_operand") ;; expected input
(match_operand:CASMODE 4 "register_operand") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_CMPXCHG"
{
if (<MODE>mode == DImode && TARGET_64BIT)
{
emit_insn
(gen_atomic_compare_and_swapdi_1
(operands[1], operands[2], operands[3], operands[4], operands[6]));
}
else
{
machine_mode hmode = <CASHMODE>mode;
emit_insn
(gen_atomic_compare_and_swap<mode>_doubleword
(operands[1], operands[2], operands[3],
gen_lowpart (hmode, operands[4]), gen_highpart (hmode, operands[4]),
operands[6]));
}
ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
const0_rtx);
DONE;
})
;; For double-word compare and swap, we are obliged to play tricks with
;; the input newval (op3:op4) because the Intel register numbering does
;; not match the gcc register numbering, so the pair must be CX:BX.
(define_mode_attr doublemodesuffix [(SI "8") (DI "16")])
(define_insn "atomic_compare_and_swap<dwi>_doubleword"
[(set (match_operand:<DWI> 0 "register_operand" "=A")
(unspec_volatile:<DWI>
[(match_operand:<DWI> 1 "memory_operand" "+m")
(match_operand:<DWI> 2 "register_operand" "0")
(match_operand:DWIH 3 "register_operand" "b")
(match_operand:DWIH 4 "register_operand" "c")
(match_operand:SI 5 "const_int_operand")]
UNSPECV_CMPXCHG))
(set (match_dup 1)
(unspec_volatile:<DWI> [(const_int 0)] UNSPECV_CMPXCHG))
(set (reg:CCZ FLAGS_REG)
(unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG))]
"TARGET_CMPXCHG<doublemodesuffix>B"
"lock{%;} %K5cmpxchg<doublemodesuffix>b\t%1")
(define_insn "atomic_compare_and_swap<mode>_1"
[(set (match_operand:SWI 0 "register_operand" "=a")
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m")
(match_operand:SWI 2 "register_operand" "0")
(match_operand:SWI 3 "register_operand" "<r>")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_CMPXCHG))
(set (match_dup 1)
(unspec_volatile:SWI [(const_int 0)] UNSPECV_CMPXCHG))
(set (reg:CCZ FLAGS_REG)
(unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG))]
"TARGET_CMPXCHG"
"lock{%;} %K4cmpxchg{<imodesuffix>}\t{%3, %1|%1, %3}")
;; For operand 2 nonmemory_operand predicate is used instead of
;; register_operand to allow combiner to better optimize atomic
;; additions of constants.
(define_insn "atomic_fetch_add<mode>"
[(set (match_operand:SWI 0 "register_operand" "=<r>")
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m")
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_operand:SWI 2 "nonmemory_operand" "0")))
(clobber (reg:CC FLAGS_REG))]
"TARGET_XADD"
"lock{%;} %K3xadd{<imodesuffix>}\t{%0, %1|%1, %0}")
;; This peephole2 and following insn optimize
;; __sync_fetch_and_add (x, -N) == N into just lock {add,sub,inc,dec}
;; followed by testing of flags instead of lock xadd and comparisons.
(define_peephole2
[(set (match_operand:SWI 0 "register_operand")
(match_operand:SWI 2 "const_int_operand"))
(parallel [(set (match_dup 0)
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 0)))
(clobber (reg:CC FLAGS_REG))])
(set (reg:CCZ FLAGS_REG)
(compare:CCZ (match_dup 0)
(match_operand:SWI 3 "const_int_operand")))]
"peep2_reg_dead_p (3, operands[0])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[3])
&& !reg_overlap_mentioned_p (operands[0], operands[1])"
[(parallel [(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI [(match_dup 1) (match_dup 4)]
UNSPECV_XCHG)
(match_dup 3)))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 2)))])])
;; Likewise, but for the -Os special case of *mov<mode>_or.
(define_peephole2
[(parallel [(set (match_operand:SWI 0 "register_operand")
(match_operand:SWI 2 "constm1_operand"))
(clobber (reg:CC FLAGS_REG))])
(parallel [(set (match_dup 0)
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 0)))
(clobber (reg:CC FLAGS_REG))])
(set (reg:CCZ FLAGS_REG)
(compare:CCZ (match_dup 0)
(match_operand:SWI 3 "const_int_operand")))]
"peep2_reg_dead_p (3, operands[0])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[3])
&& !reg_overlap_mentioned_p (operands[0], operands[1])"
[(parallel [(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI [(match_dup 1) (match_dup 4)]
UNSPECV_XCHG)
(match_dup 3)))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 2)))])])
(define_insn "*atomic_fetch_add_cmp<mode>"
[(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI
[(match_operand:SWI 0 "memory_operand" "+m")
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG)
(match_operand:SWI 2 "const_int_operand" "i")))
(set (match_dup 0)
(plus:SWI (match_dup 0)
(match_operand:SWI 1 "const_int_operand" "i")))]
"(unsigned HOST_WIDE_INT) INTVAL (operands[1])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[2])"
{
if (incdec_operand (operands[1], <MODE>mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K3inc{<imodesuffix>}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K3dec{<imodesuffix>}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], <MODE>mode))
return "lock{%;} %K3sub{<imodesuffix>}\t{%1, %0|%0, %1}";
return "lock{%;} %K3add{<imodesuffix>}\t{%1, %0|%0, %1}";
})
;; Recall that xchg implicitly sets LOCK#, so adding it again wastes space.
;; In addition, it is always a full barrier, so we can ignore the memory model.
(define_insn "atomic_exchange<mode>"
[(set (match_operand:SWI 0 "register_operand" "=<r>") ;; output
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m") ;; memory
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG))
(set (match_dup 1)
(match_operand:SWI 2 "register_operand" "0"))] ;; input
""
"%K3xchg{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_insn "atomic_add<mode>"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(plus:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" "<r><i>"))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
{
if (incdec_operand (operands[1], <MODE>mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K2inc{<imodesuffix>}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K2dec{<imodesuffix>}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], <MODE>mode))
return "lock{%;} %K2sub{<imodesuffix>}\t{%1, %0|%0, %1}";
return "lock{%;} %K2add{<imodesuffix>}\t{%1, %0|%0, %1}";
})
(define_insn "atomic_sub<mode>"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(minus:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" "<r><i>"))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
{
if (incdec_operand (operands[1], <MODE>mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K2dec{<imodesuffix>}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K2inc{<imodesuffix>}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], <MODE>mode))
return "lock{%;} %K2add{<imodesuffix>}\t{%1, %0|%0, %1}";
return "lock{%;} %K2sub{<imodesuffix>}\t{%1, %0|%0, %1}";
})
(define_insn "atomic_<logic><mode>"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(any_logic:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" "<r><i>"))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
"lock{%;} %K2<logic>{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_expand "atomic_bit_test_and_set<mode>"
[(match_operand:SWI248 0 "register_operand")
(match_operand:SWI248 1 "memory_operand")
(match_operand:SWI248 2 "nonmemory_operand")
(match_operand:SI 3 "const_int_operand") ;; model
(match_operand:SI 4 "const_int_operand")]
""
{
emit_insn (gen_atomic_bit_test_and_set<mode>_1 (operands[1], operands[2],
operands[3]));
rtx tem = gen_reg_rtx (QImode);
ix86_expand_setcc (tem, EQ, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx);
rtx result = convert_modes (<MODE>mode, QImode, tem, 1);
if (operands[4] == const0_rtx)
result = expand_simple_binop (<MODE>mode, ASHIFT, result,
operands[2], operands[0], 0, OPTAB_DIRECT);
if (result != operands[0])
emit_move_insn (operands[0], result);
DONE;
})
(define_insn "atomic_bit_test_and_set<mode>_1"
[(set (reg:CCC FLAGS_REG)
(compare:CCC
(unspec_volatile:SWI248
[(match_operand:SWI248 0 "memory_operand" "+m")
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_XCHG)
(const_int 0)))
(set (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_operand:SWI248 1 "nonmemory_operand" "rN"))
(const_int 1))]
""
"lock{%;} %K2bts{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_expand "atomic_bit_test_and_complement<mode>"
[(match_operand:SWI248 0 "register_operand")
(match_operand:SWI248 1 "memory_operand")
(match_operand:SWI248 2 "nonmemory_operand")
(match_operand:SI 3 "const_int_operand") ;; model
(match_operand:SI 4 "const_int_operand")]
""
{
emit_insn (gen_atomic_bit_test_and_complement<mode>_1 (operands[1],
operands[2],
operands[3]));
rtx tem = gen_reg_rtx (QImode);
ix86_expand_setcc (tem, EQ, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx);
rtx result = convert_modes (<MODE>mode, QImode, tem, 1);
if (operands[4] == const0_rtx)
result = expand_simple_binop (<MODE>mode, ASHIFT, result,
operands[2], operands[0], 0, OPTAB_DIRECT);
if (result != operands[0])
emit_move_insn (operands[0], result);
DONE;
})
(define_insn "atomic_bit_test_and_complement<mode>_1"
[(set (reg:CCC FLAGS_REG)
(compare:CCC
(unspec_volatile:SWI248
[(match_operand:SWI248 0 "memory_operand" "+m")
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_XCHG)
(const_int 0)))
(set (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_operand:SWI248 1 "nonmemory_operand" "rN"))
(not:SWI248 (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_dup 1))))]
""
"lock{%;} %K2btc{<imodesuffix>}\t{%1, %0|%0, %1}")
(define_expand "atomic_bit_test_and_reset<mode>"
[(match_operand:SWI248 0 "register_operand")
(match_operand:SWI248 1 "memory_operand")
(match_operand:SWI248 2 "nonmemory_operand")
(match_operand:SI 3 "const_int_operand") ;; model
(match_operand:SI 4 "const_int_operand")]
""
{
emit_insn (gen_atomic_bit_test_and_reset<mode>_1 (operands[1], operands[2],
operands[3]));
rtx tem = gen_reg_rtx (QImode);
ix86_expand_setcc (tem, EQ, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx);
rtx result = convert_modes (<MODE>mode, QImode, tem, 1);
if (operands[4] == const0_rtx)
result = expand_simple_binop (<MODE>mode, ASHIFT, result,
operands[2], operands[0], 0, OPTAB_DIRECT);
if (result != operands[0])
emit_move_insn (operands[0], result);
DONE;
})
(define_insn "atomic_bit_test_and_reset<mode>_1"
[(set (reg:CCC FLAGS_REG)
(compare:CCC
(unspec_volatile:SWI248
[(match_operand:SWI248 0 "memory_operand" "+m")
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_XCHG)
(const_int 0)))
(set (zero_extract:SWI248 (match_dup 0)
(const_int 1)
(match_operand:SWI248 1 "nonmemory_operand" "rN"))
(const_int 0))]
""
"lock{%;} %K2btr{<imodesuffix>}\t{%1, %0|%0, %1}")
|