1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
|
/* Subroutines used for code generation on IA-32.
Copyright (C) 1988-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "cfgbuild.h"
#include "alias.h"
#include "fold-const.h"
#include "attribs.h"
#include "calls.h"
#include "stor-layout.h"
#include "varasm.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "except.h"
#include "explow.h"
#include "expr.h"
#include "cfgrtl.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "reload.h"
#include "gimplify.h"
#include "dwarf2.h"
#include "tm-constrs.h"
#include "cselib.h"
#include "sched-int.h"
#include "opts.h"
#include "tree-pass.h"
#include "context.h"
#include "pass_manager.h"
#include "target-globals.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-vectorizer.h"
#include "shrink-wrap.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "tree-iterator.h"
#include "dbgcnt.h"
#include "case-cfn-macros.h"
#include "dojump.h"
#include "fold-const-call.h"
#include "tree-vrp.h"
#include "tree-ssanames.h"
#include "selftest.h"
#include "selftest-rtl.h"
#include "print-rtl.h"
#include "intl.h"
#include "ifcvt.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "wide-int-bitmask.h"
#include "tree-vector-builder.h"
#include "debug.h"
#include "dwarf2out.h"
#include "i386-options.h"
#include "i386-builtins.h"
#include "i386-expand.h"
#include "i386-features.h"
#include "function-abi.h"
/* This file should be included last. */
#include "target-def.h"
static rtx legitimize_dllimport_symbol (rtx, bool);
static rtx legitimize_pe_coff_extern_decl (rtx, bool);
static void ix86_print_operand_address_as (FILE *, rtx, addr_space_t, bool);
static void ix86_emit_restore_reg_using_pop (rtx);
#ifndef CHECK_STACK_LIMIT
#define CHECK_STACK_LIMIT (-1)
#endif
/* Return index of given mode in mult and division cost tables. */
#define MODE_INDEX(mode) \
((mode) == QImode ? 0 \
: (mode) == HImode ? 1 \
: (mode) == SImode ? 2 \
: (mode) == DImode ? 3 \
: 4)
/* Set by -mtune. */
const struct processor_costs *ix86_tune_cost = NULL;
/* Set by -mtune or -Os. */
const struct processor_costs *ix86_cost = NULL;
/* In case the average insn count for single function invocation is
lower than this constant, emit fast (but longer) prologue and
epilogue code. */
#define FAST_PROLOGUE_INSN_COUNT 20
/* Names for 8 (low), 8 (high), and 16-bit registers, respectively. */
static const char *const qi_reg_name[] = QI_REGISTER_NAMES;
static const char *const qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES;
static const char *const hi_reg_name[] = HI_REGISTER_NAMES;
/* Array of the smallest class containing reg number REGNO, indexed by
REGNO. Used by REGNO_REG_CLASS in i386.h. */
enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER] =
{
/* ax, dx, cx, bx */
AREG, DREG, CREG, BREG,
/* si, di, bp, sp */
SIREG, DIREG, NON_Q_REGS, NON_Q_REGS,
/* FP registers */
FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
/* arg pointer, flags, fpsr, frame */
NON_Q_REGS, NO_REGS, NO_REGS, NON_Q_REGS,
/* SSE registers */
SSE_FIRST_REG, SSE_REGS, SSE_REGS, SSE_REGS,
SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
/* MMX registers */
MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS,
MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS,
/* REX registers */
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
/* SSE REX registers */
SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
/* AVX-512 SSE registers */
ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS,
ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS,
ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS,
ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS,
/* Mask registers. */
ALL_MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS,
MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS
};
/* The "default" register map used in 32bit mode. */
int const debugger_register_map[FIRST_PSEUDO_REGISTER] =
{
/* general regs */
0, 2, 1, 3, 6, 7, 4, 5,
/* fp regs */
12, 13, 14, 15, 16, 17, 18, 19,
/* arg, flags, fpsr, frame */
IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM,
IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM,
/* SSE */
21, 22, 23, 24, 25, 26, 27, 28,
/* MMX */
29, 30, 31, 32, 33, 34, 35, 36,
/* extended integer registers */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* extended sse registers */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* AVX-512 registers 16-23 */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* AVX-512 registers 24-31 */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* Mask registers */
93, 94, 95, 96, 97, 98, 99, 100
};
/* The "default" register map used in 64bit mode. */
int const debugger64_register_map[FIRST_PSEUDO_REGISTER] =
{
/* general regs */
0, 1, 2, 3, 4, 5, 6, 7,
/* fp regs */
33, 34, 35, 36, 37, 38, 39, 40,
/* arg, flags, fpsr, frame */
IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM,
IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM,
/* SSE */
17, 18, 19, 20, 21, 22, 23, 24,
/* MMX */
41, 42, 43, 44, 45, 46, 47, 48,
/* extended integer registers */
8, 9, 10, 11, 12, 13, 14, 15,
/* extended SSE registers */
25, 26, 27, 28, 29, 30, 31, 32,
/* AVX-512 registers 16-23 */
67, 68, 69, 70, 71, 72, 73, 74,
/* AVX-512 registers 24-31 */
75, 76, 77, 78, 79, 80, 81, 82,
/* Mask registers */
118, 119, 120, 121, 122, 123, 124, 125
};
/* Define the register numbers to be used in Dwarf debugging information.
The SVR4 reference port C compiler uses the following register numbers
in its Dwarf output code:
0 for %eax (gcc regno = 0)
1 for %ecx (gcc regno = 2)
2 for %edx (gcc regno = 1)
3 for %ebx (gcc regno = 3)
4 for %esp (gcc regno = 7)
5 for %ebp (gcc regno = 6)
6 for %esi (gcc regno = 4)
7 for %edi (gcc regno = 5)
The following three DWARF register numbers are never generated by
the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4
believed these numbers have these meanings.
8 for %eip (no gcc equivalent)
9 for %eflags (gcc regno = 17)
10 for %trapno (no gcc equivalent)
It is not at all clear how we should number the FP stack registers
for the x86 architecture. If the version of SDB on x86/svr4 were
a bit less brain dead with respect to floating-point then we would
have a precedent to follow with respect to DWARF register numbers
for x86 FP registers, but the SDB on x86/svr4 was so completely
broken with respect to FP registers that it is hardly worth thinking
of it as something to strive for compatibility with.
The version of x86/svr4 SDB I had does (partially)
seem to believe that DWARF register number 11 is associated with
the x86 register %st(0), but that's about all. Higher DWARF
register numbers don't seem to be associated with anything in
particular, and even for DWARF regno 11, SDB only seemed to under-
stand that it should say that a variable lives in %st(0) (when
asked via an `=' command) if we said it was in DWARF regno 11,
but SDB still printed garbage when asked for the value of the
variable in question (via a `/' command).
(Also note that the labels SDB printed for various FP stack regs
when doing an `x' command were all wrong.)
Note that these problems generally don't affect the native SVR4
C compiler because it doesn't allow the use of -O with -g and
because when it is *not* optimizing, it allocates a memory
location for each floating-point variable, and the memory
location is what gets described in the DWARF AT_location
attribute for the variable in question.
Regardless of the severe mental illness of the x86/svr4 SDB, we
do something sensible here and we use the following DWARF
register numbers. Note that these are all stack-top-relative
numbers.
11 for %st(0) (gcc regno = 8)
12 for %st(1) (gcc regno = 9)
13 for %st(2) (gcc regno = 10)
14 for %st(3) (gcc regno = 11)
15 for %st(4) (gcc regno = 12)
16 for %st(5) (gcc regno = 13)
17 for %st(6) (gcc regno = 14)
18 for %st(7) (gcc regno = 15)
*/
int const svr4_debugger_register_map[FIRST_PSEUDO_REGISTER] =
{
/* general regs */
0, 2, 1, 3, 6, 7, 5, 4,
/* fp regs */
11, 12, 13, 14, 15, 16, 17, 18,
/* arg, flags, fpsr, frame */
IGNORED_DWARF_REGNUM, 9,
IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM,
/* SSE registers */
21, 22, 23, 24, 25, 26, 27, 28,
/* MMX registers */
29, 30, 31, 32, 33, 34, 35, 36,
/* extended integer registers */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* extended sse registers */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* AVX-512 registers 16-23 */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* AVX-512 registers 24-31 */
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM,
/* Mask registers */
93, 94, 95, 96, 97, 98, 99, 100
};
/* Define parameter passing and return registers. */
static int const x86_64_int_parameter_registers[6] =
{
DI_REG, SI_REG, DX_REG, CX_REG, R8_REG, R9_REG
};
static int const x86_64_ms_abi_int_parameter_registers[4] =
{
CX_REG, DX_REG, R8_REG, R9_REG
};
static int const x86_64_int_return_registers[4] =
{
AX_REG, DX_REG, DI_REG, SI_REG
};
/* Define the structure for the machine field in struct function. */
struct GTY(()) stack_local_entry {
unsigned short mode;
unsigned short n;
rtx rtl;
struct stack_local_entry *next;
};
/* Which cpu are we scheduling for. */
enum attr_cpu ix86_schedule;
/* Which cpu are we optimizing for. */
enum processor_type ix86_tune;
/* Which instruction set architecture to use. */
enum processor_type ix86_arch;
/* True if processor has SSE prefetch instruction. */
unsigned char ix86_prefetch_sse;
/* Preferred alignment for stack boundary in bits. */
unsigned int ix86_preferred_stack_boundary;
/* Alignment for incoming stack boundary in bits specified at
command line. */
unsigned int ix86_user_incoming_stack_boundary;
/* Default alignment for incoming stack boundary in bits. */
unsigned int ix86_default_incoming_stack_boundary;
/* Alignment for incoming stack boundary in bits. */
unsigned int ix86_incoming_stack_boundary;
/* True if there is no direct access to extern symbols. */
bool ix86_has_no_direct_extern_access;
/* Calling abi specific va_list type nodes. */
tree sysv_va_list_type_node;
tree ms_va_list_type_node;
/* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */
char internal_label_prefix[16];
int internal_label_prefix_len;
/* Fence to use after loop using movnt. */
tree x86_mfence;
/* Register class used for passing given 64bit part of the argument.
These represent classes as documented by the PS ABI, with the exception
of SSESF, SSEDF classes, that are basically SSE class, just gcc will
use SF or DFmode move instead of DImode to avoid reformatting penalties.
Similarly we play games with INTEGERSI_CLASS to use cheaper SImode moves
whenever possible (upper half does contain padding). */
enum x86_64_reg_class
{
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,
X86_64_SSEHF_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,
X86_64_X87UP_CLASS,
X86_64_COMPLEX_X87_CLASS,
X86_64_MEMORY_CLASS
};
#define MAX_CLASSES 8
/* Table of constants used by fldpi, fldln2, etc.... */
static REAL_VALUE_TYPE ext_80387_constants_table [5];
static bool ext_80387_constants_init;
static rtx ix86_function_value (const_tree, const_tree, bool);
static bool ix86_function_value_regno_p (const unsigned int);
static unsigned int ix86_function_arg_boundary (machine_mode,
const_tree);
static rtx ix86_static_chain (const_tree, bool);
static int ix86_function_regparm (const_tree, const_tree);
static void ix86_compute_frame_layout (void);
static tree ix86_canonical_va_list_type (tree);
static unsigned int split_stack_prologue_scratch_regno (void);
static bool i386_asm_output_addr_const_extra (FILE *, rtx);
static bool ix86_can_inline_p (tree, tree);
static unsigned int ix86_minimum_incoming_stack_boundary (bool);
/* Whether -mtune= or -march= were specified */
int ix86_tune_defaulted;
int ix86_arch_specified;
/* Return true if a red-zone is in use. We can't use red-zone when
there are local indirect jumps, like "indirect_jump" or "tablejump",
which jumps to another place in the function, since "call" in the
indirect thunk pushes the return address onto stack, destroying
red-zone.
TODO: If we can reserve the first 2 WORDs, for PUSH and, another
for CALL, in red-zone, we can allow local indirect jumps with
indirect thunk. */
bool
ix86_using_red_zone (void)
{
return (TARGET_RED_ZONE
&& !TARGET_64BIT_MS_ABI
&& (!cfun->machine->has_local_indirect_jump
|| cfun->machine->indirect_branch_type == indirect_branch_keep));
}
/* Return true, if profiling code should be emitted before
prologue. Otherwise it returns false.
Note: For x86 with "hotfix" it is sorried. */
static bool
ix86_profile_before_prologue (void)
{
return flag_fentry != 0;
}
/* Update register usage after having seen the compiler flags. */
static void
ix86_conditional_register_usage (void)
{
int i, c_mask;
/* If there are no caller-saved registers, preserve all registers.
except fixed_regs and registers used for function return value
since aggregate_value_p checks call_used_regs[regno] on return
value. */
if (cfun && cfun->machine->no_caller_saved_registers)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (!fixed_regs[i] && !ix86_function_value_regno_p (i))
call_used_regs[i] = 0;
/* For 32-bit targets, disable the REX registers. */
if (! TARGET_64BIT)
{
for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)
CLEAR_HARD_REG_BIT (accessible_reg_set, i);
for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)
CLEAR_HARD_REG_BIT (accessible_reg_set, i);
for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++)
CLEAR_HARD_REG_BIT (accessible_reg_set, i);
}
/* See the definition of CALL_USED_REGISTERS in i386.h. */
c_mask = CALL_USED_REGISTERS_MASK (TARGET_64BIT_MS_ABI);
CLEAR_HARD_REG_SET (reg_class_contents[(int)CLOBBERED_REGS]);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
/* Set/reset conditionally defined registers from
CALL_USED_REGISTERS initializer. */
if (call_used_regs[i] > 1)
call_used_regs[i] = !!(call_used_regs[i] & c_mask);
/* Calculate registers of CLOBBERED_REGS register set
as call used registers from GENERAL_REGS register set. */
if (TEST_HARD_REG_BIT (reg_class_contents[(int)GENERAL_REGS], i)
&& call_used_regs[i])
SET_HARD_REG_BIT (reg_class_contents[(int)CLOBBERED_REGS], i);
}
/* If MMX is disabled, disable the registers. */
if (! TARGET_MMX)
accessible_reg_set &= ~reg_class_contents[MMX_REGS];
/* If SSE is disabled, disable the registers. */
if (! TARGET_SSE)
accessible_reg_set &= ~reg_class_contents[ALL_SSE_REGS];
/* If the FPU is disabled, disable the registers. */
if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387))
accessible_reg_set &= ~reg_class_contents[FLOAT_REGS];
/* If AVX512F is disabled, disable the registers. */
if (! TARGET_AVX512F)
{
for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++)
CLEAR_HARD_REG_BIT (accessible_reg_set, i);
accessible_reg_set &= ~reg_class_contents[ALL_MASK_REGS];
}
}
/* Canonicalize a comparison from one we don't have to one we do have. */
static void
ix86_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
bool op0_preserve_value)
{
/* The order of operands in x87 ficom compare is forced by combine in
simplify_comparison () function. Float operator is treated as RTX_OBJ
with a precedence over other operators and is always put in the first
place. Swap condition and operands to match ficom instruction. */
if (!op0_preserve_value
&& GET_CODE (*op0) == FLOAT && MEM_P (XEXP (*op0, 0)) && REG_P (*op1))
{
enum rtx_code scode = swap_condition ((enum rtx_code) *code);
/* We are called only for compares that are split to SAHF instruction.
Ensure that we have setcc/jcc insn for the swapped condition. */
if (ix86_fp_compare_code_to_integer (scode) != UNKNOWN)
{
std::swap (*op0, *op1);
*code = (int) scode;
}
}
}
/* Hook to determine if one function can safely inline another. */
static bool
ix86_can_inline_p (tree caller, tree callee)
{
tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
/* Changes of those flags can be tolerated for always inlines. Lets hope
user knows what he is doing. */
unsigned HOST_WIDE_INT always_inline_safe_mask
= (MASK_USE_8BIT_IDIV | MASK_ACCUMULATE_OUTGOING_ARGS
| MASK_NO_ALIGN_STRINGOPS | MASK_AVX256_SPLIT_UNALIGNED_LOAD
| MASK_AVX256_SPLIT_UNALIGNED_STORE | MASK_CLD
| MASK_NO_FANCY_MATH_387 | MASK_IEEE_FP | MASK_INLINE_ALL_STRINGOPS
| MASK_INLINE_STRINGOPS_DYNAMICALLY | MASK_RECIP | MASK_STACK_PROBE
| MASK_STV | MASK_TLS_DIRECT_SEG_REFS | MASK_VZEROUPPER
| MASK_NO_PUSH_ARGS | MASK_OMIT_LEAF_FRAME_POINTER);
if (!callee_tree)
callee_tree = target_option_default_node;
if (!caller_tree)
caller_tree = target_option_default_node;
if (callee_tree == caller_tree)
return true;
struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
bool ret = false;
bool always_inline
= (DECL_DISREGARD_INLINE_LIMITS (callee)
&& lookup_attribute ("always_inline",
DECL_ATTRIBUTES (callee)));
/* If callee only uses GPRs, ignore MASK_80387. */
if (TARGET_GENERAL_REGS_ONLY_P (callee_opts->x_ix86_target_flags))
always_inline_safe_mask |= MASK_80387;
cgraph_node *callee_node = cgraph_node::get (callee);
/* Callee's isa options should be a subset of the caller's, i.e. a SSE4
function can inline a SSE2 function but a SSE2 function can't inline
a SSE4 function. */
if (((caller_opts->x_ix86_isa_flags & callee_opts->x_ix86_isa_flags)
!= callee_opts->x_ix86_isa_flags)
|| ((caller_opts->x_ix86_isa_flags2 & callee_opts->x_ix86_isa_flags2)
!= callee_opts->x_ix86_isa_flags2))
ret = false;
/* See if we have the same non-isa options. */
else if ((!always_inline
&& caller_opts->x_target_flags != callee_opts->x_target_flags)
|| (caller_opts->x_target_flags & ~always_inline_safe_mask)
!= (callee_opts->x_target_flags & ~always_inline_safe_mask))
ret = false;
/* See if arch, tune, etc. are the same. */
else if (caller_opts->arch != callee_opts->arch)
ret = false;
else if (!always_inline && caller_opts->tune != callee_opts->tune)
ret = false;
else if (caller_opts->x_ix86_fpmath != callee_opts->x_ix86_fpmath
/* If the calle doesn't use FP expressions differences in
ix86_fpmath can be ignored. We are called from FEs
for multi-versioning call optimization, so beware of
ipa_fn_summaries not available. */
&& (! ipa_fn_summaries
|| ipa_fn_summaries->get (callee_node) == NULL
|| ipa_fn_summaries->get (callee_node)->fp_expressions))
ret = false;
else if (!always_inline
&& caller_opts->branch_cost != callee_opts->branch_cost)
ret = false;
else
ret = true;
return ret;
}
/* Return true if this goes in large data/bss. */
static bool
ix86_in_large_data_p (tree exp)
{
if (ix86_cmodel != CM_MEDIUM && ix86_cmodel != CM_MEDIUM_PIC)
return false;
if (exp == NULL_TREE)
return false;
/* Functions are never large data. */
if (TREE_CODE (exp) == FUNCTION_DECL)
return false;
/* Automatic variables are never large data. */
if (VAR_P (exp) && !is_global_var (exp))
return false;
if (VAR_P (exp) && DECL_SECTION_NAME (exp))
{
const char *section = DECL_SECTION_NAME (exp);
if (strcmp (section, ".ldata") == 0
|| strcmp (section, ".lbss") == 0)
return true;
return false;
}
else
{
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
/* If this is an incomplete type with size 0, then we can't put it
in data because it might be too big when completed. Also,
int_size_in_bytes returns -1 if size can vary or is larger than
an integer in which case also it is safer to assume that it goes in
large data. */
if (size <= 0 || size > ix86_section_threshold)
return true;
}
return false;
}
/* i386-specific section flag to mark large sections. */
#define SECTION_LARGE SECTION_MACH_DEP
/* Switch to the appropriate section for output of DECL.
DECL is either a `VAR_DECL' node or a constant of some sort.
RELOC indicates whether forming the initial value of DECL requires
link-time relocations. */
ATTRIBUTE_UNUSED static section *
x86_64_elf_select_section (tree decl, int reloc,
unsigned HOST_WIDE_INT align)
{
if (ix86_in_large_data_p (decl))
{
const char *sname = NULL;
unsigned int flags = SECTION_WRITE | SECTION_LARGE;
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_DATA:
sname = ".ldata";
break;
case SECCAT_DATA_REL:
sname = ".ldata.rel";
break;
case SECCAT_DATA_REL_LOCAL:
sname = ".ldata.rel.local";
break;
case SECCAT_DATA_REL_RO:
sname = ".ldata.rel.ro";
break;
case SECCAT_DATA_REL_RO_LOCAL:
sname = ".ldata.rel.ro.local";
break;
case SECCAT_BSS:
sname = ".lbss";
flags |= SECTION_BSS;
break;
case SECCAT_RODATA:
case SECCAT_RODATA_MERGE_STR:
case SECCAT_RODATA_MERGE_STR_INIT:
case SECCAT_RODATA_MERGE_CONST:
sname = ".lrodata";
flags &= ~SECTION_WRITE;
break;
case SECCAT_SRODATA:
case SECCAT_SDATA:
case SECCAT_SBSS:
gcc_unreachable ();
case SECCAT_TEXT:
case SECCAT_TDATA:
case SECCAT_TBSS:
/* We don't split these for medium model. Place them into
default sections and hope for best. */
break;
}
if (sname)
{
/* We might get called with string constants, but get_named_section
doesn't like them as they are not DECLs. Also, we need to set
flags in that case. */
if (!DECL_P (decl))
return get_section (sname, flags, NULL);
return get_named_section (decl, sname, reloc);
}
}
return default_elf_select_section (decl, reloc, align);
}
/* Select a set of attributes for section NAME based on the properties
of DECL and whether or not RELOC indicates that DECL's initializer
might contain runtime relocations. */
static unsigned int ATTRIBUTE_UNUSED
x86_64_elf_section_type_flags (tree decl, const char *name, int reloc)
{
unsigned int flags = default_section_type_flags (decl, name, reloc);
if (ix86_in_large_data_p (decl))
flags |= SECTION_LARGE;
if (decl == NULL_TREE
&& (strcmp (name, ".ldata.rel.ro") == 0
|| strcmp (name, ".ldata.rel.ro.local") == 0))
flags |= SECTION_RELRO;
if (strcmp (name, ".lbss") == 0
|| startswith (name, ".lbss.")
|| startswith (name, ".gnu.linkonce.lb."))
flags |= SECTION_BSS;
return flags;
}
/* Build up a unique section name, expressed as a
STRING_CST node, and assign it to DECL_SECTION_NAME (decl).
RELOC indicates whether the initial value of EXP requires
link-time relocations. */
static void ATTRIBUTE_UNUSED
x86_64_elf_unique_section (tree decl, int reloc)
{
if (ix86_in_large_data_p (decl))
{
const char *prefix = NULL;
/* We only need to use .gnu.linkonce if we don't have COMDAT groups. */
bool one_only = DECL_COMDAT_GROUP (decl) && !HAVE_COMDAT_GROUP;
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_DATA:
case SECCAT_DATA_REL:
case SECCAT_DATA_REL_LOCAL:
case SECCAT_DATA_REL_RO:
case SECCAT_DATA_REL_RO_LOCAL:
prefix = one_only ? ".ld" : ".ldata";
break;
case SECCAT_BSS:
prefix = one_only ? ".lb" : ".lbss";
break;
case SECCAT_RODATA:
case SECCAT_RODATA_MERGE_STR:
case SECCAT_RODATA_MERGE_STR_INIT:
case SECCAT_RODATA_MERGE_CONST:
prefix = one_only ? ".lr" : ".lrodata";
break;
case SECCAT_SRODATA:
case SECCAT_SDATA:
case SECCAT_SBSS:
gcc_unreachable ();
case SECCAT_TEXT:
case SECCAT_TDATA:
case SECCAT_TBSS:
/* We don't split these for medium model. Place them into
default sections and hope for best. */
break;
}
if (prefix)
{
const char *name, *linkonce;
char *string;
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = targetm.strip_name_encoding (name);
/* If we're using one_only, then there needs to be a .gnu.linkonce
prefix to the section name. */
linkonce = one_only ? ".gnu.linkonce" : "";
string = ACONCAT ((linkonce, prefix, ".", name, NULL));
set_decl_section_name (decl, string);
return;
}
}
default_unique_section (decl, reloc);
}
#ifdef COMMON_ASM_OP
#ifndef LARGECOMM_SECTION_ASM_OP
#define LARGECOMM_SECTION_ASM_OP "\t.largecomm\t"
#endif
/* This says how to output assembler code to declare an
uninitialized external linkage data object.
For medium model x86-64 we need to use LARGECOMM_SECTION_ASM_OP opcode for
large objects. */
void
x86_elf_aligned_decl_common (FILE *file, tree decl,
const char *name, unsigned HOST_WIDE_INT size,
unsigned align)
{
if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC)
&& size > (unsigned int)ix86_section_threshold)
{
switch_to_section (get_named_section (decl, ".lbss", 0));
fputs (LARGECOMM_SECTION_ASM_OP, file);
}
else
fputs (COMMON_ASM_OP, file);
assemble_name (file, name);
fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
size, align / BITS_PER_UNIT);
}
#endif
/* Utility function for targets to use in implementing
ASM_OUTPUT_ALIGNED_BSS. */
void
x86_output_aligned_bss (FILE *file, tree decl, const char *name,
unsigned HOST_WIDE_INT size, unsigned align)
{
if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC)
&& size > (unsigned int)ix86_section_threshold)
switch_to_section (get_named_section (decl, ".lbss", 0));
else
switch_to_section (bss_section);
ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
#ifdef ASM_DECLARE_OBJECT_NAME
last_assemble_variable_decl = decl;
ASM_DECLARE_OBJECT_NAME (file, name, decl);
#else
/* Standard thing is just output label for the object. */
ASM_OUTPUT_LABEL (file, name);
#endif /* ASM_DECLARE_OBJECT_NAME */
ASM_OUTPUT_SKIP (file, size ? size : 1);
}
/* Decide whether we must probe the stack before any space allocation
on this target. It's essentially TARGET_STACK_PROBE except when
-fstack-check causes the stack to be already probed differently. */
bool
ix86_target_stack_probe (void)
{
/* Do not probe the stack twice if static stack checking is enabled. */
if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
return false;
return TARGET_STACK_PROBE;
}
/* Decide whether we can make a sibling call to a function. DECL is the
declaration of the function being targeted by the call and EXP is the
CALL_EXPR representing the call. */
static bool
ix86_function_ok_for_sibcall (tree decl, tree exp)
{
tree type, decl_or_type;
rtx a, b;
bool bind_global = decl && !targetm.binds_local_p (decl);
if (ix86_function_naked (current_function_decl))
return false;
/* Sibling call isn't OK if there are no caller-saved registers
since all registers must be preserved before return. */
if (cfun->machine->no_caller_saved_registers)
return false;
/* If we are generating position-independent code, we cannot sibcall
optimize direct calls to global functions, as the PLT requires
%ebx be live. (Darwin does not have a PLT.) */
if (!TARGET_MACHO
&& !TARGET_64BIT
&& flag_pic
&& flag_plt
&& bind_global)
return false;
/* If we need to align the outgoing stack, then sibcalling would
unalign the stack, which may break the called function. */
if (ix86_minimum_incoming_stack_boundary (true)
< PREFERRED_STACK_BOUNDARY)
return false;
if (decl)
{
decl_or_type = decl;
type = TREE_TYPE (decl);
}
else
{
/* We're looking at the CALL_EXPR, we need the type of the function. */
type = CALL_EXPR_FN (exp); /* pointer expression */
type = TREE_TYPE (type); /* pointer type */
type = TREE_TYPE (type); /* function type */
decl_or_type = type;
}
/* If outgoing reg parm stack space changes, we cannot do sibcall. */
if ((OUTGOING_REG_PARM_STACK_SPACE (type)
!= OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
|| (REG_PARM_STACK_SPACE (decl_or_type)
!= REG_PARM_STACK_SPACE (current_function_decl)))
{
maybe_complain_about_tail_call (exp,
"inconsistent size of stack space"
" allocated for arguments which are"
" passed in registers");
return false;
}
/* Check that the return value locations are the same. Like
if we are returning floats on the 80387 register stack, we cannot
make a sibcall from a function that doesn't return a float to a
function that does or, conversely, from a function that does return
a float to a function that doesn't; the necessary stack adjustment
would not be executed. This is also the place we notice
differences in the return value ABI. Note that it is ok for one
of the functions to have void return type as long as the return
value of the other is passed in a register. */
a = ix86_function_value (TREE_TYPE (exp), decl_or_type, false);
b = ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)),
cfun->decl, false);
if (STACK_REG_P (a) || STACK_REG_P (b))
{
if (!rtx_equal_p (a, b))
return false;
}
else if (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
;
else if (!rtx_equal_p (a, b))
return false;
if (TARGET_64BIT)
{
/* The SYSV ABI has more call-clobbered registers;
disallow sibcalls from MS to SYSV. */
if (cfun->machine->call_abi == MS_ABI
&& ix86_function_type_abi (type) == SYSV_ABI)
return false;
}
else
{
/* If this call is indirect, we'll need to be able to use a
call-clobbered register for the address of the target function.
Make sure that all such registers are not used for passing
parameters. Note that DLLIMPORT functions and call to global
function via GOT slot are indirect. */
if (!decl
|| (bind_global && flag_pic && !flag_plt)
|| (TARGET_DLLIMPORT_DECL_ATTRIBUTES && DECL_DLLIMPORT_P (decl))
|| flag_force_indirect_call)
{
/* Check if regparm >= 3 since arg_reg_available is set to
false if regparm == 0. If regparm is 1 or 2, there is
always a call-clobbered register available.
??? The symbol indirect call doesn't need a call-clobbered
register. But we don't know if this is a symbol indirect
call or not here. */
if (ix86_function_regparm (type, decl) >= 3
&& !cfun->machine->arg_reg_available)
return false;
}
}
if (decl && ix86_use_pseudo_pic_reg ())
{
/* When PIC register is used, it must be restored after ifunc
function returns. */
cgraph_node *node = cgraph_node::get (decl);
if (node && node->ifunc_resolver)
return false;
}
/* Disable sibcall if callee has indirect_return attribute and
caller doesn't since callee will return to the caller's caller
via an indirect jump. */
if (((flag_cf_protection & (CF_RETURN | CF_BRANCH))
== (CF_RETURN | CF_BRANCH))
&& lookup_attribute ("indirect_return", TYPE_ATTRIBUTES (type))
&& !lookup_attribute ("indirect_return",
TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl))))
return false;
/* Otherwise okay. That also includes certain types of indirect calls. */
return true;
}
/* This function determines from TYPE the calling-convention. */
unsigned int
ix86_get_callcvt (const_tree type)
{
unsigned int ret = 0;
bool is_stdarg;
tree attrs;
if (TARGET_64BIT)
return IX86_CALLCVT_CDECL;
attrs = TYPE_ATTRIBUTES (type);
if (attrs != NULL_TREE)
{
if (lookup_attribute ("cdecl", attrs))
ret |= IX86_CALLCVT_CDECL;
else if (lookup_attribute ("stdcall", attrs))
ret |= IX86_CALLCVT_STDCALL;
else if (lookup_attribute ("fastcall", attrs))
ret |= IX86_CALLCVT_FASTCALL;
else if (lookup_attribute ("thiscall", attrs))
ret |= IX86_CALLCVT_THISCALL;
/* Regparam isn't allowed for thiscall and fastcall. */
if ((ret & (IX86_CALLCVT_THISCALL | IX86_CALLCVT_FASTCALL)) == 0)
{
if (lookup_attribute ("regparm", attrs))
ret |= IX86_CALLCVT_REGPARM;
if (lookup_attribute ("sseregparm", attrs))
ret |= IX86_CALLCVT_SSEREGPARM;
}
if (IX86_BASE_CALLCVT(ret) != 0)
return ret;
}
is_stdarg = stdarg_p (type);
if (TARGET_RTD && !is_stdarg)
return IX86_CALLCVT_STDCALL | ret;
if (ret != 0
|| is_stdarg
|| TREE_CODE (type) != METHOD_TYPE
|| ix86_function_type_abi (type) != MS_ABI)
return IX86_CALLCVT_CDECL | ret;
return IX86_CALLCVT_THISCALL;
}
/* Return 0 if the attributes for two types are incompatible, 1 if they
are compatible, and 2 if they are nearly compatible (which causes a
warning to be generated). */
static int
ix86_comp_type_attributes (const_tree type1, const_tree type2)
{
unsigned int ccvt1, ccvt2;
if (TREE_CODE (type1) != FUNCTION_TYPE
&& TREE_CODE (type1) != METHOD_TYPE)
return 1;
ccvt1 = ix86_get_callcvt (type1);
ccvt2 = ix86_get_callcvt (type2);
if (ccvt1 != ccvt2)
return 0;
if (ix86_function_regparm (type1, NULL)
!= ix86_function_regparm (type2, NULL))
return 0;
return 1;
}
/* Return the regparm value for a function with the indicated TYPE and DECL.
DECL may be NULL when calling function indirectly
or considering a libcall. */
static int
ix86_function_regparm (const_tree type, const_tree decl)
{
tree attr;
int regparm;
unsigned int ccvt;
if (TARGET_64BIT)
return (ix86_function_type_abi (type) == SYSV_ABI
? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX);
ccvt = ix86_get_callcvt (type);
regparm = ix86_regparm;
if ((ccvt & IX86_CALLCVT_REGPARM) != 0)
{
attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type));
if (attr)
{
regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
return regparm;
}
}
else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
return 2;
else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
return 1;
/* Use register calling convention for local functions when possible. */
if (decl
&& TREE_CODE (decl) == FUNCTION_DECL)
{
cgraph_node *target = cgraph_node::get (decl);
if (target)
target = target->function_symbol ();
/* Caller and callee must agree on the calling convention, so
checking here just optimize means that with
__attribute__((optimize (...))) caller could use regparm convention
and callee not, or vice versa. Instead look at whether the callee
is optimized or not. */
if (target && opt_for_fn (target->decl, optimize)
&& !(profile_flag && !flag_fentry))
{
if (target->local && target->can_change_signature)
{
int local_regparm, globals = 0, regno;
/* Make sure no regparm register is taken by a
fixed register variable. */
for (local_regparm = 0; local_regparm < REGPARM_MAX;
local_regparm++)
if (fixed_regs[local_regparm])
break;
/* We don't want to use regparm(3) for nested functions as
these use a static chain pointer in the third argument. */
if (local_regparm == 3 && DECL_STATIC_CHAIN (target->decl))
local_regparm = 2;
/* Save a register for the split stack. */
if (flag_split_stack)
{
if (local_regparm == 3)
local_regparm = 2;
else if (local_regparm == 2
&& DECL_STATIC_CHAIN (target->decl))
local_regparm = 1;
}
/* Each fixed register usage increases register pressure,
so less registers should be used for argument passing.
This functionality can be overriden by an explicit
regparm value. */
for (regno = AX_REG; regno <= DI_REG; regno++)
if (fixed_regs[regno])
globals++;
local_regparm
= globals < local_regparm ? local_regparm - globals : 0;
if (local_regparm > regparm)
regparm = local_regparm;
}
}
}
return regparm;
}
/* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and
DFmode (2) arguments in SSE registers for a function with the
indicated TYPE and DECL. DECL may be NULL when calling function
indirectly or considering a libcall. Return -1 if any FP parameter
should be rejected by error. This is used in siutation we imply SSE
calling convetion but the function is called from another function with
SSE disabled. Otherwise return 0. */
static int
ix86_function_sseregparm (const_tree type, const_tree decl, bool warn)
{
gcc_assert (!TARGET_64BIT);
/* Use SSE registers to pass SFmode and DFmode arguments if requested
by the sseregparm attribute. */
if (TARGET_SSEREGPARM
|| (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type))))
{
if (!TARGET_SSE)
{
if (warn)
{
if (decl)
error ("calling %qD with attribute sseregparm without "
"SSE/SSE2 enabled", decl);
else
error ("calling %qT with attribute sseregparm without "
"SSE/SSE2 enabled", type);
}
return 0;
}
return 2;
}
if (!decl)
return 0;
cgraph_node *target = cgraph_node::get (decl);
if (target)
target = target->function_symbol ();
/* For local functions, pass up to SSE_REGPARM_MAX SFmode
(and DFmode for SSE2) arguments in SSE registers. */
if (target
/* TARGET_SSE_MATH */
&& (target_opts_for_fn (target->decl)->x_ix86_fpmath & FPMATH_SSE)
&& opt_for_fn (target->decl, optimize)
&& !(profile_flag && !flag_fentry))
{
if (target->local && target->can_change_signature)
{
/* Refuse to produce wrong code when local function with SSE enabled
is called from SSE disabled function.
FIXME: We need a way to detect these cases cross-ltrans partition
and avoid using SSE calling conventions on local functions called
from function with SSE disabled. For now at least delay the
warning until we know we are going to produce wrong code.
See PR66047 */
if (!TARGET_SSE && warn)
return -1;
return TARGET_SSE2_P (target_opts_for_fn (target->decl)
->x_ix86_isa_flags) ? 2 : 1;
}
}
return 0;
}
/* Return true if EAX is live at the start of the function. Used by
ix86_expand_prologue to determine if we need special help before
calling allocate_stack_worker. */
static bool
ix86_eax_live_at_start_p (void)
{
/* Cheat. Don't bother working forward from ix86_function_regparm
to the function type to whether an actual argument is located in
eax. Instead just look at cfg info, which is still close enough
to correct at this point. This gives false positives for broken
functions that might use uninitialized data that happens to be
allocated in eax, but who cares? */
return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 0);
}
static bool
ix86_keep_aggregate_return_pointer (tree fntype)
{
tree attr;
if (!TARGET_64BIT)
{
attr = lookup_attribute ("callee_pop_aggregate_return",
TYPE_ATTRIBUTES (fntype));
if (attr)
return (TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))) == 0);
/* For 32-bit MS-ABI the default is to keep aggregate
return pointer. */
if (ix86_function_type_abi (fntype) == MS_ABI)
return true;
}
return KEEP_AGGREGATE_RETURN_POINTER != 0;
}
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 80386, the RTD insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RTD can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RTD is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
static poly_int64
ix86_return_pops_args (tree fundecl, tree funtype, poly_int64 size)
{
unsigned int ccvt;
/* None of the 64-bit ABIs pop arguments. */
if (TARGET_64BIT)
return 0;
ccvt = ix86_get_callcvt (funtype);
if ((ccvt & (IX86_CALLCVT_STDCALL | IX86_CALLCVT_FASTCALL
| IX86_CALLCVT_THISCALL)) != 0
&& ! stdarg_p (funtype))
return size;
/* Lose any fake structure return argument if it is passed on the stack. */
if (aggregate_value_p (TREE_TYPE (funtype), fundecl)
&& !ix86_keep_aggregate_return_pointer (funtype))
{
int nregs = ix86_function_regparm (funtype, fundecl);
if (nregs == 0)
return GET_MODE_SIZE (Pmode);
}
return 0;
}
/* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */
static bool
ix86_legitimate_combined_insn (rtx_insn *insn)
{
int i;
/* Check operand constraints in case hard registers were propagated
into insn pattern. This check prevents combine pass from
generating insn patterns with invalid hard register operands.
These invalid insns can eventually confuse reload to error out
with a spill failure. See also PRs 46829 and 46843. */
gcc_assert (INSN_CODE (insn) >= 0);
extract_insn (insn);
preprocess_constraints (insn);
int n_operands = recog_data.n_operands;
int n_alternatives = recog_data.n_alternatives;
for (i = 0; i < n_operands; i++)
{
rtx op = recog_data.operand[i];
machine_mode mode = GET_MODE (op);
const operand_alternative *op_alt;
int offset = 0;
bool win;
int j;
/* A unary operator may be accepted by the predicate, but it
is irrelevant for matching constraints. */
if (UNARY_P (op))
op = XEXP (op, 0);
if (SUBREG_P (op))
{
if (REG_P (SUBREG_REG (op))
&& REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
GET_MODE (SUBREG_REG (op)),
SUBREG_BYTE (op),
GET_MODE (op));
op = SUBREG_REG (op);
}
if (!(REG_P (op) && HARD_REGISTER_P (op)))
continue;
op_alt = recog_op_alt;
/* Operand has no constraints, anything is OK. */
win = !n_alternatives;
alternative_mask preferred = get_preferred_alternatives (insn);
for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
{
if (!TEST_BIT (preferred, j))
continue;
if (op_alt[i].anything_ok
|| (op_alt[i].matches != -1
&& operands_match_p
(recog_data.operand[i],
recog_data.operand[op_alt[i].matches]))
|| reg_fits_class_p (op, op_alt[i].cl, offset, mode))
{
win = true;
break;
}
}
if (!win)
return false;
}
return true;
}
/* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */
static unsigned HOST_WIDE_INT
ix86_asan_shadow_offset (void)
{
return SUBTARGET_SHADOW_OFFSET;
}
/* Argument support functions. */
/* Return true when register may be used to pass function parameters. */
bool
ix86_function_arg_regno_p (int regno)
{
int i;
enum calling_abi call_abi;
const int *parm_regs;
if (TARGET_SSE && SSE_REGNO_P (regno)
&& regno < FIRST_SSE_REG + SSE_REGPARM_MAX)
return true;
if (!TARGET_64BIT)
return (regno < REGPARM_MAX
|| (TARGET_MMX && MMX_REGNO_P (regno)
&& regno < FIRST_MMX_REG + MMX_REGPARM_MAX));
/* TODO: The function should depend on current function ABI but
builtins.cc would need updating then. Therefore we use the
default ABI. */
call_abi = ix86_cfun_abi ();
/* RAX is used as hidden argument to va_arg functions. */
if (call_abi == SYSV_ABI && regno == AX_REG)
return true;
if (call_abi == MS_ABI)
parm_regs = x86_64_ms_abi_int_parameter_registers;
else
parm_regs = x86_64_int_parameter_registers;
for (i = 0; i < (call_abi == MS_ABI
? X86_64_MS_REGPARM_MAX : X86_64_REGPARM_MAX); i++)
if (regno == parm_regs[i])
return true;
return false;
}
/* Return if we do not know how to pass ARG solely in registers. */
static bool
ix86_must_pass_in_stack (const function_arg_info &arg)
{
if (must_pass_in_stack_var_size_or_pad (arg))
return true;
/* For 32-bit, we want TImode aggregates to go on the stack. But watch out!
The layout_type routine is crafty and tries to trick us into passing
currently unsupported vector types on the stack by using TImode. */
return (!TARGET_64BIT && arg.mode == TImode
&& arg.type && TREE_CODE (arg.type) != VECTOR_TYPE);
}
/* It returns the size, in bytes, of the area reserved for arguments passed
in registers for the function represented by fndecl dependent to the used
abi format. */
int
ix86_reg_parm_stack_space (const_tree fndecl)
{
enum calling_abi call_abi = SYSV_ABI;
if (fndecl != NULL_TREE && TREE_CODE (fndecl) == FUNCTION_DECL)
call_abi = ix86_function_abi (fndecl);
else
call_abi = ix86_function_type_abi (fndecl);
if (TARGET_64BIT && call_abi == MS_ABI)
return 32;
return 0;
}
/* We add this as a workaround in order to use libc_has_function
hook in i386.md. */
bool
ix86_libc_has_function (enum function_class fn_class)
{
return targetm.libc_has_function (fn_class, NULL_TREE);
}
/* Returns value SYSV_ABI, MS_ABI dependent on fntype,
specifying the call abi used. */
enum calling_abi
ix86_function_type_abi (const_tree fntype)
{
enum calling_abi abi = ix86_abi;
if (fntype == NULL_TREE || TYPE_ATTRIBUTES (fntype) == NULL_TREE)
return abi;
if (abi == SYSV_ABI
&& lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (fntype)))
{
static int warned;
if (TARGET_X32 && !warned)
{
error ("X32 does not support %<ms_abi%> attribute");
warned = 1;
}
abi = MS_ABI;
}
else if (abi == MS_ABI
&& lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (fntype)))
abi = SYSV_ABI;
return abi;
}
enum calling_abi
ix86_function_abi (const_tree fndecl)
{
return fndecl ? ix86_function_type_abi (TREE_TYPE (fndecl)) : ix86_abi;
}
/* Returns value SYSV_ABI, MS_ABI dependent on cfun,
specifying the call abi used. */
enum calling_abi
ix86_cfun_abi (void)
{
return cfun ? cfun->machine->call_abi : ix86_abi;
}
bool
ix86_function_ms_hook_prologue (const_tree fn)
{
if (fn && lookup_attribute ("ms_hook_prologue", DECL_ATTRIBUTES (fn)))
{
if (decl_function_context (fn) != NULL_TREE)
error_at (DECL_SOURCE_LOCATION (fn),
"%<ms_hook_prologue%> attribute is not compatible "
"with nested function");
else
return true;
}
return false;
}
bool
ix86_function_naked (const_tree fn)
{
if (fn && lookup_attribute ("naked", DECL_ATTRIBUTES (fn)))
return true;
return false;
}
/* Write the extra assembler code needed to declare a function properly. */
void
ix86_asm_output_function_label (FILE *out_file, const char *fname,
tree decl)
{
bool is_ms_hook = ix86_function_ms_hook_prologue (decl);
if (cfun)
cfun->machine->function_label_emitted = true;
if (is_ms_hook)
{
int i, filler_count = (TARGET_64BIT ? 32 : 16);
unsigned int filler_cc = 0xcccccccc;
for (i = 0; i < filler_count; i += 4)
fprintf (out_file, ASM_LONG " %#x\n", filler_cc);
}
#ifdef SUBTARGET_ASM_UNWIND_INIT
SUBTARGET_ASM_UNWIND_INIT (out_file);
#endif
ASM_OUTPUT_LABEL (out_file, fname);
/* Output magic byte marker, if hot-patch attribute is set. */
if (is_ms_hook)
{
if (TARGET_64BIT)
{
/* leaq [%rsp + 0], %rsp */
fputs (ASM_BYTE "0x48, 0x8d, 0xa4, 0x24, 0x00, 0x00, 0x00, 0x00\n",
out_file);
}
else
{
/* movl.s %edi, %edi
push %ebp
movl.s %esp, %ebp */
fputs (ASM_BYTE "0x8b, 0xff, 0x55, 0x8b, 0xec\n", out_file);
}
}
}
/* Implementation of call abi switching target hook. Specific to FNDECL
the specific call register sets are set. See also
ix86_conditional_register_usage for more details. */
void
ix86_call_abi_override (const_tree fndecl)
{
cfun->machine->call_abi = ix86_function_abi (fndecl);
}
/* Return 1 if pseudo register should be created and used to hold
GOT address for PIC code. */
bool
ix86_use_pseudo_pic_reg (void)
{
if ((TARGET_64BIT
&& (ix86_cmodel == CM_SMALL_PIC
|| TARGET_PECOFF))
|| !flag_pic)
return false;
return true;
}
/* Initialize large model PIC register. */
static void
ix86_init_large_pic_reg (unsigned int tmp_regno)
{
rtx_code_label *label;
rtx tmp_reg;
gcc_assert (Pmode == DImode);
label = gen_label_rtx ();
emit_label (label);
LABEL_PRESERVE_P (label) = 1;
tmp_reg = gen_rtx_REG (Pmode, tmp_regno);
gcc_assert (REGNO (pic_offset_table_rtx) != tmp_regno);
emit_insn (gen_set_rip_rex64 (pic_offset_table_rtx,
label));
emit_insn (gen_set_got_offset_rex64 (tmp_reg, label));
emit_insn (gen_add2_insn (pic_offset_table_rtx, tmp_reg));
const char *name = LABEL_NAME (label);
PUT_CODE (label, NOTE);
NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
NOTE_DELETED_LABEL_NAME (label) = name;
}
/* Create and initialize PIC register if required. */
static void
ix86_init_pic_reg (void)
{
edge entry_edge;
rtx_insn *seq;
if (!ix86_use_pseudo_pic_reg ())
return;
start_sequence ();
if (TARGET_64BIT)
{
if (ix86_cmodel == CM_LARGE_PIC)
ix86_init_large_pic_reg (R11_REG);
else
emit_insn (gen_set_got_rex64 (pic_offset_table_rtx));
}
else
{
/* If there is future mcount call in the function it is more profitable
to emit SET_GOT into ABI defined REAL_PIC_OFFSET_TABLE_REGNUM. */
rtx reg = crtl->profile
? gen_rtx_REG (Pmode, REAL_PIC_OFFSET_TABLE_REGNUM)
: pic_offset_table_rtx;
rtx_insn *insn = emit_insn (gen_set_got (reg));
RTX_FRAME_RELATED_P (insn) = 1;
if (crtl->profile)
emit_move_insn (pic_offset_table_rtx, reg);
add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX);
}
seq = get_insns ();
end_sequence ();
entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
insert_insn_on_edge (seq, entry_edge);
commit_one_edge_insertion (entry_edge);
}
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */
tree fntype, /* tree ptr for function decl */
rtx libname, /* SYMBOL_REF of library name or 0 */
tree fndecl,
int caller)
{
struct cgraph_node *local_info_node = NULL;
struct cgraph_node *target = NULL;
/* Set silent_p to false to raise an error for invalid calls when
expanding function body. */
cfun->machine->silent_p = false;
memset (cum, 0, sizeof (*cum));
if (fndecl)
{
target = cgraph_node::get (fndecl);
if (target)
{
target = target->function_symbol ();
local_info_node = cgraph_node::local_info_node (target->decl);
cum->call_abi = ix86_function_abi (target->decl);
}
else
cum->call_abi = ix86_function_abi (fndecl);
}
else
cum->call_abi = ix86_function_type_abi (fntype);
cum->caller = caller;
/* Set up the number of registers to use for passing arguments. */
cum->nregs = ix86_regparm;
if (TARGET_64BIT)
{
cum->nregs = (cum->call_abi == SYSV_ABI
? X86_64_REGPARM_MAX
: X86_64_MS_REGPARM_MAX);
}
if (TARGET_SSE)
{
cum->sse_nregs = SSE_REGPARM_MAX;
if (TARGET_64BIT)
{
cum->sse_nregs = (cum->call_abi == SYSV_ABI
? X86_64_SSE_REGPARM_MAX
: X86_64_MS_SSE_REGPARM_MAX);
}
}
if (TARGET_MMX)
cum->mmx_nregs = MMX_REGPARM_MAX;
cum->warn_avx512f = true;
cum->warn_avx = true;
cum->warn_sse = true;
cum->warn_mmx = true;
/* Because type might mismatch in between caller and callee, we need to
use actual type of function for local calls.
FIXME: cgraph_analyze can be told to actually record if function uses
va_start so for local functions maybe_vaarg can be made aggressive
helping K&R code.
FIXME: once typesytem is fixed, we won't need this code anymore. */
if (local_info_node && local_info_node->local
&& local_info_node->can_change_signature)
fntype = TREE_TYPE (target->decl);
cum->stdarg = stdarg_p (fntype);
cum->maybe_vaarg = (fntype
? (!prototype_p (fntype) || stdarg_p (fntype))
: !libname);
cum->decl = fndecl;
cum->warn_empty = !warn_abi || cum->stdarg;
if (!cum->warn_empty && fntype)
{
function_args_iterator iter;
tree argtype;
bool seen_empty_type = false;
FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
{
if (argtype == error_mark_node || VOID_TYPE_P (argtype))
break;
if (TYPE_EMPTY_P (argtype))
seen_empty_type = true;
else if (seen_empty_type)
{
cum->warn_empty = true;
break;
}
}
}
if (!TARGET_64BIT)
{
/* If there are variable arguments, then we won't pass anything
in registers in 32-bit mode. */
if (stdarg_p (fntype))
{
cum->nregs = 0;
/* Since in 32-bit, variable arguments are always passed on
stack, there is scratch register available for indirect
sibcall. */
cfun->machine->arg_reg_available = true;
cum->sse_nregs = 0;
cum->mmx_nregs = 0;
cum->warn_avx512f = false;
cum->warn_avx = false;
cum->warn_sse = false;
cum->warn_mmx = false;
return;
}
/* Use ecx and edx registers if function has fastcall attribute,
else look for regparm information. */
if (fntype)
{
unsigned int ccvt = ix86_get_callcvt (fntype);
if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
{
cum->nregs = 1;
cum->fastcall = 1; /* Same first register as in fastcall. */
}
else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
{
cum->nregs = 2;
cum->fastcall = 1;
}
else
cum->nregs = ix86_function_regparm (fntype, fndecl);
}
/* Set up the number of SSE registers used for passing SFmode
and DFmode arguments. Warn for mismatching ABI. */
cum->float_in_sse = ix86_function_sseregparm (fntype, fndecl, true);
}
cfun->machine->arg_reg_available = (cum->nregs > 0);
}
/* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE.
But in the case of vector types, it is some vector mode.
When we have only some of our vector isa extensions enabled, then there
are some modes for which vector_mode_supported_p is false. For these
modes, the generic vector support in gcc will choose some non-vector mode
in order to implement the type. By computing the natural mode, we'll
select the proper ABI location for the operand and not depend on whatever
the middle-end decides to do with these vector types.
The midde-end can't deal with the vector types > 16 bytes. In this
case, we return the original mode and warn ABI change if CUM isn't
NULL.
If INT_RETURN is true, warn ABI change if the vector mode isn't
available for function return value. */
static machine_mode
type_natural_mode (const_tree type, const CUMULATIVE_ARGS *cum,
bool in_return)
{
machine_mode mode = TYPE_MODE (type);
if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode))
{
HOST_WIDE_INT size = int_size_in_bytes (type);
if ((size == 8 || size == 16 || size == 32 || size == 64)
/* ??? Generic code allows us to create width 1 vectors. Ignore. */
&& TYPE_VECTOR_SUBPARTS (type) > 1)
{
machine_mode innermode = TYPE_MODE (TREE_TYPE (type));
/* There are no XFmode vector modes ... */
if (innermode == XFmode)
return mode;
/* ... and no decimal float vector modes. */
if (DECIMAL_FLOAT_MODE_P (innermode))
return mode;
if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
mode = MIN_MODE_VECTOR_FLOAT;
else
mode = MIN_MODE_VECTOR_INT;
/* Get the mode which has this inner mode and number of units. */
FOR_EACH_MODE_FROM (mode, mode)
if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type)
&& GET_MODE_INNER (mode) == innermode)
{
if (size == 64 && !TARGET_AVX512F && !TARGET_IAMCU)
{
static bool warnedavx512f;
static bool warnedavx512f_ret;
if (cum && cum->warn_avx512f && !warnedavx512f)
{
if (warning (OPT_Wpsabi, "AVX512F vector argument "
"without AVX512F enabled changes the ABI"))
warnedavx512f = true;
}
else if (in_return && !warnedavx512f_ret)
{
if (warning (OPT_Wpsabi, "AVX512F vector return "
"without AVX512F enabled changes the ABI"))
warnedavx512f_ret = true;
}
return TYPE_MODE (type);
}
else if (size == 32 && !TARGET_AVX && !TARGET_IAMCU)
{
static bool warnedavx;
static bool warnedavx_ret;
if (cum && cum->warn_avx && !warnedavx)
{
if (warning (OPT_Wpsabi, "AVX vector argument "
"without AVX enabled changes the ABI"))
warnedavx = true;
}
else if (in_return && !warnedavx_ret)
{
if (warning (OPT_Wpsabi, "AVX vector return "
"without AVX enabled changes the ABI"))
warnedavx_ret = true;
}
return TYPE_MODE (type);
}
else if (((size == 8 && TARGET_64BIT) || size == 16)
&& !TARGET_SSE
&& !TARGET_IAMCU)
{
static bool warnedsse;
static bool warnedsse_ret;
if (cum && cum->warn_sse && !warnedsse)
{
if (warning (OPT_Wpsabi, "SSE vector argument "
"without SSE enabled changes the ABI"))
warnedsse = true;
}
else if (!TARGET_64BIT && in_return && !warnedsse_ret)
{
if (warning (OPT_Wpsabi, "SSE vector return "
"without SSE enabled changes the ABI"))
warnedsse_ret = true;
}
}
else if ((size == 8 && !TARGET_64BIT)
&& (!cfun
|| cfun->machine->func_type == TYPE_NORMAL)
&& !TARGET_MMX
&& !TARGET_IAMCU)
{
static bool warnedmmx;
static bool warnedmmx_ret;
if (cum && cum->warn_mmx && !warnedmmx)
{
if (warning (OPT_Wpsabi, "MMX vector argument "
"without MMX enabled changes the ABI"))
warnedmmx = true;
}
else if (in_return && !warnedmmx_ret)
{
if (warning (OPT_Wpsabi, "MMX vector return "
"without MMX enabled changes the ABI"))
warnedmmx_ret = true;
}
}
return mode;
}
gcc_unreachable ();
}
}
return mode;
}
/* We want to pass a value in REGNO whose "natural" mode is MODE. However,
this may not agree with the mode that the type system has chosen for the
register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can
go ahead and use it. Otherwise we have to build a PARALLEL instead. */
static rtx
gen_reg_or_parallel (machine_mode mode, machine_mode orig_mode,
unsigned int regno)
{
rtx tmp;
if (orig_mode != BLKmode)
tmp = gen_rtx_REG (orig_mode, regno);
else
{
tmp = gen_rtx_REG (mode, regno);
tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx);
tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp));
}
return tmp;
}
/* x86-64 register passing implementation. See x86-64 ABI for details. Goal
of this code is to classify each 8bytes of incoming argument by the register
class and assign registers accordingly. */
/* Return the union class of CLASS1 and CLASS2.
See the x86-64 PS ABI for details. */
static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
/* Rule #1: If both classes are equal, this is the resulting class. */
if (class1 == class2)
return class1;
/* Rule #2: If one of the classes is NO_CLASS, the resulting class is
the other class. */
if (class1 == X86_64_NO_CLASS)
return class2;
if (class2 == X86_64_NO_CLASS)
return class1;
/* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
if ((class1 == X86_64_INTEGERSI_CLASS
&& (class2 == X86_64_SSESF_CLASS || class2 == X86_64_SSEHF_CLASS))
|| (class2 == X86_64_INTEGERSI_CLASS
&& (class1 == X86_64_SSESF_CLASS || class1 == X86_64_SSEHF_CLASS)))
return X86_64_INTEGERSI_CLASS;
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
return X86_64_INTEGER_CLASS;
/* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
MEMORY is used. */
if (class1 == X86_64_X87_CLASS
|| class1 == X86_64_X87UP_CLASS
|| class1 == X86_64_COMPLEX_X87_CLASS
|| class2 == X86_64_X87_CLASS
|| class2 == X86_64_X87UP_CLASS
|| class2 == X86_64_COMPLEX_X87_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #6: Otherwise class SSE is used. */
return X86_64_SSE_CLASS;
}
/* Classify the argument of type TYPE and mode MODE.
CLASSES will be filled by the register class used to pass each word
of the operand. The number of words is returned. In case the parameter
should be passed in memory, 0 is returned. As a special case for zero
sized containers, classes[0] will be NO_CLASS and 1 is returned.
BIT_OFFSET is used internally for handling records and specifies offset
of the offset in bits modulo 512 to avoid overflow cases.
See the x86-64 PS ABI for details.
*/
static int
classify_argument (machine_mode mode, const_tree type,
enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset,
int &zero_width_bitfields)
{
HOST_WIDE_INT bytes
= mode == BLKmode ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
int words = CEIL (bytes + (bit_offset % 64) / 8, UNITS_PER_WORD);
/* Variable sized entities are always passed/returned in memory. */
if (bytes < 0)
return 0;
if (mode != VOIDmode)
{
/* The value of "named" doesn't matter. */
function_arg_info arg (const_cast<tree> (type), mode, /*named=*/true);
if (targetm.calls.must_pass_in_stack (arg))
return 0;
}
if (type && AGGREGATE_TYPE_P (type))
{
int i;
tree field;
enum x86_64_reg_class subclasses[MAX_CLASSES];
/* On x86-64 we pass structures larger than 64 bytes on the stack. */
if (bytes > 64)
return 0;
for (i = 0; i < words; i++)
classes[i] = X86_64_NO_CLASS;
/* Zero sized arrays or structures are NO_CLASS. We return 0 to
signalize memory class, so handle it as special case. */
if (!words)
{
classes[0] = X86_64_NO_CLASS;
return 1;
}
/* Classify each field of record and merge classes. */
switch (TREE_CODE (type))
{
case RECORD_TYPE:
/* And now merge the fields of structure. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
int num;
if (TREE_TYPE (field) == error_mark_node)
continue;
/* Bitfields are always classified as integer. Handle them
early, since later code would consider them to be
misaligned integers. */
if (DECL_BIT_FIELD (field))
{
if (integer_zerop (DECL_SIZE (field)))
{
if (DECL_FIELD_CXX_ZERO_WIDTH_BIT_FIELD (field))
continue;
if (zero_width_bitfields != 2)
{
zero_width_bitfields = 1;
continue;
}
}
for (i = (int_bit_position (field)
+ (bit_offset % 64)) / 8 / 8;
i < ((int_bit_position (field) + (bit_offset % 64))
+ tree_to_shwi (DECL_SIZE (field))
+ 63) / 8 / 8; i++)
classes[i]
= merge_classes (X86_64_INTEGER_CLASS, classes[i]);
}
else
{
int pos;
type = TREE_TYPE (field);
/* Flexible array member is ignored. */
if (TYPE_MODE (type) == BLKmode
&& TREE_CODE (type) == ARRAY_TYPE
&& TYPE_SIZE (type) == NULL_TREE
&& TYPE_DOMAIN (type) != NULL_TREE
&& (TYPE_MAX_VALUE (TYPE_DOMAIN (type))
== NULL_TREE))
{
static bool warned;
if (!warned && warn_psabi)
{
warned = true;
inform (input_location,
"the ABI of passing struct with"
" a flexible array member has"
" changed in GCC 4.4");
}
continue;
}
num = classify_argument (TYPE_MODE (type), type,
subclasses,
(int_bit_position (field)
+ bit_offset) % 512,
zero_width_bitfields);
if (!num)
return 0;
pos = (int_bit_position (field)
+ (bit_offset % 64)) / 8 / 8;
for (i = 0; i < num && (i + pos) < words; i++)
classes[i + pos]
= merge_classes (subclasses[i], classes[i + pos]);
}
}
}
break;
case ARRAY_TYPE:
/* Arrays are handled as small records. */
{
int num;
num = classify_argument (TYPE_MODE (TREE_TYPE (type)),
TREE_TYPE (type), subclasses, bit_offset,
zero_width_bitfields);
if (!num)
return 0;
/* The partial classes are now full classes. */
if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
subclasses[0] = X86_64_SSE_CLASS;
if (subclasses[0] == X86_64_SSEHF_CLASS && bytes != 2)
subclasses[0] = X86_64_SSE_CLASS;
if (subclasses[0] == X86_64_INTEGERSI_CLASS
&& !((bit_offset % 64) == 0 && bytes == 4))
subclasses[0] = X86_64_INTEGER_CLASS;
for (i = 0; i < words; i++)
classes[i] = subclasses[i % num];
break;
}
case UNION_TYPE:
case QUAL_UNION_TYPE:
/* Unions are similar to RECORD_TYPE but offset is always 0.
*/
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
int num;
if (TREE_TYPE (field) == error_mark_node)
continue;
num = classify_argument (TYPE_MODE (TREE_TYPE (field)),
TREE_TYPE (field), subclasses,
bit_offset, zero_width_bitfields);
if (!num)
return 0;
for (i = 0; i < num && i < words; i++)
classes[i] = merge_classes (subclasses[i], classes[i]);
}
}
break;
default:
gcc_unreachable ();
}
if (words > 2)
{
/* When size > 16 bytes, if the first one isn't
X86_64_SSE_CLASS or any other ones aren't
X86_64_SSEUP_CLASS, everything should be passed in
memory. */
if (classes[0] != X86_64_SSE_CLASS)
return 0;
for (i = 1; i < words; i++)
if (classes[i] != X86_64_SSEUP_CLASS)
return 0;
}
/* Final merger cleanup. */
for (i = 0; i < words; i++)
{
/* If one class is MEMORY, everything should be passed in
memory. */
if (classes[i] == X86_64_MEMORY_CLASS)
return 0;
/* The X86_64_SSEUP_CLASS should be always preceded by
X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */
if (classes[i] == X86_64_SSEUP_CLASS
&& classes[i - 1] != X86_64_SSE_CLASS
&& classes[i - 1] != X86_64_SSEUP_CLASS)
{
/* The first one should never be X86_64_SSEUP_CLASS. */
gcc_assert (i != 0);
classes[i] = X86_64_SSE_CLASS;
}
/* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
everything should be passed in memory. */
if (classes[i] == X86_64_X87UP_CLASS
&& (classes[i - 1] != X86_64_X87_CLASS))
{
static bool warned;
/* The first one should never be X86_64_X87UP_CLASS. */
gcc_assert (i != 0);
if (!warned && warn_psabi)
{
warned = true;
inform (input_location,
"the ABI of passing union with %<long double%>"
" has changed in GCC 4.4");
}
return 0;
}
}
return words;
}
/* Compute alignment needed. We align all types to natural boundaries with
exception of XFmode that is aligned to 64bits. */
if (mode != VOIDmode && mode != BLKmode)
{
int mode_alignment = GET_MODE_BITSIZE (mode);
if (mode == XFmode)
mode_alignment = 128;
else if (mode == XCmode)
mode_alignment = 256;
if (COMPLEX_MODE_P (mode))
mode_alignment /= 2;
/* Misaligned fields are always returned in memory. */
if (bit_offset % mode_alignment)
return 0;
}
/* for V1xx modes, just use the base mode */
if (VECTOR_MODE_P (mode) && mode != V1DImode && mode != V1TImode
&& GET_MODE_UNIT_SIZE (mode) == bytes)
mode = GET_MODE_INNER (mode);
/* Classification of atomic types. */
switch (mode)
{
case E_SDmode:
case E_DDmode:
classes[0] = X86_64_SSE_CLASS;
return 1;
case E_TDmode:
classes[0] = X86_64_SSE_CLASS;
classes[1] = X86_64_SSEUP_CLASS;
return 2;
case E_DImode:
case E_SImode:
case E_HImode:
case E_QImode:
case E_CSImode:
case E_CHImode:
case E_CQImode:
{
int size = bit_offset + (int) GET_MODE_BITSIZE (mode);
/* Analyze last 128 bits only. */
size = (size - 1) & 0x7f;
if (size < 32)
{
classes[0] = X86_64_INTEGERSI_CLASS;
return 1;
}
else if (size < 64)
{
classes[0] = X86_64_INTEGER_CLASS;
return 1;
}
else if (size < 64+32)
{
classes[0] = X86_64_INTEGER_CLASS;
classes[1] = X86_64_INTEGERSI_CLASS;
return 2;
}
else if (size < 64+64)
{
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
return 2;
}
else
gcc_unreachable ();
}
case E_CDImode:
case E_TImode:
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
return 2;
case E_COImode:
case E_OImode:
/* OImode shouldn't be used directly. */
gcc_unreachable ();
case E_CTImode:
return 0;
case E_HFmode:
case E_BFmode:
if (!(bit_offset % 64))
classes[0] = X86_64_SSEHF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case E_SFmode:
if (!(bit_offset % 64))
classes[0] = X86_64_SSESF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case E_DFmode:
classes[0] = X86_64_SSEDF_CLASS;
return 1;
case E_XFmode:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
return 2;
case E_TFmode:
classes[0] = X86_64_SSE_CLASS;
classes[1] = X86_64_SSEUP_CLASS;
return 2;
case E_HCmode:
classes[0] = X86_64_SSE_CLASS;
if (!(bit_offset % 64))
return 1;
else
{
classes[1] = X86_64_SSEHF_CLASS;
return 2;
}
case E_SCmode:
classes[0] = X86_64_SSE_CLASS;
if (!(bit_offset % 64))
return 1;
else
{
static bool warned;
if (!warned && warn_psabi)
{
warned = true;
inform (input_location,
"the ABI of passing structure with %<complex float%>"
" member has changed in GCC 4.4");
}
classes[1] = X86_64_SSESF_CLASS;
return 2;
}
case E_DCmode:
classes[0] = X86_64_SSEDF_CLASS;
classes[1] = X86_64_SSEDF_CLASS;
return 2;
case E_XCmode:
classes[0] = X86_64_COMPLEX_X87_CLASS;
return 1;
case E_TCmode:
/* This modes is larger than 16 bytes. */
return 0;
case E_V8SFmode:
case E_V8SImode:
case E_V32QImode:
case E_V16HFmode:
case E_V16BFmode:
case E_V16HImode:
case E_V4DFmode:
case E_V4DImode:
classes[0] = X86_64_SSE_CLASS;
classes[1] = X86_64_SSEUP_CLASS;
classes[2] = X86_64_SSEUP_CLASS;
classes[3] = X86_64_SSEUP_CLASS;
return 4;
case E_V8DFmode:
case E_V16SFmode:
case E_V32HFmode:
case E_V32BFmode:
case E_V8DImode:
case E_V16SImode:
case E_V32HImode:
case E_V64QImode:
classes[0] = X86_64_SSE_CLASS;
classes[1] = X86_64_SSEUP_CLASS;
classes[2] = X86_64_SSEUP_CLASS;
classes[3] = X86_64_SSEUP_CLASS;
classes[4] = X86_64_SSEUP_CLASS;
classes[5] = X86_64_SSEUP_CLASS;
classes[6] = X86_64_SSEUP_CLASS;
classes[7] = X86_64_SSEUP_CLASS;
return 8;
case E_V4SFmode:
case E_V4SImode:
case E_V16QImode:
case E_V8HImode:
case E_V8HFmode:
case E_V8BFmode:
case E_V2DFmode:
case E_V2DImode:
classes[0] = X86_64_SSE_CLASS;
classes[1] = X86_64_SSEUP_CLASS;
return 2;
case E_V1TImode:
case E_V1DImode:
case E_V2SFmode:
case E_V2SImode:
case E_V4HImode:
case E_V4HFmode:
case E_V2HFmode:
case E_V8QImode:
classes[0] = X86_64_SSE_CLASS;
return 1;
case E_BLKmode:
case E_VOIDmode:
return 0;
default:
gcc_assert (VECTOR_MODE_P (mode));
if (bytes > 16)
return 0;
gcc_assert (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT);
if (bit_offset + GET_MODE_BITSIZE (mode) <= 32)
classes[0] = X86_64_INTEGERSI_CLASS;
else
classes[0] = X86_64_INTEGER_CLASS;
classes[1] = X86_64_INTEGER_CLASS;
return 1 + (bytes > 8);
}
}
/* Wrapper around classify_argument with the extra zero_width_bitfields
argument, to diagnose GCC 12.1 ABI differences for C. */
static int
classify_argument (machine_mode mode, const_tree type,
enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
{
int zero_width_bitfields = 0;
static bool warned = false;
int n = classify_argument (mode, type, classes, bit_offset,
zero_width_bitfields);
if (!zero_width_bitfields || warned || !warn_psabi)
return n;
enum x86_64_reg_class alt_classes[MAX_CLASSES];
zero_width_bitfields = 2;
if (classify_argument (mode, type, alt_classes, bit_offset,
zero_width_bitfields) != n)
zero_width_bitfields = 3;
else
for (int i = 0; i < n; i++)
if (classes[i] != alt_classes[i])
{
zero_width_bitfields = 3;
break;
}
if (zero_width_bitfields == 3)
{
warned = true;
const char *url
= CHANGES_ROOT_URL "gcc-12/changes.html#zero_width_bitfields";
inform (input_location,
"the ABI of passing C structures with zero-width bit-fields"
" has changed in GCC %{12.1%}", url);
}
return n;
}
/* Examine the argument and return set number of register required in each
class. Return true iff parameter should be passed in memory. */
static bool
examine_argument (machine_mode mode, const_tree type, int in_return,
int *int_nregs, int *sse_nregs)
{
enum x86_64_reg_class regclass[MAX_CLASSES];
int n = classify_argument (mode, type, regclass, 0);
*int_nregs = 0;
*sse_nregs = 0;
if (!n)
return true;
for (n--; n >= 0; n--)
switch (regclass[n])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
(*int_nregs)++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSEHF_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
(*sse_nregs)++;
break;
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
break;
case X86_64_X87_CLASS:
case X86_64_X87UP_CLASS:
case X86_64_COMPLEX_X87_CLASS:
if (!in_return)
return true;
break;
case X86_64_MEMORY_CLASS:
gcc_unreachable ();
}
return false;
}
/* Construct container for the argument used by GCC interface. See
FUNCTION_ARG for the detailed description. */
static rtx
construct_container (machine_mode mode, machine_mode orig_mode,
const_tree type, int in_return, int nintregs, int nsseregs,
const int *intreg, int sse_regno)
{
/* The following variables hold the static issued_error state. */
static bool issued_sse_arg_error;
static bool issued_sse_ret_error;
static bool issued_x87_ret_error;
machine_mode tmpmode;
int bytes
= mode == BLKmode ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
enum x86_64_reg_class regclass[MAX_CLASSES];
int n;
int i;
int nexps = 0;
int needed_sseregs, needed_intregs;
rtx exp[MAX_CLASSES];
rtx ret;
n = classify_argument (mode, type, regclass, 0);
if (!n)
return NULL;
if (examine_argument (mode, type, in_return, &needed_intregs,
&needed_sseregs))
return NULL;
if (needed_intregs > nintregs || needed_sseregs > nsseregs)
return NULL;
/* We allowed the user to turn off SSE for kernel mode. Don't crash if
some less clueful developer tries to use floating-point anyway. */
if (needed_sseregs && !TARGET_SSE)
{
/* Return early if we shouldn't raise an error for invalid
calls. */
if (cfun != NULL && cfun->machine->silent_p)
return NULL;
if (in_return)
{
if (!issued_sse_ret_error)
{
error ("SSE register return with SSE disabled");
issued_sse_ret_error = true;
}
}
else if (!issued_sse_arg_error)
{
error ("SSE register argument with SSE disabled");
issued_sse_arg_error = true;
}
return NULL;
}
/* Likewise, error if the ABI requires us to return values in the
x87 registers and the user specified -mno-80387. */
if (!TARGET_FLOAT_RETURNS_IN_80387 && in_return)
for (i = 0; i < n; i++)
if (regclass[i] == X86_64_X87_CLASS
|| regclass[i] == X86_64_X87UP_CLASS
|| regclass[i] == X86_64_COMPLEX_X87_CLASS)
{
/* Return early if we shouldn't raise an error for invalid
calls. */
if (cfun != NULL && cfun->machine->silent_p)
return NULL;
if (!issued_x87_ret_error)
{
error ("x87 register return with x87 disabled");
issued_x87_ret_error = true;
}
return NULL;
}
/* First construct simple cases. Avoid SCmode, since we want to use
single register to pass this type. */
if (n == 1 && mode != SCmode && mode != HCmode)
switch (regclass[0])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
return gen_rtx_REG (mode, intreg[0]);
case X86_64_SSE_CLASS:
case X86_64_SSEHF_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
if (mode != BLKmode)
return gen_reg_or_parallel (mode, orig_mode,
GET_SSE_REGNO (sse_regno));
break;
case X86_64_X87_CLASS:
case X86_64_COMPLEX_X87_CLASS:
return gen_rtx_REG (mode, FIRST_STACK_REG);
case X86_64_NO_CLASS:
/* Zero sized array, struct or class. */
return NULL;
default:
gcc_unreachable ();
}
if (n == 2
&& regclass[0] == X86_64_SSE_CLASS
&& regclass[1] == X86_64_SSEUP_CLASS
&& mode != BLKmode)
return gen_reg_or_parallel (mode, orig_mode,
GET_SSE_REGNO (sse_regno));
if (n == 4
&& regclass[0] == X86_64_SSE_CLASS
&& regclass[1] == X86_64_SSEUP_CLASS
&& regclass[2] == X86_64_SSEUP_CLASS
&& regclass[3] == X86_64_SSEUP_CLASS
&& mode != BLKmode)
return gen_reg_or_parallel (mode, orig_mode,
GET_SSE_REGNO (sse_regno));
if (n == 8
&& regclass[0] == X86_64_SSE_CLASS
&& regclass[1] == X86_64_SSEUP_CLASS
&& regclass[2] == X86_64_SSEUP_CLASS
&& regclass[3] == X86_64_SSEUP_CLASS
&& regclass[4] == X86_64_SSEUP_CLASS
&& regclass[5] == X86_64_SSEUP_CLASS
&& regclass[6] == X86_64_SSEUP_CLASS
&& regclass[7] == X86_64_SSEUP_CLASS
&& mode != BLKmode)
return gen_reg_or_parallel (mode, orig_mode,
GET_SSE_REGNO (sse_regno));
if (n == 2
&& regclass[0] == X86_64_X87_CLASS
&& regclass[1] == X86_64_X87UP_CLASS)
return gen_rtx_REG (XFmode, FIRST_STACK_REG);
if (n == 2
&& regclass[0] == X86_64_INTEGER_CLASS
&& regclass[1] == X86_64_INTEGER_CLASS
&& (mode == CDImode || mode == TImode || mode == BLKmode)
&& intreg[0] + 1 == intreg[1])
{
if (mode == BLKmode)
{
/* Use TImode for BLKmode values in 2 integer registers. */
exp[0] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (TImode, intreg[0]),
GEN_INT (0));
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (1));
XVECEXP (ret, 0, 0) = exp[0];
return ret;
}
else
return gen_rtx_REG (mode, intreg[0]);
}
/* Otherwise figure out the entries of the PARALLEL. */
for (i = 0; i < n; i++)
{
int pos;
switch (regclass[i])
{
case X86_64_NO_CLASS:
break;
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
/* Merge TImodes on aligned occasions here too. */
if (i * 8 + 8 > bytes)
{
unsigned int tmpbits = (bytes - i * 8) * BITS_PER_UNIT;
if (!int_mode_for_size (tmpbits, 0).exists (&tmpmode))
/* We've requested 24 bytes we
don't have mode for. Use DImode. */
tmpmode = DImode;
}
else if (regclass[i] == X86_64_INTEGERSI_CLASS)
tmpmode = SImode;
else
tmpmode = DImode;
exp [nexps++]
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (tmpmode, *intreg),
GEN_INT (i*8));
intreg++;
break;
case X86_64_SSEHF_CLASS:
tmpmode = (mode == BFmode ? BFmode : HFmode);
exp [nexps++]
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (tmpmode,
GET_SSE_REGNO (sse_regno)),
GEN_INT (i*8));
sse_regno++;
break;
case X86_64_SSESF_CLASS:
exp [nexps++]
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (SFmode,
GET_SSE_REGNO (sse_regno)),
GEN_INT (i*8));
sse_regno++;
break;
case X86_64_SSEDF_CLASS:
exp [nexps++]
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DFmode,
GET_SSE_REGNO (sse_regno)),
GEN_INT (i*8));
sse_regno++;
break;
case X86_64_SSE_CLASS:
pos = i;
switch (n)
{
case 1:
tmpmode = DImode;
break;
case 2:
if (i == 0 && regclass[1] == X86_64_SSEUP_CLASS)
{
tmpmode = TImode;
i++;
}
else
tmpmode = DImode;
break;
case 4:
gcc_assert (i == 0
&& regclass[1] == X86_64_SSEUP_CLASS
&& regclass[2] == X86_64_SSEUP_CLASS
&& regclass[3] == X86_64_SSEUP_CLASS);
tmpmode = OImode;
i += 3;
break;
case 8:
gcc_assert (i == 0
&& regclass[1] == X86_64_SSEUP_CLASS
&& regclass[2] == X86_64_SSEUP_CLASS
&& regclass[3] == X86_64_SSEUP_CLASS
&& regclass[4] == X86_64_SSEUP_CLASS
&& regclass[5] == X86_64_SSEUP_CLASS
&& regclass[6] == X86_64_SSEUP_CLASS
&& regclass[7] == X86_64_SSEUP_CLASS);
tmpmode = XImode;
i += 7;
break;
default:
gcc_unreachable ();
}
exp [nexps++]
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (tmpmode,
GET_SSE_REGNO (sse_regno)),
GEN_INT (pos*8));
sse_regno++;
break;
default:
gcc_unreachable ();
}
}
/* Empty aligned struct, union or class. */
if (nexps == 0)
return NULL;
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps));
for (i = 0; i < nexps; i++)
XVECEXP (ret, 0, i) = exp [i];
return ret;
}
/* Update the data in CUM to advance over an argument of mode MODE
and data type TYPE. (TYPE is null for libcalls where that information
may not be available.)
Return a number of integer regsiters advanced over. */
static int
function_arg_advance_32 (CUMULATIVE_ARGS *cum, machine_mode mode,
const_tree type, HOST_WIDE_INT bytes,
HOST_WIDE_INT words)
{
int res = 0;
bool error_p = false;
if (TARGET_IAMCU)
{
/* Intel MCU psABI passes scalars and aggregates no larger than 8
bytes in registers. */
if (!VECTOR_MODE_P (mode) && bytes <= 8)
goto pass_in_reg;
return res;
}
switch (mode)
{
default:
break;
case E_BLKmode:
if (bytes < 0)
break;
/* FALLTHRU */
case E_DImode:
case E_SImode:
case E_HImode:
case E_QImode:
pass_in_reg:
cum->words += words;
cum->nregs -= words;
cum->regno += words;
if (cum->nregs >= 0)
res = words;
if (cum->nregs <= 0)
{
cum->nregs = 0;
cfun->machine->arg_reg_available = false;
cum->regno = 0;
}
break;
case E_OImode:
/* OImode shouldn't be used directly. */
gcc_unreachable ();
case E_DFmode:
if (cum->float_in_sse == -1)
error_p = true;
if (cum->float_in_sse < 2)
break;
/* FALLTHRU */
case E_SFmode:
if (cum->float_in_sse == -1)
error_p = true;
if (cum->float_in_sse < 1)
break;
/* FALLTHRU */
case E_V16HFmode:
case E_V16BFmode:
case E_V8SFmode:
case E_V8SImode:
case E_V64QImode:
case E_V32HImode:
case E_V16SImode:
case E_V8DImode:
case E_V32HFmode:
case E_V32BFmode:
case E_V16SFmode:
case E_V8DFmode:
case E_V32QImode:
case E_V16HImode:
case E_V4DFmode:
case E_V4DImode:
case E_TImode:
case E_V16QImode:
case E_V8HImode:
case E_V4SImode:
case E_V2DImode:
case E_V8HFmode:
case E_V8BFmode:
case E_V4SFmode:
case E_V2DFmode:
if (!type || !AGGREGATE_TYPE_P (type))
{
cum->sse_words += words;
cum->sse_nregs -= 1;
cum->sse_regno += 1;
if (cum->sse_nregs <= 0)
{
cum->sse_nregs = 0;
cum->sse_regno = 0;
}
}
break;
case E_V8QImode:
case E_V4HImode:
case E_V4HFmode:
case E_V2SImode:
case E_V2SFmode:
case E_V1TImode:
case E_V1DImode:
if (!type || !AGGREGATE_TYPE_P (type))
{
cum->mmx_words += words;
cum->mmx_nregs -= 1;
cum->mmx_regno += 1;
if (cum->mmx_nregs <= 0)
{
cum->mmx_nregs = 0;
cum->mmx_regno = 0;
}
}
break;
}
if (error_p)
{
cum->float_in_sse = 0;
error ("calling %qD with SSE calling convention without "
"SSE/SSE2 enabled", cum->decl);
sorry ("this is a GCC bug that can be worked around by adding "
"attribute used to function called");
}
return res;
}
static int
function_arg_advance_64 (CUMULATIVE_ARGS *cum, machine_mode mode,
const_tree type, HOST_WIDE_INT words, bool named)
{
int int_nregs, sse_nregs;
/* Unnamed 512 and 256bit vector mode parameters are passed on stack. */
if (!named && (VALID_AVX512F_REG_MODE (mode)
|| VALID_AVX256_REG_MODE (mode)))
return 0;
if (!examine_argument (mode, type, 0, &int_nregs, &sse_nregs)
&& sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs)
{
cum->nregs -= int_nregs;
cum->sse_nregs -= sse_nregs;
cum->regno += int_nregs;
cum->sse_regno += sse_nregs;
return int_nregs;
}
else
{
int align = ix86_function_arg_boundary (mode, type) / BITS_PER_WORD;
cum->words = ROUND_UP (cum->words, align);
cum->words += words;
return 0;
}
}
static int
function_arg_advance_ms_64 (CUMULATIVE_ARGS *cum, HOST_WIDE_INT bytes,
HOST_WIDE_INT words)
{
/* Otherwise, this should be passed indirect. */
gcc_assert (bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8);
cum->words += words;
if (cum->nregs > 0)
{
cum->nregs -= 1;
cum->regno += 1;
return 1;
}
return 0;
}
/* Update the data in CUM to advance over argument ARG. */
static void
ix86_function_arg_advance (cumulative_args_t cum_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
machine_mode mode = arg.mode;
HOST_WIDE_INT bytes, words;
int nregs;
/* The argument of interrupt handler is a special case and is
handled in ix86_function_arg. */
if (!cum->caller && cfun->machine->func_type != TYPE_NORMAL)
return;
bytes = arg.promoted_size_in_bytes ();
words = CEIL (bytes, UNITS_PER_WORD);
if (arg.type)
mode = type_natural_mode (arg.type, NULL, false);
if (TARGET_64BIT)
{
enum calling_abi call_abi = cum ? cum->call_abi : ix86_abi;
if (call_abi == MS_ABI)
nregs = function_arg_advance_ms_64 (cum, bytes, words);
else
nregs = function_arg_advance_64 (cum, mode, arg.type, words,
arg.named);
}
else
nregs = function_arg_advance_32 (cum, mode, arg.type, bytes, words);
if (!nregs)
{
/* Track if there are outgoing arguments on stack. */
if (cum->caller)
cfun->machine->outgoing_args_on_stack = true;
}
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
static rtx
function_arg_32 (CUMULATIVE_ARGS *cum, machine_mode mode,
machine_mode orig_mode, const_tree type,
HOST_WIDE_INT bytes, HOST_WIDE_INT words)
{
bool error_p = false;
/* Avoid the AL settings for the Unix64 ABI. */
if (mode == VOIDmode)
return constm1_rtx;
if (TARGET_IAMCU)
{
/* Intel MCU psABI passes scalars and aggregates no larger than 8
bytes in registers. */
if (!VECTOR_MODE_P (mode) && bytes <= 8)
goto pass_in_reg;
return NULL_RTX;
}
switch (mode)
{
default:
break;
case E_BLKmode:
if (bytes < 0)
break;
/* FALLTHRU */
case E_DImode:
case E_SImode:
case E_HImode:
case E_QImode:
pass_in_reg:
if (words <= cum->nregs)
{
int regno = cum->regno;
/* Fastcall allocates the first two DWORD (SImode) or
smaller arguments to ECX and EDX if it isn't an
aggregate type . */
if (cum->fastcall)
{
if (mode == BLKmode
|| mode == DImode
|| (type && AGGREGATE_TYPE_P (type)))
break;
/* ECX not EAX is the first allocated register. */
if (regno == AX_REG)
regno = CX_REG;
}
return gen_rtx_REG (mode, regno);
}
break;
case E_DFmode:
if (cum->float_in_sse == -1)
error_p = true;
if (cum->float_in_sse < 2)
break;
/* FALLTHRU */
case E_SFmode:
if (cum->float_in_sse == -1)
error_p = true;
if (cum->float_in_sse < 1)
break;
/* FALLTHRU */
case E_TImode:
/* In 32bit, we pass TImode in xmm registers. */
case E_V16QImode:
case E_V8HImode:
case E_V4SImode:
case E_V2DImode:
case E_V8HFmode:
case E_V8BFmode:
case E_V4SFmode:
case E_V2DFmode:
if (!type || !AGGREGATE_TYPE_P (type))
{
if (cum->sse_nregs)
return gen_reg_or_parallel (mode, orig_mode,
cum->sse_regno + FIRST_SSE_REG);
}
break;
case E_OImode:
case E_XImode:
/* OImode and XImode shouldn't be used directly. */
gcc_unreachable ();
case E_V64QImode:
case E_V32HImode:
case E_V16SImode:
case E_V8DImode:
case E_V32HFmode:
case E_V32BFmode:
case E_V16SFmode:
case E_V8DFmode:
case E_V16HFmode:
case E_V16BFmode:
case E_V8SFmode:
case E_V8SImode:
case E_V32QImode:
case E_V16HImode:
case E_V4DFmode:
case E_V4DImode:
if (!type || !AGGREGATE_TYPE_P (type))
{
if (cum->sse_nregs)
return gen_reg_or_parallel (mode, orig_mode,
cum->sse_regno + FIRST_SSE_REG);
}
break;
case E_V8QImode:
case E_V4HImode:
case E_V4HFmode:
case E_V2SImode:
case E_V2SFmode:
case E_V1TImode:
case E_V1DImode:
if (!type || !AGGREGATE_TYPE_P (type))
{
if (cum->mmx_nregs)
return gen_reg_or_parallel (mode, orig_mode,
cum->mmx_regno + FIRST_MMX_REG);
}
break;
}
if (error_p)
{
cum->float_in_sse = 0;
error ("calling %qD with SSE calling convention without "
"SSE/SSE2 enabled", cum->decl);
sorry ("this is a GCC bug that can be worked around by adding "
"attribute used to function called");
}
return NULL_RTX;
}
static rtx
function_arg_64 (const CUMULATIVE_ARGS *cum, machine_mode mode,
machine_mode orig_mode, const_tree type, bool named)
{
/* Handle a hidden AL argument containing number of registers
for varargs x86-64 functions. */
if (mode == VOIDmode)
return GEN_INT (cum->maybe_vaarg
? (cum->sse_nregs < 0
? X86_64_SSE_REGPARM_MAX
: cum->sse_regno)
: -1);
switch (mode)
{
default:
break;
case E_V16HFmode:
case E_V16BFmode:
case E_V8SFmode:
case E_V8SImode:
case E_V32QImode:
case E_V16HImode:
case E_V4DFmode:
case E_V4DImode:
case E_V32HFmode:
case E_V32BFmode:
case E_V16SFmode:
case E_V16SImode:
case E_V64QImode:
case E_V32HImode:
case E_V8DFmode:
case E_V8DImode:
/* Unnamed 256 and 512bit vector mode parameters are passed on stack. */
if (!named)
return NULL;
break;
}
return construct_container (mode, orig_mode, type, 0, cum->nregs,
cum->sse_nregs,
&x86_64_int_parameter_registers [cum->regno],
cum->sse_regno);
}
static rtx
function_arg_ms_64 (const CUMULATIVE_ARGS *cum, machine_mode mode,
machine_mode orig_mode, bool named, const_tree type,
HOST_WIDE_INT bytes)
{
unsigned int regno;
/* We need to add clobber for MS_ABI->SYSV ABI calls in expand_call.
We use value of -2 to specify that current function call is MSABI. */
if (mode == VOIDmode)
return GEN_INT (-2);
/* If we've run out of registers, it goes on the stack. */
if (cum->nregs == 0)
return NULL_RTX;
regno = x86_64_ms_abi_int_parameter_registers[cum->regno];
/* Only floating point modes are passed in anything but integer regs. */
if (TARGET_SSE && (mode == SFmode || mode == DFmode))
{
if (named)
{
if (type == NULL_TREE || !AGGREGATE_TYPE_P (type))
regno = cum->regno + FIRST_SSE_REG;
}
else
{
rtx t1, t2;
/* Unnamed floating parameters are passed in both the
SSE and integer registers. */
t1 = gen_rtx_REG (mode, cum->regno + FIRST_SSE_REG);
t2 = gen_rtx_REG (mode, regno);
t1 = gen_rtx_EXPR_LIST (VOIDmode, t1, const0_rtx);
t2 = gen_rtx_EXPR_LIST (VOIDmode, t2, const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, t1, t2));
}
}
/* Handle aggregated types passed in register. */
if (orig_mode == BLKmode)
{
if (bytes > 0 && bytes <= 8)
mode = (bytes > 4 ? DImode : SImode);
if (mode == BLKmode)
mode = DImode;
}
return gen_reg_or_parallel (mode, orig_mode, regno);
}
/* Return where to put the arguments to a function.
Return zero to push the argument on the stack, or a hard register in which to store the argument.
ARG describes the argument while CUM gives information about the
preceding args and about the function being called. */
static rtx
ix86_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
machine_mode mode = arg.mode;
HOST_WIDE_INT bytes, words;
rtx reg;
if (!cum->caller && cfun->machine->func_type != TYPE_NORMAL)
{
gcc_assert (arg.type != NULL_TREE);
if (POINTER_TYPE_P (arg.type))
{
/* This is the pointer argument. */
gcc_assert (TYPE_MODE (arg.type) == ptr_mode);
/* It is at -WORD(AP) in the current frame in interrupt and
exception handlers. */
reg = plus_constant (Pmode, arg_pointer_rtx, -UNITS_PER_WORD);
}
else
{
gcc_assert (cfun->machine->func_type == TYPE_EXCEPTION
&& TREE_CODE (arg.type) == INTEGER_TYPE
&& TYPE_MODE (arg.type) == word_mode);
/* The error code is the word-mode integer argument at
-2 * WORD(AP) in the current frame of the exception
handler. */
reg = gen_rtx_MEM (word_mode,
plus_constant (Pmode,
arg_pointer_rtx,
-2 * UNITS_PER_WORD));
}
return reg;
}
bytes = arg.promoted_size_in_bytes ();
words = CEIL (bytes, UNITS_PER_WORD);
/* To simplify the code below, represent vector types with a vector mode
even if MMX/SSE are not active. */
if (arg.type && TREE_CODE (arg.type) == VECTOR_TYPE)
mode = type_natural_mode (arg.type, cum, false);
if (TARGET_64BIT)
{
enum calling_abi call_abi = cum ? cum->call_abi : ix86_abi;
if (call_abi == MS_ABI)
reg = function_arg_ms_64 (cum, mode, arg.mode, arg.named,
arg.type, bytes);
else
reg = function_arg_64 (cum, mode, arg.mode, arg.type, arg.named);
}
else
reg = function_arg_32 (cum, mode, arg.mode, arg.type, bytes, words);
/* Track if there are outgoing arguments on stack. */
if (reg == NULL_RTX && cum->caller)
cfun->machine->outgoing_args_on_stack = true;
return reg;
}
/* A C expression that indicates when an argument must be passed by
reference. If nonzero for an argument, a copy of that argument is
made in memory and a pointer to the argument is passed instead of
the argument itself. The pointer is passed in whatever way is
appropriate for passing a pointer to that type. */
static bool
ix86_pass_by_reference (cumulative_args_t cum_v, const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
if (TARGET_64BIT)
{
enum calling_abi call_abi = cum ? cum->call_abi : ix86_abi;
/* See Windows x64 Software Convention. */
if (call_abi == MS_ABI)
{
HOST_WIDE_INT msize = GET_MODE_SIZE (arg.mode);
if (tree type = arg.type)
{
/* Arrays are passed by reference. */
if (TREE_CODE (type) == ARRAY_TYPE)
return true;
if (RECORD_OR_UNION_TYPE_P (type))
{
/* Structs/unions of sizes other than 8, 16, 32, or 64 bits
are passed by reference. */
msize = int_size_in_bytes (type);
}
}
/* __m128 is passed by reference. */
return msize != 1 && msize != 2 && msize != 4 && msize != 8;
}
else if (arg.type && int_size_in_bytes (arg.type) == -1)
return true;
}
return false;
}
/* Return true when TYPE should be 128bit aligned for 32bit argument
passing ABI. XXX: This function is obsolete and is only used for
checking psABI compatibility with previous versions of GCC. */
static bool
ix86_compat_aligned_value_p (const_tree type)
{
machine_mode mode = TYPE_MODE (type);
if (((TARGET_SSE && SSE_REG_MODE_P (mode))
|| mode == TDmode
|| mode == TFmode
|| mode == TCmode)
&& (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128))
return true;
if (TYPE_ALIGN (type) < 128)
return false;
if (AGGREGATE_TYPE_P (type))
{
/* Walk the aggregates recursively. */
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree field;
/* Walk all the structure fields. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL
&& ix86_compat_aligned_value_p (TREE_TYPE (field)))
return true;
}
break;
}
case ARRAY_TYPE:
/* Just for use if some languages passes arrays by value. */
if (ix86_compat_aligned_value_p (TREE_TYPE (type)))
return true;
break;
default:
gcc_unreachable ();
}
}
return false;
}
/* Return the alignment boundary for MODE and TYPE with alignment ALIGN.
XXX: This function is obsolete and is only used for checking psABI
compatibility with previous versions of GCC. */
static unsigned int
ix86_compat_function_arg_boundary (machine_mode mode,
const_tree type, unsigned int align)
{
/* In 32bit, only _Decimal128 and __float128 are aligned to their
natural boundaries. */
if (!TARGET_64BIT && mode != TDmode && mode != TFmode)
{
/* i386 ABI defines all arguments to be 4 byte aligned. We have to
make an exception for SSE modes since these require 128bit
alignment.
The handling here differs from field_alignment. ICC aligns MMX
arguments to 4 byte boundaries, while structure fields are aligned
to 8 byte boundaries. */
if (!type)
{
if (!(TARGET_SSE && SSE_REG_MODE_P (mode)))
align = PARM_BOUNDARY;
}
else
{
if (!ix86_compat_aligned_value_p (type))
align = PARM_BOUNDARY;
}
}
if (align > BIGGEST_ALIGNMENT)
align = BIGGEST_ALIGNMENT;
return align;
}
/* Return true when TYPE should be 128bit aligned for 32bit argument
passing ABI. */
static bool
ix86_contains_aligned_value_p (const_tree type)
{
machine_mode mode = TYPE_MODE (type);
if (mode == XFmode || mode == XCmode)
return false;
if (TYPE_ALIGN (type) < 128)
return false;
if (AGGREGATE_TYPE_P (type))
{
/* Walk the aggregates recursively. */
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree field;
/* Walk all the structure fields. */
for (field = TYPE_FIELDS (type);
field;
field = DECL_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL
&& ix86_contains_aligned_value_p (TREE_TYPE (field)))
return true;
}
break;
}
case ARRAY_TYPE:
/* Just for use if some languages passes arrays by value. */
if (ix86_contains_aligned_value_p (TREE_TYPE (type)))
return true;
break;
default:
gcc_unreachable ();
}
}
else
return TYPE_ALIGN (type) >= 128;
return false;
}
/* Gives the alignment boundary, in bits, of an argument with the
specified mode and type. */
static unsigned int
ix86_function_arg_boundary (machine_mode mode, const_tree type)
{
unsigned int align;
if (type)
{
/* Since the main variant type is used for call, we convert it to
the main variant type. */
type = TYPE_MAIN_VARIANT (type);
align = TYPE_ALIGN (type);
if (TYPE_EMPTY_P (type))
return PARM_BOUNDARY;
}
else
align = GET_MODE_ALIGNMENT (mode);
if (align < PARM_BOUNDARY)
align = PARM_BOUNDARY;
else
{
static bool warned;
unsigned int saved_align = align;
if (!TARGET_64BIT)
{
/* i386 ABI defines XFmode arguments to be 4 byte aligned. */
if (!type)
{
if (mode == XFmode || mode == XCmode)
align = PARM_BOUNDARY;
}
else if (!ix86_contains_aligned_value_p (type))
align = PARM_BOUNDARY;
if (align < 128)
align = PARM_BOUNDARY;
}
if (warn_psabi
&& !warned
&& align != ix86_compat_function_arg_boundary (mode, type,
saved_align))
{
warned = true;
inform (input_location,
"the ABI for passing parameters with %d-byte"
" alignment has changed in GCC 4.6",
align / BITS_PER_UNIT);
}
}
return align;
}
/* Return true if N is a possible register number of function value. */
static bool
ix86_function_value_regno_p (const unsigned int regno)
{
switch (regno)
{
case AX_REG:
return true;
case DX_REG:
return (!TARGET_64BIT || ix86_cfun_abi () != MS_ABI);
case DI_REG:
case SI_REG:
return TARGET_64BIT && ix86_cfun_abi () != MS_ABI;
/* Complex values are returned in %st(0)/%st(1) pair. */
case ST0_REG:
case ST1_REG:
/* TODO: The function should depend on current function ABI but
builtins.cc would need updating then. Therefore we use the
default ABI. */
if (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
return false;
return TARGET_FLOAT_RETURNS_IN_80387;
/* Complex values are returned in %xmm0/%xmm1 pair. */
case XMM0_REG:
case XMM1_REG:
return TARGET_SSE;
case MM0_REG:
if (TARGET_MACHO || TARGET_64BIT)
return false;
return TARGET_MMX;
}
return false;
}
/* Check whether the register REGNO should be zeroed on X86.
When ALL_SSE_ZEROED is true, all SSE registers have been zeroed
together, no need to zero it again.
When NEED_ZERO_MMX is true, MMX registers should be cleared. */
static bool
zero_call_used_regno_p (const unsigned int regno,
bool all_sse_zeroed,
bool need_zero_mmx)
{
return GENERAL_REGNO_P (regno)
|| (!all_sse_zeroed && SSE_REGNO_P (regno))
|| MASK_REGNO_P (regno)
|| (need_zero_mmx && MMX_REGNO_P (regno));
}
/* Return the machine_mode that is used to zero register REGNO. */
static machine_mode
zero_call_used_regno_mode (const unsigned int regno)
{
/* NB: We only need to zero the lower 32 bits for integer registers
and the lower 128 bits for vector registers since destination are
zero-extended to the full register width. */
if (GENERAL_REGNO_P (regno))
return SImode;
else if (SSE_REGNO_P (regno))
return V4SFmode;
else if (MASK_REGNO_P (regno))
return HImode;
else if (MMX_REGNO_P (regno))
return V2SImode;
else
gcc_unreachable ();
}
/* Generate a rtx to zero all vector registers together if possible,
otherwise, return NULL. */
static rtx
zero_all_vector_registers (HARD_REG_SET need_zeroed_hardregs)
{
if (!TARGET_AVX)
return NULL;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((LEGACY_SSE_REGNO_P (regno)
|| (TARGET_64BIT
&& (REX_SSE_REGNO_P (regno)
|| (TARGET_AVX512F && EXT_REX_SSE_REGNO_P (regno)))))
&& !TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
return NULL;
return gen_avx_vzeroall ();
}
/* Generate insns to zero all st registers together.
Return true when zeroing instructions are generated.
Assume the number of st registers that are zeroed is num_of_st,
we will emit the following sequence to zero them together:
fldz; \
fldz; \
...
fldz; \
fstp %%st(0); \
fstp %%st(0); \
...
fstp %%st(0);
i.e., num_of_st fldz followed by num_of_st fstp to clear the stack
mark stack slots empty.
How to compute the num_of_st:
There is no direct mapping from stack registers to hard register
numbers. If one stack register needs to be cleared, we don't know
where in the stack the value remains. So, if any stack register
needs to be cleared, the whole stack should be cleared. However,
x87 stack registers that hold the return value should be excluded.
x87 returns in the top (two for complex values) register, so
num_of_st should be 7/6 when x87 returns, otherwise it will be 8.
return the value of num_of_st. */
static int
zero_all_st_registers (HARD_REG_SET need_zeroed_hardregs)
{
/* If the FPU is disabled, no need to zero all st registers. */
if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387))
return 0;
unsigned int num_of_st = 0;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((STACK_REGNO_P (regno) || MMX_REGNO_P (regno))
&& TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
{
num_of_st++;
break;
}
if (num_of_st == 0)
return 0;
bool return_with_x87 = false;
return_with_x87 = (crtl->return_rtx
&& (STACK_REG_P (crtl->return_rtx)));
bool complex_return = false;
complex_return = (crtl->return_rtx
&& COMPLEX_MODE_P (GET_MODE (crtl->return_rtx)));
if (return_with_x87)
if (complex_return)
num_of_st = 6;
else
num_of_st = 7;
else
num_of_st = 8;
rtx st_reg = gen_rtx_REG (XFmode, FIRST_STACK_REG);
for (unsigned int i = 0; i < num_of_st; i++)
emit_insn (gen_rtx_SET (st_reg, CONST0_RTX (XFmode)));
for (unsigned int i = 0; i < num_of_st; i++)
{
rtx insn;
insn = emit_insn (gen_rtx_SET (st_reg, st_reg));
add_reg_note (insn, REG_DEAD, st_reg);
}
return num_of_st;
}
/* When the routine exit in MMX mode, if any ST register needs
to be zeroed, we should clear all MMX registers except the
RET_MMX_REGNO that holds the return value. */
static bool
zero_all_mm_registers (HARD_REG_SET need_zeroed_hardregs,
unsigned int ret_mmx_regno)
{
bool need_zero_all_mm = false;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (STACK_REGNO_P (regno)
&& TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
{
need_zero_all_mm = true;
break;
}
if (!need_zero_all_mm)
return false;
machine_mode mode = V2SImode;
for (unsigned int regno = FIRST_MMX_REG; regno <= LAST_MMX_REG; regno++)
if (regno != ret_mmx_regno)
{
rtx reg = gen_rtx_REG (mode, regno);
emit_insn (gen_rtx_SET (reg, CONST0_RTX (mode)));
}
return true;
}
/* TARGET_ZERO_CALL_USED_REGS. */
/* Generate a sequence of instructions that zero registers specified by
NEED_ZEROED_HARDREGS. Return the ZEROED_HARDREGS that are actually
zeroed. */
static HARD_REG_SET
ix86_zero_call_used_regs (HARD_REG_SET need_zeroed_hardregs)
{
HARD_REG_SET zeroed_hardregs;
bool all_sse_zeroed = false;
int all_st_zeroed_num = 0;
bool all_mm_zeroed = false;
CLEAR_HARD_REG_SET (zeroed_hardregs);
/* first, let's see whether we can zero all vector registers together. */
rtx zero_all_vec_insn = zero_all_vector_registers (need_zeroed_hardregs);
if (zero_all_vec_insn)
{
emit_insn (zero_all_vec_insn);
all_sse_zeroed = true;
}
/* mm/st registers are shared registers set, we should follow the following
rules to clear them:
MMX exit mode x87 exit mode
-------------|----------------------|---------------
uses x87 reg | clear all MMX | clear all x87
uses MMX reg | clear individual MMX | clear all x87
x87 + MMX | clear all MMX | clear all x87
first, we should decide which mode (MMX mode or x87 mode) the function
exit with. */
bool exit_with_mmx_mode = (crtl->return_rtx
&& (MMX_REG_P (crtl->return_rtx)));
if (!exit_with_mmx_mode)
/* x87 exit mode, we should zero all st registers together. */
{
all_st_zeroed_num = zero_all_st_registers (need_zeroed_hardregs);
if (all_st_zeroed_num > 0)
for (unsigned int regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
/* x87 stack registers that hold the return value should be excluded.
x87 returns in the top (two for complex values) register. */
if (all_st_zeroed_num == 8
|| !((all_st_zeroed_num >= 6 && regno == REGNO (crtl->return_rtx))
|| (all_st_zeroed_num == 6
&& (regno == (REGNO (crtl->return_rtx) + 1)))))
SET_HARD_REG_BIT (zeroed_hardregs, regno);
}
else
/* MMX exit mode, check whether we can zero all mm registers. */
{
unsigned int exit_mmx_regno = REGNO (crtl->return_rtx);
all_mm_zeroed = zero_all_mm_registers (need_zeroed_hardregs,
exit_mmx_regno);
if (all_mm_zeroed)
for (unsigned int regno = FIRST_MMX_REG; regno <= LAST_MMX_REG; regno++)
if (regno != exit_mmx_regno)
SET_HARD_REG_BIT (zeroed_hardregs, regno);
}
/* Now, generate instructions to zero all the other registers. */
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (!TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
continue;
if (!zero_call_used_regno_p (regno, all_sse_zeroed,
exit_with_mmx_mode && !all_mm_zeroed))
continue;
SET_HARD_REG_BIT (zeroed_hardregs, regno);
machine_mode mode = zero_call_used_regno_mode (regno);
rtx reg = gen_rtx_REG (mode, regno);
rtx tmp = gen_rtx_SET (reg, CONST0_RTX (mode));
switch (mode)
{
case E_SImode:
if (!TARGET_USE_MOV0 || optimize_insn_for_size_p ())
{
rtx clob = gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (CCmode,
FLAGS_REG));
tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2,
tmp,
clob));
}
/* FALLTHRU. */
case E_V4SFmode:
case E_HImode:
case E_V2SImode:
emit_insn (tmp);
break;
default:
gcc_unreachable ();
}
}
return zeroed_hardregs;
}
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
static rtx
function_value_32 (machine_mode orig_mode, machine_mode mode,
const_tree fntype, const_tree fn)
{
unsigned int regno;
/* 8-byte vector modes in %mm0. See ix86_return_in_memory for where
we normally prevent this case when mmx is not available. However
some ABIs may require the result to be returned like DImode. */
if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8)
regno = FIRST_MMX_REG;
/* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where
we prevent this case when sse is not available. However some ABIs
may require the result to be returned like integer TImode. */
else if (mode == TImode
|| (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16))
regno = FIRST_SSE_REG;
/* 32-byte vector modes in %ymm0. */
else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 32)
regno = FIRST_SSE_REG;
/* 64-byte vector modes in %zmm0. */
else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 64)
regno = FIRST_SSE_REG;
/* Floating point return values in %st(0) (unless -mno-fp-ret-in-387). */
else if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387)
regno = FIRST_FLOAT_REG;
else
/* Most things go in %eax. */
regno = AX_REG;
/* Return __bf16/ _Float16/_Complex _Foat16 by sse register. */
if (mode == HFmode || mode == BFmode)
regno = FIRST_SSE_REG;
if (mode == HCmode)
{
rtx ret = gen_rtx_PARALLEL (mode, rtvec_alloc(1));
XVECEXP (ret, 0, 0)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (SImode, FIRST_SSE_REG),
GEN_INT (0));
return ret;
}
/* Override FP return register with %xmm0 for local functions when
SSE math is enabled or for functions with sseregparm attribute. */
if ((fn || fntype) && (mode == SFmode || mode == DFmode))
{
int sse_level = ix86_function_sseregparm (fntype, fn, false);
if (sse_level == -1)
{
error ("calling %qD with SSE calling convention without "
"SSE/SSE2 enabled", fn);
sorry ("this is a GCC bug that can be worked around by adding "
"attribute used to function called");
}
else if ((sse_level >= 1 && mode == SFmode)
|| (sse_level == 2 && mode == DFmode))
regno = FIRST_SSE_REG;
}
/* OImode shouldn't be used directly. */
gcc_assert (mode != OImode);
return gen_rtx_REG (orig_mode, regno);
}
static rtx
function_value_64 (machine_mode orig_mode, machine_mode mode,
const_tree valtype)
{
rtx ret;
/* Handle libcalls, which don't provide a type node. */
if (valtype == NULL)
{
unsigned int regno;
switch (mode)
{
case E_BFmode:
case E_HFmode:
case E_HCmode:
case E_SFmode:
case E_SCmode:
case E_DFmode:
case E_DCmode:
case E_TFmode:
case E_SDmode:
case E_DDmode:
case E_TDmode:
regno = FIRST_SSE_REG;
break;
case E_XFmode:
case E_XCmode:
regno = FIRST_FLOAT_REG;
break;
case E_TCmode:
return NULL;
default:
regno = AX_REG;
}
return gen_rtx_REG (mode, regno);
}
else if (POINTER_TYPE_P (valtype))
{
/* Pointers are always returned in word_mode. */
mode = word_mode;
}
ret = construct_container (mode, orig_mode, valtype, 1,
X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX,
x86_64_int_return_registers, 0);
/* For zero sized structures, construct_container returns NULL, but we
need to keep rest of compiler happy by returning meaningful value. */
if (!ret)
ret = gen_rtx_REG (orig_mode, AX_REG);
return ret;
}
static rtx
function_value_ms_32 (machine_mode orig_mode, machine_mode mode,
const_tree fntype, const_tree fn, const_tree valtype)
{
unsigned int regno;
/* Floating point return values in %st(0)
(unless -mno-fp-ret-in-387 or aggregate type of up to 8 bytes). */
if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387
&& (GET_MODE_SIZE (mode) > 8
|| valtype == NULL_TREE || !AGGREGATE_TYPE_P (valtype)))
{
regno = FIRST_FLOAT_REG;
return gen_rtx_REG (orig_mode, regno);
}
else
return function_value_32(orig_mode, mode, fntype,fn);
}
static rtx
function_value_ms_64 (machine_mode orig_mode, machine_mode mode,
const_tree valtype)
{
unsigned int regno = AX_REG;
if (TARGET_SSE)
{
switch (GET_MODE_SIZE (mode))
{
case 16:
if (valtype != NULL_TREE
&& !VECTOR_INTEGER_TYPE_P (valtype)
&& !VECTOR_INTEGER_TYPE_P (valtype)
&& !INTEGRAL_TYPE_P (valtype)
&& !VECTOR_FLOAT_TYPE_P (valtype))
break;
if ((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode))
&& !COMPLEX_MODE_P (mode))
regno = FIRST_SSE_REG;
break;
case 8:
case 4:
if (valtype != NULL_TREE && AGGREGATE_TYPE_P (valtype))
break;
if (mode == SFmode || mode == DFmode)
regno = FIRST_SSE_REG;
break;
default:
break;
}
}
return gen_rtx_REG (orig_mode, regno);
}
static rtx
ix86_function_value_1 (const_tree valtype, const_tree fntype_or_decl,
machine_mode orig_mode, machine_mode mode)
{
const_tree fn, fntype;
fn = NULL_TREE;
if (fntype_or_decl && DECL_P (fntype_or_decl))
fn = fntype_or_decl;
fntype = fn ? TREE_TYPE (fn) : fntype_or_decl;
if (ix86_function_type_abi (fntype) == MS_ABI)
{
if (TARGET_64BIT)
return function_value_ms_64 (orig_mode, mode, valtype);
else
return function_value_ms_32 (orig_mode, mode, fntype, fn, valtype);
}
else if (TARGET_64BIT)
return function_value_64 (orig_mode, mode, valtype);
else
return function_value_32 (orig_mode, mode, fntype, fn);
}
static rtx
ix86_function_value (const_tree valtype, const_tree fntype_or_decl, bool)
{
machine_mode mode, orig_mode;
orig_mode = TYPE_MODE (valtype);
mode = type_natural_mode (valtype, NULL, true);
return ix86_function_value_1 (valtype, fntype_or_decl, orig_mode, mode);
}
/* Pointer function arguments and return values are promoted to
word_mode for normal functions. */
static machine_mode
ix86_promote_function_mode (const_tree type, machine_mode mode,
int *punsignedp, const_tree fntype,
int for_return)
{
if (cfun->machine->func_type == TYPE_NORMAL
&& type != NULL_TREE
&& POINTER_TYPE_P (type))
{
*punsignedp = POINTERS_EXTEND_UNSIGNED;
return word_mode;
}
return default_promote_function_mode (type, mode, punsignedp, fntype,
for_return);
}
/* Return true if a structure, union or array with MODE containing FIELD
should be accessed using BLKmode. */
static bool
ix86_member_type_forces_blk (const_tree field, machine_mode mode)
{
/* Union with XFmode must be in BLKmode. */
return (mode == XFmode
&& (TREE_CODE (DECL_FIELD_CONTEXT (field)) == UNION_TYPE
|| TREE_CODE (DECL_FIELD_CONTEXT (field)) == QUAL_UNION_TYPE));
}
rtx
ix86_libcall_value (machine_mode mode)
{
return ix86_function_value_1 (NULL, NULL, mode, mode);
}
/* Return true iff type is returned in memory. */
static bool
ix86_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
const machine_mode mode = type_natural_mode (type, NULL, true);
HOST_WIDE_INT size;
if (TARGET_64BIT)
{
if (ix86_function_type_abi (fntype) == MS_ABI)
{
size = int_size_in_bytes (type);
/* __m128 is returned in xmm0. */
if ((!type || VECTOR_INTEGER_TYPE_P (type)
|| INTEGRAL_TYPE_P (type)
|| VECTOR_FLOAT_TYPE_P (type))
&& (SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode))
&& !COMPLEX_MODE_P (mode)
&& (GET_MODE_SIZE (mode) == 16 || size == 16))
return false;
/* Otherwise, the size must be exactly in [1248]. */
return size != 1 && size != 2 && size != 4 && size != 8;
}
else
{
int needed_intregs, needed_sseregs;
return examine_argument (mode, type, 1,
&needed_intregs, &needed_sseregs);
}
}
else
{
size = int_size_in_bytes (type);
/* Intel MCU psABI returns scalars and aggregates no larger than 8
bytes in registers. */
if (TARGET_IAMCU)
return VECTOR_MODE_P (mode) || size < 0 || size > 8;
if (mode == BLKmode)
return true;
if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8)
return false;
if (VECTOR_MODE_P (mode) || mode == TImode)
{
/* User-created vectors small enough to fit in EAX. */
if (size < 8)
return false;
/* Unless ABI prescibes otherwise,
MMX/3dNow values are returned in MM0 if available. */
if (size == 8)
return TARGET_VECT8_RETURNS || !TARGET_MMX;
/* SSE values are returned in XMM0 if available. */
if (size == 16)
return !TARGET_SSE;
/* AVX values are returned in YMM0 if available. */
if (size == 32)
return !TARGET_AVX;
/* AVX512F values are returned in ZMM0 if available. */
if (size == 64)
return !TARGET_AVX512F;
}
if (mode == XFmode)
return false;
if (size > 12)
return true;
/* OImode shouldn't be used directly. */
gcc_assert (mode != OImode);
return false;
}
}
/* Implement TARGET_PUSH_ARGUMENT. */
static bool
ix86_push_argument (unsigned int npush)
{
/* If SSE2 is available, use vector move to put large argument onto
stack. NB: In 32-bit mode, use 8-byte vector move. */
return ((!TARGET_SSE2 || npush < (TARGET_64BIT ? 16 : 8))
&& TARGET_PUSH_ARGS
&& !ACCUMULATE_OUTGOING_ARGS);
}
/* Create the va_list data type. */
static tree
ix86_build_builtin_va_list_64 (void)
{
tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
record = lang_hooks.types.make_type (RECORD_TYPE);
type_decl = build_decl (BUILTINS_LOCATION,
TYPE_DECL, get_identifier ("__va_list_tag"), record);
f_gpr = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("gp_offset"),
unsigned_type_node);
f_fpr = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("fp_offset"),
unsigned_type_node);
f_ovf = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("overflow_arg_area"),
ptr_type_node);
f_sav = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("reg_save_area"),
ptr_type_node);
va_list_gpr_counter_field = f_gpr;
va_list_fpr_counter_field = f_fpr;
DECL_FIELD_CONTEXT (f_gpr) = record;
DECL_FIELD_CONTEXT (f_fpr) = record;
DECL_FIELD_CONTEXT (f_ovf) = record;
DECL_FIELD_CONTEXT (f_sav) = record;
TYPE_STUB_DECL (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_gpr;
DECL_CHAIN (f_gpr) = f_fpr;
DECL_CHAIN (f_fpr) = f_ovf;
DECL_CHAIN (f_ovf) = f_sav;
layout_type (record);
TYPE_ATTRIBUTES (record) = tree_cons (get_identifier ("sysv_abi va_list"),
NULL_TREE, TYPE_ATTRIBUTES (record));
/* The correct type is an array type of one element. */
return build_array_type (record, build_index_type (size_zero_node));
}
/* Setup the builtin va_list data type and for 64-bit the additional
calling convention specific va_list data types. */
static tree
ix86_build_builtin_va_list (void)
{
if (TARGET_64BIT)
{
/* Initialize ABI specific va_list builtin types.
In lto1, we can encounter two va_list types:
- one as a result of the type-merge across TUs, and
- the one constructed here.
These two types will not have the same TYPE_MAIN_VARIANT, and therefore
a type identity check in canonical_va_list_type based on
TYPE_MAIN_VARIANT (which we used to have) will not work.
Instead, we tag each va_list_type_node with its unique attribute, and
look for the attribute in the type identity check in
canonical_va_list_type.
Tagging sysv_va_list_type_node directly with the attribute is
problematic since it's a array of one record, which will degrade into a
pointer to record when used as parameter (see build_va_arg comments for
an example), dropping the attribute in the process. So we tag the
record instead. */
/* For SYSV_ABI we use an array of one record. */
sysv_va_list_type_node = ix86_build_builtin_va_list_64 ();
/* For MS_ABI we use plain pointer to argument area. */
tree char_ptr_type = build_pointer_type (char_type_node);
tree attr = tree_cons (get_identifier ("ms_abi va_list"), NULL_TREE,
TYPE_ATTRIBUTES (char_ptr_type));
ms_va_list_type_node = build_type_attribute_variant (char_ptr_type, attr);
return ((ix86_abi == MS_ABI)
? ms_va_list_type_node
: sysv_va_list_type_node);
}
else
{
/* For i386 we use plain pointer to argument area. */
return build_pointer_type (char_type_node);
}
}
/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
static void
setup_incoming_varargs_64 (CUMULATIVE_ARGS *cum)
{
rtx save_area, mem;
alias_set_type set;
int i, max;
/* GPR size of varargs save area. */
if (cfun->va_list_gpr_size)
ix86_varargs_gpr_size = X86_64_REGPARM_MAX * UNITS_PER_WORD;
else
ix86_varargs_gpr_size = 0;
/* FPR size of varargs save area. We don't need it if we don't pass
anything in SSE registers. */
if (TARGET_SSE && cfun->va_list_fpr_size)
ix86_varargs_fpr_size = X86_64_SSE_REGPARM_MAX * 16;
else
ix86_varargs_fpr_size = 0;
if (! ix86_varargs_gpr_size && ! ix86_varargs_fpr_size)
return;
save_area = frame_pointer_rtx;
set = get_varargs_alias_set ();
max = cum->regno + cfun->va_list_gpr_size / UNITS_PER_WORD;
if (max > X86_64_REGPARM_MAX)
max = X86_64_REGPARM_MAX;
for (i = cum->regno; i < max; i++)
{
mem = gen_rtx_MEM (word_mode,
plus_constant (Pmode, save_area, i * UNITS_PER_WORD));
MEM_NOTRAP_P (mem) = 1;
set_mem_alias_set (mem, set);
emit_move_insn (mem,
gen_rtx_REG (word_mode,
x86_64_int_parameter_registers[i]));
}
if (ix86_varargs_fpr_size)
{
machine_mode smode;
rtx_code_label *label;
rtx test;
/* Now emit code to save SSE registers. The AX parameter contains number
of SSE parameter registers used to call this function, though all we
actually check here is the zero/non-zero status. */
label = gen_label_rtx ();
test = gen_rtx_EQ (VOIDmode, gen_rtx_REG (QImode, AX_REG), const0_rtx);
emit_jump_insn (gen_cbranchqi4 (test, XEXP (test, 0), XEXP (test, 1),
label));
/* ??? If !TARGET_SSE_TYPELESS_STORES, would we perform better if
we used movdqa (i.e. TImode) instead? Perhaps even better would
be if we could determine the real mode of the data, via a hook
into pass_stdarg. Ignore all that for now. */
smode = V4SFmode;
if (crtl->stack_alignment_needed < GET_MODE_ALIGNMENT (smode))
crtl->stack_alignment_needed = GET_MODE_ALIGNMENT (smode);
max = cum->sse_regno + cfun->va_list_fpr_size / 16;
if (max > X86_64_SSE_REGPARM_MAX)
max = X86_64_SSE_REGPARM_MAX;
for (i = cum->sse_regno; i < max; ++i)
{
mem = plus_constant (Pmode, save_area,
i * 16 + ix86_varargs_gpr_size);
mem = gen_rtx_MEM (smode, mem);
MEM_NOTRAP_P (mem) = 1;
set_mem_alias_set (mem, set);
set_mem_align (mem, GET_MODE_ALIGNMENT (smode));
emit_move_insn (mem, gen_rtx_REG (smode, GET_SSE_REGNO (i)));
}
emit_label (label);
}
}
static void
setup_incoming_varargs_ms_64 (CUMULATIVE_ARGS *cum)
{
alias_set_type set = get_varargs_alias_set ();
int i;
/* Reset to zero, as there might be a sysv vaarg used
before. */
ix86_varargs_gpr_size = 0;
ix86_varargs_fpr_size = 0;
for (i = cum->regno; i < X86_64_MS_REGPARM_MAX; i++)
{
rtx reg, mem;
mem = gen_rtx_MEM (Pmode,
plus_constant (Pmode, virtual_incoming_args_rtx,
i * UNITS_PER_WORD));
MEM_NOTRAP_P (mem) = 1;
set_mem_alias_set (mem, set);
reg = gen_rtx_REG (Pmode, x86_64_ms_abi_int_parameter_registers[i]);
emit_move_insn (mem, reg);
}
}
static void
ix86_setup_incoming_varargs (cumulative_args_t cum_v,
const function_arg_info &arg,
int *, int no_rtl)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
CUMULATIVE_ARGS next_cum;
tree fntype;
/* This argument doesn't appear to be used anymore. Which is good,
because the old code here didn't suppress rtl generation. */
gcc_assert (!no_rtl);
if (!TARGET_64BIT)
return;
fntype = TREE_TYPE (current_function_decl);
/* For varargs, we do not want to skip the dummy va_dcl argument.
For stdargs, we do want to skip the last named argument. */
next_cum = *cum;
if (stdarg_p (fntype))
ix86_function_arg_advance (pack_cumulative_args (&next_cum), arg);
if (cum->call_abi == MS_ABI)
setup_incoming_varargs_ms_64 (&next_cum);
else
setup_incoming_varargs_64 (&next_cum);
}
/* Checks if TYPE is of kind va_list char *. */
static bool
is_va_list_char_pointer (tree type)
{
tree canonic;
/* For 32-bit it is always true. */
if (!TARGET_64BIT)
return true;
canonic = ix86_canonical_va_list_type (type);
return (canonic == ms_va_list_type_node
|| (ix86_abi == MS_ABI && canonic == va_list_type_node));
}
/* Implement va_start. */
static void
ix86_va_start (tree valist, rtx nextarg)
{
HOST_WIDE_INT words, n_gpr, n_fpr;
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, t;
tree type;
rtx ovf_rtx;
if (flag_split_stack
&& cfun->machine->split_stack_varargs_pointer == NULL_RTX)
{
unsigned int scratch_regno;
/* When we are splitting the stack, we can't refer to the stack
arguments using internal_arg_pointer, because they may be on
the old stack. The split stack prologue will arrange to
leave a pointer to the old stack arguments in a scratch
register, which we here copy to a pseudo-register. The split
stack prologue can't set the pseudo-register directly because
it (the prologue) runs before any registers have been saved. */
scratch_regno = split_stack_prologue_scratch_regno ();
if (scratch_regno != INVALID_REGNUM)
{
rtx reg;
rtx_insn *seq;
reg = gen_reg_rtx (Pmode);
cfun->machine->split_stack_varargs_pointer = reg;
start_sequence ();
emit_move_insn (reg, gen_rtx_REG (Pmode, scratch_regno));
seq = get_insns ();
end_sequence ();
push_topmost_sequence ();
emit_insn_after (seq, entry_of_function ());
pop_topmost_sequence ();
}
}
/* Only 64bit target needs something special. */
if (is_va_list_char_pointer (TREE_TYPE (valist)))
{
if (cfun->machine->split_stack_varargs_pointer == NULL_RTX)
std_expand_builtin_va_start (valist, nextarg);
else
{
rtx va_r, next;
va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE);
next = expand_binop (ptr_mode, add_optab,
cfun->machine->split_stack_varargs_pointer,
crtl->args.arg_offset_rtx,
NULL_RTX, 0, OPTAB_LIB_WIDEN);
convert_move (va_r, next, 0);
}
return;
}
f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node));
f_fpr = DECL_CHAIN (f_gpr);
f_ovf = DECL_CHAIN (f_fpr);
f_sav = DECL_CHAIN (f_ovf);
valist = build_simple_mem_ref (valist);
TREE_TYPE (valist) = TREE_TYPE (sysv_va_list_type_node);
/* The following should be folded into the MEM_REF offset. */
gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), unshare_expr (valist),
f_gpr, NULL_TREE);
fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
f_fpr, NULL_TREE);
ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
f_ovf, NULL_TREE);
sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
f_sav, NULL_TREE);
/* Count number of gp and fp argument registers used. */
words = crtl->args.info.words;
n_gpr = crtl->args.info.regno;
n_fpr = crtl->args.info.sse_regno;
if (cfun->va_list_gpr_size)
{
type = TREE_TYPE (gpr);
t = build2 (MODIFY_EXPR, type,
gpr, build_int_cst (type, n_gpr * 8));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
if (TARGET_SSE && cfun->va_list_fpr_size)
{
type = TREE_TYPE (fpr);
t = build2 (MODIFY_EXPR, type, fpr,
build_int_cst (type, n_fpr * 16 + 8*X86_64_REGPARM_MAX));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Find the overflow area. */
type = TREE_TYPE (ovf);
if (cfun->machine->split_stack_varargs_pointer == NULL_RTX)
ovf_rtx = crtl->args.internal_arg_pointer;
else
ovf_rtx = cfun->machine->split_stack_varargs_pointer;
t = make_tree (type, ovf_rtx);
if (words != 0)
t = fold_build_pointer_plus_hwi (t, words * UNITS_PER_WORD);
t = build2 (MODIFY_EXPR, type, ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
if (ix86_varargs_gpr_size || ix86_varargs_fpr_size)
{
/* Find the register save area.
Prologue of the function save it right above stack frame. */
type = TREE_TYPE (sav);
t = make_tree (type, frame_pointer_rtx);
if (!ix86_varargs_gpr_size)
t = fold_build_pointer_plus_hwi (t, -8 * X86_64_REGPARM_MAX);
t = build2 (MODIFY_EXPR, type, sav, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
}
/* Implement va_arg. */
static tree
ix86_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
gimple_seq *post_p)
{
static const int intreg[6] = { 0, 1, 2, 3, 4, 5 };
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, t;
int size, rsize;
tree lab_false, lab_over = NULL_TREE;
tree addr, t2;
rtx container;
int indirect_p = 0;
tree ptrtype;
machine_mode nat_mode;
unsigned int arg_boundary;
unsigned int type_align;
/* Only 64bit target needs something special. */
if (is_va_list_char_pointer (TREE_TYPE (valist)))
return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node));
f_fpr = DECL_CHAIN (f_gpr);
f_ovf = DECL_CHAIN (f_fpr);
f_sav = DECL_CHAIN (f_ovf);
gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr),
valist, f_gpr, NULL_TREE);
fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE);
ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE);
sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE);
indirect_p = pass_va_arg_by_reference (type);
if (indirect_p)
type = build_pointer_type (type);
size = arg_int_size_in_bytes (type);
rsize = CEIL (size, UNITS_PER_WORD);
nat_mode = type_natural_mode (type, NULL, false);
switch (nat_mode)
{
case E_V16HFmode:
case E_V16BFmode:
case E_V8SFmode:
case E_V8SImode:
case E_V32QImode:
case E_V16HImode:
case E_V4DFmode:
case E_V4DImode:
case E_V32HFmode:
case E_V32BFmode:
case E_V16SFmode:
case E_V16SImode:
case E_V64QImode:
case E_V32HImode:
case E_V8DFmode:
case E_V8DImode:
/* Unnamed 256 and 512bit vector mode parameters are passed on stack. */
if (!TARGET_64BIT_MS_ABI)
{
container = NULL;
break;
}
/* FALLTHRU */
default:
container = construct_container (nat_mode, TYPE_MODE (type),
type, 0, X86_64_REGPARM_MAX,
X86_64_SSE_REGPARM_MAX, intreg,
0);
break;
}
/* Pull the value out of the saved registers. */
addr = create_tmp_var (ptr_type_node, "addr");
type_align = TYPE_ALIGN (type);
if (container)
{
int needed_intregs, needed_sseregs;
bool need_temp;
tree int_addr, sse_addr;
lab_false = create_artificial_label (UNKNOWN_LOCATION);
lab_over = create_artificial_label (UNKNOWN_LOCATION);
examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs);
need_temp = (!REG_P (container)
&& ((needed_intregs && TYPE_ALIGN (type) > 64)
|| TYPE_ALIGN (type) > 128));
/* In case we are passing structure, verify that it is consecutive block
on the register save area. If not we need to do moves. */
if (!need_temp && !REG_P (container))
{
/* Verify that all registers are strictly consecutive */
if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0))))
{
int i;
for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++)
{
rtx slot = XVECEXP (container, 0, i);
if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i
|| INTVAL (XEXP (slot, 1)) != i * 16)
need_temp = true;
}
}
else
{
int i;
for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++)
{
rtx slot = XVECEXP (container, 0, i);
if (REGNO (XEXP (slot, 0)) != (unsigned int) i
|| INTVAL (XEXP (slot, 1)) != i * 8)
need_temp = true;
}
}
}
if (!need_temp)
{
int_addr = addr;
sse_addr = addr;
}
else
{
int_addr = create_tmp_var (ptr_type_node, "int_addr");
sse_addr = create_tmp_var (ptr_type_node, "sse_addr");
}
/* First ensure that we fit completely in registers. */
if (needed_intregs)
{
t = build_int_cst (TREE_TYPE (gpr),
(X86_64_REGPARM_MAX - needed_intregs + 1) * 8);
t = build2 (GE_EXPR, boolean_type_node, gpr, t);
t2 = build1 (GOTO_EXPR, void_type_node, lab_false);
t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE);
gimplify_and_add (t, pre_p);
}
if (needed_sseregs)
{
t = build_int_cst (TREE_TYPE (fpr),
(X86_64_SSE_REGPARM_MAX - needed_sseregs + 1) * 16
+ X86_64_REGPARM_MAX * 8);
t = build2 (GE_EXPR, boolean_type_node, fpr, t);
t2 = build1 (GOTO_EXPR, void_type_node, lab_false);
t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE);
gimplify_and_add (t, pre_p);
}
/* Compute index to start of area used for integer regs. */
if (needed_intregs)
{
/* int_addr = gpr + sav; */
t = fold_build_pointer_plus (sav, gpr);
gimplify_assign (int_addr, t, pre_p);
}
if (needed_sseregs)
{
/* sse_addr = fpr + sav; */
t = fold_build_pointer_plus (sav, fpr);
gimplify_assign (sse_addr, t, pre_p);
}
if (need_temp)
{
int i, prev_size = 0;
tree temp = create_tmp_var (type, "va_arg_tmp");
TREE_ADDRESSABLE (temp) = 1;
/* addr = &temp; */
t = build1 (ADDR_EXPR, build_pointer_type (type), temp);
gimplify_assign (addr, t, pre_p);
for (i = 0; i < XVECLEN (container, 0); i++)
{
rtx slot = XVECEXP (container, 0, i);
rtx reg = XEXP (slot, 0);
machine_mode mode = GET_MODE (reg);
tree piece_type;
tree addr_type;
tree daddr_type;
tree src_addr, src;
int src_offset;
tree dest_addr, dest;
int cur_size = GET_MODE_SIZE (mode);
gcc_assert (prev_size <= INTVAL (XEXP (slot, 1)));
prev_size = INTVAL (XEXP (slot, 1));
if (prev_size + cur_size > size)
{
cur_size = size - prev_size;
unsigned int nbits = cur_size * BITS_PER_UNIT;
if (!int_mode_for_size (nbits, 1).exists (&mode))
mode = QImode;
}
piece_type = lang_hooks.types.type_for_mode (mode, 1);
if (mode == GET_MODE (reg))
addr_type = build_pointer_type (piece_type);
else
addr_type = build_pointer_type_for_mode (piece_type, ptr_mode,
true);
daddr_type = build_pointer_type_for_mode (piece_type, ptr_mode,
true);
if (SSE_REGNO_P (REGNO (reg)))
{
src_addr = sse_addr;
src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16;
}
else
{
src_addr = int_addr;
src_offset = REGNO (reg) * 8;
}
src_addr = fold_convert (addr_type, src_addr);
src_addr = fold_build_pointer_plus_hwi (src_addr, src_offset);
dest_addr = fold_convert (daddr_type, addr);
dest_addr = fold_build_pointer_plus_hwi (dest_addr, prev_size);
if (cur_size == GET_MODE_SIZE (mode))
{
src = build_va_arg_indirect_ref (src_addr);
dest = build_va_arg_indirect_ref (dest_addr);
gimplify_assign (dest, src, pre_p);
}
else
{
tree copy
= build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
3, dest_addr, src_addr,
size_int (cur_size));
gimplify_and_add (copy, pre_p);
}
prev_size += cur_size;
}
}
if (needed_intregs)
{
t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr,
build_int_cst (TREE_TYPE (gpr), needed_intregs * 8));
gimplify_assign (gpr, t, pre_p);
/* The GPR save area guarantees only 8-byte alignment. */
if (!need_temp)
type_align = MIN (type_align, 64);
}
if (needed_sseregs)
{
t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr,
build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16));
gimplify_assign (unshare_expr (fpr), t, pre_p);
}
gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false));
}
/* ... otherwise out of the overflow area. */
/* When we align parameter on stack for caller, if the parameter
alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
here with caller. */
arg_boundary = ix86_function_arg_boundary (VOIDmode, type);
if ((unsigned int) arg_boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
arg_boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
/* Care for on-stack alignment if needed. */
if (arg_boundary <= 64 || size == 0)
t = ovf;
else
{
HOST_WIDE_INT align = arg_boundary / 8;
t = fold_build_pointer_plus_hwi (ovf, align - 1);
t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
build_int_cst (TREE_TYPE (t), -align));
}
gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
gimplify_assign (addr, t, pre_p);
t = fold_build_pointer_plus_hwi (t, rsize * UNITS_PER_WORD);
gimplify_assign (unshare_expr (ovf), t, pre_p);
if (container)
gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over));
type = build_aligned_type (type, type_align);
ptrtype = build_pointer_type_for_mode (type, ptr_mode, true);
addr = fold_convert (ptrtype, addr);
if (indirect_p)
addr = build_va_arg_indirect_ref (addr);
return build_va_arg_indirect_ref (addr);
}
/* Return true if OPNUM's MEM should be matched
in movabs* patterns. */
bool
ix86_check_movabs (rtx insn, int opnum)
{
rtx set, mem;
set = PATTERN (insn);
if (GET_CODE (set) == PARALLEL)
set = XVECEXP (set, 0, 0);
gcc_assert (GET_CODE (set) == SET);
mem = XEXP (set, opnum);
while (SUBREG_P (mem))
mem = SUBREG_REG (mem);
gcc_assert (MEM_P (mem));
return volatile_ok || !MEM_VOLATILE_P (mem);
}
/* Return false if INSN contains a MEM with a non-default address space. */
bool
ix86_check_no_addr_space (rtx insn)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), ALL)
{
rtx x = *iter;
if (MEM_P (x) && !ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x)))
return false;
}
return true;
}
/* Initialize the table of extra 80387 mathematical constants. */
static void
init_ext_80387_constants (void)
{
static const char * cst[5] =
{
"0.3010299956639811952256464283594894482", /* 0: fldlg2 */
"0.6931471805599453094286904741849753009", /* 1: fldln2 */
"1.4426950408889634073876517827983434472", /* 2: fldl2e */
"3.3219280948873623478083405569094566090", /* 3: fldl2t */
"3.1415926535897932385128089594061862044", /* 4: fldpi */
};
int i;
for (i = 0; i < 5; i++)
{
real_from_string (&ext_80387_constants_table[i], cst[i]);
/* Ensure each constant is rounded to XFmode precision. */
real_convert (&ext_80387_constants_table[i],
XFmode, &ext_80387_constants_table[i]);
}
ext_80387_constants_init = 1;
}
/* Return non-zero if the constant is something that
can be loaded with a special instruction. */
int
standard_80387_constant_p (rtx x)
{
machine_mode mode = GET_MODE (x);
const REAL_VALUE_TYPE *r;
if (!(CONST_DOUBLE_P (x) && X87_FLOAT_MODE_P (mode)))
return -1;
if (x == CONST0_RTX (mode))
return 1;
if (x == CONST1_RTX (mode))
return 2;
r = CONST_DOUBLE_REAL_VALUE (x);
/* For XFmode constants, try to find a special 80387 instruction when
optimizing for size or on those CPUs that benefit from them. */
if (mode == XFmode
&& (optimize_function_for_size_p (cfun) || TARGET_EXT_80387_CONSTANTS)
&& !flag_rounding_math)
{
int i;
if (! ext_80387_constants_init)
init_ext_80387_constants ();
for (i = 0; i < 5; i++)
if (real_identical (r, &ext_80387_constants_table[i]))
return i + 3;
}
/* Load of the constant -0.0 or -1.0 will be split as
fldz;fchs or fld1;fchs sequence. */
if (real_isnegzero (r))
return 8;
if (real_identical (r, &dconstm1))
return 9;
return 0;
}
/* Return the opcode of the special instruction to be used to load
the constant X. */
const char *
standard_80387_constant_opcode (rtx x)
{
switch (standard_80387_constant_p (x))
{
case 1:
return "fldz";
case 2:
return "fld1";
case 3:
return "fldlg2";
case 4:
return "fldln2";
case 5:
return "fldl2e";
case 6:
return "fldl2t";
case 7:
return "fldpi";
case 8:
case 9:
return "#";
default:
gcc_unreachable ();
}
}
/* Return the CONST_DOUBLE representing the 80387 constant that is
loaded by the specified special instruction. The argument IDX
matches the return value from standard_80387_constant_p. */
rtx
standard_80387_constant_rtx (int idx)
{
int i;
if (! ext_80387_constants_init)
init_ext_80387_constants ();
switch (idx)
{
case 3:
case 4:
case 5:
case 6:
case 7:
i = idx - 3;
break;
default:
gcc_unreachable ();
}
return const_double_from_real_value (ext_80387_constants_table[i],
XFmode);
}
/* Return 1 if X is all bits 0, 2 if X is all bits 1
and 3 if X is all bits 1 with zero extend
in supported SSE/AVX vector mode. */
int
standard_sse_constant_p (rtx x, machine_mode pred_mode)
{
machine_mode mode;
if (!TARGET_SSE)
return 0;
mode = GET_MODE (x);
if (x == const0_rtx || const0_operand (x, mode))
return 1;
if (x == constm1_rtx
|| vector_all_ones_operand (x, mode)
|| ((GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
|| GET_MODE_CLASS (pred_mode) == MODE_VECTOR_FLOAT)
&& float_vector_all_ones_operand (x, mode)))
{
/* VOIDmode integer constant, get mode from the predicate. */
if (mode == VOIDmode)
mode = pred_mode;
switch (GET_MODE_SIZE (mode))
{
case 64:
if (TARGET_AVX512F)
return 2;
break;
case 32:
if (TARGET_AVX2)
return 2;
break;
case 16:
if (TARGET_SSE2)
return 2;
break;
case 0:
/* VOIDmode */
gcc_unreachable ();
default:
break;
}
}
if (vector_all_ones_zero_extend_half_operand (x, mode)
|| vector_all_ones_zero_extend_quarter_operand (x, mode))
return 3;
return 0;
}
/* Return the opcode of the special instruction to be used to load
the constant operands[1] into operands[0]. */
const char *
standard_sse_constant_opcode (rtx_insn *insn, rtx *operands)
{
machine_mode mode;
rtx x = operands[1];
gcc_assert (TARGET_SSE);
mode = GET_MODE (x);
if (x == const0_rtx || const0_operand (x, mode))
{
switch (get_attr_mode (insn))
{
case MODE_TI:
if (!EXT_REX_SSE_REG_P (operands[0]))
return "%vpxor\t%0, %d0";
/* FALLTHRU */
case MODE_XI:
case MODE_OI:
if (EXT_REX_SSE_REG_P (operands[0]))
return (TARGET_AVX512VL
? "vpxord\t%x0, %x0, %x0"
: "vpxord\t%g0, %g0, %g0");
return "vpxor\t%x0, %x0, %x0";
case MODE_V2DF:
if (!EXT_REX_SSE_REG_P (operands[0]))
return "%vxorpd\t%0, %d0";
/* FALLTHRU */
case MODE_V8DF:
case MODE_V4DF:
if (!EXT_REX_SSE_REG_P (operands[0]))
return "vxorpd\t%x0, %x0, %x0";
else if (TARGET_AVX512DQ)
return (TARGET_AVX512VL
? "vxorpd\t%x0, %x0, %x0"
: "vxorpd\t%g0, %g0, %g0");
else
return (TARGET_AVX512VL
? "vpxorq\t%x0, %x0, %x0"
: "vpxorq\t%g0, %g0, %g0");
case MODE_V4SF:
if (!EXT_REX_SSE_REG_P (operands[0]))
return "%vxorps\t%0, %d0";
/* FALLTHRU */
case MODE_V16SF:
case MODE_V8SF:
if (!EXT_REX_SSE_REG_P (operands[0]))
return "vxorps\t%x0, %x0, %x0";
else if (TARGET_AVX512DQ)
return (TARGET_AVX512VL
? "vxorps\t%x0, %x0, %x0"
: "vxorps\t%g0, %g0, %g0");
else
return (TARGET_AVX512VL
? "vpxord\t%x0, %x0, %x0"
: "vpxord\t%g0, %g0, %g0");
default:
gcc_unreachable ();
}
}
else if (x == constm1_rtx
|| vector_all_ones_operand (x, mode)
|| (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
&& float_vector_all_ones_operand (x, mode)))
{
enum attr_mode insn_mode = get_attr_mode (insn);
switch (insn_mode)
{
case MODE_XI:
case MODE_V8DF:
case MODE_V16SF:
gcc_assert (TARGET_AVX512F);
return "vpternlogd\t{$0xFF, %g0, %g0, %g0|%g0, %g0, %g0, 0xFF}";
case MODE_OI:
case MODE_V4DF:
case MODE_V8SF:
gcc_assert (TARGET_AVX2);
/* FALLTHRU */
case MODE_TI:
case MODE_V2DF:
case MODE_V4SF:
gcc_assert (TARGET_SSE2);
if (!EXT_REX_SSE_REG_P (operands[0]))
return (TARGET_AVX
? "vpcmpeqd\t%0, %0, %0"
: "pcmpeqd\t%0, %0");
else if (TARGET_AVX512VL)
return "vpternlogd\t{$0xFF, %0, %0, %0|%0, %0, %0, 0xFF}";
else
return "vpternlogd\t{$0xFF, %g0, %g0, %g0|%g0, %g0, %g0, 0xFF}";
default:
gcc_unreachable ();
}
}
else if (vector_all_ones_zero_extend_half_operand (x, mode))
{
if (GET_MODE_SIZE (mode) == 64)
{
gcc_assert (TARGET_AVX512F);
return "vpcmpeqd \t %t0, %t0, %t0";
}
else if (GET_MODE_SIZE (mode) == 32)
{
gcc_assert (TARGET_AVX);
return "vpcmpeqd \t %x0, %x0, %x0";
}
gcc_unreachable ();
}
else if (vector_all_ones_zero_extend_quarter_operand (x, mode))
{
gcc_assert (TARGET_AVX512F);
return "vpcmpeqd \t %x0, %x0, %x0";
}
gcc_unreachable ();
}
/* Returns true if INSN can be transformed from a memory load
to a supported FP constant load. */
bool
ix86_standard_x87sse_constant_load_p (const rtx_insn *insn, rtx dst)
{
rtx src = find_constant_src (insn);
gcc_assert (REG_P (dst));
if (src == NULL
|| (SSE_REGNO_P (REGNO (dst))
&& standard_sse_constant_p (src, GET_MODE (dst)) != 1)
|| (STACK_REGNO_P (REGNO (dst))
&& standard_80387_constant_p (src) < 1))
return false;
return true;
}
/* Predicate for pre-reload splitters with associated instructions,
which can match any time before the split1 pass (usually combine),
then are unconditionally split in that pass and should not be
matched again afterwards. */
bool
ix86_pre_reload_split (void)
{
return (can_create_pseudo_p ()
&& !(cfun->curr_properties & PROP_rtl_split_insns));
}
/* Return the opcode of the TYPE_SSEMOV instruction. To move from
or to xmm16-xmm31/ymm16-ymm31 registers, we either require
TARGET_AVX512VL or it is a register to register move which can
be done with zmm register move. */
static const char *
ix86_get_ssemov (rtx *operands, unsigned size,
enum attr_mode insn_mode, machine_mode mode)
{
char buf[128];
bool misaligned_p = (misaligned_operand (operands[0], mode)
|| misaligned_operand (operands[1], mode));
bool evex_reg_p = (size == 64
|| EXT_REX_SSE_REG_P (operands[0])
|| EXT_REX_SSE_REG_P (operands[1]));
machine_mode scalar_mode;
const char *opcode = NULL;
enum
{
opcode_int,
opcode_float,
opcode_double
} type = opcode_int;
switch (insn_mode)
{
case MODE_V16SF:
case MODE_V8SF:
case MODE_V4SF:
scalar_mode = E_SFmode;
type = opcode_float;
break;
case MODE_V8DF:
case MODE_V4DF:
case MODE_V2DF:
scalar_mode = E_DFmode;
type = opcode_double;
break;
case MODE_XI:
case MODE_OI:
case MODE_TI:
scalar_mode = GET_MODE_INNER (mode);
break;
default:
gcc_unreachable ();
}
/* NB: To move xmm16-xmm31/ymm16-ymm31 registers without AVX512VL,
we can only use zmm register move without memory operand. */
if (evex_reg_p
&& !TARGET_AVX512VL
&& GET_MODE_SIZE (mode) < 64)
{
/* NB: Even though ix86_hard_regno_mode_ok doesn't allow
xmm16-xmm31 nor ymm16-ymm31 in 128/256 bit modes when
AVX512VL is disabled, LRA can still generate reg to
reg moves with xmm16-xmm31 and ymm16-ymm31 in 128/256 bit
modes. */
if (memory_operand (operands[0], mode)
|| memory_operand (operands[1], mode))
gcc_unreachable ();
size = 64;
switch (type)
{
case opcode_int:
if (scalar_mode == E_HFmode || scalar_mode == E_BFmode)
opcode = (misaligned_p
? (TARGET_AVX512BW ? "vmovdqu16" : "vmovdqu64")
: "vmovdqa64");
else
opcode = misaligned_p ? "vmovdqu32" : "vmovdqa32";
break;
case opcode_float:
opcode = misaligned_p ? "vmovups" : "vmovaps";
break;
case opcode_double:
opcode = misaligned_p ? "vmovupd" : "vmovapd";
break;
}
}
else if (SCALAR_FLOAT_MODE_P (scalar_mode))
{
switch (scalar_mode)
{
case E_HFmode:
case E_BFmode:
if (evex_reg_p)
opcode = (misaligned_p
? (TARGET_AVX512BW
? "vmovdqu16"
: "vmovdqu64")
: "vmovdqa64");
else
opcode = (misaligned_p
? (TARGET_AVX512BW
? "vmovdqu16"
: "%vmovdqu")
: "%vmovdqa");
break;
case E_SFmode:
opcode = misaligned_p ? "%vmovups" : "%vmovaps";
break;
case E_DFmode:
opcode = misaligned_p ? "%vmovupd" : "%vmovapd";
break;
case E_TFmode:
if (evex_reg_p)
opcode = misaligned_p ? "vmovdqu64" : "vmovdqa64";
else
opcode = misaligned_p ? "%vmovdqu" : "%vmovdqa";
break;
default:
gcc_unreachable ();
}
}
else if (SCALAR_INT_MODE_P (scalar_mode))
{
switch (scalar_mode)
{
case E_QImode:
if (evex_reg_p)
opcode = (misaligned_p
? (TARGET_AVX512BW
? "vmovdqu8"
: "vmovdqu64")
: "vmovdqa64");
else
opcode = (misaligned_p
? (TARGET_AVX512BW
? "vmovdqu8"
: "%vmovdqu")
: "%vmovdqa");
break;
case E_HImode:
if (evex_reg_p)
opcode = (misaligned_p
? (TARGET_AVX512BW
? "vmovdqu16"
: "vmovdqu64")
: "vmovdqa64");
else
opcode = (misaligned_p
? (TARGET_AVX512BW
? "vmovdqu16"
: "%vmovdqu")
: "%vmovdqa");
break;
case E_SImode:
if (evex_reg_p)
opcode = misaligned_p ? "vmovdqu32" : "vmovdqa32";
else
opcode = misaligned_p ? "%vmovdqu" : "%vmovdqa";
break;
case E_DImode:
case E_TImode:
case E_OImode:
if (evex_reg_p)
opcode = misaligned_p ? "vmovdqu64" : "vmovdqa64";
else
opcode = misaligned_p ? "%vmovdqu" : "%vmovdqa";
break;
case E_XImode:
opcode = misaligned_p ? "vmovdqu64" : "vmovdqa64";
break;
default:
gcc_unreachable ();
}
}
else
gcc_unreachable ();
switch (size)
{
case 64:
snprintf (buf, sizeof (buf), "%s\t{%%g1, %%g0|%%g0, %%g1}",
opcode);
break;
case 32:
snprintf (buf, sizeof (buf), "%s\t{%%t1, %%t0|%%t0, %%t1}",
opcode);
break;
case 16:
snprintf (buf, sizeof (buf), "%s\t{%%x1, %%x0|%%x0, %%x1}",
opcode);
break;
default:
gcc_unreachable ();
}
output_asm_insn (buf, operands);
return "";
}
/* Return the template of the TYPE_SSEMOV instruction to move
operands[1] into operands[0]. */
const char *
ix86_output_ssemov (rtx_insn *insn, rtx *operands)
{
machine_mode mode = GET_MODE (operands[0]);
if (get_attr_type (insn) != TYPE_SSEMOV
|| mode != GET_MODE (operands[1]))
gcc_unreachable ();
enum attr_mode insn_mode = get_attr_mode (insn);
switch (insn_mode)
{
case MODE_XI:
case MODE_V8DF:
case MODE_V16SF:
return ix86_get_ssemov (operands, 64, insn_mode, mode);
case MODE_OI:
case MODE_V4DF:
case MODE_V8SF:
return ix86_get_ssemov (operands, 32, insn_mode, mode);
case MODE_TI:
case MODE_V2DF:
case MODE_V4SF:
return ix86_get_ssemov (operands, 16, insn_mode, mode);
case MODE_DI:
/* Handle broken assemblers that require movd instead of movq. */
if (GENERAL_REG_P (operands[0]))
{
if (HAVE_AS_IX86_INTERUNIT_MOVQ)
return "%vmovq\t{%1, %q0|%q0, %1}";
else
return "%vmovd\t{%1, %q0|%q0, %1}";
}
else if (GENERAL_REG_P (operands[1]))
{
if (HAVE_AS_IX86_INTERUNIT_MOVQ)
return "%vmovq\t{%q1, %0|%0, %q1}";
else
return "%vmovd\t{%q1, %0|%0, %q1}";
}
else
return "%vmovq\t{%1, %0|%0, %1}";
case MODE_SI:
if (GENERAL_REG_P (operands[0]))
return "%vmovd\t{%1, %k0|%k0, %1}";
else if (GENERAL_REG_P (operands[1]))
return "%vmovd\t{%k1, %0|%0, %k1}";
else
return "%vmovd\t{%1, %0|%0, %1}";
case MODE_HI:
if (GENERAL_REG_P (operands[0]))
return "vmovw\t{%1, %k0|%k0, %1}";
else if (GENERAL_REG_P (operands[1]))
return "vmovw\t{%k1, %0|%0, %k1}";
else
return "vmovw\t{%1, %0|%0, %1}";
case MODE_DF:
if (TARGET_AVX && REG_P (operands[0]) && REG_P (operands[1]))
return "vmovsd\t{%d1, %0|%0, %d1}";
else
return "%vmovsd\t{%1, %0|%0, %1}";
case MODE_SF:
if (TARGET_AVX && REG_P (operands[0]) && REG_P (operands[1]))
return "vmovss\t{%d1, %0|%0, %d1}";
else
return "%vmovss\t{%1, %0|%0, %1}";
case MODE_HF:
case MODE_BF:
if (REG_P (operands[0]) && REG_P (operands[1]))
return "vmovsh\t{%d1, %0|%0, %d1}";
else
return "vmovsh\t{%1, %0|%0, %1}";
case MODE_V1DF:
gcc_assert (!TARGET_AVX);
return "movlpd\t{%1, %0|%0, %1}";
case MODE_V2SF:
if (TARGET_AVX && REG_P (operands[0]))
return "vmovlps\t{%1, %d0|%d0, %1}";
else
return "%vmovlps\t{%1, %0|%0, %1}";
default:
gcc_unreachable ();
}
}
/* Returns true if OP contains a symbol reference */
bool
symbolic_reference_mentioned_p (rtx op)
{
const char *fmt;
int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return true;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return true;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return true;
}
return false;
}
/* Return true if it is appropriate to emit `ret' instructions in the
body of a function. Do this only if the epilogue is simple, needing a
couple of insns. Prior to reloading, we can't tell how many registers
must be saved, so return false then. Return false if there is no frame
marker to de-allocate. */
bool
ix86_can_use_return_insn_p (void)
{
if (ix86_function_ms_hook_prologue (current_function_decl))
return false;
if (ix86_function_naked (current_function_decl))
return false;
/* Don't use `ret' instruction in interrupt handler. */
if (! reload_completed
|| frame_pointer_needed
|| cfun->machine->func_type != TYPE_NORMAL)
return 0;
/* Don't allow more than 32k pop, since that's all we can do
with one instruction. */
if (crtl->args.pops_args && crtl->args.size >= 32768)
return 0;
struct ix86_frame &frame = cfun->machine->frame;
return (frame.stack_pointer_offset == UNITS_PER_WORD
&& (frame.nregs + frame.nsseregs) == 0);
}
/* Return stack frame size. get_frame_size () returns used stack slots
during compilation, which may be optimized out later. If stack frame
is needed, stack_frame_required should be true. */
static HOST_WIDE_INT
ix86_get_frame_size (void)
{
if (cfun->machine->stack_frame_required)
return get_frame_size ();
else
return 0;
}
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may
be accessed via the stack pointer) in functions that seem suitable. */
static bool
ix86_frame_pointer_required (void)
{
/* If we accessed previous frames, then the generated code expects
to be able to access the saved ebp value in our frame. */
if (cfun->machine->accesses_prev_frame)
return true;
/* Several x86 os'es need a frame pointer for other reasons,
usually pertaining to setjmp. */
if (SUBTARGET_FRAME_POINTER_REQUIRED)
return true;
/* For older 32-bit runtimes setjmp requires valid frame-pointer. */
if (TARGET_32BIT_MS_ABI && cfun->calls_setjmp)
return true;
/* Win64 SEH, very large frames need a frame-pointer as maximum stack
allocation is 4GB. */
if (TARGET_64BIT_MS_ABI && ix86_get_frame_size () > SEH_MAX_FRAME_SIZE)
return true;
/* SSE saves require frame-pointer when stack is misaligned. */
if (TARGET_64BIT_MS_ABI && ix86_incoming_stack_boundary < 128)
return true;
/* In ix86_option_override_internal, TARGET_OMIT_LEAF_FRAME_POINTER
turns off the frame pointer by default. Turn it back on now if
we've not got a leaf function. */
if (TARGET_OMIT_LEAF_FRAME_POINTER
&& (!crtl->is_leaf
|| ix86_current_function_calls_tls_descriptor))
return true;
/* Several versions of mcount for the x86 assumes that there is a
frame, so we cannot allow profiling without a frame pointer. */
if (crtl->profile && !flag_fentry)
return true;
return false;
}
/* Record that the current function accesses previous call frames. */
void
ix86_setup_frame_addresses (void)
{
cfun->machine->accesses_prev_frame = 1;
}
#ifndef USE_HIDDEN_LINKONCE
# if defined(HAVE_GAS_HIDDEN) && (SUPPORTS_ONE_ONLY - 0)
# define USE_HIDDEN_LINKONCE 1
# else
# define USE_HIDDEN_LINKONCE 0
# endif
#endif
/* Label count for call and return thunks. It is used to make unique
labels in call and return thunks. */
static int indirectlabelno;
/* True if call thunk function is needed. */
static bool indirect_thunk_needed = false;
/* Bit masks of integer registers, which contain branch target, used
by call thunk functions. */
static HARD_REG_SET indirect_thunks_used;
/* True if return thunk function is needed. */
static bool indirect_return_needed = false;
/* True if return thunk function via CX is needed. */
static bool indirect_return_via_cx;
#ifndef INDIRECT_LABEL
# define INDIRECT_LABEL "LIND"
#endif
/* Indicate what prefix is needed for an indirect branch. */
enum indirect_thunk_prefix
{
indirect_thunk_prefix_none,
indirect_thunk_prefix_nt
};
/* Return the prefix needed for an indirect branch INSN. */
enum indirect_thunk_prefix
indirect_thunk_need_prefix (rtx_insn *insn)
{
enum indirect_thunk_prefix need_prefix;
if ((cfun->machine->indirect_branch_type
== indirect_branch_thunk_extern)
&& ix86_notrack_prefixed_insn_p (insn))
{
/* NOTRACK prefix is only used with external thunk so that it
can be properly updated to support CET at run-time. */
need_prefix = indirect_thunk_prefix_nt;
}
else
need_prefix = indirect_thunk_prefix_none;
return need_prefix;
}
/* Fills in the label name that should be used for the indirect thunk. */
static void
indirect_thunk_name (char name[32], unsigned int regno,
enum indirect_thunk_prefix need_prefix,
bool ret_p)
{
if (regno != INVALID_REGNUM && regno != CX_REG && ret_p)
gcc_unreachable ();
if (USE_HIDDEN_LINKONCE)
{
const char *prefix;
if (need_prefix == indirect_thunk_prefix_nt
&& regno != INVALID_REGNUM)
{
/* NOTRACK prefix is only used with external thunk via
register so that NOTRACK prefix can be added to indirect
branch via register to support CET at run-time. */
prefix = "_nt";
}
else
prefix = "";
const char *ret = ret_p ? "return" : "indirect";
if (regno != INVALID_REGNUM)
{
const char *reg_prefix;
if (LEGACY_INT_REGNO_P (regno))
reg_prefix = TARGET_64BIT ? "r" : "e";
else
reg_prefix = "";
sprintf (name, "__x86_%s_thunk%s_%s%s",
ret, prefix, reg_prefix, reg_names[regno]);
}
else
sprintf (name, "__x86_%s_thunk%s", ret, prefix);
}
else
{
if (regno != INVALID_REGNUM)
ASM_GENERATE_INTERNAL_LABEL (name, "LITR", regno);
else
{
if (ret_p)
ASM_GENERATE_INTERNAL_LABEL (name, "LRT", 0);
else
ASM_GENERATE_INTERNAL_LABEL (name, "LIT", 0);
}
}
}
/* Output a call and return thunk for indirect branch. If REGNO != -1,
the function address is in REGNO and the call and return thunk looks like:
call L2
L1:
pause
lfence
jmp L1
L2:
mov %REG, (%sp)
ret
Otherwise, the function address is on the top of stack and the
call and return thunk looks like:
call L2
L1:
pause
lfence
jmp L1
L2:
lea WORD_SIZE(%sp), %sp
ret
*/
static void
output_indirect_thunk (unsigned int regno)
{
char indirectlabel1[32];
char indirectlabel2[32];
ASM_GENERATE_INTERNAL_LABEL (indirectlabel1, INDIRECT_LABEL,
indirectlabelno++);
ASM_GENERATE_INTERNAL_LABEL (indirectlabel2, INDIRECT_LABEL,
indirectlabelno++);
/* Call */
fputs ("\tcall\t", asm_out_file);
assemble_name_raw (asm_out_file, indirectlabel2);
fputc ('\n', asm_out_file);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel1);
/* AMD and Intel CPUs prefer each a different instruction as loop filler.
Usage of both pause + lfence is compromise solution. */
fprintf (asm_out_file, "\tpause\n\tlfence\n");
/* Jump. */
fputs ("\tjmp\t", asm_out_file);
assemble_name_raw (asm_out_file, indirectlabel1);
fputc ('\n', asm_out_file);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel2);
/* The above call insn pushed a word to stack. Adjust CFI info. */
if (flag_asynchronous_unwind_tables && dwarf2out_do_frame ())
{
if (! dwarf2out_do_cfi_asm ())
{
dw_cfi_ref xcfi = ggc_cleared_alloc<dw_cfi_node> ();
xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
xcfi->dw_cfi_oprnd1.dw_cfi_addr = ggc_strdup (indirectlabel2);
vec_safe_push (cfun->fde->dw_fde_cfi, xcfi);
}
dw_cfi_ref xcfi = ggc_cleared_alloc<dw_cfi_node> ();
xcfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
xcfi->dw_cfi_oprnd1.dw_cfi_offset = 2 * UNITS_PER_WORD;
vec_safe_push (cfun->fde->dw_fde_cfi, xcfi);
dwarf2out_emit_cfi (xcfi);
}
if (regno != INVALID_REGNUM)
{
/* MOV. */
rtx xops[2];
xops[0] = gen_rtx_MEM (word_mode, stack_pointer_rtx);
xops[1] = gen_rtx_REG (word_mode, regno);
output_asm_insn ("mov\t{%1, %0|%0, %1}", xops);
}
else
{
/* LEA. */
rtx xops[2];
xops[0] = stack_pointer_rtx;
xops[1] = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
output_asm_insn ("lea\t{%E1, %0|%0, %E1}", xops);
}
fputs ("\tret\n", asm_out_file);
if ((ix86_harden_sls & harden_sls_return))
fputs ("\tint3\n", asm_out_file);
}
/* Output a funtion with a call and return thunk for indirect branch.
If REGNO != INVALID_REGNUM, the function address is in REGNO.
Otherwise, the function address is on the top of stack. Thunk is
used for function return if RET_P is true. */
static void
output_indirect_thunk_function (enum indirect_thunk_prefix need_prefix,
unsigned int regno, bool ret_p)
{
char name[32];
tree decl;
/* Create __x86_indirect_thunk. */
indirect_thunk_name (name, regno, need_prefix, ret_p);
decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
get_identifier (name),
build_function_type_list (void_type_node, NULL_TREE));
DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
NULL_TREE, void_type_node);
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
DECL_IGNORED_P (decl) = 1;
#if TARGET_MACHO
if (TARGET_MACHO)
{
switch_to_section (darwin_sections[picbase_thunk_section]);
fputs ("\t.weak_definition\t", asm_out_file);
assemble_name (asm_out_file, name);
fputs ("\n\t.private_extern\t", asm_out_file);
assemble_name (asm_out_file, name);
putc ('\n', asm_out_file);
ASM_OUTPUT_LABEL (asm_out_file, name);
DECL_WEAK (decl) = 1;
}
else
#endif
if (USE_HIDDEN_LINKONCE)
{
cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
targetm.asm_out.unique_section (decl, 0);
switch_to_section (get_named_section (decl, NULL, 0));
targetm.asm_out.globalize_label (asm_out_file, name);
fputs ("\t.hidden\t", asm_out_file);
assemble_name (asm_out_file, name);
putc ('\n', asm_out_file);
ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
}
else
{
switch_to_section (text_section);
ASM_OUTPUT_LABEL (asm_out_file, name);
}
DECL_INITIAL (decl) = make_node (BLOCK);
current_function_decl = decl;
allocate_struct_function (decl, false);
init_function_start (decl);
/* We're about to hide the function body from callees of final_* by
emitting it directly; tell them we're a thunk, if they care. */
cfun->is_thunk = true;
first_function_block_is_cold = false;
/* Make sure unwind info is emitted for the thunk if needed. */
final_start_function (emit_barrier (), asm_out_file, 1);
output_indirect_thunk (regno);
final_end_function ();
init_insn_lengths ();
free_after_compilation (cfun);
set_cfun (NULL);
current_function_decl = NULL;
}
static int pic_labels_used;
/* Fills in the label name that should be used for a pc thunk for
the given register. */
static void
get_pc_thunk_name (char name[32], unsigned int regno)
{
gcc_assert (!TARGET_64BIT);
if (USE_HIDDEN_LINKONCE)
sprintf (name, "__x86.get_pc_thunk.%s", reg_names[regno]);
else
ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno);
}
/* This function generates code for -fpic that loads %ebx with
the return address of the caller and then returns. */
static void
ix86_code_end (void)
{
rtx xops[2];
unsigned int regno;
if (indirect_return_needed)
output_indirect_thunk_function (indirect_thunk_prefix_none,
INVALID_REGNUM, true);
if (indirect_return_via_cx)
output_indirect_thunk_function (indirect_thunk_prefix_none,
CX_REG, true);
if (indirect_thunk_needed)
output_indirect_thunk_function (indirect_thunk_prefix_none,
INVALID_REGNUM, false);
for (regno = FIRST_REX_INT_REG; regno <= LAST_REX_INT_REG; regno++)
{
if (TEST_HARD_REG_BIT (indirect_thunks_used, regno))
output_indirect_thunk_function (indirect_thunk_prefix_none,
regno, false);
}
for (regno = FIRST_INT_REG; regno <= LAST_INT_REG; regno++)
{
char name[32];
tree decl;
if (TEST_HARD_REG_BIT (indirect_thunks_used, regno))
output_indirect_thunk_function (indirect_thunk_prefix_none,
regno, false);
if (!(pic_labels_used & (1 << regno)))
continue;
get_pc_thunk_name (name, regno);
decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
get_identifier (name),
build_function_type_list (void_type_node, NULL_TREE));
DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
NULL_TREE, void_type_node);
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
DECL_IGNORED_P (decl) = 1;
#if TARGET_MACHO
if (TARGET_MACHO)
{
switch_to_section (darwin_sections[picbase_thunk_section]);
fputs ("\t.weak_definition\t", asm_out_file);
assemble_name (asm_out_file, name);
fputs ("\n\t.private_extern\t", asm_out_file);
assemble_name (asm_out_file, name);
putc ('\n', asm_out_file);
ASM_OUTPUT_LABEL (asm_out_file, name);
DECL_WEAK (decl) = 1;
}
else
#endif
if (USE_HIDDEN_LINKONCE)
{
cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
targetm.asm_out.unique_section (decl, 0);
switch_to_section (get_named_section (decl, NULL, 0));
targetm.asm_out.globalize_label (asm_out_file, name);
fputs ("\t.hidden\t", asm_out_file);
assemble_name (asm_out_file, name);
putc ('\n', asm_out_file);
ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
}
else
{
switch_to_section (text_section);
ASM_OUTPUT_LABEL (asm_out_file, name);
}
DECL_INITIAL (decl) = make_node (BLOCK);
current_function_decl = decl;
allocate_struct_function (decl, false);
init_function_start (decl);
/* We're about to hide the function body from callees of final_* by
emitting it directly; tell them we're a thunk, if they care. */
cfun->is_thunk = true;
first_function_block_is_cold = false;
/* Make sure unwind info is emitted for the thunk if needed. */
final_start_function (emit_barrier (), asm_out_file, 1);
/* Pad stack IP move with 4 instructions (two NOPs count
as one instruction). */
if (TARGET_PAD_SHORT_FUNCTION)
{
int i = 8;
while (i--)
fputs ("\tnop\n", asm_out_file);
}
xops[0] = gen_rtx_REG (Pmode, regno);
xops[1] = gen_rtx_MEM (Pmode, stack_pointer_rtx);
output_asm_insn ("mov%z0\t{%1, %0|%0, %1}", xops);
fputs ("\tret\n", asm_out_file);
final_end_function ();
init_insn_lengths ();
free_after_compilation (cfun);
set_cfun (NULL);
current_function_decl = NULL;
}
if (flag_split_stack)
file_end_indicate_split_stack ();
}
/* Emit code for the SET_GOT patterns. */
const char *
output_set_got (rtx dest, rtx label)
{
rtx xops[3];
xops[0] = dest;
if (TARGET_VXWORKS_RTP && flag_pic)
{
/* Load (*VXWORKS_GOTT_BASE) into the PIC register. */
xops[2] = gen_rtx_MEM (Pmode,
gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE));
output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops);
/* Load (*VXWORKS_GOTT_BASE)[VXWORKS_GOTT_INDEX] into the PIC register.
Use %P and a local symbol in order to print VXWORKS_GOTT_INDEX as
an unadorned address. */
xops[2] = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX);
SYMBOL_REF_FLAGS (xops[2]) |= SYMBOL_FLAG_LOCAL;
output_asm_insn ("mov{l}\t{%P2(%0), %0|%0, DWORD PTR %P2[%0]}", xops);
return "";
}
xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME);
if (flag_pic)
{
char name[32];
get_pc_thunk_name (name, REGNO (dest));
pic_labels_used |= 1 << REGNO (dest);
xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
xops[2] = gen_rtx_MEM (QImode, xops[2]);
output_asm_insn ("%!call\t%X2", xops);
#if TARGET_MACHO
/* Output the Mach-O "canonical" pic base label name ("Lxx$pb") here.
This is what will be referenced by the Mach-O PIC subsystem. */
if (machopic_should_output_picbase_label () || !label)
ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME);
/* When we are restoring the pic base at the site of a nonlocal label,
and we decided to emit the pic base above, we will still output a
local label used for calculating the correction offset (even though
the offset will be 0 in that case). */
if (label)
targetm.asm_out.internal_label (asm_out_file, "L",
CODE_LABEL_NUMBER (label));
#endif
}
else
{
if (TARGET_MACHO)
/* We don't need a pic base, we're not producing pic. */
gcc_unreachable ();
xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ());
output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops);
targetm.asm_out.internal_label (asm_out_file, "L",
CODE_LABEL_NUMBER (XEXP (xops[2], 0)));
}
if (!TARGET_MACHO)
output_asm_insn ("add%z0\t{%1, %0|%0, %1}", xops);
return "";
}
/* Generate an "push" pattern for input ARG. */
rtx
gen_push (rtx arg)
{
struct machine_function *m = cfun->machine;
if (m->fs.cfa_reg == stack_pointer_rtx)
m->fs.cfa_offset += UNITS_PER_WORD;
m->fs.sp_offset += UNITS_PER_WORD;
if (REG_P (arg) && GET_MODE (arg) != word_mode)
arg = gen_rtx_REG (word_mode, REGNO (arg));
return gen_rtx_SET (gen_rtx_MEM (word_mode,
gen_rtx_PRE_DEC (Pmode,
stack_pointer_rtx)),
arg);
}
/* Generate an "pop" pattern for input ARG. */
rtx
gen_pop (rtx arg)
{
if (REG_P (arg) && GET_MODE (arg) != word_mode)
arg = gen_rtx_REG (word_mode, REGNO (arg));
return gen_rtx_SET (arg,
gen_rtx_MEM (word_mode,
gen_rtx_POST_INC (Pmode,
stack_pointer_rtx)));
}
/* Return >= 0 if there is an unused call-clobbered register available
for the entire function. */
static unsigned int
ix86_select_alt_pic_regnum (void)
{
if (ix86_use_pseudo_pic_reg ())
return INVALID_REGNUM;
if (crtl->is_leaf
&& !crtl->profile
&& !ix86_current_function_calls_tls_descriptor)
{
int i, drap;
/* Can't use the same register for both PIC and DRAP. */
if (crtl->drap_reg)
drap = REGNO (crtl->drap_reg);
else
drap = -1;
for (i = 2; i >= 0; --i)
if (i != drap && !df_regs_ever_live_p (i))
return i;
}
return INVALID_REGNUM;
}
/* Return true if REGNO is used by the epilogue. */
bool
ix86_epilogue_uses (int regno)
{
/* If there are no caller-saved registers, we preserve all registers,
except for MMX and x87 registers which aren't supported when saving
and restoring registers. Don't explicitly save SP register since
it is always preserved. */
return (epilogue_completed
&& cfun->machine->no_caller_saved_registers
&& !fixed_regs[regno]
&& !STACK_REGNO_P (regno)
&& !MMX_REGNO_P (regno));
}
/* Return nonzero if register REGNO can be used as a scratch register
in peephole2. */
static bool
ix86_hard_regno_scratch_ok (unsigned int regno)
{
/* If there are no caller-saved registers, we can't use any register
as a scratch register after epilogue and use REGNO as scratch
register only if it has been used before to avoid saving and
restoring it. */
return (!cfun->machine->no_caller_saved_registers
|| (!epilogue_completed
&& df_regs_ever_live_p (regno)));
}
/* Return TRUE if we need to save REGNO. */
bool
ix86_save_reg (unsigned int regno, bool maybe_eh_return, bool ignore_outlined)
{
/* If there are no caller-saved registers, we preserve all registers,
except for MMX and x87 registers which aren't supported when saving
and restoring registers. Don't explicitly save SP register since
it is always preserved. */
if (cfun->machine->no_caller_saved_registers)
{
/* Don't preserve registers used for function return value. */
rtx reg = crtl->return_rtx;
if (reg)
{
unsigned int i = REGNO (reg);
unsigned int nregs = REG_NREGS (reg);
while (nregs-- > 0)
if ((i + nregs) == regno)
return false;
}
return (df_regs_ever_live_p (regno)
&& !fixed_regs[regno]
&& !STACK_REGNO_P (regno)
&& !MMX_REGNO_P (regno)
&& (regno != HARD_FRAME_POINTER_REGNUM
|| !frame_pointer_needed));
}
if (regno == REAL_PIC_OFFSET_TABLE_REGNUM
&& pic_offset_table_rtx)
{
if (ix86_use_pseudo_pic_reg ())
{
/* REAL_PIC_OFFSET_TABLE_REGNUM used by call to
_mcount in prologue. */
if (!TARGET_64BIT && flag_pic && crtl->profile)
return true;
}
else if (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM)
|| crtl->profile
|| crtl->calls_eh_return
|| crtl->uses_const_pool
|| cfun->has_nonlocal_label)
return ix86_select_alt_pic_regnum () == INVALID_REGNUM;
}
if (crtl->calls_eh_return && maybe_eh_return)
{
unsigned i;
for (i = 0; ; i++)
{
unsigned test = EH_RETURN_DATA_REGNO (i);
if (test == INVALID_REGNUM)
break;
if (test == regno)
return true;
}
}
if (ignore_outlined && cfun->machine->call_ms2sysv)
{
unsigned count = cfun->machine->call_ms2sysv_extra_regs
+ xlogue_layout::MIN_REGS;
if (xlogue_layout::is_stub_managed_reg (regno, count))
return false;
}
if (crtl->drap_reg
&& regno == REGNO (crtl->drap_reg)
&& !cfun->machine->no_drap_save_restore)
return true;
return (df_regs_ever_live_p (regno)
&& !call_used_or_fixed_reg_p (regno)
&& (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed));
}
/* Return number of saved general prupose registers. */
static int
ix86_nsaved_regs (void)
{
int nregs = 0;
int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, true, true))
nregs ++;
return nregs;
}
/* Return number of saved SSE registers. */
static int
ix86_nsaved_sseregs (void)
{
int nregs = 0;
int regno;
if (!TARGET_64BIT_MS_ABI)
return 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true, true))
nregs ++;
return nregs;
}
/* Given FROM and TO register numbers, say whether this elimination is
allowed. If stack alignment is needed, we can only replace argument
pointer with hard frame pointer, or replace frame pointer with stack
pointer. Otherwise, frame pointer elimination is automatically
handled and all other eliminations are valid. */
static bool
ix86_can_eliminate (const int from, const int to)
{
if (stack_realign_fp)
return ((from == ARG_POINTER_REGNUM
&& to == HARD_FRAME_POINTER_REGNUM)
|| (from == FRAME_POINTER_REGNUM
&& to == STACK_POINTER_REGNUM));
else
return to == STACK_POINTER_REGNUM ? !frame_pointer_needed : true;
}
/* Return the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
HOST_WIDE_INT
ix86_initial_elimination_offset (int from, int to)
{
struct ix86_frame &frame = cfun->machine->frame;
if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
return frame.hard_frame_pointer_offset;
else if (from == FRAME_POINTER_REGNUM
&& to == HARD_FRAME_POINTER_REGNUM)
return frame.hard_frame_pointer_offset - frame.frame_pointer_offset;
else
{
gcc_assert (to == STACK_POINTER_REGNUM);
if (from == ARG_POINTER_REGNUM)
return frame.stack_pointer_offset;
gcc_assert (from == FRAME_POINTER_REGNUM);
return frame.stack_pointer_offset - frame.frame_pointer_offset;
}
}
/* Emits a warning for unsupported msabi to sysv pro/epilogues. */
void
warn_once_call_ms2sysv_xlogues (const char *feature)
{
static bool warned_once = false;
if (!warned_once)
{
warning (0, "%<-mcall-ms2sysv-xlogues%> is not compatible with %s",
feature);
warned_once = true;
}
}
/* Return the probing interval for -fstack-clash-protection. */
static HOST_WIDE_INT
get_probe_interval (void)
{
if (flag_stack_clash_protection)
return (HOST_WIDE_INT_1U
<< param_stack_clash_protection_probe_interval);
else
return (HOST_WIDE_INT_1U << STACK_CHECK_PROBE_INTERVAL_EXP);
}
/* When using -fsplit-stack, the allocation routines set a field in
the TCB to the bottom of the stack plus this much space, measured
in bytes. */
#define SPLIT_STACK_AVAILABLE 256
/* Fill structure ix86_frame about frame of currently computed function. */
static void
ix86_compute_frame_layout (void)
{
struct ix86_frame *frame = &cfun->machine->frame;
struct machine_function *m = cfun->machine;
unsigned HOST_WIDE_INT stack_alignment_needed;
HOST_WIDE_INT offset;
unsigned HOST_WIDE_INT preferred_alignment;
HOST_WIDE_INT size = ix86_get_frame_size ();
HOST_WIDE_INT to_allocate;
/* m->call_ms2sysv is initially enabled in ix86_expand_call for all 64-bit
* ms_abi functions that call a sysv function. We now need to prune away
* cases where it should be disabled. */
if (TARGET_64BIT && m->call_ms2sysv)
{
gcc_assert (TARGET_64BIT_MS_ABI);
gcc_assert (TARGET_CALL_MS2SYSV_XLOGUES);
gcc_assert (!TARGET_SEH);
gcc_assert (TARGET_SSE);
gcc_assert (!ix86_using_red_zone ());
if (crtl->calls_eh_return)
{
gcc_assert (!reload_completed);
m->call_ms2sysv = false;
warn_once_call_ms2sysv_xlogues ("__builtin_eh_return");
}
else if (ix86_static_chain_on_stack)
{
gcc_assert (!reload_completed);
m->call_ms2sysv = false;
warn_once_call_ms2sysv_xlogues ("static call chains");
}
/* Finally, compute which registers the stub will manage. */
else
{
unsigned count = xlogue_layout::count_stub_managed_regs ();
m->call_ms2sysv_extra_regs = count - xlogue_layout::MIN_REGS;
m->call_ms2sysv_pad_in = 0;
}
}
frame->nregs = ix86_nsaved_regs ();
frame->nsseregs = ix86_nsaved_sseregs ();
/* 64-bit MS ABI seem to require stack alignment to be always 16,
except for function prologues, leaf functions and when the defult
incoming stack boundary is overriden at command line or via
force_align_arg_pointer attribute.
Darwin's ABI specifies 128b alignment for both 32 and 64 bit variants
at call sites, including profile function calls.
*/
if (((TARGET_64BIT_MS_ABI || TARGET_MACHO)
&& crtl->preferred_stack_boundary < 128)
&& (!crtl->is_leaf || cfun->calls_alloca != 0
|| ix86_current_function_calls_tls_descriptor
|| (TARGET_MACHO && crtl->profile)
|| ix86_incoming_stack_boundary < 128))
{
crtl->preferred_stack_boundary = 128;
crtl->stack_alignment_needed = 128;
}
stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT;
preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT;
gcc_assert (!size || stack_alignment_needed);
gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT);
gcc_assert (preferred_alignment <= stack_alignment_needed);
/* The only ABI saving SSE regs should be 64-bit ms_abi. */
gcc_assert (TARGET_64BIT || !frame->nsseregs);
if (TARGET_64BIT && m->call_ms2sysv)
{
gcc_assert (stack_alignment_needed >= 16);
gcc_assert (!frame->nsseregs);
}
/* For SEH we have to limit the amount of code movement into the prologue.
At present we do this via a BLOCKAGE, at which point there's very little
scheduling that can be done, which means that there's very little point
in doing anything except PUSHs. */
if (TARGET_SEH)
m->use_fast_prologue_epilogue = false;
else if (!optimize_bb_for_size_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
{
int count = frame->nregs;
struct cgraph_node *node = cgraph_node::get (current_function_decl);
/* The fast prologue uses move instead of push to save registers. This
is significantly longer, but also executes faster as modern hardware
can execute the moves in parallel, but can't do that for push/pop.
Be careful about choosing what prologue to emit: When function takes
many instructions to execute we may use slow version as well as in
case function is known to be outside hot spot (this is known with
feedback only). Weight the size of function by number of registers
to save as it is cheap to use one or two push instructions but very
slow to use many of them.
Calling this hook multiple times with the same frame requirements
must produce the same layout, since the RA might otherwise be
unable to reach a fixed point or might fail its final sanity checks.
This means that once we've assumed that a function does or doesn't
have a particular size, we have to stick to that assumption
regardless of how the function has changed since. */
if (count)
count = (count - 1) * FAST_PROLOGUE_INSN_COUNT;
if (node->frequency < NODE_FREQUENCY_NORMAL
|| (flag_branch_probabilities
&& node->frequency < NODE_FREQUENCY_HOT))
m->use_fast_prologue_epilogue = false;
else
{
if (count != frame->expensive_count)
{
frame->expensive_count = count;
frame->expensive_p = expensive_function_p (count);
}
m->use_fast_prologue_epilogue = !frame->expensive_p;
}
}
frame->save_regs_using_mov
= TARGET_PROLOGUE_USING_MOVE && m->use_fast_prologue_epilogue;
/* Skip return address and error code in exception handler. */
offset = INCOMING_FRAME_SP_OFFSET;
/* Skip pushed static chain. */
if (ix86_static_chain_on_stack)
offset += UNITS_PER_WORD;
/* Skip saved base pointer. */
if (frame_pointer_needed)
offset += UNITS_PER_WORD;
frame->hfp_save_offset = offset;
/* The traditional frame pointer location is at the top of the frame. */
frame->hard_frame_pointer_offset = offset;
/* Register save area */
offset += frame->nregs * UNITS_PER_WORD;
frame->reg_save_offset = offset;
/* Calculate the size of the va-arg area (not including padding, if any). */
frame->va_arg_size = ix86_varargs_gpr_size + ix86_varargs_fpr_size;
/* Also adjust stack_realign_offset for the largest alignment of
stack slot actually used. */
if (stack_realign_fp
|| (cfun->machine->max_used_stack_alignment != 0
&& (offset % cfun->machine->max_used_stack_alignment) != 0))
{
/* We may need a 16-byte aligned stack for the remainder of the
register save area, but the stack frame for the local function
may require a greater alignment if using AVX/2/512. In order
to avoid wasting space, we first calculate the space needed for
the rest of the register saves, add that to the stack pointer,
and then realign the stack to the boundary of the start of the
frame for the local function. */
HOST_WIDE_INT space_needed = 0;
HOST_WIDE_INT sse_reg_space_needed = 0;
if (TARGET_64BIT)
{
if (m->call_ms2sysv)
{
m->call_ms2sysv_pad_in = 0;
space_needed = xlogue_layout::get_instance ().get_stack_space_used ();
}
else if (frame->nsseregs)
/* The only ABI that has saved SSE registers (Win64) also has a
16-byte aligned default stack. However, many programs violate
the ABI, and Wine64 forces stack realignment to compensate. */
space_needed = frame->nsseregs * 16;
sse_reg_space_needed = space_needed = ROUND_UP (space_needed, 16);
/* 64-bit frame->va_arg_size should always be a multiple of 16, but
rounding to be pedantic. */
space_needed = ROUND_UP (space_needed + frame->va_arg_size, 16);
}
else
space_needed = frame->va_arg_size;
/* Record the allocation size required prior to the realignment AND. */
frame->stack_realign_allocate = space_needed;
/* The re-aligned stack starts at frame->stack_realign_offset. Values
before this point are not directly comparable with values below
this point. Use sp_valid_at to determine if the stack pointer is
valid for a given offset, fp_valid_at for the frame pointer, or
choose_baseaddr to have a base register chosen for you.
Note that the result of (frame->stack_realign_offset
& (stack_alignment_needed - 1)) may not equal zero. */
offset = ROUND_UP (offset + space_needed, stack_alignment_needed);
frame->stack_realign_offset = offset - space_needed;
frame->sse_reg_save_offset = frame->stack_realign_offset
+ sse_reg_space_needed;
}
else
{
frame->stack_realign_offset = offset;
if (TARGET_64BIT && m->call_ms2sysv)
{
m->call_ms2sysv_pad_in = !!(offset & UNITS_PER_WORD);
offset += xlogue_layout::get_instance ().get_stack_space_used ();
}
/* Align and set SSE register save area. */
else if (frame->nsseregs)
{
/* If the incoming stack boundary is at least 16 bytes, or DRAP is
required and the DRAP re-alignment boundary is at least 16 bytes,
then we want the SSE register save area properly aligned. */
if (ix86_incoming_stack_boundary >= 128
|| (stack_realign_drap && stack_alignment_needed >= 16))
offset = ROUND_UP (offset, 16);
offset += frame->nsseregs * 16;
}
frame->sse_reg_save_offset = offset;
offset += frame->va_arg_size;
}
/* Align start of frame for local function. When a function call
is removed, it may become a leaf function. But if argument may
be passed on stack, we need to align the stack when there is no
tail call. */
if (m->call_ms2sysv
|| frame->va_arg_size != 0
|| size != 0
|| !crtl->is_leaf
|| (!crtl->tail_call_emit
&& cfun->machine->outgoing_args_on_stack)
|| cfun->calls_alloca
|| ix86_current_function_calls_tls_descriptor)
offset = ROUND_UP (offset, stack_alignment_needed);
/* Frame pointer points here. */
frame->frame_pointer_offset = offset;
offset += size;
/* Add outgoing arguments area. Can be skipped if we eliminated
all the function calls as dead code.
Skipping is however impossible when function calls alloca. Alloca
expander assumes that last crtl->outgoing_args_size
of stack frame are unused. */
if (ACCUMULATE_OUTGOING_ARGS
&& (!crtl->is_leaf || cfun->calls_alloca
|| ix86_current_function_calls_tls_descriptor))
{
offset += crtl->outgoing_args_size;
frame->outgoing_arguments_size = crtl->outgoing_args_size;
}
else
frame->outgoing_arguments_size = 0;
/* Align stack boundary. Only needed if we're calling another function
or using alloca. */
if (!crtl->is_leaf || cfun->calls_alloca
|| ix86_current_function_calls_tls_descriptor)
offset = ROUND_UP (offset, preferred_alignment);
/* We've reached end of stack frame. */
frame->stack_pointer_offset = offset;
/* Size prologue needs to allocate. */
to_allocate = offset - frame->sse_reg_save_offset;
if ((!to_allocate && frame->nregs <= 1)
|| (TARGET_64BIT && to_allocate >= HOST_WIDE_INT_C (0x80000000))
/* If static stack checking is enabled and done with probes,
the registers need to be saved before allocating the frame. */
|| flag_stack_check == STATIC_BUILTIN_STACK_CHECK
/* If stack clash probing needs a loop, then it needs a
scratch register. But the returned register is only guaranteed
to be safe to use after register saves are complete. So if
stack clash protections are enabled and the allocated frame is
larger than the probe interval, then use pushes to save
callee saved registers. */
|| (flag_stack_clash_protection && to_allocate > get_probe_interval ()))
frame->save_regs_using_mov = false;
if (ix86_using_red_zone ()
&& crtl->sp_is_unchanging
&& crtl->is_leaf
&& !ix86_pc_thunk_call_expanded
&& !ix86_current_function_calls_tls_descriptor)
{
frame->red_zone_size = to_allocate;
if (frame->save_regs_using_mov)
frame->red_zone_size += frame->nregs * UNITS_PER_WORD;
if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE)
frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE;
}
else
frame->red_zone_size = 0;
frame->stack_pointer_offset -= frame->red_zone_size;
/* The SEH frame pointer location is near the bottom of the frame.
This is enforced by the fact that the difference between the
stack pointer and the frame pointer is limited to 240 bytes in
the unwind data structure. */
if (TARGET_SEH)
{
/* Force the frame pointer to point at or below the lowest register save
area, see the SEH code in config/i386/winnt.cc for the rationale. */
frame->hard_frame_pointer_offset = frame->sse_reg_save_offset;
/* If we can leave the frame pointer where it is, do so; however return
the establisher frame for __builtin_frame_address (0) or else if the
frame overflows the SEH maximum frame size.
Note that the value returned by __builtin_frame_address (0) is quite
constrained, because setjmp is piggybacked on the SEH machinery with
recent versions of MinGW:
# elif defined(__SEH__)
# if defined(__aarch64__) || defined(_ARM64_)
# define setjmp(BUF) _setjmp((BUF), __builtin_sponentry())
# elif (__MINGW_GCC_VERSION < 40702)
# define setjmp(BUF) _setjmp((BUF), mingw_getsp())
# else
# define setjmp(BUF) _setjmp((BUF), __builtin_frame_address (0))
# endif
and the second argument passed to _setjmp, if not null, is forwarded
to the TargetFrame parameter of RtlUnwindEx by longjmp (after it has
built an ExceptionRecord on the fly describing the setjmp buffer). */
const HOST_WIDE_INT diff
= frame->stack_pointer_offset - frame->hard_frame_pointer_offset;
if (diff <= 255 && !crtl->accesses_prior_frames)
{
/* The resulting diff will be a multiple of 16 lower than 255,
i.e. at most 240 as required by the unwind data structure. */
frame->hard_frame_pointer_offset += (diff & 15);
}
else if (diff <= SEH_MAX_FRAME_SIZE && !crtl->accesses_prior_frames)
{
/* Ideally we'd determine what portion of the local stack frame
(within the constraint of the lowest 240) is most heavily used.
But without that complication, simply bias the frame pointer
by 128 bytes so as to maximize the amount of the local stack
frame that is addressable with 8-bit offsets. */
frame->hard_frame_pointer_offset = frame->stack_pointer_offset - 128;
}
else
frame->hard_frame_pointer_offset = frame->hfp_save_offset;
}
}
/* This is semi-inlined memory_address_length, but simplified
since we know that we're always dealing with reg+offset, and
to avoid having to create and discard all that rtl. */
static inline int
choose_baseaddr_len (unsigned int regno, HOST_WIDE_INT offset)
{
int len = 4;
if (offset == 0)
{
/* EBP and R13 cannot be encoded without an offset. */
len = (regno == BP_REG || regno == R13_REG);
}
else if (IN_RANGE (offset, -128, 127))
len = 1;
/* ESP and R12 must be encoded with a SIB byte. */
if (regno == SP_REG || regno == R12_REG)
len++;
return len;
}
/* Determine if the stack pointer is valid for accessing the CFA_OFFSET in
the frame save area. The register is saved at CFA - CFA_OFFSET. */
static bool
sp_valid_at (HOST_WIDE_INT cfa_offset)
{
const struct machine_frame_state &fs = cfun->machine->fs;
if (fs.sp_realigned && cfa_offset <= fs.sp_realigned_offset)
{
/* Validate that the cfa_offset isn't in a "no-man's land". */
gcc_assert (cfa_offset <= fs.sp_realigned_fp_last);
return false;
}
return fs.sp_valid;
}
/* Determine if the frame pointer is valid for accessing the CFA_OFFSET in
the frame save area. The register is saved at CFA - CFA_OFFSET. */
static inline bool
fp_valid_at (HOST_WIDE_INT cfa_offset)
{
const struct machine_frame_state &fs = cfun->machine->fs;
if (fs.sp_realigned && cfa_offset > fs.sp_realigned_fp_last)
{
/* Validate that the cfa_offset isn't in a "no-man's land". */
gcc_assert (cfa_offset >= fs.sp_realigned_offset);
return false;
}
return fs.fp_valid;
}
/* Choose a base register based upon alignment requested, speed and/or
size. */
static void
choose_basereg (HOST_WIDE_INT cfa_offset, rtx &base_reg,
HOST_WIDE_INT &base_offset,
unsigned int align_reqested, unsigned int *align)
{
const struct machine_function *m = cfun->machine;
unsigned int hfp_align;
unsigned int drap_align;
unsigned int sp_align;
bool hfp_ok = fp_valid_at (cfa_offset);
bool drap_ok = m->fs.drap_valid;
bool sp_ok = sp_valid_at (cfa_offset);
hfp_align = drap_align = sp_align = INCOMING_STACK_BOUNDARY;
/* Filter out any registers that don't meet the requested alignment
criteria. */
if (align_reqested)
{
if (m->fs.realigned)
hfp_align = drap_align = sp_align = crtl->stack_alignment_needed;
/* SEH unwind code does do not currently support REG_CFA_EXPRESSION
notes (which we would need to use a realigned stack pointer),
so disable on SEH targets. */
else if (m->fs.sp_realigned)
sp_align = crtl->stack_alignment_needed;
hfp_ok = hfp_ok && hfp_align >= align_reqested;
drap_ok = drap_ok && drap_align >= align_reqested;
sp_ok = sp_ok && sp_align >= align_reqested;
}
if (m->use_fast_prologue_epilogue)
{
/* Choose the base register most likely to allow the most scheduling
opportunities. Generally FP is valid throughout the function,
while DRAP must be reloaded within the epilogue. But choose either
over the SP due to increased encoding size. */
if (hfp_ok)
{
base_reg = hard_frame_pointer_rtx;
base_offset = m->fs.fp_offset - cfa_offset;
}
else if (drap_ok)
{
base_reg = crtl->drap_reg;
base_offset = 0 - cfa_offset;
}
else if (sp_ok)
{
base_reg = stack_pointer_rtx;
base_offset = m->fs.sp_offset - cfa_offset;
}
}
else
{
HOST_WIDE_INT toffset;
int len = 16, tlen;
/* Choose the base register with the smallest address encoding.
With a tie, choose FP > DRAP > SP. */
if (sp_ok)
{
base_reg = stack_pointer_rtx;
base_offset = m->fs.sp_offset - cfa_offset;
len = choose_baseaddr_len (STACK_POINTER_REGNUM, base_offset);
}
if (drap_ok)
{
toffset = 0 - cfa_offset;
tlen = choose_baseaddr_len (REGNO (crtl->drap_reg), toffset);
if (tlen <= len)
{
base_reg = crtl->drap_reg;
base_offset = toffset;
len = tlen;
}
}
if (hfp_ok)
{
toffset = m->fs.fp_offset - cfa_offset;
tlen = choose_baseaddr_len (HARD_FRAME_POINTER_REGNUM, toffset);
if (tlen <= len)
{
base_reg = hard_frame_pointer_rtx;
base_offset = toffset;
}
}
}
/* Set the align return value. */
if (align)
{
if (base_reg == stack_pointer_rtx)
*align = sp_align;
else if (base_reg == crtl->drap_reg)
*align = drap_align;
else if (base_reg == hard_frame_pointer_rtx)
*align = hfp_align;
}
}
/* Return an RTX that points to CFA_OFFSET within the stack frame and
the alignment of address. If ALIGN is non-null, it should point to
an alignment value (in bits) that is preferred or zero and will
recieve the alignment of the base register that was selected,
irrespective of rather or not CFA_OFFSET is a multiple of that
alignment value. If it is possible for the base register offset to be
non-immediate then SCRATCH_REGNO should specify a scratch register to
use.
The valid base registers are taken from CFUN->MACHINE->FS. */
static rtx
choose_baseaddr (HOST_WIDE_INT cfa_offset, unsigned int *align,
unsigned int scratch_regno = INVALID_REGNUM)
{
rtx base_reg = NULL;
HOST_WIDE_INT base_offset = 0;
/* If a specific alignment is requested, try to get a base register
with that alignment first. */
if (align && *align)
choose_basereg (cfa_offset, base_reg, base_offset, *align, align);
if (!base_reg)
choose_basereg (cfa_offset, base_reg, base_offset, 0, align);
gcc_assert (base_reg != NULL);
rtx base_offset_rtx = GEN_INT (base_offset);
if (!x86_64_immediate_operand (base_offset_rtx, Pmode))
{
gcc_assert (scratch_regno != INVALID_REGNUM);
rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
emit_move_insn (scratch_reg, base_offset_rtx);
return gen_rtx_PLUS (Pmode, base_reg, scratch_reg);
}
return plus_constant (Pmode, base_reg, base_offset);
}
/* Emit code to save registers in the prologue. */
static void
ix86_emit_save_regs (void)
{
unsigned int regno;
rtx_insn *insn;
for (regno = FIRST_PSEUDO_REGISTER - 1; regno-- > 0; )
if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, true, true))
{
insn = emit_insn (gen_push (gen_rtx_REG (word_mode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Emit a single register save at CFA - CFA_OFFSET. */
static void
ix86_emit_save_reg_using_mov (machine_mode mode, unsigned int regno,
HOST_WIDE_INT cfa_offset)
{
struct machine_function *m = cfun->machine;
rtx reg = gen_rtx_REG (mode, regno);
rtx mem, addr, base, insn;
unsigned int align = GET_MODE_ALIGNMENT (mode);
addr = choose_baseaddr (cfa_offset, &align);
mem = gen_frame_mem (mode, addr);
/* The location aligment depends upon the base register. */
align = MIN (GET_MODE_ALIGNMENT (mode), align);
gcc_assert (! (cfa_offset & (align / BITS_PER_UNIT - 1)));
set_mem_align (mem, align);
insn = emit_insn (gen_rtx_SET (mem, reg));
RTX_FRAME_RELATED_P (insn) = 1;
base = addr;
if (GET_CODE (base) == PLUS)
base = XEXP (base, 0);
gcc_checking_assert (REG_P (base));
/* When saving registers into a re-aligned local stack frame, avoid
any tricky guessing by dwarf2out. */
if (m->fs.realigned)
{
gcc_checking_assert (stack_realign_drap);
if (regno == REGNO (crtl->drap_reg))
{
/* A bit of a hack. We force the DRAP register to be saved in
the re-aligned stack frame, which provides us with a copy
of the CFA that will last past the prologue. Install it. */
gcc_checking_assert (cfun->machine->fs.fp_valid);
addr = plus_constant (Pmode, hard_frame_pointer_rtx,
cfun->machine->fs.fp_offset - cfa_offset);
mem = gen_rtx_MEM (mode, addr);
add_reg_note (insn, REG_CFA_DEF_CFA, mem);
}
else
{
/* The frame pointer is a stable reference within the
aligned frame. Use it. */
gcc_checking_assert (cfun->machine->fs.fp_valid);
addr = plus_constant (Pmode, hard_frame_pointer_rtx,
cfun->machine->fs.fp_offset - cfa_offset);
mem = gen_rtx_MEM (mode, addr);
add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (mem, reg));
}
}
else if (base == stack_pointer_rtx && m->fs.sp_realigned
&& cfa_offset >= m->fs.sp_realigned_offset)
{
gcc_checking_assert (stack_realign_fp);
add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (mem, reg));
}
/* The memory may not be relative to the current CFA register,
which means that we may need to generate a new pattern for
use by the unwind info. */
else if (base != m->fs.cfa_reg)
{
addr = plus_constant (Pmode, m->fs.cfa_reg,
m->fs.cfa_offset - cfa_offset);
mem = gen_rtx_MEM (mode, addr);
add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (mem, reg));
}
}
/* Emit code to save registers using MOV insns.
First register is stored at CFA - CFA_OFFSET. */
static void
ix86_emit_save_regs_using_mov (HOST_WIDE_INT cfa_offset)
{
unsigned int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, true, true))
{
ix86_emit_save_reg_using_mov (word_mode, regno, cfa_offset);
cfa_offset -= UNITS_PER_WORD;
}
}
/* Emit code to save SSE registers using MOV insns.
First register is stored at CFA - CFA_OFFSET. */
static void
ix86_emit_save_sse_regs_using_mov (HOST_WIDE_INT cfa_offset)
{
unsigned int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true, true))
{
ix86_emit_save_reg_using_mov (V4SFmode, regno, cfa_offset);
cfa_offset -= GET_MODE_SIZE (V4SFmode);
}
}
static GTY(()) rtx queued_cfa_restores;
/* Add a REG_CFA_RESTORE REG note to INSN or queue them until next stack
manipulation insn. The value is on the stack at CFA - CFA_OFFSET.
Don't add the note if the previously saved value will be left untouched
within stack red-zone till return, as unwinders can find the same value
in the register and on the stack. */
static void
ix86_add_cfa_restore_note (rtx_insn *insn, rtx reg, HOST_WIDE_INT cfa_offset)
{
if (!crtl->shrink_wrapped
&& cfa_offset <= cfun->machine->fs.red_zone_offset)
return;
if (insn)
{
add_reg_note (insn, REG_CFA_RESTORE, reg);
RTX_FRAME_RELATED_P (insn) = 1;
}
else
queued_cfa_restores
= alloc_reg_note (REG_CFA_RESTORE, reg, queued_cfa_restores);
}
/* Add queued REG_CFA_RESTORE notes if any to INSN. */
static void
ix86_add_queued_cfa_restore_notes (rtx insn)
{
rtx last;
if (!queued_cfa_restores)
return;
for (last = queued_cfa_restores; XEXP (last, 1); last = XEXP (last, 1))
;
XEXP (last, 1) = REG_NOTES (insn);
REG_NOTES (insn) = queued_cfa_restores;
queued_cfa_restores = NULL_RTX;
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Expand prologue or epilogue stack adjustment.
The pattern exist to put a dependency on all ebp-based memory accesses.
STYLE should be negative if instructions should be marked as frame related,
zero if %r11 register is live and cannot be freely used and positive
otherwise. */
static rtx
pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset,
int style, bool set_cfa)
{
struct machine_function *m = cfun->machine;
rtx addend = offset;
rtx insn;
bool add_frame_related_expr = false;
if (!x86_64_immediate_operand (offset, Pmode))
{
/* r11 is used by indirect sibcall return as well, set before the
epilogue and used after the epilogue. */
if (style)
addend = gen_rtx_REG (Pmode, R11_REG);
else
{
gcc_assert (src != hard_frame_pointer_rtx
&& dest != hard_frame_pointer_rtx);
addend = hard_frame_pointer_rtx;
}
emit_insn (gen_rtx_SET (addend, offset));
if (style < 0)
add_frame_related_expr = true;
}
insn = emit_insn (gen_pro_epilogue_adjust_stack_add
(Pmode, dest, src, addend));
if (style >= 0)
ix86_add_queued_cfa_restore_notes (insn);
if (set_cfa)
{
rtx r;
gcc_assert (m->fs.cfa_reg == src);
m->fs.cfa_offset += INTVAL (offset);
m->fs.cfa_reg = dest;
r = gen_rtx_PLUS (Pmode, src, offset);
r = gen_rtx_SET (dest, r);
add_reg_note (insn, REG_CFA_ADJUST_CFA, r);
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (style < 0)
{
RTX_FRAME_RELATED_P (insn) = 1;
if (add_frame_related_expr)
{
rtx r = gen_rtx_PLUS (Pmode, src, offset);
r = gen_rtx_SET (dest, r);
add_reg_note (insn, REG_FRAME_RELATED_EXPR, r);
}
}
if (dest == stack_pointer_rtx)
{
HOST_WIDE_INT ooffset = m->fs.sp_offset;
bool valid = m->fs.sp_valid;
bool realigned = m->fs.sp_realigned;
if (src == hard_frame_pointer_rtx)
{
valid = m->fs.fp_valid;
realigned = false;
ooffset = m->fs.fp_offset;
}
else if (src == crtl->drap_reg)
{
valid = m->fs.drap_valid;
realigned = false;
ooffset = 0;
}
else
{
/* Else there are two possibilities: SP itself, which we set
up as the default above. Or EH_RETURN_STACKADJ_RTX, which is
taken care of this by hand along the eh_return path. */
gcc_checking_assert (src == stack_pointer_rtx
|| offset == const0_rtx);
}
m->fs.sp_offset = ooffset - INTVAL (offset);
m->fs.sp_valid = valid;
m->fs.sp_realigned = realigned;
}
return insn;
}
/* Find an available register to be used as dynamic realign argument
pointer regsiter. Such a register will be written in prologue and
used in begin of body, so it must not be
1. parameter passing register.
2. GOT pointer.
We reuse static-chain register if it is available. Otherwise, we
use DI for i386 and R13 for x86-64. We chose R13 since it has
shorter encoding.
Return: the regno of chosen register. */
static unsigned int
find_drap_reg (void)
{
tree decl = cfun->decl;
/* Always use callee-saved register if there are no caller-saved
registers. */
if (TARGET_64BIT)
{
/* Use R13 for nested function or function need static chain.
Since function with tail call may use any caller-saved
registers in epilogue, DRAP must not use caller-saved
register in such case. */
if (DECL_STATIC_CHAIN (decl)
|| cfun->machine->no_caller_saved_registers
|| crtl->tail_call_emit)
return R13_REG;
return R10_REG;
}
else
{
/* Use DI for nested function or function need static chain.
Since function with tail call may use any caller-saved
registers in epilogue, DRAP must not use caller-saved
register in such case. */
if (DECL_STATIC_CHAIN (decl)
|| cfun->machine->no_caller_saved_registers
|| crtl->tail_call_emit
|| crtl->calls_eh_return)
return DI_REG;
/* Reuse static chain register if it isn't used for parameter
passing. */
if (ix86_function_regparm (TREE_TYPE (decl), decl) <= 2)
{
unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (decl));
if ((ccvt & (IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) == 0)
return CX_REG;
}
return DI_REG;
}
}
/* Return minimum incoming stack alignment. */
static unsigned int
ix86_minimum_incoming_stack_boundary (bool sibcall)
{
unsigned int incoming_stack_boundary;
/* Stack of interrupt handler is aligned to 128 bits in 64bit mode. */
if (cfun->machine->func_type != TYPE_NORMAL)
incoming_stack_boundary = TARGET_64BIT ? 128 : MIN_STACK_BOUNDARY;
/* Prefer the one specified at command line. */
else if (ix86_user_incoming_stack_boundary)
incoming_stack_boundary = ix86_user_incoming_stack_boundary;
/* In 32bit, use MIN_STACK_BOUNDARY for incoming stack boundary
if -mstackrealign is used, it isn't used for sibcall check and
estimated stack alignment is 128bit. */
else if (!sibcall
&& ix86_force_align_arg_pointer
&& crtl->stack_alignment_estimated == 128)
incoming_stack_boundary = MIN_STACK_BOUNDARY;
else
incoming_stack_boundary = ix86_default_incoming_stack_boundary;
/* Incoming stack alignment can be changed on individual functions
via force_align_arg_pointer attribute. We use the smallest
incoming stack boundary. */
if (incoming_stack_boundary > MIN_STACK_BOUNDARY
&& lookup_attribute ("force_align_arg_pointer",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
incoming_stack_boundary = MIN_STACK_BOUNDARY;
/* The incoming stack frame has to be aligned at least at
parm_stack_boundary. */
if (incoming_stack_boundary < crtl->parm_stack_boundary)
incoming_stack_boundary = crtl->parm_stack_boundary;
/* Stack at entrance of main is aligned by runtime. We use the
smallest incoming stack boundary. */
if (incoming_stack_boundary > MAIN_STACK_BOUNDARY
&& DECL_NAME (current_function_decl)
&& MAIN_NAME_P (DECL_NAME (current_function_decl))
&& DECL_FILE_SCOPE_P (current_function_decl))
incoming_stack_boundary = MAIN_STACK_BOUNDARY;
return incoming_stack_boundary;
}
/* Update incoming stack boundary and estimated stack alignment. */
static void
ix86_update_stack_boundary (void)
{
ix86_incoming_stack_boundary
= ix86_minimum_incoming_stack_boundary (false);
/* x86_64 vararg needs 16byte stack alignment for register save area. */
if (TARGET_64BIT
&& cfun->stdarg
&& crtl->stack_alignment_estimated < 128)
crtl->stack_alignment_estimated = 128;
/* __tls_get_addr needs to be called with 16-byte aligned stack. */
if (ix86_tls_descriptor_calls_expanded_in_cfun
&& crtl->preferred_stack_boundary < 128)
crtl->preferred_stack_boundary = 128;
}
/* Handle the TARGET_GET_DRAP_RTX hook. Return NULL if no DRAP is
needed or an rtx for DRAP otherwise. */
static rtx
ix86_get_drap_rtx (void)
{
/* We must use DRAP if there are outgoing arguments on stack or
the stack pointer register is clobbered by asm statment and
ACCUMULATE_OUTGOING_ARGS is false. */
if (ix86_force_drap
|| ((cfun->machine->outgoing_args_on_stack
|| crtl->sp_is_clobbered_by_asm)
&& !ACCUMULATE_OUTGOING_ARGS))
crtl->need_drap = true;
if (stack_realign_drap)
{
/* Assign DRAP to vDRAP and returns vDRAP */
unsigned int regno = find_drap_reg ();
rtx drap_vreg;
rtx arg_ptr;
rtx_insn *seq, *insn;
arg_ptr = gen_rtx_REG (Pmode, regno);
crtl->drap_reg = arg_ptr;
start_sequence ();
drap_vreg = copy_to_reg (arg_ptr);
seq = get_insns ();
end_sequence ();
insn = emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
if (!optimize)
{
add_reg_note (insn, REG_CFA_SET_VDRAP, drap_vreg);
RTX_FRAME_RELATED_P (insn) = 1;
}
return drap_vreg;
}
else
return NULL;
}
/* Handle the TARGET_INTERNAL_ARG_POINTER hook. */
static rtx
ix86_internal_arg_pointer (void)
{
return virtual_incoming_args_rtx;
}
struct scratch_reg {
rtx reg;
bool saved;
};
/* Return a short-lived scratch register for use on function entry.
In 32-bit mode, it is valid only after the registers are saved
in the prologue. This register must be released by means of
release_scratch_register_on_entry once it is dead. */
static void
get_scratch_register_on_entry (struct scratch_reg *sr)
{
int regno;
sr->saved = false;
if (TARGET_64BIT)
{
/* We always use R11 in 64-bit mode. */
regno = R11_REG;
}
else
{
tree decl = current_function_decl, fntype = TREE_TYPE (decl);
bool fastcall_p
= lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE;
bool thiscall_p
= lookup_attribute ("thiscall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE;
bool static_chain_p = DECL_STATIC_CHAIN (decl);
int regparm = ix86_function_regparm (fntype, decl);
int drap_regno
= crtl->drap_reg ? REGNO (crtl->drap_reg) : INVALID_REGNUM;
/* 'fastcall' sets regparm to 2, uses ecx/edx for arguments and eax
for the static chain register. */
if ((regparm < 1 || (fastcall_p && !static_chain_p))
&& drap_regno != AX_REG)
regno = AX_REG;
/* 'thiscall' sets regparm to 1, uses ecx for arguments and edx
for the static chain register. */
else if (thiscall_p && !static_chain_p && drap_regno != AX_REG)
regno = AX_REG;
else if (regparm < 2 && !thiscall_p && drap_regno != DX_REG)
regno = DX_REG;
/* ecx is the static chain register. */
else if (regparm < 3 && !fastcall_p && !thiscall_p
&& !static_chain_p
&& drap_regno != CX_REG)
regno = CX_REG;
else if (ix86_save_reg (BX_REG, true, false))
regno = BX_REG;
/* esi is the static chain register. */
else if (!(regparm == 3 && static_chain_p)
&& ix86_save_reg (SI_REG, true, false))
regno = SI_REG;
else if (ix86_save_reg (DI_REG, true, false))
regno = DI_REG;
else
{
regno = (drap_regno == AX_REG ? DX_REG : AX_REG);
sr->saved = true;
}
}
sr->reg = gen_rtx_REG (Pmode, regno);
if (sr->saved)
{
rtx_insn *insn = emit_insn (gen_push (sr->reg));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Release a scratch register obtained from the preceding function.
If RELEASE_VIA_POP is true, we just pop the register off the stack
to release it. This is what non-Linux systems use with -fstack-check.
Otherwise we use OFFSET to locate the saved register and the
allocated stack space becomes part of the local frame and is
deallocated by the epilogue. */
static void
release_scratch_register_on_entry (struct scratch_reg *sr, HOST_WIDE_INT offset,
bool release_via_pop)
{
if (sr->saved)
{
if (release_via_pop)
{
struct machine_function *m = cfun->machine;
rtx x, insn = emit_insn (gen_pop (sr->reg));
/* The RX FRAME_RELATED_P mechanism doesn't know about pop. */
RTX_FRAME_RELATED_P (insn) = 1;
x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
x = gen_rtx_SET (stack_pointer_rtx, x);
add_reg_note (insn, REG_FRAME_RELATED_EXPR, x);
m->fs.sp_offset -= UNITS_PER_WORD;
}
else
{
rtx x = plus_constant (Pmode, stack_pointer_rtx, offset);
x = gen_rtx_SET (sr->reg, gen_rtx_MEM (word_mode, x));
emit_insn (x);
}
}
}
/* Emit code to adjust the stack pointer by SIZE bytes while probing it.
If INT_REGISTERS_SAVED is true, then integer registers have already been
pushed on the stack.
If PROTECTION AREA is true, then probe PROBE_INTERVAL plus a small dope
beyond SIZE bytes.
This assumes no knowledge of the current probing state, i.e. it is never
allowed to allocate more than PROBE_INTERVAL bytes of stack space without
a suitable probe. */
static void
ix86_adjust_stack_and_probe (HOST_WIDE_INT size,
const bool int_registers_saved,
const bool protection_area)
{
struct machine_function *m = cfun->machine;
/* If this function does not statically allocate stack space, then
no probes are needed. */
if (!size)
{
/* However, the allocation of space via pushes for register
saves could be viewed as allocating space, but without the
need to probe. */
if (m->frame.nregs || m->frame.nsseregs || frame_pointer_needed)
dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
else
dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
return;
}
/* If we are a noreturn function, then we have to consider the
possibility that we're called via a jump rather than a call.
Thus we don't have the implicit probe generated by saving the
return address into the stack at the call. Thus, the stack
pointer could be anywhere in the guard page. The safe thing
to do is emit a probe now.
The probe can be avoided if we have already emitted any callee
register saves into the stack or have a frame pointer (which will
have been saved as well). Those saves will function as implicit
probes.
?!? This should be revamped to work like aarch64 and s390 where
we track the offset from the most recent probe. Normally that
offset would be zero. For a noreturn function we would reset
it to PROBE_INTERVAL - (STACK_BOUNDARY / BITS_PER_UNIT). Then
we just probe when we cross PROBE_INTERVAL. */
if (TREE_THIS_VOLATILE (cfun->decl)
&& !(m->frame.nregs || m->frame.nsseregs || frame_pointer_needed))
{
/* We can safely use any register here since we're just going to push
its value and immediately pop it back. But we do try and avoid
argument passing registers so as not to introduce dependencies in
the pipeline. For 32 bit we use %esi and for 64 bit we use %rax. */
rtx dummy_reg = gen_rtx_REG (word_mode, TARGET_64BIT ? AX_REG : SI_REG);
rtx_insn *insn_push = emit_insn (gen_push (dummy_reg));
rtx_insn *insn_pop = emit_insn (gen_pop (dummy_reg));
m->fs.sp_offset -= UNITS_PER_WORD;
if (m->fs.cfa_reg == stack_pointer_rtx)
{
m->fs.cfa_offset -= UNITS_PER_WORD;
rtx x = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD);
x = gen_rtx_SET (stack_pointer_rtx, x);
add_reg_note (insn_push, REG_CFA_ADJUST_CFA, x);
RTX_FRAME_RELATED_P (insn_push) = 1;
x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
x = gen_rtx_SET (stack_pointer_rtx, x);
add_reg_note (insn_pop, REG_CFA_ADJUST_CFA, x);
RTX_FRAME_RELATED_P (insn_pop) = 1;
}
emit_insn (gen_blockage ());
}
const HOST_WIDE_INT probe_interval = get_probe_interval ();
const int dope = 4 * UNITS_PER_WORD;
/* If there is protection area, take it into account in the size. */
if (protection_area)
size += probe_interval + dope;
/* If we allocate less than the size of the guard statically,
then no probing is necessary, but we do need to allocate
the stack. */
else if (size < (1 << param_stack_clash_protection_guard_size))
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-size), -1,
m->fs.cfa_reg == stack_pointer_rtx);
dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
return;
}
/* We're allocating a large enough stack frame that we need to
emit probes. Either emit them inline or in a loop depending
on the size. */
if (size <= 4 * probe_interval)
{
HOST_WIDE_INT i;
for (i = probe_interval; i <= size; i += probe_interval)
{
/* Allocate PROBE_INTERVAL bytes. */
rtx insn
= pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-probe_interval), -1,
m->fs.cfa_reg == stack_pointer_rtx);
add_reg_note (insn, REG_STACK_CHECK, const0_rtx);
/* And probe at *sp. */
emit_stack_probe (stack_pointer_rtx);
emit_insn (gen_blockage ());
}
/* We need to allocate space for the residual, but we do not need
to probe the residual... */
HOST_WIDE_INT residual = (i - probe_interval - size);
if (residual)
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (residual), -1,
m->fs.cfa_reg == stack_pointer_rtx);
/* ...except if there is a protection area to maintain. */
if (protection_area)
emit_stack_probe (stack_pointer_rtx);
}
dump_stack_clash_frame_info (PROBE_INLINE, residual != 0);
}
else
{
/* We expect the GP registers to be saved when probes are used
as the probing sequences might need a scratch register and
the routine to allocate one assumes the integer registers
have already been saved. */
gcc_assert (int_registers_saved);
struct scratch_reg sr;
get_scratch_register_on_entry (&sr);
/* If we needed to save a register, then account for any space
that was pushed (we are not going to pop the register when
we do the restore). */
if (sr.saved)
size -= UNITS_PER_WORD;
/* Step 1: round SIZE down to a multiple of the interval. */
HOST_WIDE_INT rounded_size = size & -probe_interval;
/* Step 2: compute final value of the loop counter. Use lea if
possible. */
rtx addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
rtx insn;
if (address_no_seg_operand (addr, Pmode))
insn = emit_insn (gen_rtx_SET (sr.reg, addr));
else
{
emit_move_insn (sr.reg, GEN_INT (-rounded_size));
insn = emit_insn (gen_rtx_SET (sr.reg,
gen_rtx_PLUS (Pmode, sr.reg,
stack_pointer_rtx)));
}
if (m->fs.cfa_reg == stack_pointer_rtx)
{
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, sr.reg,
m->fs.cfa_offset + rounded_size));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Step 3: the loop. */
rtx size_rtx = GEN_INT (rounded_size);
insn = emit_insn (gen_adjust_stack_and_probe (Pmode, sr.reg, sr.reg,
size_rtx));
if (m->fs.cfa_reg == stack_pointer_rtx)
{
m->fs.cfa_offset += rounded_size;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
m->fs.cfa_offset));
RTX_FRAME_RELATED_P (insn) = 1;
}
m->fs.sp_offset += rounded_size;
emit_insn (gen_blockage ());
/* Step 4: adjust SP if we cannot assert at compile-time that SIZE
is equal to ROUNDED_SIZE. */
if (size != rounded_size)
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (rounded_size - size), -1,
m->fs.cfa_reg == stack_pointer_rtx);
if (protection_area)
emit_stack_probe (stack_pointer_rtx);
}
dump_stack_clash_frame_info (PROBE_LOOP, size != rounded_size);
/* This does not deallocate the space reserved for the scratch
register. That will be deallocated in the epilogue. */
release_scratch_register_on_entry (&sr, size, false);
}
/* Adjust back to account for the protection area. */
if (protection_area)
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (probe_interval + dope), -1,
m->fs.cfa_reg == stack_pointer_rtx);
/* Make sure nothing is scheduled before we are done. */
emit_insn (gen_blockage ());
}
/* Adjust the stack pointer up to REG while probing it. */
const char *
output_adjust_stack_and_probe (rtx reg)
{
static int labelno = 0;
char loop_lab[32];
rtx xops[2];
ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
/* Loop. */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
/* SP = SP + PROBE_INTERVAL. */
xops[0] = stack_pointer_rtx;
xops[1] = GEN_INT (get_probe_interval ());
output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops);
/* Probe at SP. */
xops[1] = const0_rtx;
output_asm_insn ("or%z0\t{%1, (%0)|DWORD PTR [%0], %1}", xops);
/* Test if SP == LAST_ADDR. */
xops[0] = stack_pointer_rtx;
xops[1] = reg;
output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops);
/* Branch. */
fputs ("\tjne\t", asm_out_file);
assemble_name_raw (asm_out_file, loop_lab);
fputc ('\n', asm_out_file);
return "";
}
/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
inclusive. These are offsets from the current stack pointer.
INT_REGISTERS_SAVED is true if integer registers have already been
pushed on the stack. */
static void
ix86_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size,
const bool int_registers_saved)
{
const HOST_WIDE_INT probe_interval = get_probe_interval ();
/* See if we have a constant small number of probes to generate. If so,
that's the easy case. The run-time loop is made up of 6 insns in the
generic case while the compile-time loop is made up of n insns for n #
of intervals. */
if (size <= 6 * probe_interval)
{
HOST_WIDE_INT i;
/* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
it exceeds SIZE. If only one probe is needed, this will not
generate any code. Then probe at FIRST + SIZE. */
for (i = probe_interval; i < size; i += probe_interval)
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
-(first + i)));
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
-(first + size)));
}
/* Otherwise, do the same as above, but in a loop. Note that we must be
extra careful with variables wrapping around because we might be at
the very top (or the very bottom) of the address space and we have
to be able to handle this case properly; in particular, we use an
equality test for the loop condition. */
else
{
/* We expect the GP registers to be saved when probes are used
as the probing sequences might need a scratch register and
the routine to allocate one assumes the integer registers
have already been saved. */
gcc_assert (int_registers_saved);
HOST_WIDE_INT rounded_size, last;
struct scratch_reg sr;
get_scratch_register_on_entry (&sr);
/* Step 1: round SIZE to the previous multiple of the interval. */
rounded_size = ROUND_DOWN (size, probe_interval);
/* Step 2: compute initial and final value of the loop counter. */
/* TEST_OFFSET = FIRST. */
emit_move_insn (sr.reg, GEN_INT (-first));
/* LAST_OFFSET = FIRST + ROUNDED_SIZE. */
last = first + rounded_size;
/* Step 3: the loop
do
{
TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
probe at TEST_ADDR
}
while (TEST_ADDR != LAST_ADDR)
probes at FIRST + N * PROBE_INTERVAL for values of N from 1
until it is equal to ROUNDED_SIZE. */
emit_insn
(gen_probe_stack_range (Pmode, sr.reg, sr.reg, GEN_INT (-last)));
/* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
that SIZE is equal to ROUNDED_SIZE. */
if (size != rounded_size)
emit_stack_probe (plus_constant (Pmode,
gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
sr.reg),
rounded_size - size));
release_scratch_register_on_entry (&sr, size, true);
}
/* Make sure nothing is scheduled before we are done. */
emit_insn (gen_blockage ());
}
/* Probe a range of stack addresses from REG to END, inclusive. These are
offsets from the current stack pointer. */
const char *
output_probe_stack_range (rtx reg, rtx end)
{
static int labelno = 0;
char loop_lab[32];
rtx xops[3];
ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
/* Loop. */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
/* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
xops[0] = reg;
xops[1] = GEN_INT (get_probe_interval ());
output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops);
/* Probe at TEST_ADDR. */
xops[0] = stack_pointer_rtx;
xops[1] = reg;
xops[2] = const0_rtx;
output_asm_insn ("or%z0\t{%2, (%0,%1)|DWORD PTR [%0+%1], %2}", xops);
/* Test if TEST_ADDR == LAST_ADDR. */
xops[0] = reg;
xops[1] = end;
output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops);
/* Branch. */
fputs ("\tjne\t", asm_out_file);
assemble_name_raw (asm_out_file, loop_lab);
fputc ('\n', asm_out_file);
return "";
}
/* Set stack_frame_required to false if stack frame isn't required.
Update STACK_ALIGNMENT to the largest alignment, in bits, of stack
slot used if stack frame is required and CHECK_STACK_SLOT is true. */
static void
ix86_find_max_used_stack_alignment (unsigned int &stack_alignment,
bool check_stack_slot)
{
HARD_REG_SET set_up_by_prologue, prologue_used;
basic_block bb;
CLEAR_HARD_REG_SET (prologue_used);
CLEAR_HARD_REG_SET (set_up_by_prologue);
add_to_hard_reg_set (&set_up_by_prologue, Pmode, STACK_POINTER_REGNUM);
add_to_hard_reg_set (&set_up_by_prologue, Pmode, ARG_POINTER_REGNUM);
add_to_hard_reg_set (&set_up_by_prologue, Pmode,
HARD_FRAME_POINTER_REGNUM);
/* The preferred stack alignment is the minimum stack alignment. */
if (stack_alignment > crtl->preferred_stack_boundary)
stack_alignment = crtl->preferred_stack_boundary;
bool require_stack_frame = false;
FOR_EACH_BB_FN (bb, cfun)
{
rtx_insn *insn;
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn)
&& requires_stack_frame_p (insn, prologue_used,
set_up_by_prologue))
{
require_stack_frame = true;
if (check_stack_slot)
{
/* Find the maximum stack alignment. */
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
if (MEM_P (*iter)
&& (reg_mentioned_p (stack_pointer_rtx,
*iter)
|| reg_mentioned_p (frame_pointer_rtx,
*iter)))
{
unsigned int alignment = MEM_ALIGN (*iter);
if (alignment > stack_alignment)
stack_alignment = alignment;
}
}
}
}
cfun->machine->stack_frame_required = require_stack_frame;
}
/* Finalize stack_realign_needed and frame_pointer_needed flags, which
will guide prologue/epilogue to be generated in correct form. */
static void
ix86_finalize_stack_frame_flags (void)
{
/* Check if stack realign is really needed after reload, and
stores result in cfun */
unsigned int incoming_stack_boundary
= (crtl->parm_stack_boundary > ix86_incoming_stack_boundary
? crtl->parm_stack_boundary : ix86_incoming_stack_boundary);
unsigned int stack_alignment
= (crtl->is_leaf && !ix86_current_function_calls_tls_descriptor
? crtl->max_used_stack_slot_alignment
: crtl->stack_alignment_needed);
unsigned int stack_realign
= (incoming_stack_boundary < stack_alignment);
bool recompute_frame_layout_p = false;
if (crtl->stack_realign_finalized)
{
/* After stack_realign_needed is finalized, we can't no longer
change it. */
gcc_assert (crtl->stack_realign_needed == stack_realign);
return;
}
/* It is always safe to compute max_used_stack_alignment. We
compute it only if 128-bit aligned load/store may be generated
on misaligned stack slot which will lead to segfault. */
bool check_stack_slot
= (stack_realign || crtl->max_used_stack_slot_alignment >= 128);
ix86_find_max_used_stack_alignment (stack_alignment,
check_stack_slot);
/* If the only reason for frame_pointer_needed is that we conservatively
assumed stack realignment might be needed or -fno-omit-frame-pointer
is used, but in the end nothing that needed the stack alignment had
been spilled nor stack access, clear frame_pointer_needed and say we
don't need stack realignment.
When vector register is used for piecewise move and store, we don't
increase stack_alignment_needed as there is no register spill for
piecewise move and store. Since stack_realign_needed is set to true
by checking stack_alignment_estimated which is updated by pseudo
vector register usage, we also need to check stack_realign_needed to
eliminate frame pointer. */
if ((stack_realign
|| (!flag_omit_frame_pointer && optimize)
|| crtl->stack_realign_needed)
&& frame_pointer_needed
&& crtl->is_leaf
&& crtl->sp_is_unchanging
&& !ix86_current_function_calls_tls_descriptor
&& !crtl->accesses_prior_frames
&& !cfun->calls_alloca
&& !crtl->calls_eh_return
/* See ira_setup_eliminable_regset for the rationale. */
&& !(STACK_CHECK_MOVING_SP
&& flag_stack_check
&& flag_exceptions
&& cfun->can_throw_non_call_exceptions)
&& !ix86_frame_pointer_required ()
&& ix86_get_frame_size () == 0
&& ix86_nsaved_sseregs () == 0
&& ix86_varargs_gpr_size + ix86_varargs_fpr_size == 0)
{
if (cfun->machine->stack_frame_required)
{
/* Stack frame is required. If stack alignment needed is less
than incoming stack boundary, don't realign stack. */
stack_realign = incoming_stack_boundary < stack_alignment;
if (!stack_realign)
{
crtl->max_used_stack_slot_alignment
= incoming_stack_boundary;
crtl->stack_alignment_needed
= incoming_stack_boundary;
/* Also update preferred_stack_boundary for leaf
functions. */
crtl->preferred_stack_boundary
= incoming_stack_boundary;
}
}
else
{
/* If drap has been set, but it actually isn't live at the
start of the function, there is no reason to set it up. */
if (crtl->drap_reg)
{
basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
if (! REGNO_REG_SET_P (DF_LR_IN (bb),
REGNO (crtl->drap_reg)))
{
crtl->drap_reg = NULL_RTX;
crtl->need_drap = false;
}
}
else
cfun->machine->no_drap_save_restore = true;
frame_pointer_needed = false;
stack_realign = false;
crtl->max_used_stack_slot_alignment = incoming_stack_boundary;
crtl->stack_alignment_needed = incoming_stack_boundary;
crtl->stack_alignment_estimated = incoming_stack_boundary;
if (crtl->preferred_stack_boundary > incoming_stack_boundary)
crtl->preferred_stack_boundary = incoming_stack_boundary;
df_finish_pass (true);
df_scan_alloc (NULL);
df_scan_blocks ();
df_compute_regs_ever_live (true);
df_analyze ();
if (flag_var_tracking)
{
/* Since frame pointer is no longer available, replace it with
stack pointer - UNITS_PER_WORD in debug insns. */
df_ref ref, next;
for (ref = DF_REG_USE_CHAIN (HARD_FRAME_POINTER_REGNUM);
ref; ref = next)
{
next = DF_REF_NEXT_REG (ref);
if (!DF_REF_INSN_INFO (ref))
continue;
/* Make sure the next ref is for a different instruction,
so that we're not affected by the rescan. */
rtx_insn *insn = DF_REF_INSN (ref);
while (next && DF_REF_INSN (next) == insn)
next = DF_REF_NEXT_REG (next);
if (DEBUG_INSN_P (insn))
{
bool changed = false;
for (; ref != next; ref = DF_REF_NEXT_REG (ref))
{
rtx *loc = DF_REF_LOC (ref);
if (*loc == hard_frame_pointer_rtx)
{
*loc = plus_constant (Pmode,
stack_pointer_rtx,
-UNITS_PER_WORD);
changed = true;
}
}
if (changed)
df_insn_rescan (insn);
}
}
}
recompute_frame_layout_p = true;
}
}
else if (crtl->max_used_stack_slot_alignment >= 128
&& cfun->machine->stack_frame_required)
{
/* We don't need to realign stack. max_used_stack_alignment is
used to decide how stack frame should be aligned. This is
independent of any psABIs nor 32-bit vs 64-bit. */
cfun->machine->max_used_stack_alignment
= stack_alignment / BITS_PER_UNIT;
}
if (crtl->stack_realign_needed != stack_realign)
recompute_frame_layout_p = true;
crtl->stack_realign_needed = stack_realign;
crtl->stack_realign_finalized = true;
if (recompute_frame_layout_p)
ix86_compute_frame_layout ();
}
/* Delete SET_GOT right after entry block if it is allocated to reg. */
static void
ix86_elim_entry_set_got (rtx reg)
{
basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
rtx_insn *c_insn = BB_HEAD (bb);
if (!NONDEBUG_INSN_P (c_insn))
c_insn = next_nonnote_nondebug_insn (c_insn);
if (c_insn && NONJUMP_INSN_P (c_insn))
{
rtx pat = PATTERN (c_insn);
if (GET_CODE (pat) == PARALLEL)
{
rtx vec = XVECEXP (pat, 0, 0);
if (GET_CODE (vec) == SET
&& XINT (XEXP (vec, 1), 1) == UNSPEC_SET_GOT
&& REGNO (XEXP (vec, 0)) == REGNO (reg))
delete_insn (c_insn);
}
}
}
static rtx
gen_frame_set (rtx reg, rtx frame_reg, int offset, bool store)
{
rtx addr, mem;
if (offset)
addr = plus_constant (Pmode, frame_reg, offset);
mem = gen_frame_mem (GET_MODE (reg), offset ? addr : frame_reg);
return gen_rtx_SET (store ? mem : reg, store ? reg : mem);
}
static inline rtx
gen_frame_load (rtx reg, rtx frame_reg, int offset)
{
return gen_frame_set (reg, frame_reg, offset, false);
}
static inline rtx
gen_frame_store (rtx reg, rtx frame_reg, int offset)
{
return gen_frame_set (reg, frame_reg, offset, true);
}
static void
ix86_emit_outlined_ms2sysv_save (const struct ix86_frame &frame)
{
struct machine_function *m = cfun->machine;
const unsigned ncregs = NUM_X86_64_MS_CLOBBERED_REGS
+ m->call_ms2sysv_extra_regs;
rtvec v = rtvec_alloc (ncregs + 1);
unsigned int align, i, vi = 0;
rtx_insn *insn;
rtx sym, addr;
rtx rax = gen_rtx_REG (word_mode, AX_REG);
const class xlogue_layout &xlogue = xlogue_layout::get_instance ();
/* AL should only be live with sysv_abi. */
gcc_assert (!ix86_eax_live_at_start_p ());
gcc_assert (m->fs.sp_offset >= frame.sse_reg_save_offset);
/* Setup RAX as the stub's base pointer. We use stack_realign_offset rather
we've actually realigned the stack or not. */
align = GET_MODE_ALIGNMENT (V4SFmode);
addr = choose_baseaddr (frame.stack_realign_offset
+ xlogue.get_stub_ptr_offset (), &align, AX_REG);
gcc_assert (align >= GET_MODE_ALIGNMENT (V4SFmode));
emit_insn (gen_rtx_SET (rax, addr));
/* Get the stub symbol. */
sym = xlogue.get_stub_rtx (frame_pointer_needed ? XLOGUE_STUB_SAVE_HFP
: XLOGUE_STUB_SAVE);
RTVEC_ELT (v, vi++) = gen_rtx_USE (VOIDmode, sym);
for (i = 0; i < ncregs; ++i)
{
const xlogue_layout::reginfo &r = xlogue.get_reginfo (i);
rtx reg = gen_rtx_REG ((SSE_REGNO_P (r.regno) ? V4SFmode : word_mode),
r.regno);
RTVEC_ELT (v, vi++) = gen_frame_store (reg, rax, -r.offset);
}
gcc_assert (vi == (unsigned)GET_NUM_ELEM (v));
insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, v));
RTX_FRAME_RELATED_P (insn) = true;
}
/* Generate and return an insn body to AND X with Y. */
static rtx_insn *
gen_and2_insn (rtx x, rtx y)
{
enum insn_code icode = optab_handler (and_optab, GET_MODE (x));
gcc_assert (insn_operand_matches (icode, 0, x));
gcc_assert (insn_operand_matches (icode, 1, x));
gcc_assert (insn_operand_matches (icode, 2, y));
return GEN_FCN (icode) (x, x, y);
}
/* Expand the prologue into a bunch of separate insns. */
void
ix86_expand_prologue (void)
{
struct machine_function *m = cfun->machine;
rtx insn, t;
HOST_WIDE_INT allocate;
bool int_registers_saved;
bool sse_registers_saved;
bool save_stub_call_needed;
rtx static_chain = NULL_RTX;
ix86_last_zero_store_uid = 0;
if (ix86_function_naked (current_function_decl))
{
if (flag_stack_usage_info)
current_function_static_stack_size = 0;
return;
}
ix86_finalize_stack_frame_flags ();
/* DRAP should not coexist with stack_realign_fp */
gcc_assert (!(crtl->drap_reg && stack_realign_fp));
memset (&m->fs, 0, sizeof (m->fs));
/* Initialize CFA state for before the prologue. */
m->fs.cfa_reg = stack_pointer_rtx;
m->fs.cfa_offset = INCOMING_FRAME_SP_OFFSET;
/* Track SP offset to the CFA. We continue tracking this after we've
swapped the CFA register away from SP. In the case of re-alignment
this is fudged; we're interested to offsets within the local frame. */
m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET;
m->fs.sp_valid = true;
m->fs.sp_realigned = false;
const struct ix86_frame &frame = cfun->machine->frame;
if (!TARGET_64BIT && ix86_function_ms_hook_prologue (current_function_decl))
{
/* We should have already generated an error for any use of
ms_hook on a nested function. */
gcc_checking_assert (!ix86_static_chain_on_stack);
/* Check if profiling is active and we shall use profiling before
prologue variant. If so sorry. */
if (crtl->profile && flag_fentry != 0)
sorry ("%<ms_hook_prologue%> attribute is not compatible "
"with %<-mfentry%> for 32-bit");
/* In ix86_asm_output_function_label we emitted:
8b ff movl.s %edi,%edi
55 push %ebp
8b ec movl.s %esp,%ebp
This matches the hookable function prologue in Win32 API
functions in Microsoft Windows XP Service Pack 2 and newer.
Wine uses this to enable Windows apps to hook the Win32 API
functions provided by Wine.
What that means is that we've already set up the frame pointer. */
if (frame_pointer_needed
&& !(crtl->drap_reg && crtl->stack_realign_needed))
{
rtx push, mov;
/* We've decided to use the frame pointer already set up.
Describe this to the unwinder by pretending that both
push and mov insns happen right here.
Putting the unwind info here at the end of the ms_hook
is done so that we can make absolutely certain we get
the required byte sequence at the start of the function,
rather than relying on an assembler that can produce
the exact encoding required.
However it does mean (in the unpatched case) that we have
a 1 insn window where the asynchronous unwind info is
incorrect. However, if we placed the unwind info at
its correct location we would have incorrect unwind info
in the patched case. Which is probably all moot since
I don't expect Wine generates dwarf2 unwind info for the
system libraries that use this feature. */
insn = emit_insn (gen_blockage ());
push = gen_push (hard_frame_pointer_rtx);
mov = gen_rtx_SET (hard_frame_pointer_rtx,
stack_pointer_rtx);
RTX_FRAME_RELATED_P (push) = 1;
RTX_FRAME_RELATED_P (mov) = 1;
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, push, mov)));
/* Note that gen_push incremented m->fs.cfa_offset, even
though we didn't emit the push insn here. */
m->fs.cfa_reg = hard_frame_pointer_rtx;
m->fs.fp_offset = m->fs.cfa_offset;
m->fs.fp_valid = true;
}
else
{
/* The frame pointer is not needed so pop %ebp again.
This leaves us with a pristine state. */
emit_insn (gen_pop (hard_frame_pointer_rtx));
}
}
/* The first insn of a function that accepts its static chain on the
stack is to push the register that would be filled in by a direct
call. This insn will be skipped by the trampoline. */
else if (ix86_static_chain_on_stack)
{
static_chain = ix86_static_chain (cfun->decl, false);
insn = emit_insn (gen_push (static_chain));
emit_insn (gen_blockage ());
/* We don't want to interpret this push insn as a register save,
only as a stack adjustment. The real copy of the register as
a save will be done later, if needed. */
t = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD);
t = gen_rtx_SET (stack_pointer_rtx, t);
add_reg_note (insn, REG_CFA_ADJUST_CFA, t);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Emit prologue code to adjust stack alignment and setup DRAP, in case
of DRAP is needed and stack realignment is really needed after reload */
if (stack_realign_drap)
{
int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT;
/* Can't use DRAP in interrupt function. */
if (cfun->machine->func_type != TYPE_NORMAL)
sorry ("Dynamic Realign Argument Pointer (DRAP) not supported "
"in interrupt service routine. This may be worked "
"around by avoiding functions with aggregate return.");
/* Only need to push parameter pointer reg if it is caller saved. */
if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg)))
{
/* Push arg pointer reg */
insn = emit_insn (gen_push (crtl->drap_reg));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Grab the argument pointer. */
t = plus_constant (Pmode, stack_pointer_rtx, m->fs.sp_offset);
insn = emit_insn (gen_rtx_SET (crtl->drap_reg, t));
RTX_FRAME_RELATED_P (insn) = 1;
m->fs.cfa_reg = crtl->drap_reg;
m->fs.cfa_offset = 0;
/* Align the stack. */
insn = emit_insn (gen_and2_insn (stack_pointer_rtx,
GEN_INT (-align_bytes)));
RTX_FRAME_RELATED_P (insn) = 1;
/* Replicate the return address on the stack so that return
address can be reached via (argp - 1) slot. This is needed
to implement macro RETURN_ADDR_RTX and intrinsic function
expand_builtin_return_addr etc. */
t = plus_constant (Pmode, crtl->drap_reg, -UNITS_PER_WORD);
t = gen_frame_mem (word_mode, t);
insn = emit_insn (gen_push (t));
RTX_FRAME_RELATED_P (insn) = 1;
/* For the purposes of frame and register save area addressing,
we've started over with a new frame. */
m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET;
m->fs.realigned = true;
if (static_chain)
{
/* Replicate static chain on the stack so that static chain
can be reached via (argp - 2) slot. This is needed for
nested function with stack realignment. */
insn = emit_insn (gen_push (static_chain));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
int_registers_saved = (frame.nregs == 0);
sse_registers_saved = (frame.nsseregs == 0);
save_stub_call_needed = (m->call_ms2sysv);
gcc_assert (sse_registers_saved || !save_stub_call_needed);
if (frame_pointer_needed && !m->fs.fp_valid)
{
/* Note: AT&T enter does NOT have reversed args. Enter is probably
slower on all targets. Also sdb didn't like it. */
insn = emit_insn (gen_push (hard_frame_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
if (m->fs.sp_offset == frame.hard_frame_pointer_offset)
{
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
if (m->fs.cfa_reg == stack_pointer_rtx)
m->fs.cfa_reg = hard_frame_pointer_rtx;
m->fs.fp_offset = m->fs.sp_offset;
m->fs.fp_valid = true;
}
}
if (!int_registers_saved)
{
/* If saving registers via PUSH, do so now. */
if (!frame.save_regs_using_mov)
{
ix86_emit_save_regs ();
int_registers_saved = true;
gcc_assert (m->fs.sp_offset == frame.reg_save_offset);
}
/* When using red zone we may start register saving before allocating
the stack frame saving one cycle of the prologue. However, avoid
doing this if we have to probe the stack; at least on x86_64 the
stack probe can turn into a call that clobbers a red zone location. */
else if (ix86_using_red_zone ()
&& (! TARGET_STACK_PROBE
|| frame.stack_pointer_offset < CHECK_STACK_LIMIT))
{
ix86_emit_save_regs_using_mov (frame.reg_save_offset);
cfun->machine->red_zone_used = true;
int_registers_saved = true;
}
}
if (frame.red_zone_size != 0)
cfun->machine->red_zone_used = true;
if (stack_realign_fp)
{
int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT;
gcc_assert (align_bytes > MIN_STACK_BOUNDARY / BITS_PER_UNIT);
/* Record last valid frame pointer offset. */
m->fs.sp_realigned_fp_last = frame.reg_save_offset;
/* The computation of the size of the re-aligned stack frame means
that we must allocate the size of the register save area before
performing the actual alignment. Otherwise we cannot guarantee
that there's enough storage above the realignment point. */
allocate = frame.reg_save_offset - m->fs.sp_offset
+ frame.stack_realign_allocate;
if (allocate)
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-allocate), -1, false);
/* Align the stack. */
emit_insn (gen_and2_insn (stack_pointer_rtx, GEN_INT (-align_bytes)));
m->fs.sp_offset = ROUND_UP (m->fs.sp_offset, align_bytes);
m->fs.sp_realigned_offset = m->fs.sp_offset
- frame.stack_realign_allocate;
/* The stack pointer may no longer be equal to CFA - m->fs.sp_offset.
Beyond this point, stack access should be done via choose_baseaddr or
by using sp_valid_at and fp_valid_at to determine the correct base
register. Henceforth, any CFA offset should be thought of as logical
and not physical. */
gcc_assert (m->fs.sp_realigned_offset >= m->fs.sp_realigned_fp_last);
gcc_assert (m->fs.sp_realigned_offset == frame.stack_realign_offset);
m->fs.sp_realigned = true;
/* SEH unwind emit doesn't currently support REG_CFA_EXPRESSION, which
is needed to describe where a register is saved using a realigned
stack pointer, so we need to invalidate the stack pointer for that
target. */
if (TARGET_SEH)
m->fs.sp_valid = false;
/* If SP offset is non-immediate after allocation of the stack frame,
then emit SSE saves or stub call prior to allocating the rest of the
stack frame. This is less efficient for the out-of-line stub because
we can't combine allocations across the call barrier, but it's better
than using a scratch register. */
else if (!x86_64_immediate_operand (GEN_INT (frame.stack_pointer_offset
- m->fs.sp_realigned_offset),
Pmode))
{
if (!sse_registers_saved)
{
ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset);
sse_registers_saved = true;
}
else if (save_stub_call_needed)
{
ix86_emit_outlined_ms2sysv_save (frame);
save_stub_call_needed = false;
}
}
}
allocate = frame.stack_pointer_offset - m->fs.sp_offset;
if (flag_stack_usage_info)
{
/* We start to count from ARG_POINTER. */
HOST_WIDE_INT stack_size = frame.stack_pointer_offset;
/* If it was realigned, take into account the fake frame. */
if (stack_realign_drap)
{
if (ix86_static_chain_on_stack)
stack_size += UNITS_PER_WORD;
if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg)))
stack_size += UNITS_PER_WORD;
/* This over-estimates by 1 minimal-stack-alignment-unit but
mitigates that by counting in the new return address slot. */
current_function_dynamic_stack_size
+= crtl->stack_alignment_needed / BITS_PER_UNIT;
}
current_function_static_stack_size = stack_size;
}
/* On SEH target with very large frame size, allocate an area to save
SSE registers (as the very large allocation won't be described). */
if (TARGET_SEH
&& frame.stack_pointer_offset > SEH_MAX_FRAME_SIZE
&& !sse_registers_saved)
{
HOST_WIDE_INT sse_size
= frame.sse_reg_save_offset - frame.reg_save_offset;
gcc_assert (int_registers_saved);
/* No need to do stack checking as the area will be immediately
written. */
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-sse_size), -1,
m->fs.cfa_reg == stack_pointer_rtx);
allocate -= sse_size;
ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset);
sse_registers_saved = true;
}
/* If stack clash protection is requested, then probe the stack. */
if (allocate >= 0 && flag_stack_clash_protection)
{
ix86_adjust_stack_and_probe (allocate, int_registers_saved, false);
allocate = 0;
}
/* The stack has already been decremented by the instruction calling us
so probe if the size is non-negative to preserve the protection area. */
else if (allocate >= 0 && flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
{
const HOST_WIDE_INT probe_interval = get_probe_interval ();
if (STACK_CHECK_MOVING_SP)
{
if (crtl->is_leaf
&& !cfun->calls_alloca
&& allocate <= probe_interval)
;
else
{
ix86_adjust_stack_and_probe (allocate, int_registers_saved, true);
allocate = 0;
}
}
else
{
HOST_WIDE_INT size = allocate;
if (TARGET_64BIT && size >= HOST_WIDE_INT_C (0x80000000))
size = 0x80000000 - get_stack_check_protect () - 1;
if (TARGET_STACK_PROBE)
{
if (crtl->is_leaf && !cfun->calls_alloca)
{
if (size > probe_interval)
ix86_emit_probe_stack_range (0, size, int_registers_saved);
}
else
ix86_emit_probe_stack_range (0,
size + get_stack_check_protect (),
int_registers_saved);
}
else
{
if (crtl->is_leaf && !cfun->calls_alloca)
{
if (size > probe_interval
&& size > get_stack_check_protect ())
ix86_emit_probe_stack_range (get_stack_check_protect (),
(size
- get_stack_check_protect ()),
int_registers_saved);
}
else
ix86_emit_probe_stack_range (get_stack_check_protect (), size,
int_registers_saved);
}
}
}
if (allocate == 0)
;
else if (!ix86_target_stack_probe ()
|| frame.stack_pointer_offset < CHECK_STACK_LIMIT)
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-allocate), -1,
m->fs.cfa_reg == stack_pointer_rtx);
}
else
{
rtx eax = gen_rtx_REG (Pmode, AX_REG);
rtx r10 = NULL;
const bool sp_is_cfa_reg = (m->fs.cfa_reg == stack_pointer_rtx);
bool eax_live = ix86_eax_live_at_start_p ();
bool r10_live = false;
if (TARGET_64BIT)
r10_live = (DECL_STATIC_CHAIN (current_function_decl) != 0);
if (eax_live)
{
insn = emit_insn (gen_push (eax));
allocate -= UNITS_PER_WORD;
/* Note that SEH directives need to continue tracking the stack
pointer even after the frame pointer has been set up. */
if (sp_is_cfa_reg || TARGET_SEH)
{
if (sp_is_cfa_reg)
m->fs.cfa_offset += UNITS_PER_WORD;
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
-UNITS_PER_WORD)));
}
}
if (r10_live)
{
r10 = gen_rtx_REG (Pmode, R10_REG);
insn = emit_insn (gen_push (r10));
allocate -= UNITS_PER_WORD;
if (sp_is_cfa_reg || TARGET_SEH)
{
if (sp_is_cfa_reg)
m->fs.cfa_offset += UNITS_PER_WORD;
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
-UNITS_PER_WORD)));
}
}
emit_move_insn (eax, GEN_INT (allocate));
emit_insn (gen_allocate_stack_worker_probe (Pmode, eax, eax));
/* Use the fact that AX still contains ALLOCATE. */
insn = emit_insn (gen_pro_epilogue_adjust_stack_sub
(Pmode, stack_pointer_rtx, stack_pointer_rtx, eax));
if (sp_is_cfa_reg || TARGET_SEH)
{
if (sp_is_cfa_reg)
m->fs.cfa_offset += allocate;
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
-allocate)));
}
m->fs.sp_offset += allocate;
/* Use stack_pointer_rtx for relative addressing so that code works for
realigned stack. But this means that we need a blockage to prevent
stores based on the frame pointer from being scheduled before. */
if (r10_live && eax_live)
{
t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, eax);
emit_move_insn (gen_rtx_REG (word_mode, R10_REG),
gen_frame_mem (word_mode, t));
t = plus_constant (Pmode, t, UNITS_PER_WORD);
emit_move_insn (gen_rtx_REG (word_mode, AX_REG),
gen_frame_mem (word_mode, t));
emit_insn (gen_memory_blockage ());
}
else if (eax_live || r10_live)
{
t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, eax);
emit_move_insn (gen_rtx_REG (word_mode,
(eax_live ? AX_REG : R10_REG)),
gen_frame_mem (word_mode, t));
emit_insn (gen_memory_blockage ());
}
}
gcc_assert (m->fs.sp_offset == frame.stack_pointer_offset);
/* If we havn't already set up the frame pointer, do so now. */
if (frame_pointer_needed && !m->fs.fp_valid)
{
insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx,
GEN_INT (frame.stack_pointer_offset
- frame.hard_frame_pointer_offset));
insn = emit_insn (insn);
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL);
if (m->fs.cfa_reg == stack_pointer_rtx)
m->fs.cfa_reg = hard_frame_pointer_rtx;
m->fs.fp_offset = frame.hard_frame_pointer_offset;
m->fs.fp_valid = true;
}
if (!int_registers_saved)
ix86_emit_save_regs_using_mov (frame.reg_save_offset);
if (!sse_registers_saved)
ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset);
else if (save_stub_call_needed)
ix86_emit_outlined_ms2sysv_save (frame);
/* For the mcount profiling on 32 bit PIC mode we need to emit SET_GOT
in PROLOGUE. */
if (!TARGET_64BIT && pic_offset_table_rtx && crtl->profile && !flag_fentry)
{
rtx pic = gen_rtx_REG (Pmode, REAL_PIC_OFFSET_TABLE_REGNUM);
insn = emit_insn (gen_set_got (pic));
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX);
emit_insn (gen_prologue_use (pic));
/* Deleting already emmitted SET_GOT if exist and allocated to
REAL_PIC_OFFSET_TABLE_REGNUM. */
ix86_elim_entry_set_got (pic);
}
if (crtl->drap_reg && !crtl->stack_realign_needed)
{
/* vDRAP is setup but after reload it turns out stack realign
isn't necessary, here we will emit prologue to setup DRAP
without stack realign adjustment */
t = choose_baseaddr (0, NULL);
emit_insn (gen_rtx_SET (crtl->drap_reg, t));
}
/* Prevent instructions from being scheduled into register save push
sequence when access to the redzone area is done through frame pointer.
The offset between the frame pointer and the stack pointer is calculated
relative to the value of the stack pointer at the end of the function
prologue, and moving instructions that access redzone area via frame
pointer inside push sequence violates this assumption. */
if (frame_pointer_needed && frame.red_zone_size)
emit_insn (gen_memory_blockage ());
/* SEH requires that the prologue end within 256 bytes of the start of
the function. Prevent instruction schedules that would extend that.
Further, prevent alloca modifications to the stack pointer from being
combined with prologue modifications. */
if (TARGET_SEH)
emit_insn (gen_prologue_use (stack_pointer_rtx));
}
/* Emit code to restore REG using a POP insn. */
static void
ix86_emit_restore_reg_using_pop (rtx reg)
{
struct machine_function *m = cfun->machine;
rtx_insn *insn = emit_insn (gen_pop (reg));
ix86_add_cfa_restore_note (insn, reg, m->fs.sp_offset);
m->fs.sp_offset -= UNITS_PER_WORD;
if (m->fs.cfa_reg == crtl->drap_reg
&& REGNO (reg) == REGNO (crtl->drap_reg))
{
/* Previously we'd represented the CFA as an expression
like *(%ebp - 8). We've just popped that value from
the stack, which means we need to reset the CFA to
the drap register. This will remain until we restore
the stack pointer. */
add_reg_note (insn, REG_CFA_DEF_CFA, reg);
RTX_FRAME_RELATED_P (insn) = 1;
/* This means that the DRAP register is valid for addressing too. */
m->fs.drap_valid = true;
return;
}
if (m->fs.cfa_reg == stack_pointer_rtx)
{
rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
x = gen_rtx_SET (stack_pointer_rtx, x);
add_reg_note (insn, REG_CFA_ADJUST_CFA, x);
RTX_FRAME_RELATED_P (insn) = 1;
m->fs.cfa_offset -= UNITS_PER_WORD;
}
/* When the frame pointer is the CFA, and we pop it, we are
swapping back to the stack pointer as the CFA. This happens
for stack frames that don't allocate other data, so we assume
the stack pointer is now pointing at the return address, i.e.
the function entry state, which makes the offset be 1 word. */
if (reg == hard_frame_pointer_rtx)
{
m->fs.fp_valid = false;
if (m->fs.cfa_reg == hard_frame_pointer_rtx)
{
m->fs.cfa_reg = stack_pointer_rtx;
m->fs.cfa_offset -= UNITS_PER_WORD;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
m->fs.cfa_offset));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
/* Emit code to restore saved registers using POP insns. */
static void
ix86_emit_restore_regs_using_pop (void)
{
unsigned int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, false, true))
ix86_emit_restore_reg_using_pop (gen_rtx_REG (word_mode, regno));
}
/* Emit code and notes for the LEAVE instruction. If insn is non-null,
omits the emit and only attaches the notes. */
static void
ix86_emit_leave (rtx_insn *insn)
{
struct machine_function *m = cfun->machine;
if (!insn)
insn = emit_insn (gen_leave (word_mode));
ix86_add_queued_cfa_restore_notes (insn);
gcc_assert (m->fs.fp_valid);
m->fs.sp_valid = true;
m->fs.sp_realigned = false;
m->fs.sp_offset = m->fs.fp_offset - UNITS_PER_WORD;
m->fs.fp_valid = false;
if (m->fs.cfa_reg == hard_frame_pointer_rtx)
{
m->fs.cfa_reg = stack_pointer_rtx;
m->fs.cfa_offset = m->fs.sp_offset;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
m->fs.sp_offset));
RTX_FRAME_RELATED_P (insn) = 1;
}
ix86_add_cfa_restore_note (insn, hard_frame_pointer_rtx,
m->fs.fp_offset);
}
/* Emit code to restore saved registers using MOV insns.
First register is restored from CFA - CFA_OFFSET. */
static void
ix86_emit_restore_regs_using_mov (HOST_WIDE_INT cfa_offset,
bool maybe_eh_return)
{
struct machine_function *m = cfun->machine;
unsigned int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return, true))
{
rtx reg = gen_rtx_REG (word_mode, regno);
rtx mem;
rtx_insn *insn;
mem = choose_baseaddr (cfa_offset, NULL);
mem = gen_frame_mem (word_mode, mem);
insn = emit_move_insn (reg, mem);
if (m->fs.cfa_reg == crtl->drap_reg && regno == REGNO (crtl->drap_reg))
{
/* Previously we'd represented the CFA as an expression
like *(%ebp - 8). We've just popped that value from
the stack, which means we need to reset the CFA to
the drap register. This will remain until we restore
the stack pointer. */
add_reg_note (insn, REG_CFA_DEF_CFA, reg);
RTX_FRAME_RELATED_P (insn) = 1;
/* This means that the DRAP register is valid for addressing. */
m->fs.drap_valid = true;
}
else
ix86_add_cfa_restore_note (NULL, reg, cfa_offset);
cfa_offset -= UNITS_PER_WORD;
}
}
/* Emit code to restore saved registers using MOV insns.
First register is restored from CFA - CFA_OFFSET. */
static void
ix86_emit_restore_sse_regs_using_mov (HOST_WIDE_INT cfa_offset,
bool maybe_eh_return)
{
unsigned int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return, true))
{
rtx reg = gen_rtx_REG (V4SFmode, regno);
rtx mem;
unsigned int align = GET_MODE_ALIGNMENT (V4SFmode);
mem = choose_baseaddr (cfa_offset, &align);
mem = gen_rtx_MEM (V4SFmode, mem);
/* The location aligment depends upon the base register. */
align = MIN (GET_MODE_ALIGNMENT (V4SFmode), align);
gcc_assert (! (cfa_offset & (align / BITS_PER_UNIT - 1)));
set_mem_align (mem, align);
emit_insn (gen_rtx_SET (reg, mem));
ix86_add_cfa_restore_note (NULL, reg, cfa_offset);
cfa_offset -= GET_MODE_SIZE (V4SFmode);
}
}
static void
ix86_emit_outlined_ms2sysv_restore (const struct ix86_frame &frame,
bool use_call, int style)
{
struct machine_function *m = cfun->machine;
const unsigned ncregs = NUM_X86_64_MS_CLOBBERED_REGS
+ m->call_ms2sysv_extra_regs;
rtvec v;
unsigned int elems_needed, align, i, vi = 0;
rtx_insn *insn;
rtx sym, tmp;
rtx rsi = gen_rtx_REG (word_mode, SI_REG);
rtx r10 = NULL_RTX;
const class xlogue_layout &xlogue = xlogue_layout::get_instance ();
HOST_WIDE_INT stub_ptr_offset = xlogue.get_stub_ptr_offset ();
HOST_WIDE_INT rsi_offset = frame.stack_realign_offset + stub_ptr_offset;
rtx rsi_frame_load = NULL_RTX;
HOST_WIDE_INT rsi_restore_offset = (HOST_WIDE_INT)-1;
enum xlogue_stub stub;
gcc_assert (!m->fs.fp_valid || frame_pointer_needed);
/* If using a realigned stack, we should never start with padding. */
gcc_assert (!stack_realign_fp || !xlogue.get_stack_align_off_in ());
/* Setup RSI as the stub's base pointer. */
align = GET_MODE_ALIGNMENT (V4SFmode);
tmp = choose_baseaddr (rsi_offset, &align, SI_REG);
gcc_assert (align >= GET_MODE_ALIGNMENT (V4SFmode));
emit_insn (gen_rtx_SET (rsi, tmp));
/* Get a symbol for the stub. */
if (frame_pointer_needed)
stub = use_call ? XLOGUE_STUB_RESTORE_HFP
: XLOGUE_STUB_RESTORE_HFP_TAIL;
else
stub = use_call ? XLOGUE_STUB_RESTORE
: XLOGUE_STUB_RESTORE_TAIL;
sym = xlogue.get_stub_rtx (stub);
elems_needed = ncregs;
if (use_call)
elems_needed += 1;
else
elems_needed += frame_pointer_needed ? 5 : 3;
v = rtvec_alloc (elems_needed);
/* We call the epilogue stub when we need to pop incoming args or we are
doing a sibling call as the tail. Otherwise, we will emit a jmp to the
epilogue stub and it is the tail-call. */
if (use_call)
RTVEC_ELT (v, vi++) = gen_rtx_USE (VOIDmode, sym);
else
{
RTVEC_ELT (v, vi++) = ret_rtx;
RTVEC_ELT (v, vi++) = gen_rtx_USE (VOIDmode, sym);
if (frame_pointer_needed)
{
rtx rbp = gen_rtx_REG (DImode, BP_REG);
gcc_assert (m->fs.fp_valid);
gcc_assert (m->fs.cfa_reg == hard_frame_pointer_rtx);
tmp = plus_constant (DImode, rbp, 8);
RTVEC_ELT (v, vi++) = gen_rtx_SET (stack_pointer_rtx, tmp);
RTVEC_ELT (v, vi++) = gen_rtx_SET (rbp, gen_rtx_MEM (DImode, rbp));
tmp = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
RTVEC_ELT (v, vi++) = gen_rtx_CLOBBER (VOIDmode, tmp);
}
else
{
/* If no hard frame pointer, we set R10 to the SP restore value. */
gcc_assert (!m->fs.fp_valid);
gcc_assert (m->fs.cfa_reg == stack_pointer_rtx);
gcc_assert (m->fs.sp_valid);
r10 = gen_rtx_REG (DImode, R10_REG);
tmp = plus_constant (Pmode, rsi, stub_ptr_offset);
emit_insn (gen_rtx_SET (r10, tmp));
RTVEC_ELT (v, vi++) = gen_rtx_SET (stack_pointer_rtx, r10);
}
}
/* Generate frame load insns and restore notes. */
for (i = 0; i < ncregs; ++i)
{
const xlogue_layout::reginfo &r = xlogue.get_reginfo (i);
machine_mode mode = SSE_REGNO_P (r.regno) ? V4SFmode : word_mode;
rtx reg, frame_load;
reg = gen_rtx_REG (mode, r.regno);
frame_load = gen_frame_load (reg, rsi, r.offset);
/* Save RSI frame load insn & note to add last. */
if (r.regno == SI_REG)
{
gcc_assert (!rsi_frame_load);
rsi_frame_load = frame_load;
rsi_restore_offset = r.offset;
}
else
{
RTVEC_ELT (v, vi++) = frame_load;
ix86_add_cfa_restore_note (NULL, reg, r.offset);
}
}
/* Add RSI frame load & restore note at the end. */
gcc_assert (rsi_frame_load);
gcc_assert (rsi_restore_offset != (HOST_WIDE_INT)-1);
RTVEC_ELT (v, vi++) = rsi_frame_load;
ix86_add_cfa_restore_note (NULL, gen_rtx_REG (DImode, SI_REG),
rsi_restore_offset);
/* Finally, for tail-call w/o a hard frame pointer, set SP to R10. */
if (!use_call && !frame_pointer_needed)
{
gcc_assert (m->fs.sp_valid);
gcc_assert (!m->fs.sp_realigned);
/* At this point, R10 should point to frame.stack_realign_offset. */
if (m->fs.cfa_reg == stack_pointer_rtx)
m->fs.cfa_offset += m->fs.sp_offset - frame.stack_realign_offset;
m->fs.sp_offset = frame.stack_realign_offset;
}
gcc_assert (vi == (unsigned int)GET_NUM_ELEM (v));
tmp = gen_rtx_PARALLEL (VOIDmode, v);
if (use_call)
insn = emit_insn (tmp);
else
{
insn = emit_jump_insn (tmp);
JUMP_LABEL (insn) = ret_rtx;
if (frame_pointer_needed)
ix86_emit_leave (insn);
else
{
/* Need CFA adjust note. */
tmp = gen_rtx_SET (stack_pointer_rtx, r10);
add_reg_note (insn, REG_CFA_ADJUST_CFA, tmp);
}
}
RTX_FRAME_RELATED_P (insn) = true;
ix86_add_queued_cfa_restore_notes (insn);
/* If we're not doing a tail-call, we need to adjust the stack. */
if (use_call && m->fs.sp_valid)
{
HOST_WIDE_INT dealloc = m->fs.sp_offset - frame.stack_realign_offset;
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (dealloc), style,
m->fs.cfa_reg == stack_pointer_rtx);
}
}
/* Restore function stack, frame, and registers. */
void
ix86_expand_epilogue (int style)
{
struct machine_function *m = cfun->machine;
struct machine_frame_state frame_state_save = m->fs;
bool restore_regs_via_mov;
bool using_drap;
bool restore_stub_is_tail = false;
if (ix86_function_naked (current_function_decl))
{
/* The program should not reach this point. */
emit_insn (gen_ud2 ());
return;
}
ix86_finalize_stack_frame_flags ();
const struct ix86_frame &frame = cfun->machine->frame;
m->fs.sp_realigned = stack_realign_fp;
m->fs.sp_valid = stack_realign_fp
|| !frame_pointer_needed
|| crtl->sp_is_unchanging;
gcc_assert (!m->fs.sp_valid
|| m->fs.sp_offset == frame.stack_pointer_offset);
/* The FP must be valid if the frame pointer is present. */
gcc_assert (frame_pointer_needed == m->fs.fp_valid);
gcc_assert (!m->fs.fp_valid
|| m->fs.fp_offset == frame.hard_frame_pointer_offset);
/* We must have *some* valid pointer to the stack frame. */
gcc_assert (m->fs.sp_valid || m->fs.fp_valid);
/* The DRAP is never valid at this point. */
gcc_assert (!m->fs.drap_valid);
/* See the comment about red zone and frame
pointer usage in ix86_expand_prologue. */
if (frame_pointer_needed && frame.red_zone_size)
emit_insn (gen_memory_blockage ());
using_drap = crtl->drap_reg && crtl->stack_realign_needed;
gcc_assert (!using_drap || m->fs.cfa_reg == crtl->drap_reg);
/* Determine the CFA offset of the end of the red-zone. */
m->fs.red_zone_offset = 0;
if (ix86_using_red_zone () && crtl->args.pops_args < 65536)
{
/* The red-zone begins below return address and error code in
exception handler. */
m->fs.red_zone_offset = RED_ZONE_SIZE + INCOMING_FRAME_SP_OFFSET;
/* When the register save area is in the aligned portion of
the stack, determine the maximum runtime displacement that
matches up with the aligned frame. */
if (stack_realign_drap)
m->fs.red_zone_offset -= (crtl->stack_alignment_needed / BITS_PER_UNIT
+ UNITS_PER_WORD);
}
HOST_WIDE_INT reg_save_offset = frame.reg_save_offset;
/* Special care must be taken for the normal return case of a function
using eh_return: the eax and edx registers are marked as saved, but
not restored along this path. Adjust the save location to match. */
if (crtl->calls_eh_return && style != 2)
reg_save_offset -= 2 * UNITS_PER_WORD;
/* EH_RETURN requires the use of moves to function properly. */
if (crtl->calls_eh_return)
restore_regs_via_mov = true;
/* SEH requires the use of pops to identify the epilogue. */
else if (TARGET_SEH)
restore_regs_via_mov = false;
/* If we're only restoring one register and sp cannot be used then
using a move instruction to restore the register since it's
less work than reloading sp and popping the register. */
else if (!sp_valid_at (frame.hfp_save_offset) && frame.nregs <= 1)
restore_regs_via_mov = true;
else if (TARGET_EPILOGUE_USING_MOVE
&& cfun->machine->use_fast_prologue_epilogue
&& (frame.nregs > 1
|| m->fs.sp_offset != reg_save_offset))
restore_regs_via_mov = true;
else if (frame_pointer_needed
&& !frame.nregs
&& m->fs.sp_offset != reg_save_offset)
restore_regs_via_mov = true;
else if (frame_pointer_needed
&& TARGET_USE_LEAVE
&& cfun->machine->use_fast_prologue_epilogue
&& frame.nregs == 1)
restore_regs_via_mov = true;
else
restore_regs_via_mov = false;
if (restore_regs_via_mov || frame.nsseregs)
{
/* Ensure that the entire register save area is addressable via
the stack pointer, if we will restore SSE regs via sp. */
if (TARGET_64BIT
&& m->fs.sp_offset > 0x7fffffff
&& sp_valid_at (frame.stack_realign_offset + 1)
&& (frame.nsseregs + frame.nregs) != 0)
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (m->fs.sp_offset
- frame.sse_reg_save_offset),
style,
m->fs.cfa_reg == stack_pointer_rtx);
}
}
/* If there are any SSE registers to restore, then we have to do it
via moves, since there's obviously no pop for SSE regs. */
if (frame.nsseregs)
ix86_emit_restore_sse_regs_using_mov (frame.sse_reg_save_offset,
style == 2);
if (m->call_ms2sysv)
{
int pop_incoming_args = crtl->args.pops_args && crtl->args.size;
/* We cannot use a tail-call for the stub if:
1. We have to pop incoming args,
2. We have additional int regs to restore, or
3. A sibling call will be the tail-call, or
4. We are emitting an eh_return_internal epilogue.
TODO: Item 4 has not yet tested!
If any of the above are true, we will call the stub rather than
jump to it. */
restore_stub_is_tail = !(pop_incoming_args || frame.nregs || style != 1);
ix86_emit_outlined_ms2sysv_restore (frame, !restore_stub_is_tail, style);
}
/* If using out-of-line stub that is a tail-call, then...*/
if (m->call_ms2sysv && restore_stub_is_tail)
{
/* TODO: parinoid tests. (remove eventually) */
gcc_assert (m->fs.sp_valid);
gcc_assert (!m->fs.sp_realigned);
gcc_assert (!m->fs.fp_valid);
gcc_assert (!m->fs.realigned);
gcc_assert (m->fs.sp_offset == UNITS_PER_WORD);
gcc_assert (!crtl->drap_reg);
gcc_assert (!frame.nregs);
}
else if (restore_regs_via_mov)
{
rtx t;
if (frame.nregs)
ix86_emit_restore_regs_using_mov (reg_save_offset, style == 2);
/* eh_return epilogues need %ecx added to the stack pointer. */
if (style == 2)
{
rtx sa = EH_RETURN_STACKADJ_RTX;
rtx_insn *insn;
/* Stack realignment doesn't work with eh_return. */
if (crtl->stack_realign_needed)
sorry ("Stack realignment not supported with "
"%<__builtin_eh_return%>");
/* regparm nested functions don't work with eh_return. */
if (ix86_static_chain_on_stack)
sorry ("regparm nested function not supported with "
"%<__builtin_eh_return%>");
if (frame_pointer_needed)
{
t = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa);
t = plus_constant (Pmode, t, m->fs.fp_offset - UNITS_PER_WORD);
emit_insn (gen_rtx_SET (sa, t));
/* NB: eh_return epilogues must restore the frame pointer
in word_mode since the upper 32 bits of RBP register
can have any values. */
t = gen_frame_mem (word_mode, hard_frame_pointer_rtx);
rtx frame_reg = gen_rtx_REG (word_mode,
HARD_FRAME_POINTER_REGNUM);
insn = emit_move_insn (frame_reg, t);
/* Note that we use SA as a temporary CFA, as the return
address is at the proper place relative to it. We
pretend this happens at the FP restore insn because
prior to this insn the FP would be stored at the wrong
offset relative to SA, and after this insn we have no
other reasonable register to use for the CFA. We don't
bother resetting the CFA to the SP for the duration of
the return insn, unless the control flow instrumentation
is done. In this case the SP is used later and we have
to reset CFA to SP. */
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, sa, UNITS_PER_WORD));
ix86_add_queued_cfa_restore_notes (insn);
add_reg_note (insn, REG_CFA_RESTORE, frame_reg);
RTX_FRAME_RELATED_P (insn) = 1;
m->fs.cfa_reg = sa;
m->fs.cfa_offset = UNITS_PER_WORD;
m->fs.fp_valid = false;
pro_epilogue_adjust_stack (stack_pointer_rtx, sa,
const0_rtx, style,
flag_cf_protection);
}
else
{
t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa);
t = plus_constant (Pmode, t, m->fs.sp_offset - UNITS_PER_WORD);
insn = emit_insn (gen_rtx_SET (stack_pointer_rtx, t));
ix86_add_queued_cfa_restore_notes (insn);
gcc_assert (m->fs.cfa_reg == stack_pointer_rtx);
if (m->fs.cfa_offset != UNITS_PER_WORD)
{
m->fs.cfa_offset = UNITS_PER_WORD;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
UNITS_PER_WORD));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
m->fs.sp_offset = UNITS_PER_WORD;
m->fs.sp_valid = true;
m->fs.sp_realigned = false;
}
}
else
{
/* SEH requires that the function end with (1) a stack adjustment
if necessary, (2) a sequence of pops, and (3) a return or
jump instruction. Prevent insns from the function body from
being scheduled into this sequence. */
if (TARGET_SEH)
{
/* Prevent a catch region from being adjacent to the standard
epilogue sequence. Unfortunately neither crtl->uses_eh_lsda
nor several other flags that would be interesting to test are
set up yet. */
if (flag_non_call_exceptions)
emit_insn (gen_nops (const1_rtx));
else
emit_insn (gen_blockage ());
}
/* First step is to deallocate the stack frame so that we can
pop the registers. If the stack pointer was realigned, it needs
to be restored now. Also do it on SEH target for very large
frame as the emitted instructions aren't allowed by the ABI
in epilogues. */
if (!m->fs.sp_valid || m->fs.sp_realigned
|| (TARGET_SEH
&& (m->fs.sp_offset - reg_save_offset
>= SEH_MAX_FRAME_SIZE)))
{
pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx,
GEN_INT (m->fs.fp_offset
- reg_save_offset),
style, false);
}
else if (m->fs.sp_offset != reg_save_offset)
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (m->fs.sp_offset
- reg_save_offset),
style,
m->fs.cfa_reg == stack_pointer_rtx);
}
ix86_emit_restore_regs_using_pop ();
}
/* If we used a stack pointer and haven't already got rid of it,
then do so now. */
if (m->fs.fp_valid)
{
/* If the stack pointer is valid and pointing at the frame
pointer store address, then we only need a pop. */
if (sp_valid_at (frame.hfp_save_offset)
&& m->fs.sp_offset == frame.hfp_save_offset)
ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx);
/* Leave results in shorter dependency chains on CPUs that are
able to grok it fast. */
else if (TARGET_USE_LEAVE
|| optimize_bb_for_size_p (EXIT_BLOCK_PTR_FOR_FN (cfun))
|| !cfun->machine->use_fast_prologue_epilogue)
ix86_emit_leave (NULL);
else
{
pro_epilogue_adjust_stack (stack_pointer_rtx,
hard_frame_pointer_rtx,
const0_rtx, style, !using_drap);
ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx);
}
}
if (using_drap)
{
int param_ptr_offset = UNITS_PER_WORD;
rtx_insn *insn;
gcc_assert (stack_realign_drap);
if (ix86_static_chain_on_stack)
param_ptr_offset += UNITS_PER_WORD;
if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg)))
param_ptr_offset += UNITS_PER_WORD;
insn = emit_insn (gen_rtx_SET
(stack_pointer_rtx,
plus_constant (Pmode, crtl->drap_reg,
-param_ptr_offset)));
m->fs.cfa_reg = stack_pointer_rtx;
m->fs.cfa_offset = param_ptr_offset;
m->fs.sp_offset = param_ptr_offset;
m->fs.realigned = false;
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
param_ptr_offset));
RTX_FRAME_RELATED_P (insn) = 1;
if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg)))
ix86_emit_restore_reg_using_pop (crtl->drap_reg);
}
/* At this point the stack pointer must be valid, and we must have
restored all of the registers. We may not have deallocated the
entire stack frame. We've delayed this until now because it may
be possible to merge the local stack deallocation with the
deallocation forced by ix86_static_chain_on_stack. */
gcc_assert (m->fs.sp_valid);
gcc_assert (!m->fs.sp_realigned);
gcc_assert (!m->fs.fp_valid);
gcc_assert (!m->fs.realigned);
if (m->fs.sp_offset != UNITS_PER_WORD)
{
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (m->fs.sp_offset - UNITS_PER_WORD),
style, true);
}
else
ix86_add_queued_cfa_restore_notes (get_last_insn ());
/* Sibcall epilogues don't want a return instruction. */
if (style == 0)
{
m->fs = frame_state_save;
return;
}
if (cfun->machine->func_type != TYPE_NORMAL)
emit_jump_insn (gen_interrupt_return ());
else if (crtl->args.pops_args && crtl->args.size)
{
rtx popc = GEN_INT (crtl->args.pops_args);
/* i386 can only pop 64K bytes. If asked to pop more, pop return
address, do explicit add, and jump indirectly to the caller. */
if (crtl->args.pops_args >= 65536)
{
rtx ecx = gen_rtx_REG (SImode, CX_REG);
rtx_insn *insn;
/* There is no "pascal" calling convention in any 64bit ABI. */
gcc_assert (!TARGET_64BIT);
insn = emit_insn (gen_pop (ecx));
m->fs.cfa_offset -= UNITS_PER_WORD;
m->fs.sp_offset -= UNITS_PER_WORD;
rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
x = gen_rtx_SET (stack_pointer_rtx, x);
add_reg_note (insn, REG_CFA_ADJUST_CFA, x);
add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (ecx, pc_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
popc, -1, true);
emit_jump_insn (gen_simple_return_indirect_internal (ecx));
}
else
emit_jump_insn (gen_simple_return_pop_internal (popc));
}
else if (!m->call_ms2sysv || !restore_stub_is_tail)
{
/* In case of return from EH a simple return cannot be used
as a return address will be compared with a shadow stack
return address. Use indirect jump instead. */
if (style == 2 && flag_cf_protection)
{
/* Register used in indirect jump must be in word_mode. But
Pmode may not be the same as word_mode for x32. */
rtx ecx = gen_rtx_REG (word_mode, CX_REG);
rtx_insn *insn;
insn = emit_insn (gen_pop (ecx));
m->fs.cfa_offset -= UNITS_PER_WORD;
m->fs.sp_offset -= UNITS_PER_WORD;
rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
x = gen_rtx_SET (stack_pointer_rtx, x);
add_reg_note (insn, REG_CFA_ADJUST_CFA, x);
add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (ecx, pc_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
emit_jump_insn (gen_simple_return_indirect_internal (ecx));
}
else
emit_jump_insn (gen_simple_return_internal ());
}
/* Restore the state back to the state from the prologue,
so that it's correct for the next epilogue. */
m->fs = frame_state_save;
}
/* Reset from the function's potential modifications. */
static void
ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED)
{
if (pic_offset_table_rtx
&& !ix86_use_pseudo_pic_reg ())
SET_REGNO (pic_offset_table_rtx, REAL_PIC_OFFSET_TABLE_REGNUM);
if (TARGET_MACHO)
{
rtx_insn *insn = get_last_insn ();
rtx_insn *deleted_debug_label = NULL;
/* Mach-O doesn't support labels at the end of objects, so if
it looks like we might want one, take special action.
First, collect any sequence of deleted debug labels. */
while (insn
&& NOTE_P (insn)
&& NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
{
/* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL
notes only, instead set their CODE_LABEL_NUMBER to -1,
otherwise there would be code generation differences
in between -g and -g0. */
if (NOTE_P (insn) && NOTE_KIND (insn)
== NOTE_INSN_DELETED_DEBUG_LABEL)
deleted_debug_label = insn;
insn = PREV_INSN (insn);
}
/* If we have:
label:
barrier
then this needs to be detected, so skip past the barrier. */
if (insn && BARRIER_P (insn))
insn = PREV_INSN (insn);
/* Up to now we've only seen notes or barriers. */
if (insn)
{
if (LABEL_P (insn)
|| (NOTE_P (insn)
&& NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))
/* Trailing label. */
fputs ("\tnop\n", file);
else if (cfun && ! cfun->is_thunk)
{
/* See if we have a completely empty function body, skipping
the special case of the picbase thunk emitted as asm. */
while (insn && ! INSN_P (insn))
insn = PREV_INSN (insn);
/* If we don't find any insns, we've got an empty function body;
I.e. completely empty - without a return or branch. This is
taken as the case where a function body has been removed
because it contains an inline __builtin_unreachable(). GCC
declares that reaching __builtin_unreachable() means UB so
we're not obliged to do anything special; however, we want
non-zero-sized function bodies. To meet this, and help the
user out, let's trap the case. */
if (insn == NULL)
fputs ("\tud2\n", file);
}
}
else if (deleted_debug_label)
for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn))
if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
CODE_LABEL_NUMBER (insn) = -1;
}
}
/* Implement TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY. */
void
ix86_print_patchable_function_entry (FILE *file,
unsigned HOST_WIDE_INT patch_area_size,
bool record_p)
{
if (cfun->machine->function_label_emitted)
{
/* NB: When ix86_print_patchable_function_entry is called after
function table has been emitted, we have inserted or queued
a pseudo UNSPECV_PATCHABLE_AREA instruction at the proper
place. There is nothing to do here. */
return;
}
default_print_patchable_function_entry (file, patch_area_size,
record_p);
}
/* Output patchable area. NB: default_print_patchable_function_entry
isn't available in i386.md. */
void
ix86_output_patchable_area (unsigned int patch_area_size,
bool record_p)
{
default_print_patchable_function_entry (asm_out_file,
patch_area_size,
record_p);
}
/* Return a scratch register to use in the split stack prologue. The
split stack prologue is used for -fsplit-stack. It is the first
instructions in the function, even before the regular prologue.
The scratch register can be any caller-saved register which is not
used for parameters or for the static chain. */
static unsigned int
split_stack_prologue_scratch_regno (void)
{
if (TARGET_64BIT)
return R11_REG;
else
{
bool is_fastcall, is_thiscall;
int regparm;
is_fastcall = (lookup_attribute ("fastcall",
TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl)))
!= NULL);
is_thiscall = (lookup_attribute ("thiscall",
TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl)))
!= NULL);
regparm = ix86_function_regparm (TREE_TYPE (cfun->decl), cfun->decl);
if (is_fastcall)
{
if (DECL_STATIC_CHAIN (cfun->decl))
{
sorry ("%<-fsplit-stack%> does not support fastcall with "
"nested function");
return INVALID_REGNUM;
}
return AX_REG;
}
else if (is_thiscall)
{
if (!DECL_STATIC_CHAIN (cfun->decl))
return DX_REG;
return AX_REG;
}
else if (regparm < 3)
{
if (!DECL_STATIC_CHAIN (cfun->decl))
return CX_REG;
else
{
if (regparm >= 2)
{
sorry ("%<-fsplit-stack%> does not support 2 register "
"parameters for a nested function");
return INVALID_REGNUM;
}
return DX_REG;
}
}
else
{
/* FIXME: We could make this work by pushing a register
around the addition and comparison. */
sorry ("%<-fsplit-stack%> does not support 3 register parameters");
return INVALID_REGNUM;
}
}
}
/* A SYMBOL_REF for the function which allocates new stackspace for
-fsplit-stack. */
static GTY(()) rtx split_stack_fn;
/* A SYMBOL_REF for the more stack function when using the large
model. */
static GTY(()) rtx split_stack_fn_large;
/* Return location of the stack guard value in the TLS block. */
rtx
ix86_split_stack_guard (void)
{
int offset;
addr_space_t as = DEFAULT_TLS_SEG_REG;
rtx r;
gcc_assert (flag_split_stack);
#ifdef TARGET_THREAD_SPLIT_STACK_OFFSET
offset = TARGET_THREAD_SPLIT_STACK_OFFSET;
#else
gcc_unreachable ();
#endif
r = GEN_INT (offset);
r = gen_const_mem (Pmode, r);
set_mem_addr_space (r, as);
return r;
}
/* Handle -fsplit-stack. These are the first instructions in the
function, even before the regular prologue. */
void
ix86_expand_split_stack_prologue (void)
{
HOST_WIDE_INT allocate;
unsigned HOST_WIDE_INT args_size;
rtx_code_label *label;
rtx limit, current, allocate_rtx, call_fusage;
rtx_insn *call_insn;
rtx scratch_reg = NULL_RTX;
rtx_code_label *varargs_label = NULL;
rtx fn;
gcc_assert (flag_split_stack && reload_completed);
ix86_finalize_stack_frame_flags ();
struct ix86_frame &frame = cfun->machine->frame;
allocate = frame.stack_pointer_offset - INCOMING_FRAME_SP_OFFSET;
/* This is the label we will branch to if we have enough stack
space. We expect the basic block reordering pass to reverse this
branch if optimizing, so that we branch in the unlikely case. */
label = gen_label_rtx ();
/* We need to compare the stack pointer minus the frame size with
the stack boundary in the TCB. The stack boundary always gives
us SPLIT_STACK_AVAILABLE bytes, so if we need less than that we
can compare directly. Otherwise we need to do an addition. */
limit = ix86_split_stack_guard ();
if (allocate < SPLIT_STACK_AVAILABLE)
current = stack_pointer_rtx;
else
{
unsigned int scratch_regno;
rtx offset;
/* We need a scratch register to hold the stack pointer minus
the required frame size. Since this is the very start of the
function, the scratch register can be any caller-saved
register which is not used for parameters. */
offset = GEN_INT (- allocate);
scratch_regno = split_stack_prologue_scratch_regno ();
if (scratch_regno == INVALID_REGNUM)
return;
scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
if (!TARGET_64BIT || x86_64_immediate_operand (offset, Pmode))
{
/* We don't use gen_add in this case because it will
want to split to lea, but when not optimizing the insn
will not be split after this point. */
emit_insn (gen_rtx_SET (scratch_reg,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
offset)));
}
else
{
emit_move_insn (scratch_reg, offset);
emit_insn (gen_add2_insn (scratch_reg, stack_pointer_rtx));
}
current = scratch_reg;
}
ix86_expand_branch (GEU, current, limit, label);
rtx_insn *jump_insn = get_last_insn ();
JUMP_LABEL (jump_insn) = label;
/* Mark the jump as very likely to be taken. */
add_reg_br_prob_note (jump_insn, profile_probability::very_likely ());
if (split_stack_fn == NULL_RTX)
{
split_stack_fn = gen_rtx_SYMBOL_REF (Pmode, "__morestack");
SYMBOL_REF_FLAGS (split_stack_fn) |= SYMBOL_FLAG_LOCAL;
}
fn = split_stack_fn;
/* Get more stack space. We pass in the desired stack space and the
size of the arguments to copy to the new stack. In 32-bit mode
we push the parameters; __morestack will return on a new stack
anyhow. In 64-bit mode we pass the parameters in r10 and
r11. */
allocate_rtx = GEN_INT (allocate);
args_size = crtl->args.size >= 0 ? (HOST_WIDE_INT) crtl->args.size : 0;
call_fusage = NULL_RTX;
rtx pop = NULL_RTX;
if (TARGET_64BIT)
{
rtx reg10, reg11;
reg10 = gen_rtx_REG (Pmode, R10_REG);
reg11 = gen_rtx_REG (Pmode, R11_REG);
/* If this function uses a static chain, it will be in %r10.
Preserve it across the call to __morestack. */
if (DECL_STATIC_CHAIN (cfun->decl))
{
rtx rax;
rax = gen_rtx_REG (word_mode, AX_REG);
emit_move_insn (rax, gen_rtx_REG (word_mode, R10_REG));
use_reg (&call_fusage, rax);
}
if ((ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
&& !TARGET_PECOFF)
{
HOST_WIDE_INT argval;
gcc_assert (Pmode == DImode);
/* When using the large model we need to load the address
into a register, and we've run out of registers. So we
switch to a different calling convention, and we call a
different function: __morestack_large. We pass the
argument size in the upper 32 bits of r10 and pass the
frame size in the lower 32 bits. */
gcc_assert ((allocate & HOST_WIDE_INT_C (0xffffffff)) == allocate);
gcc_assert ((args_size & 0xffffffff) == args_size);
if (split_stack_fn_large == NULL_RTX)
{
split_stack_fn_large
= gen_rtx_SYMBOL_REF (Pmode, "__morestack_large_model");
SYMBOL_REF_FLAGS (split_stack_fn_large) |= SYMBOL_FLAG_LOCAL;
}
if (ix86_cmodel == CM_LARGE_PIC)
{
rtx_code_label *label;
rtx x;
label = gen_label_rtx ();
emit_label (label);
LABEL_PRESERVE_P (label) = 1;
emit_insn (gen_set_rip_rex64 (reg10, label));
emit_insn (gen_set_got_offset_rex64 (reg11, label));
emit_insn (gen_add2_insn (reg10, reg11));
x = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, split_stack_fn_large),
UNSPEC_GOT);
x = gen_rtx_CONST (Pmode, x);
emit_move_insn (reg11, x);
x = gen_rtx_PLUS (Pmode, reg10, reg11);
x = gen_const_mem (Pmode, x);
emit_move_insn (reg11, x);
}
else
emit_move_insn (reg11, split_stack_fn_large);
fn = reg11;
argval = ((args_size << 16) << 16) + allocate;
emit_move_insn (reg10, GEN_INT (argval));
}
else
{
emit_move_insn (reg10, allocate_rtx);
emit_move_insn (reg11, GEN_INT (args_size));
use_reg (&call_fusage, reg11);
}
use_reg (&call_fusage, reg10);
}
else
{
rtx_insn *insn = emit_insn (gen_push (GEN_INT (args_size)));
add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (UNITS_PER_WORD));
insn = emit_insn (gen_push (allocate_rtx));
add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (2 * UNITS_PER_WORD));
pop = GEN_INT (2 * UNITS_PER_WORD);
}
call_insn = ix86_expand_call (NULL_RTX, gen_rtx_MEM (QImode, fn),
GEN_INT (UNITS_PER_WORD), constm1_rtx,
pop, false);
add_function_usage_to (call_insn, call_fusage);
if (!TARGET_64BIT)
add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (0));
/* Indicate that this function can't jump to non-local gotos. */
make_reg_eh_region_note_nothrow_nononlocal (call_insn);
/* In order to make call/return prediction work right, we now need
to execute a return instruction. See
libgcc/config/i386/morestack.S for the details on how this works.
For flow purposes gcc must not see this as a return
instruction--we need control flow to continue at the subsequent
label. Therefore, we use an unspec. */
gcc_assert (crtl->args.pops_args < 65536);
rtx_insn *ret_insn
= emit_insn (gen_split_stack_return (GEN_INT (crtl->args.pops_args)));
if ((flag_cf_protection & CF_BRANCH))
{
/* Insert ENDBR since __morestack will jump back here via indirect
call. */
rtx cet_eb = gen_nop_endbr ();
emit_insn_after (cet_eb, ret_insn);
}
/* If we are in 64-bit mode and this function uses a static chain,
we saved %r10 in %rax before calling _morestack. */
if (TARGET_64BIT && DECL_STATIC_CHAIN (cfun->decl))
emit_move_insn (gen_rtx_REG (word_mode, R10_REG),
gen_rtx_REG (word_mode, AX_REG));
/* If this function calls va_start, we need to store a pointer to
the arguments on the old stack, because they may not have been
all copied to the new stack. At this point the old stack can be
found at the frame pointer value used by __morestack, because
__morestack has set that up before calling back to us. Here we
store that pointer in a scratch register, and in
ix86_expand_prologue we store the scratch register in a stack
slot. */
if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
{
unsigned int scratch_regno;
rtx frame_reg;
int words;
scratch_regno = split_stack_prologue_scratch_regno ();
scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
frame_reg = gen_rtx_REG (Pmode, BP_REG);
/* 64-bit:
fp -> old fp value
return address within this function
return address of caller of this function
stack arguments
So we add three words to get to the stack arguments.
32-bit:
fp -> old fp value
return address within this function
first argument to __morestack
second argument to __morestack
return address of caller of this function
stack arguments
So we add five words to get to the stack arguments.
*/
words = TARGET_64BIT ? 3 : 5;
emit_insn (gen_rtx_SET (scratch_reg,
plus_constant (Pmode, frame_reg,
words * UNITS_PER_WORD)));
varargs_label = gen_label_rtx ();
emit_jump_insn (gen_jump (varargs_label));
JUMP_LABEL (get_last_insn ()) = varargs_label;
emit_barrier ();
}
emit_label (label);
LABEL_NUSES (label) = 1;
/* If this function calls va_start, we now have to set the scratch
register for the case where we do not call __morestack. In this
case we need to set it based on the stack pointer. */
if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
{
emit_insn (gen_rtx_SET (scratch_reg,
plus_constant (Pmode, stack_pointer_rtx,
UNITS_PER_WORD)));
emit_label (varargs_label);
LABEL_NUSES (varargs_label) = 1;
}
}
/* We may have to tell the dataflow pass that the split stack prologue
is initializing a scratch register. */
static void
ix86_live_on_entry (bitmap regs)
{
if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
{
gcc_assert (flag_split_stack);
bitmap_set_bit (regs, split_stack_prologue_scratch_regno ());
}
}
/* Extract the parts of an RTL expression that is a valid memory address
for an instruction. Return false if the structure of the address is
grossly off. */
bool
ix86_decompose_address (rtx addr, struct ix86_address *out)
{
rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
rtx base_reg, index_reg;
HOST_WIDE_INT scale = 1;
rtx scale_rtx = NULL_RTX;
rtx tmp;
addr_space_t seg = ADDR_SPACE_GENERIC;
/* Allow zero-extended SImode addresses,
they will be emitted with addr32 prefix. */
if (TARGET_64BIT && GET_MODE (addr) == DImode)
{
if (GET_CODE (addr) == ZERO_EXTEND
&& GET_MODE (XEXP (addr, 0)) == SImode)
{
addr = XEXP (addr, 0);
if (CONST_INT_P (addr))
return false;
}
else if (GET_CODE (addr) == AND
&& const_32bit_mask (XEXP (addr, 1), DImode))
{
addr = lowpart_subreg (SImode, XEXP (addr, 0), DImode);
if (addr == NULL_RTX)
return false;
if (CONST_INT_P (addr))
return false;
}
else if (GET_CODE (addr) == AND)
{
/* For ASHIFT inside AND, combine will not generate
canonical zero-extend. Merge mask for AND and shift_count
to check if it is canonical zero-extend. */
tmp = XEXP (addr, 0);
rtx mask = XEXP (addr, 1);
if (tmp && GET_CODE(tmp) == ASHIFT)
{
rtx shift_val = XEXP (tmp, 1);
if (CONST_INT_P (mask) && CONST_INT_P (shift_val)
&& (((unsigned HOST_WIDE_INT) INTVAL(mask)
| ((HOST_WIDE_INT_1U << INTVAL(shift_val)) - 1))
== 0xffffffff))
{
addr = lowpart_subreg (SImode, XEXP (addr, 0),
DImode);
}
}
}
}
/* Allow SImode subregs of DImode addresses,
they will be emitted with addr32 prefix. */
if (TARGET_64BIT && GET_MODE (addr) == SImode)
{
if (SUBREG_P (addr)
&& GET_MODE (SUBREG_REG (addr)) == DImode)
{
addr = SUBREG_REG (addr);
if (CONST_INT_P (addr))
return false;
}
}
if (REG_P (addr))
base = addr;
else if (SUBREG_P (addr))
{
if (REG_P (SUBREG_REG (addr)))
base = addr;
else
return false;
}
else if (GET_CODE (addr) == PLUS)
{
rtx addends[4], op;
int n = 0, i;
op = addr;
do
{
if (n >= 4)
return false;
addends[n++] = XEXP (op, 1);
op = XEXP (op, 0);
}
while (GET_CODE (op) == PLUS);
if (n >= 4)
return false;
addends[n] = op;
for (i = n; i >= 0; --i)
{
op = addends[i];
switch (GET_CODE (op))
{
case MULT:
if (index)
return false;
index = XEXP (op, 0);
scale_rtx = XEXP (op, 1);
break;
case ASHIFT:
if (index)
return false;
index = XEXP (op, 0);
tmp = XEXP (op, 1);
if (!CONST_INT_P (tmp))
return false;
scale = INTVAL (tmp);
if ((unsigned HOST_WIDE_INT) scale > 3)
return false;
scale = 1 << scale;
break;
case ZERO_EXTEND:
op = XEXP (op, 0);
if (GET_CODE (op) != UNSPEC)
return false;
/* FALLTHRU */
case UNSPEC:
if (XINT (op, 1) == UNSPEC_TP
&& TARGET_TLS_DIRECT_SEG_REFS
&& seg == ADDR_SPACE_GENERIC)
seg = DEFAULT_TLS_SEG_REG;
else
return false;
break;
case SUBREG:
if (!REG_P (SUBREG_REG (op)))
return false;
/* FALLTHRU */
case REG:
if (!base)
base = op;
else if (!index)
index = op;
else
return false;
break;
case CONST:
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
if (disp)
return false;
disp = op;
break;
default:
return false;
}
}
}
else if (GET_CODE (addr) == MULT)
{
index = XEXP (addr, 0); /* index*scale */
scale_rtx = XEXP (addr, 1);
}
else if (GET_CODE (addr) == ASHIFT)
{
/* We're called for lea too, which implements ashift on occasion. */
index = XEXP (addr, 0);
tmp = XEXP (addr, 1);
if (!CONST_INT_P (tmp))
return false;
scale = INTVAL (tmp);
if ((unsigned HOST_WIDE_INT) scale > 3)
return false;
scale = 1 << scale;
}
else
disp = addr; /* displacement */
if (index)
{
if (REG_P (index))
;
else if (SUBREG_P (index)
&& REG_P (SUBREG_REG (index)))
;
else
return false;
}
/* Extract the integral value of scale. */
if (scale_rtx)
{
if (!CONST_INT_P (scale_rtx))
return false;
scale = INTVAL (scale_rtx);
}
base_reg = base && SUBREG_P (base) ? SUBREG_REG (base) : base;
index_reg = index && SUBREG_P (index) ? SUBREG_REG (index) : index;
/* Avoid useless 0 displacement. */
if (disp == const0_rtx && (base || index))
disp = NULL_RTX;
/* Allow arg pointer and stack pointer as index if there is not scaling. */
if (base_reg && index_reg && scale == 1
&& (REGNO (index_reg) == ARG_POINTER_REGNUM
|| REGNO (index_reg) == FRAME_POINTER_REGNUM
|| REGNO (index_reg) == SP_REG))
{
std::swap (base, index);
std::swap (base_reg, index_reg);
}
/* Special case: %ebp cannot be encoded as a base without a displacement.
Similarly %r13. */
if (!disp && base_reg
&& (REGNO (base_reg) == ARG_POINTER_REGNUM
|| REGNO (base_reg) == FRAME_POINTER_REGNUM
|| REGNO (base_reg) == BP_REG
|| REGNO (base_reg) == R13_REG))
disp = const0_rtx;
/* Special case: on K6, [%esi] makes the instruction vector decoded.
Avoid this by transforming to [%esi+0].
Reload calls address legitimization without cfun defined, so we need
to test cfun for being non-NULL. */
if (TARGET_CPU_P (K6) && cfun && optimize_function_for_speed_p (cfun)
&& base_reg && !index_reg && !disp
&& REGNO (base_reg) == SI_REG)
disp = const0_rtx;
/* Special case: encode reg+reg instead of reg*2. */
if (!base && index && scale == 2)
base = index, base_reg = index_reg, scale = 1;
/* Special case: scaling cannot be encoded without base or displacement. */
if (!base && !disp && index && scale != 1)
disp = const0_rtx;
out->base = base;
out->index = index;
out->disp = disp;
out->scale = scale;
out->seg = seg;
return true;
}
/* Return cost of the memory address x.
For i386, it is better to use a complex address than let gcc copy
the address into a reg and make a new pseudo. But not if the address
requires to two regs - that would mean more pseudos with longer
lifetimes. */
static int
ix86_address_cost (rtx x, machine_mode, addr_space_t, bool)
{
struct ix86_address parts;
int cost = 1;
int ok = ix86_decompose_address (x, &parts);
gcc_assert (ok);
if (parts.base && SUBREG_P (parts.base))
parts.base = SUBREG_REG (parts.base);
if (parts.index && SUBREG_P (parts.index))
parts.index = SUBREG_REG (parts.index);
/* Attempt to minimize number of registers in the address by increasing
address cost for each used register. We don't increase address cost
for "pic_offset_table_rtx". When a memopt with "pic_offset_table_rtx"
is not invariant itself it most likely means that base or index is not
invariant. Therefore only "pic_offset_table_rtx" could be hoisted out,
which is not profitable for x86. */
if (parts.base
&& (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)
&& (current_pass->type == GIMPLE_PASS
|| !pic_offset_table_rtx
|| !REG_P (parts.base)
|| REGNO (pic_offset_table_rtx) != REGNO (parts.base)))
cost++;
if (parts.index
&& (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER)
&& (current_pass->type == GIMPLE_PASS
|| !pic_offset_table_rtx
|| !REG_P (parts.index)
|| REGNO (pic_offset_table_rtx) != REGNO (parts.index)))
cost++;
/* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b,
since it's predecode logic can't detect the length of instructions
and it degenerates to vector decoded. Increase cost of such
addresses here. The penalty is minimally 2 cycles. It may be worthwhile
to split such addresses or even refuse such addresses at all.
Following addressing modes are affected:
[base+scale*index]
[scale*index+disp]
[base+index]
The first and last case may be avoidable by explicitly coding the zero in
memory address, but I don't have AMD-K6 machine handy to check this
theory. */
if (TARGET_CPU_P (K6)
&& ((!parts.disp && parts.base && parts.index && parts.scale != 1)
|| (parts.disp && !parts.base && parts.index && parts.scale != 1)
|| (!parts.disp && parts.base && parts.index && parts.scale == 1)))
cost += 10;
return cost;
}
/* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as
this is used for to form addresses to local data when -fPIC is in
use. */
static bool
darwin_local_data_pic (rtx disp)
{
return (GET_CODE (disp) == UNSPEC
&& XINT (disp, 1) == UNSPEC_MACHOPIC_OFFSET);
}
/* True if the function symbol operand X should be loaded from GOT.
If CALL_P is true, X is a call operand.
NB: -mno-direct-extern-access doesn't force load from GOT for
call.
NB: In 32-bit mode, only non-PIC is allowed in inline assembly
statements, since a PIC register could not be available at the
call site. */
bool
ix86_force_load_from_GOT_p (rtx x, bool call_p)
{
return ((TARGET_64BIT || (!flag_pic && HAVE_AS_IX86_GOT32X))
&& !TARGET_PECOFF && !TARGET_MACHO
&& (!flag_pic || this_is_asm_operands)
&& ix86_cmodel != CM_LARGE
&& ix86_cmodel != CM_LARGE_PIC
&& GET_CODE (x) == SYMBOL_REF
&& ((!call_p
&& (!ix86_direct_extern_access
|| (SYMBOL_REF_DECL (x)
&& lookup_attribute ("nodirect_extern_access",
DECL_ATTRIBUTES (SYMBOL_REF_DECL (x))))))
|| (SYMBOL_REF_FUNCTION_P (x)
&& (!flag_plt
|| (SYMBOL_REF_DECL (x)
&& lookup_attribute ("noplt",
DECL_ATTRIBUTES (SYMBOL_REF_DECL (x)))))))
&& !SYMBOL_REF_LOCAL_P (x));
}
/* Determine if a given RTX is a valid constant. We already know this
satisfies CONSTANT_P. */
static bool
ix86_legitimate_constant_p (machine_mode mode, rtx x)
{
switch (GET_CODE (x))
{
case CONST:
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS)
{
if (!CONST_INT_P (XEXP (x, 1)))
return false;
x = XEXP (x, 0);
}
if (TARGET_MACHO && darwin_local_data_pic (x))
return true;
/* Only some unspecs are valid as "constants". */
if (GET_CODE (x) == UNSPEC)
switch (XINT (x, 1))
{
case UNSPEC_GOT:
case UNSPEC_GOTOFF:
case UNSPEC_PLTOFF:
return TARGET_64BIT;
case UNSPEC_TPOFF:
case UNSPEC_NTPOFF:
x = XVECEXP (x, 0, 0);
return (GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC);
case UNSPEC_DTPOFF:
x = XVECEXP (x, 0, 0);
return (GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC);
default:
return false;
}
/* We must have drilled down to a symbol. */
if (GET_CODE (x) == LABEL_REF)
return true;
if (GET_CODE (x) != SYMBOL_REF)
return false;
/* FALLTHRU */
case SYMBOL_REF:
/* TLS symbols are never valid. */
if (SYMBOL_REF_TLS_MODEL (x))
return false;
/* DLLIMPORT symbols are never valid. */
if (TARGET_DLLIMPORT_DECL_ATTRIBUTES
&& SYMBOL_REF_DLLIMPORT_P (x))
return false;
#if TARGET_MACHO
/* mdynamic-no-pic */
if (MACHO_DYNAMIC_NO_PIC_P)
return machopic_symbol_defined_p (x);
#endif
/* External function address should be loaded
via the GOT slot to avoid PLT. */
if (ix86_force_load_from_GOT_p (x))
return false;
break;
CASE_CONST_SCALAR_INT:
if (ix86_endbr_immediate_operand (x, VOIDmode))
return false;
switch (mode)
{
case E_TImode:
if (TARGET_64BIT)
return true;
/* FALLTHRU */
case E_OImode:
case E_XImode:
if (!standard_sse_constant_p (x, mode)
&& GET_MODE_SIZE (TARGET_AVX512F
? XImode
: (TARGET_AVX
? OImode
: (TARGET_SSE2
? TImode : DImode))) < GET_MODE_SIZE (mode))
return false;
default:
break;
}
break;
case CONST_VECTOR:
if (!standard_sse_constant_p (x, mode))
return false;
break;
case CONST_DOUBLE:
if (mode == E_BFmode)
return false;
default:
break;
}
/* Otherwise we handle everything else in the move patterns. */
return true;
}
/* Determine if it's legal to put X into the constant pool. This
is not possible for the address of thread-local symbols, which
is checked above. */
static bool
ix86_cannot_force_const_mem (machine_mode mode, rtx x)
{
/* We can put any immediate constant in memory. */
switch (GET_CODE (x))
{
CASE_CONST_ANY:
return false;
default:
break;
}
return !ix86_legitimate_constant_p (mode, x);
}
/* Nonzero if the symbol is marked as dllimport, or as stub-variable,
otherwise zero. */
static bool
is_imported_p (rtx x)
{
if (!TARGET_DLLIMPORT_DECL_ATTRIBUTES
|| GET_CODE (x) != SYMBOL_REF)
return false;
return SYMBOL_REF_DLLIMPORT_P (x) || SYMBOL_REF_STUBVAR_P (x);
}
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P. */
bool
legitimate_pic_operand_p (rtx x)
{
rtx inner;
switch (GET_CODE (x))
{
case CONST:
inner = XEXP (x, 0);
if (GET_CODE (inner) == PLUS
&& CONST_INT_P (XEXP (inner, 1)))
inner = XEXP (inner, 0);
/* Only some unspecs are valid as "constants". */
if (GET_CODE (inner) == UNSPEC)
switch (XINT (inner, 1))
{
case UNSPEC_GOT:
case UNSPEC_GOTOFF:
case UNSPEC_PLTOFF:
return TARGET_64BIT;
case UNSPEC_TPOFF:
x = XVECEXP (inner, 0, 0);
return (GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC);
case UNSPEC_MACHOPIC_OFFSET:
return legitimate_pic_address_disp_p (x);
default:
return false;
}
/* FALLTHRU */
case SYMBOL_REF:
case LABEL_REF:
return legitimate_pic_address_disp_p (x);
default:
return true;
}
}
/* Determine if a given CONST RTX is a valid memory displacement
in PIC mode. */
bool
legitimate_pic_address_disp_p (rtx disp)
{
bool saw_plus;
/* In 64bit mode we can allow direct addresses of symbols and labels
when they are not dynamic symbols. */
if (TARGET_64BIT)
{
rtx op0 = disp, op1;
switch (GET_CODE (disp))
{
case LABEL_REF:
return true;
case CONST:
if (GET_CODE (XEXP (disp, 0)) != PLUS)
break;
op0 = XEXP (XEXP (disp, 0), 0);
op1 = XEXP (XEXP (disp, 0), 1);
if (!CONST_INT_P (op1))
break;
if (GET_CODE (op0) == UNSPEC
&& (XINT (op0, 1) == UNSPEC_DTPOFF
|| XINT (op0, 1) == UNSPEC_NTPOFF)
&& trunc_int_for_mode (INTVAL (op1), SImode) == INTVAL (op1))
return true;
if (INTVAL (op1) >= 16*1024*1024
|| INTVAL (op1) < -16*1024*1024)
break;
if (GET_CODE (op0) == LABEL_REF)
return true;
if (GET_CODE (op0) == CONST
&& GET_CODE (XEXP (op0, 0)) == UNSPEC
&& XINT (XEXP (op0, 0), 1) == UNSPEC_PCREL)
return true;
if (GET_CODE (op0) == UNSPEC
&& XINT (op0, 1) == UNSPEC_PCREL)
return true;
if (GET_CODE (op0) != SYMBOL_REF)
break;
/* FALLTHRU */
case SYMBOL_REF:
/* TLS references should always be enclosed in UNSPEC.
The dllimported symbol needs always to be resolved. */
if (SYMBOL_REF_TLS_MODEL (op0)
|| (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op0)))
return false;
if (TARGET_PECOFF)
{
if (is_imported_p (op0))
return true;
if (SYMBOL_REF_FAR_ADDR_P (op0) || !SYMBOL_REF_LOCAL_P (op0))
break;
/* Non-external-weak function symbols need to be resolved only
for the large model. Non-external symbols don't need to be
resolved for large and medium models. For the small model,
we don't need to resolve anything here. */
if ((ix86_cmodel != CM_LARGE_PIC
&& SYMBOL_REF_FUNCTION_P (op0)
&& !(SYMBOL_REF_EXTERNAL_P (op0) && SYMBOL_REF_WEAK (op0)))
|| !SYMBOL_REF_EXTERNAL_P (op0)
|| ix86_cmodel == CM_SMALL_PIC)
return true;
}
else if (!SYMBOL_REF_FAR_ADDR_P (op0)
&& (SYMBOL_REF_LOCAL_P (op0)
|| ((ix86_direct_extern_access
&& !(SYMBOL_REF_DECL (op0)
&& lookup_attribute ("nodirect_extern_access",
DECL_ATTRIBUTES (SYMBOL_REF_DECL (op0)))))
&& HAVE_LD_PIE_COPYRELOC
&& flag_pie
&& !SYMBOL_REF_WEAK (op0)
&& !SYMBOL_REF_FUNCTION_P (op0)))
&& ix86_cmodel != CM_LARGE_PIC)
return true;
break;
default:
break;
}
}
if (GET_CODE (disp) != CONST)
return false;
disp = XEXP (disp, 0);
if (TARGET_64BIT)
{
/* We are unsafe to allow PLUS expressions. This limit allowed distance
of GOT tables. We should not need these anyway. */
if (GET_CODE (disp) != UNSPEC
|| (XINT (disp, 1) != UNSPEC_GOTPCREL
&& XINT (disp, 1) != UNSPEC_GOTOFF
&& XINT (disp, 1) != UNSPEC_PCREL
&& XINT (disp, 1) != UNSPEC_PLTOFF))
return false;
if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
&& GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF)
return false;
return true;
}
saw_plus = false;
if (GET_CODE (disp) == PLUS)
{
if (!CONST_INT_P (XEXP (disp, 1)))
return false;
disp = XEXP (disp, 0);
saw_plus = true;
}
if (TARGET_MACHO && darwin_local_data_pic (disp))
return true;
if (GET_CODE (disp) != UNSPEC)
return false;
switch (XINT (disp, 1))
{
case UNSPEC_GOT:
if (saw_plus)
return false;
/* We need to check for both symbols and labels because VxWorks loads
text labels with @GOT rather than @GOTOFF. See gotoff_operand for
details. */
return (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF
|| GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF);
case UNSPEC_GOTOFF:
/* Refuse GOTOFF in 64bit mode since it is always 64bit when used.
While ABI specify also 32bit relocation but we don't produce it in
small PIC model at all. */
if ((GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF
|| GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF)
&& !TARGET_64BIT)
return !TARGET_PECOFF && gotoff_operand (XVECEXP (disp, 0, 0), Pmode);
return false;
case UNSPEC_GOTTPOFF:
case UNSPEC_GOTNTPOFF:
case UNSPEC_INDNTPOFF:
if (saw_plus)
return false;
disp = XVECEXP (disp, 0, 0);
return (GET_CODE (disp) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_INITIAL_EXEC);
case UNSPEC_NTPOFF:
disp = XVECEXP (disp, 0, 0);
return (GET_CODE (disp) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_EXEC);
case UNSPEC_DTPOFF:
disp = XVECEXP (disp, 0, 0);
return (GET_CODE (disp) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_DYNAMIC);
}
return false;
}
/* Determine if op is suitable RTX for an address register.
Return naked register if a register or a register subreg is
found, otherwise return NULL_RTX. */
static rtx
ix86_validate_address_register (rtx op)
{
machine_mode mode = GET_MODE (op);
/* Only SImode or DImode registers can form the address. */
if (mode != SImode && mode != DImode)
return NULL_RTX;
if (REG_P (op))
return op;
else if (SUBREG_P (op))
{
rtx reg = SUBREG_REG (op);
if (!REG_P (reg))
return NULL_RTX;
mode = GET_MODE (reg);
/* Don't allow SUBREGs that span more than a word. It can
lead to spill failures when the register is one word out
of a two word structure. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
return NULL_RTX;
/* Allow only SUBREGs of non-eliminable hard registers. */
if (register_no_elim_operand (reg, mode))
return reg;
}
/* Op is not a register. */
return NULL_RTX;
}
/* Recognizes RTL expressions that are valid memory addresses for an
instruction. The MODE argument is the machine mode for the MEM
expression that wants to use this address.
It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
convert common non-canonical forms to canonical form so that they will
be recognized. */
static bool
ix86_legitimate_address_p (machine_mode, rtx addr, bool strict)
{
struct ix86_address parts;
rtx base, index, disp;
HOST_WIDE_INT scale;
addr_space_t seg;
if (ix86_decompose_address (addr, &parts) == 0)
/* Decomposition failed. */
return false;
base = parts.base;
index = parts.index;
disp = parts.disp;
scale = parts.scale;
seg = parts.seg;
/* Validate base register. */
if (base)
{
rtx reg = ix86_validate_address_register (base);
if (reg == NULL_RTX)
return false;
if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg))
|| (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg)))
/* Base is not valid. */
return false;
}
/* Validate index register. */
if (index)
{
rtx reg = ix86_validate_address_register (index);
if (reg == NULL_RTX)
return false;
if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg))
|| (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg)))
/* Index is not valid. */
return false;
}
/* Index and base should have the same mode. */
if (base && index
&& GET_MODE (base) != GET_MODE (index))
return false;
/* Address override works only on the (%reg) part of %fs:(%reg). */
if (seg != ADDR_SPACE_GENERIC
&& ((base && GET_MODE (base) != word_mode)
|| (index && GET_MODE (index) != word_mode)))
return false;
/* Validate scale factor. */
if (scale != 1)
{
if (!index)
/* Scale without index. */
return false;
if (scale != 2 && scale != 4 && scale != 8)
/* Scale is not a valid multiplier. */
return false;
}
/* Validate displacement. */
if (disp)
{
if (ix86_endbr_immediate_operand (disp, VOIDmode))
return false;
if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == UNSPEC
&& XINT (XEXP (disp, 0), 1) != UNSPEC_MACHOPIC_OFFSET)
switch (XINT (XEXP (disp, 0), 1))
{
/* Refuse GOTOFF and GOT in 64bit mode since it is always 64bit
when used. While ABI specify also 32bit relocations, we
don't produce them at all and use IP relative instead.
Allow GOT in 32bit mode for both PIC and non-PIC if symbol
should be loaded via GOT. */
case UNSPEC_GOT:
if (!TARGET_64BIT
&& ix86_force_load_from_GOT_p (XVECEXP (XEXP (disp, 0), 0, 0)))
goto is_legitimate_pic;
/* FALLTHRU */
case UNSPEC_GOTOFF:
gcc_assert (flag_pic);
if (!TARGET_64BIT)
goto is_legitimate_pic;
/* 64bit address unspec. */
return false;
case UNSPEC_GOTPCREL:
if (ix86_force_load_from_GOT_p (XVECEXP (XEXP (disp, 0), 0, 0)))
goto is_legitimate_pic;
/* FALLTHRU */
case UNSPEC_PCREL:
gcc_assert (flag_pic);
goto is_legitimate_pic;
case UNSPEC_GOTTPOFF:
case UNSPEC_GOTNTPOFF:
case UNSPEC_INDNTPOFF:
case UNSPEC_NTPOFF:
case UNSPEC_DTPOFF:
break;
default:
/* Invalid address unspec. */
return false;
}
else if (SYMBOLIC_CONST (disp)
&& (flag_pic
#if TARGET_MACHO
|| (MACHOPIC_INDIRECT
&& !machopic_operand_p (disp))
#endif
))
{
is_legitimate_pic:
if (TARGET_64BIT && (index || base))
{
/* foo@dtpoff(%rX) is ok. */
if (GET_CODE (disp) != CONST
|| GET_CODE (XEXP (disp, 0)) != PLUS
|| GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC
|| !CONST_INT_P (XEXP (XEXP (disp, 0), 1))
|| (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF
&& XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF))
/* Non-constant pic memory reference. */
return false;
}
else if ((!TARGET_MACHO || flag_pic)
&& ! legitimate_pic_address_disp_p (disp))
/* Displacement is an invalid pic construct. */
return false;
#if TARGET_MACHO
else if (MACHO_DYNAMIC_NO_PIC_P
&& !ix86_legitimate_constant_p (Pmode, disp))
/* displacment must be referenced via non_lazy_pointer */
return false;
#endif
/* This code used to verify that a symbolic pic displacement
includes the pic_offset_table_rtx register.
While this is good idea, unfortunately these constructs may
be created by "adds using lea" optimization for incorrect
code like:
int a;
int foo(int i)
{
return *(&a+i);
}
This code is nonsensical, but results in addressing
GOT table with pic_offset_table_rtx base. We can't
just refuse it easily, since it gets matched by
"addsi3" pattern, that later gets split to lea in the
case output register differs from input. While this
can be handled by separate addsi pattern for this case
that never results in lea, this seems to be easier and
correct fix for crash to disable this test. */
}
else if (GET_CODE (disp) != LABEL_REF
&& !CONST_INT_P (disp)
&& (GET_CODE (disp) != CONST
|| !ix86_legitimate_constant_p (Pmode, disp))
&& (GET_CODE (disp) != SYMBOL_REF
|| !ix86_legitimate_constant_p (Pmode, disp)))
/* Displacement is not constant. */
return false;
else if (TARGET_64BIT
&& !x86_64_immediate_operand (disp, VOIDmode))
/* Displacement is out of range. */
return false;
/* In x32 mode, constant addresses are sign extended to 64bit, so
we have to prevent addresses from 0x80000000 to 0xffffffff. */
else if (TARGET_X32 && !(index || base)
&& CONST_INT_P (disp)
&& val_signbit_known_set_p (SImode, INTVAL (disp)))
return false;
}
/* Everything looks valid. */
return true;
}
/* Determine if a given RTX is a valid constant address. */
bool
constant_address_p (rtx x)
{
return CONSTANT_P (x) && ix86_legitimate_address_p (Pmode, x, 1);
}
/* Return a unique alias set for the GOT. */
alias_set_type
ix86_GOT_alias_set (void)
{
static alias_set_type set = -1;
if (set == -1)
set = new_alias_set ();
return set;
}
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
There are two types of references that must be handled:
1. Global data references must load the address from the GOT, via
the PIC reg. An insn is emitted to do this load, and the reg is
returned.
2. Static data references, constant pool addresses, and code labels
compute the address as an offset from the GOT, whose base is in
the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to
differentiate them from global data objects. The returned
address is the PIC reg + an unspec constant.
TARGET_LEGITIMATE_ADDRESS_P rejects symbolic references unless the PIC
reg also appears in the address. */
rtx
legitimize_pic_address (rtx orig, rtx reg)
{
rtx addr = orig;
rtx new_rtx = orig;
#if TARGET_MACHO
if (TARGET_MACHO && !TARGET_64BIT)
{
if (reg == 0)
reg = gen_reg_rtx (Pmode);
/* Use the generic Mach-O PIC machinery. */
return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg);
}
#endif
if (TARGET_64BIT && TARGET_DLLIMPORT_DECL_ATTRIBUTES)
{
rtx tmp = legitimize_pe_coff_symbol (addr, true);
if (tmp)
return tmp;
}
if (TARGET_64BIT && legitimate_pic_address_disp_p (addr))
new_rtx = addr;
else if ((!TARGET_64BIT
|| /* TARGET_64BIT && */ ix86_cmodel != CM_SMALL_PIC)
&& !TARGET_PECOFF
&& gotoff_operand (addr, Pmode))
{
/* This symbol may be referenced via a displacement
from the PIC base address (@GOTOFF). */
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS)
{
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)),
UNSPEC_GOTOFF);
new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1));
}
else
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
if (TARGET_64BIT)
new_rtx = copy_to_suggested_reg (new_rtx, reg, Pmode);
if (reg != 0)
{
gcc_assert (REG_P (reg));
new_rtx = expand_simple_binop (Pmode, PLUS, pic_offset_table_rtx,
new_rtx, reg, 1, OPTAB_DIRECT);
}
else
new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
}
else if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (addr) == 0)
/* We can't always use @GOTOFF for text labels
on VxWorks, see gotoff_operand. */
|| (TARGET_VXWORKS_RTP && GET_CODE (addr) == LABEL_REF))
{
rtx tmp = legitimize_pe_coff_symbol (addr, true);
if (tmp)
return tmp;
/* For x64 PE-COFF there is no GOT table,
so we use address directly. */
if (TARGET_64BIT && TARGET_PECOFF)
{
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_PCREL);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
}
else if (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC)
{
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr),
UNSPEC_GOTPCREL);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
new_rtx = gen_const_mem (Pmode, new_rtx);
set_mem_alias_set (new_rtx, ix86_GOT_alias_set ());
}
else
{
/* This symbol must be referenced via a load
from the Global Offset Table (@GOT). */
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
if (TARGET_64BIT)
new_rtx = copy_to_suggested_reg (new_rtx, reg, Pmode);
if (reg != 0)
{
gcc_assert (REG_P (reg));
new_rtx = expand_simple_binop (Pmode, PLUS, pic_offset_table_rtx,
new_rtx, reg, 1, OPTAB_DIRECT);
}
else
new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
new_rtx = gen_const_mem (Pmode, new_rtx);
set_mem_alias_set (new_rtx, ix86_GOT_alias_set ());
}
new_rtx = copy_to_suggested_reg (new_rtx, reg, Pmode);
}
else
{
if (CONST_INT_P (addr)
&& !x86_64_immediate_operand (addr, VOIDmode))
new_rtx = copy_to_suggested_reg (addr, reg, Pmode);
else if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
/* We must match stuff we generate before. Assume the only
unspecs that can get here are ours. Not that we could do
anything with them anyway.... */
if (GET_CODE (addr) == UNSPEC
|| (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == UNSPEC))
return orig;
gcc_assert (GET_CODE (addr) == PLUS);
}
if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
/* Check first to see if this is a constant
offset from a @GOTOFF symbol reference. */
if (!TARGET_PECOFF
&& gotoff_operand (op0, Pmode)
&& CONST_INT_P (op1))
{
if (!TARGET_64BIT)
{
new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0),
UNSPEC_GOTOFF);
new_rtx = gen_rtx_PLUS (Pmode, new_rtx, op1);
new_rtx = gen_rtx_CONST (Pmode, new_rtx);
if (reg != 0)
{
gcc_assert (REG_P (reg));
new_rtx = expand_simple_binop (Pmode, PLUS,
pic_offset_table_rtx,
new_rtx, reg, 1,
OPTAB_DIRECT);
}
else
new_rtx
= gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
}
else
{
if (INTVAL (op1) < -16*1024*1024
|| INTVAL (op1) >= 16*1024*1024)
{
if (!x86_64_immediate_operand (op1, Pmode))
op1 = force_reg (Pmode, op1);
new_rtx
= gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1);
}
}
}
else
{
rtx base = legitimize_pic_address (op0, reg);
machine_mode mode = GET_MODE (base);
new_rtx
= legitimize_pic_address (op1, base == reg ? NULL_RTX : reg);
if (CONST_INT_P (new_rtx))
{
if (INTVAL (new_rtx) < -16*1024*1024
|| INTVAL (new_rtx) >= 16*1024*1024)
{
if (!x86_64_immediate_operand (new_rtx, mode))
new_rtx = force_reg (mode, new_rtx);
new_rtx
= gen_rtx_PLUS (mode, force_reg (mode, base), new_rtx);
}
else
new_rtx = plus_constant (mode, base, INTVAL (new_rtx));
}
else
{
/* For %rip addressing, we have to use
just disp32, not base nor index. */
if (TARGET_64BIT
&& (GET_CODE (base) == SYMBOL_REF
|| GET_CODE (base) == LABEL_REF))
base = force_reg (mode, base);
if (GET_CODE (new_rtx) == PLUS
&& CONSTANT_P (XEXP (new_rtx, 1)))
{
base = gen_rtx_PLUS (mode, base, XEXP (new_rtx, 0));
new_rtx = XEXP (new_rtx, 1);
}
new_rtx = gen_rtx_PLUS (mode, base, new_rtx);
}
}
}
}
return new_rtx;
}
/* Load the thread pointer. If TO_REG is true, force it into a register. */
static rtx
get_thread_pointer (machine_mode tp_mode, bool to_reg)
{
rtx tp = gen_rtx_UNSPEC (ptr_mode, gen_rtvec (1, const0_rtx), UNSPEC_TP);
if (GET_MODE (tp) != tp_mode)
{
gcc_assert (GET_MODE (tp) == SImode);
gcc_assert (tp_mode == DImode);
tp = gen_rtx_ZERO_EXTEND (tp_mode, tp);
}
if (to_reg)
tp = copy_to_mode_reg (tp_mode, tp);
return tp;
}
/* Construct the SYMBOL_REF for the tls_get_addr function. */
static GTY(()) rtx ix86_tls_symbol;
static rtx
ix86_tls_get_addr (void)
{
if (!ix86_tls_symbol)
{
const char *sym
= ((TARGET_ANY_GNU_TLS && !TARGET_64BIT)
? "___tls_get_addr" : "__tls_get_addr");
ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, sym);
}
if (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF)
{
rtx unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, ix86_tls_symbol),
UNSPEC_PLTOFF);
return gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
gen_rtx_CONST (Pmode, unspec));
}
return ix86_tls_symbol;
}
/* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */
static GTY(()) rtx ix86_tls_module_base_symbol;
rtx
ix86_tls_module_base (void)
{
if (!ix86_tls_module_base_symbol)
{
ix86_tls_module_base_symbol
= gen_rtx_SYMBOL_REF (ptr_mode, "_TLS_MODULE_BASE_");
SYMBOL_REF_FLAGS (ix86_tls_module_base_symbol)
|= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
}
return ix86_tls_module_base_symbol;
}
/* A subroutine of ix86_legitimize_address and ix86_expand_move. FOR_MOV is
false if we expect this to be used for a memory address and true if
we expect to load the address into a register. */
rtx
legitimize_tls_address (rtx x, enum tls_model model, bool for_mov)
{
rtx dest, base, off;
rtx pic = NULL_RTX, tp = NULL_RTX;
machine_mode tp_mode = Pmode;
int type;
/* Fall back to global dynamic model if tool chain cannot support local
dynamic. */
if (TARGET_SUN_TLS && !TARGET_64BIT
&& !HAVE_AS_IX86_TLSLDMPLT && !HAVE_AS_IX86_TLSLDM
&& model == TLS_MODEL_LOCAL_DYNAMIC)
model = TLS_MODEL_GLOBAL_DYNAMIC;
switch (model)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
if (!TARGET_64BIT)
{
if (flag_pic && !TARGET_PECOFF)
pic = pic_offset_table_rtx;
else
{
pic = gen_reg_rtx (Pmode);
emit_insn (gen_set_got (pic));
}
}
if (TARGET_GNU2_TLS)
{
dest = gen_reg_rtx (ptr_mode);
if (TARGET_64BIT)
emit_insn (gen_tls_dynamic_gnu2_64 (ptr_mode, dest, x));
else
emit_insn (gen_tls_dynamic_gnu2_32 (dest, x, pic));
tp = get_thread_pointer (ptr_mode, true);
dest = gen_rtx_PLUS (ptr_mode, tp, dest);
if (GET_MODE (dest) != Pmode)
dest = gen_rtx_ZERO_EXTEND (Pmode, dest);
dest = force_reg (Pmode, dest);
if (GET_MODE (x) != Pmode)
x = gen_rtx_ZERO_EXTEND (Pmode, x);
set_unique_reg_note (get_last_insn (), REG_EQUAL, x);
}
else
{
rtx caddr = ix86_tls_get_addr ();
dest = gen_reg_rtx (Pmode);
if (TARGET_64BIT)
{
rtx rax = gen_rtx_REG (Pmode, AX_REG);
rtx_insn *insns;
start_sequence ();
emit_call_insn
(gen_tls_global_dynamic_64 (Pmode, rax, x, caddr));
insns = get_insns ();
end_sequence ();
if (GET_MODE (x) != Pmode)
x = gen_rtx_ZERO_EXTEND (Pmode, x);
RTL_CONST_CALL_P (insns) = 1;
emit_libcall_block (insns, dest, rax, x);
}
else
emit_insn (gen_tls_global_dynamic_32 (dest, x, pic, caddr));
}
break;
case TLS_MODEL_LOCAL_DYNAMIC:
if (!TARGET_64BIT)
{
if (flag_pic)
pic = pic_offset_table_rtx;
else
{
pic = gen_reg_rtx (Pmode);
emit_insn (gen_set_got (pic));
}
}
if (TARGET_GNU2_TLS)
{
rtx tmp = ix86_tls_module_base ();
base = gen_reg_rtx (ptr_mode);
if (TARGET_64BIT)
emit_insn (gen_tls_dynamic_gnu2_64 (ptr_mode, base, tmp));
else
emit_insn (gen_tls_dynamic_gnu2_32 (base, tmp, pic));
tp = get_thread_pointer (ptr_mode, true);
if (GET_MODE (base) != Pmode)
base = gen_rtx_ZERO_EXTEND (Pmode, base);
base = force_reg (Pmode, base);
}
else
{
rtx caddr = ix86_tls_get_addr ();
base = gen_reg_rtx (Pmode);
if (TARGET_64BIT)
{
rtx rax = gen_rtx_REG (Pmode, AX_REG);
rtx_insn *insns;
rtx eqv;
start_sequence ();
emit_call_insn
(gen_tls_local_dynamic_base_64 (Pmode, rax, caddr));
insns = get_insns ();
end_sequence ();
/* Attach a unique REG_EQUAL, to allow the RTL optimizers to
share the LD_BASE result with other LD model accesses. */
eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_TLS_LD_BASE);
RTL_CONST_CALL_P (insns) = 1;
emit_libcall_block (insns, base, rax, eqv);
}
else
emit_insn (gen_tls_local_dynamic_base_32 (base, pic, caddr));
}
off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF);
off = gen_rtx_CONST (Pmode, off);
dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, off));
if (TARGET_GNU2_TLS)
{
if (GET_MODE (tp) != Pmode)
{
dest = lowpart_subreg (ptr_mode, dest, Pmode);
dest = gen_rtx_PLUS (ptr_mode, tp, dest);
dest = gen_rtx_ZERO_EXTEND (Pmode, dest);
}
else
dest = gen_rtx_PLUS (Pmode, tp, dest);
dest = force_reg (Pmode, dest);
if (GET_MODE (x) != Pmode)
x = gen_rtx_ZERO_EXTEND (Pmode, x);
set_unique_reg_note (get_last_insn (), REG_EQUAL, x);
}
break;
case TLS_MODEL_INITIAL_EXEC:
if (TARGET_64BIT)
{
if (TARGET_SUN_TLS && !TARGET_X32)
{
/* The Sun linker took the AMD64 TLS spec literally
and can only handle %rax as destination of the
initial executable code sequence. */
dest = gen_reg_rtx (DImode);
emit_insn (gen_tls_initial_exec_64_sun (dest, x));
return dest;
}
/* Generate DImode references to avoid %fs:(%reg32)
problems and linker IE->LE relaxation bug. */
tp_mode = DImode;
pic = NULL;
type = UNSPEC_GOTNTPOFF;
}
else if (flag_pic)
{
pic = pic_offset_table_rtx;
type = TARGET_ANY_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF;
}
else if (!TARGET_ANY_GNU_TLS)
{
pic = gen_reg_rtx (Pmode);
emit_insn (gen_set_got (pic));
type = UNSPEC_GOTTPOFF;
}
else
{
pic = NULL;
type = UNSPEC_INDNTPOFF;
}
off = gen_rtx_UNSPEC (tp_mode, gen_rtvec (1, x), type);
off = gen_rtx_CONST (tp_mode, off);
if (pic)
off = gen_rtx_PLUS (tp_mode, pic, off);
off = gen_const_mem (tp_mode, off);
set_mem_alias_set (off, ix86_GOT_alias_set ());
if (TARGET_64BIT || TARGET_ANY_GNU_TLS)
{
base = get_thread_pointer (tp_mode,
for_mov || !TARGET_TLS_DIRECT_SEG_REFS);
off = force_reg (tp_mode, off);
dest = gen_rtx_PLUS (tp_mode, base, off);
if (tp_mode != Pmode)
dest = convert_to_mode (Pmode, dest, 1);
}
else
{
base = get_thread_pointer (Pmode, true);
dest = gen_reg_rtx (Pmode);
emit_insn (gen_sub3_insn (dest, base, off));
}
break;
case TLS_MODEL_LOCAL_EXEC:
off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x),
(TARGET_64BIT || TARGET_ANY_GNU_TLS)
? UNSPEC_NTPOFF : UNSPEC_TPOFF);
off = gen_rtx_CONST (Pmode, off);
if (TARGET_64BIT || TARGET_ANY_GNU_TLS)
{
base = get_thread_pointer (Pmode,
for_mov || !TARGET_TLS_DIRECT_SEG_REFS);
return gen_rtx_PLUS (Pmode, base, off);
}
else
{
base = get_thread_pointer (Pmode, true);
dest = gen_reg_rtx (Pmode);
emit_insn (gen_sub3_insn (dest, base, off));
}
break;
default:
gcc_unreachable ();
}
return dest;
}
/* Return true if the TLS address requires insn using integer registers.
It's used to prevent KMOV/VMOV in TLS code sequences which require integer
MOV instructions, refer to PR103275. */
bool
ix86_gpr_tls_address_pattern_p (rtx mem)
{
gcc_assert (MEM_P (mem));
rtx addr = XEXP (mem, 0);
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, addr, ALL)
{
rtx op = *iter;
if (GET_CODE (op) == UNSPEC)
switch (XINT (op, 1))
{
case UNSPEC_GOTNTPOFF:
return true;
case UNSPEC_TPOFF:
if (!TARGET_64BIT)
return true;
break;
default:
break;
}
}
return false;
}
/* Return true if OP refers to a TLS address. */
bool
ix86_tls_address_pattern_p (rtx op)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
{
rtx op = *iter;
if (MEM_P (op))
{
rtx *x = &XEXP (op, 0);
while (GET_CODE (*x) == PLUS)
{
int i;
for (i = 0; i < 2; i++)
{
rtx u = XEXP (*x, i);
if (GET_CODE (u) == ZERO_EXTEND)
u = XEXP (u, 0);
if (GET_CODE (u) == UNSPEC
&& XINT (u, 1) == UNSPEC_TP)
return true;
}
x = &XEXP (*x, 0);
}
iter.skip_subrtxes ();
}
}
return false;
}
/* Rewrite *LOC so that it refers to a default TLS address space. */
void
ix86_rewrite_tls_address_1 (rtx *loc)
{
subrtx_ptr_iterator::array_type array;
FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
{
rtx *loc = *iter;
if (MEM_P (*loc))
{
rtx addr = XEXP (*loc, 0);
rtx *x = &addr;
while (GET_CODE (*x) == PLUS)
{
int i;
for (i = 0; i < 2; i++)
{
rtx u = XEXP (*x, i);
if (GET_CODE (u) == ZERO_EXTEND)
u = XEXP (u, 0);
if (GET_CODE (u) == UNSPEC
&& XINT (u, 1) == UNSPEC_TP)
{
addr_space_t as = DEFAULT_TLS_SEG_REG;
*x = XEXP (*x, 1 - i);
*loc = replace_equiv_address_nv (*loc, addr, true);
set_mem_addr_space (*loc, as);
return;
}
}
x = &XEXP (*x, 0);
}
iter.skip_subrtxes ();
}
}
}
/* Rewrite instruction pattern involvning TLS address
so that it refers to a default TLS address space. */
rtx
ix86_rewrite_tls_address (rtx pattern)
{
pattern = copy_insn (pattern);
ix86_rewrite_tls_address_1 (&pattern);
return pattern;
}
/* Create or return the unique __imp_DECL dllimport symbol corresponding
to symbol DECL if BEIMPORT is true. Otherwise create or return the
unique refptr-DECL symbol corresponding to symbol DECL. */
struct dllimport_hasher : ggc_cache_ptr_hash<tree_map>
{
static inline hashval_t hash (tree_map *m) { return m->hash; }
static inline bool
equal (tree_map *a, tree_map *b)
{
return a->base.from == b->base.from;
}
static int
keep_cache_entry (tree_map *&m)
{
return ggc_marked_p (m->base.from);
}
};
static GTY((cache)) hash_table<dllimport_hasher> *dllimport_map;
static tree
get_dllimport_decl (tree decl, bool beimport)
{
struct tree_map *h, in;
const char *name;
const char *prefix;
size_t namelen, prefixlen;
char *imp_name;
tree to;
rtx rtl;
if (!dllimport_map)
dllimport_map = hash_table<dllimport_hasher>::create_ggc (512);
in.hash = htab_hash_pointer (decl);
in.base.from = decl;
tree_map **loc = dllimport_map->find_slot_with_hash (&in, in.hash, INSERT);
h = *loc;
if (h)
return h->to;
*loc = h = ggc_alloc<tree_map> ();
h->hash = in.hash;
h->base.from = decl;
h->to = to = build_decl (DECL_SOURCE_LOCATION (decl),
VAR_DECL, NULL, ptr_type_node);
DECL_ARTIFICIAL (to) = 1;
DECL_IGNORED_P (to) = 1;
DECL_EXTERNAL (to) = 1;
TREE_READONLY (to) = 1;
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = targetm.strip_name_encoding (name);
if (beimport)
prefix = name[0] == FASTCALL_PREFIX || user_label_prefix[0] == 0
? "*__imp_" : "*__imp__";
else
prefix = user_label_prefix[0] == 0 ? "*.refptr." : "*refptr.";
namelen = strlen (name);
prefixlen = strlen (prefix);
imp_name = (char *) alloca (namelen + prefixlen + 1);
memcpy (imp_name, prefix, prefixlen);
memcpy (imp_name + prefixlen, name, namelen + 1);
name = ggc_alloc_string (imp_name, namelen + prefixlen);
rtl = gen_rtx_SYMBOL_REF (Pmode, name);
SET_SYMBOL_REF_DECL (rtl, to);
SYMBOL_REF_FLAGS (rtl) = SYMBOL_FLAG_LOCAL | SYMBOL_FLAG_STUBVAR;
if (!beimport)
{
SYMBOL_REF_FLAGS (rtl) |= SYMBOL_FLAG_EXTERNAL;
#ifdef SUB_TARGET_RECORD_STUB
SUB_TARGET_RECORD_STUB (name);
#endif
}
rtl = gen_const_mem (Pmode, rtl);
set_mem_alias_set (rtl, ix86_GOT_alias_set ());
SET_DECL_RTL (to, rtl);
SET_DECL_ASSEMBLER_NAME (to, get_identifier (name));
return to;
}
/* Expand SYMBOL into its corresponding far-address symbol.
WANT_REG is true if we require the result be a register. */
static rtx
legitimize_pe_coff_extern_decl (rtx symbol, bool want_reg)
{
tree imp_decl;
rtx x;
gcc_assert (SYMBOL_REF_DECL (symbol));
imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), false);
x = DECL_RTL (imp_decl);
if (want_reg)
x = force_reg (Pmode, x);
return x;
}
/* Expand SYMBOL into its corresponding dllimport symbol. WANT_REG is
true if we require the result be a register. */
static rtx
legitimize_dllimport_symbol (rtx symbol, bool want_reg)
{
tree imp_decl;
rtx x;
gcc_assert (SYMBOL_REF_DECL (symbol));
imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), true);
x = DECL_RTL (imp_decl);
if (want_reg)
x = force_reg (Pmode, x);
return x;
}
/* Expand SYMBOL into its corresponding dllimport or refptr symbol. WANT_REG
is true if we require the result be a register. */
rtx
legitimize_pe_coff_symbol (rtx addr, bool inreg)
{
if (!TARGET_PECOFF)
return NULL_RTX;
if (TARGET_DLLIMPORT_DECL_ATTRIBUTES)
{
if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (addr))
return legitimize_dllimport_symbol (addr, inreg);
if (GET_CODE (addr) == CONST
&& GET_CODE (XEXP (addr, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF
&& SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (addr, 0), 0)))
{
rtx t = legitimize_dllimport_symbol (XEXP (XEXP (addr, 0), 0), inreg);
return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1));
}
}
if (ix86_cmodel != CM_LARGE_PIC && ix86_cmodel != CM_MEDIUM_PIC)
return NULL_RTX;
if (GET_CODE (addr) == SYMBOL_REF
&& !is_imported_p (addr)
&& SYMBOL_REF_EXTERNAL_P (addr)
&& SYMBOL_REF_DECL (addr))
return legitimize_pe_coff_extern_decl (addr, inreg);
if (GET_CODE (addr) == CONST
&& GET_CODE (XEXP (addr, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF
&& !is_imported_p (XEXP (XEXP (addr, 0), 0))
&& SYMBOL_REF_EXTERNAL_P (XEXP (XEXP (addr, 0), 0))
&& SYMBOL_REF_DECL (XEXP (XEXP (addr, 0), 0)))
{
rtx t = legitimize_pe_coff_extern_decl (XEXP (XEXP (addr, 0), 0), inreg);
return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1));
}
return NULL_RTX;
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.cc.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 80386, we handle X+REG by loading X into a register R and
using R+REG. R will go in a general reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in a general reg.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address in i386.cc for details. */
static rtx
ix86_legitimize_address (rtx x, rtx, machine_mode mode)
{
bool changed = false;
unsigned log;
log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0;
if (log)
return legitimize_tls_address (x, (enum tls_model) log, false);
if (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0))))
{
rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0),
(enum tls_model) log, false);
return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1));
}
if (TARGET_DLLIMPORT_DECL_ATTRIBUTES)
{
rtx tmp = legitimize_pe_coff_symbol (x, true);
if (tmp)
return tmp;
}
if (flag_pic && SYMBOLIC_CONST (x))
return legitimize_pic_address (x, 0);
#if TARGET_MACHO
if (MACHO_DYNAMIC_NO_PIC_P && SYMBOLIC_CONST (x))
return machopic_indirect_data_reference (x, 0);
#endif
/* Canonicalize shifts by 0, 1, 2, 3 into multiply */
if (GET_CODE (x) == ASHIFT
&& CONST_INT_P (XEXP (x, 1))
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4)
{
changed = true;
log = INTVAL (XEXP (x, 1));
x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)),
GEN_INT (1 << log));
}
if (GET_CODE (x) == PLUS)
{
/* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4)
{
changed = true;
log = INTVAL (XEXP (XEXP (x, 0), 1));
XEXP (x, 0) = gen_rtx_MULT (Pmode,
force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
GEN_INT (1 << log));
}
if (GET_CODE (XEXP (x, 1)) == ASHIFT
&& CONST_INT_P (XEXP (XEXP (x, 1), 1))
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4)
{
changed = true;
log = INTVAL (XEXP (XEXP (x, 1), 1));
XEXP (x, 1) = gen_rtx_MULT (Pmode,
force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
GEN_INT (1 << log));
}
/* Put multiply first if it isn't already. */
if (GET_CODE (XEXP (x, 1)) == MULT)
{
std::swap (XEXP (x, 0), XEXP (x, 1));
changed = true;
}
/* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
created by virtual register instantiation, register elimination, and
similar optimizations. */
if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
{
changed = true;
x = gen_rtx_PLUS (Pmode,
gen_rtx_PLUS (Pmode, XEXP (x, 0),
XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
}
/* Canonicalize
(plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
into (plus (plus (mult (reg) (const)) (reg)) (const)). */
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
&& CONSTANT_P (XEXP (x, 1)))
{
rtx constant;
rtx other = NULL_RTX;
if (CONST_INT_P (XEXP (x, 1)))
{
constant = XEXP (x, 1);
other = XEXP (XEXP (XEXP (x, 0), 1), 1);
}
else if (CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 1), 1)))
{
constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
other = XEXP (x, 1);
}
else
constant = 0;
if (constant)
{
changed = true;
x = gen_rtx_PLUS (Pmode,
gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (XEXP (x, 0), 1), 0)),
plus_constant (Pmode, other,
INTVAL (constant)));
}
}
if (changed && ix86_legitimate_address_p (mode, x, false))
return x;
if (GET_CODE (XEXP (x, 0)) == MULT)
{
changed = true;
XEXP (x, 0) = copy_addr_to_reg (XEXP (x, 0));
}
if (GET_CODE (XEXP (x, 1)) == MULT)
{
changed = true;
XEXP (x, 1) = copy_addr_to_reg (XEXP (x, 1));
}
if (changed
&& REG_P (XEXP (x, 1))
&& REG_P (XEXP (x, 0)))
return x;
if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
{
changed = true;
x = legitimize_pic_address (x, 0);
}
if (changed && ix86_legitimate_address_p (mode, x, false))
return x;
if (REG_P (XEXP (x, 0)))
{
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (XEXP (x, 1), temp);
if (val != temp)
{
val = convert_to_mode (Pmode, val, 1);
emit_move_insn (temp, val);
}
XEXP (x, 1) = temp;
return x;
}
else if (REG_P (XEXP (x, 1)))
{
rtx temp = gen_reg_rtx (Pmode);
rtx val = force_operand (XEXP (x, 0), temp);
if (val != temp)
{
val = convert_to_mode (Pmode, val, 1);
emit_move_insn (temp, val);
}
XEXP (x, 0) = temp;
return x;
}
}
return x;
}
/* Print an integer constant expression in assembler syntax. Addition
and subtraction are the only arithmetic that may appear in these
expressions. FILE is the stdio stream to write to, X is the rtx, and
CODE is the operand print code from the output string. */
static void
output_pic_addr_const (FILE *file, rtx x, int code)
{
char buf[256];
switch (GET_CODE (x))
{
case PC:
gcc_assert (flag_pic);
putc ('.', file);
break;
case SYMBOL_REF:
if (TARGET_64BIT || ! TARGET_MACHO_SYMBOL_STUBS)
output_addr_const (file, x);
else
{
const char *name = XSTR (x, 0);
/* Mark the decl as referenced so that cgraph will
output the function. */
if (SYMBOL_REF_DECL (x))
mark_decl_referenced (SYMBOL_REF_DECL (x));
#if TARGET_MACHO
if (MACHOPIC_INDIRECT
&& machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
name = machopic_indirection_name (x, /*stub_p=*/true);
#endif
assemble_name (file, name);
}
if (!TARGET_MACHO && !(TARGET_64BIT && TARGET_PECOFF)
&& code == 'P' && ix86_call_use_plt_p (x))
fputs ("@PLT", file);
break;
case LABEL_REF:
x = XEXP (x, 0);
/* FALLTHRU */
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (asm_out_file, buf);
break;
case CONST_INT:
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case CONST:
/* This used to output parentheses around the expression,
but that does not work on the 386 (either ATT or BSD assembler). */
output_pic_addr_const (file, XEXP (x, 0), code);
break;
case CONST_DOUBLE:
/* We can't handle floating point constants;
TARGET_PRINT_OPERAND must handle them. */
output_operand_lossage ("floating constant misused");
break;
case PLUS:
/* Some assemblers need integer constants to appear first. */
if (CONST_INT_P (XEXP (x, 0)))
{
output_pic_addr_const (file, XEXP (x, 0), code);
putc ('+', file);
output_pic_addr_const (file, XEXP (x, 1), code);
}
else
{
gcc_assert (CONST_INT_P (XEXP (x, 1)));
output_pic_addr_const (file, XEXP (x, 1), code);
putc ('+', file);
output_pic_addr_const (file, XEXP (x, 0), code);
}
break;
case MINUS:
if (!TARGET_MACHO)
putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file);
output_pic_addr_const (file, XEXP (x, 0), code);
putc ('-', file);
output_pic_addr_const (file, XEXP (x, 1), code);
if (!TARGET_MACHO)
putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file);
break;
case UNSPEC:
gcc_assert (XVECLEN (x, 0) == 1);
output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
switch (XINT (x, 1))
{
case UNSPEC_GOT:
fputs ("@GOT", file);
break;
case UNSPEC_GOTOFF:
fputs ("@GOTOFF", file);
break;
case UNSPEC_PLTOFF:
fputs ("@PLTOFF", file);
break;
case UNSPEC_PCREL:
fputs (ASSEMBLER_DIALECT == ASM_ATT ?
"(%rip)" : "[rip]", file);
break;
case UNSPEC_GOTPCREL:
fputs (ASSEMBLER_DIALECT == ASM_ATT ?
"@GOTPCREL(%rip)" : "@GOTPCREL[rip]", file);
break;
case UNSPEC_GOTTPOFF:
/* FIXME: This might be @TPOFF in Sun ld too. */
fputs ("@gottpoff", file);
break;
case UNSPEC_TPOFF:
fputs ("@tpoff", file);
break;
case UNSPEC_NTPOFF:
if (TARGET_64BIT)
fputs ("@tpoff", file);
else
fputs ("@ntpoff", file);
break;
case UNSPEC_DTPOFF:
fputs ("@dtpoff", file);
break;
case UNSPEC_GOTNTPOFF:
if (TARGET_64BIT)
fputs (ASSEMBLER_DIALECT == ASM_ATT ?
"@gottpoff(%rip)": "@gottpoff[rip]", file);
else
fputs ("@gotntpoff", file);
break;
case UNSPEC_INDNTPOFF:
fputs ("@indntpoff", file);
break;
#if TARGET_MACHO
case UNSPEC_MACHOPIC_OFFSET:
putc ('-', file);
machopic_output_function_base_name (file);
break;
#endif
default:
output_operand_lossage ("invalid UNSPEC as operand");
break;
}
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
/* This is called from dwarf2out.cc via TARGET_ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
static void ATTRIBUTE_UNUSED
i386_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
fputs (ASM_LONG, file);
output_addr_const (file, x);
fputs ("@dtpoff", file);
switch (size)
{
case 4:
break;
case 8:
fputs (", 0", file);
break;
default:
gcc_unreachable ();
}
}
/* Return true if X is a representation of the PIC register. This copes
with calls from ix86_find_base_term, where the register might have
been replaced by a cselib value. */
static bool
ix86_pic_register_p (rtx x)
{
if (GET_CODE (x) == VALUE && CSELIB_VAL_PTR (x))
return (pic_offset_table_rtx
&& rtx_equal_for_cselib_p (x, pic_offset_table_rtx));
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SET_GOT)
return true;
else if (!REG_P (x))
return false;
else if (pic_offset_table_rtx)
{
if (REGNO (x) == REGNO (pic_offset_table_rtx))
return true;
if (HARD_REGISTER_P (x)
&& !HARD_REGISTER_P (pic_offset_table_rtx)
&& ORIGINAL_REGNO (x) == REGNO (pic_offset_table_rtx))
return true;
return false;
}
else
return REGNO (x) == PIC_OFFSET_TABLE_REGNUM;
}
/* Helper function for ix86_delegitimize_address.
Attempt to delegitimize TLS local-exec accesses. */
static rtx
ix86_delegitimize_tls_address (rtx orig_x)
{
rtx x = orig_x, unspec;
struct ix86_address addr;
if (!TARGET_TLS_DIRECT_SEG_REFS)
return orig_x;
if (MEM_P (x))
x = XEXP (x, 0);
if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
return orig_x;
if (ix86_decompose_address (x, &addr) == 0
|| addr.seg != DEFAULT_TLS_SEG_REG
|| addr.disp == NULL_RTX
|| GET_CODE (addr.disp) != CONST)
return orig_x;
unspec = XEXP (addr.disp, 0);
if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
unspec = XEXP (unspec, 0);
if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_NTPOFF)
return orig_x;
x = XVECEXP (unspec, 0, 0);
gcc_assert (GET_CODE (x) == SYMBOL_REF);
if (unspec != XEXP (addr.disp, 0))
x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.disp, 0), 1));
if (addr.index)
{
rtx idx = addr.index;
if (addr.scale != 1)
idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
x = gen_rtx_PLUS (Pmode, idx, x);
}
if (addr.base)
x = gen_rtx_PLUS (Pmode, addr.base, x);
if (MEM_P (orig_x))
x = replace_equiv_address_nv (orig_x, x);
return x;
}
/* In the name of slightly smaller debug output, and to cater to
general assembler lossage, recognize PIC+GOTOFF and turn it back
into a direct symbol reference.
On Darwin, this is necessary to avoid a crash, because Darwin
has a different PIC label for each routine but the DWARF debugging
information is not associated with any particular routine, so it's
necessary to remove references to the PIC label from RTL stored by
the DWARF output code.
This helper is used in the normal ix86_delegitimize_address
entrypoint (e.g. used in the target delegitimization hook) and
in ix86_find_base_term. As compile time memory optimization, we
avoid allocating rtxes that will not change anything on the outcome
of the callers (find_base_value and find_base_term). */
static inline rtx
ix86_delegitimize_address_1 (rtx x, bool base_term_p)
{
rtx orig_x = delegitimize_mem_from_attrs (x);
/* addend is NULL or some rtx if x is something+GOTOFF where
something doesn't include the PIC register. */
rtx addend = NULL_RTX;
/* reg_addend is NULL or a multiple of some register. */
rtx reg_addend = NULL_RTX;
/* const_addend is NULL or a const_int. */
rtx const_addend = NULL_RTX;
/* This is the result, or NULL. */
rtx result = NULL_RTX;
x = orig_x;
if (MEM_P (x))
x = XEXP (x, 0);
if (TARGET_64BIT)
{
if (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_MODE (XEXP (x, 0)) == Pmode
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == UNSPEC
&& XINT (XEXP (XEXP (x, 0), 0), 1) == UNSPEC_PCREL)
{
/* find_base_{value,term} only care about MEMs with arg_pointer_rtx
base. A CONST can't be arg_pointer_rtx based. */
if (base_term_p && MEM_P (orig_x))
return orig_x;
rtx x2 = XVECEXP (XEXP (XEXP (x, 0), 0), 0, 0);
x = gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 1), x2);
if (MEM_P (orig_x))
x = replace_equiv_address_nv (orig_x, x);
return x;
}
if (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == UNSPEC
&& (XINT (XEXP (x, 0), 1) == UNSPEC_GOTPCREL
|| XINT (XEXP (x, 0), 1) == UNSPEC_PCREL)
&& (MEM_P (orig_x) || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL))
{
x = XVECEXP (XEXP (x, 0), 0, 0);
if (GET_MODE (orig_x) != GET_MODE (x) && MEM_P (orig_x))
{
x = lowpart_subreg (GET_MODE (orig_x), x, GET_MODE (x));
if (x == NULL_RTX)
return orig_x;
}
return x;
}
if (ix86_cmodel != CM_MEDIUM_PIC && ix86_cmodel != CM_LARGE_PIC)
return ix86_delegitimize_tls_address (orig_x);
/* Fall thru into the code shared with -m32 for -mcmodel=large -fpic
and -mcmodel=medium -fpic. */
}
if (GET_CODE (x) != PLUS
|| GET_CODE (XEXP (x, 1)) != CONST)
return ix86_delegitimize_tls_address (orig_x);
if (ix86_pic_register_p (XEXP (x, 0)))
/* %ebx + GOT/GOTOFF */
;
else if (GET_CODE (XEXP (x, 0)) == PLUS)
{
/* %ebx + %reg * scale + GOT/GOTOFF */
reg_addend = XEXP (x, 0);
if (ix86_pic_register_p (XEXP (reg_addend, 0)))
reg_addend = XEXP (reg_addend, 1);
else if (ix86_pic_register_p (XEXP (reg_addend, 1)))
reg_addend = XEXP (reg_addend, 0);
else
{
reg_addend = NULL_RTX;
addend = XEXP (x, 0);
}
}
else
addend = XEXP (x, 0);
x = XEXP (XEXP (x, 1), 0);
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1)))
{
const_addend = XEXP (x, 1);
x = XEXP (x, 0);
}
if (GET_CODE (x) == UNSPEC
&& ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend)
|| (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x))
|| (XINT (x, 1) == UNSPEC_PLTOFF && ix86_cmodel == CM_LARGE_PIC
&& !MEM_P (orig_x) && !addend)))
result = XVECEXP (x, 0, 0);
if (!TARGET_64BIT && TARGET_MACHO && darwin_local_data_pic (x)
&& !MEM_P (orig_x))
result = XVECEXP (x, 0, 0);
if (! result)
return ix86_delegitimize_tls_address (orig_x);
/* For (PLUS something CONST_INT) both find_base_{value,term} just
recurse on the first operand. */
if (const_addend && !base_term_p)
result = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, result, const_addend));
if (reg_addend)
result = gen_rtx_PLUS (Pmode, reg_addend, result);
if (addend)
{
/* If the rest of original X doesn't involve the PIC register, add
addend and subtract pic_offset_table_rtx. This can happen e.g.
for code like:
leal (%ebx, %ecx, 4), %ecx
...
movl foo@GOTOFF(%ecx), %edx
in which case we return (%ecx - %ebx) + foo
or (%ecx - _GLOBAL_OFFSET_TABLE_) + foo if pseudo_pic_reg
and reload has completed. Don't do the latter for debug,
as _GLOBAL_OFFSET_TABLE_ can't be expressed in the assembly. */
if (pic_offset_table_rtx
&& (!reload_completed || !ix86_use_pseudo_pic_reg ()))
result = gen_rtx_PLUS (Pmode, gen_rtx_MINUS (Pmode, copy_rtx (addend),
pic_offset_table_rtx),
result);
else if (base_term_p
&& pic_offset_table_rtx
&& !TARGET_MACHO
&& !TARGET_VXWORKS_RTP)
{
rtx tmp = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME);
tmp = gen_rtx_MINUS (Pmode, copy_rtx (addend), tmp);
result = gen_rtx_PLUS (Pmode, tmp, result);
}
else
return orig_x;
}
if (GET_MODE (orig_x) != Pmode && MEM_P (orig_x))
{
result = lowpart_subreg (GET_MODE (orig_x), result, Pmode);
if (result == NULL_RTX)
return orig_x;
}
return result;
}
/* The normal instantiation of the above template. */
static rtx
ix86_delegitimize_address (rtx x)
{
return ix86_delegitimize_address_1 (x, false);
}
/* If X is a machine specific address (i.e. a symbol or label being
referenced as a displacement from the GOT implemented using an
UNSPEC), then return the base term. Otherwise return X. */
rtx
ix86_find_base_term (rtx x)
{
rtx term;
if (TARGET_64BIT)
{
if (GET_CODE (x) != CONST)
return x;
term = XEXP (x, 0);
if (GET_CODE (term) == PLUS
&& CONST_INT_P (XEXP (term, 1)))
term = XEXP (term, 0);
if (GET_CODE (term) != UNSPEC
|| (XINT (term, 1) != UNSPEC_GOTPCREL
&& XINT (term, 1) != UNSPEC_PCREL))
return x;
return XVECEXP (term, 0, 0);
}
return ix86_delegitimize_address_1 (x, true);
}
/* Return true if X shouldn't be emitted into the debug info.
Disallow UNSPECs other than @gotoff - we can't emit _GLOBAL_OFFSET_TABLE_
symbol easily into the .debug_info section, so we need not to
delegitimize, but instead assemble as @gotoff.
Disallow _GLOBAL_OFFSET_TABLE_ SYMBOL_REF - the assembler magically
assembles that as _GLOBAL_OFFSET_TABLE_-. expression. */
static bool
ix86_const_not_ok_for_debug_p (rtx x)
{
if (GET_CODE (x) == UNSPEC && XINT (x, 1) != UNSPEC_GOTOFF)
return true;
if (SYMBOL_REF_P (x) && strcmp (XSTR (x, 0), GOT_SYMBOL_NAME) == 0)
return true;
return false;
}
static void
put_condition_code (enum rtx_code code, machine_mode mode, bool reverse,
bool fp, FILE *file)
{
const char *suffix;
if (mode == CCFPmode)
{
code = ix86_fp_compare_code_to_integer (code);
mode = CCmode;
}
if (reverse)
code = reverse_condition (code);
switch (code)
{
case EQ:
gcc_assert (mode != CCGZmode);
switch (mode)
{
case E_CCAmode:
suffix = "a";
break;
case E_CCCmode:
suffix = "c";
break;
case E_CCOmode:
suffix = "o";
break;
case E_CCPmode:
suffix = "p";
break;
case E_CCSmode:
suffix = "s";
break;
default:
suffix = "e";
break;
}
break;
case NE:
gcc_assert (mode != CCGZmode);
switch (mode)
{
case E_CCAmode:
suffix = "na";
break;
case E_CCCmode:
suffix = "nc";
break;
case E_CCOmode:
suffix = "no";
break;
case E_CCPmode:
suffix = "np";
break;
case E_CCSmode:
suffix = "ns";
break;
default:
suffix = "ne";
break;
}
break;
case GT:
gcc_assert (mode == CCmode || mode == CCNOmode || mode == CCGCmode);
suffix = "g";
break;
case GTU:
/* ??? Use "nbe" instead of "a" for fcmov lossage on some assemblers.
Those same assemblers have the same but opposite lossage on cmov. */
if (mode == CCmode)
suffix = fp ? "nbe" : "a";
else
gcc_unreachable ();
break;
case LT:
switch (mode)
{
case E_CCNOmode:
case E_CCGOCmode:
suffix = "s";
break;
case E_CCmode:
case E_CCGCmode:
case E_CCGZmode:
suffix = "l";
break;
default:
gcc_unreachable ();
}
break;
case LTU:
if (mode == CCmode || mode == CCGZmode)
suffix = "b";
else if (mode == CCCmode)
suffix = fp ? "b" : "c";
else
gcc_unreachable ();
break;
case GE:
switch (mode)
{
case E_CCNOmode:
case E_CCGOCmode:
suffix = "ns";
break;
case E_CCmode:
case E_CCGCmode:
case E_CCGZmode:
suffix = "ge";
break;
default:
gcc_unreachable ();
}
break;
case GEU:
if (mode == CCmode || mode == CCGZmode)
suffix = "nb";
else if (mode == CCCmode)
suffix = fp ? "nb" : "nc";
else
gcc_unreachable ();
break;
case LE:
gcc_assert (mode == CCmode || mode == CCGCmode || mode == CCNOmode);
suffix = "le";
break;
case LEU:
if (mode == CCmode)
suffix = "be";
else
gcc_unreachable ();
break;
case UNORDERED:
suffix = fp ? "u" : "p";
break;
case ORDERED:
suffix = fp ? "nu" : "np";
break;
default:
gcc_unreachable ();
}
fputs (suffix, file);
}
/* Print the name of register X to FILE based on its machine mode and number.
If CODE is 'w', pretend the mode is HImode.
If CODE is 'b', pretend the mode is QImode.
If CODE is 'k', pretend the mode is SImode.
If CODE is 'q', pretend the mode is DImode.
If CODE is 'x', pretend the mode is V4SFmode.
If CODE is 't', pretend the mode is V8SFmode.
If CODE is 'g', pretend the mode is V16SFmode.
If CODE is 'h', pretend the reg is the 'high' byte register.
If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.
If CODE is 'd', duplicate the operand for AVX instruction.
If CODE is 'V', print naked full integer register name without %.
*/
void
print_reg (rtx x, int code, FILE *file)
{
const char *reg;
int msize;
unsigned int regno;
bool duplicated;
if (ASSEMBLER_DIALECT == ASM_ATT && code != 'V')
putc ('%', file);
if (x == pc_rtx)
{
gcc_assert (TARGET_64BIT);
fputs ("rip", file);
return;
}
if (code == 'y' && STACK_TOP_P (x))
{
fputs ("st(0)", file);
return;
}
if (code == 'w')
msize = 2;
else if (code == 'b')
msize = 1;
else if (code == 'k')
msize = 4;
else if (code == 'q')
msize = 8;
else if (code == 'h')
msize = 0;
else if (code == 'x')
msize = 16;
else if (code == 't')
msize = 32;
else if (code == 'g')
msize = 64;
else
msize = GET_MODE_SIZE (GET_MODE (x));
regno = REGNO (x);
if (regno == ARG_POINTER_REGNUM
|| regno == FRAME_POINTER_REGNUM
|| regno == FPSR_REG)
{
output_operand_lossage
("invalid use of register '%s'", reg_names[regno]);
return;
}
else if (regno == FLAGS_REG)
{
output_operand_lossage ("invalid use of asm flag output");
return;
}
if (code == 'V')
{
if (GENERAL_REGNO_P (regno))
msize = GET_MODE_SIZE (word_mode);
else
error ("%<V%> modifier on non-integer register");
}
duplicated = code == 'd' && TARGET_AVX;
switch (msize)
{
case 16:
case 12:
case 8:
if (GENERAL_REGNO_P (regno) && msize > GET_MODE_SIZE (word_mode))
warning (0, "unsupported size for integer register");
/* FALLTHRU */
case 4:
if (LEGACY_INT_REGNO_P (regno))
putc (msize > 4 && TARGET_64BIT ? 'r' : 'e', file);
/* FALLTHRU */
case 2:
normal:
reg = hi_reg_name[regno];
break;
case 1:
if (regno >= ARRAY_SIZE (qi_reg_name))
goto normal;
if (!ANY_QI_REGNO_P (regno))
error ("unsupported size for integer register");
reg = qi_reg_name[regno];
break;
case 0:
if (regno >= ARRAY_SIZE (qi_high_reg_name))
goto normal;
reg = qi_high_reg_name[regno];
break;
case 32:
case 64:
if (SSE_REGNO_P (regno))
{
gcc_assert (!duplicated);
putc (msize == 32 ? 'y' : 'z', file);
reg = hi_reg_name[regno] + 1;
break;
}
goto normal;
default:
gcc_unreachable ();
}
fputs (reg, file);
/* Irritatingly, AMD extended registers use
different naming convention: "r%d[bwd]" */
if (REX_INT_REGNO_P (regno))
{
gcc_assert (TARGET_64BIT);
switch (msize)
{
case 0:
error ("extended registers have no high halves");
break;
case 1:
putc ('b', file);
break;
case 2:
putc ('w', file);
break;
case 4:
putc ('d', file);
break;
case 8:
/* no suffix */
break;
default:
error ("unsupported operand size for extended register");
break;
}
return;
}
if (duplicated)
{
if (ASSEMBLER_DIALECT == ASM_ATT)
fprintf (file, ", %%%s", reg);
else
fprintf (file, ", %s", reg);
}
}
/* Meaning of CODE:
L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
C -- print opcode suffix for set/cmov insn.
c -- like C, but print reversed condition
F,f -- likewise, but for floating-point.
O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.",
otherwise nothing
R -- print embedded rounding and sae.
r -- print only sae.
z -- print the opcode suffix for the size of the current operand.
Z -- likewise, with special suffixes for x87 instructions.
* -- print a star (in certain assembler syntax)
A -- print an absolute memory reference.
E -- print address with DImode register names if TARGET_64BIT.
w -- print the operand as if it's a "word" (HImode) even if it isn't.
s -- print a shift double count, followed by the assemblers argument
delimiter.
b -- print the QImode name of the register for the indicated operand.
%b0 would print %al if operands[0] is reg 0.
w -- likewise, print the HImode name of the register.
k -- likewise, print the SImode name of the register.
q -- likewise, print the DImode name of the register.
x -- likewise, print the V4SFmode name of the register.
t -- likewise, print the V8SFmode name of the register.
g -- likewise, print the V16SFmode name of the register.
h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
y -- print "st(0)" instead of "st" as a register.
d -- print duplicated register operand for AVX instruction.
D -- print condition for SSE cmp instruction.
P -- if PIC, print an @PLT suffix. For -fno-plt, load function
address from GOT.
p -- print raw symbol name.
X -- don't print any sort of PIC '@' suffix for a symbol.
& -- print some in-use local-dynamic symbol name.
H -- print a memory address offset by 8; used for sse high-parts
Y -- print condition for XOP pcom* instruction.
V -- print naked full integer register name without %.
+ -- print a branch hint as 'cs' or 'ds' prefix
; -- print a semicolon (after prefixes due to bug in older gas).
~ -- print "i" if TARGET_AVX2, "f" otherwise.
^ -- print addr32 prefix if TARGET_64BIT and Pmode != word_mode
M -- print addr32 prefix for TARGET_X32 with VSIB address.
! -- print NOTRACK prefix for jxx/call/ret instructions if required.
N -- print maskz if it's constant 0 operand.
*/
void
ix86_print_operand (FILE *file, rtx x, int code)
{
if (code)
{
switch (code)
{
case 'A':
switch (ASSEMBLER_DIALECT)
{
case ASM_ATT:
putc ('*', file);
break;
case ASM_INTEL:
/* Intel syntax. For absolute addresses, registers should not
be surrounded by braces. */
if (!REG_P (x))
{
putc ('[', file);
ix86_print_operand (file, x, 0);
putc (']', file);
return;
}
break;
default:
gcc_unreachable ();
}
ix86_print_operand (file, x, 0);
return;
case 'E':
/* Wrap address in an UNSPEC to declare special handling. */
if (TARGET_64BIT)
x = gen_rtx_UNSPEC (DImode, gen_rtvec (1, x), UNSPEC_LEA_ADDR);
output_address (VOIDmode, x);
return;
case 'L':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('l', file);
return;
case 'W':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('w', file);
return;
case 'B':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('b', file);
return;
case 'Q':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('l', file);
return;
case 'S':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('s', file);
return;
case 'T':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('t', file);
return;
case 'O':
#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX
if (ASSEMBLER_DIALECT != ASM_ATT)
return;
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 2:
putc ('w', file);
break;
case 4:
putc ('l', file);
break;
case 8:
putc ('q', file);
break;
default:
output_operand_lossage ("invalid operand size for operand "
"code 'O'");
return;
}
putc ('.', file);
#endif
return;
case 'z':
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
{
/* Opcodes don't get size suffixes if using Intel opcodes. */
if (ASSEMBLER_DIALECT == ASM_INTEL)
return;
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 1:
putc ('b', file);
return;
case 2:
putc ('w', file);
return;
case 4:
putc ('l', file);
return;
case 8:
putc ('q', file);
return;
default:
output_operand_lossage ("invalid operand size for operand "
"code 'z'");
return;
}
}
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
warning (0, "non-integer operand used with operand code %<z%>");
/* FALLTHRU */
case 'Z':
/* 387 opcodes don't get size suffixes if using Intel opcodes. */
if (ASSEMBLER_DIALECT == ASM_INTEL)
return;
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
{
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 2:
#ifdef HAVE_AS_IX86_FILDS
putc ('s', file);
#endif
return;
case 4:
putc ('l', file);
return;
case 8:
#ifdef HAVE_AS_IX86_FILDQ
putc ('q', file);
#else
fputs ("ll", file);
#endif
return;
default:
break;
}
}
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
{
/* 387 opcodes don't get size suffixes
if the operands are registers. */
if (STACK_REG_P (x))
return;
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 4:
putc ('s', file);
return;
case 8:
putc ('l', file);
return;
case 12:
case 16:
putc ('t', file);
return;
default:
break;
}
}
else
{
output_operand_lossage ("invalid operand type used with "
"operand code 'Z'");
return;
}
output_operand_lossage ("invalid operand size for operand code 'Z'");
return;
case 'd':
case 'b':
case 'w':
case 'k':
case 'q':
case 'h':
case 't':
case 'g':
case 'y':
case 'x':
case 'X':
case 'P':
case 'p':
case 'V':
break;
case 's':
if (CONST_INT_P (x) || ! SHIFT_DOUBLE_OMITS_COUNT)
{
ix86_print_operand (file, x, 0);
fputs (", ", file);
}
return;
case 'Y':
switch (GET_CODE (x))
{
case NE:
fputs ("neq", file);
break;
case EQ:
fputs ("eq", file);
break;
case GE:
case GEU:
fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "ge" : "unlt", file);
break;
case GT:
case GTU:
fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "gt" : "unle", file);
break;
case LE:
case LEU:
fputs ("le", file);
break;
case LT:
case LTU:
fputs ("lt", file);
break;
case UNORDERED:
fputs ("unord", file);
break;
case ORDERED:
fputs ("ord", file);
break;
case UNEQ:
fputs ("ueq", file);
break;
case UNGE:
fputs ("nlt", file);
break;
case UNGT:
fputs ("nle", file);
break;
case UNLE:
fputs ("ule", file);
break;
case UNLT:
fputs ("ult", file);
break;
case LTGT:
fputs ("une", file);
break;
default:
output_operand_lossage ("operand is not a condition code, "
"invalid operand code 'Y'");
return;
}
return;
case 'D':
/* Little bit of braindamage here. The SSE compare instructions
does use completely different names for the comparisons that the
fp conditional moves. */
switch (GET_CODE (x))
{
case UNEQ:
if (TARGET_AVX)
{
fputs ("eq_us", file);
break;
}
/* FALLTHRU */
case EQ:
fputs ("eq", file);
break;
case UNLT:
if (TARGET_AVX)
{
fputs ("nge", file);
break;
}
/* FALLTHRU */
case LT:
fputs ("lt", file);
break;
case UNLE:
if (TARGET_AVX)
{
fputs ("ngt", file);
break;
}
/* FALLTHRU */
case LE:
fputs ("le", file);
break;
case UNORDERED:
fputs ("unord", file);
break;
case LTGT:
if (TARGET_AVX)
{
fputs ("neq_oq", file);
break;
}
/* FALLTHRU */
case NE:
fputs ("neq", file);
break;
case GE:
if (TARGET_AVX)
{
fputs ("ge", file);
break;
}
/* FALLTHRU */
case UNGE:
fputs ("nlt", file);
break;
case GT:
if (TARGET_AVX)
{
fputs ("gt", file);
break;
}
/* FALLTHRU */
case UNGT:
fputs ("nle", file);
break;
case ORDERED:
fputs ("ord", file);
break;
default:
output_operand_lossage ("operand is not a condition code, "
"invalid operand code 'D'");
return;
}
return;
case 'F':
case 'f':
#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('.', file);
gcc_fallthrough ();
#endif
case 'C':
case 'c':
if (!COMPARISON_P (x))
{
output_operand_lossage ("operand is not a condition code, "
"invalid operand code '%c'", code);
return;
}
put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)),
code == 'c' || code == 'f',
code == 'F' || code == 'f',
file);
return;
case 'H':
if (!offsettable_memref_p (x))
{
output_operand_lossage ("operand is not an offsettable memory "
"reference, invalid operand code 'H'");
return;
}
/* It doesn't actually matter what mode we use here, as we're
only going to use this for printing. */
x = adjust_address_nv (x, DImode, 8);
/* Output 'qword ptr' for intel assembler dialect. */
if (ASSEMBLER_DIALECT == ASM_INTEL)
code = 'q';
break;
case 'K':
if (!CONST_INT_P (x))
{
output_operand_lossage ("operand is not an integer, invalid "
"operand code 'K'");
return;
}
if (INTVAL (x) & IX86_HLE_ACQUIRE)
#ifdef HAVE_AS_IX86_HLE
fputs ("xacquire ", file);
#else
fputs ("\n" ASM_BYTE "0xf2\n\t", file);
#endif
else if (INTVAL (x) & IX86_HLE_RELEASE)
#ifdef HAVE_AS_IX86_HLE
fputs ("xrelease ", file);
#else
fputs ("\n" ASM_BYTE "0xf3\n\t", file);
#endif
/* We do not want to print value of the operand. */
return;
case 'N':
if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x)))
fputs ("{z}", file);
return;
case 'r':
if (!CONST_INT_P (x) || INTVAL (x) != ROUND_SAE)
{
output_operand_lossage ("operand is not a specific integer, "
"invalid operand code 'r'");
return;
}
if (ASSEMBLER_DIALECT == ASM_INTEL)
fputs (", ", file);
fputs ("{sae}", file);
if (ASSEMBLER_DIALECT == ASM_ATT)
fputs (", ", file);
return;
case 'R':
if (!CONST_INT_P (x))
{
output_operand_lossage ("operand is not an integer, invalid "
"operand code 'R'");
return;
}
if (ASSEMBLER_DIALECT == ASM_INTEL)
fputs (", ", file);
switch (INTVAL (x))
{
case ROUND_NEAREST_INT | ROUND_SAE:
fputs ("{rn-sae}", file);
break;
case ROUND_NEG_INF | ROUND_SAE:
fputs ("{rd-sae}", file);
break;
case ROUND_POS_INF | ROUND_SAE:
fputs ("{ru-sae}", file);
break;
case ROUND_ZERO | ROUND_SAE:
fputs ("{rz-sae}", file);
break;
default:
output_operand_lossage ("operand is not a specific integer, "
"invalid operand code 'R'");
}
if (ASSEMBLER_DIALECT == ASM_ATT)
fputs (", ", file);
return;
case '*':
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('*', file);
return;
case '&':
{
const char *name = get_some_local_dynamic_name ();
if (name == NULL)
output_operand_lossage ("'%%&' used without any "
"local dynamic TLS references");
else
assemble_name (file, name);
return;
}
case '+':
{
rtx x;
if (!optimize
|| optimize_function_for_size_p (cfun)
|| !TARGET_BRANCH_PREDICTION_HINTS)
return;
x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
if (x)
{
int pred_val = profile_probability::from_reg_br_prob_note
(XINT (x, 0)).to_reg_br_prob_base ();
if (pred_val < REG_BR_PROB_BASE * 45 / 100
|| pred_val > REG_BR_PROB_BASE * 55 / 100)
{
bool taken = pred_val > REG_BR_PROB_BASE / 2;
bool cputaken
= final_forward_branch_p (current_output_insn) == 0;
/* Emit hints only in the case default branch prediction
heuristics would fail. */
if (taken != cputaken)
{
/* We use 3e (DS) prefix for taken branches and
2e (CS) prefix for not taken branches. */
if (taken)
fputs ("ds ; ", file);
else
fputs ("cs ; ", file);
}
}
}
return;
}
case ';':
#ifndef HAVE_AS_IX86_REP_LOCK_PREFIX
putc (';', file);
#endif
return;
case '~':
putc (TARGET_AVX2 ? 'i' : 'f', file);
return;
case 'M':
if (TARGET_X32)
{
/* NB: 32-bit indices in VSIB address are sign-extended
to 64 bits. In x32, if 32-bit address 0xf7fa3010 is
sign-extended to 0xfffffffff7fa3010 which is invalid
address. Add addr32 prefix if there is no base
register nor symbol. */
bool ok;
struct ix86_address parts;
ok = ix86_decompose_address (x, &parts);
gcc_assert (ok && parts.index == NULL_RTX);
if (parts.base == NULL_RTX
&& (parts.disp == NULL_RTX
|| !symbolic_operand (parts.disp,
GET_MODE (parts.disp))))
fputs ("addr32 ", file);
}
return;
case '^':
if (TARGET_64BIT && Pmode != word_mode)
fputs ("addr32 ", file);
return;
case '!':
if (ix86_notrack_prefixed_insn_p (current_output_insn))
fputs ("notrack ", file);
return;
default:
output_operand_lossage ("invalid operand code '%c'", code);
}
}
if (REG_P (x))
print_reg (x, code, file);
else if (MEM_P (x))
{
rtx addr = XEXP (x, 0);
/* No `byte ptr' prefix for call instructions ... */
if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P')
{
machine_mode mode = GET_MODE (x);
const char *size;
/* Check for explicit size override codes. */
if (code == 'b')
size = "BYTE";
else if (code == 'w')
size = "WORD";
else if (code == 'k')
size = "DWORD";
else if (code == 'q')
size = "QWORD";
else if (code == 'x')
size = "XMMWORD";
else if (code == 't')
size = "YMMWORD";
else if (code == 'g')
size = "ZMMWORD";
else if (mode == BLKmode)
/* ... or BLKmode operands, when not overridden. */
size = NULL;
else
switch (GET_MODE_SIZE (mode))
{
case 1: size = "BYTE"; break;
case 2: size = "WORD"; break;
case 4: size = "DWORD"; break;
case 8: size = "QWORD"; break;
case 12: size = "TBYTE"; break;
case 16:
if (mode == XFmode)
size = "TBYTE";
else
size = "XMMWORD";
break;
case 32: size = "YMMWORD"; break;
case 64: size = "ZMMWORD"; break;
default:
gcc_unreachable ();
}
if (size)
{
fputs (size, file);
fputs (" PTR ", file);
}
}
if (this_is_asm_operands && ! address_operand (addr, VOIDmode))
output_operand_lossage ("invalid constraints for operand");
else
ix86_print_operand_address_as
(file, addr, MEM_ADDR_SPACE (x), code == 'p' || code == 'P');
}
else if (CONST_DOUBLE_P (x) && GET_MODE (x) == HFmode)
{
long l = real_to_target (NULL, CONST_DOUBLE_REAL_VALUE (x),
REAL_MODE_FORMAT (HFmode));
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('$', file);
fprintf (file, "0x%04x", (unsigned int) l);
}
else if (CONST_DOUBLE_P (x) && GET_MODE (x) == SFmode)
{
long l;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('$', file);
/* Sign extend 32bit SFmode immediate to 8 bytes. */
if (code == 'q')
fprintf (file, "0x%08" HOST_LONG_LONG_FORMAT "x",
(unsigned long long) (int) l);
else
fprintf (file, "0x%08x", (unsigned int) l);
}
else if (CONST_DOUBLE_P (x) && GET_MODE (x) == DFmode)
{
long l[2];
REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), l);
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('$', file);
fprintf (file, "0x%lx%08lx", l[1] & 0xffffffff, l[0] & 0xffffffff);
}
/* These float cases don't actually occur as immediate operands. */
else if (CONST_DOUBLE_P (x) && GET_MODE (x) == XFmode)
{
char dstr[30];
real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1);
fputs (dstr, file);
}
/* Print bcst_mem_operand. */
else if (GET_CODE (x) == VEC_DUPLICATE)
{
machine_mode vmode = GET_MODE (x);
/* Must be bcst_memory_operand. */
gcc_assert (bcst_mem_operand (x, vmode));
rtx mem = XEXP (x,0);
ix86_print_operand (file, mem, 0);
switch (vmode)
{
case E_V2DImode:
case E_V2DFmode:
fputs ("{1to2}", file);
break;
case E_V4SImode:
case E_V4SFmode:
case E_V4DImode:
case E_V4DFmode:
fputs ("{1to4}", file);
break;
case E_V8SImode:
case E_V8SFmode:
case E_V8DFmode:
case E_V8DImode:
case E_V8HFmode:
fputs ("{1to8}", file);
break;
case E_V16SFmode:
case E_V16SImode:
case E_V16HFmode:
fputs ("{1to16}", file);
break;
case E_V32HFmode:
fputs ("{1to32}", file);
break;
default:
gcc_unreachable ();
}
}
else
{
/* We have patterns that allow zero sets of memory, for instance.
In 64-bit mode, we should probably support all 8-byte vectors,
since we can in fact encode that into an immediate. */
if (GET_CODE (x) == CONST_VECTOR)
{
if (x != CONST0_RTX (GET_MODE (x)))
output_operand_lossage ("invalid vector immediate");
x = const0_rtx;
}
if (code == 'P')
{
if (ix86_force_load_from_GOT_p (x, true))
{
/* For inline assembly statement, load function address
from GOT with 'P' operand modifier to avoid PLT. */
x = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x),
(TARGET_64BIT
? UNSPEC_GOTPCREL
: UNSPEC_GOT));
x = gen_rtx_CONST (Pmode, x);
x = gen_const_mem (Pmode, x);
ix86_print_operand (file, x, 'A');
return;
}
}
else if (code != 'p')
{
if (CONST_INT_P (x))
{
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('$', file);
}
else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == LABEL_REF)
{
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('$', file);
else
fputs ("OFFSET FLAT:", file);
}
}
if (CONST_INT_P (x))
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
else if (flag_pic || MACHOPIC_INDIRECT)
output_pic_addr_const (file, x, code);
else
output_addr_const (file, x);
}
}
static bool
ix86_print_operand_punct_valid_p (unsigned char code)
{
return (code == '*' || code == '+' || code == '&' || code == ';'
|| code == '~' || code == '^' || code == '!');
}
/* Print a memory operand whose address is ADDR. */
static void
ix86_print_operand_address_as (FILE *file, rtx addr,
addr_space_t as, bool raw)
{
struct ix86_address parts;
rtx base, index, disp;
int scale;
int ok;
bool vsib = false;
int code = 0;
if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_VSIBADDR)
{
ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts);
gcc_assert (parts.index == NULL_RTX);
parts.index = XVECEXP (addr, 0, 1);
parts.scale = INTVAL (XVECEXP (addr, 0, 2));
addr = XVECEXP (addr, 0, 0);
vsib = true;
}
else if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_LEA_ADDR)
{
gcc_assert (TARGET_64BIT);
ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts);
code = 'q';
}
else
ok = ix86_decompose_address (addr, &parts);
gcc_assert (ok);
base = parts.base;
index = parts.index;
disp = parts.disp;
scale = parts.scale;
if (ADDR_SPACE_GENERIC_P (as))
as = parts.seg;
else
gcc_assert (ADDR_SPACE_GENERIC_P (parts.seg));
if (!ADDR_SPACE_GENERIC_P (as) && !raw)
{
if (ASSEMBLER_DIALECT == ASM_ATT)
putc ('%', file);
switch (as)
{
case ADDR_SPACE_SEG_FS:
fputs ("fs:", file);
break;
case ADDR_SPACE_SEG_GS:
fputs ("gs:", file);
break;
default:
gcc_unreachable ();
}
}
/* Use one byte shorter RIP relative addressing for 64bit mode. */
if (TARGET_64BIT && !base && !index && !raw)
{
rtx symbol = disp;
if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (disp, 0), 1)))
symbol = XEXP (XEXP (disp, 0), 0);
if (GET_CODE (symbol) == LABEL_REF
|| (GET_CODE (symbol) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (symbol) == 0))
base = pc_rtx;
}
if (!base && !index)
{
/* Displacement only requires special attention. */
if (CONST_INT_P (disp))
{
if (ASSEMBLER_DIALECT == ASM_INTEL && ADDR_SPACE_GENERIC_P (as))
fputs ("ds:", file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp));
}
/* Load the external function address via the GOT slot to avoid PLT. */
else if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == UNSPEC
&& (XINT (XEXP (disp, 0), 1) == UNSPEC_GOTPCREL
|| XINT (XEXP (disp, 0), 1) == UNSPEC_GOT)
&& ix86_force_load_from_GOT_p (XVECEXP (XEXP (disp, 0), 0, 0)))
output_pic_addr_const (file, disp, 0);
else if (flag_pic)
output_pic_addr_const (file, disp, 0);
else
output_addr_const (file, disp);
}
else
{
/* Print SImode register names to force addr32 prefix. */
if (SImode_address_operand (addr, VOIDmode))
{
if (flag_checking)
{
gcc_assert (TARGET_64BIT);
switch (GET_CODE (addr))
{
case SUBREG:
gcc_assert (GET_MODE (addr) == SImode);
gcc_assert (GET_MODE (SUBREG_REG (addr)) == DImode);
break;
case ZERO_EXTEND:
case AND:
gcc_assert (GET_MODE (addr) == DImode);
break;
default:
gcc_unreachable ();
}
}
gcc_assert (!code);
code = 'k';
}
else if (code == 0
&& TARGET_X32
&& disp
&& CONST_INT_P (disp)
&& INTVAL (disp) < -16*1024*1024)
{
/* X32 runs in 64-bit mode, where displacement, DISP, in
address DISP(%r64), is encoded as 32-bit immediate sign-
extended from 32-bit to 64-bit. For -0x40000300(%r64),
address is %r64 + 0xffffffffbffffd00. When %r64 <
0x40000300, like 0x37ffe064, address is 0xfffffffff7ffdd64,
which is invalid for x32. The correct address is %r64
- 0x40000300 == 0xf7ffdd64. To properly encode
-0x40000300(%r64) for x32, we zero-extend negative
displacement by forcing addr32 prefix which truncates
0xfffffffff7ffdd64 to 0xf7ffdd64. In theory, we should
zero-extend all negative displacements, including -1(%rsp).
However, for small negative displacements, sign-extension
won't cause overflow. We only zero-extend negative
displacements if they < -16*1024*1024, which is also used
to check legitimate address displacements for PIC. */
code = 'k';
}
/* Since the upper 32 bits of RSP are always zero for x32,
we can encode %esp as %rsp to avoid 0x67 prefix if
there is no index register. */
if (TARGET_X32 && Pmode == SImode
&& !index && base && REG_P (base) && REGNO (base) == SP_REG)
code = 'q';
if (ASSEMBLER_DIALECT == ASM_ATT)
{
if (disp)
{
if (flag_pic)
output_pic_addr_const (file, disp, 0);
else if (GET_CODE (disp) == LABEL_REF)
output_asm_label (disp);
else
output_addr_const (file, disp);
}
putc ('(', file);
if (base)
print_reg (base, code, file);
if (index)
{
putc (',', file);
print_reg (index, vsib ? 0 : code, file);
if (scale != 1 || vsib)
fprintf (file, ",%d", scale);
}
putc (')', file);
}
else
{
rtx offset = NULL_RTX;
if (disp)
{
/* Pull out the offset of a symbol; print any symbol itself. */
if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (disp, 0), 1)))
{
offset = XEXP (XEXP (disp, 0), 1);
disp = gen_rtx_CONST (VOIDmode,
XEXP (XEXP (disp, 0), 0));
}
if (flag_pic)
output_pic_addr_const (file, disp, 0);
else if (GET_CODE (disp) == LABEL_REF)
output_asm_label (disp);
else if (CONST_INT_P (disp))
offset = disp;
else
output_addr_const (file, disp);
}
putc ('[', file);
if (base)
{
print_reg (base, code, file);
if (offset)
{
if (INTVAL (offset) >= 0)
putc ('+', file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
}
}
else if (offset)
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
else
putc ('0', file);
if (index)
{
putc ('+', file);
print_reg (index, vsib ? 0 : code, file);
if (scale != 1 || vsib)
fprintf (file, "*%d", scale);
}
putc (']', file);
}
}
}
static void
ix86_print_operand_address (FILE *file, machine_mode /*mode*/, rtx addr)
{
if (this_is_asm_operands && ! address_operand (addr, VOIDmode))
output_operand_lossage ("invalid constraints for operand");
else
ix86_print_operand_address_as (file, addr, ADDR_SPACE_GENERIC, false);
}
/* Implementation of TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
static bool
i386_asm_output_addr_const_extra (FILE *file, rtx x)
{
rtx op;
if (GET_CODE (x) != UNSPEC)
return false;
op = XVECEXP (x, 0, 0);
switch (XINT (x, 1))
{
case UNSPEC_GOTOFF:
output_addr_const (file, op);
fputs ("@gotoff", file);
break;
case UNSPEC_GOTTPOFF:
output_addr_const (file, op);
/* FIXME: This might be @TPOFF in Sun ld. */
fputs ("@gottpoff", file);
break;
case UNSPEC_TPOFF:
output_addr_const (file, op);
fputs ("@tpoff", file);
break;
case UNSPEC_NTPOFF:
output_addr_const (file, op);
if (TARGET_64BIT)
fputs ("@tpoff", file);
else
fputs ("@ntpoff", file);
break;
case UNSPEC_DTPOFF:
output_addr_const (file, op);
fputs ("@dtpoff", file);
break;
case UNSPEC_GOTNTPOFF:
output_addr_const (file, op);
if (TARGET_64BIT)
fputs (ASSEMBLER_DIALECT == ASM_ATT ?
"@gottpoff(%rip)" : "@gottpoff[rip]", file);
else
fputs ("@gotntpoff", file);
break;
case UNSPEC_INDNTPOFF:
output_addr_const (file, op);
fputs ("@indntpoff", file);
break;
#if TARGET_MACHO
case UNSPEC_MACHOPIC_OFFSET:
output_addr_const (file, op);
putc ('-', file);
machopic_output_function_base_name (file);
break;
#endif
default:
return false;
}
return true;
}
/* Output code to perform a 387 binary operation in INSN, one of PLUS,
MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
is the expression of the binary operation. The output may either be
emitted here, or returned to the caller, like all output_* functions.
There is no guarantee that the operands are the same mode, as they
might be within FLOAT or FLOAT_EXTEND expressions. */
#ifndef SYSV386_COMPAT
/* Set to 1 for compatibility with brain-damaged assemblers. No-one
wants to fix the assemblers because that causes incompatibility
with gcc. No-one wants to fix gcc because that causes
incompatibility with assemblers... You can use the option of
-DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */
#define SYSV386_COMPAT 1
#endif
const char *
output_387_binary_op (rtx_insn *insn, rtx *operands)
{
static char buf[40];
const char *p;
bool is_sse
= (SSE_REG_P (operands[0])
|| SSE_REG_P (operands[1]) || SSE_REG_P (operands[2]));
if (is_sse)
p = "%v";
else if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
p = "fi";
else
p = "f";
strcpy (buf, p);
switch (GET_CODE (operands[3]))
{
case PLUS:
p = "add"; break;
case MINUS:
p = "sub"; break;
case MULT:
p = "mul"; break;
case DIV:
p = "div"; break;
default:
gcc_unreachable ();
}
strcat (buf, p);
if (is_sse)
{
p = GET_MODE (operands[0]) == SFmode ? "ss" : "sd";
strcat (buf, p);
if (TARGET_AVX)
p = "\t{%2, %1, %0|%0, %1, %2}";
else
p = "\t{%2, %0|%0, %2}";
strcat (buf, p);
return buf;
}
/* Even if we do not want to check the inputs, this documents input
constraints. Which helps in understanding the following code. */
if (flag_checking)
{
if (STACK_REG_P (operands[0])
&& ((REG_P (operands[1])
&& REGNO (operands[0]) == REGNO (operands[1])
&& (STACK_REG_P (operands[2]) || MEM_P (operands[2])))
|| (REG_P (operands[2])
&& REGNO (operands[0]) == REGNO (operands[2])
&& (STACK_REG_P (operands[1]) || MEM_P (operands[1]))))
&& (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2])))
; /* ok */
else
gcc_unreachable ();
}
switch (GET_CODE (operands[3]))
{
case MULT:
case PLUS:
if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
std::swap (operands[1], operands[2]);
/* know operands[0] == operands[1]. */
if (MEM_P (operands[2]))
{
p = "%Z2\t%2";
break;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
{
if (STACK_TOP_P (operands[0]))
/* How is it that we are storing to a dead operand[2]?
Well, presumably operands[1] is dead too. We can't
store the result to st(0) as st(0) gets popped on this
instruction. Instead store to operands[2] (which I
think has to be st(1)). st(1) will be popped later.
gcc <= 2.8.1 didn't have this check and generated
assembly code that the Unixware assembler rejected. */
p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */
else
p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */
break;
}
if (STACK_TOP_P (operands[0]))
p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */
else
p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */
break;
case MINUS:
case DIV:
if (MEM_P (operands[1]))
{
p = "r%Z1\t%1";
break;
}
if (MEM_P (operands[2]))
{
p = "%Z2\t%2";
break;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
{
#if SYSV386_COMPAT
/* The SystemV/386 SVR3.2 assembler, and probably all AT&T
derived assemblers, confusingly reverse the direction of
the operation for fsub{r} and fdiv{r} when the
destination register is not st(0). The Intel assembler
doesn't have this brain damage. Read !SYSV386_COMPAT to
figure out what the hardware really does. */
if (STACK_TOP_P (operands[0]))
p = "{p\t%0, %2|rp\t%2, %0}";
else
p = "{rp\t%2, %0|p\t%0, %2}";
#else
if (STACK_TOP_P (operands[0]))
/* As above for fmul/fadd, we can't store to st(0). */
p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */
else
p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */
#endif
break;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
{
#if SYSV386_COMPAT
if (STACK_TOP_P (operands[0]))
p = "{rp\t%0, %1|p\t%1, %0}";
else
p = "{p\t%1, %0|rp\t%0, %1}";
#else
if (STACK_TOP_P (operands[0]))
p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */
else
p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */
#endif
break;
}
if (STACK_TOP_P (operands[0]))
{
if (STACK_TOP_P (operands[1]))
p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */
else
p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */
break;
}
else if (STACK_TOP_P (operands[1]))
{
#if SYSV386_COMPAT
p = "{\t%1, %0|r\t%0, %1}";
#else
p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */
#endif
}
else
{
#if SYSV386_COMPAT
p = "{r\t%2, %0|\t%0, %2}";
#else
p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */
#endif
}
break;
default:
gcc_unreachable ();
}
strcat (buf, p);
return buf;
}
/* Return needed mode for entity in optimize_mode_switching pass. */
static int
ix86_dirflag_mode_needed (rtx_insn *insn)
{
if (CALL_P (insn))
{
if (cfun->machine->func_type == TYPE_NORMAL)
return X86_DIRFLAG_ANY;
else
/* No need to emit CLD in interrupt handler for TARGET_CLD. */
return TARGET_CLD ? X86_DIRFLAG_ANY : X86_DIRFLAG_RESET;
}
if (recog_memoized (insn) < 0)
return X86_DIRFLAG_ANY;
if (get_attr_type (insn) == TYPE_STR)
{
/* Emit cld instruction if stringops are used in the function. */
if (cfun->machine->func_type == TYPE_NORMAL)
return TARGET_CLD ? X86_DIRFLAG_RESET : X86_DIRFLAG_ANY;
else
return X86_DIRFLAG_RESET;
}
return X86_DIRFLAG_ANY;
}
/* Check if a 256bit or 512 bit AVX register is referenced inside of EXP. */
static bool
ix86_check_avx_upper_register (const_rtx exp)
{
return (SSE_REG_P (exp)
&& !EXT_REX_SSE_REG_P (exp)
&& GET_MODE_BITSIZE (GET_MODE (exp)) > 128);
}
/* Check if a 256bit or 512bit AVX register is referenced in stores. */
static void
ix86_check_avx_upper_stores (rtx dest, const_rtx, void *data)
{
if (ix86_check_avx_upper_register (dest))
{
bool *used = (bool *) data;
*used = true;
}
}
/* Return needed mode for entity in optimize_mode_switching pass. */
static int
ix86_avx_u128_mode_needed (rtx_insn *insn)
{
if (DEBUG_INSN_P (insn))
return AVX_U128_ANY;
if (CALL_P (insn))
{
rtx link;
/* Needed mode is set to AVX_U128_CLEAN if there are
no 256bit or 512bit modes used in function arguments. */
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link;
link = XEXP (link, 1))
{
if (GET_CODE (XEXP (link, 0)) == USE)
{
rtx arg = XEXP (XEXP (link, 0), 0);
if (ix86_check_avx_upper_register (arg))
return AVX_U128_DIRTY;
}
}
/* Needed mode is set to AVX_U128_CLEAN if there are no 256bit
nor 512bit registers used in the function return register. */
bool avx_upper_reg_found = false;
note_stores (insn, ix86_check_avx_upper_stores,
&avx_upper_reg_found);
if (avx_upper_reg_found)
return AVX_U128_DIRTY;
/* If the function is known to preserve some SSE registers,
RA and previous passes can legitimately rely on that for
modes wider than 256 bits. It's only safe to issue a
vzeroupper if all SSE registers are clobbered. */
const function_abi &abi = insn_callee_abi (insn);
if (!hard_reg_set_subset_p (reg_class_contents[SSE_REGS],
abi.mode_clobbers (V4DImode)))
return AVX_U128_ANY;
return AVX_U128_CLEAN;
}
subrtx_iterator::array_type array;
rtx set = single_set (insn);
if (set)
{
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
if (ix86_check_avx_upper_register (dest))
{
/* This is an YMM/ZMM load. Return AVX_U128_DIRTY if the
source isn't zero. */
if (standard_sse_constant_p (src, GET_MODE (dest)) != 1)
return AVX_U128_DIRTY;
else
return AVX_U128_ANY;
}
else
{
FOR_EACH_SUBRTX (iter, array, src, NONCONST)
if (ix86_check_avx_upper_register (*iter))
return AVX_U128_DIRTY;
}
/* This isn't YMM/ZMM load/store. */
return AVX_U128_ANY;
}
/* Require DIRTY mode if a 256bit or 512bit AVX register is referenced.
Hardware changes state only when a 256bit register is written to,
but we need to prevent the compiler from moving optimal insertion
point above eventual read from 256bit or 512 bit register. */
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
if (ix86_check_avx_upper_register (*iter))
return AVX_U128_DIRTY;
return AVX_U128_ANY;
}
/* Return mode that i387 must be switched into
prior to the execution of insn. */
static int
ix86_i387_mode_needed (int entity, rtx_insn *insn)
{
enum attr_i387_cw mode;
/* The mode UNINITIALIZED is used to store control word after a
function call or ASM pattern. The mode ANY specify that function
has no requirements on the control word and make no changes in the
bits we are interested in. */
if (CALL_P (insn)
|| (NONJUMP_INSN_P (insn)
&& (asm_noperands (PATTERN (insn)) >= 0
|| GET_CODE (PATTERN (insn)) == ASM_INPUT)))
return I387_CW_UNINITIALIZED;
if (recog_memoized (insn) < 0)
return I387_CW_ANY;
mode = get_attr_i387_cw (insn);
switch (entity)
{
case I387_ROUNDEVEN:
if (mode == I387_CW_ROUNDEVEN)
return mode;
break;
case I387_TRUNC:
if (mode == I387_CW_TRUNC)
return mode;
break;
case I387_FLOOR:
if (mode == I387_CW_FLOOR)
return mode;
break;
case I387_CEIL:
if (mode == I387_CW_CEIL)
return mode;
break;
default:
gcc_unreachable ();
}
return I387_CW_ANY;
}
/* Return mode that entity must be switched into
prior to the execution of insn. */
static int
ix86_mode_needed (int entity, rtx_insn *insn)
{
switch (entity)
{
case X86_DIRFLAG:
return ix86_dirflag_mode_needed (insn);
case AVX_U128:
return ix86_avx_u128_mode_needed (insn);
case I387_ROUNDEVEN:
case I387_TRUNC:
case I387_FLOOR:
case I387_CEIL:
return ix86_i387_mode_needed (entity, insn);
default:
gcc_unreachable ();
}
return 0;
}
/* Calculate mode of upper 128bit AVX registers after the insn. */
static int
ix86_avx_u128_mode_after (int mode, rtx_insn *insn)
{
rtx pat = PATTERN (insn);
if (vzeroupper_pattern (pat, VOIDmode)
|| vzeroall_pattern (pat, VOIDmode))
return AVX_U128_CLEAN;
/* We know that state is clean after CALL insn if there are no
256bit or 512bit registers used in the function return register. */
if (CALL_P (insn))
{
bool avx_upper_reg_found = false;
note_stores (insn, ix86_check_avx_upper_stores, &avx_upper_reg_found);
return avx_upper_reg_found ? AVX_U128_DIRTY : AVX_U128_CLEAN;
}
/* Otherwise, return current mode. Remember that if insn
references AVX 256bit or 512bit registers, the mode was already
changed to DIRTY from MODE_NEEDED. */
return mode;
}
/* Return the mode that an insn results in. */
static int
ix86_mode_after (int entity, int mode, rtx_insn *insn)
{
switch (entity)
{
case X86_DIRFLAG:
return mode;
case AVX_U128:
return ix86_avx_u128_mode_after (mode, insn);
case I387_ROUNDEVEN:
case I387_TRUNC:
case I387_FLOOR:
case I387_CEIL:
return mode;
default:
gcc_unreachable ();
}
}
static int
ix86_dirflag_mode_entry (void)
{
/* For TARGET_CLD or in the interrupt handler we can't assume
direction flag state at function entry. */
if (TARGET_CLD
|| cfun->machine->func_type != TYPE_NORMAL)
return X86_DIRFLAG_ANY;
return X86_DIRFLAG_RESET;
}
static int
ix86_avx_u128_mode_entry (void)
{
tree arg;
/* Entry mode is set to AVX_U128_DIRTY if there are
256bit or 512bit modes used in function arguments. */
for (arg = DECL_ARGUMENTS (current_function_decl); arg;
arg = TREE_CHAIN (arg))
{
rtx incoming = DECL_INCOMING_RTL (arg);
if (incoming && ix86_check_avx_upper_register (incoming))
return AVX_U128_DIRTY;
}
return AVX_U128_CLEAN;
}
/* Return a mode that ENTITY is assumed to be
switched to at function entry. */
static int
ix86_mode_entry (int entity)
{
switch (entity)
{
case X86_DIRFLAG:
return ix86_dirflag_mode_entry ();
case AVX_U128:
return ix86_avx_u128_mode_entry ();
case I387_ROUNDEVEN:
case I387_TRUNC:
case I387_FLOOR:
case I387_CEIL:
return I387_CW_ANY;
default:
gcc_unreachable ();
}
}
static int
ix86_avx_u128_mode_exit (void)
{
rtx reg = crtl->return_rtx;
/* Exit mode is set to AVX_U128_DIRTY if there are 256bit
or 512 bit modes used in the function return register. */
if (reg && ix86_check_avx_upper_register (reg))
return AVX_U128_DIRTY;
/* Exit mode is set to AVX_U128_DIRTY if there are 256bit or 512bit
modes used in function arguments, otherwise return AVX_U128_CLEAN.
*/
return ix86_avx_u128_mode_entry ();
}
/* Return a mode that ENTITY is assumed to be
switched to at function exit. */
static int
ix86_mode_exit (int entity)
{
switch (entity)
{
case X86_DIRFLAG:
return X86_DIRFLAG_ANY;
case AVX_U128:
return ix86_avx_u128_mode_exit ();
case I387_ROUNDEVEN:
case I387_TRUNC:
case I387_FLOOR:
case I387_CEIL:
return I387_CW_ANY;
default:
gcc_unreachable ();
}
}
static int
ix86_mode_priority (int, int n)
{
return n;
}
/* Output code to initialize control word copies used by trunc?f?i and
rounding patterns. CURRENT_MODE is set to current control word,
while NEW_MODE is set to new control word. */
static void
emit_i387_cw_initialization (int mode)
{
rtx stored_mode = assign_386_stack_local (HImode, SLOT_CW_STORED);
rtx new_mode;
enum ix86_stack_slot slot;
rtx reg = gen_reg_rtx (HImode);
emit_insn (gen_x86_fnstcw_1 (stored_mode));
emit_move_insn (reg, copy_rtx (stored_mode));
switch (mode)
{
case I387_CW_ROUNDEVEN:
/* round to nearest */
emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00)));
slot = SLOT_CW_ROUNDEVEN;
break;
case I387_CW_TRUNC:
/* round toward zero (truncate) */
emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00)));
slot = SLOT_CW_TRUNC;
break;
case I387_CW_FLOOR:
/* round down toward -oo */
emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00)));
emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400)));
slot = SLOT_CW_FLOOR;
break;
case I387_CW_CEIL:
/* round up toward +oo */
emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00)));
emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800)));
slot = SLOT_CW_CEIL;
break;
default:
gcc_unreachable ();
}
gcc_assert (slot < MAX_386_STACK_LOCALS);
new_mode = assign_386_stack_local (HImode, slot);
emit_move_insn (new_mode, reg);
}
/* Generate one or more insns to set ENTITY to MODE. */
static void
ix86_emit_mode_set (int entity, int mode, int prev_mode ATTRIBUTE_UNUSED,
HARD_REG_SET regs_live ATTRIBUTE_UNUSED)
{
switch (entity)
{
case X86_DIRFLAG:
if (mode == X86_DIRFLAG_RESET)
emit_insn (gen_cld ());
break;
case AVX_U128:
if (mode == AVX_U128_CLEAN)
ix86_expand_avx_vzeroupper ();
break;
case I387_ROUNDEVEN:
case I387_TRUNC:
case I387_FLOOR:
case I387_CEIL:
if (mode != I387_CW_ANY
&& mode != I387_CW_UNINITIALIZED)
emit_i387_cw_initialization (mode);
break;
default:
gcc_unreachable ();
}
}
/* Output code for INSN to convert a float to a signed int. OPERANDS
are the insn operands. The output may be [HSD]Imode and the input
operand may be [SDX]Fmode. */
const char *
output_fix_trunc (rtx_insn *insn, rtx *operands, bool fisttp)
{
bool stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG);
bool dimode_p = GET_MODE (operands[0]) == DImode;
int round_mode = get_attr_i387_cw (insn);
static char buf[40];
const char *p;
/* Jump through a hoop or two for DImode, since the hardware has no
non-popping instruction. We used to do this a different way, but
that was somewhat fragile and broke with post-reload splitters. */
if ((dimode_p || fisttp) && !stack_top_dies)
output_asm_insn ("fld\t%y1", operands);
gcc_assert (STACK_TOP_P (operands[1]));
gcc_assert (MEM_P (operands[0]));
gcc_assert (GET_MODE (operands[1]) != TFmode);
if (fisttp)
return "fisttp%Z0\t%0";
strcpy (buf, "fist");
if (round_mode != I387_CW_ANY)
output_asm_insn ("fldcw\t%3", operands);
p = "p%Z0\t%0";
strcat (buf, p + !(stack_top_dies || dimode_p));
output_asm_insn (buf, operands);
if (round_mode != I387_CW_ANY)
output_asm_insn ("fldcw\t%2", operands);
return "";
}
/* Output code for x87 ffreep insn. The OPNO argument, which may only
have the values zero or one, indicates the ffreep insn's operand
from the OPERANDS array. */
static const char *
output_387_ffreep (rtx *operands ATTRIBUTE_UNUSED, int opno)
{
if (TARGET_USE_FFREEP)
#ifdef HAVE_AS_IX86_FFREEP
return opno ? "ffreep\t%y1" : "ffreep\t%y0";
#else
{
static char retval[32];
int regno = REGNO (operands[opno]);
gcc_assert (STACK_REGNO_P (regno));
regno -= FIRST_STACK_REG;
snprintf (retval, sizeof (retval), ASM_SHORT "0xc%ddf", regno);
return retval;
}
#endif
return opno ? "fstp\t%y1" : "fstp\t%y0";
}
/* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi
should be used. UNORDERED_P is true when fucom should be used. */
const char *
output_fp_compare (rtx_insn *insn, rtx *operands,
bool eflags_p, bool unordered_p)
{
rtx *xops = eflags_p ? &operands[0] : &operands[1];
bool stack_top_dies;
static char buf[40];
const char *p;
gcc_assert (STACK_TOP_P (xops[0]));
stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG);
if (eflags_p)
{
p = unordered_p ? "fucomi" : "fcomi";
strcpy (buf, p);
p = "p\t{%y1, %0|%0, %y1}";
strcat (buf, p + !stack_top_dies);
return buf;
}
if (STACK_REG_P (xops[1])
&& stack_top_dies
&& find_regno_note (insn, REG_DEAD, FIRST_STACK_REG + 1))
{
gcc_assert (REGNO (xops[1]) == FIRST_STACK_REG + 1);
/* If both the top of the 387 stack die, and the other operand
is also a stack register that dies, then this must be a
`fcompp' float compare. */
p = unordered_p ? "fucompp" : "fcompp";
strcpy (buf, p);
}
else if (const0_operand (xops[1], VOIDmode))
{
gcc_assert (!unordered_p);
strcpy (buf, "ftst");
}
else
{
if (GET_MODE_CLASS (GET_MODE (xops[1])) == MODE_INT)
{
gcc_assert (!unordered_p);
p = "ficom";
}
else
p = unordered_p ? "fucom" : "fcom";
strcpy (buf, p);
p = "p%Z2\t%y2";
strcat (buf, p + !stack_top_dies);
}
output_asm_insn (buf, operands);
return "fnstsw\t%0";
}
void
ix86_output_addr_vec_elt (FILE *file, int value)
{
const char *directive = ASM_LONG;
#ifdef ASM_QUAD
if (TARGET_LP64)
directive = ASM_QUAD;
#else
gcc_assert (!TARGET_64BIT);
#endif
fprintf (file, "%s%s%d\n", directive, LPREFIX, value);
}
void
ix86_output_addr_diff_elt (FILE *file, int value, int rel)
{
const char *directive = ASM_LONG;
#ifdef ASM_QUAD
if (TARGET_64BIT && CASE_VECTOR_MODE == DImode)
directive = ASM_QUAD;
#else
gcc_assert (!TARGET_64BIT);
#endif
/* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */
if (TARGET_64BIT || TARGET_VXWORKS_RTP)
fprintf (file, "%s%s%d-%s%d\n",
directive, LPREFIX, value, LPREFIX, rel);
#if TARGET_MACHO
else if (TARGET_MACHO)
{
fprintf (file, ASM_LONG "%s%d-", LPREFIX, value);
machopic_output_function_base_name (file);
putc ('\n', file);
}
#endif
else if (HAVE_AS_GOTOFF_IN_DATA)
fprintf (file, ASM_LONG "%s%d@GOTOFF\n", LPREFIX, value);
else
asm_fprintf (file, ASM_LONG "%U%s+[.-%s%d]\n",
GOT_SYMBOL_NAME, LPREFIX, value);
}
#define LEA_MAX_STALL (3)
#define LEA_SEARCH_THRESHOLD (LEA_MAX_STALL << 1)
/* Increase given DISTANCE in half-cycles according to
dependencies between PREV and NEXT instructions.
Add 1 half-cycle if there is no dependency and
go to next cycle if there is some dependecy. */
static unsigned int
increase_distance (rtx_insn *prev, rtx_insn *next, unsigned int distance)
{
df_ref def, use;
if (!prev || !next)
return distance + (distance & 1) + 2;
if (!DF_INSN_USES (next) || !DF_INSN_DEFS (prev))
return distance + 1;
FOR_EACH_INSN_USE (use, next)
FOR_EACH_INSN_DEF (def, prev)
if (!DF_REF_IS_ARTIFICIAL (def)
&& DF_REF_REGNO (use) == DF_REF_REGNO (def))
return distance + (distance & 1) + 2;
return distance + 1;
}
/* Function checks if instruction INSN defines register number
REGNO1 or REGNO2. */
bool
insn_defines_reg (unsigned int regno1, unsigned int regno2,
rtx_insn *insn)
{
df_ref def;
FOR_EACH_INSN_DEF (def, insn)
if (DF_REF_REG_DEF_P (def)
&& !DF_REF_IS_ARTIFICIAL (def)
&& (regno1 == DF_REF_REGNO (def)
|| regno2 == DF_REF_REGNO (def)))
return true;
return false;
}
/* Function checks if instruction INSN uses register number
REGNO as a part of address expression. */
static bool
insn_uses_reg_mem (unsigned int regno, rtx insn)
{
df_ref use;
FOR_EACH_INSN_USE (use, insn)
if (DF_REF_REG_MEM_P (use) && regno == DF_REF_REGNO (use))
return true;
return false;
}
/* Search backward for non-agu definition of register number REGNO1
or register number REGNO2 in basic block starting from instruction
START up to head of basic block or instruction INSN.
Function puts true value into *FOUND var if definition was found
and false otherwise.
Distance in half-cycles between START and found instruction or head
of BB is added to DISTANCE and returned. */
static int
distance_non_agu_define_in_bb (unsigned int regno1, unsigned int regno2,
rtx_insn *insn, int distance,
rtx_insn *start, bool *found)
{
basic_block bb = start ? BLOCK_FOR_INSN (start) : NULL;
rtx_insn *prev = start;
rtx_insn *next = NULL;
*found = false;
while (prev
&& prev != insn
&& distance < LEA_SEARCH_THRESHOLD)
{
if (NONDEBUG_INSN_P (prev) && NONJUMP_INSN_P (prev))
{
distance = increase_distance (prev, next, distance);
if (insn_defines_reg (regno1, regno2, prev))
{
if (recog_memoized (prev) < 0
|| get_attr_type (prev) != TYPE_LEA)
{
*found = true;
return distance;
}
}
next = prev;
}
if (prev == BB_HEAD (bb))
break;
prev = PREV_INSN (prev);
}
return distance;
}
/* Search backward for non-agu definition of register number REGNO1
or register number REGNO2 in INSN's basic block until
1. Pass LEA_SEARCH_THRESHOLD instructions, or
2. Reach neighbor BBs boundary, or
3. Reach agu definition.
Returns the distance between the non-agu definition point and INSN.
If no definition point, returns -1. */
static int
distance_non_agu_define (unsigned int regno1, unsigned int regno2,
rtx_insn *insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
int distance = 0;
bool found = false;
if (insn != BB_HEAD (bb))
distance = distance_non_agu_define_in_bb (regno1, regno2, insn,
distance, PREV_INSN (insn),
&found);
if (!found && distance < LEA_SEARCH_THRESHOLD)
{
edge e;
edge_iterator ei;
bool simple_loop = false;
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->src == bb)
{
simple_loop = true;
break;
}
if (simple_loop)
distance = distance_non_agu_define_in_bb (regno1, regno2,
insn, distance,
BB_END (bb), &found);
else
{
int shortest_dist = -1;
bool found_in_bb = false;
FOR_EACH_EDGE (e, ei, bb->preds)
{
int bb_dist
= distance_non_agu_define_in_bb (regno1, regno2,
insn, distance,
BB_END (e->src),
&found_in_bb);
if (found_in_bb)
{
if (shortest_dist < 0)
shortest_dist = bb_dist;
else if (bb_dist > 0)
shortest_dist = MIN (bb_dist, shortest_dist);
found = true;
}
}
distance = shortest_dist;
}
}
if (!found)
return -1;
return distance >> 1;
}
/* Return the distance in half-cycles between INSN and the next
insn that uses register number REGNO in memory address added
to DISTANCE. Return -1 if REGNO0 is set.
Put true value into *FOUND if register usage was found and
false otherwise.
Put true value into *REDEFINED if register redefinition was
found and false otherwise. */
static int
distance_agu_use_in_bb (unsigned int regno,
rtx_insn *insn, int distance, rtx_insn *start,
bool *found, bool *redefined)
{
basic_block bb = NULL;
rtx_insn *next = start;
rtx_insn *prev = NULL;
*found = false;
*redefined = false;
if (start != NULL_RTX)
{
bb = BLOCK_FOR_INSN (start);
if (start != BB_HEAD (bb))
/* If insn and start belong to the same bb, set prev to insn,
so the call to increase_distance will increase the distance
between insns by 1. */
prev = insn;
}
while (next
&& next != insn
&& distance < LEA_SEARCH_THRESHOLD)
{
if (NONDEBUG_INSN_P (next) && NONJUMP_INSN_P (next))
{
distance = increase_distance(prev, next, distance);
if (insn_uses_reg_mem (regno, next))
{
/* Return DISTANCE if OP0 is used in memory
address in NEXT. */
*found = true;
return distance;
}
if (insn_defines_reg (regno, INVALID_REGNUM, next))
{
/* Return -1 if OP0 is set in NEXT. */
*redefined = true;
return -1;
}
prev = next;
}
if (next == BB_END (bb))
break;
next = NEXT_INSN (next);
}
return distance;
}
/* Return the distance between INSN and the next insn that uses
register number REGNO0 in memory address. Return -1 if no such
a use is found within LEA_SEARCH_THRESHOLD or REGNO0 is set. */
static int
distance_agu_use (unsigned int regno0, rtx_insn *insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
int distance = 0;
bool found = false;
bool redefined = false;
if (insn != BB_END (bb))
distance = distance_agu_use_in_bb (regno0, insn, distance,
NEXT_INSN (insn),
&found, &redefined);
if (!found && !redefined && distance < LEA_SEARCH_THRESHOLD)
{
edge e;
edge_iterator ei;
bool simple_loop = false;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest == bb)
{
simple_loop = true;
break;
}
if (simple_loop)
distance = distance_agu_use_in_bb (regno0, insn,
distance, BB_HEAD (bb),
&found, &redefined);
else
{
int shortest_dist = -1;
bool found_in_bb = false;
bool redefined_in_bb = false;
FOR_EACH_EDGE (e, ei, bb->succs)
{
int bb_dist
= distance_agu_use_in_bb (regno0, insn,
distance, BB_HEAD (e->dest),
&found_in_bb, &redefined_in_bb);
if (found_in_bb)
{
if (shortest_dist < 0)
shortest_dist = bb_dist;
else if (bb_dist > 0)
shortest_dist = MIN (bb_dist, shortest_dist);
found = true;
}
}
distance = shortest_dist;
}
}
if (!found || redefined)
return -1;
return distance >> 1;
}
/* Define this macro to tune LEA priority vs ADD, it take effect when
there is a dilemma of choosing LEA or ADD
Negative value: ADD is more preferred than LEA
Zero: Neutral
Positive value: LEA is more preferred than ADD. */
#define IX86_LEA_PRIORITY 0
/* Return true if usage of lea INSN has performance advantage
over a sequence of instructions. Instructions sequence has
SPLIT_COST cycles higher latency than lea latency. */
static bool
ix86_lea_outperforms (rtx_insn *insn, unsigned int regno0, unsigned int regno1,
unsigned int regno2, int split_cost, bool has_scale)
{
int dist_define, dist_use;
/* For Atom processors newer than Bonnell, if using a 2-source or
3-source LEA for non-destructive destination purposes, or due to
wanting ability to use SCALE, the use of LEA is justified. */
if (!TARGET_CPU_P (BONNELL))
{
if (has_scale)
return true;
if (split_cost < 1)
return false;
if (regno0 == regno1 || regno0 == regno2)
return false;
return true;
}
/* Remember recog_data content. */
struct recog_data_d recog_data_save = recog_data;
dist_define = distance_non_agu_define (regno1, regno2, insn);
dist_use = distance_agu_use (regno0, insn);
/* distance_non_agu_define can call get_attr_type which can call
recog_memoized, restore recog_data back to previous content. */
recog_data = recog_data_save;
if (dist_define < 0 || dist_define >= LEA_MAX_STALL)
{
/* If there is no non AGU operand definition, no AGU
operand usage and split cost is 0 then both lea
and non lea variants have same priority. Currently
we prefer lea for 64 bit code and non lea on 32 bit
code. */
if (dist_use < 0 && split_cost == 0)
return TARGET_64BIT || IX86_LEA_PRIORITY;
else
return true;
}
/* With longer definitions distance lea is more preferable.
Here we change it to take into account splitting cost and
lea priority. */
dist_define += split_cost + IX86_LEA_PRIORITY;
/* If there is no use in memory addess then we just check
that split cost exceeds AGU stall. */
if (dist_use < 0)
return dist_define > LEA_MAX_STALL;
/* If this insn has both backward non-agu dependence and forward
agu dependence, the one with short distance takes effect. */
return dist_define >= dist_use;
}
/* Return true if we need to split op0 = op1 + op2 into a sequence of
move and add to avoid AGU stalls. */
bool
ix86_avoid_lea_for_add (rtx_insn *insn, rtx operands[])
{
unsigned int regno0, regno1, regno2;
/* Check if we need to optimize. */
if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun))
return false;
regno0 = true_regnum (operands[0]);
regno1 = true_regnum (operands[1]);
regno2 = true_regnum (operands[2]);
/* We need to split only adds with non destructive
destination operand. */
if (regno0 == regno1 || regno0 == regno2)
return false;
else
return !ix86_lea_outperforms (insn, regno0, regno1, regno2, 1, false);
}
/* Return true if we should emit lea instruction instead of mov
instruction. */
bool
ix86_use_lea_for_mov (rtx_insn *insn, rtx operands[])
{
unsigned int regno0, regno1;
/* Check if we need to optimize. */
if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun))
return false;
/* Use lea for reg to reg moves only. */
if (!REG_P (operands[0]) || !REG_P (operands[1]))
return false;
regno0 = true_regnum (operands[0]);
regno1 = true_regnum (operands[1]);
return ix86_lea_outperforms (insn, regno0, regno1, INVALID_REGNUM, 0, false);
}
/* Return true if we need to split lea into a sequence of
instructions to avoid AGU stalls during peephole2. */
bool
ix86_avoid_lea_for_addr (rtx_insn *insn, rtx operands[])
{
unsigned int regno0, regno1, regno2;
int split_cost;
struct ix86_address parts;
int ok;
/* The "at least two components" test below might not catch simple
move or zero extension insns if parts.base is non-NULL and parts.disp
is const0_rtx as the only components in the address, e.g. if the
register is %rbp or %r13. As this test is much cheaper and moves or
zero extensions are the common case, do this check first. */
if (REG_P (operands[1])
|| (SImode_address_operand (operands[1], VOIDmode)
&& REG_P (XEXP (operands[1], 0))))
return false;
ok = ix86_decompose_address (operands[1], &parts);
gcc_assert (ok);
/* There should be at least two components in the address. */
if ((parts.base != NULL_RTX) + (parts.index != NULL_RTX)
+ (parts.disp != NULL_RTX) + (parts.scale > 1) < 2)
return false;
/* We should not split into add if non legitimate pic
operand is used as displacement. */
if (parts.disp && flag_pic && !LEGITIMATE_PIC_OPERAND_P (parts.disp))
return false;
regno0 = true_regnum (operands[0]) ;
regno1 = INVALID_REGNUM;
regno2 = INVALID_REGNUM;
if (parts.base)
regno1 = true_regnum (parts.base);
if (parts.index)
regno2 = true_regnum (parts.index);
/* Use add for a = a + b and a = b + a since it is faster and shorter
than lea for most processors. For the processors like BONNELL, if
the destination register of LEA holds an actual address which will
be used soon, LEA is better and otherwise ADD is better. */
if (!TARGET_CPU_P (BONNELL)
&& parts.scale == 1
&& (!parts.disp || parts.disp == const0_rtx)
&& (regno0 == regno1 || regno0 == regno2))
return true;
/* Check we need to optimize. */
if (!TARGET_AVOID_LEA_FOR_ADDR || optimize_function_for_size_p (cfun))
return false;
split_cost = 0;
/* Compute how many cycles we will add to execution time
if split lea into a sequence of instructions. */
if (parts.base || parts.index)
{
/* Have to use mov instruction if non desctructive
destination form is used. */
if (regno1 != regno0 && regno2 != regno0)
split_cost += 1;
/* Have to add index to base if both exist. */
if (parts.base && parts.index)
split_cost += 1;
/* Have to use shift and adds if scale is 2 or greater. */
if (parts.scale > 1)
{
if (regno0 != regno1)
split_cost += 1;
else if (regno2 == regno0)
split_cost += 4;
else
split_cost += parts.scale;
}
/* Have to use add instruction with immediate if
disp is non zero. */
if (parts.disp && parts.disp != const0_rtx)
split_cost += 1;
/* Subtract the price of lea. */
split_cost -= 1;
}
return !ix86_lea_outperforms (insn, regno0, regno1, regno2, split_cost,
parts.scale > 1);
}
/* Return true if it is ok to optimize an ADD operation to LEA
operation to avoid flag register consumation. For most processors,
ADD is faster than LEA. For the processors like BONNELL, if the
destination register of LEA holds an actual address which will be
used soon, LEA is better and otherwise ADD is better. */
bool
ix86_lea_for_add_ok (rtx_insn *insn, rtx operands[])
{
unsigned int regno0 = true_regnum (operands[0]);
unsigned int regno1 = true_regnum (operands[1]);
unsigned int regno2 = true_regnum (operands[2]);
/* If a = b + c, (a!=b && a!=c), must use lea form. */
if (regno0 != regno1 && regno0 != regno2)
return true;
if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun))
return false;
return ix86_lea_outperforms (insn, regno0, regno1, regno2, 0, false);
}
/* Return true if destination reg of SET_BODY is shift count of
USE_BODY. */
static bool
ix86_dep_by_shift_count_body (const_rtx set_body, const_rtx use_body)
{
rtx set_dest;
rtx shift_rtx;
int i;
/* Retrieve destination of SET_BODY. */
switch (GET_CODE (set_body))
{
case SET:
set_dest = SET_DEST (set_body);
if (!set_dest || !REG_P (set_dest))
return false;
break;
case PARALLEL:
for (i = XVECLEN (set_body, 0) - 1; i >= 0; i--)
if (ix86_dep_by_shift_count_body (XVECEXP (set_body, 0, i),
use_body))
return true;
/* FALLTHROUGH */
default:
return false;
}
/* Retrieve shift count of USE_BODY. */
switch (GET_CODE (use_body))
{
case SET:
shift_rtx = XEXP (use_body, 1);
break;
case PARALLEL:
for (i = XVECLEN (use_body, 0) - 1; i >= 0; i--)
if (ix86_dep_by_shift_count_body (set_body,
XVECEXP (use_body, 0, i)))
return true;
/* FALLTHROUGH */
default:
return false;
}
if (shift_rtx
&& (GET_CODE (shift_rtx) == ASHIFT
|| GET_CODE (shift_rtx) == LSHIFTRT
|| GET_CODE (shift_rtx) == ASHIFTRT
|| GET_CODE (shift_rtx) == ROTATE
|| GET_CODE (shift_rtx) == ROTATERT))
{
rtx shift_count = XEXP (shift_rtx, 1);
/* Return true if shift count is dest of SET_BODY. */
if (REG_P (shift_count))
{
/* Add check since it can be invoked before register
allocation in pre-reload schedule. */
if (reload_completed
&& true_regnum (set_dest) == true_regnum (shift_count))
return true;
else if (REGNO(set_dest) == REGNO(shift_count))
return true;
}
}
return false;
}
/* Return true if destination reg of SET_INSN is shift count of
USE_INSN. */
bool
ix86_dep_by_shift_count (const_rtx set_insn, const_rtx use_insn)
{
return ix86_dep_by_shift_count_body (PATTERN (set_insn),
PATTERN (use_insn));
}
/* Return TRUE or FALSE depending on whether the unary operator meets the
appropriate constraints. */
bool
ix86_unary_operator_ok (enum rtx_code,
machine_mode,
rtx operands[2])
{
/* If one of operands is memory, source and destination must match. */
if ((MEM_P (operands[0])
|| MEM_P (operands[1]))
&& ! rtx_equal_p (operands[0], operands[1]))
return false;
return true;
}
/* Return TRUE if the operands to a vec_interleave_{high,low}v2df
are ok, keeping in mind the possible movddup alternative. */
bool
ix86_vec_interleave_v2df_operator_ok (rtx operands[3], bool high)
{
if (MEM_P (operands[0]))
return rtx_equal_p (operands[0], operands[1 + high]);
if (MEM_P (operands[1]) && MEM_P (operands[2]))
return TARGET_SSE3 && rtx_equal_p (operands[1], operands[2]);
return true;
}
/* A subroutine of ix86_build_signbit_mask. If VECT is true,
then replicate the value for all elements of the vector
register. */
rtx
ix86_build_const_vector (machine_mode mode, bool vect, rtx value)
{
int i, n_elt;
rtvec v;
machine_mode scalar_mode;
switch (mode)
{
case E_V64QImode:
case E_V32QImode:
case E_V16QImode:
case E_V32HImode:
case E_V16HImode:
case E_V8HImode:
case E_V16SImode:
case E_V8SImode:
case E_V4SImode:
case E_V2SImode:
case E_V8DImode:
case E_V4DImode:
case E_V2DImode:
gcc_assert (vect);
/* FALLTHRU */
case E_V8HFmode:
case E_V16HFmode:
case E_V32HFmode:
case E_V16SFmode:
case E_V8SFmode:
case E_V4SFmode:
case E_V2SFmode:
case E_V8DFmode:
case E_V4DFmode:
case E_V2DFmode:
n_elt = GET_MODE_NUNITS (mode);
v = rtvec_alloc (n_elt);
scalar_mode = GET_MODE_INNER (mode);
RTVEC_ELT (v, 0) = value;
for (i = 1; i < n_elt; ++i)
RTVEC_ELT (v, i) = vect ? value : CONST0_RTX (scalar_mode);
return gen_rtx_CONST_VECTOR (mode, v);
default:
gcc_unreachable ();
}
}
/* A subroutine of ix86_expand_fp_absneg_operator, copysign expanders
and ix86_expand_int_vcond. Create a mask for the sign bit in MODE
for an SSE register. If VECT is true, then replicate the mask for
all elements of the vector register. If INVERT is true, then create
a mask excluding the sign bit. */
rtx
ix86_build_signbit_mask (machine_mode mode, bool vect, bool invert)
{
machine_mode vec_mode, imode;
wide_int w;
rtx mask, v;
switch (mode)
{
case E_V8HFmode:
case E_V16HFmode:
case E_V32HFmode:
vec_mode = mode;
imode = HImode;
break;
case E_V16SImode:
case E_V16SFmode:
case E_V8SImode:
case E_V4SImode:
case E_V8SFmode:
case E_V4SFmode:
case E_V2SFmode:
case E_V2SImode:
vec_mode = mode;
imode = SImode;
break;
case E_V8DImode:
case E_V4DImode:
case E_V2DImode:
case E_V8DFmode:
case E_V4DFmode:
case E_V2DFmode:
vec_mode = mode;
imode = DImode;
break;
case E_TImode:
case E_TFmode:
vec_mode = VOIDmode;
imode = TImode;
break;
default:
gcc_unreachable ();
}
machine_mode inner_mode = GET_MODE_INNER (mode);
w = wi::set_bit_in_zero (GET_MODE_BITSIZE (inner_mode) - 1,
GET_MODE_BITSIZE (inner_mode));
if (invert)
w = wi::bit_not (w);
/* Force this value into the low part of a fp vector constant. */
mask = immed_wide_int_const (w, imode);
mask = gen_lowpart (inner_mode, mask);
if (vec_mode == VOIDmode)
return force_reg (inner_mode, mask);
v = ix86_build_const_vector (vec_mode, vect, mask);
return force_reg (vec_mode, v);
}
/* Return HOST_WIDE_INT for const vector OP in MODE. */
HOST_WIDE_INT
ix86_convert_const_vector_to_integer (rtx op, machine_mode mode)
{
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
gcc_unreachable ();
int nunits = GET_MODE_NUNITS (mode);
wide_int val = wi::zero (GET_MODE_BITSIZE (mode));
machine_mode innermode = GET_MODE_INNER (mode);
unsigned int innermode_bits = GET_MODE_BITSIZE (innermode);
switch (mode)
{
case E_V2QImode:
case E_V4QImode:
case E_V2HImode:
case E_V8QImode:
case E_V4HImode:
case E_V2SImode:
for (int i = 0; i < nunits; ++i)
{
int v = INTVAL (XVECEXP (op, 0, i));
wide_int wv = wi::shwi (v, innermode_bits);
val = wi::insert (val, wv, innermode_bits * i, innermode_bits);
}
break;
case E_V2HFmode:
case E_V4HFmode:
case E_V2SFmode:
for (int i = 0; i < nunits; ++i)
{
rtx x = XVECEXP (op, 0, i);
int v = real_to_target (NULL, CONST_DOUBLE_REAL_VALUE (x),
REAL_MODE_FORMAT (innermode));
wide_int wv = wi::shwi (v, innermode_bits);
val = wi::insert (val, wv, innermode_bits * i, innermode_bits);
}
break;
default:
gcc_unreachable ();
}
return val.to_shwi ();
}
/* Return TRUE or FALSE depending on whether the first SET in INSN
has source and destination with matching CC modes, and that the
CC mode is at least as constrained as REQ_MODE. */
bool
ix86_match_ccmode (rtx insn, machine_mode req_mode)
{
rtx set;
machine_mode set_mode;
set = PATTERN (insn);
if (GET_CODE (set) == PARALLEL)
set = XVECEXP (set, 0, 0);
gcc_assert (GET_CODE (set) == SET);
gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
set_mode = GET_MODE (SET_DEST (set));
switch (set_mode)
{
case E_CCNOmode:
if (req_mode != CCNOmode
&& (req_mode != CCmode
|| XEXP (SET_SRC (set), 1) != const0_rtx))
return false;
break;
case E_CCmode:
if (req_mode == CCGCmode)
return false;
/* FALLTHRU */
case E_CCGCmode:
if (req_mode == CCGOCmode || req_mode == CCNOmode)
return false;
/* FALLTHRU */
case E_CCGOCmode:
if (req_mode == CCZmode)
return false;
/* FALLTHRU */
case E_CCZmode:
break;
case E_CCGZmode:
case E_CCAmode:
case E_CCCmode:
case E_CCOmode:
case E_CCPmode:
case E_CCSmode:
if (set_mode != req_mode)
return false;
break;
default:
gcc_unreachable ();
}
return GET_MODE (SET_SRC (set)) == set_mode;
}
machine_mode
ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1)
{
machine_mode mode = GET_MODE (op0);
if (SCALAR_FLOAT_MODE_P (mode))
{
gcc_assert (!DECIMAL_FLOAT_MODE_P (mode));
return CCFPmode;
}
switch (code)
{
/* Only zero flag is needed. */
case EQ: /* ZF=0 */
case NE: /* ZF!=0 */
return CCZmode;
/* Codes needing carry flag. */
case GEU: /* CF=0 */
case LTU: /* CF=1 */
rtx geu;
/* Detect overflow checks. They need just the carry flag. */
if (GET_CODE (op0) == PLUS
&& (rtx_equal_p (op1, XEXP (op0, 0))
|| rtx_equal_p (op1, XEXP (op0, 1))))
return CCCmode;
/* Similarly for *setcc_qi_addqi3_cconly_overflow_1_* patterns.
Match LTU of op0
(neg:QI (geu:QI (reg:CC_CCC FLAGS_REG) (const_int 0)))
and op1
(ltu:QI (reg:CC_CCC FLAGS_REG) (const_int 0))
where CC_CCC is either CC or CCC. */
else if (code == LTU
&& GET_CODE (op0) == NEG
&& GET_CODE (geu = XEXP (op0, 0)) == GEU
&& REG_P (XEXP (geu, 0))
&& (GET_MODE (XEXP (geu, 0)) == CCCmode
|| GET_MODE (XEXP (geu, 0)) == CCmode)
&& REGNO (XEXP (geu, 0)) == FLAGS_REG
&& XEXP (geu, 1) == const0_rtx
&& GET_CODE (op1) == LTU
&& REG_P (XEXP (op1, 0))
&& GET_MODE (XEXP (op1, 0)) == GET_MODE (XEXP (geu, 0))
&& REGNO (XEXP (op1, 0)) == FLAGS_REG
&& XEXP (op1, 1) == const0_rtx)
return CCCmode;
else
return CCmode;
case GTU: /* CF=0 & ZF=0 */
case LEU: /* CF=1 | ZF=1 */
return CCmode;
/* Codes possibly doable only with sign flag when
comparing against zero. */
case GE: /* SF=OF or SF=0 */
case LT: /* SF<>OF or SF=1 */
if (op1 == const0_rtx)
return CCGOCmode;
else
/* For other cases Carry flag is not required. */
return CCGCmode;
/* Codes doable only with sign flag when comparing
against zero, but we miss jump instruction for it
so we need to use relational tests against overflow
that thus needs to be zero. */
case GT: /* ZF=0 & SF=OF */
case LE: /* ZF=1 | SF<>OF */
if (op1 == const0_rtx)
return CCNOmode;
else
return CCGCmode;
/* strcmp pattern do (use flags) and combine may ask us for proper
mode. */
case USE:
return CCmode;
default:
gcc_unreachable ();
}
}
/* Return the fixed registers used for condition codes. */
static bool
ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = FLAGS_REG;
*p2 = INVALID_REGNUM;
return true;
}
/* If two condition code modes are compatible, return a condition code
mode which is compatible with both. Otherwise, return
VOIDmode. */
static machine_mode
ix86_cc_modes_compatible (machine_mode m1, machine_mode m2)
{
if (m1 == m2)
return m1;
if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
return VOIDmode;
if ((m1 == CCGCmode && m2 == CCGOCmode)
|| (m1 == CCGOCmode && m2 == CCGCmode))
return CCGCmode;
if ((m1 == CCNOmode && m2 == CCGOCmode)
|| (m1 == CCGOCmode && m2 == CCNOmode))
return CCNOmode;
if (m1 == CCZmode
&& (m2 == CCGCmode || m2 == CCGOCmode || m2 == CCNOmode))
return m2;
else if (m2 == CCZmode
&& (m1 == CCGCmode || m1 == CCGOCmode || m1 == CCNOmode))
return m1;
switch (m1)
{
default:
gcc_unreachable ();
case E_CCmode:
case E_CCGCmode:
case E_CCGOCmode:
case E_CCNOmode:
case E_CCAmode:
case E_CCCmode:
case E_CCOmode:
case E_CCPmode:
case E_CCSmode:
case E_CCZmode:
switch (m2)
{
default:
return VOIDmode;
case E_CCmode:
case E_CCGCmode:
case E_CCGOCmode:
case E_CCNOmode:
case E_CCAmode:
case E_CCCmode:
case E_CCOmode:
case E_CCPmode:
case E_CCSmode:
case E_CCZmode:
return CCmode;
}
case E_CCFPmode:
/* These are only compatible with themselves, which we already
checked above. */
return VOIDmode;
}
}
/* Return strategy to use for floating-point. We assume that fcomi is always
preferrable where available, since that is also true when looking at size
(2 bytes, vs. 3 for fnstsw+sahf and at least 5 for fnstsw+test). */
enum ix86_fpcmp_strategy
ix86_fp_comparison_strategy (enum rtx_code)
{
/* Do fcomi/sahf based test when profitable. */
if (TARGET_CMOVE)
return IX86_FPCMP_COMI;
if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ()))
return IX86_FPCMP_SAHF;
return IX86_FPCMP_ARITH;
}
/* Convert comparison codes we use to represent FP comparison to integer
code that will result in proper branch. Return UNKNOWN if no such code
is available. */
enum rtx_code
ix86_fp_compare_code_to_integer (enum rtx_code code)
{
switch (code)
{
case GT:
return GTU;
case GE:
return GEU;
case ORDERED:
case UNORDERED:
return code;
case UNEQ:
return EQ;
case UNLT:
return LTU;
case UNLE:
return LEU;
case LTGT:
return NE;
default:
return UNKNOWN;
}
}
/* Zero extend possibly SImode EXP to Pmode register. */
rtx
ix86_zero_extend_to_Pmode (rtx exp)
{
return force_reg (Pmode, convert_to_mode (Pmode, exp, 1));
}
/* Return true if the function is called via PLT. */
bool
ix86_call_use_plt_p (rtx call_op)
{
if (SYMBOL_REF_LOCAL_P (call_op))
{
if (SYMBOL_REF_DECL (call_op)
&& TREE_CODE (SYMBOL_REF_DECL (call_op)) == FUNCTION_DECL)
{
/* NB: All ifunc functions must be called via PLT. */
cgraph_node *node
= cgraph_node::get (SYMBOL_REF_DECL (call_op));
if (node && node->ifunc_resolver)
return true;
}
return false;
}
return true;
}
/* Implement TARGET_IFUNC_REF_LOCAL_OK. If this hook returns true,
the PLT entry will be used as the function address for local IFUNC
functions. When the PIC register is needed for PLT call, indirect
call via the PLT entry will fail since the PIC register may not be
set up properly for indirect call. In this case, we should return
false. */
static bool
ix86_ifunc_ref_local_ok (void)
{
return !flag_pic || (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC);
}
/* Return true if the function being called was marked with attribute
"noplt" or using -fno-plt and we are compiling for non-PIC. We need
to handle the non-PIC case in the backend because there is no easy
interface for the front-end to force non-PLT calls to use the GOT.
This is currently used only with 64-bit or 32-bit GOT32X ELF targets
to call the function marked "noplt" indirectly. */
static bool
ix86_nopic_noplt_attribute_p (rtx call_op)
{
if (flag_pic || ix86_cmodel == CM_LARGE
|| !(TARGET_64BIT || HAVE_AS_IX86_GOT32X)
|| TARGET_MACHO || TARGET_SEH || TARGET_PECOFF
|| SYMBOL_REF_LOCAL_P (call_op))
return false;
tree symbol_decl = SYMBOL_REF_DECL (call_op);
if (!flag_plt
|| (symbol_decl != NULL_TREE
&& lookup_attribute ("noplt", DECL_ATTRIBUTES (symbol_decl))))
return true;
return false;
}
/* Helper to output the jmp/call. */
static void
ix86_output_jmp_thunk_or_indirect (const char *thunk_name, const int regno)
{
if (thunk_name != NULL)
{
if (REX_INT_REGNO_P (regno)
&& ix86_indirect_branch_cs_prefix)
fprintf (asm_out_file, "\tcs\n");
fprintf (asm_out_file, "\tjmp\t");
assemble_name (asm_out_file, thunk_name);
putc ('\n', asm_out_file);
if ((ix86_harden_sls & harden_sls_indirect_jmp))
fputs ("\tint3\n", asm_out_file);
}
else
output_indirect_thunk (regno);
}
/* Output indirect branch via a call and return thunk. CALL_OP is a
register which contains the branch target. XASM is the assembly
template for CALL_OP. Branch is a tail call if SIBCALL_P is true.
A normal call is converted to:
call __x86_indirect_thunk_reg
and a tail call is converted to:
jmp __x86_indirect_thunk_reg
*/
static void
ix86_output_indirect_branch_via_reg (rtx call_op, bool sibcall_p)
{
char thunk_name_buf[32];
char *thunk_name;
enum indirect_thunk_prefix need_prefix
= indirect_thunk_need_prefix (current_output_insn);
int regno = REGNO (call_op);
if (cfun->machine->indirect_branch_type
!= indirect_branch_thunk_inline)
{
if (cfun->machine->indirect_branch_type == indirect_branch_thunk)
SET_HARD_REG_BIT (indirect_thunks_used, regno);
indirect_thunk_name (thunk_name_buf, regno, need_prefix, false);
thunk_name = thunk_name_buf;
}
else
thunk_name = NULL;
if (sibcall_p)
ix86_output_jmp_thunk_or_indirect (thunk_name, regno);
else
{
if (thunk_name != NULL)
{
if (REX_INT_REGNO_P (regno)
&& ix86_indirect_branch_cs_prefix)
fprintf (asm_out_file, "\tcs\n");
fprintf (asm_out_file, "\tcall\t");
assemble_name (asm_out_file, thunk_name);
putc ('\n', asm_out_file);
return;
}
char indirectlabel1[32];
char indirectlabel2[32];
ASM_GENERATE_INTERNAL_LABEL (indirectlabel1,
INDIRECT_LABEL,
indirectlabelno++);
ASM_GENERATE_INTERNAL_LABEL (indirectlabel2,
INDIRECT_LABEL,
indirectlabelno++);
/* Jump. */
fputs ("\tjmp\t", asm_out_file);
assemble_name_raw (asm_out_file, indirectlabel2);
fputc ('\n', asm_out_file);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel1);
ix86_output_jmp_thunk_or_indirect (thunk_name, regno);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel2);
/* Call. */
fputs ("\tcall\t", asm_out_file);
assemble_name_raw (asm_out_file, indirectlabel1);
fputc ('\n', asm_out_file);
}
}
/* Output indirect branch via a call and return thunk. CALL_OP is
the branch target. XASM is the assembly template for CALL_OP.
Branch is a tail call if SIBCALL_P is true. A normal call is
converted to:
jmp L2
L1:
push CALL_OP
jmp __x86_indirect_thunk
L2:
call L1
and a tail call is converted to:
push CALL_OP
jmp __x86_indirect_thunk
*/
static void
ix86_output_indirect_branch_via_push (rtx call_op, const char *xasm,
bool sibcall_p)
{
char thunk_name_buf[32];
char *thunk_name;
char push_buf[64];
enum indirect_thunk_prefix need_prefix
= indirect_thunk_need_prefix (current_output_insn);
int regno = -1;
if (cfun->machine->indirect_branch_type
!= indirect_branch_thunk_inline)
{
if (cfun->machine->indirect_branch_type == indirect_branch_thunk)
indirect_thunk_needed = true;
indirect_thunk_name (thunk_name_buf, regno, need_prefix, false);
thunk_name = thunk_name_buf;
}
else
thunk_name = NULL;
snprintf (push_buf, sizeof (push_buf), "push{%c}\t%s",
TARGET_64BIT ? 'q' : 'l', xasm);
if (sibcall_p)
{
output_asm_insn (push_buf, &call_op);
ix86_output_jmp_thunk_or_indirect (thunk_name, regno);
}
else
{
char indirectlabel1[32];
char indirectlabel2[32];
ASM_GENERATE_INTERNAL_LABEL (indirectlabel1,
INDIRECT_LABEL,
indirectlabelno++);
ASM_GENERATE_INTERNAL_LABEL (indirectlabel2,
INDIRECT_LABEL,
indirectlabelno++);
/* Jump. */
fputs ("\tjmp\t", asm_out_file);
assemble_name_raw (asm_out_file, indirectlabel2);
fputc ('\n', asm_out_file);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel1);
/* An external function may be called via GOT, instead of PLT. */
if (MEM_P (call_op))
{
struct ix86_address parts;
rtx addr = XEXP (call_op, 0);
if (ix86_decompose_address (addr, &parts)
&& parts.base == stack_pointer_rtx)
{
/* Since call will adjust stack by -UNITS_PER_WORD,
we must convert "disp(stack, index, scale)" to
"disp+UNITS_PER_WORD(stack, index, scale)". */
if (parts.index)
{
addr = gen_rtx_MULT (Pmode, parts.index,
GEN_INT (parts.scale));
addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
addr);
}
else
addr = stack_pointer_rtx;
rtx disp;
if (parts.disp != NULL_RTX)
disp = plus_constant (Pmode, parts.disp,
UNITS_PER_WORD);
else
disp = GEN_INT (UNITS_PER_WORD);
addr = gen_rtx_PLUS (Pmode, addr, disp);
call_op = gen_rtx_MEM (GET_MODE (call_op), addr);
}
}
output_asm_insn (push_buf, &call_op);
ix86_output_jmp_thunk_or_indirect (thunk_name, regno);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel2);
/* Call. */
fputs ("\tcall\t", asm_out_file);
assemble_name_raw (asm_out_file, indirectlabel1);
fputc ('\n', asm_out_file);
}
}
/* Output indirect branch via a call and return thunk. CALL_OP is
the branch target. XASM is the assembly template for CALL_OP.
Branch is a tail call if SIBCALL_P is true. */
static void
ix86_output_indirect_branch (rtx call_op, const char *xasm,
bool sibcall_p)
{
if (REG_P (call_op))
ix86_output_indirect_branch_via_reg (call_op, sibcall_p);
else
ix86_output_indirect_branch_via_push (call_op, xasm, sibcall_p);
}
/* Output indirect jump. CALL_OP is the jump target. */
const char *
ix86_output_indirect_jmp (rtx call_op)
{
if (cfun->machine->indirect_branch_type != indirect_branch_keep)
{
/* We can't have red-zone since "call" in the indirect thunk
pushes the return address onto stack, destroying red-zone. */
if (ix86_red_zone_used)
gcc_unreachable ();
ix86_output_indirect_branch (call_op, "%0", true);
}
else
output_asm_insn ("%!jmp\t%A0", &call_op);
return (ix86_harden_sls & harden_sls_indirect_jmp) ? "int3" : "";
}
/* Output return instrumentation for current function if needed. */
static void
output_return_instrumentation (void)
{
if (ix86_instrument_return != instrument_return_none
&& flag_fentry
&& !DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (cfun->decl))
{
if (ix86_flag_record_return)
fprintf (asm_out_file, "1:\n");
switch (ix86_instrument_return)
{
case instrument_return_call:
fprintf (asm_out_file, "\tcall\t__return__\n");
break;
case instrument_return_nop5:
/* 5 byte nop: nopl 0(%[re]ax,%[re]ax,1) */
fprintf (asm_out_file, ASM_BYTE "0x0f, 0x1f, 0x44, 0x00, 0x00\n");
break;
case instrument_return_none:
break;
}
if (ix86_flag_record_return)
{
fprintf (asm_out_file, "\t.section __return_loc, \"a\",@progbits\n");
fprintf (asm_out_file, "\t.%s 1b\n", TARGET_64BIT ? "quad" : "long");
fprintf (asm_out_file, "\t.previous\n");
}
}
}
/* Output function return. CALL_OP is the jump target. Add a REP
prefix to RET if LONG_P is true and function return is kept. */
const char *
ix86_output_function_return (bool long_p)
{
output_return_instrumentation ();
if (cfun->machine->function_return_type != indirect_branch_keep)
{
char thunk_name[32];
enum indirect_thunk_prefix need_prefix
= indirect_thunk_need_prefix (current_output_insn);
if (cfun->machine->function_return_type
!= indirect_branch_thunk_inline)
{
bool need_thunk = (cfun->machine->function_return_type
== indirect_branch_thunk);
indirect_thunk_name (thunk_name, INVALID_REGNUM, need_prefix,
true);
indirect_return_needed |= need_thunk;
fprintf (asm_out_file, "\tjmp\t");
assemble_name (asm_out_file, thunk_name);
putc ('\n', asm_out_file);
}
else
output_indirect_thunk (INVALID_REGNUM);
return "";
}
output_asm_insn (long_p ? "rep%; ret" : "ret", nullptr);
return (ix86_harden_sls & harden_sls_return) ? "int3" : "";
}
/* Output indirect function return. RET_OP is the function return
target. */
const char *
ix86_output_indirect_function_return (rtx ret_op)
{
if (cfun->machine->function_return_type != indirect_branch_keep)
{
char thunk_name[32];
enum indirect_thunk_prefix need_prefix
= indirect_thunk_need_prefix (current_output_insn);
unsigned int regno = REGNO (ret_op);
gcc_assert (regno == CX_REG);
if (cfun->machine->function_return_type
!= indirect_branch_thunk_inline)
{
bool need_thunk = (cfun->machine->function_return_type
== indirect_branch_thunk);
indirect_thunk_name (thunk_name, regno, need_prefix, true);
if (need_thunk)
{
indirect_return_via_cx = true;
SET_HARD_REG_BIT (indirect_thunks_used, CX_REG);
}
fprintf (asm_out_file, "\tjmp\t");
assemble_name (asm_out_file, thunk_name);
putc ('\n', asm_out_file);
}
else
output_indirect_thunk (regno);
}
else
{
output_asm_insn ("%!jmp\t%A0", &ret_op);
if (ix86_harden_sls & harden_sls_indirect_jmp)
fputs ("\tint3\n", asm_out_file);
}
return "";
}
/* Output the assembly for a call instruction. */
const char *
ix86_output_call_insn (rtx_insn *insn, rtx call_op)
{
bool direct_p = constant_call_address_operand (call_op, VOIDmode);
bool output_indirect_p
= (!TARGET_SEH
&& cfun->machine->indirect_branch_type != indirect_branch_keep);
bool seh_nop_p = false;
const char *xasm;
if (SIBLING_CALL_P (insn))
{
output_return_instrumentation ();
if (direct_p)
{
if (ix86_nopic_noplt_attribute_p (call_op))
{
direct_p = false;
if (TARGET_64BIT)
{
if (output_indirect_p)
xasm = "{%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}";
else
xasm = "%!jmp\t{*%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}";
}
else
{
if (output_indirect_p)
xasm = "{%p0@GOT|[DWORD PTR %p0@GOT]}";
else
xasm = "%!jmp\t{*%p0@GOT|[DWORD PTR %p0@GOT]}";
}
}
else
xasm = "%!jmp\t%P0";
}
/* SEH epilogue detection requires the indirect branch case
to include REX.W. */
else if (TARGET_SEH)
xasm = "%!rex.W jmp\t%A0";
else
{
if (output_indirect_p)
xasm = "%0";
else
xasm = "%!jmp\t%A0";
}
if (output_indirect_p && !direct_p)
ix86_output_indirect_branch (call_op, xasm, true);
else
{
output_asm_insn (xasm, &call_op);
if (!direct_p
&& (ix86_harden_sls & harden_sls_indirect_jmp))
return "int3";
}
return "";
}
/* SEH unwinding can require an extra nop to be emitted in several
circumstances. Determine if we have one of those. */
if (TARGET_SEH)
{
rtx_insn *i;
for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i))
{
/* Prevent a catch region from being adjacent to a jump that would
be interpreted as an epilogue sequence by the unwinder. */
if (JUMP_P(i) && CROSSING_JUMP_P (i))
{
seh_nop_p = true;
break;
}
/* If we get to another real insn, we don't need the nop. */
if (INSN_P (i))
break;
/* If we get to the epilogue note, prevent a catch region from
being adjacent to the standard epilogue sequence. Note that,
if non-call exceptions are enabled, we already did it during
epilogue expansion, or else, if the insn can throw internally,
we already did it during the reorg pass. */
if (NOTE_P (i) && NOTE_KIND (i) == NOTE_INSN_EPILOGUE_BEG
&& !flag_non_call_exceptions
&& !can_throw_internal (insn))
{
seh_nop_p = true;
break;
}
}
/* If we didn't find a real insn following the call, prevent the
unwinder from looking into the next function. */
if (i == NULL)
seh_nop_p = true;
}
if (direct_p)
{
if (ix86_nopic_noplt_attribute_p (call_op))
{
direct_p = false;
if (TARGET_64BIT)
{
if (output_indirect_p)
xasm = "{%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}";
else
xasm = "%!call\t{*%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}";
}
else
{
if (output_indirect_p)
xasm = "{%p0@GOT|[DWORD PTR %p0@GOT]}";
else
xasm = "%!call\t{*%p0@GOT|[DWORD PTR %p0@GOT]}";
}
}
else
xasm = "%!call\t%P0";
}
else
{
if (output_indirect_p)
xasm = "%0";
else
xasm = "%!call\t%A0";
}
if (output_indirect_p && !direct_p)
ix86_output_indirect_branch (call_op, xasm, false);
else
output_asm_insn (xasm, &call_op);
if (seh_nop_p)
return "nop";
return "";
}
/* Return a MEM corresponding to a stack slot with mode MODE.
Allocate a new slot if necessary.
The RTL for a function can have several slots available: N is
which slot to use. */
rtx
assign_386_stack_local (machine_mode mode, enum ix86_stack_slot n)
{
struct stack_local_entry *s;
gcc_assert (n < MAX_386_STACK_LOCALS);
for (s = ix86_stack_locals; s; s = s->next)
if (s->mode == mode && s->n == n)
return validize_mem (copy_rtx (s->rtl));
s = ggc_alloc<stack_local_entry> ();
s->n = n;
s->mode = mode;
s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
s->next = ix86_stack_locals;
ix86_stack_locals = s;
return validize_mem (copy_rtx (s->rtl));
}
static void
ix86_instantiate_decls (void)
{
struct stack_local_entry *s;
for (s = ix86_stack_locals; s; s = s->next)
if (s->rtl != NULL_RTX)
instantiate_decl_rtl (s->rtl);
}
/* Check whether x86 address PARTS is a pc-relative address. */
bool
ix86_rip_relative_addr_p (struct ix86_address *parts)
{
rtx base, index, disp;
base = parts->base;
index = parts->index;
disp = parts->disp;
if (disp && !base && !index)
{
if (TARGET_64BIT)
{
rtx symbol = disp;
if (GET_CODE (disp) == CONST)
symbol = XEXP (disp, 0);
if (GET_CODE (symbol) == PLUS
&& CONST_INT_P (XEXP (symbol, 1)))
symbol = XEXP (symbol, 0);
if (GET_CODE (symbol) == LABEL_REF
|| (GET_CODE (symbol) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (symbol) == 0)
|| (GET_CODE (symbol) == UNSPEC
&& (XINT (symbol, 1) == UNSPEC_GOTPCREL
|| XINT (symbol, 1) == UNSPEC_PCREL
|| XINT (symbol, 1) == UNSPEC_GOTNTPOFF)))
return true;
}
}
return false;
}
/* Calculate the length of the memory address in the instruction encoding.
Includes addr32 prefix, does not include the one-byte modrm, opcode,
or other prefixes. We never generate addr32 prefix for LEA insn. */
int
memory_address_length (rtx addr, bool lea)
{
struct ix86_address parts;
rtx base, index, disp;
int len;
int ok;
if (GET_CODE (addr) == PRE_DEC
|| GET_CODE (addr) == POST_INC
|| GET_CODE (addr) == PRE_MODIFY
|| GET_CODE (addr) == POST_MODIFY)
return 0;
ok = ix86_decompose_address (addr, &parts);
gcc_assert (ok);
len = (parts.seg == ADDR_SPACE_GENERIC) ? 0 : 1;
/* If this is not LEA instruction, add the length of addr32 prefix. */
if (TARGET_64BIT && !lea
&& (SImode_address_operand (addr, VOIDmode)
|| (parts.base && GET_MODE (parts.base) == SImode)
|| (parts.index && GET_MODE (parts.index) == SImode)))
len++;
base = parts.base;
index = parts.index;
disp = parts.disp;
if (base && SUBREG_P (base))
base = SUBREG_REG (base);
if (index && SUBREG_P (index))
index = SUBREG_REG (index);
gcc_assert (base == NULL_RTX || REG_P (base));
gcc_assert (index == NULL_RTX || REG_P (index));
/* Rule of thumb:
- esp as the base always wants an index,
- ebp as the base always wants a displacement,
- r12 as the base always wants an index,
- r13 as the base always wants a displacement. */
/* Register Indirect. */
if (base && !index && !disp)
{
/* esp (for its index) and ebp (for its displacement) need
the two-byte modrm form. Similarly for r12 and r13 in 64-bit
code. */
if (base == arg_pointer_rtx
|| base == frame_pointer_rtx
|| REGNO (base) == SP_REG
|| REGNO (base) == BP_REG
|| REGNO (base) == R12_REG
|| REGNO (base) == R13_REG)
len++;
}
/* Direct Addressing. In 64-bit mode mod 00 r/m 5
is not disp32, but disp32(%rip), so for disp32
SIB byte is needed, unless print_operand_address
optimizes it into disp32(%rip) or (%rip) is implied
by UNSPEC. */
else if (disp && !base && !index)
{
len += 4;
if (!ix86_rip_relative_addr_p (&parts))
len++;
}
else
{
/* Find the length of the displacement constant. */
if (disp)
{
if (base && satisfies_constraint_K (disp))
len += 1;
else
len += 4;
}
/* ebp always wants a displacement. Similarly r13. */
else if (base && (REGNO (base) == BP_REG || REGNO (base) == R13_REG))
len++;
/* An index requires the two-byte modrm form.... */
if (index
/* ...like esp (or r12), which always wants an index. */
|| base == arg_pointer_rtx
|| base == frame_pointer_rtx
|| (base && (REGNO (base) == SP_REG || REGNO (base) == R12_REG)))
len++;
}
return len;
}
/* Compute default value for "length_immediate" attribute. When SHORTFORM
is set, expect that insn have 8bit immediate alternative. */
int
ix86_attr_length_immediate_default (rtx_insn *insn, bool shortform)
{
int len = 0;
int i;
extract_insn_cached (insn);
for (i = recog_data.n_operands - 1; i >= 0; --i)
if (CONSTANT_P (recog_data.operand[i]))
{
enum attr_mode mode = get_attr_mode (insn);
gcc_assert (!len);
if (shortform && CONST_INT_P (recog_data.operand[i]))
{
HOST_WIDE_INT ival = INTVAL (recog_data.operand[i]);
switch (mode)
{
case MODE_QI:
len = 1;
continue;
case MODE_HI:
ival = trunc_int_for_mode (ival, HImode);
break;
case MODE_SI:
ival = trunc_int_for_mode (ival, SImode);
break;
default:
break;
}
if (IN_RANGE (ival, -128, 127))
{
len = 1;
continue;
}
}
switch (mode)
{
case MODE_QI:
len = 1;
break;
case MODE_HI:
len = 2;
break;
case MODE_SI:
len = 4;
break;
/* Immediates for DImode instructions are encoded
as 32bit sign extended values. */
case MODE_DI:
len = 4;
break;
default:
fatal_insn ("unknown insn mode", insn);
}
}
return len;
}
/* Compute default value for "length_address" attribute. */
int
ix86_attr_length_address_default (rtx_insn *insn)
{
int i;
if (get_attr_type (insn) == TYPE_LEA)
{
rtx set = PATTERN (insn), addr;
if (GET_CODE (set) == PARALLEL)
set = XVECEXP (set, 0, 0);
gcc_assert (GET_CODE (set) == SET);
addr = SET_SRC (set);
return memory_address_length (addr, true);
}
extract_insn_cached (insn);
for (i = recog_data.n_operands - 1; i >= 0; --i)
{
rtx op = recog_data.operand[i];
if (MEM_P (op))
{
constrain_operands_cached (insn, reload_completed);
if (which_alternative != -1)
{
const char *constraints = recog_data.constraints[i];
int alt = which_alternative;
while (*constraints == '=' || *constraints == '+')
constraints++;
while (alt-- > 0)
while (*constraints++ != ',')
;
/* Skip ignored operands. */
if (*constraints == 'X')
continue;
}
int len = memory_address_length (XEXP (op, 0), false);
/* Account for segment prefix for non-default addr spaces. */
if (!ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (op)))
len++;
return len;
}
}
return 0;
}
/* Compute default value for "length_vex" attribute. It includes
2 or 3 byte VEX prefix and 1 opcode byte. */
int
ix86_attr_length_vex_default (rtx_insn *insn, bool has_0f_opcode,
bool has_vex_w)
{
int i, reg_only = 2 + 1;
bool has_mem = false;
/* Only 0f opcode can use 2 byte VEX prefix and VEX W bit uses 3
byte VEX prefix. */
if (!has_0f_opcode || has_vex_w)
return 3 + 1;
/* We can always use 2 byte VEX prefix in 32bit. */
if (!TARGET_64BIT)
return 2 + 1;
extract_insn_cached (insn);
for (i = recog_data.n_operands - 1; i >= 0; --i)
if (REG_P (recog_data.operand[i]))
{
/* REX.W bit uses 3 byte VEX prefix. */
if (GET_MODE (recog_data.operand[i]) == DImode
&& GENERAL_REG_P (recog_data.operand[i]))
return 3 + 1;
/* REX.B bit requires 3-byte VEX. Right here we don't know which
operand will be encoded using VEX.B, so be conservative. */
if (REX_INT_REGNO_P (recog_data.operand[i])
|| REX_SSE_REGNO_P (recog_data.operand[i]))
reg_only = 3 + 1;
}
else if (MEM_P (recog_data.operand[i]))
{
/* REX.X or REX.B bits use 3 byte VEX prefix. */
if (x86_extended_reg_mentioned_p (recog_data.operand[i]))
return 3 + 1;
has_mem = true;
}
return has_mem ? 2 + 1 : reg_only;
}
static bool
ix86_class_likely_spilled_p (reg_class_t);
/* Returns true if lhs of insn is HW function argument register and set up
is_spilled to true if it is likely spilled HW register. */
static bool
insn_is_function_arg (rtx insn, bool* is_spilled)
{
rtx dst;
if (!NONDEBUG_INSN_P (insn))
return false;
/* Call instructions are not movable, ignore it. */
if (CALL_P (insn))
return false;
insn = PATTERN (insn);
if (GET_CODE (insn) == PARALLEL)
insn = XVECEXP (insn, 0, 0);
if (GET_CODE (insn) != SET)
return false;
dst = SET_DEST (insn);
if (REG_P (dst) && HARD_REGISTER_P (dst)
&& ix86_function_arg_regno_p (REGNO (dst)))
{
/* Is it likely spilled HW register? */
if (!TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dst))
&& ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dst))))
*is_spilled = true;
return true;
}
return false;
}
/* Add output dependencies for chain of function adjacent arguments if only
there is a move to likely spilled HW register. Return first argument
if at least one dependence was added or NULL otherwise. */
static rtx_insn *
add_parameter_dependencies (rtx_insn *call, rtx_insn *head)
{
rtx_insn *insn;
rtx_insn *last = call;
rtx_insn *first_arg = NULL;
bool is_spilled = false;
head = PREV_INSN (head);
/* Find nearest to call argument passing instruction. */
while (true)
{
last = PREV_INSN (last);
if (last == head)
return NULL;
if (!NONDEBUG_INSN_P (last))
continue;
if (insn_is_function_arg (last, &is_spilled))
break;
return NULL;
}
first_arg = last;
while (true)
{
insn = PREV_INSN (last);
if (!INSN_P (insn))
break;
if (insn == head)
break;
if (!NONDEBUG_INSN_P (insn))
{
last = insn;
continue;
}
if (insn_is_function_arg (insn, &is_spilled))
{
/* Add output depdendence between two function arguments if chain
of output arguments contains likely spilled HW registers. */
if (is_spilled)
add_dependence (first_arg, insn, REG_DEP_OUTPUT);
first_arg = last = insn;
}
else
break;
}
if (!is_spilled)
return NULL;
return first_arg;
}
/* Add output or anti dependency from insn to first_arg to restrict its code
motion. */
static void
avoid_func_arg_motion (rtx_insn *first_arg, rtx_insn *insn)
{
rtx set;
rtx tmp;
set = single_set (insn);
if (!set)
return;
tmp = SET_DEST (set);
if (REG_P (tmp))
{
/* Add output dependency to the first function argument. */
add_dependence (first_arg, insn, REG_DEP_OUTPUT);
return;
}
/* Add anti dependency. */
add_dependence (first_arg, insn, REG_DEP_ANTI);
}
/* Avoid cross block motion of function argument through adding dependency
from the first non-jump instruction in bb. */
static void
add_dependee_for_func_arg (rtx_insn *arg, basic_block bb)
{
rtx_insn *insn = BB_END (bb);
while (insn)
{
if (NONDEBUG_INSN_P (insn) && NONJUMP_INSN_P (insn))
{
rtx set = single_set (insn);
if (set)
{
avoid_func_arg_motion (arg, insn);
return;
}
}
if (insn == BB_HEAD (bb))
return;
insn = PREV_INSN (insn);
}
}
/* Hook for pre-reload schedule - avoid motion of function arguments
passed in likely spilled HW registers. */
static void
ix86_dependencies_evaluation_hook (rtx_insn *head, rtx_insn *tail)
{
rtx_insn *insn;
rtx_insn *first_arg = NULL;
if (reload_completed)
return;
while (head != tail && DEBUG_INSN_P (head))
head = NEXT_INSN (head);
for (insn = tail; insn != head; insn = PREV_INSN (insn))
if (INSN_P (insn) && CALL_P (insn))
{
first_arg = add_parameter_dependencies (insn, head);
if (first_arg)
{
/* Add dependee for first argument to predecessors if only
region contains more than one block. */
basic_block bb = BLOCK_FOR_INSN (insn);
int rgn = CONTAINING_RGN (bb->index);
int nr_blks = RGN_NR_BLOCKS (rgn);
/* Skip trivial regions and region head blocks that can have
predecessors outside of region. */
if (nr_blks > 1 && BLOCK_TO_BB (bb->index) != 0)
{
edge e;
edge_iterator ei;
/* Regions are SCCs with the exception of selective
scheduling with pipelining of outer blocks enabled.
So also check that immediate predecessors of a non-head
block are in the same region. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
/* Avoid creating of loop-carried dependencies through
using topological ordering in the region. */
if (rgn == CONTAINING_RGN (e->src->index)
&& BLOCK_TO_BB (bb->index) > BLOCK_TO_BB (e->src->index))
add_dependee_for_func_arg (first_arg, e->src);
}
}
insn = first_arg;
if (insn == head)
break;
}
}
else if (first_arg)
avoid_func_arg_motion (first_arg, insn);
}
/* Hook for pre-reload schedule - set priority of moves from likely spilled
HW registers to maximum, to schedule them at soon as possible. These are
moves from function argument registers at the top of the function entry
and moves from function return value registers after call. */
static int
ix86_adjust_priority (rtx_insn *insn, int priority)
{
rtx set;
if (reload_completed)
return priority;
if (!NONDEBUG_INSN_P (insn))
return priority;
set = single_set (insn);
if (set)
{
rtx tmp = SET_SRC (set);
if (REG_P (tmp)
&& HARD_REGISTER_P (tmp)
&& !TEST_HARD_REG_BIT (fixed_reg_set, REGNO (tmp))
&& ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (tmp))))
return current_sched_info->sched_max_insns_priority;
}
return priority;
}
/* Prepare for scheduling pass. */
static void
ix86_sched_init_global (FILE *, int, int)
{
/* Install scheduling hooks for current CPU. Some of these hooks are used
in time-critical parts of the scheduler, so we only set them up when
they are actually used. */
switch (ix86_tune)
{
case PROCESSOR_CORE2:
case PROCESSOR_NEHALEM:
case PROCESSOR_SANDYBRIDGE:
case PROCESSOR_HASWELL:
case PROCESSOR_TREMONT:
case PROCESSOR_ALDERLAKE:
case PROCESSOR_GENERIC:
/* Do not perform multipass scheduling for pre-reload schedule
to save compile time. */
if (reload_completed)
{
ix86_core2i7_init_hooks ();
break;
}
/* Fall through. */
default:
targetm.sched.dfa_post_advance_cycle = NULL;
targetm.sched.first_cycle_multipass_init = NULL;
targetm.sched.first_cycle_multipass_begin = NULL;
targetm.sched.first_cycle_multipass_issue = NULL;
targetm.sched.first_cycle_multipass_backtrack = NULL;
targetm.sched.first_cycle_multipass_end = NULL;
targetm.sched.first_cycle_multipass_fini = NULL;
break;
}
}
/* Implement TARGET_STATIC_RTX_ALIGNMENT. */
static HOST_WIDE_INT
ix86_static_rtx_alignment (machine_mode mode)
{
if (mode == DFmode)
return 64;
if (ALIGN_MODE_128 (mode))
return MAX (128, GET_MODE_ALIGNMENT (mode));
return GET_MODE_ALIGNMENT (mode);
}
/* Implement TARGET_CONSTANT_ALIGNMENT. */
static HOST_WIDE_INT
ix86_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
if (TREE_CODE (exp) == REAL_CST || TREE_CODE (exp) == VECTOR_CST
|| TREE_CODE (exp) == INTEGER_CST)
{
machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
HOST_WIDE_INT mode_align = ix86_static_rtx_alignment (mode);
return MAX (mode_align, align);
}
else if (!optimize_size && TREE_CODE (exp) == STRING_CST
&& TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD)
return BITS_PER_WORD;
return align;
}
/* Implement TARGET_EMPTY_RECORD_P. */
static bool
ix86_is_empty_record (const_tree type)
{
if (!TARGET_64BIT)
return false;
return default_is_empty_record (type);
}
/* Implement TARGET_WARN_PARAMETER_PASSING_ABI. */
static void
ix86_warn_parameter_passing_abi (cumulative_args_t cum_v, tree type)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
if (!cum->warn_empty)
return;
if (!TYPE_EMPTY_P (type))
return;
/* Don't warn if the function isn't visible outside of the TU. */
if (cum->decl && !TREE_PUBLIC (cum->decl))
return;
const_tree ctx = get_ultimate_context (cum->decl);
if (ctx != NULL_TREE
&& !TRANSLATION_UNIT_WARN_EMPTY_P (ctx))
return;
/* If the actual size of the type is zero, then there is no change
in how objects of this size are passed. */
if (int_size_in_bytes (type) == 0)
return;
warning (OPT_Wabi, "empty class %qT parameter passing ABI "
"changes in %<-fabi-version=12%> (GCC 8)", type);
/* Only warn once. */
cum->warn_empty = false;
}
/* This hook returns name of multilib ABI. */
static const char *
ix86_get_multilib_abi_name (void)
{
if (!(TARGET_64BIT_P (ix86_isa_flags)))
return "i386";
else if (TARGET_X32_P (ix86_isa_flags))
return "x32";
else
return "x86_64";
}
/* Compute the alignment for a variable for Intel MCU psABI. TYPE is
the data type, and ALIGN is the alignment that the object would
ordinarily have. */
static int
iamcu_alignment (tree type, int align)
{
machine_mode mode;
if (align < 32 || TYPE_USER_ALIGN (type))
return align;
/* Intel MCU psABI specifies scalar types > 4 bytes aligned to 4
bytes. */
type = strip_array_types (type);
if (TYPE_ATOMIC (type))
return align;
mode = TYPE_MODE (type);
switch (GET_MODE_CLASS (mode))
{
case MODE_INT:
case MODE_COMPLEX_INT:
case MODE_COMPLEX_FLOAT:
case MODE_FLOAT:
case MODE_DECIMAL_FLOAT:
return 32;
default:
return align;
}
}
/* Compute the alignment for a static variable.
TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this function is used
instead of that alignment to align the object. */
int
ix86_data_alignment (tree type, unsigned int align, bool opt)
{
/* GCC 4.8 and earlier used to incorrectly assume this alignment even
for symbols from other compilation units or symbols that don't need
to bind locally. In order to preserve some ABI compatibility with
those compilers, ensure we don't decrease alignment from what we
used to assume. */
unsigned int max_align_compat = MIN (256, MAX_OFILE_ALIGNMENT);
/* A data structure, equal or greater than the size of a cache line
(64 bytes in the Pentium 4 and other recent Intel processors, including
processors based on Intel Core microarchitecture) should be aligned
so that its base address is a multiple of a cache line size. */
unsigned int max_align
= MIN ((unsigned) ix86_tune_cost->prefetch_block * 8, MAX_OFILE_ALIGNMENT);
if (max_align < BITS_PER_WORD)
max_align = BITS_PER_WORD;
switch (ix86_align_data_type)
{
case ix86_align_data_type_abi: opt = false; break;
case ix86_align_data_type_compat: max_align = BITS_PER_WORD; break;
case ix86_align_data_type_cacheline: break;
}
if (TARGET_IAMCU)
align = iamcu_alignment (type, align);
if (opt
&& AGGREGATE_TYPE_P (type)
&& TYPE_SIZE (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
{
if (wi::geu_p (wi::to_wide (TYPE_SIZE (type)), max_align_compat)
&& align < max_align_compat)
align = max_align_compat;
if (wi::geu_p (wi::to_wide (TYPE_SIZE (type)), max_align)
&& align < max_align)
align = max_align;
}
/* x86-64 ABI requires arrays greater than 16 bytes to be aligned
to 16byte boundary. */
if (TARGET_64BIT)
{
if ((opt ? AGGREGATE_TYPE_P (type) : TREE_CODE (type) == ARRAY_TYPE)
&& TYPE_SIZE (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& wi::geu_p (wi::to_wide (TYPE_SIZE (type)), 128)
&& align < 128)
return 128;
}
if (!opt)
return align;
if (TREE_CODE (type) == ARRAY_TYPE)
{
if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == COMPLEX_TYPE)
{
if (TYPE_MODE (type) == DCmode && align < 64)
return 64;
if ((TYPE_MODE (type) == XCmode
|| TYPE_MODE (type) == TCmode) && align < 128)
return 128;
}
else if ((TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
&& TYPE_FIELDS (type))
{
if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE
|| TREE_CODE (type) == INTEGER_TYPE)
{
if (TYPE_MODE (type) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128)
return 128;
}
return align;
}
/* Implememnt TARGET_LOWER_LOCAL_DECL_ALIGNMENT. */
static void
ix86_lower_local_decl_alignment (tree decl)
{
unsigned int new_align = ix86_local_alignment (decl, VOIDmode,
DECL_ALIGN (decl), true);
if (new_align < DECL_ALIGN (decl))
SET_DECL_ALIGN (decl, new_align);
}
/* Compute the alignment for a local variable or a stack slot. EXP is
the data type or decl itself, MODE is the widest mode available and
ALIGN is the alignment that the object would ordinarily have. The
value of this macro is used instead of that alignment to align the
object. */
unsigned int
ix86_local_alignment (tree exp, machine_mode mode,
unsigned int align, bool may_lower)
{
tree type, decl;
if (exp && DECL_P (exp))
{
type = TREE_TYPE (exp);
decl = exp;
}
else
{
type = exp;
decl = NULL;
}
/* Don't do dynamic stack realignment for long long objects with
-mpreferred-stack-boundary=2. */
if (may_lower
&& !TARGET_64BIT
&& align == 64
&& ix86_preferred_stack_boundary < 64
&& (mode == DImode || (type && TYPE_MODE (type) == DImode))
&& (!type || (!TYPE_USER_ALIGN (type)
&& !TYPE_ATOMIC (strip_array_types (type))))
&& (!decl || !DECL_USER_ALIGN (decl)))
align = 32;
/* If TYPE is NULL, we are allocating a stack slot for caller-save
register in MODE. We will return the largest alignment of XF
and DF. */
if (!type)
{
if (mode == XFmode && align < GET_MODE_ALIGNMENT (DFmode))
align = GET_MODE_ALIGNMENT (DFmode);
return align;
}
/* Don't increase alignment for Intel MCU psABI. */
if (TARGET_IAMCU)
return align;
/* x86-64 ABI requires arrays greater than 16 bytes to be aligned
to 16byte boundary. Exact wording is:
An array uses the same alignment as its elements, except that a local or
global array variable of length at least 16 bytes or
a C99 variable-length array variable always has alignment of at least 16 bytes.
This was added to allow use of aligned SSE instructions at arrays. This
rule is meant for static storage (where compiler cannot do the analysis
by itself). We follow it for automatic variables only when convenient.
We fully control everything in the function compiled and functions from
other unit cannot rely on the alignment.
Exclude va_list type. It is the common case of local array where
we cannot benefit from the alignment.
TODO: Probably one should optimize for size only when var is not escaping. */
if (TARGET_64BIT && optimize_function_for_speed_p (cfun)
&& TARGET_SSE)
{
if (AGGREGATE_TYPE_P (type)
&& (va_list_type_node == NULL_TREE
|| (TYPE_MAIN_VARIANT (type)
!= TYPE_MAIN_VARIANT (va_list_type_node)))
&& TYPE_SIZE (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& wi::geu_p (wi::to_wide (TYPE_SIZE (type)), 128)
&& align < 128)
return 128;
}
if (TREE_CODE (type) == ARRAY_TYPE)
{
if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == COMPLEX_TYPE)
{
if (TYPE_MODE (type) == DCmode && align < 64)
return 64;
if ((TYPE_MODE (type) == XCmode
|| TYPE_MODE (type) == TCmode) && align < 128)
return 128;
}
else if ((TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
&& TYPE_FIELDS (type))
{
if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE
|| TREE_CODE (type) == INTEGER_TYPE)
{
if (TYPE_MODE (type) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128)
return 128;
}
return align;
}
/* Compute the minimum required alignment for dynamic stack realignment
purposes for a local variable, parameter or a stack slot. EXP is
the data type or decl itself, MODE is its mode and ALIGN is the
alignment that the object would ordinarily have. */
unsigned int
ix86_minimum_alignment (tree exp, machine_mode mode,
unsigned int align)
{
tree type, decl;
if (exp && DECL_P (exp))
{
type = TREE_TYPE (exp);
decl = exp;
}
else
{
type = exp;
decl = NULL;
}
if (TARGET_64BIT || align != 64 || ix86_preferred_stack_boundary >= 64)
return align;
/* Don't do dynamic stack realignment for long long objects with
-mpreferred-stack-boundary=2. */
if ((mode == DImode || (type && TYPE_MODE (type) == DImode))
&& (!type || (!TYPE_USER_ALIGN (type)
&& !TYPE_ATOMIC (strip_array_types (type))))
&& (!decl || !DECL_USER_ALIGN (decl)))
{
gcc_checking_assert (!TARGET_STV);
return 32;
}
return align;
}
/* Find a location for the static chain incoming to a nested function.
This is a register, unless all free registers are used by arguments. */
static rtx
ix86_static_chain (const_tree fndecl_or_type, bool incoming_p)
{
unsigned regno;
if (TARGET_64BIT)
{
/* We always use R10 in 64-bit mode. */
regno = R10_REG;
}
else
{
const_tree fntype, fndecl;
unsigned int ccvt;
/* By default in 32-bit mode we use ECX to pass the static chain. */
regno = CX_REG;
if (TREE_CODE (fndecl_or_type) == FUNCTION_DECL)
{
fntype = TREE_TYPE (fndecl_or_type);
fndecl = fndecl_or_type;
}
else
{
fntype = fndecl_or_type;
fndecl = NULL;
}
ccvt = ix86_get_callcvt (fntype);
if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
{
/* Fastcall functions use ecx/edx for arguments, which leaves
us with EAX for the static chain.
Thiscall functions use ecx for arguments, which also
leaves us with EAX for the static chain. */
regno = AX_REG;
}
else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
{
/* Thiscall functions use ecx for arguments, which leaves
us with EAX and EDX for the static chain.
We are using for abi-compatibility EAX. */
regno = AX_REG;
}
else if (ix86_function_regparm (fntype, fndecl) == 3)
{
/* For regparm 3, we have no free call-clobbered registers in
which to store the static chain. In order to implement this,
we have the trampoline push the static chain to the stack.
However, we can't push a value below the return address when
we call the nested function directly, so we have to use an
alternate entry point. For this we use ESI, and have the
alternate entry point push ESI, so that things appear the
same once we're executing the nested function. */
if (incoming_p)
{
if (fndecl == current_function_decl
&& !ix86_static_chain_on_stack)
{
gcc_assert (!reload_completed);
ix86_static_chain_on_stack = true;
}
return gen_frame_mem (SImode,
plus_constant (Pmode,
arg_pointer_rtx, -8));
}
regno = SI_REG;
}
}
return gen_rtx_REG (Pmode, regno);
}
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNDECL is the decl of the target address; M_TRAMP is a MEM for
the trampoline, and CHAIN_VALUE is an RTX for the static chain
to be passed to the target function. */
static void
ix86_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
rtx mem, fnaddr;
int opcode;
int offset = 0;
bool need_endbr = (flag_cf_protection & CF_BRANCH);
fnaddr = XEXP (DECL_RTL (fndecl), 0);
if (TARGET_64BIT)
{
int size;
if (need_endbr)
{
/* Insert ENDBR64. */
mem = adjust_address (m_tramp, SImode, offset);
emit_move_insn (mem, gen_int_mode (0xfa1e0ff3, SImode));
offset += 4;
}
/* Load the function address to r11. Try to load address using
the shorter movl instead of movabs. We may want to support
movq for kernel mode, but kernel does not use trampolines at
the moment. FNADDR is a 32bit address and may not be in
DImode when ptr_mode == SImode. Always use movl in this
case. */
if (ptr_mode == SImode
|| x86_64_zext_immediate_operand (fnaddr, VOIDmode))
{
fnaddr = copy_addr_to_reg (fnaddr);
mem = adjust_address (m_tramp, HImode, offset);
emit_move_insn (mem, gen_int_mode (0xbb41, HImode));
mem = adjust_address (m_tramp, SImode, offset + 2);
emit_move_insn (mem, gen_lowpart (SImode, fnaddr));
offset += 6;
}
else
{
mem = adjust_address (m_tramp, HImode, offset);
emit_move_insn (mem, gen_int_mode (0xbb49, HImode));
mem = adjust_address (m_tramp, DImode, offset + 2);
emit_move_insn (mem, fnaddr);
offset += 10;
}
/* Load static chain using movabs to r10. Use the shorter movl
instead of movabs when ptr_mode == SImode. */
if (ptr_mode == SImode)
{
opcode = 0xba41;
size = 6;
}
else
{
opcode = 0xba49;
size = 10;
}
mem = adjust_address (m_tramp, HImode, offset);
emit_move_insn (mem, gen_int_mode (opcode, HImode));
mem = adjust_address (m_tramp, ptr_mode, offset + 2);
emit_move_insn (mem, chain_value);
offset += size;
/* Jump to r11; the last (unused) byte is a nop, only there to
pad the write out to a single 32-bit store. */
mem = adjust_address (m_tramp, SImode, offset);
emit_move_insn (mem, gen_int_mode (0x90e3ff49, SImode));
offset += 4;
}
else
{
rtx disp, chain;
/* Depending on the static chain location, either load a register
with a constant, or push the constant to the stack. All of the
instructions are the same size. */
chain = ix86_static_chain (fndecl, true);
if (REG_P (chain))
{
switch (REGNO (chain))
{
case AX_REG:
opcode = 0xb8; break;
case CX_REG:
opcode = 0xb9; break;
default:
gcc_unreachable ();
}
}
else
opcode = 0x68;
if (need_endbr)
{
/* Insert ENDBR32. */
mem = adjust_address (m_tramp, SImode, offset);
emit_move_insn (mem, gen_int_mode (0xfb1e0ff3, SImode));
offset += 4;
}
mem = adjust_address (m_tramp, QImode, offset);
emit_move_insn (mem, gen_int_mode (opcode, QImode));
mem = adjust_address (m_tramp, SImode, offset + 1);
emit_move_insn (mem, chain_value);
offset += 5;
mem = adjust_address (m_tramp, QImode, offset);
emit_move_insn (mem, gen_int_mode (0xe9, QImode));
mem = adjust_address (m_tramp, SImode, offset + 1);
/* Compute offset from the end of the jmp to the target function.
In the case in which the trampoline stores the static chain on
the stack, we need to skip the first insn which pushes the
(call-saved) register static chain; this push is 1 byte. */
offset += 5;
int skip = MEM_P (chain) ? 1 : 0;
/* Skip ENDBR32 at the entry of the target function. */
if (need_endbr
&& !cgraph_node::get (fndecl)->only_called_directly_p ())
skip += 4;
disp = expand_binop (SImode, sub_optab, fnaddr,
plus_constant (Pmode, XEXP (m_tramp, 0),
offset - skip),
NULL_RTX, 1, OPTAB_DIRECT);
emit_move_insn (mem, disp);
}
gcc_assert (offset <= TRAMPOLINE_SIZE);
#ifdef HAVE_ENABLE_EXECUTE_STACK
#ifdef CHECK_EXECUTE_STACK_ENABLED
if (CHECK_EXECUTE_STACK_ENABLED)
#endif
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
#endif
}
static bool
ix86_allocate_stack_slots_for_args (void)
{
/* Naked functions should not allocate stack slots for arguments. */
return !ix86_function_naked (current_function_decl);
}
static bool
ix86_warn_func_return (tree decl)
{
/* Naked functions are implemented entirely in assembly, including the
return sequence, so suppress warnings about this. */
return !ix86_function_naked (decl);
}
/* Return the shift count of a vector by scalar shift builtin second argument
ARG1. */
static tree
ix86_vector_shift_count (tree arg1)
{
if (tree_fits_uhwi_p (arg1))
return arg1;
else if (TREE_CODE (arg1) == VECTOR_CST && CHAR_BIT == 8)
{
/* The count argument is weird, passed in as various 128-bit
(or 64-bit) vectors, the low 64 bits from it are the count. */
unsigned char buf[16];
int len = native_encode_expr (arg1, buf, 16);
if (len == 0)
return NULL_TREE;
tree t = native_interpret_expr (uint64_type_node, buf, len);
if (t && tree_fits_uhwi_p (t))
return t;
}
return NULL_TREE;
}
/* Return true if arg_mask is all ones, ELEMS is elements number of
corresponding vector. */
static bool
ix86_masked_all_ones (unsigned HOST_WIDE_INT elems, tree arg_mask)
{
if (TREE_CODE (arg_mask) != INTEGER_CST)
return false;
unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (arg_mask);
if ((mask | (HOST_WIDE_INT_M1U << elems)) != HOST_WIDE_INT_M1U)
return false;
return true;
}
static tree
ix86_fold_builtin (tree fndecl, int n_args,
tree *args, bool ignore ATTRIBUTE_UNUSED)
{
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
{
enum ix86_builtins fn_code
= (enum ix86_builtins) DECL_MD_FUNCTION_CODE (fndecl);
enum rtx_code rcode;
bool is_vshift;
unsigned HOST_WIDE_INT mask;
switch (fn_code)
{
case IX86_BUILTIN_CPU_IS:
case IX86_BUILTIN_CPU_SUPPORTS:
gcc_assert (n_args == 1);
return fold_builtin_cpu (fndecl, args);
case IX86_BUILTIN_NANQ:
case IX86_BUILTIN_NANSQ:
{
tree type = TREE_TYPE (TREE_TYPE (fndecl));
const char *str = c_getstr (*args);
int quiet = fn_code == IX86_BUILTIN_NANQ;
REAL_VALUE_TYPE real;
if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
return build_real (type, real);
return NULL_TREE;
}
case IX86_BUILTIN_INFQ:
case IX86_BUILTIN_HUGE_VALQ:
{
tree type = TREE_TYPE (TREE_TYPE (fndecl));
REAL_VALUE_TYPE inf;
real_inf (&inf);
return build_real (type, inf);
}
case IX86_BUILTIN_TZCNT16:
case IX86_BUILTIN_CTZS:
case IX86_BUILTIN_TZCNT32:
case IX86_BUILTIN_TZCNT64:
gcc_assert (n_args == 1);
if (TREE_CODE (args[0]) == INTEGER_CST)
{
tree type = TREE_TYPE (TREE_TYPE (fndecl));
tree arg = args[0];
if (fn_code == IX86_BUILTIN_TZCNT16
|| fn_code == IX86_BUILTIN_CTZS)
arg = fold_convert (short_unsigned_type_node, arg);
if (integer_zerop (arg))
return build_int_cst (type, TYPE_PRECISION (TREE_TYPE (arg)));
else
return fold_const_call (CFN_CTZ, type, arg);
}
break;
case IX86_BUILTIN_LZCNT16:
case IX86_BUILTIN_CLZS:
case IX86_BUILTIN_LZCNT32:
case IX86_BUILTIN_LZCNT64:
gcc_assert (n_args == 1);
if (TREE_CODE (args[0]) == INTEGER_CST)
{
tree type = TREE_TYPE (TREE_TYPE (fndecl));
tree arg = args[0];
if (fn_code == IX86_BUILTIN_LZCNT16
|| fn_code == IX86_BUILTIN_CLZS)
arg = fold_convert (short_unsigned_type_node, arg);
if (integer_zerop (arg))
return build_int_cst (type, TYPE_PRECISION (TREE_TYPE (arg)));
else
return fold_const_call (CFN_CLZ, type, arg);
}
break;
case IX86_BUILTIN_BEXTR32:
case IX86_BUILTIN_BEXTR64:
case IX86_BUILTIN_BEXTRI32:
case IX86_BUILTIN_BEXTRI64:
gcc_assert (n_args == 2);
if (tree_fits_uhwi_p (args[1]))
{
unsigned HOST_WIDE_INT res = 0;
unsigned int prec = TYPE_PRECISION (TREE_TYPE (args[0]));
unsigned int start = tree_to_uhwi (args[1]);
unsigned int len = (start & 0xff00) >> 8;
start &= 0xff;
if (start >= prec || len == 0)
res = 0;
else if (!tree_fits_uhwi_p (args[0]))
break;
else
res = tree_to_uhwi (args[0]) >> start;
if (len > prec)
len = prec;
if (len < HOST_BITS_PER_WIDE_INT)
res &= (HOST_WIDE_INT_1U << len) - 1;
return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res);
}
break;
case IX86_BUILTIN_BZHI32:
case IX86_BUILTIN_BZHI64:
gcc_assert (n_args == 2);
if (tree_fits_uhwi_p (args[1]))
{
unsigned int idx = tree_to_uhwi (args[1]) & 0xff;
if (idx >= TYPE_PRECISION (TREE_TYPE (args[0])))
return args[0];
if (idx == 0)
return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
if (!tree_fits_uhwi_p (args[0]))
break;
unsigned HOST_WIDE_INT res = tree_to_uhwi (args[0]);
res &= ~(HOST_WIDE_INT_M1U << idx);
return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res);
}
break;
case IX86_BUILTIN_PDEP32:
case IX86_BUILTIN_PDEP64:
gcc_assert (n_args == 2);
if (tree_fits_uhwi_p (args[0]) && tree_fits_uhwi_p (args[1]))
{
unsigned HOST_WIDE_INT src = tree_to_uhwi (args[0]);
unsigned HOST_WIDE_INT mask = tree_to_uhwi (args[1]);
unsigned HOST_WIDE_INT res = 0;
unsigned HOST_WIDE_INT m, k = 1;
for (m = 1; m; m <<= 1)
if ((mask & m) != 0)
{
if ((src & k) != 0)
res |= m;
k <<= 1;
}
return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res);
}
break;
case IX86_BUILTIN_PEXT32:
case IX86_BUILTIN_PEXT64:
gcc_assert (n_args == 2);
if (tree_fits_uhwi_p (args[0]) && tree_fits_uhwi_p (args[1]))
{
unsigned HOST_WIDE_INT src = tree_to_uhwi (args[0]);
unsigned HOST_WIDE_INT mask = tree_to_uhwi (args[1]);
unsigned HOST_WIDE_INT res = 0;
unsigned HOST_WIDE_INT m, k = 1;
for (m = 1; m; m <<= 1)
if ((mask & m) != 0)
{
if ((src & m) != 0)
res |= k;
k <<= 1;
}
return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res);
}
break;
case IX86_BUILTIN_MOVMSKPS:
case IX86_BUILTIN_PMOVMSKB:
case IX86_BUILTIN_MOVMSKPD:
case IX86_BUILTIN_PMOVMSKB128:
case IX86_BUILTIN_MOVMSKPD256:
case IX86_BUILTIN_MOVMSKPS256:
case IX86_BUILTIN_PMOVMSKB256:
gcc_assert (n_args == 1);
if (TREE_CODE (args[0]) == VECTOR_CST)
{
HOST_WIDE_INT res = 0;
for (unsigned i = 0; i < VECTOR_CST_NELTS (args[0]); ++i)
{
tree e = VECTOR_CST_ELT (args[0], i);
if (TREE_CODE (e) == INTEGER_CST && !TREE_OVERFLOW (e))
{
if (wi::neg_p (wi::to_wide (e)))
res |= HOST_WIDE_INT_1 << i;
}
else if (TREE_CODE (e) == REAL_CST && !TREE_OVERFLOW (e))
{
if (TREE_REAL_CST (e).sign)
res |= HOST_WIDE_INT_1 << i;
}
else
return NULL_TREE;
}
return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res);
}
break;
case IX86_BUILTIN_PSLLD:
case IX86_BUILTIN_PSLLD128:
case IX86_BUILTIN_PSLLD128_MASK:
case IX86_BUILTIN_PSLLD256:
case IX86_BUILTIN_PSLLD256_MASK:
case IX86_BUILTIN_PSLLD512:
case IX86_BUILTIN_PSLLDI:
case IX86_BUILTIN_PSLLDI128:
case IX86_BUILTIN_PSLLDI128_MASK:
case IX86_BUILTIN_PSLLDI256:
case IX86_BUILTIN_PSLLDI256_MASK:
case IX86_BUILTIN_PSLLDI512:
case IX86_BUILTIN_PSLLQ:
case IX86_BUILTIN_PSLLQ128:
case IX86_BUILTIN_PSLLQ128_MASK:
case IX86_BUILTIN_PSLLQ256:
case IX86_BUILTIN_PSLLQ256_MASK:
case IX86_BUILTIN_PSLLQ512:
case IX86_BUILTIN_PSLLQI:
case IX86_BUILTIN_PSLLQI128:
case IX86_BUILTIN_PSLLQI128_MASK:
case IX86_BUILTIN_PSLLQI256:
case IX86_BUILTIN_PSLLQI256_MASK:
case IX86_BUILTIN_PSLLQI512:
case IX86_BUILTIN_PSLLW:
case IX86_BUILTIN_PSLLW128:
case IX86_BUILTIN_PSLLW128_MASK:
case IX86_BUILTIN_PSLLW256:
case IX86_BUILTIN_PSLLW256_MASK:
case IX86_BUILTIN_PSLLW512_MASK:
case IX86_BUILTIN_PSLLWI:
case IX86_BUILTIN_PSLLWI128:
case IX86_BUILTIN_PSLLWI128_MASK:
case IX86_BUILTIN_PSLLWI256:
case IX86_BUILTIN_PSLLWI256_MASK:
case IX86_BUILTIN_PSLLWI512_MASK:
rcode = ASHIFT;
is_vshift = false;
goto do_shift;
case IX86_BUILTIN_PSRAD:
case IX86_BUILTIN_PSRAD128:
case IX86_BUILTIN_PSRAD128_MASK:
case IX86_BUILTIN_PSRAD256:
case IX86_BUILTIN_PSRAD256_MASK:
case IX86_BUILTIN_PSRAD512:
case IX86_BUILTIN_PSRADI:
case IX86_BUILTIN_PSRADI128:
case IX86_BUILTIN_PSRADI128_MASK:
case IX86_BUILTIN_PSRADI256:
case IX86_BUILTIN_PSRADI256_MASK:
case IX86_BUILTIN_PSRADI512:
case IX86_BUILTIN_PSRAQ128_MASK:
case IX86_BUILTIN_PSRAQ256_MASK:
case IX86_BUILTIN_PSRAQ512:
case IX86_BUILTIN_PSRAQI128_MASK:
case IX86_BUILTIN_PSRAQI256_MASK:
case IX86_BUILTIN_PSRAQI512:
case IX86_BUILTIN_PSRAW:
case IX86_BUILTIN_PSRAW128:
case IX86_BUILTIN_PSRAW128_MASK:
case IX86_BUILTIN_PSRAW256:
case IX86_BUILTIN_PSRAW256_MASK:
case IX86_BUILTIN_PSRAW512:
case IX86_BUILTIN_PSRAWI:
case IX86_BUILTIN_PSRAWI128:
case IX86_BUILTIN_PSRAWI128_MASK:
case IX86_BUILTIN_PSRAWI256:
case IX86_BUILTIN_PSRAWI256_MASK:
case IX86_BUILTIN_PSRAWI512:
rcode = ASHIFTRT;
is_vshift = false;
goto do_shift;
case IX86_BUILTIN_PSRLD:
case IX86_BUILTIN_PSRLD128:
case IX86_BUILTIN_PSRLD128_MASK:
case IX86_BUILTIN_PSRLD256:
case IX86_BUILTIN_PSRLD256_MASK:
case IX86_BUILTIN_PSRLD512:
case IX86_BUILTIN_PSRLDI:
case IX86_BUILTIN_PSRLDI128:
case IX86_BUILTIN_PSRLDI128_MASK:
case IX86_BUILTIN_PSRLDI256:
case IX86_BUILTIN_PSRLDI256_MASK:
case IX86_BUILTIN_PSRLDI512:
case IX86_BUILTIN_PSRLQ:
case IX86_BUILTIN_PSRLQ128:
case IX86_BUILTIN_PSRLQ128_MASK:
case IX86_BUILTIN_PSRLQ256:
case IX86_BUILTIN_PSRLQ256_MASK:
case IX86_BUILTIN_PSRLQ512:
case IX86_BUILTIN_PSRLQI:
case IX86_BUILTIN_PSRLQI128:
case IX86_BUILTIN_PSRLQI128_MASK:
case IX86_BUILTIN_PSRLQI256:
case IX86_BUILTIN_PSRLQI256_MASK:
case IX86_BUILTIN_PSRLQI512:
case IX86_BUILTIN_PSRLW:
case IX86_BUILTIN_PSRLW128:
case IX86_BUILTIN_PSRLW128_MASK:
case IX86_BUILTIN_PSRLW256:
case IX86_BUILTIN_PSRLW256_MASK:
case IX86_BUILTIN_PSRLW512:
case IX86_BUILTIN_PSRLWI:
case IX86_BUILTIN_PSRLWI128:
case IX86_BUILTIN_PSRLWI128_MASK:
case IX86_BUILTIN_PSRLWI256:
case IX86_BUILTIN_PSRLWI256_MASK:
case IX86_BUILTIN_PSRLWI512:
rcode = LSHIFTRT;
is_vshift = false;
goto do_shift;
case IX86_BUILTIN_PSLLVV16HI:
case IX86_BUILTIN_PSLLVV16SI:
case IX86_BUILTIN_PSLLVV2DI:
case IX86_BUILTIN_PSLLVV2DI_MASK:
case IX86_BUILTIN_PSLLVV32HI:
case IX86_BUILTIN_PSLLVV4DI:
case IX86_BUILTIN_PSLLVV4DI_MASK:
case IX86_BUILTIN_PSLLVV4SI:
case IX86_BUILTIN_PSLLVV4SI_MASK:
case IX86_BUILTIN_PSLLVV8DI:
case IX86_BUILTIN_PSLLVV8HI:
case IX86_BUILTIN_PSLLVV8SI:
case IX86_BUILTIN_PSLLVV8SI_MASK:
rcode = ASHIFT;
is_vshift = true;
goto do_shift;
case IX86_BUILTIN_PSRAVQ128:
case IX86_BUILTIN_PSRAVQ256:
case IX86_BUILTIN_PSRAVV16HI:
case IX86_BUILTIN_PSRAVV16SI:
case IX86_BUILTIN_PSRAVV32HI:
case IX86_BUILTIN_PSRAVV4SI:
case IX86_BUILTIN_PSRAVV4SI_MASK:
case IX86_BUILTIN_PSRAVV8DI:
case IX86_BUILTIN_PSRAVV8HI:
case IX86_BUILTIN_PSRAVV8SI:
case IX86_BUILTIN_PSRAVV8SI_MASK:
rcode = ASHIFTRT;
is_vshift = true;
goto do_shift;
case IX86_BUILTIN_PSRLVV16HI:
case IX86_BUILTIN_PSRLVV16SI:
case IX86_BUILTIN_PSRLVV2DI:
case IX86_BUILTIN_PSRLVV2DI_MASK:
case IX86_BUILTIN_PSRLVV32HI:
case IX86_BUILTIN_PSRLVV4DI:
case IX86_BUILTIN_PSRLVV4DI_MASK:
case IX86_BUILTIN_PSRLVV4SI:
case IX86_BUILTIN_PSRLVV4SI_MASK:
case IX86_BUILTIN_PSRLVV8DI:
case IX86_BUILTIN_PSRLVV8HI:
case IX86_BUILTIN_PSRLVV8SI:
case IX86_BUILTIN_PSRLVV8SI_MASK:
rcode = LSHIFTRT;
is_vshift = true;
goto do_shift;
do_shift:
gcc_assert (n_args >= 2);
if (TREE_CODE (args[0]) != VECTOR_CST)
break;
mask = HOST_WIDE_INT_M1U;
if (n_args > 2)
{
/* This is masked shift. */
if (!tree_fits_uhwi_p (args[n_args - 1])
|| TREE_SIDE_EFFECTS (args[n_args - 2]))
break;
mask = tree_to_uhwi (args[n_args - 1]);
unsigned elems = TYPE_VECTOR_SUBPARTS (TREE_TYPE (args[0]));
mask |= HOST_WIDE_INT_M1U << elems;
if (mask != HOST_WIDE_INT_M1U
&& TREE_CODE (args[n_args - 2]) != VECTOR_CST)
break;
if (mask == (HOST_WIDE_INT_M1U << elems))
return args[n_args - 2];
}
if (is_vshift && TREE_CODE (args[1]) != VECTOR_CST)
break;
if (tree tem = (is_vshift ? integer_one_node
: ix86_vector_shift_count (args[1])))
{
unsigned HOST_WIDE_INT count = tree_to_uhwi (tem);
unsigned HOST_WIDE_INT prec
= TYPE_PRECISION (TREE_TYPE (TREE_TYPE (args[0])));
if (count == 0 && mask == HOST_WIDE_INT_M1U)
return args[0];
if (count >= prec)
{
if (rcode == ASHIFTRT)
count = prec - 1;
else if (mask == HOST_WIDE_INT_M1U)
return build_zero_cst (TREE_TYPE (args[0]));
}
tree countt = NULL_TREE;
if (!is_vshift)
{
if (count >= prec)
countt = integer_zero_node;
else
countt = build_int_cst (integer_type_node, count);
}
tree_vector_builder builder;
if (mask != HOST_WIDE_INT_M1U || is_vshift)
builder.new_vector (TREE_TYPE (args[0]),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (args[0])),
1);
else
builder.new_unary_operation (TREE_TYPE (args[0]), args[0],
false);
unsigned int cnt = builder.encoded_nelts ();
for (unsigned int i = 0; i < cnt; ++i)
{
tree elt = VECTOR_CST_ELT (args[0], i);
if (TREE_CODE (elt) != INTEGER_CST || TREE_OVERFLOW (elt))
return NULL_TREE;
tree type = TREE_TYPE (elt);
if (rcode == LSHIFTRT)
elt = fold_convert (unsigned_type_for (type), elt);
if (is_vshift)
{
countt = VECTOR_CST_ELT (args[1], i);
if (TREE_CODE (countt) != INTEGER_CST
|| TREE_OVERFLOW (countt))
return NULL_TREE;
if (wi::neg_p (wi::to_wide (countt))
|| wi::to_widest (countt) >= prec)
{
if (rcode == ASHIFTRT)
countt = build_int_cst (TREE_TYPE (countt),
prec - 1);
else
{
elt = build_zero_cst (TREE_TYPE (elt));
countt = build_zero_cst (TREE_TYPE (countt));
}
}
}
else if (count >= prec)
elt = build_zero_cst (TREE_TYPE (elt));
elt = const_binop (rcode == ASHIFT
? LSHIFT_EXPR : RSHIFT_EXPR,
TREE_TYPE (elt), elt, countt);
if (!elt || TREE_CODE (elt) != INTEGER_CST)
return NULL_TREE;
if (rcode == LSHIFTRT)
elt = fold_convert (type, elt);
if ((mask & (HOST_WIDE_INT_1U << i)) == 0)
{
elt = VECTOR_CST_ELT (args[n_args - 2], i);
if (TREE_CODE (elt) != INTEGER_CST
|| TREE_OVERFLOW (elt))
return NULL_TREE;
}
builder.quick_push (elt);
}
return builder.build ();
}
break;
default:
break;
}
}
#ifdef SUBTARGET_FOLD_BUILTIN
return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore);
#endif
return NULL_TREE;
}
/* Fold a MD builtin (use ix86_fold_builtin for folding into
constant) in GIMPLE. */
bool
ix86_gimple_fold_builtin (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree fndecl = gimple_call_fndecl (stmt);
gcc_checking_assert (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_MD));
int n_args = gimple_call_num_args (stmt);
enum ix86_builtins fn_code
= (enum ix86_builtins) DECL_MD_FUNCTION_CODE (fndecl);
tree decl = NULL_TREE;
tree arg0, arg1, arg2;
enum rtx_code rcode;
enum tree_code tcode;
unsigned HOST_WIDE_INT count;
bool is_vshift;
unsigned HOST_WIDE_INT elems;
/* Don't fold when there's isa mismatch. */
if (!ix86_check_builtin_isa_match (fn_code, NULL, NULL))
return false;
switch (fn_code)
{
case IX86_BUILTIN_TZCNT32:
decl = builtin_decl_implicit (BUILT_IN_CTZ);
goto fold_tzcnt_lzcnt;
case IX86_BUILTIN_TZCNT64:
decl = builtin_decl_implicit (BUILT_IN_CTZLL);
goto fold_tzcnt_lzcnt;
case IX86_BUILTIN_LZCNT32:
decl = builtin_decl_implicit (BUILT_IN_CLZ);
goto fold_tzcnt_lzcnt;
case IX86_BUILTIN_LZCNT64:
decl = builtin_decl_implicit (BUILT_IN_CLZLL);
goto fold_tzcnt_lzcnt;
fold_tzcnt_lzcnt:
gcc_assert (n_args == 1);
arg0 = gimple_call_arg (stmt, 0);
if (TREE_CODE (arg0) == SSA_NAME && decl && gimple_call_lhs (stmt))
{
int prec = TYPE_PRECISION (TREE_TYPE (arg0));
/* If arg0 is provably non-zero, optimize into generic
__builtin_c[tl]z{,ll} function the middle-end handles
better. */
if (!expr_not_equal_to (arg0, wi::zero (prec)))
return false;
location_t loc = gimple_location (stmt);
gimple *g = gimple_build_call (decl, 1, arg0);
gimple_set_location (g, loc);
tree lhs = make_ssa_name (integer_type_node);
gimple_call_set_lhs (g, lhs);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
g = gimple_build_assign (gimple_call_lhs (stmt), NOP_EXPR, lhs);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
break;
case IX86_BUILTIN_BZHI32:
case IX86_BUILTIN_BZHI64:
gcc_assert (n_args == 2);
arg1 = gimple_call_arg (stmt, 1);
if (tree_fits_uhwi_p (arg1) && gimple_call_lhs (stmt))
{
unsigned int idx = tree_to_uhwi (arg1) & 0xff;
arg0 = gimple_call_arg (stmt, 0);
if (idx < TYPE_PRECISION (TREE_TYPE (arg0)))
break;
location_t loc = gimple_location (stmt);
gimple *g = gimple_build_assign (gimple_call_lhs (stmt), arg0);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
break;
case IX86_BUILTIN_PDEP32:
case IX86_BUILTIN_PDEP64:
case IX86_BUILTIN_PEXT32:
case IX86_BUILTIN_PEXT64:
gcc_assert (n_args == 2);
arg1 = gimple_call_arg (stmt, 1);
if (integer_all_onesp (arg1) && gimple_call_lhs (stmt))
{
location_t loc = gimple_location (stmt);
arg0 = gimple_call_arg (stmt, 0);
gimple *g = gimple_build_assign (gimple_call_lhs (stmt), arg0);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
break;
case IX86_BUILTIN_PBLENDVB256:
case IX86_BUILTIN_BLENDVPS256:
case IX86_BUILTIN_BLENDVPD256:
/* pcmpeqb/d/q is under avx2, w/o avx2, it's veclower
to scalar operations and not combined back. */
if (!TARGET_AVX2)
break;
/* FALLTHRU. */
case IX86_BUILTIN_BLENDVPD:
/* blendvpd is under sse4.1 but pcmpgtq is under sse4.2,
w/o sse4.2, it's veclowered to scalar operations and
not combined back. */
if (!TARGET_SSE4_2)
break;
/* FALLTHRU. */
case IX86_BUILTIN_PBLENDVB128:
case IX86_BUILTIN_BLENDVPS:
gcc_assert (n_args == 3);
arg0 = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
arg2 = gimple_call_arg (stmt, 2);
if (gimple_call_lhs (stmt))
{
location_t loc = gimple_location (stmt);
tree type = TREE_TYPE (arg2);
gimple_seq stmts = NULL;
if (VECTOR_FLOAT_TYPE_P (type))
{
tree itype = GET_MODE_INNER (TYPE_MODE (type)) == E_SFmode
? intSI_type_node : intDI_type_node;
type = get_same_sized_vectype (itype, type);
arg2 = gimple_build (&stmts, VIEW_CONVERT_EXPR, type, arg2);
}
tree zero_vec = build_zero_cst (type);
tree cmp_type = truth_type_for (type);
tree cmp = gimple_build (&stmts, LT_EXPR, cmp_type, arg2, zero_vec);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple *g = gimple_build_assign (gimple_call_lhs (stmt),
VEC_COND_EXPR, cmp,
arg1, arg0);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
}
else
gsi_replace (gsi, gimple_build_nop (), false);
return true;
case IX86_BUILTIN_PCMPEQB128:
case IX86_BUILTIN_PCMPEQW128:
case IX86_BUILTIN_PCMPEQD128:
case IX86_BUILTIN_PCMPEQQ:
case IX86_BUILTIN_PCMPEQB256:
case IX86_BUILTIN_PCMPEQW256:
case IX86_BUILTIN_PCMPEQD256:
case IX86_BUILTIN_PCMPEQQ256:
tcode = EQ_EXPR;
goto do_cmp;
case IX86_BUILTIN_PCMPGTB128:
case IX86_BUILTIN_PCMPGTW128:
case IX86_BUILTIN_PCMPGTD128:
case IX86_BUILTIN_PCMPGTQ:
case IX86_BUILTIN_PCMPGTB256:
case IX86_BUILTIN_PCMPGTW256:
case IX86_BUILTIN_PCMPGTD256:
case IX86_BUILTIN_PCMPGTQ256:
tcode = GT_EXPR;
do_cmp:
gcc_assert (n_args == 2);
arg0 = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
if (gimple_call_lhs (stmt))
{
location_t loc = gimple_location (stmt);
tree type = TREE_TYPE (arg0);
tree zero_vec = build_zero_cst (type);
tree minus_one_vec = build_minus_one_cst (type);
tree cmp_type = truth_type_for (type);
gimple_seq stmts = NULL;
tree cmp = gimple_build (&stmts, tcode, cmp_type, arg0, arg1);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple* g = gimple_build_assign (gimple_call_lhs (stmt),
VEC_COND_EXPR, cmp,
minus_one_vec, zero_vec);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
}
else
gsi_replace (gsi, gimple_build_nop (), false);
return true;
case IX86_BUILTIN_PSLLD:
case IX86_BUILTIN_PSLLD128:
case IX86_BUILTIN_PSLLD128_MASK:
case IX86_BUILTIN_PSLLD256:
case IX86_BUILTIN_PSLLD256_MASK:
case IX86_BUILTIN_PSLLD512:
case IX86_BUILTIN_PSLLDI:
case IX86_BUILTIN_PSLLDI128:
case IX86_BUILTIN_PSLLDI128_MASK:
case IX86_BUILTIN_PSLLDI256:
case IX86_BUILTIN_PSLLDI256_MASK:
case IX86_BUILTIN_PSLLDI512:
case IX86_BUILTIN_PSLLQ:
case IX86_BUILTIN_PSLLQ128:
case IX86_BUILTIN_PSLLQ128_MASK:
case IX86_BUILTIN_PSLLQ256:
case IX86_BUILTIN_PSLLQ256_MASK:
case IX86_BUILTIN_PSLLQ512:
case IX86_BUILTIN_PSLLQI:
case IX86_BUILTIN_PSLLQI128:
case IX86_BUILTIN_PSLLQI128_MASK:
case IX86_BUILTIN_PSLLQI256:
case IX86_BUILTIN_PSLLQI256_MASK:
case IX86_BUILTIN_PSLLQI512:
case IX86_BUILTIN_PSLLW:
case IX86_BUILTIN_PSLLW128:
case IX86_BUILTIN_PSLLW128_MASK:
case IX86_BUILTIN_PSLLW256:
case IX86_BUILTIN_PSLLW256_MASK:
case IX86_BUILTIN_PSLLW512_MASK:
case IX86_BUILTIN_PSLLWI:
case IX86_BUILTIN_PSLLWI128:
case IX86_BUILTIN_PSLLWI128_MASK:
case IX86_BUILTIN_PSLLWI256:
case IX86_BUILTIN_PSLLWI256_MASK:
case IX86_BUILTIN_PSLLWI512_MASK:
rcode = ASHIFT;
is_vshift = false;
goto do_shift;
case IX86_BUILTIN_PSRAD:
case IX86_BUILTIN_PSRAD128:
case IX86_BUILTIN_PSRAD128_MASK:
case IX86_BUILTIN_PSRAD256:
case IX86_BUILTIN_PSRAD256_MASK:
case IX86_BUILTIN_PSRAD512:
case IX86_BUILTIN_PSRADI:
case IX86_BUILTIN_PSRADI128:
case IX86_BUILTIN_PSRADI128_MASK:
case IX86_BUILTIN_PSRADI256:
case IX86_BUILTIN_PSRADI256_MASK:
case IX86_BUILTIN_PSRADI512:
case IX86_BUILTIN_PSRAQ128_MASK:
case IX86_BUILTIN_PSRAQ256_MASK:
case IX86_BUILTIN_PSRAQ512:
case IX86_BUILTIN_PSRAQI128_MASK:
case IX86_BUILTIN_PSRAQI256_MASK:
case IX86_BUILTIN_PSRAQI512:
case IX86_BUILTIN_PSRAW:
case IX86_BUILTIN_PSRAW128:
case IX86_BUILTIN_PSRAW128_MASK:
case IX86_BUILTIN_PSRAW256:
case IX86_BUILTIN_PSRAW256_MASK:
case IX86_BUILTIN_PSRAW512:
case IX86_BUILTIN_PSRAWI:
case IX86_BUILTIN_PSRAWI128:
case IX86_BUILTIN_PSRAWI128_MASK:
case IX86_BUILTIN_PSRAWI256:
case IX86_BUILTIN_PSRAWI256_MASK:
case IX86_BUILTIN_PSRAWI512:
rcode = ASHIFTRT;
is_vshift = false;
goto do_shift;
case IX86_BUILTIN_PSRLD:
case IX86_BUILTIN_PSRLD128:
case IX86_BUILTIN_PSRLD128_MASK:
case IX86_BUILTIN_PSRLD256:
case IX86_BUILTIN_PSRLD256_MASK:
case IX86_BUILTIN_PSRLD512:
case IX86_BUILTIN_PSRLDI:
case IX86_BUILTIN_PSRLDI128:
case IX86_BUILTIN_PSRLDI128_MASK:
case IX86_BUILTIN_PSRLDI256:
case IX86_BUILTIN_PSRLDI256_MASK:
case IX86_BUILTIN_PSRLDI512:
case IX86_BUILTIN_PSRLQ:
case IX86_BUILTIN_PSRLQ128:
case IX86_BUILTIN_PSRLQ128_MASK:
case IX86_BUILTIN_PSRLQ256:
case IX86_BUILTIN_PSRLQ256_MASK:
case IX86_BUILTIN_PSRLQ512:
case IX86_BUILTIN_PSRLQI:
case IX86_BUILTIN_PSRLQI128:
case IX86_BUILTIN_PSRLQI128_MASK:
case IX86_BUILTIN_PSRLQI256:
case IX86_BUILTIN_PSRLQI256_MASK:
case IX86_BUILTIN_PSRLQI512:
case IX86_BUILTIN_PSRLW:
case IX86_BUILTIN_PSRLW128:
case IX86_BUILTIN_PSRLW128_MASK:
case IX86_BUILTIN_PSRLW256:
case IX86_BUILTIN_PSRLW256_MASK:
case IX86_BUILTIN_PSRLW512:
case IX86_BUILTIN_PSRLWI:
case IX86_BUILTIN_PSRLWI128:
case IX86_BUILTIN_PSRLWI128_MASK:
case IX86_BUILTIN_PSRLWI256:
case IX86_BUILTIN_PSRLWI256_MASK:
case IX86_BUILTIN_PSRLWI512:
rcode = LSHIFTRT;
is_vshift = false;
goto do_shift;
case IX86_BUILTIN_PSLLVV16HI:
case IX86_BUILTIN_PSLLVV16SI:
case IX86_BUILTIN_PSLLVV2DI:
case IX86_BUILTIN_PSLLVV2DI_MASK:
case IX86_BUILTIN_PSLLVV32HI:
case IX86_BUILTIN_PSLLVV4DI:
case IX86_BUILTIN_PSLLVV4DI_MASK:
case IX86_BUILTIN_PSLLVV4SI:
case IX86_BUILTIN_PSLLVV4SI_MASK:
case IX86_BUILTIN_PSLLVV8DI:
case IX86_BUILTIN_PSLLVV8HI:
case IX86_BUILTIN_PSLLVV8SI:
case IX86_BUILTIN_PSLLVV8SI_MASK:
rcode = ASHIFT;
is_vshift = true;
goto do_shift;
case IX86_BUILTIN_PSRAVQ128:
case IX86_BUILTIN_PSRAVQ256:
case IX86_BUILTIN_PSRAVV16HI:
case IX86_BUILTIN_PSRAVV16SI:
case IX86_BUILTIN_PSRAVV32HI:
case IX86_BUILTIN_PSRAVV4SI:
case IX86_BUILTIN_PSRAVV4SI_MASK:
case IX86_BUILTIN_PSRAVV8DI:
case IX86_BUILTIN_PSRAVV8HI:
case IX86_BUILTIN_PSRAVV8SI:
case IX86_BUILTIN_PSRAVV8SI_MASK:
rcode = ASHIFTRT;
is_vshift = true;
goto do_shift;
case IX86_BUILTIN_PSRLVV16HI:
case IX86_BUILTIN_PSRLVV16SI:
case IX86_BUILTIN_PSRLVV2DI:
case IX86_BUILTIN_PSRLVV2DI_MASK:
case IX86_BUILTIN_PSRLVV32HI:
case IX86_BUILTIN_PSRLVV4DI:
case IX86_BUILTIN_PSRLVV4DI_MASK:
case IX86_BUILTIN_PSRLVV4SI:
case IX86_BUILTIN_PSRLVV4SI_MASK:
case IX86_BUILTIN_PSRLVV8DI:
case IX86_BUILTIN_PSRLVV8HI:
case IX86_BUILTIN_PSRLVV8SI:
case IX86_BUILTIN_PSRLVV8SI_MASK:
rcode = LSHIFTRT;
is_vshift = true;
goto do_shift;
do_shift:
gcc_assert (n_args >= 2);
if (!gimple_call_lhs (stmt))
break;
arg0 = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
elems = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
/* For masked shift, only optimize if the mask is all ones. */
if (n_args > 2
&& !ix86_masked_all_ones (elems, gimple_call_arg (stmt, n_args - 1)))
break;
if (is_vshift)
{
if (TREE_CODE (arg1) != VECTOR_CST)
break;
count = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (arg0)));
if (integer_zerop (arg1))
count = 0;
else if (rcode == ASHIFTRT)
break;
else
for (unsigned int i = 0; i < VECTOR_CST_NELTS (arg1); ++i)
{
tree elt = VECTOR_CST_ELT (arg1, i);
if (!wi::neg_p (wi::to_wide (elt))
&& wi::to_widest (elt) < count)
return false;
}
}
else
{
arg1 = ix86_vector_shift_count (arg1);
if (!arg1)
break;
count = tree_to_uhwi (arg1);
}
if (count == 0)
{
/* Just return the first argument for shift by 0. */
location_t loc = gimple_location (stmt);
gimple *g = gimple_build_assign (gimple_call_lhs (stmt), arg0);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
if (rcode != ASHIFTRT
&& count >= TYPE_PRECISION (TREE_TYPE (TREE_TYPE (arg0))))
{
/* For shift counts equal or greater than precision, except for
arithmetic right shift the result is zero. */
location_t loc = gimple_location (stmt);
gimple *g = gimple_build_assign (gimple_call_lhs (stmt),
build_zero_cst (TREE_TYPE (arg0)));
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
break;
case IX86_BUILTIN_SHUFPD512:
case IX86_BUILTIN_SHUFPS512:
case IX86_BUILTIN_SHUFPD:
case IX86_BUILTIN_SHUFPD256:
case IX86_BUILTIN_SHUFPS:
case IX86_BUILTIN_SHUFPS256:
arg0 = gimple_call_arg (stmt, 0);
elems = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
/* This is masked shuffle. Only optimize if the mask is all ones. */
if (n_args > 3
&& !ix86_masked_all_ones (elems,
gimple_call_arg (stmt, n_args - 1)))
break;
arg2 = gimple_call_arg (stmt, 2);
if (TREE_CODE (arg2) == INTEGER_CST && gimple_call_lhs (stmt))
{
unsigned HOST_WIDE_INT shuffle_mask = TREE_INT_CST_LOW (arg2);
/* Check valid imm, refer to gcc.target/i386/testimm-10.c. */
if (shuffle_mask > 255)
return false;
machine_mode imode = GET_MODE_INNER (TYPE_MODE (TREE_TYPE (arg0)));
location_t loc = gimple_location (stmt);
tree itype = (imode == E_DFmode
? long_long_integer_type_node : integer_type_node);
tree vtype = build_vector_type (itype, elems);
tree_vector_builder elts (vtype, elems, 1);
/* Transform integer shuffle_mask to vector perm_mask which
is used by vec_perm_expr, refer to shuflp[sd]256/512 in sse.md. */
for (unsigned i = 0; i != elems; i++)
{
unsigned sel_idx;
/* Imm[1:0](if VL > 128, then use Imm[3:2],Imm[5:4],Imm[7:6])
provide 2 select constrols for each element of the
destination. */
if (imode == E_DFmode)
sel_idx = (i & 1) * elems + (i & ~1)
+ ((shuffle_mask >> i) & 1);
else
{
/* Imm[7:0](if VL > 128, also use Imm[7:0]) provide 4 select
controls for each element of the destination. */
unsigned j = i % 4;
sel_idx = ((i >> 1) & 1) * elems + (i & ~3)
+ ((shuffle_mask >> 2 * j) & 3);
}
elts.quick_push (build_int_cst (itype, sel_idx));
}
tree perm_mask = elts.build ();
arg1 = gimple_call_arg (stmt, 1);
gimple *g = gimple_build_assign (gimple_call_lhs (stmt),
VEC_PERM_EXPR,
arg0, arg1, perm_mask);
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
// Do not error yet, the constant could be propagated later?
break;
default:
break;
}
return false;
}
/* Handler for an SVML-style interface to
a library with vectorized intrinsics. */
tree
ix86_veclibabi_svml (combined_fn fn, tree type_out, tree type_in)
{
char name[20];
tree fntype, new_fndecl, args;
unsigned arity;
const char *bname;
machine_mode el_mode, in_mode;
int n, in_n;
/* The SVML is suitable for unsafe math only. */
if (!flag_unsafe_math_optimizations)
return NULL_TREE;
el_mode = TYPE_MODE (TREE_TYPE (type_out));
n = TYPE_VECTOR_SUBPARTS (type_out);
in_mode = TYPE_MODE (TREE_TYPE (type_in));
in_n = TYPE_VECTOR_SUBPARTS (type_in);
if (el_mode != in_mode
|| n != in_n)
return NULL_TREE;
switch (fn)
{
CASE_CFN_EXP:
CASE_CFN_LOG:
CASE_CFN_LOG10:
CASE_CFN_POW:
CASE_CFN_TANH:
CASE_CFN_TAN:
CASE_CFN_ATAN:
CASE_CFN_ATAN2:
CASE_CFN_ATANH:
CASE_CFN_CBRT:
CASE_CFN_SINH:
CASE_CFN_SIN:
CASE_CFN_ASINH:
CASE_CFN_ASIN:
CASE_CFN_COSH:
CASE_CFN_COS:
CASE_CFN_ACOSH:
CASE_CFN_ACOS:
if ((el_mode != DFmode || n != 2)
&& (el_mode != SFmode || n != 4))
return NULL_TREE;
break;
default:
return NULL_TREE;
}
tree fndecl = mathfn_built_in (el_mode == DFmode
? double_type_node : float_type_node, fn);
bname = IDENTIFIER_POINTER (DECL_NAME (fndecl));
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LOGF)
strcpy (name, "vmlsLn4");
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LOG)
strcpy (name, "vmldLn2");
else if (n == 4)
{
sprintf (name, "vmls%s", bname+10);
name[strlen (name)-1] = '4';
}
else
sprintf (name, "vmld%s2", bname+10);
/* Convert to uppercase. */
name[4] &= ~0x20;
arity = 0;
for (args = DECL_ARGUMENTS (fndecl); args; args = TREE_CHAIN (args))
arity++;
if (arity == 1)
fntype = build_function_type_list (type_out, type_in, NULL);
else
fntype = build_function_type_list (type_out, type_in, type_in, NULL);
/* Build a function declaration for the vectorized function. */
new_fndecl = build_decl (BUILTINS_LOCATION,
FUNCTION_DECL, get_identifier (name), fntype);
TREE_PUBLIC (new_fndecl) = 1;
DECL_EXTERNAL (new_fndecl) = 1;
DECL_IS_NOVOPS (new_fndecl) = 1;
TREE_READONLY (new_fndecl) = 1;
return new_fndecl;
}
/* Handler for an ACML-style interface to
a library with vectorized intrinsics. */
tree
ix86_veclibabi_acml (combined_fn fn, tree type_out, tree type_in)
{
char name[20] = "__vr.._";
tree fntype, new_fndecl, args;
unsigned arity;
const char *bname;
machine_mode el_mode, in_mode;
int n, in_n;
/* The ACML is 64bits only and suitable for unsafe math only as
it does not correctly support parts of IEEE with the required
precision such as denormals. */
if (!TARGET_64BIT
|| !flag_unsafe_math_optimizations)
return NULL_TREE;
el_mode = TYPE_MODE (TREE_TYPE (type_out));
n = TYPE_VECTOR_SUBPARTS (type_out);
in_mode = TYPE_MODE (TREE_TYPE (type_in));
in_n = TYPE_VECTOR_SUBPARTS (type_in);
if (el_mode != in_mode
|| n != in_n)
return NULL_TREE;
switch (fn)
{
CASE_CFN_SIN:
CASE_CFN_COS:
CASE_CFN_EXP:
CASE_CFN_LOG:
CASE_CFN_LOG2:
CASE_CFN_LOG10:
if (el_mode == DFmode && n == 2)
{
name[4] = 'd';
name[5] = '2';
}
else if (el_mode == SFmode && n == 4)
{
name[4] = 's';
name[5] = '4';
}
else
return NULL_TREE;
break;
default:
return NULL_TREE;
}
tree fndecl = mathfn_built_in (el_mode == DFmode
? double_type_node : float_type_node, fn);
bname = IDENTIFIER_POINTER (DECL_NAME (fndecl));
sprintf (name + 7, "%s", bname+10);
arity = 0;
for (args = DECL_ARGUMENTS (fndecl); args; args = TREE_CHAIN (args))
arity++;
if (arity == 1)
fntype = build_function_type_list (type_out, type_in, NULL);
else
fntype = build_function_type_list (type_out, type_in, type_in, NULL);
/* Build a function declaration for the vectorized function. */
new_fndecl = build_decl (BUILTINS_LOCATION,
FUNCTION_DECL, get_identifier (name), fntype);
TREE_PUBLIC (new_fndecl) = 1;
DECL_EXTERNAL (new_fndecl) = 1;
DECL_IS_NOVOPS (new_fndecl) = 1;
TREE_READONLY (new_fndecl) = 1;
return new_fndecl;
}
/* Returns a decl of a function that implements scatter store with
register type VECTYPE and index type INDEX_TYPE and SCALE.
Return NULL_TREE if it is not available. */
static tree
ix86_vectorize_builtin_scatter (const_tree vectype,
const_tree index_type, int scale)
{
bool si;
enum ix86_builtins code;
if (!TARGET_AVX512F)
return NULL_TREE;
if ((TREE_CODE (index_type) != INTEGER_TYPE
&& !POINTER_TYPE_P (index_type))
|| (TYPE_MODE (index_type) != SImode
&& TYPE_MODE (index_type) != DImode))
return NULL_TREE;
if (TYPE_PRECISION (index_type) > POINTER_SIZE)
return NULL_TREE;
/* v*scatter* insn sign extends index to pointer mode. */
if (TYPE_PRECISION (index_type) < POINTER_SIZE
&& TYPE_UNSIGNED (index_type))
return NULL_TREE;
/* Scale can be 1, 2, 4 or 8. */
if (scale <= 0
|| scale > 8
|| (scale & (scale - 1)) != 0)
return NULL_TREE;
si = TYPE_MODE (index_type) == SImode;
switch (TYPE_MODE (vectype))
{
case E_V8DFmode:
code = si ? IX86_BUILTIN_SCATTERALTSIV8DF : IX86_BUILTIN_SCATTERDIV8DF;
break;
case E_V8DImode:
code = si ? IX86_BUILTIN_SCATTERALTSIV8DI : IX86_BUILTIN_SCATTERDIV8DI;
break;
case E_V16SFmode:
code = si ? IX86_BUILTIN_SCATTERSIV16SF : IX86_BUILTIN_SCATTERALTDIV16SF;
break;
case E_V16SImode:
code = si ? IX86_BUILTIN_SCATTERSIV16SI : IX86_BUILTIN_SCATTERALTDIV16SI;
break;
case E_V4DFmode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERALTSIV4DF : IX86_BUILTIN_SCATTERDIV4DF;
else
return NULL_TREE;
break;
case E_V4DImode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERALTSIV4DI : IX86_BUILTIN_SCATTERDIV4DI;
else
return NULL_TREE;
break;
case E_V8SFmode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERSIV8SF : IX86_BUILTIN_SCATTERALTDIV8SF;
else
return NULL_TREE;
break;
case E_V8SImode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERSIV8SI : IX86_BUILTIN_SCATTERALTDIV8SI;
else
return NULL_TREE;
break;
case E_V2DFmode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERALTSIV2DF : IX86_BUILTIN_SCATTERDIV2DF;
else
return NULL_TREE;
break;
case E_V2DImode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERALTSIV2DI : IX86_BUILTIN_SCATTERDIV2DI;
else
return NULL_TREE;
break;
case E_V4SFmode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERSIV4SF : IX86_BUILTIN_SCATTERALTDIV4SF;
else
return NULL_TREE;
break;
case E_V4SImode:
if (TARGET_AVX512VL)
code = si ? IX86_BUILTIN_SCATTERSIV4SI : IX86_BUILTIN_SCATTERALTDIV4SI;
else
return NULL_TREE;
break;
default:
return NULL_TREE;
}
return get_ix86_builtin (code);
}
/* Return true if it is safe to use the rsqrt optabs to optimize
1.0/sqrt. */
static bool
use_rsqrt_p (machine_mode mode)
{
return ((mode == HFmode
|| (TARGET_SSE && TARGET_SSE_MATH))
&& flag_finite_math_only
&& !flag_trapping_math
&& flag_unsafe_math_optimizations);
}
/* Helper for avx_vpermilps256_operand et al. This is also used by
the expansion functions to turn the parallel back into a mask.
The return value is 0 for no match and the imm8+1 for a match. */
int
avx_vpermilp_parallel (rtx par, machine_mode mode)
{
unsigned i, nelt = GET_MODE_NUNITS (mode);
unsigned mask = 0;
unsigned char ipar[16] = {}; /* Silence -Wuninitialized warning. */
if (XVECLEN (par, 0) != (int) nelt)
return 0;
/* Validate that all of the elements are constants, and not totally
out of range. Copy the data into an integral array to make the
subsequent checks easier. */
for (i = 0; i < nelt; ++i)
{
rtx er = XVECEXP (par, 0, i);
unsigned HOST_WIDE_INT ei;
if (!CONST_INT_P (er))
return 0;
ei = INTVAL (er);
if (ei >= nelt)
return 0;
ipar[i] = ei;
}
switch (mode)
{
case E_V8DFmode:
/* In the 512-bit DFmode case, we can only move elements within
a 128-bit lane. First fill the second part of the mask,
then fallthru. */
for (i = 4; i < 6; ++i)
{
if (ipar[i] < 4 || ipar[i] >= 6)
return 0;
mask |= (ipar[i] - 4) << i;
}
for (i = 6; i < 8; ++i)
{
if (ipar[i] < 6)
return 0;
mask |= (ipar[i] - 6) << i;
}
/* FALLTHRU */
case E_V4DFmode:
/* In the 256-bit DFmode case, we can only move elements within
a 128-bit lane. */
for (i = 0; i < 2; ++i)
{
if (ipar[i] >= 2)
return 0;
mask |= ipar[i] << i;
}
for (i = 2; i < 4; ++i)
{
if (ipar[i] < 2)
return 0;
mask |= (ipar[i] - 2) << i;
}
break;
case E_V16SFmode:
/* In 512 bit SFmode case, permutation in the upper 256 bits
must mirror the permutation in the lower 256-bits. */
for (i = 0; i < 8; ++i)
if (ipar[i] + 8 != ipar[i + 8])
return 0;
/* FALLTHRU */
case E_V8SFmode:
/* In 256 bit SFmode case, we have full freedom of
movement within the low 128-bit lane, but the high 128-bit
lane must mirror the exact same pattern. */
for (i = 0; i < 4; ++i)
if (ipar[i] + 4 != ipar[i + 4])
return 0;
nelt = 4;
/* FALLTHRU */
case E_V2DFmode:
case E_V4SFmode:
/* In the 128-bit case, we've full freedom in the placement of
the elements from the source operand. */
for (i = 0; i < nelt; ++i)
mask |= ipar[i] << (i * (nelt / 2));
break;
default:
gcc_unreachable ();
}
/* Make sure success has a non-zero value by adding one. */
return mask + 1;
}
/* Helper for avx_vperm2f128_v4df_operand et al. This is also used by
the expansion functions to turn the parallel back into a mask.
The return value is 0 for no match and the imm8+1 for a match. */
int
avx_vperm2f128_parallel (rtx par, machine_mode mode)
{
unsigned i, nelt = GET_MODE_NUNITS (mode), nelt2 = nelt / 2;
unsigned mask = 0;
unsigned char ipar[8] = {}; /* Silence -Wuninitialized warning. */
if (XVECLEN (par, 0) != (int) nelt)
return 0;
/* Validate that all of the elements are constants, and not totally
out of range. Copy the data into an integral array to make the
subsequent checks easier. */
for (i = 0; i < nelt; ++i)
{
rtx er = XVECEXP (par, 0, i);
unsigned HOST_WIDE_INT ei;
if (!CONST_INT_P (er))
return 0;
ei = INTVAL (er);
if (ei >= 2 * nelt)
return 0;
ipar[i] = ei;
}
/* Validate that the halves of the permute are halves. */
for (i = 0; i < nelt2 - 1; ++i)
if (ipar[i] + 1 != ipar[i + 1])
return 0;
for (i = nelt2; i < nelt - 1; ++i)
if (ipar[i] + 1 != ipar[i + 1])
return 0;
/* Reconstruct the mask. */
for (i = 0; i < 2; ++i)
{
unsigned e = ipar[i * nelt2];
if (e % nelt2)
return 0;
e /= nelt2;
mask |= e << (i * 4);
}
/* Make sure success has a non-zero value by adding one. */
return mask + 1;
}
/* Return a register priority for hard reg REGNO. */
static int
ix86_register_priority (int hard_regno)
{
/* ebp and r13 as the base always wants a displacement, r12 as the
base always wants an index. So discourage their usage in an
address. */
if (hard_regno == R12_REG || hard_regno == R13_REG)
return 0;
if (hard_regno == BP_REG)
return 1;
/* New x86-64 int registers result in bigger code size. Discourage them. */
if (REX_INT_REGNO_P (hard_regno))
return 2;
/* New x86-64 SSE registers result in bigger code size. Discourage them. */
if (REX_SSE_REGNO_P (hard_regno))
return 2;
if (EXT_REX_SSE_REGNO_P (hard_regno))
return 1;
/* Usage of AX register results in smaller code. Prefer it. */
if (hard_regno == AX_REG)
return 4;
return 3;
}
/* Implement TARGET_PREFERRED_RELOAD_CLASS.
Put float CONST_DOUBLE in the constant pool instead of fp regs.
QImode must go into class Q_REGS.
Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
movdf to do mem-to-mem moves through integer regs. */
static reg_class_t
ix86_preferred_reload_class (rtx x, reg_class_t regclass)
{
machine_mode mode = GET_MODE (x);
/* We're only allowed to return a subclass of CLASS. Many of the
following checks fail for NO_REGS, so eliminate that early. */
if (regclass == NO_REGS)
return NO_REGS;
/* All classes can load zeros. */
if (x == CONST0_RTX (mode))
return regclass;
/* Force constants into memory if we are loading a (nonzero) constant into
an MMX, SSE or MASK register. This is because there are no MMX/SSE/MASK
instructions to load from a constant. */
if (CONSTANT_P (x)
&& (MAYBE_MMX_CLASS_P (regclass)
|| MAYBE_SSE_CLASS_P (regclass)
|| MAYBE_MASK_CLASS_P (regclass)))
return NO_REGS;
/* Floating-point constants need more complex checks. */
if (CONST_DOUBLE_P (x))
{
/* General regs can load everything. */
if (INTEGER_CLASS_P (regclass))
return regclass;
/* Floats can load 0 and 1 plus some others. Note that we eliminated
zero above. We only want to wind up preferring 80387 registers if
we plan on doing computation with them. */
if (IS_STACK_MODE (mode)
&& standard_80387_constant_p (x) > 0)
{
/* Limit class to FP regs. */
if (FLOAT_CLASS_P (regclass))
return FLOAT_REGS;
}
return NO_REGS;
}
/* Prefer SSE if we can use them for math. Also allow integer regs
when moves between register units are cheap. */
if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
{
if (TARGET_INTER_UNIT_MOVES_FROM_VEC
&& TARGET_INTER_UNIT_MOVES_TO_VEC
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (word_mode))
return INT_SSE_CLASS_P (regclass) ? regclass : NO_REGS;
else
return SSE_CLASS_P (regclass) ? regclass : NO_REGS;
}
/* Generally when we see PLUS here, it's the function invariant
(plus soft-fp const_int). Which can only be computed into general
regs. */
if (GET_CODE (x) == PLUS)
return INTEGER_CLASS_P (regclass) ? regclass : NO_REGS;
/* QImode constants are easy to load, but non-constant QImode data
must go into Q_REGS or ALL_MASK_REGS. */
if (GET_MODE (x) == QImode && !CONSTANT_P (x))
{
if (Q_CLASS_P (regclass))
return regclass;
else if (reg_class_subset_p (Q_REGS, regclass))
return Q_REGS;
else if (MASK_CLASS_P (regclass))
return regclass;
else
return NO_REGS;
}
return regclass;
}
/* Discourage putting floating-point values in SSE registers unless
SSE math is being used, and likewise for the 387 registers. */
static reg_class_t
ix86_preferred_output_reload_class (rtx x, reg_class_t regclass)
{
/* Restrict the output reload class to the register bank that we are doing
math on. If we would like not to return a subset of CLASS, reject this
alternative: if reload cannot do this, it will still use its choice. */
machine_mode mode = GET_MODE (x);
if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
return MAYBE_SSE_CLASS_P (regclass) ? ALL_SSE_REGS : NO_REGS;
if (IS_STACK_MODE (mode))
return FLOAT_CLASS_P (regclass) ? regclass : NO_REGS;
return regclass;
}
static reg_class_t
ix86_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
machine_mode mode, secondary_reload_info *sri)
{
/* Double-word spills from general registers to non-offsettable memory
references (zero-extended addresses) require special handling. */
if (TARGET_64BIT
&& MEM_P (x)
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& INTEGER_CLASS_P (rclass)
&& !offsettable_memref_p (x))
{
sri->icode = (in_p
? CODE_FOR_reload_noff_load
: CODE_FOR_reload_noff_store);
/* Add the cost of moving address to a temporary. */
sri->extra_cost = 1;
return NO_REGS;
}
/* QImode spills from non-QI registers require
intermediate register on 32bit targets. */
if (mode == QImode
&& ((!TARGET_64BIT && !in_p
&& INTEGER_CLASS_P (rclass)
&& MAYBE_NON_Q_CLASS_P (rclass))
|| (!TARGET_AVX512DQ
&& MAYBE_MASK_CLASS_P (rclass))))
{
int regno = true_regnum (x);
/* Return Q_REGS if the operand is in memory. */
if (regno == -1)
return Q_REGS;
return NO_REGS;
}
/* Require movement to gpr, and then store to memory. */
if ((mode == HFmode || mode == HImode || mode == V2QImode
|| mode == BFmode)
&& !TARGET_SSE4_1
&& SSE_CLASS_P (rclass)
&& !in_p && MEM_P (x))
{
sri->extra_cost = 1;
return GENERAL_REGS;
}
/* This condition handles corner case where an expression involving
pointers gets vectorized. We're trying to use the address of a
stack slot as a vector initializer.
(set (reg:V2DI 74 [ vect_cst_.2 ])
(vec_duplicate:V2DI (reg/f:DI 20 frame)))
Eventually frame gets turned into sp+offset like this:
(set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
(vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp)
(const_int 392 [0x188]))))
That later gets turned into:
(set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
(vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp)
(mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64]))))
We'll have the following reload recorded:
Reload 0: reload_in (DI) =
(plus:DI (reg/f:DI 7 sp)
(mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64]))
reload_out (V2DI) = (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
SSE_REGS, RELOAD_OTHER (opnum = 0), can't combine
reload_in_reg: (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188]))
reload_out_reg: (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
reload_reg_rtx: (reg:V2DI 22 xmm1)
Which isn't going to work since SSE instructions can't handle scalar
additions. Returning GENERAL_REGS forces the addition into integer
register and reload can handle subsequent reloads without problems. */
if (in_p && GET_CODE (x) == PLUS
&& SSE_CLASS_P (rclass)
&& SCALAR_INT_MODE_P (mode))
return GENERAL_REGS;
return NO_REGS;
}
/* Implement TARGET_CLASS_LIKELY_SPILLED_P. */
static bool
ix86_class_likely_spilled_p (reg_class_t rclass)
{
switch (rclass)
{
case AREG:
case DREG:
case CREG:
case BREG:
case AD_REGS:
case SIREG:
case DIREG:
case SSE_FIRST_REG:
case FP_TOP_REG:
case FP_SECOND_REG:
return true;
default:
break;
}
return false;
}
/* Return true if a set of DST by the expression SRC should be allowed.
This prevents complex sets of likely_spilled hard regs before reload. */
bool
ix86_hardreg_mov_ok (rtx dst, rtx src)
{
/* Avoid complex sets of likely_spilled hard registers before reload. */
if (REG_P (dst) && HARD_REGISTER_P (dst)
&& !REG_P (src) && !MEM_P (src)
&& !(VECTOR_MODE_P (GET_MODE (dst))
? standard_sse_constant_p (src, GET_MODE (dst))
: x86_64_immediate_operand (src, GET_MODE (dst)))
&& ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dst)))
&& !reload_completed)
return false;
return true;
}
/* If we are copying between registers from different register sets
(e.g. FP and integer), we may need a memory location.
The function can't work reliably when one of the CLASSES is a class
containing registers from multiple sets. We avoid this by never combining
different sets in a single alternative in the machine description.
Ensure that this constraint holds to avoid unexpected surprises.
When STRICT is false, we are being called from REGISTER_MOVE_COST,
so do not enforce these sanity checks.
To optimize register_move_cost performance, define inline variant. */
static inline bool
inline_secondary_memory_needed (machine_mode mode, reg_class_t class1,
reg_class_t class2, int strict)
{
if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS))
return false;
if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1)
|| MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2)
|| MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1)
|| MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2)
|| MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1)
|| MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2)
|| MAYBE_MASK_CLASS_P (class1) != MASK_CLASS_P (class1)
|| MAYBE_MASK_CLASS_P (class2) != MASK_CLASS_P (class2))
{
gcc_assert (!strict || lra_in_progress);
return true;
}
if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2))
return true;
/* ??? This is a lie. We do have moves between mmx/general, and for
mmx/sse2. But by saying we need secondary memory we discourage the
register allocator from using the mmx registers unless needed. */
if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2))
return true;
/* Between mask and general, we have moves no larger than word size. */
if (MASK_CLASS_P (class1) != MASK_CLASS_P (class2))
{
if (!(INTEGER_CLASS_P (class1) || INTEGER_CLASS_P (class2))
|| GET_MODE_SIZE (mode) > UNITS_PER_WORD)
return true;
}
if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2))
{
/* SSE1 doesn't have any direct moves from other classes. */
if (!TARGET_SSE2)
return true;
if (!(INTEGER_CLASS_P (class1) || INTEGER_CLASS_P (class2)))
return true;
int msize = GET_MODE_SIZE (mode);
/* Between SSE and general, we have moves no larger than word size. */
if (msize > UNITS_PER_WORD)
return true;
/* In addition to SImode moves, HImode moves are supported for SSE2 and above,
Use vmovw with AVX512FP16, or pinsrw/pextrw without AVX512FP16. */
int minsize = GET_MODE_SIZE (TARGET_SSE2 ? HImode : SImode);
if (msize < minsize)
return true;
/* If the target says that inter-unit moves are more expensive
than moving through memory, then don't generate them. */
if ((SSE_CLASS_P (class1) && !TARGET_INTER_UNIT_MOVES_FROM_VEC)
|| (SSE_CLASS_P (class2) && !TARGET_INTER_UNIT_MOVES_TO_VEC))
return true;
}
return false;
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED. */
static bool
ix86_secondary_memory_needed (machine_mode mode, reg_class_t class1,
reg_class_t class2)
{
return inline_secondary_memory_needed (mode, class1, class2, true);
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE.
get_secondary_mem widens integral modes to BITS_PER_WORD.
There is no need to emit full 64 bit move on 64 bit targets
for integral modes that can be moved using 32 bit move. */
static machine_mode
ix86_secondary_memory_needed_mode (machine_mode mode)
{
if (GET_MODE_BITSIZE (mode) < 32 && INTEGRAL_MODE_P (mode))
return mode_for_size (32, GET_MODE_CLASS (mode), 0).require ();
return mode;
}
/* Implement the TARGET_CLASS_MAX_NREGS hook.
On the 80386, this is the size of MODE in words,
except in the FP regs, where a single reg is always enough. */
static unsigned char
ix86_class_max_nregs (reg_class_t rclass, machine_mode mode)
{
if (MAYBE_INTEGER_CLASS_P (rclass))
{
if (mode == XFmode)
return (TARGET_64BIT ? 2 : 3);
else if (mode == XCmode)
return (TARGET_64BIT ? 4 : 6);
else
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}
else
{
if (COMPLEX_MODE_P (mode))
return 2;
else
return 1;
}
}
/* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
static bool
ix86_can_change_mode_class (machine_mode from, machine_mode to,
reg_class_t regclass)
{
if (from == to)
return true;
/* x87 registers can't do subreg at all, as all values are reformatted
to extended precision. */
if (MAYBE_FLOAT_CLASS_P (regclass))
return false;
if (MAYBE_SSE_CLASS_P (regclass) || MAYBE_MMX_CLASS_P (regclass))
{
/* Vector registers do not support QI or HImode loads. If we don't
disallow a change to these modes, reload will assume it's ok to
drop the subreg from (subreg:SI (reg:HI 100) 0). This affects
the vec_dupv4hi pattern.
NB: SSE2 can load 16bit data to sse register via pinsrw. */
int mov_size = MAYBE_SSE_CLASS_P (regclass) && TARGET_SSE2 ? 2 : 4;
if (GET_MODE_SIZE (from) < mov_size)
return false;
}
return true;
}
/* Return index of MODE in the sse load/store tables. */
static inline int
sse_store_index (machine_mode mode)
{
/* NB: Use SFmode cost for HFmode instead of adding HFmode load/store
costs to processor_costs, which requires changes to all entries in
processor cost table. */
if (mode == E_HFmode)
mode = E_SFmode;
switch (GET_MODE_SIZE (mode))
{
case 4:
return 0;
case 8:
return 1;
case 16:
return 2;
case 32:
return 3;
case 64:
return 4;
default:
return -1;
}
}
/* Return the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
This function is used extensively by register_move_cost that is used to
build tables at startup. Make it inline in this case.
When IN is 2, return maximum of in and out move cost.
If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost.
Model also increased moving costs of QImode registers in non
Q_REGS classes.
*/
static inline int
inline_memory_move_cost (machine_mode mode, enum reg_class regclass, int in)
{
int cost;
if (FLOAT_CLASS_P (regclass))
{
int index;
switch (mode)
{
case E_SFmode:
index = 0;
break;
case E_DFmode:
index = 1;
break;
case E_XFmode:
index = 2;
break;
default:
return 100;
}
if (in == 2)
return MAX (ix86_cost->hard_register.fp_load [index],
ix86_cost->hard_register.fp_store [index]);
return in ? ix86_cost->hard_register.fp_load [index]
: ix86_cost->hard_register.fp_store [index];
}
if (SSE_CLASS_P (regclass))
{
int index = sse_store_index (mode);
if (index == -1)
return 100;
if (in == 2)
return MAX (ix86_cost->hard_register.sse_load [index],
ix86_cost->hard_register.sse_store [index]);
return in ? ix86_cost->hard_register.sse_load [index]
: ix86_cost->hard_register.sse_store [index];
}
if (MASK_CLASS_P (regclass))
{
int index;
switch (GET_MODE_SIZE (mode))
{
case 1:
index = 0;
break;
case 2:
index = 1;
break;
/* DImode loads and stores assumed to cost the same as SImode. */
default:
index = 2;
break;
}
if (in == 2)
return MAX (ix86_cost->hard_register.mask_load[index],
ix86_cost->hard_register.mask_store[index]);
return in ? ix86_cost->hard_register.mask_load[2]
: ix86_cost->hard_register.mask_store[2];
}
if (MMX_CLASS_P (regclass))
{
int index;
switch (GET_MODE_SIZE (mode))
{
case 4:
index = 0;
break;
case 8:
index = 1;
break;
default:
return 100;
}
if (in == 2)
return MAX (ix86_cost->hard_register.mmx_load [index],
ix86_cost->hard_register.mmx_store [index]);
return in ? ix86_cost->hard_register.mmx_load [index]
: ix86_cost->hard_register.mmx_store [index];
}
switch (GET_MODE_SIZE (mode))
{
case 1:
if (Q_CLASS_P (regclass) || TARGET_64BIT)
{
if (!in)
return ix86_cost->hard_register.int_store[0];
if (TARGET_PARTIAL_REG_DEPENDENCY
&& optimize_function_for_speed_p (cfun))
cost = ix86_cost->hard_register.movzbl_load;
else
cost = ix86_cost->hard_register.int_load[0];
if (in == 2)
return MAX (cost, ix86_cost->hard_register.int_store[0]);
return cost;
}
else
{
if (in == 2)
return MAX (ix86_cost->hard_register.movzbl_load,
ix86_cost->hard_register.int_store[0] + 4);
if (in)
return ix86_cost->hard_register.movzbl_load;
else
return ix86_cost->hard_register.int_store[0] + 4;
}
break;
case 2:
{
int cost;
if (in == 2)
cost = MAX (ix86_cost->hard_register.int_load[1],
ix86_cost->hard_register.int_store[1]);
else
cost = in ? ix86_cost->hard_register.int_load[1]
: ix86_cost->hard_register.int_store[1];
if (mode == E_HFmode)
{
/* Prefer SSE over GPR for HFmode. */
int sse_cost;
int index = sse_store_index (mode);
if (in == 2)
sse_cost = MAX (ix86_cost->hard_register.sse_load[index],
ix86_cost->hard_register.sse_store[index]);
else
sse_cost = (in
? ix86_cost->hard_register.sse_load [index]
: ix86_cost->hard_register.sse_store [index]);
if (sse_cost >= cost)
cost = sse_cost + 1;
}
return cost;
}
default:
if (in == 2)
cost = MAX (ix86_cost->hard_register.int_load[2],
ix86_cost->hard_register.int_store[2]);
else if (in)
cost = ix86_cost->hard_register.int_load[2];
else
cost = ix86_cost->hard_register.int_store[2];
/* Multiply with the number of GPR moves needed. */
return cost * CEIL ((int) GET_MODE_SIZE (mode), UNITS_PER_WORD);
}
}
static int
ix86_memory_move_cost (machine_mode mode, reg_class_t regclass, bool in)
{
return inline_memory_move_cost (mode, (enum reg_class) regclass, in ? 1 : 0);
}
/* Return the cost of moving data from a register in class CLASS1 to
one in class CLASS2.
It is not required that the cost always equal 2 when FROM is the same as TO;
on some machines it is expensive to move between registers if they are not
general registers. */
static int
ix86_register_move_cost (machine_mode mode, reg_class_t class1_i,
reg_class_t class2_i)
{
enum reg_class class1 = (enum reg_class) class1_i;
enum reg_class class2 = (enum reg_class) class2_i;
/* In case we require secondary memory, compute cost of the store followed
by load. In order to avoid bad register allocation choices, we need
for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */
if (inline_secondary_memory_needed (mode, class1, class2, false))
{
int cost = 1;
cost += inline_memory_move_cost (mode, class1, 2);
cost += inline_memory_move_cost (mode, class2, 2);
/* In case of copying from general_purpose_register we may emit multiple
stores followed by single load causing memory size mismatch stall.
Count this as arbitrarily high cost of 20. */
if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD
&& TARGET_MEMORY_MISMATCH_STALL
&& targetm.class_max_nregs (class1, mode)
> targetm.class_max_nregs (class2, mode))
cost += 20;
/* In the case of FP/MMX moves, the registers actually overlap, and we
have to switch modes in order to treat them differently. */
if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2))
|| (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1)))
cost += 20;
return cost;
}
/* Moves between MMX and non-MMX units require secondary memory. */
if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2))
gcc_unreachable ();
if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2))
return (SSE_CLASS_P (class1)
? ix86_cost->hard_register.sse_to_integer
: ix86_cost->hard_register.integer_to_sse);
/* Moves between mask register and GPR. */
if (MASK_CLASS_P (class1) != MASK_CLASS_P (class2))
{
return (MASK_CLASS_P (class1)
? ix86_cost->hard_register.mask_to_integer
: ix86_cost->hard_register.integer_to_mask);
}
/* Moving between mask registers. */
if (MASK_CLASS_P (class1) && MASK_CLASS_P (class2))
return ix86_cost->hard_register.mask_move;
if (MAYBE_FLOAT_CLASS_P (class1))
return ix86_cost->hard_register.fp_move;
if (MAYBE_SSE_CLASS_P (class1))
{
if (GET_MODE_BITSIZE (mode) <= 128)
return ix86_cost->hard_register.xmm_move;
if (GET_MODE_BITSIZE (mode) <= 256)
return ix86_cost->hard_register.ymm_move;
return ix86_cost->hard_register.zmm_move;
}
if (MAYBE_MMX_CLASS_P (class1))
return ix86_cost->hard_register.mmx_move;
return 2;
}
/* Implement TARGET_HARD_REGNO_NREGS. This is ordinarily the length in
words of a value of mode MODE but can be less for certain modes in
special long registers.
Actually there are no two word move instructions for consecutive
registers. And only registers 0-3 may have mov byte instructions
applied to them. */
static unsigned int
ix86_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
if (GENERAL_REGNO_P (regno))
{
if (mode == XFmode)
return TARGET_64BIT ? 2 : 3;
if (mode == XCmode)
return TARGET_64BIT ? 4 : 6;
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}
if (COMPLEX_MODE_P (mode))
return 2;
/* Register pair for mask registers. */
if (mode == P2QImode || mode == P2HImode)
return 2;
if (mode == V64SFmode || mode == V64SImode)
return 4;
return 1;
}
/* Implement REGMODE_NATURAL_SIZE(MODE). */
unsigned int
ix86_regmode_natural_size (machine_mode mode)
{
if (mode == P2HImode || mode == P2QImode)
return GET_MODE_SIZE (mode) / 2;
return UNITS_PER_WORD;
}
/* Implement TARGET_HARD_REGNO_MODE_OK. */
static bool
ix86_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
/* Flags and only flags can only hold CCmode values. */
if (CC_REGNO_P (regno))
return GET_MODE_CLASS (mode) == MODE_CC;
if (GET_MODE_CLASS (mode) == MODE_CC
|| GET_MODE_CLASS (mode) == MODE_RANDOM)
return false;
if (STACK_REGNO_P (regno))
return VALID_FP_MODE_P (mode);
if (MASK_REGNO_P (regno))
{
/* Register pair only starts at even register number. */
if ((mode == P2QImode || mode == P2HImode))
return MASK_PAIR_REGNO_P(regno);
return ((TARGET_AVX512F && VALID_MASK_REG_MODE (mode))
|| (TARGET_AVX512BW
&& VALID_MASK_AVX512BW_MODE (mode)));
}
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
return false;
if (SSE_REGNO_P (regno))
{
/* We implement the move patterns for all vector modes into and
out of SSE registers, even when no operation instructions
are available. */
/* For AVX-512 we allow, regardless of regno:
- XI mode
- any of 512-bit wide vector mode
- any scalar mode. */
if (TARGET_AVX512F
&& (VALID_AVX512F_REG_OR_XI_MODE (mode)
|| VALID_AVX512F_SCALAR_MODE (mode)))
return true;
/* For AVX512FP16, vmovw supports movement of HImode
and HFmode between GPR and SSE registers. */
if (TARGET_AVX512FP16
&& VALID_AVX512FP16_SCALAR_MODE (mode))
return true;
/* For AVX-5124FMAPS or AVX-5124VNNIW
allow V64SF and V64SI modes for special regnos. */
if ((TARGET_AVX5124FMAPS || TARGET_AVX5124VNNIW)
&& (mode == V64SFmode || mode == V64SImode)
&& MOD4_SSE_REGNO_P (regno))
return true;
/* TODO check for QI/HI scalars. */
/* AVX512VL allows sse regs16+ for 128/256 bit modes. */
if (TARGET_AVX512VL
&& (VALID_AVX256_REG_OR_OI_MODE (mode)
|| VALID_AVX512VL_128_REG_MODE (mode)))
return true;
/* xmm16-xmm31 are only available for AVX-512. */
if (EXT_REX_SSE_REGNO_P (regno))
return false;
/* OImode and AVX modes are available only when AVX is enabled. */
return ((TARGET_AVX
&& VALID_AVX256_REG_OR_OI_MODE (mode))
|| VALID_SSE_REG_MODE (mode)
|| VALID_SSE2_REG_MODE (mode)
|| VALID_MMX_REG_MODE (mode)
|| VALID_MMX_REG_MODE_3DNOW (mode));
}
if (MMX_REGNO_P (regno))
{
/* We implement the move patterns for 3DNOW modes even in MMX mode,
so if the register is available at all, then we can move data of
the given mode into or out of it. */
return (VALID_MMX_REG_MODE (mode)
|| VALID_MMX_REG_MODE_3DNOW (mode));
}
if (mode == QImode)
{
/* Take care for QImode values - they can be in non-QI regs,
but then they do cause partial register stalls. */
if (ANY_QI_REGNO_P (regno))
return true;
if (!TARGET_PARTIAL_REG_STALL)
return true;
/* LRA checks if the hard register is OK for the given mode.
QImode values can live in non-QI regs, so we allow all
registers here. */
if (lra_in_progress)
return true;
return !can_create_pseudo_p ();
}
/* We handle both integer and floats in the general purpose registers. */
else if (VALID_INT_MODE_P (mode)
|| VALID_FP_MODE_P (mode))
return true;
/* Lots of MMX code casts 8 byte vector modes to DImode. If we then go
on to use that value in smaller contexts, this can easily force a
pseudo to be allocated to GENERAL_REGS. Since this is no worse than
supporting DImode, allow it. */
else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode))
return true;
return false;
}
/* Implement TARGET_INSN_CALLEE_ABI. */
const predefined_function_abi &
ix86_insn_callee_abi (const rtx_insn *insn)
{
unsigned int abi_id = 0;
rtx pat = PATTERN (insn);
if (vzeroupper_pattern (pat, VOIDmode))
abi_id = ABI_VZEROUPPER;
return function_abis[abi_id];
}
/* Initialize function_abis with corresponding abi_id,
currently only handle vzeroupper. */
void
ix86_initialize_callee_abi (unsigned int abi_id)
{
gcc_assert (abi_id == ABI_VZEROUPPER);
predefined_function_abi &vzeroupper_abi = function_abis[abi_id];
if (!vzeroupper_abi.initialized_p ())
{
HARD_REG_SET full_reg_clobbers;
CLEAR_HARD_REG_SET (full_reg_clobbers);
vzeroupper_abi.initialize (ABI_VZEROUPPER, full_reg_clobbers);
}
}
void
ix86_expand_avx_vzeroupper (void)
{
/* Initialize vzeroupper_abi here. */
ix86_initialize_callee_abi (ABI_VZEROUPPER);
rtx_insn *insn = emit_call_insn (gen_avx_vzeroupper_callee_abi ());
/* Return false for non-local goto in can_nonlocal_goto. */
make_reg_eh_region_note (insn, 0, INT_MIN);
/* Flag used for call_insn indicates it's a fake call. */
RTX_FLAG (insn, used) = 1;
}
/* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. The only ABI that
saves SSE registers across calls is Win64 (thus no need to check the
current ABI here), and with AVX enabled Win64 only guarantees that
the low 16 bytes are saved. */
static bool
ix86_hard_regno_call_part_clobbered (unsigned int abi_id, unsigned int regno,
machine_mode mode)
{
/* Special ABI for vzeroupper which only clobber higher part of sse regs. */
if (abi_id == ABI_VZEROUPPER)
return (GET_MODE_SIZE (mode) > 16
&& ((TARGET_64BIT && REX_SSE_REGNO_P (regno))
|| LEGACY_SSE_REGNO_P (regno)));
return SSE_REGNO_P (regno) && GET_MODE_SIZE (mode) > 16;
}
/* A subroutine of ix86_modes_tieable_p. Return true if MODE is a
tieable integer mode. */
static bool
ix86_tieable_integer_mode_p (machine_mode mode)
{
switch (mode)
{
case E_HImode:
case E_SImode:
return true;
case E_QImode:
return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL;
case E_DImode:
return TARGET_64BIT;
default:
return false;
}
}
/* Implement TARGET_MODES_TIEABLE_P.
Return true if MODE1 is accessible in a register that can hold MODE2
without copying. That is, all register classes that can hold MODE2
can also hold MODE1. */
static bool
ix86_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
if (mode1 == mode2)
return true;
if (ix86_tieable_integer_mode_p (mode1)
&& ix86_tieable_integer_mode_p (mode2))
return true;
/* MODE2 being XFmode implies fp stack or general regs, which means we
can tie any smaller floating point modes to it. Note that we do not
tie this with TFmode. */
if (mode2 == XFmode)
return mode1 == SFmode || mode1 == DFmode;
/* MODE2 being DFmode implies fp stack, general or sse regs, which means
that we can tie it with SFmode. */
if (mode2 == DFmode)
return mode1 == SFmode;
/* If MODE2 is only appropriate for an SSE register, then tie with
any other mode acceptable to SSE registers. */
if (GET_MODE_SIZE (mode2) == 64
&& ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2))
return (GET_MODE_SIZE (mode1) == 64
&& ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1));
if (GET_MODE_SIZE (mode2) == 32
&& ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2))
return (GET_MODE_SIZE (mode1) == 32
&& ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1));
if (GET_MODE_SIZE (mode2) == 16
&& ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2))
return (GET_MODE_SIZE (mode1) == 16
&& ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1));
/* If MODE2 is appropriate for an MMX register, then tie
with any other mode acceptable to MMX registers. */
if (GET_MODE_SIZE (mode2) == 8
&& ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2))
return (GET_MODE_SIZE (mode1) == 8
&& ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1));
/* SCmode and DImode can be tied. */
if ((mode1 == E_SCmode && mode2 == E_DImode)
|| (mode1 == E_DImode && mode2 == E_SCmode))
return TARGET_64BIT;
/* [SD]Cmode and V2[SD]Fmode modes can be tied. */
if ((mode1 == E_SCmode && mode2 == E_V2SFmode)
|| (mode1 == E_V2SFmode && mode2 == E_SCmode)
|| (mode1 == E_DCmode && mode2 == E_V2DFmode)
|| (mode1 == E_V2DFmode && mode2 == E_DCmode))
return true;
return false;
}
/* Return the cost of moving between two registers of mode MODE. */
static int
ix86_set_reg_reg_cost (machine_mode mode)
{
unsigned int units = UNITS_PER_WORD;
switch (GET_MODE_CLASS (mode))
{
default:
break;
case MODE_CC:
units = GET_MODE_SIZE (CCmode);
break;
case MODE_FLOAT:
if ((TARGET_SSE && mode == TFmode)
|| (TARGET_80387 && mode == XFmode)
|| ((TARGET_80387 || TARGET_SSE2) && mode == DFmode)
|| ((TARGET_80387 || TARGET_SSE) && mode == SFmode))
units = GET_MODE_SIZE (mode);
break;
case MODE_COMPLEX_FLOAT:
if ((TARGET_SSE && mode == TCmode)
|| (TARGET_80387 && mode == XCmode)
|| ((TARGET_80387 || TARGET_SSE2) && mode == DCmode)
|| ((TARGET_80387 || TARGET_SSE) && mode == SCmode))
units = GET_MODE_SIZE (mode);
break;
case MODE_VECTOR_INT:
case MODE_VECTOR_FLOAT:
if ((TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode))
|| (TARGET_AVX && VALID_AVX256_REG_MODE (mode))
|| (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode))
|| (TARGET_SSE && VALID_SSE_REG_MODE (mode))
|| ((TARGET_MMX || TARGET_MMX_WITH_SSE)
&& VALID_MMX_REG_MODE (mode)))
units = GET_MODE_SIZE (mode);
}
/* Return the cost of moving between two registers of mode MODE,
assuming that the move will be in pieces of at most UNITS bytes. */
return COSTS_N_INSNS (CEIL (GET_MODE_SIZE (mode), units));
}
/* Return cost of vector operation in MODE given that scalar version has
COST. */
static int
ix86_vec_cost (machine_mode mode, int cost)
{
if (!VECTOR_MODE_P (mode))
return cost;
if (GET_MODE_BITSIZE (mode) == 128
&& TARGET_SSE_SPLIT_REGS)
return cost * 2;
if (GET_MODE_BITSIZE (mode) > 128
&& TARGET_AVX256_SPLIT_REGS)
return cost * GET_MODE_BITSIZE (mode) / 128;
return cost;
}
/* Return cost of vec_widen_<s>mult_hi/lo_<mode>,
vec_widen_<s>mul_hi/lo_<mode> is only available for VI124_AVX2. */
static int
ix86_widen_mult_cost (const struct processor_costs *cost,
enum machine_mode mode, bool uns_p)
{
gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
int extra_cost = 0;
int basic_cost = 0;
switch (mode)
{
case V8HImode:
case V16HImode:
if (!uns_p || mode == V16HImode)
extra_cost = cost->sse_op * 2;
basic_cost = cost->mulss * 2 + cost->sse_op * 4;
break;
case V4SImode:
case V8SImode:
/* pmulhw/pmullw can be used. */
basic_cost = cost->mulss * 2 + cost->sse_op * 2;
break;
case V2DImode:
/* pmuludq under sse2, pmuldq under sse4.1, for sign_extend,
require extra 4 mul, 4 add, 4 cmp and 2 shift. */
if (!TARGET_SSE4_1 && !uns_p)
extra_cost = (cost->mulss + cost->addss + cost->sse_op) * 4
+ cost->sse_op * 2;
/* Fallthru. */
case V4DImode:
basic_cost = cost->mulss * 2 + cost->sse_op * 4;
break;
default:
gcc_unreachable();
}
return ix86_vec_cost (mode, basic_cost + extra_cost);
}
/* Return cost of multiplication in MODE. */
static int
ix86_multiplication_cost (const struct processor_costs *cost,
enum machine_mode mode)
{
machine_mode inner_mode = mode;
if (VECTOR_MODE_P (mode))
inner_mode = GET_MODE_INNER (mode);
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
return inner_mode == DFmode ? cost->mulsd : cost->mulss;
else if (X87_FLOAT_MODE_P (mode))
return cost->fmul;
else if (FLOAT_MODE_P (mode))
return ix86_vec_cost (mode,
inner_mode == DFmode ? cost->mulsd : cost->mulss);
else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
{
/* vpmullq is used in this case. No emulation is needed. */
if (TARGET_AVX512DQ)
return ix86_vec_cost (mode, cost->mulss);
/* V*QImode is emulated with 7-13 insns. */
if (mode == V16QImode || mode == V32QImode)
{
int extra = 11;
if (TARGET_XOP && mode == V16QImode)
extra = 5;
else if (TARGET_SSSE3)
extra = 6;
return ix86_vec_cost (mode, cost->mulss * 2 + cost->sse_op * extra);
}
/* V*DImode is emulated with 5-8 insns. */
else if (mode == V2DImode || mode == V4DImode)
{
if (TARGET_XOP && mode == V2DImode)
return ix86_vec_cost (mode, cost->mulss * 2 + cost->sse_op * 3);
else
return ix86_vec_cost (mode, cost->mulss * 3 + cost->sse_op * 5);
}
/* Without sse4.1, we don't have PMULLD; it's emulated with 7
insns, including two PMULUDQ. */
else if (mode == V4SImode && !(TARGET_SSE4_1 || TARGET_AVX))
return ix86_vec_cost (mode, cost->mulss * 2 + cost->sse_op * 5);
else
return ix86_vec_cost (mode, cost->mulss);
}
else
return (cost->mult_init[MODE_INDEX (mode)] + cost->mult_bit * 7);
}
/* Return cost of multiplication in MODE. */
static int
ix86_division_cost (const struct processor_costs *cost,
enum machine_mode mode)
{
machine_mode inner_mode = mode;
if (VECTOR_MODE_P (mode))
inner_mode = GET_MODE_INNER (mode);
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
return inner_mode == DFmode ? cost->divsd : cost->divss;
else if (X87_FLOAT_MODE_P (mode))
return cost->fdiv;
else if (FLOAT_MODE_P (mode))
return ix86_vec_cost (mode,
inner_mode == DFmode ? cost->divsd : cost->divss);
else
return cost->divide[MODE_INDEX (mode)];
}
/* Return cost of shift in MODE.
If CONSTANT_OP1 is true, the op1 value is known and set in OP1_VAL.
AND_IN_OP1 specify in op1 is result of AND and SHIFT_AND_TRUNCATE
if op1 is a result of subreg.
SKIP_OP0/1 is set to true if cost of OP0/1 should be ignored. */
static int
ix86_shift_rotate_cost (const struct processor_costs *cost,
enum rtx_code code,
enum machine_mode mode, bool constant_op1,
HOST_WIDE_INT op1_val,
bool speed,
bool and_in_op1,
bool shift_and_truncate,
bool *skip_op0, bool *skip_op1)
{
if (skip_op0)
*skip_op0 = *skip_op1 = false;
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
{
/* V*QImode is emulated with 1-11 insns. */
if (mode == V16QImode || mode == V32QImode)
{
int count = 11;
if (TARGET_XOP && mode == V16QImode)
{
/* For XOP we use vpshab, which requires a broadcast of the
value to the variable shift insn. For constants this
means a V16Q const in mem; even when we can perform the
shift with one insn set the cost to prefer paddb. */
if (constant_op1)
{
if (skip_op1)
*skip_op1 = true;
return ix86_vec_cost (mode,
cost->sse_op
+ (speed
? 2
: COSTS_N_BYTES
(GET_MODE_UNIT_SIZE (mode))));
}
count = 3;
}
else if (TARGET_SSSE3)
count = 7;
return ix86_vec_cost (mode, cost->sse_op * count);
}
/* V*DImode arithmetic right shift is emulated. */
else if (code == ASHIFTRT
&& (mode == V2DImode || mode == V4DImode)
&& !TARGET_XOP
&& !TARGET_AVX512VL)
{
int count = 4;
if (constant_op1 && op1_val == 63 && TARGET_SSE4_2)
count = 2;
else if (constant_op1)
count = 3;
return ix86_vec_cost (mode, cost->sse_op * count);
}
else
return ix86_vec_cost (mode, cost->sse_op);
}
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
{
if (constant_op1)
{
if (op1_val > 32)
return cost->shift_const + COSTS_N_INSNS (2);
else
return cost->shift_const * 2;
}
else
{
if (and_in_op1)
return cost->shift_var * 2;
else
return cost->shift_var * 6 + COSTS_N_INSNS (2);
}
}
else
{
if (constant_op1)
return cost->shift_const;
else if (shift_and_truncate)
{
if (skip_op0)
*skip_op0 = *skip_op1 = true;
/* Return the cost after shift-and truncation. */
return cost->shift_var;
}
else
return cost->shift_var;
}
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
ix86_rtx_costs (rtx x, machine_mode mode, int outer_code_i, int opno,
int *total, bool speed)
{
rtx mask;
enum rtx_code code = GET_CODE (x);
enum rtx_code outer_code = (enum rtx_code) outer_code_i;
const struct processor_costs *cost
= speed ? ix86_tune_cost : &ix86_size_cost;
int src_cost;
switch (code)
{
case SET:
if (register_operand (SET_DEST (x), VOIDmode)
&& register_operand (SET_SRC (x), VOIDmode))
{
*total = ix86_set_reg_reg_cost (GET_MODE (SET_DEST (x)));
return true;
}
if (register_operand (SET_SRC (x), VOIDmode))
/* Avoid potentially incorrect high cost from rtx_costs
for non-tieable SUBREGs. */
src_cost = 0;
else
{
src_cost = rtx_cost (SET_SRC (x), mode, SET, 1, speed);
if (CONSTANT_P (SET_SRC (x)))
/* Constant costs assume a base value of COSTS_N_INSNS (1) and add
a small value, possibly zero for cheap constants. */
src_cost += COSTS_N_INSNS (1);
}
*total = src_cost + rtx_cost (SET_DEST (x), mode, SET, 0, speed);
return true;
case CONST_INT:
case CONST:
case LABEL_REF:
case SYMBOL_REF:
if (x86_64_immediate_operand (x, VOIDmode))
*total = 0;
else
*total = 1;
return true;
case CONST_DOUBLE:
if (IS_STACK_MODE (mode))
switch (standard_80387_constant_p (x))
{
case -1:
case 0:
break;
case 1: /* 0.0 */
*total = 1;
return true;
default: /* Other constants */
*total = 2;
return true;
}
/* FALLTHRU */
case CONST_VECTOR:
switch (standard_sse_constant_p (x, mode))
{
case 0:
break;
case 1: /* 0: xor eliminates false dependency */
*total = 0;
return true;
default: /* -1: cmp contains false dependency */
*total = 1;
return true;
}
/* FALLTHRU */
case CONST_WIDE_INT:
/* Fall back to (MEM (SYMBOL_REF)), since that's where
it'll probably end up. Add a penalty for size. */
*total = (COSTS_N_INSNS (1)
+ (!TARGET_64BIT && flag_pic)
+ (GET_MODE_SIZE (mode) <= 4
? 0 : GET_MODE_SIZE (mode) <= 8 ? 1 : 2));
return true;
case ZERO_EXTEND:
/* The zero extensions is often completely free on x86_64, so make
it as cheap as possible. */
if (TARGET_64BIT && mode == DImode
&& GET_MODE (XEXP (x, 0)) == SImode)
*total = 1;
else if (TARGET_ZERO_EXTEND_WITH_AND)
*total = cost->add;
else
*total = cost->movzx;
return false;
case SIGN_EXTEND:
*total = cost->movsx;
return false;
case ASHIFT:
if (SCALAR_INT_MODE_P (mode)
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
&& CONST_INT_P (XEXP (x, 1)))
{
HOST_WIDE_INT value = INTVAL (XEXP (x, 1));
if (value == 1)
{
*total = cost->add;
return false;
}
if ((value == 2 || value == 3)
&& cost->lea <= cost->shift_const)
{
*total = cost->lea;
return false;
}
}
/* FALLTHRU */
case ROTATE:
case ASHIFTRT:
case LSHIFTRT:
case ROTATERT:
bool skip_op0, skip_op1;
*total = ix86_shift_rotate_cost (cost, code, mode,
CONSTANT_P (XEXP (x, 1)),
CONST_INT_P (XEXP (x, 1))
? INTVAL (XEXP (x, 1)) : -1,
speed,
GET_CODE (XEXP (x, 1)) == AND,
SUBREG_P (XEXP (x, 1))
&& GET_CODE (XEXP (XEXP (x, 1),
0)) == AND,
&skip_op0, &skip_op1);
if (skip_op0 || skip_op1)
{
if (!skip_op0)
*total += rtx_cost (XEXP (x, 0), mode, code, 0, speed);
if (!skip_op1)
*total += rtx_cost (XEXP (x, 1), mode, code, 0, speed);
return true;
}
return false;
case FMA:
{
rtx sub;
gcc_assert (FLOAT_MODE_P (mode));
gcc_assert (TARGET_FMA || TARGET_FMA4 || TARGET_AVX512F);
*total = ix86_vec_cost (mode,
GET_MODE_INNER (mode) == SFmode
? cost->fmass : cost->fmasd);
*total += rtx_cost (XEXP (x, 1), mode, FMA, 1, speed);
/* Negate in op0 or op2 is free: FMS, FNMA, FNMS. */
sub = XEXP (x, 0);
if (GET_CODE (sub) == NEG)
sub = XEXP (sub, 0);
*total += rtx_cost (sub, mode, FMA, 0, speed);
sub = XEXP (x, 2);
if (GET_CODE (sub) == NEG)
sub = XEXP (sub, 0);
*total += rtx_cost (sub, mode, FMA, 2, speed);
return true;
}
case MULT:
if (!FLOAT_MODE_P (mode) && !VECTOR_MODE_P (mode))
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
int nbits;
if (CONST_INT_P (XEXP (x, 1)))
{
unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1));
for (nbits = 0; value != 0; value &= value - 1)
nbits++;
}
else
/* This is arbitrary. */
nbits = 7;
/* Compute costs correctly for widening multiplication. */
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
&& GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2
== GET_MODE_SIZE (mode))
{
int is_mulwiden = 0;
machine_mode inner_mode = GET_MODE (op0);
if (GET_CODE (op0) == GET_CODE (op1))
is_mulwiden = 1, op1 = XEXP (op1, 0);
else if (CONST_INT_P (op1))
{
if (GET_CODE (op0) == SIGN_EXTEND)
is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode)
== INTVAL (op1);
else
is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode));
}
if (is_mulwiden)
op0 = XEXP (op0, 0), mode = GET_MODE (op0);
}
int mult_init;
// Double word multiplication requires 3 mults and 2 adds.
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
{
mult_init = 3 * cost->mult_init[MODE_INDEX (word_mode)]
+ 2 * cost->add;
nbits *= 3;
}
else mult_init = cost->mult_init[MODE_INDEX (mode)];
*total = (mult_init
+ nbits * cost->mult_bit
+ rtx_cost (op0, mode, outer_code, opno, speed)
+ rtx_cost (op1, mode, outer_code, opno, speed));
return true;
}
*total = ix86_multiplication_cost (cost, mode);
return false;
case DIV:
case UDIV:
case MOD:
case UMOD:
*total = ix86_division_cost (cost, mode);
return false;
case PLUS:
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
{
if (GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
&& CONSTANT_P (XEXP (x, 1)))
{
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1));
if (val == 2 || val == 4 || val == 8)
{
*total = cost->lea;
*total += rtx_cost (XEXP (XEXP (x, 0), 1), mode,
outer_code, opno, speed);
*total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), mode,
outer_code, opno, speed);
*total += rtx_cost (XEXP (x, 1), mode,
outer_code, opno, speed);
return true;
}
}
else if (GET_CODE (XEXP (x, 0)) == MULT
&& CONST_INT_P (XEXP (XEXP (x, 0), 1)))
{
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1));
if (val == 2 || val == 4 || val == 8)
{
*total = cost->lea;
*total += rtx_cost (XEXP (XEXP (x, 0), 0), mode,
outer_code, opno, speed);
*total += rtx_cost (XEXP (x, 1), mode,
outer_code, opno, speed);
return true;
}
}
else if (GET_CODE (XEXP (x, 0)) == PLUS)
{
rtx op = XEXP (XEXP (x, 0), 0);
/* Add with carry, ignore the cost of adding a carry flag. */
if (ix86_carry_flag_operator (op, mode)
|| ix86_carry_flag_unset_operator (op, mode))
*total = cost->add;
else
{
*total = cost->lea;
*total += rtx_cost (op, mode,
outer_code, opno, speed);
}
*total += rtx_cost (XEXP (XEXP (x, 0), 1), mode,
outer_code, opno, speed);
*total += rtx_cost (XEXP (x, 1), mode,
outer_code, opno, speed);
return true;
}
}
/* FALLTHRU */
case MINUS:
/* Subtract with borrow, ignore the cost of subtracting a carry flag. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) <= UNITS_PER_WORD
&& GET_CODE (XEXP (x, 0)) == MINUS
&& (ix86_carry_flag_operator (XEXP (XEXP (x, 0), 1), mode)
|| ix86_carry_flag_unset_operator (XEXP (XEXP (x, 0), 1), mode)))
{
*total = cost->add;
*total += rtx_cost (XEXP (XEXP (x, 0), 0), mode,
outer_code, opno, speed);
*total += rtx_cost (XEXP (x, 1), mode,
outer_code, opno, speed);
return true;
}
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
*total = cost->addss;
else if (X87_FLOAT_MODE_P (mode))
*total = cost->fadd;
else if (FLOAT_MODE_P (mode))
*total = ix86_vec_cost (mode, cost->addss);
else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
*total = ix86_vec_cost (mode, cost->sse_op);
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
*total = cost->add * 2;
else
*total = cost->add;
return false;
case IOR:
case XOR:
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
*total = ix86_vec_cost (mode, cost->sse_op);
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
*total = cost->add * 2;
else
*total = cost->add;
return false;
case AND:
if (address_no_seg_operand (x, mode))
{
*total = cost->lea;
return true;
}
else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
{
/* pandn is a single instruction. */
if (GET_CODE (XEXP (x, 0)) == NOT)
{
*total = ix86_vec_cost (mode, cost->sse_op)
+ rtx_cost (XEXP (XEXP (x, 0), 0), mode,
outer_code, opno, speed)
+ rtx_cost (XEXP (x, 1), mode,
outer_code, opno, speed);
return true;
}
else if (GET_CODE (XEXP (x, 1)) == NOT)
{
*total = ix86_vec_cost (mode, cost->sse_op)
+ rtx_cost (XEXP (x, 0), mode,
outer_code, opno, speed)
+ rtx_cost (XEXP (XEXP (x, 1), 0), mode,
outer_code, opno, speed);
return true;
}
*total = ix86_vec_cost (mode, cost->sse_op);
}
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
{
if (TARGET_BMI && GET_CODE (XEXP (x,0)) == NOT)
{
*total = cost->add * 2
+ rtx_cost (XEXP (XEXP (x, 0), 0), mode,
outer_code, opno, speed)
+ rtx_cost (XEXP (x, 1), mode,
outer_code, opno, speed);
return true;
}
else if (TARGET_BMI && GET_CODE (XEXP (x, 1)) == NOT)
{
*total = cost->add * 2
+ rtx_cost (XEXP (x, 0), mode,
outer_code, opno, speed)
+ rtx_cost (XEXP (XEXP (x, 1), 0), mode,
outer_code, opno, speed);
return true;
}
*total = cost->add * 2;
}
else if (TARGET_BMI && GET_CODE (XEXP (x,0)) == NOT)
{
*total = cost->add
+ rtx_cost (XEXP (XEXP (x, 0), 0), mode,
outer_code, opno, speed)
+ rtx_cost (XEXP (x, 1), mode, outer_code, opno, speed);
return true;
}
else if (TARGET_BMI && GET_CODE (XEXP (x,1)) == NOT)
{
*total = cost->add
+ rtx_cost (XEXP (x, 0), mode, outer_code, opno, speed)
+ rtx_cost (XEXP (XEXP (x, 1), 0), mode,
outer_code, opno, speed);
return true;
}
else
*total = cost->add;
return false;
case NOT:
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
// vnot is pxor -1.
*total = ix86_vec_cost (mode, cost->sse_op) + 1;
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
*total = cost->add * 2;
else
*total = cost->add;
return false;
case NEG:
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
*total = cost->sse_op;
else if (X87_FLOAT_MODE_P (mode))
*total = cost->fchs;
else if (FLOAT_MODE_P (mode))
*total = ix86_vec_cost (mode, cost->sse_op);
else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
*total = ix86_vec_cost (mode, cost->sse_op);
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
*total = cost->add * 3;
else
*total = cost->add;
return false;
case COMPARE:
rtx op0, op1;
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
if (GET_CODE (op0) == ZERO_EXTRACT
&& XEXP (op0, 1) == const1_rtx
&& CONST_INT_P (XEXP (op0, 2))
&& op1 == const0_rtx)
{
/* This kind of construct is implemented using test[bwl].
Treat it as if we had an AND. */
mode = GET_MODE (XEXP (op0, 0));
*total = (cost->add
+ rtx_cost (XEXP (op0, 0), mode, outer_code,
opno, speed)
+ rtx_cost (const1_rtx, mode, outer_code, opno, speed));
return true;
}
if (GET_CODE (op0) == PLUS && rtx_equal_p (XEXP (op0, 0), op1))
{
/* This is an overflow detection, count it as a normal compare. */
*total = rtx_cost (op0, GET_MODE (op0), COMPARE, 0, speed);
return true;
}
rtx geu;
/* Match x
(compare:CCC (neg:QI (geu:QI (reg:CC_CCC FLAGS_REG) (const_int 0)))
(ltu:QI (reg:CC_CCC FLAGS_REG) (const_int 0))) */
if (mode == CCCmode
&& GET_CODE (op0) == NEG
&& GET_CODE (geu = XEXP (op0, 0)) == GEU
&& REG_P (XEXP (geu, 0))
&& (GET_MODE (XEXP (geu, 0)) == CCCmode
|| GET_MODE (XEXP (geu, 0)) == CCmode)
&& REGNO (XEXP (geu, 0)) == FLAGS_REG
&& XEXP (geu, 1) == const0_rtx
&& GET_CODE (op1) == LTU
&& REG_P (XEXP (op1, 0))
&& GET_MODE (XEXP (op1, 0)) == GET_MODE (XEXP (geu, 0))
&& REGNO (XEXP (op1, 0)) == FLAGS_REG
&& XEXP (op1, 1) == const0_rtx)
{
/* This is *setcc_qi_addqi3_cconly_overflow_1_* patterns, a nop. */
*total = 0;
return true;
}
if (SCALAR_INT_MODE_P (GET_MODE (op0))
&& GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
{
if (op1 == const0_rtx)
*total = cost->add
+ rtx_cost (op0, GET_MODE (op0), outer_code, opno, speed);
else
*total = 3*cost->add
+ rtx_cost (op0, GET_MODE (op0), outer_code, opno, speed)
+ rtx_cost (op1, GET_MODE (op0), outer_code, opno, speed);
return true;
}
/* The embedded comparison operand is completely free. */
if (!general_operand (op0, GET_MODE (op0)) && op1 == const0_rtx)
*total = 0;
return false;
case FLOAT_EXTEND:
if (!SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
*total = 0;
else
*total = ix86_vec_cost (mode, cost->addss);
return false;
case FLOAT_TRUNCATE:
if (!SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
*total = cost->fadd;
else
*total = ix86_vec_cost (mode, cost->addss);
return false;
case ABS:
/* SSE requires memory load for the constant operand. It may make
sense to account for this. Of course the constant operand may or
may not be reused. */
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
*total = cost->sse_op;
else if (X87_FLOAT_MODE_P (mode))
*total = cost->fabs;
else if (FLOAT_MODE_P (mode))
*total = ix86_vec_cost (mode, cost->sse_op);
return false;
case SQRT:
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
*total = mode == SFmode ? cost->sqrtss : cost->sqrtsd;
else if (X87_FLOAT_MODE_P (mode))
*total = cost->fsqrt;
else if (FLOAT_MODE_P (mode))
*total = ix86_vec_cost (mode,
mode == SFmode ? cost->sqrtss : cost->sqrtsd);
return false;
case UNSPEC:
if (XINT (x, 1) == UNSPEC_TP)
*total = 0;
else if (XINT (x, 1) == UNSPEC_VTERNLOG)
{
*total = cost->sse_op;
return true;
}
else if (XINT (x, 1) == UNSPEC_PTEST)
{
*total = cost->sse_op;
if (XVECLEN (x, 0) == 2
&& GET_CODE (XVECEXP (x, 0, 0)) == AND)
{
rtx andop = XVECEXP (x, 0, 0);
*total += rtx_cost (XEXP (andop, 0), GET_MODE (andop),
AND, opno, speed)
+ rtx_cost (XEXP (andop, 1), GET_MODE (andop),
AND, opno, speed);
return true;
}
}
return false;
case VEC_SELECT:
case VEC_CONCAT:
case VEC_DUPLICATE:
/* ??? Assume all of these vector manipulation patterns are
recognizable. In which case they all pretty much have the
same cost. */
*total = cost->sse_op;
return true;
case VEC_MERGE:
mask = XEXP (x, 2);
/* This is masked instruction, assume the same cost,
as nonmasked variant. */
if (TARGET_AVX512F && register_operand (mask, GET_MODE (mask)))
*total = rtx_cost (XEXP (x, 0), mode, outer_code, opno, speed);
else
*total = cost->sse_op;
return true;
case MEM:
/* An insn that accesses memory is slightly more expensive
than one that does not. */
if (speed)
*total += 1;
return false;
case ZERO_EXTRACT:
if (XEXP (x, 1) == const1_rtx
&& GET_CODE (XEXP (x, 2)) == ZERO_EXTEND
&& GET_MODE (XEXP (x, 2)) == SImode
&& GET_MODE (XEXP (XEXP (x, 2), 0)) == QImode)
{
/* Ignore cost of zero extension and masking of last argument. */
*total += rtx_cost (XEXP (x, 0), mode, code, 0, speed);
*total += rtx_cost (XEXP (x, 1), mode, code, 1, speed);
*total += rtx_cost (XEXP (XEXP (x, 2), 0), mode, code, 2, speed);
return true;
}
return false;
case IF_THEN_ELSE:
if (TARGET_XOP
&& VECTOR_MODE_P (mode)
&& (GET_MODE_SIZE (mode) == 16 || GET_MODE_SIZE (mode) == 32))
{
/* vpcmov. */
*total = speed ? COSTS_N_INSNS (2) : COSTS_N_BYTES (6);
if (!REG_P (XEXP (x, 0)))
*total += rtx_cost (XEXP (x, 0), mode, code, 0, speed);
if (!REG_P (XEXP (x, 1)))
*total += rtx_cost (XEXP (x, 1), mode, code, 1, speed);
if (!REG_P (XEXP (x, 2)))
*total += rtx_cost (XEXP (x, 2), mode, code, 2, speed);
return true;
}
else if (TARGET_CMOVE
&& SCALAR_INT_MODE_P (mode)
&& GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
{
/* cmov. */
*total = COSTS_N_INSNS (1);
if (!REG_P (XEXP (x, 0)))
*total += rtx_cost (XEXP (x, 0), mode, code, 0, speed);
if (!REG_P (XEXP (x, 1)))
*total += rtx_cost (XEXP (x, 1), mode, code, 1, speed);
if (!REG_P (XEXP (x, 2)))
*total += rtx_cost (XEXP (x, 2), mode, code, 2, speed);
return true;
}
return false;
default:
return false;
}
}
#if TARGET_MACHO
static int current_machopic_label_num;
/* Given a symbol name and its associated stub, write out the
definition of the stub. */
void
machopic_output_stub (FILE *file, const char *symb, const char *stub)
{
unsigned int length;
char *binder_name, *symbol_name, lazy_ptr_name[32];
int label = ++current_machopic_label_num;
/* For 64-bit we shouldn't get here. */
gcc_assert (!TARGET_64BIT);
/* Lose our funky encoding stuff so it doesn't contaminate the stub. */
symb = targetm.strip_name_encoding (symb);
length = strlen (stub);
binder_name = XALLOCAVEC (char, length + 32);
GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length);
length = strlen (symb);
symbol_name = XALLOCAVEC (char, length + 32);
GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
sprintf (lazy_ptr_name, "L%d$lz", label);
if (MACHOPIC_ATT_STUB)
switch_to_section (darwin_sections[machopic_picsymbol_stub3_section]);
else if (MACHOPIC_PURE)
switch_to_section (darwin_sections[machopic_picsymbol_stub2_section]);
else
switch_to_section (darwin_sections[machopic_symbol_stub_section]);
fprintf (file, "%s:\n", stub);
fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
if (MACHOPIC_ATT_STUB)
{
fprintf (file, "\thlt ; hlt ; hlt ; hlt ; hlt\n");
}
else if (MACHOPIC_PURE)
{
/* PIC stub. */
/* 25-byte PIC stub using "CALL get_pc_thunk". */
rtx tmp = gen_rtx_REG (SImode, 2 /* ECX */);
output_set_got (tmp, NULL_RTX); /* "CALL ___<cpu>.get_pc_thunk.cx". */
fprintf (file, "LPC$%d:\tmovl\t%s-LPC$%d(%%ecx),%%ecx\n",
label, lazy_ptr_name, label);
fprintf (file, "\tjmp\t*%%ecx\n");
}
else
fprintf (file, "\tjmp\t*%s\n", lazy_ptr_name);
/* The AT&T-style ("self-modifying") stub is not lazily bound, thus
it needs no stub-binding-helper. */
if (MACHOPIC_ATT_STUB)
return;
fprintf (file, "%s:\n", binder_name);
if (MACHOPIC_PURE)
{
fprintf (file, "\tlea\t%s-%s(%%ecx),%%ecx\n", lazy_ptr_name, binder_name);
fprintf (file, "\tpushl\t%%ecx\n");
}
else
fprintf (file, "\tpushl\t$%s\n", lazy_ptr_name);
fputs ("\tjmp\tdyld_stub_binding_helper\n", file);
/* N.B. Keep the correspondence of these
'symbol_ptr/symbol_ptr2/symbol_ptr3' sections consistent with the
old-pic/new-pic/non-pic stubs; altering this will break
compatibility with existing dylibs. */
if (MACHOPIC_PURE)
{
/* 25-byte PIC stub using "CALL get_pc_thunk". */
switch_to_section (darwin_sections[machopic_lazy_symbol_ptr2_section]);
}
else
/* 16-byte -mdynamic-no-pic stub. */
switch_to_section(darwin_sections[machopic_lazy_symbol_ptr3_section]);
fprintf (file, "%s:\n", lazy_ptr_name);
fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
fprintf (file, ASM_LONG "%s\n", binder_name);
}
#endif /* TARGET_MACHO */
/* Order the registers for register allocator. */
void
x86_order_regs_for_local_alloc (void)
{
int pos = 0;
int i;
/* First allocate the local general purpose registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (GENERAL_REGNO_P (i) && call_used_or_fixed_reg_p (i))
reg_alloc_order [pos++] = i;
/* Global general purpose registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (GENERAL_REGNO_P (i) && !call_used_or_fixed_reg_p (i))
reg_alloc_order [pos++] = i;
/* x87 registers come first in case we are doing FP math
using them. */
if (!TARGET_SSE_MATH)
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
reg_alloc_order [pos++] = i;
/* SSE registers. */
for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++)
reg_alloc_order [pos++] = i;
for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)
reg_alloc_order [pos++] = i;
/* Extended REX SSE registers. */
for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++)
reg_alloc_order [pos++] = i;
/* Mask register. */
for (i = FIRST_MASK_REG; i <= LAST_MASK_REG; i++)
reg_alloc_order [pos++] = i;
/* x87 registers. */
if (TARGET_SSE_MATH)
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
reg_alloc_order [pos++] = i;
for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++)
reg_alloc_order [pos++] = i;
/* Initialize the rest of array as we do not allocate some registers
at all. */
while (pos < FIRST_PSEUDO_REGISTER)
reg_alloc_order [pos++] = 0;
}
static bool
ix86_ms_bitfield_layout_p (const_tree record_type)
{
return ((TARGET_MS_BITFIELD_LAYOUT
&& !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
|| lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type)));
}
/* Returns an expression indicating where the this parameter is
located on entry to the FUNCTION. */
static rtx
x86_this_parameter (tree function)
{
tree type = TREE_TYPE (function);
bool aggr = aggregate_value_p (TREE_TYPE (type), type) != 0;
int nregs;
if (TARGET_64BIT)
{
const int *parm_regs;
if (ix86_function_type_abi (type) == MS_ABI)
parm_regs = x86_64_ms_abi_int_parameter_registers;
else
parm_regs = x86_64_int_parameter_registers;
return gen_rtx_REG (Pmode, parm_regs[aggr]);
}
nregs = ix86_function_regparm (type, function);
if (nregs > 0 && !stdarg_p (type))
{
int regno;
unsigned int ccvt = ix86_get_callcvt (type);
if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
regno = aggr ? DX_REG : CX_REG;
else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
{
regno = CX_REG;
if (aggr)
return gen_rtx_MEM (SImode,
plus_constant (Pmode, stack_pointer_rtx, 4));
}
else
{
regno = AX_REG;
if (aggr)
{
regno = DX_REG;
if (nregs == 1)
return gen_rtx_MEM (SImode,
plus_constant (Pmode,
stack_pointer_rtx, 4));
}
}
return gen_rtx_REG (SImode, regno);
}
return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx,
aggr ? 8 : 4));
}
/* Determine whether x86_output_mi_thunk can succeed. */
static bool
x86_can_output_mi_thunk (const_tree, HOST_WIDE_INT, HOST_WIDE_INT vcall_offset,
const_tree function)
{
/* 64-bit can handle anything. */
if (TARGET_64BIT)
return true;
/* For 32-bit, everything's fine if we have one free register. */
if (ix86_function_regparm (TREE_TYPE (function), function) < 3)
return true;
/* Need a free register for vcall_offset. */
if (vcall_offset)
return false;
/* Need a free register for GOT references. */
if (flag_pic && !targetm.binds_local_p (function))
return false;
/* Otherwise ok. */
return true;
}
/* Output the assembler code for a thunk function. THUNK_DECL is the
declaration for the thunk function itself, FUNCTION is the decl for
the target function. DELTA is an immediate constant offset to be
added to THIS. If VCALL_OFFSET is nonzero, the word at
*(*this + vcall_offset) should be added to THIS. */
static void
x86_output_mi_thunk (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset, tree function)
{
const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
rtx this_param = x86_this_parameter (function);
rtx this_reg, tmp, fnaddr;
unsigned int tmp_regno;
rtx_insn *insn;
if (TARGET_64BIT)
tmp_regno = R10_REG;
else
{
unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (function));
if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
tmp_regno = AX_REG;
else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
tmp_regno = DX_REG;
else
tmp_regno = CX_REG;
}
emit_note (NOTE_INSN_PROLOGUE_END);
/* CET is enabled, insert EB instruction. */
if ((flag_cf_protection & CF_BRANCH))
emit_insn (gen_nop_endbr ());
/* If VCALL_OFFSET, we'll need THIS in a register. Might as well
pull it in now and let DELTA benefit. */
if (REG_P (this_param))
this_reg = this_param;
else if (vcall_offset)
{
/* Put the this parameter into %eax. */
this_reg = gen_rtx_REG (Pmode, AX_REG);
emit_move_insn (this_reg, this_param);
}
else
this_reg = NULL_RTX;
/* Adjust the this parameter by a fixed constant. */
if (delta)
{
rtx delta_rtx = GEN_INT (delta);
rtx delta_dst = this_reg ? this_reg : this_param;
if (TARGET_64BIT)
{
if (!x86_64_general_operand (delta_rtx, Pmode))
{
tmp = gen_rtx_REG (Pmode, tmp_regno);
emit_move_insn (tmp, delta_rtx);
delta_rtx = tmp;
}
}
ix86_emit_binop (PLUS, Pmode, delta_dst, delta_rtx);
}
/* Adjust the this parameter by a value stored in the vtable. */
if (vcall_offset)
{
rtx vcall_addr, vcall_mem, this_mem;
tmp = gen_rtx_REG (Pmode, tmp_regno);
this_mem = gen_rtx_MEM (ptr_mode, this_reg);
if (Pmode != ptr_mode)
this_mem = gen_rtx_ZERO_EXTEND (Pmode, this_mem);
emit_move_insn (tmp, this_mem);
/* Adjust the this parameter. */
vcall_addr = plus_constant (Pmode, tmp, vcall_offset);
if (TARGET_64BIT
&& !ix86_legitimate_address_p (ptr_mode, vcall_addr, true))
{
rtx tmp2 = gen_rtx_REG (Pmode, R11_REG);
emit_move_insn (tmp2, GEN_INT (vcall_offset));
vcall_addr = gen_rtx_PLUS (Pmode, tmp, tmp2);
}
vcall_mem = gen_rtx_MEM (ptr_mode, vcall_addr);
if (Pmode != ptr_mode)
emit_insn (gen_addsi_1_zext (this_reg,
gen_rtx_REG (ptr_mode,
REGNO (this_reg)),
vcall_mem));
else
ix86_emit_binop (PLUS, Pmode, this_reg, vcall_mem);
}
/* If necessary, drop THIS back to its stack slot. */
if (this_reg && this_reg != this_param)
emit_move_insn (this_param, this_reg);
fnaddr = XEXP (DECL_RTL (function), 0);
if (TARGET_64BIT)
{
if (!flag_pic || targetm.binds_local_p (function)
|| TARGET_PECOFF)
;
else
{
tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOTPCREL);
tmp = gen_rtx_CONST (Pmode, tmp);
fnaddr = gen_const_mem (Pmode, tmp);
}
}
else
{
if (!flag_pic || targetm.binds_local_p (function))
;
#if TARGET_MACHO
else if (TARGET_MACHO)
{
fnaddr = machopic_indirect_call_target (DECL_RTL (function));
fnaddr = XEXP (fnaddr, 0);
}
#endif /* TARGET_MACHO */
else
{
tmp = gen_rtx_REG (Pmode, CX_REG);
output_set_got (tmp, NULL_RTX);
fnaddr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOT);
fnaddr = gen_rtx_CONST (Pmode, fnaddr);
fnaddr = gen_rtx_PLUS (Pmode, tmp, fnaddr);
fnaddr = gen_const_mem (Pmode, fnaddr);
}
}
/* Our sibling call patterns do not allow memories, because we have no
predicate that can distinguish between frame and non-frame memory.
For our purposes here, we can get away with (ab)using a jump pattern,
because we're going to do no optimization. */
if (MEM_P (fnaddr))
{
if (sibcall_insn_operand (fnaddr, word_mode))
{
fnaddr = XEXP (DECL_RTL (function), 0);
tmp = gen_rtx_MEM (QImode, fnaddr);
tmp = gen_rtx_CALL (VOIDmode, tmp, const0_rtx);
tmp = emit_call_insn (tmp);
SIBLING_CALL_P (tmp) = 1;
}
else
emit_jump_insn (gen_indirect_jump (fnaddr));
}
else
{
if (ix86_cmodel == CM_LARGE_PIC && SYMBOLIC_CONST (fnaddr))
{
// CM_LARGE_PIC always uses pseudo PIC register which is
// uninitialized. Since FUNCTION is local and calling it
// doesn't go through PLT, we use scratch register %r11 as
// PIC register and initialize it here.
pic_offset_table_rtx = gen_rtx_REG (Pmode, R11_REG);
ix86_init_large_pic_reg (tmp_regno);
fnaddr = legitimize_pic_address (fnaddr,
gen_rtx_REG (Pmode, tmp_regno));
}
if (!sibcall_insn_operand (fnaddr, word_mode))
{
tmp = gen_rtx_REG (word_mode, tmp_regno);
if (GET_MODE (fnaddr) != word_mode)
fnaddr = gen_rtx_ZERO_EXTEND (word_mode, fnaddr);
emit_move_insn (tmp, fnaddr);
fnaddr = tmp;
}
tmp = gen_rtx_MEM (QImode, fnaddr);
tmp = gen_rtx_CALL (VOIDmode, tmp, const0_rtx);
tmp = emit_call_insn (tmp);
SIBLING_CALL_P (tmp) = 1;
}
emit_barrier ();
/* Emit just enough of rest_of_compilation to get the insns emitted. */
insn = get_insns ();
shorten_branches (insn);
assemble_start_function (thunk_fndecl, fnname);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
assemble_end_function (thunk_fndecl, fnname);
}
static void
x86_file_start (void)
{
default_file_start ();
if (TARGET_16BIT)
fputs ("\t.code16gcc\n", asm_out_file);
#if TARGET_MACHO
darwin_file_start ();
#endif
if (X86_FILE_START_VERSION_DIRECTIVE)
fputs ("\t.version\t\"01.01\"\n", asm_out_file);
if (X86_FILE_START_FLTUSED)
fputs ("\t.global\t__fltused\n", asm_out_file);
if (ix86_asm_dialect == ASM_INTEL)
fputs ("\t.intel_syntax noprefix\n", asm_out_file);
}
int
x86_field_alignment (tree type, int computed)
{
machine_mode mode;
if (TARGET_64BIT || TARGET_ALIGN_DOUBLE)
return computed;
if (TARGET_IAMCU)
return iamcu_alignment (type, computed);
type = strip_array_types (type);
mode = TYPE_MODE (type);
if (mode == DFmode || mode == DCmode
|| GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
{
if (TYPE_ATOMIC (type) && computed > 32)
{
static bool warned;
if (!warned && warn_psabi)
{
const char *url
= CHANGES_ROOT_URL "gcc-11/changes.html#ia32_atomic";
warned = true;
inform (input_location, "the alignment of %<_Atomic %T%> "
"fields changed in %{GCC 11.1%}",
TYPE_MAIN_VARIANT (type), url);
}
}
else
return MIN (32, computed);
}
return computed;
}
/* Print call to TARGET to FILE. */
static void
x86_print_call_or_nop (FILE *file, const char *target)
{
if (flag_nop_mcount || !strcmp (target, "nop"))
/* 5 byte nop: nopl 0(%[re]ax,%[re]ax,1) */
fprintf (file, "1:" ASM_BYTE "0x0f, 0x1f, 0x44, 0x00, 0x00\n");
else
fprintf (file, "1:\tcall\t%s\n", target);
}
static bool
current_fentry_name (const char **name)
{
tree attr = lookup_attribute ("fentry_name",
DECL_ATTRIBUTES (current_function_decl));
if (!attr)
return false;
*name = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
return true;
}
static bool
current_fentry_section (const char **name)
{
tree attr = lookup_attribute ("fentry_section",
DECL_ATTRIBUTES (current_function_decl));
if (!attr)
return false;
*name = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
return true;
}
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
void
x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED)
{
if (cfun->machine->insn_queued_at_entrance)
{
if (cfun->machine->insn_queued_at_entrance == TYPE_ENDBR)
fprintf (file, "\t%s\n", TARGET_64BIT ? "endbr64" : "endbr32");
unsigned int patch_area_size
= crtl->patch_area_size - crtl->patch_area_entry;
if (patch_area_size)
ix86_output_patchable_area (patch_area_size,
crtl->patch_area_entry == 0);
}
const char *mcount_name = MCOUNT_NAME;
if (current_fentry_name (&mcount_name))
;
else if (fentry_name)
mcount_name = fentry_name;
else if (flag_fentry)
mcount_name = MCOUNT_NAME_BEFORE_PROLOGUE;
if (TARGET_64BIT)
{
#ifndef NO_PROFILE_COUNTERS
fprintf (file, "\tleaq\t%sP%d(%%rip),%%r11\n", LPREFIX, labelno);
#endif
if (!TARGET_PECOFF)
{
switch (ix86_cmodel)
{
case CM_LARGE:
/* NB: R10 is caller-saved. Although it can be used as a
static chain register, it is preserved when calling
mcount for nested functions. */
fprintf (file, "1:\tmovabsq\t$%s, %%r10\n\tcall\t*%%r10\n",
mcount_name);
break;
case CM_LARGE_PIC:
#ifdef NO_PROFILE_COUNTERS
fprintf (file, "1:\tmovabsq\t$_GLOBAL_OFFSET_TABLE_-1b, %%r11\n");
fprintf (file, "\tleaq\t1b(%%rip), %%r10\n");
fprintf (file, "\taddq\t%%r11, %%r10\n");
fprintf (file, "\tmovabsq\t$%s@PLTOFF, %%r11\n", mcount_name);
fprintf (file, "\taddq\t%%r11, %%r10\n");
fprintf (file, "\tcall\t*%%r10\n");
#else
sorry ("profiling %<-mcmodel=large%> with PIC is not supported");
#endif
break;
case CM_SMALL_PIC:
case CM_MEDIUM_PIC:
fprintf (file, "1:\tcall\t*%s@GOTPCREL(%%rip)\n", mcount_name);
break;
default:
x86_print_call_or_nop (file, mcount_name);
break;
}
}
else
x86_print_call_or_nop (file, mcount_name);
}
else if (flag_pic)
{
#ifndef NO_PROFILE_COUNTERS
fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%" PROFILE_COUNT_REGISTER "\n",
LPREFIX, labelno);
#endif
fprintf (file, "1:\tcall\t*%s@GOT(%%ebx)\n", mcount_name);
}
else
{
#ifndef NO_PROFILE_COUNTERS
fprintf (file, "\tmovl\t$%sP%d,%%" PROFILE_COUNT_REGISTER "\n",
LPREFIX, labelno);
#endif
x86_print_call_or_nop (file, mcount_name);
}
if (flag_record_mcount
|| lookup_attribute ("fentry_section",
DECL_ATTRIBUTES (current_function_decl)))
{
const char *sname = "__mcount_loc";
if (current_fentry_section (&sname))
;
else if (fentry_section)
sname = fentry_section;
fprintf (file, "\t.section %s, \"a\",@progbits\n", sname);
fprintf (file, "\t.%s 1b\n", TARGET_64BIT ? "quad" : "long");
fprintf (file, "\t.previous\n");
}
}
/* We don't have exact information about the insn sizes, but we may assume
quite safely that we are informed about all 1 byte insns and memory
address sizes. This is enough to eliminate unnecessary padding in
99% of cases. */
int
ix86_min_insn_size (rtx_insn *insn)
{
int l = 0, len;
if (!INSN_P (insn) || !active_insn_p (insn))
return 0;
/* Discard alignments we've emit and jump instructions. */
if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
&& XINT (PATTERN (insn), 1) == UNSPECV_ALIGN)
return 0;
/* Important case - calls are always 5 bytes.
It is common to have many calls in the row. */
if (CALL_P (insn)
&& symbolic_reference_mentioned_p (PATTERN (insn))
&& !SIBLING_CALL_P (insn))
return 5;
len = get_attr_length (insn);
if (len <= 1)
return 1;
/* For normal instructions we rely on get_attr_length being exact,
with a few exceptions. */
if (!JUMP_P (insn))
{
enum attr_type type = get_attr_type (insn);
switch (type)
{
case TYPE_MULTI:
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0)
return 0;
break;
case TYPE_OTHER:
case TYPE_FCMP:
break;
default:
/* Otherwise trust get_attr_length. */
return len;
}
l = get_attr_length_address (insn);
if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn)))
l = 4;
}
if (l)
return 1+l;
else
return 2;
}
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
/* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte
window. */
static void
ix86_avoid_jump_mispredicts (void)
{
rtx_insn *insn, *start = get_insns ();
int nbytes = 0, njumps = 0;
bool isjump = false;
/* Look for all minimal intervals of instructions containing 4 jumps.
The intervals are bounded by START and INSN. NBYTES is the total
size of instructions in the interval including INSN and not including
START. When the NBYTES is smaller than 16 bytes, it is possible
that the end of START and INSN ends up in the same 16byte page.
The smallest offset in the page INSN can start is the case where START
ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN).
We add p2align to 16byte window with maxskip 15 - NBYTES + sizeof (INSN).
Don't consider asm goto as jump, while it can contain a jump, it doesn't
have to, control transfer to label(s) can be performed through other
means, and also we estimate minimum length of all asm stmts as 0. */
for (insn = start; insn; insn = NEXT_INSN (insn))
{
int min_size;
if (LABEL_P (insn))
{
align_flags alignment = label_to_alignment (insn);
int align = alignment.levels[0].log;
int max_skip = alignment.levels[0].maxskip;
if (max_skip > 15)
max_skip = 15;
/* If align > 3, only up to 16 - max_skip - 1 bytes can be
already in the current 16 byte page, because otherwise
ASM_OUTPUT_MAX_SKIP_ALIGN could skip max_skip or fewer
bytes to reach 16 byte boundary. */
if (align <= 0
|| (align <= 3 && max_skip != (1 << align) - 1))
max_skip = 0;
if (dump_file)
fprintf (dump_file, "Label %i with max_skip %i\n",
INSN_UID (insn), max_skip);
if (max_skip)
{
while (nbytes + max_skip >= 16)
{
start = NEXT_INSN (start);
if ((JUMP_P (start) && asm_noperands (PATTERN (start)) < 0)
|| CALL_P (start))
njumps--, isjump = true;
else
isjump = false;
nbytes -= ix86_min_insn_size (start);
}
}
continue;
}
min_size = ix86_min_insn_size (insn);
nbytes += min_size;
if (dump_file)
fprintf (dump_file, "Insn %i estimated to %i bytes\n",
INSN_UID (insn), min_size);
if ((JUMP_P (insn) && asm_noperands (PATTERN (insn)) < 0)
|| CALL_P (insn))
njumps++;
else
continue;
while (njumps > 3)
{
start = NEXT_INSN (start);
if ((JUMP_P (start) && asm_noperands (PATTERN (start)) < 0)
|| CALL_P (start))
njumps--, isjump = true;
else
isjump = false;
nbytes -= ix86_min_insn_size (start);
}
gcc_assert (njumps >= 0);
if (dump_file)
fprintf (dump_file, "Interval %i to %i has %i bytes\n",
INSN_UID (start), INSN_UID (insn), nbytes);
if (njumps == 3 && isjump && nbytes < 16)
{
int padsize = 15 - nbytes + ix86_min_insn_size (insn);
if (dump_file)
fprintf (dump_file, "Padding insn %i by %i bytes!\n",
INSN_UID (insn), padsize);
emit_insn_before (gen_pad (GEN_INT (padsize)), insn);
}
}
}
#endif
/* AMD Athlon works faster
when RET is not destination of conditional jump or directly preceded
by other jump instruction. We avoid the penalty by inserting NOP just
before the RET instructions in such cases. */
static void
ix86_pad_returns (void)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
{
basic_block bb = e->src;
rtx_insn *ret = BB_END (bb);
rtx_insn *prev;
bool replace = false;
if (!JUMP_P (ret) || !ANY_RETURN_P (PATTERN (ret))
|| optimize_bb_for_size_p (bb))
continue;
for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev))
if (active_insn_p (prev) || LABEL_P (prev))
break;
if (prev && LABEL_P (prev))
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if (EDGE_FREQUENCY (e) && e->src->index >= 0
&& !(e->flags & EDGE_FALLTHRU))
{
replace = true;
break;
}
}
if (!replace)
{
prev = prev_active_insn (ret);
if (prev
&& ((JUMP_P (prev) && any_condjump_p (prev))
|| CALL_P (prev)))
replace = true;
/* Empty functions get branch mispredict even when
the jump destination is not visible to us. */
if (!prev && !optimize_function_for_size_p (cfun))
replace = true;
}
if (replace)
{
emit_jump_insn_before (gen_simple_return_internal_long (), ret);
delete_insn (ret);
}
}
}
/* Count the minimum number of instructions in BB. Return 4 if the
number of instructions >= 4. */
static int
ix86_count_insn_bb (basic_block bb)
{
rtx_insn *insn;
int insn_count = 0;
/* Count number of instructions in this block. Return 4 if the number
of instructions >= 4. */
FOR_BB_INSNS (bb, insn)
{
/* Only happen in exit blocks. */
if (JUMP_P (insn)
&& ANY_RETURN_P (PATTERN (insn)))
break;
if (NONDEBUG_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
{
insn_count++;
if (insn_count >= 4)
return insn_count;
}
}
return insn_count;
}
/* Count the minimum number of instructions in code path in BB.
Return 4 if the number of instructions >= 4. */
static int
ix86_count_insn (basic_block bb)
{
edge e;
edge_iterator ei;
int min_prev_count;
/* Only bother counting instructions along paths with no
more than 2 basic blocks between entry and exit. Given
that BB has an edge to exit, determine if a predecessor
of BB has an edge from entry. If so, compute the number
of instructions in the predecessor block. If there
happen to be multiple such blocks, compute the minimum. */
min_prev_count = 4;
FOR_EACH_EDGE (e, ei, bb->preds)
{
edge prev_e;
edge_iterator prev_ei;
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
min_prev_count = 0;
break;
}
FOR_EACH_EDGE (prev_e, prev_ei, e->src->preds)
{
if (prev_e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
int count = ix86_count_insn_bb (e->src);
if (count < min_prev_count)
min_prev_count = count;
break;
}
}
}
if (min_prev_count < 4)
min_prev_count += ix86_count_insn_bb (bb);
return min_prev_count;
}
/* Pad short function to 4 instructions. */
static void
ix86_pad_short_function (void)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
{
rtx_insn *ret = BB_END (e->src);
if (JUMP_P (ret) && ANY_RETURN_P (PATTERN (ret)))
{
int insn_count = ix86_count_insn (e->src);
/* Pad short function. */
if (insn_count < 4)
{
rtx_insn *insn = ret;
/* Find epilogue. */
while (insn
&& (!NOTE_P (insn)
|| NOTE_KIND (insn) != NOTE_INSN_EPILOGUE_BEG))
insn = PREV_INSN (insn);
if (!insn)
insn = ret;
/* Two NOPs count as one instruction. */
insn_count = 2 * (4 - insn_count);
emit_insn_before (gen_nops (GEN_INT (insn_count)), insn);
}
}
}
}
/* Fix up a Windows system unwinder issue. If an EH region falls through into
the epilogue, the Windows system unwinder will apply epilogue logic and
produce incorrect offsets. This can be avoided by adding a nop between
the last insn that can throw and the first insn of the epilogue. */
static void
ix86_seh_fixup_eh_fallthru (void)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
{
rtx_insn *insn, *next;
/* Find the beginning of the epilogue. */
for (insn = BB_END (e->src); insn != NULL; insn = PREV_INSN (insn))
if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
break;
if (insn == NULL)
continue;
/* We only care about preceding insns that can throw. */
insn = prev_active_insn (insn);
if (insn == NULL || !can_throw_internal (insn))
continue;
/* Do not separate calls from their debug information. */
for (next = NEXT_INSN (insn); next != NULL; next = NEXT_INSN (next))
if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_VAR_LOCATION)
insn = next;
else
break;
emit_insn_after (gen_nops (const1_rtx), insn);
}
}
/* Split vector load from parm_decl to elemental loads to avoid STLF
stalls. */
static void
ix86_split_stlf_stall_load ()
{
rtx_insn* insn, *start = get_insns ();
unsigned window = 0;
for (insn = start; insn; insn = NEXT_INSN (insn))
{
if (!NONDEBUG_INSN_P (insn))
continue;
window++;
/* Insert 64 vaddps %xmm18, %xmm19, %xmm20(no dependence between each
other, just emulate for pipeline) before stalled load, stlf stall
case is as fast as no stall cases on CLX.
Since CFG is freed before machine_reorg, just do a rough
calculation of the window according to the layout. */
if (window > (unsigned) x86_stlf_window_ninsns)
return;
if (any_uncondjump_p (insn)
|| ANY_RETURN_P (PATTERN (insn))
|| CALL_P (insn))
return;
rtx set = single_set (insn);
if (!set)
continue;
rtx src = SET_SRC (set);
if (!MEM_P (src)
/* Only handle V2DFmode load since it doesn't need any scratch
register. */
|| GET_MODE (src) != E_V2DFmode
|| !MEM_EXPR (src)
|| TREE_CODE (get_base_address (MEM_EXPR (src))) != PARM_DECL)
continue;
rtx zero = CONST0_RTX (V2DFmode);
rtx dest = SET_DEST (set);
rtx m = adjust_address (src, DFmode, 0);
rtx loadlpd = gen_sse2_loadlpd (dest, zero, m);
emit_insn_before (loadlpd, insn);
m = adjust_address (src, DFmode, 8);
rtx loadhpd = gen_sse2_loadhpd (dest, dest, m);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fputs ("Due to potential STLF stall, split instruction:\n",
dump_file);
print_rtl_single (dump_file, insn);
fputs ("To:\n", dump_file);
print_rtl_single (dump_file, loadlpd);
print_rtl_single (dump_file, loadhpd);
}
PATTERN (insn) = loadhpd;
INSN_CODE (insn) = -1;
gcc_assert (recog_memoized (insn) != -1);
}
}
/* Implement machine specific optimizations. We implement padding of returns
for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */
static void
ix86_reorg (void)
{
/* We are freeing block_for_insn in the toplev to keep compatibility
with old MDEP_REORGS that are not CFG based. Recompute it now. */
compute_bb_for_insn ();
if (TARGET_SEH && current_function_has_exception_handlers ())
ix86_seh_fixup_eh_fallthru ();
if (optimize && optimize_function_for_speed_p (cfun))
{
if (TARGET_SSE2)
ix86_split_stlf_stall_load ();
if (TARGET_PAD_SHORT_FUNCTION)
ix86_pad_short_function ();
else if (TARGET_PAD_RETURNS)
ix86_pad_returns ();
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
if (TARGET_FOUR_JUMP_LIMIT)
ix86_avoid_jump_mispredicts ();
#endif
}
}
/* Return nonzero when QImode register that must be represented via REX prefix
is used. */
bool
x86_extended_QIreg_mentioned_p (rtx_insn *insn)
{
int i;
extract_insn_cached (insn);
for (i = 0; i < recog_data.n_operands; i++)
if (GENERAL_REG_P (recog_data.operand[i])
&& !QI_REGNO_P (REGNO (recog_data.operand[i])))
return true;
return false;
}
/* Return true when INSN mentions register that must be encoded using REX
prefix. */
bool
x86_extended_reg_mentioned_p (rtx insn)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, INSN_P (insn) ? PATTERN (insn) : insn, NONCONST)
{
const_rtx x = *iter;
if (REG_P (x)
&& (REX_INT_REGNO_P (REGNO (x)) || REX_SSE_REGNO_P (REGNO (x))))
return true;
}
return false;
}
/* If profitable, negate (without causing overflow) integer constant
of mode MODE at location LOC. Return true in this case. */
bool
x86_maybe_negate_const_int (rtx *loc, machine_mode mode)
{
HOST_WIDE_INT val;
if (!CONST_INT_P (*loc))
return false;
switch (mode)
{
case E_DImode:
/* DImode x86_64 constants must fit in 32 bits. */
gcc_assert (x86_64_immediate_operand (*loc, mode));
mode = SImode;
break;
case E_SImode:
case E_HImode:
case E_QImode:
break;
default:
gcc_unreachable ();
}
/* Avoid overflows. */
if (mode_signbit_p (mode, *loc))
return false;
val = INTVAL (*loc);
/* Make things pretty and `subl $4,%eax' rather than `addl $-4,%eax'.
Exceptions: -128 encodes smaller than 128, so swap sign and op. */
if ((val < 0 && val != -128)
|| val == 128)
{
*loc = GEN_INT (-val);
return true;
}
return false;
}
/* Generate an unsigned DImode/SImode to FP conversion. This is the same code
optabs would emit if we didn't have TFmode patterns. */
void
x86_emit_floatuns (rtx operands[2])
{
rtx_code_label *neglab, *donelab;
rtx i0, i1, f0, in, out;
machine_mode mode, inmode;
inmode = GET_MODE (operands[1]);
gcc_assert (inmode == SImode || inmode == DImode);
out = operands[0];
in = force_reg (inmode, operands[1]);
mode = GET_MODE (out);
neglab = gen_label_rtx ();
donelab = gen_label_rtx ();
f0 = gen_reg_rtx (mode);
emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, inmode, 0, neglab);
expand_float (out, in, 0);
emit_jump_insn (gen_jump (donelab));
emit_barrier ();
emit_label (neglab);
i0 = expand_simple_binop (inmode, LSHIFTRT, in, const1_rtx, NULL,
1, OPTAB_DIRECT);
i1 = expand_simple_binop (inmode, AND, in, const1_rtx, NULL,
1, OPTAB_DIRECT);
i0 = expand_simple_binop (inmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT);
expand_float (f0, i0, 0);
emit_insn (gen_rtx_SET (out, gen_rtx_PLUS (mode, f0, f0)));
emit_label (donelab);
}
/* Target hook for scalar_mode_supported_p. */
static bool
ix86_scalar_mode_supported_p (scalar_mode mode)
{
if (DECIMAL_FLOAT_MODE_P (mode))
return default_decimal_float_supported_p ();
else if (mode == TFmode)
return true;
else if ((mode == HFmode || mode == BFmode) && TARGET_SSE2)
return true;
else
return default_scalar_mode_supported_p (mode);
}
/* Implement TARGET_LIBGCC_FLOATING_POINT_MODE_SUPPORTED_P - return TRUE
if MODE is HFmode, and punt to the generic implementation otherwise. */
static bool
ix86_libgcc_floating_mode_supported_p (scalar_float_mode mode)
{
/* NB: Always return TRUE for HFmode so that the _Float16 type will
be defined by the C front-end for AVX512FP16 intrinsics. We will
issue an error in ix86_expand_move for HFmode if AVX512FP16 isn't
enabled. */
return ((mode == HFmode && TARGET_SSE2)
? true
: default_libgcc_floating_mode_supported_p (mode));
}
/* Implements target hook vector_mode_supported_p. */
static bool
ix86_vector_mode_supported_p (machine_mode mode)
{
/* For ia32, scalar TImode isn't supported and so V1TImode shouldn't be
either. */
if (!TARGET_64BIT && GET_MODE_INNER (mode) == TImode)
return false;
if (TARGET_SSE && VALID_SSE_REG_MODE (mode))
return true;
if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode))
return true;
if (TARGET_AVX && VALID_AVX256_REG_MODE (mode))
return true;
if (TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode))
return true;
if ((TARGET_MMX || TARGET_MMX_WITH_SSE)
&& VALID_MMX_REG_MODE (mode))
return true;
if ((TARGET_3DNOW || TARGET_MMX_WITH_SSE)
&& VALID_MMX_REG_MODE_3DNOW (mode))
return true;
if (mode == V2QImode)
return true;
return false;
}
/* Target hook for c_mode_for_suffix. */
static machine_mode
ix86_c_mode_for_suffix (char suffix)
{
if (suffix == 'q')
return TFmode;
if (suffix == 'w')
return XFmode;
return VOIDmode;
}
/* Worker function for TARGET_MD_ASM_ADJUST.
We implement asm flag outputs, and maintain source compatibility
with the old cc0-based compiler. */
static rtx_insn *
ix86_md_asm_adjust (vec<rtx> &outputs, vec<rtx> & /*inputs*/,
vec<machine_mode> & /*input_modes*/,
vec<const char *> &constraints, vec<rtx> &clobbers,
HARD_REG_SET &clobbered_regs, location_t loc)
{
bool saw_asm_flag = false;
start_sequence ();
for (unsigned i = 0, n = outputs.length (); i < n; ++i)
{
const char *con = constraints[i];
if (!startswith (con, "=@cc"))
continue;
con += 4;
if (strchr (con, ',') != NULL)
{
error_at (loc, "alternatives not allowed in %<asm%> flag output");
continue;
}
bool invert = false;
if (con[0] == 'n')
invert = true, con++;
machine_mode mode = CCmode;
rtx_code code = UNKNOWN;
switch (con[0])
{
case 'a':
if (con[1] == 0)
mode = CCAmode, code = EQ;
else if (con[1] == 'e' && con[2] == 0)
mode = CCCmode, code = NE;
break;
case 'b':
if (con[1] == 0)
mode = CCCmode, code = EQ;
else if (con[1] == 'e' && con[2] == 0)
mode = CCAmode, code = NE;
break;
case 'c':
if (con[1] == 0)
mode = CCCmode, code = EQ;
break;
case 'e':
if (con[1] == 0)
mode = CCZmode, code = EQ;
break;
case 'g':
if (con[1] == 0)
mode = CCGCmode, code = GT;
else if (con[1] == 'e' && con[2] == 0)
mode = CCGCmode, code = GE;
break;
case 'l':
if (con[1] == 0)
mode = CCGCmode, code = LT;
else if (con[1] == 'e' && con[2] == 0)
mode = CCGCmode, code = LE;
break;
case 'o':
if (con[1] == 0)
mode = CCOmode, code = EQ;
break;
case 'p':
if (con[1] == 0)
mode = CCPmode, code = EQ;
break;
case 's':
if (con[1] == 0)
mode = CCSmode, code = EQ;
break;
case 'z':
if (con[1] == 0)
mode = CCZmode, code = EQ;
break;
}
if (code == UNKNOWN)
{
error_at (loc, "unknown %<asm%> flag output %qs", constraints[i]);
continue;
}
if (invert)
code = reverse_condition (code);
rtx dest = outputs[i];
if (!saw_asm_flag)
{
/* This is the first asm flag output. Here we put the flags
register in as the real output and adjust the condition to
allow it. */
constraints[i] = "=Bf";
outputs[i] = gen_rtx_REG (CCmode, FLAGS_REG);
saw_asm_flag = true;
}
else
{
/* We don't need the flags register as output twice. */
constraints[i] = "=X";
outputs[i] = gen_rtx_SCRATCH (SImode);
}
rtx x = gen_rtx_REG (mode, FLAGS_REG);
x = gen_rtx_fmt_ee (code, QImode, x, const0_rtx);
machine_mode dest_mode = GET_MODE (dest);
if (!SCALAR_INT_MODE_P (dest_mode))
{
error_at (loc, "invalid type for %<asm%> flag output");
continue;
}
if (dest_mode == QImode)
emit_insn (gen_rtx_SET (dest, x));
else
{
rtx reg = gen_reg_rtx (QImode);
emit_insn (gen_rtx_SET (reg, x));
reg = convert_to_mode (dest_mode, reg, 1);
emit_move_insn (dest, reg);
}
}
rtx_insn *seq = get_insns ();
end_sequence ();
if (saw_asm_flag)
return seq;
else
{
/* If we had no asm flag outputs, clobber the flags. */
clobbers.safe_push (gen_rtx_REG (CCmode, FLAGS_REG));
SET_HARD_REG_BIT (clobbered_regs, FLAGS_REG);
return NULL;
}
}
/* Implements target vector targetm.asm.encode_section_info. */
static void ATTRIBUTE_UNUSED
ix86_encode_section_info (tree decl, rtx rtl, int first)
{
default_encode_section_info (decl, rtl, first);
if (ix86_in_large_data_p (decl))
SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FAR_ADDR;
}
/* Worker function for REVERSE_CONDITION. */
enum rtx_code
ix86_reverse_condition (enum rtx_code code, machine_mode mode)
{
return (mode == CCFPmode
? reverse_condition_maybe_unordered (code)
: reverse_condition (code));
}
/* Output code to perform an x87 FP register move, from OPERANDS[1]
to OPERANDS[0]. */
const char *
output_387_reg_move (rtx_insn *insn, rtx *operands)
{
if (REG_P (operands[0]))
{
if (REG_P (operands[1])
&& find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
{
if (REGNO (operands[0]) == FIRST_STACK_REG)
return output_387_ffreep (operands, 0);
return "fstp\t%y0";
}
if (STACK_TOP_P (operands[0]))
return "fld%Z1\t%y1";
return "fst\t%y0";
}
else if (MEM_P (operands[0]))
{
gcc_assert (REG_P (operands[1]));
if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
return "fstp%Z0\t%y0";
else
{
/* There is no non-popping store to memory for XFmode.
So if we need one, follow the store with a load. */
if (GET_MODE (operands[0]) == XFmode)
return "fstp%Z0\t%y0\n\tfld%Z0\t%y0";
else
return "fst%Z0\t%y0";
}
}
else
gcc_unreachable();
}
#ifdef TARGET_SOLARIS
/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */
static void
i386_solaris_elf_named_section (const char *name, unsigned int flags,
tree decl)
{
/* With Binutils 2.15, the "@unwind" marker must be specified on
every occurrence of the ".eh_frame" section, not just the first
one. */
if (TARGET_64BIT
&& strcmp (name, ".eh_frame") == 0)
{
fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name,
flags & SECTION_WRITE ? "aw" : "a");
return;
}
#ifndef USE_GAS
if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE)
{
solaris_elf_asm_comdat_section (name, flags, decl);
return;
}
/* Solaris/x86 as uses the same syntax for the SHF_EXCLUDE flags as the
SPARC assembler. One cannot mix single-letter flags and #exclude, so
only emit the latter here. */
if (flags & SECTION_EXCLUDE)
{
fprintf (asm_out_file, "\t.section\t%s,#exclude\n", name);
return;
}
#endif
default_elf_asm_named_section (name, flags, decl);
}
#endif /* TARGET_SOLARIS */
/* Return the mangling of TYPE if it is an extended fundamental type. */
static const char *
ix86_mangle_type (const_tree type)
{
type = TYPE_MAIN_VARIANT (type);
if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
&& TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
return NULL;
switch (TYPE_MODE (type))
{
case E_BFmode:
return "u6__bf16";
case E_HFmode:
/* _Float16 is "DF16_".
Align with clang's decision in https://reviews.llvm.org/D33719. */
return "DF16_";
case E_TFmode:
/* __float128 is "g". */
if (type == float128t_type_node)
return "g";
/* _Float128 should mangle as "DF128_" done in generic code. */
return NULL;
case E_XFmode:
/* "long double" or __float80 is "e". */
return "e";
default:
return NULL;
}
}
/* Return the diagnostic message string if conversion from FROMTYPE to
TOTYPE is not allowed, NULL otherwise. */
static const char *
ix86_invalid_conversion (const_tree fromtype, const_tree totype)
{
if (element_mode (fromtype) != element_mode (totype))
{
/* Do no allow conversions to/from BFmode scalar types. */
if (TYPE_MODE (fromtype) == BFmode)
return N_("invalid conversion from type %<__bf16%>");
if (TYPE_MODE (totype) == BFmode)
return N_("invalid conversion to type %<__bf16%>");
}
/* Conversion allowed. */
return NULL;
}
/* Return the diagnostic message string if the unary operation OP is
not permitted on TYPE, NULL otherwise. */
static const char *
ix86_invalid_unary_op (int op, const_tree type)
{
/* Reject all single-operand operations on BFmode except for &. */
if (element_mode (type) == BFmode && op != ADDR_EXPR)
return N_("operation not permitted on type %<__bf16%>");
/* Operation allowed. */
return NULL;
}
/* Return the diagnostic message string if the binary operation OP is
not permitted on TYPE1 and TYPE2, NULL otherwise. */
static const char *
ix86_invalid_binary_op (int op ATTRIBUTE_UNUSED, const_tree type1,
const_tree type2)
{
/* Reject all 2-operand operations on BFmode. */
if (element_mode (type1) == BFmode
|| element_mode (type2) == BFmode)
return N_("operation not permitted on type %<__bf16%>");
/* Operation allowed. */
return NULL;
}
static GTY(()) tree ix86_tls_stack_chk_guard_decl;
static tree
ix86_stack_protect_guard (void)
{
if (TARGET_SSP_TLS_GUARD)
{
tree type_node = lang_hooks.types.type_for_mode (ptr_mode, 1);
int qual = ENCODE_QUAL_ADDR_SPACE (ix86_stack_protector_guard_reg);
tree type = build_qualified_type (type_node, qual);
tree t;
if (OPTION_SET_P (ix86_stack_protector_guard_symbol_str))
{
t = ix86_tls_stack_chk_guard_decl;
if (t == NULL)
{
rtx x;
t = build_decl
(UNKNOWN_LOCATION, VAR_DECL,
get_identifier (ix86_stack_protector_guard_symbol_str),
type);
TREE_STATIC (t) = 1;
TREE_PUBLIC (t) = 1;
DECL_EXTERNAL (t) = 1;
TREE_USED (t) = 1;
TREE_THIS_VOLATILE (t) = 1;
DECL_ARTIFICIAL (t) = 1;
DECL_IGNORED_P (t) = 1;
/* Do not share RTL as the declaration is visible outside of
current function. */
x = DECL_RTL (t);
RTX_FLAG (x, used) = 1;
ix86_tls_stack_chk_guard_decl = t;
}
}
else
{
tree asptrtype = build_pointer_type (type);
t = build_int_cst (asptrtype, ix86_stack_protector_guard_offset);
t = build2 (MEM_REF, asptrtype, t,
build_int_cst (asptrtype, 0));
TREE_THIS_VOLATILE (t) = 1;
}
return t;
}
return default_stack_protect_guard ();
}
/* For 32-bit code we can save PIC register setup by using
__stack_chk_fail_local hidden function instead of calling
__stack_chk_fail directly. 64-bit code doesn't need to setup any PIC
register, so it is better to call __stack_chk_fail directly. */
static tree ATTRIBUTE_UNUSED
ix86_stack_protect_fail (void)
{
return TARGET_64BIT
? default_external_stack_protect_fail ()
: default_hidden_stack_protect_fail ();
}
/* Select a format to encode pointers in exception handling data. CODE
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
true if the symbol may be affected by dynamic relocations.
??? All x86 object file formats are capable of representing this.
After all, the relocation needed is the same as for the call insn.
Whether or not a particular assembler allows us to enter such, I
guess we'll have to see. */
int
asm_preferred_eh_data_format (int code, int global)
{
/* PE-COFF is effectively always -fPIC because of the .reloc section. */
if (flag_pic || TARGET_PECOFF || !ix86_direct_extern_access)
{
int type = DW_EH_PE_sdata8;
if (ptr_mode == SImode
|| ix86_cmodel == CM_SMALL_PIC
|| (ix86_cmodel == CM_MEDIUM_PIC && (global || code)))
type = DW_EH_PE_sdata4;
return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type;
}
if (ix86_cmodel == CM_SMALL
|| (ix86_cmodel == CM_MEDIUM && code))
return DW_EH_PE_udata4;
return DW_EH_PE_absptr;
}
/* Implement targetm.vectorize.builtin_vectorization_cost. */
static int
ix86_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
tree vectype, int)
{
bool fp = false;
machine_mode mode = TImode;
int index;
if (vectype != NULL)
{
fp = FLOAT_TYPE_P (vectype);
mode = TYPE_MODE (vectype);
}
switch (type_of_cost)
{
case scalar_stmt:
return fp ? ix86_cost->addss : COSTS_N_INSNS (1);
case scalar_load:
/* load/store costs are relative to register move which is 2. Recompute
it to COSTS_N_INSNS so everything have same base. */
return COSTS_N_INSNS (fp ? ix86_cost->sse_load[0]
: ix86_cost->int_load [2]) / 2;
case scalar_store:
return COSTS_N_INSNS (fp ? ix86_cost->sse_store[0]
: ix86_cost->int_store [2]) / 2;
case vector_stmt:
return ix86_vec_cost (mode,
fp ? ix86_cost->addss : ix86_cost->sse_op);
case vector_load:
index = sse_store_index (mode);
/* See PR82713 - we may end up being called on non-vector type. */
if (index < 0)
index = 2;
return COSTS_N_INSNS (ix86_cost->sse_load[index]) / 2;
case vector_store:
index = sse_store_index (mode);
/* See PR82713 - we may end up being called on non-vector type. */
if (index < 0)
index = 2;
return COSTS_N_INSNS (ix86_cost->sse_store[index]) / 2;
case vec_to_scalar:
case scalar_to_vec:
return ix86_vec_cost (mode, ix86_cost->sse_op);
/* We should have separate costs for unaligned loads and gather/scatter.
Do that incrementally. */
case unaligned_load:
index = sse_store_index (mode);
/* See PR82713 - we may end up being called on non-vector type. */
if (index < 0)
index = 2;
return COSTS_N_INSNS (ix86_cost->sse_unaligned_load[index]) / 2;
case unaligned_store:
index = sse_store_index (mode);
/* See PR82713 - we may end up being called on non-vector type. */
if (index < 0)
index = 2;
return COSTS_N_INSNS (ix86_cost->sse_unaligned_store[index]) / 2;
case vector_gather_load:
return ix86_vec_cost (mode,
COSTS_N_INSNS
(ix86_cost->gather_static
+ ix86_cost->gather_per_elt
* TYPE_VECTOR_SUBPARTS (vectype)) / 2);
case vector_scatter_store:
return ix86_vec_cost (mode,
COSTS_N_INSNS
(ix86_cost->scatter_static
+ ix86_cost->scatter_per_elt
* TYPE_VECTOR_SUBPARTS (vectype)) / 2);
case cond_branch_taken:
return ix86_cost->cond_taken_branch_cost;
case cond_branch_not_taken:
return ix86_cost->cond_not_taken_branch_cost;
case vec_perm:
case vec_promote_demote:
return ix86_vec_cost (mode, ix86_cost->sse_op);
case vec_construct:
{
int n = TYPE_VECTOR_SUBPARTS (vectype);
/* N - 1 element inserts into an SSE vector, the possible
GPR -> XMM move is accounted for in add_stmt_cost. */
if (GET_MODE_BITSIZE (mode) <= 128)
return (n - 1) * ix86_cost->sse_op;
/* One vinserti128 for combining two SSE vectors for AVX256. */
else if (GET_MODE_BITSIZE (mode) == 256)
return ((n - 2) * ix86_cost->sse_op
+ ix86_vec_cost (mode, ix86_cost->addss));
/* One vinserti64x4 and two vinserti128 for combining SSE
and AVX256 vectors to AVX512. */
else if (GET_MODE_BITSIZE (mode) == 512)
return ((n - 4) * ix86_cost->sse_op
+ 3 * ix86_vec_cost (mode, ix86_cost->addss));
gcc_unreachable ();
}
default:
gcc_unreachable ();
}
}
/* This function returns the calling abi specific va_list type node.
It returns the FNDECL specific va_list type. */
static tree
ix86_fn_abi_va_list (tree fndecl)
{
if (!TARGET_64BIT)
return va_list_type_node;
gcc_assert (fndecl != NULL_TREE);
if (ix86_function_abi ((const_tree) fndecl) == MS_ABI)
return ms_va_list_type_node;
else
return sysv_va_list_type_node;
}
/* Returns the canonical va_list type specified by TYPE. If there
is no valid TYPE provided, it return NULL_TREE. */
static tree
ix86_canonical_va_list_type (tree type)
{
if (TARGET_64BIT)
{
if (lookup_attribute ("ms_abi va_list", TYPE_ATTRIBUTES (type)))
return ms_va_list_type_node;
if ((TREE_CODE (type) == ARRAY_TYPE
&& integer_zerop (array_type_nelts (type)))
|| POINTER_TYPE_P (type))
{
tree elem_type = TREE_TYPE (type);
if (TREE_CODE (elem_type) == RECORD_TYPE
&& lookup_attribute ("sysv_abi va_list",
TYPE_ATTRIBUTES (elem_type)))
return sysv_va_list_type_node;
}
return NULL_TREE;
}
return std_canonical_va_list_type (type);
}
/* Iterate through the target-specific builtin types for va_list.
IDX denotes the iterator, *PTREE is set to the result type of
the va_list builtin, and *PNAME to its internal type.
Returns zero if there is no element for this index, otherwise
IDX should be increased upon the next call.
Note, do not iterate a base builtin's name like __builtin_va_list.
Used from c_common_nodes_and_builtins. */
static int
ix86_enum_va_list (int idx, const char **pname, tree *ptree)
{
if (TARGET_64BIT)
{
switch (idx)
{
default:
break;
case 0:
*ptree = ms_va_list_type_node;
*pname = "__builtin_ms_va_list";
return 1;
case 1:
*ptree = sysv_va_list_type_node;
*pname = "__builtin_sysv_va_list";
return 1;
}
}
return 0;
}
#undef TARGET_SCHED_DISPATCH
#define TARGET_SCHED_DISPATCH ix86_bd_has_dispatch
#undef TARGET_SCHED_DISPATCH_DO
#define TARGET_SCHED_DISPATCH_DO ix86_bd_do_dispatch
#undef TARGET_SCHED_REASSOCIATION_WIDTH
#define TARGET_SCHED_REASSOCIATION_WIDTH ix86_reassociation_width
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER ix86_atom_sched_reorder
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY ix86_adjust_priority
#undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
#define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK \
ix86_dependencies_evaluation_hook
/* Implementation of reassociation_width target hook used by
reassoc phase to identify parallelism level in reassociated
tree. Statements tree_code is passed in OPC. Arguments type
is passed in MODE. */
static int
ix86_reassociation_width (unsigned int op, machine_mode mode)
{
int width = 1;
/* Vector part. */
if (VECTOR_MODE_P (mode))
{
int div = 1;
if (INTEGRAL_MODE_P (mode))
width = ix86_cost->reassoc_vec_int;
else if (FLOAT_MODE_P (mode))
width = ix86_cost->reassoc_vec_fp;
if (width == 1)
return 1;
/* Integer vector instructions execute in FP unit
and can execute 3 additions and one multiplication per cycle. */
if ((ix86_tune == PROCESSOR_ZNVER1 || ix86_tune == PROCESSOR_ZNVER2
|| ix86_tune == PROCESSOR_ZNVER3)
&& INTEGRAL_MODE_P (mode) && op != PLUS && op != MINUS)
return 1;
/* Account for targets that splits wide vectors into multiple parts. */
if (TARGET_AVX256_SPLIT_REGS && GET_MODE_BITSIZE (mode) > 128)
div = GET_MODE_BITSIZE (mode) / 128;
else if (TARGET_SSE_SPLIT_REGS && GET_MODE_BITSIZE (mode) > 64)
div = GET_MODE_BITSIZE (mode) / 64;
width = (width + div - 1) / div;
}
/* Scalar part. */
else if (INTEGRAL_MODE_P (mode))
width = ix86_cost->reassoc_int;
else if (FLOAT_MODE_P (mode))
width = ix86_cost->reassoc_fp;
/* Avoid using too many registers in 32bit mode. */
if (!TARGET_64BIT && width > 2)
width = 2;
return width;
}
/* ??? No autovectorization into MMX or 3DNOW until we can reliably
place emms and femms instructions. */
static machine_mode
ix86_preferred_simd_mode (scalar_mode mode)
{
if (!TARGET_SSE)
return word_mode;
switch (mode)
{
case E_QImode:
if (TARGET_AVX512BW && !TARGET_PREFER_AVX256)
return V64QImode;
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
return V32QImode;
else
return V16QImode;
case E_HImode:
if (TARGET_AVX512BW && !TARGET_PREFER_AVX256)
return V32HImode;
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
return V16HImode;
else
return V8HImode;
case E_SImode:
if (TARGET_AVX512F && !TARGET_PREFER_AVX256)
return V16SImode;
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
return V8SImode;
else
return V4SImode;
case E_DImode:
if (TARGET_AVX512F && !TARGET_PREFER_AVX256)
return V8DImode;
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
return V4DImode;
else
return V2DImode;
case E_HFmode:
if (TARGET_AVX512FP16)
{
if (TARGET_AVX512VL)
{
if (TARGET_PREFER_AVX128)
return V8HFmode;
else if (TARGET_PREFER_AVX256)
return V16HFmode;
}
return V32HFmode;
}
return word_mode;
case E_SFmode:
if (TARGET_AVX512F && !TARGET_PREFER_AVX256)
return V16SFmode;
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
return V8SFmode;
else
return V4SFmode;
case E_DFmode:
if (TARGET_AVX512F && !TARGET_PREFER_AVX256)
return V8DFmode;
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
return V4DFmode;
else if (TARGET_SSE2)
return V2DFmode;
/* FALLTHRU */
default:
return word_mode;
}
}
/* If AVX is enabled then try vectorizing with both 256bit and 128bit
vectors. If AVX512F is enabled then try vectorizing with 512bit,
256bit and 128bit vectors. */
static unsigned int
ix86_autovectorize_vector_modes (vector_modes *modes, bool all)
{
if (TARGET_AVX512F && !TARGET_PREFER_AVX256)
{
modes->safe_push (V64QImode);
modes->safe_push (V32QImode);
modes->safe_push (V16QImode);
}
else if (TARGET_AVX512F && all)
{
modes->safe_push (V32QImode);
modes->safe_push (V16QImode);
modes->safe_push (V64QImode);
}
else if (TARGET_AVX && !TARGET_PREFER_AVX128)
{
modes->safe_push (V32QImode);
modes->safe_push (V16QImode);
}
else if (TARGET_AVX && all)
{
modes->safe_push (V16QImode);
modes->safe_push (V32QImode);
}
else if (TARGET_SSE2)
modes->safe_push (V16QImode);
if (TARGET_MMX_WITH_SSE)
modes->safe_push (V8QImode);
if (TARGET_SSE2)
modes->safe_push (V4QImode);
return 0;
}
/* Implemenation of targetm.vectorize.get_mask_mode. */
static opt_machine_mode
ix86_get_mask_mode (machine_mode data_mode)
{
unsigned vector_size = GET_MODE_SIZE (data_mode);
unsigned nunits = GET_MODE_NUNITS (data_mode);
unsigned elem_size = vector_size / nunits;
/* Scalar mask case. */
if ((TARGET_AVX512F && vector_size == 64)
|| (TARGET_AVX512VL && (vector_size == 32 || vector_size == 16)))
{
if (elem_size == 4
|| elem_size == 8
|| (TARGET_AVX512BW && (elem_size == 1 || elem_size == 2)))
return smallest_int_mode_for_size (nunits);
}
scalar_int_mode elem_mode
= smallest_int_mode_for_size (elem_size * BITS_PER_UNIT);
gcc_assert (elem_size * nunits == vector_size);
return mode_for_vector (elem_mode, nunits);
}
/* Return class of registers which could be used for pseudo of MODE
and of class RCLASS for spilling instead of memory. Return NO_REGS
if it is not possible or non-profitable. */
/* Disabled due to PRs 70902, 71453, 71555, 71596 and 71657. */
static reg_class_t
ix86_spill_class (reg_class_t rclass, machine_mode mode)
{
if (0 && TARGET_GENERAL_REGS_SSE_SPILL
&& TARGET_SSE2
&& TARGET_INTER_UNIT_MOVES_TO_VEC
&& TARGET_INTER_UNIT_MOVES_FROM_VEC
&& (mode == SImode || (TARGET_64BIT && mode == DImode))
&& INTEGER_CLASS_P (rclass))
return ALL_SSE_REGS;
return NO_REGS;
}
/* Implement TARGET_MAX_NOCE_IFCVT_SEQ_COST. Like the default implementation,
but returns a lower bound. */
static unsigned int
ix86_max_noce_ifcvt_seq_cost (edge e)
{
bool predictable_p = predictable_edge_p (e);
if (predictable_p)
{
if (OPTION_SET_P (param_max_rtl_if_conversion_predictable_cost))
return param_max_rtl_if_conversion_predictable_cost;
}
else
{
if (OPTION_SET_P (param_max_rtl_if_conversion_unpredictable_cost))
return param_max_rtl_if_conversion_unpredictable_cost;
}
return BRANCH_COST (true, predictable_p) * COSTS_N_INSNS (2);
}
/* Return true if SEQ is a good candidate as a replacement for the
if-convertible sequence described in IF_INFO. */
static bool
ix86_noce_conversion_profitable_p (rtx_insn *seq, struct noce_if_info *if_info)
{
if (TARGET_ONE_IF_CONV_INSN && if_info->speed_p)
{
int cmov_cnt = 0;
/* Punt if SEQ contains more than one CMOV or FCMOV instruction.
Maybe we should allow even more conditional moves as long as they
are used far enough not to stall the CPU, or also consider
IF_INFO->TEST_BB succ edge probabilities. */
for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn))
{
rtx set = single_set (insn);
if (!set)
continue;
if (GET_CODE (SET_SRC (set)) != IF_THEN_ELSE)
continue;
rtx src = SET_SRC (set);
machine_mode mode = GET_MODE (src);
if (GET_MODE_CLASS (mode) != MODE_INT
&& GET_MODE_CLASS (mode) != MODE_FLOAT)
continue;
if ((!REG_P (XEXP (src, 1)) && !MEM_P (XEXP (src, 1)))
|| (!REG_P (XEXP (src, 2)) && !MEM_P (XEXP (src, 2))))
continue;
/* insn is CMOV or FCMOV. */
if (++cmov_cnt > 1)
return false;
}
}
return default_noce_conversion_profitable_p (seq, if_info);
}
/* x86-specific vector costs. */
class ix86_vector_costs : public vector_costs
{
using vector_costs::vector_costs;
unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
stmt_vec_info stmt_info, slp_tree node,
tree vectype, int misalign,
vect_cost_model_location where) override;
};
/* Implement targetm.vectorize.create_costs. */
static vector_costs *
ix86_vectorize_create_costs (vec_info *vinfo, bool costing_for_scalar)
{
return new ix86_vector_costs (vinfo, costing_for_scalar);
}
unsigned
ix86_vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind,
stmt_vec_info stmt_info, slp_tree node,
tree vectype, int misalign,
vect_cost_model_location where)
{
unsigned retval = 0;
bool scalar_p
= (kind == scalar_stmt || kind == scalar_load || kind == scalar_store);
int stmt_cost = - 1;
bool fp = false;
machine_mode mode = scalar_p ? SImode : TImode;
if (vectype != NULL)
{
fp = FLOAT_TYPE_P (vectype);
mode = TYPE_MODE (vectype);
if (scalar_p)
mode = TYPE_MODE (TREE_TYPE (vectype));
}
if ((kind == vector_stmt || kind == scalar_stmt)
&& stmt_info
&& stmt_info->stmt && gimple_code (stmt_info->stmt) == GIMPLE_ASSIGN)
{
tree_code subcode = gimple_assign_rhs_code (stmt_info->stmt);
/*machine_mode inner_mode = mode;
if (VECTOR_MODE_P (mode))
inner_mode = GET_MODE_INNER (mode);*/
switch (subcode)
{
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
if (kind == scalar_stmt)
{
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
stmt_cost = ix86_cost->addss;
else if (X87_FLOAT_MODE_P (mode))
stmt_cost = ix86_cost->fadd;
else
stmt_cost = ix86_cost->add;
}
else
stmt_cost = ix86_vec_cost (mode, fp ? ix86_cost->addss
: ix86_cost->sse_op);
break;
case MULT_EXPR:
/* For MULT_HIGHPART_EXPR, x86 only supports pmulhw,
take it as MULT_EXPR. */
case MULT_HIGHPART_EXPR:
stmt_cost = ix86_multiplication_cost (ix86_cost, mode);
break;
/* There's no direct instruction for WIDEN_MULT_EXPR,
take emulation into account. */
case WIDEN_MULT_EXPR:
stmt_cost = ix86_widen_mult_cost (ix86_cost, mode,
TYPE_UNSIGNED (vectype));
break;
case NEGATE_EXPR:
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
stmt_cost = ix86_cost->sse_op;
else if (X87_FLOAT_MODE_P (mode))
stmt_cost = ix86_cost->fchs;
else if (VECTOR_MODE_P (mode))
stmt_cost = ix86_vec_cost (mode, ix86_cost->sse_op);
else
stmt_cost = ix86_cost->add;
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case RDIV_EXPR:
case ROUND_MOD_EXPR:
case EXACT_DIV_EXPR:
stmt_cost = ix86_division_cost (ix86_cost, mode);
break;
case RSHIFT_EXPR:
case LSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
{
tree op1 = gimple_assign_rhs1 (stmt_info->stmt);
tree op2 = gimple_assign_rhs2 (stmt_info->stmt);
stmt_cost = ix86_shift_rotate_cost
(ix86_cost,
(subcode == RSHIFT_EXPR
&& !TYPE_UNSIGNED (TREE_TYPE (op1)))
? ASHIFTRT : LSHIFTRT, mode,
TREE_CODE (op2) == INTEGER_CST,
cst_and_fits_in_hwi (op2)
? int_cst_value (op2) : -1,
true, false, false, NULL, NULL);
}
break;
case NOP_EXPR:
/* Only sign-conversions are free. */
if (tree_nop_conversion_p
(TREE_TYPE (gimple_assign_lhs (stmt_info->stmt)),
TREE_TYPE (gimple_assign_rhs1 (stmt_info->stmt))))
stmt_cost = 0;
break;
case BIT_IOR_EXPR:
case ABS_EXPR:
case ABSU_EXPR:
case MIN_EXPR:
case MAX_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
case BIT_NOT_EXPR:
if (SSE_FLOAT_MODE_SSEMATH_OR_HF_P (mode))
stmt_cost = ix86_cost->sse_op;
else if (VECTOR_MODE_P (mode))
stmt_cost = ix86_vec_cost (mode, ix86_cost->sse_op);
else
stmt_cost = ix86_cost->add;
break;
default:
break;
}
}
combined_fn cfn;
if ((kind == vector_stmt || kind == scalar_stmt)
&& stmt_info
&& stmt_info->stmt
&& (cfn = gimple_call_combined_fn (stmt_info->stmt)) != CFN_LAST)
switch (cfn)
{
case CFN_FMA:
stmt_cost = ix86_vec_cost (mode,
mode == SFmode ? ix86_cost->fmass
: ix86_cost->fmasd);
break;
case CFN_MULH:
stmt_cost = ix86_multiplication_cost (ix86_cost, mode);
break;
default:
break;
}
/* If we do elementwise loads into a vector then we are bound by
latency and execution resources for the many scalar loads
(AGU and load ports). Try to account for this by scaling the
construction cost by the number of elements involved. */
if ((kind == vec_construct || kind == vec_to_scalar)
&& stmt_info
&& (STMT_VINFO_TYPE (stmt_info) == load_vec_info_type
|| STMT_VINFO_TYPE (stmt_info) == store_vec_info_type)
&& STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_ELEMENTWISE
&& TREE_CODE (DR_STEP (STMT_VINFO_DATA_REF (stmt_info))) != INTEGER_CST)
{
stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign);
stmt_cost *= (TYPE_VECTOR_SUBPARTS (vectype) + 1);
}
else if (kind == vec_construct
&& node
&& SLP_TREE_DEF_TYPE (node) == vect_external_def
&& INTEGRAL_TYPE_P (TREE_TYPE (vectype)))
{
stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign);
unsigned i;
tree op;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op)
if (TREE_CODE (op) == SSA_NAME)
TREE_VISITED (op) = 0;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op)
{
if (TREE_CODE (op) != SSA_NAME
|| TREE_VISITED (op))
continue;
TREE_VISITED (op) = 1;
gimple *def = SSA_NAME_DEF_STMT (op);
tree tem;
if (is_gimple_assign (def)
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def))
&& ((tem = gimple_assign_rhs1 (def)), true)
&& TREE_CODE (tem) == SSA_NAME
/* A sign-change expands to nothing. */
&& tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (def)),
TREE_TYPE (tem)))
def = SSA_NAME_DEF_STMT (tem);
/* When the component is loaded from memory we can directly
move it to a vector register, otherwise we have to go
via a GPR or via vpinsr which involves similar cost.
Likewise with a BIT_FIELD_REF extracting from a vector
register we can hope to avoid using a GPR. */
if (!is_gimple_assign (def)
|| (!gimple_assign_load_p (def)
&& (gimple_assign_rhs_code (def) != BIT_FIELD_REF
|| !VECTOR_TYPE_P (TREE_TYPE
(TREE_OPERAND (gimple_assign_rhs1 (def), 0))))))
stmt_cost += ix86_cost->sse_to_integer;
}
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op)
if (TREE_CODE (op) == SSA_NAME)
TREE_VISITED (op) = 0;
}
if (stmt_cost == -1)
stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign);
/* Penalize DFmode vector operations for Bonnell. */
if (TARGET_CPU_P (BONNELL) && kind == vector_stmt
&& vectype && GET_MODE_INNER (TYPE_MODE (vectype)) == DFmode)
stmt_cost *= 5; /* FIXME: The value here is arbitrary. */
/* Statements in an inner loop relative to the loop being
vectorized are weighted more heavily. The value here is
arbitrary and could potentially be improved with analysis. */
retval = adjust_cost_for_freq (stmt_info, where, count * stmt_cost);
/* We need to multiply all vector stmt cost by 1.7 (estimated cost)
for Silvermont as it has out of order integer pipeline and can execute
2 scalar instruction per tick, but has in order SIMD pipeline. */
if ((TARGET_CPU_P (SILVERMONT) || TARGET_CPU_P (GOLDMONT)
|| TARGET_CPU_P (GOLDMONT_PLUS) || TARGET_CPU_P (INTEL))
&& stmt_info && stmt_info->stmt)
{
tree lhs_op = gimple_get_lhs (stmt_info->stmt);
if (lhs_op && TREE_CODE (TREE_TYPE (lhs_op)) == INTEGER_TYPE)
retval = (retval * 17) / 10;
}
m_costs[where] += retval;
return retval;
}
/* Validate target specific memory model bits in VAL. */
static unsigned HOST_WIDE_INT
ix86_memmodel_check (unsigned HOST_WIDE_INT val)
{
enum memmodel model = memmodel_from_int (val);
bool strong;
if (val & ~(unsigned HOST_WIDE_INT)(IX86_HLE_ACQUIRE|IX86_HLE_RELEASE
|MEMMODEL_MASK)
|| ((val & IX86_HLE_ACQUIRE) && (val & IX86_HLE_RELEASE)))
{
warning (OPT_Winvalid_memory_model,
"unknown architecture specific memory model");
return MEMMODEL_SEQ_CST;
}
strong = (is_mm_acq_rel (model) || is_mm_seq_cst (model));
if (val & IX86_HLE_ACQUIRE && !(is_mm_acquire (model) || strong))
{
warning (OPT_Winvalid_memory_model,
"%<HLE_ACQUIRE%> not used with %<ACQUIRE%> or stronger "
"memory model");
return MEMMODEL_SEQ_CST | IX86_HLE_ACQUIRE;
}
if (val & IX86_HLE_RELEASE && !(is_mm_release (model) || strong))
{
warning (OPT_Winvalid_memory_model,
"%<HLE_RELEASE%> not used with %<RELEASE%> or stronger "
"memory model");
return MEMMODEL_SEQ_CST | IX86_HLE_RELEASE;
}
return val;
}
/* Set CLONEI->vecsize_mangle, CLONEI->mask_mode, CLONEI->vecsize_int,
CLONEI->vecsize_float and if CLONEI->simdlen is 0, also
CLONEI->simdlen. Return 0 if SIMD clones shouldn't be emitted,
or number of vecsize_mangle variants that should be emitted. */
static int
ix86_simd_clone_compute_vecsize_and_simdlen (struct cgraph_node *node,
struct cgraph_simd_clone *clonei,
tree base_type, int num)
{
int ret = 1;
if (clonei->simdlen
&& (clonei->simdlen < 2
|| clonei->simdlen > 1024
|| (clonei->simdlen & (clonei->simdlen - 1)) != 0))
{
warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
"unsupported simdlen %wd", clonei->simdlen.to_constant ());
return 0;
}
tree ret_type = TREE_TYPE (TREE_TYPE (node->decl));
if (TREE_CODE (ret_type) != VOID_TYPE)
switch (TYPE_MODE (ret_type))
{
case E_QImode:
case E_HImode:
case E_SImode:
case E_DImode:
case E_SFmode:
case E_DFmode:
/* case E_SCmode: */
/* case E_DCmode: */
if (!AGGREGATE_TYPE_P (ret_type))
break;
/* FALLTHRU */
default:
warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
"unsupported return type %qT for simd", ret_type);
return 0;
}
tree t;
int i;
tree type_arg_types = TYPE_ARG_TYPES (TREE_TYPE (node->decl));
bool decl_arg_p = (node->definition || type_arg_types == NULL_TREE);
for (t = (decl_arg_p ? DECL_ARGUMENTS (node->decl) : type_arg_types), i = 0;
t && t != void_list_node; t = TREE_CHAIN (t), i++)
{
tree arg_type = decl_arg_p ? TREE_TYPE (t) : TREE_VALUE (t);
switch (TYPE_MODE (arg_type))
{
case E_QImode:
case E_HImode:
case E_SImode:
case E_DImode:
case E_SFmode:
case E_DFmode:
/* case E_SCmode: */
/* case E_DCmode: */
if (!AGGREGATE_TYPE_P (arg_type))
break;
/* FALLTHRU */
default:
if (clonei->args[i].arg_type == SIMD_CLONE_ARG_TYPE_UNIFORM)
break;
warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
"unsupported argument type %qT for simd", arg_type);
return 0;
}
}
if (!TREE_PUBLIC (node->decl))
{
/* If the function isn't exported, we can pick up just one ISA
for the clones. */
if (TARGET_AVX512F)
clonei->vecsize_mangle = 'e';
else if (TARGET_AVX2)
clonei->vecsize_mangle = 'd';
else if (TARGET_AVX)
clonei->vecsize_mangle = 'c';
else
clonei->vecsize_mangle = 'b';
ret = 1;
}
else
{
clonei->vecsize_mangle = "bcde"[num];
ret = 4;
}
clonei->mask_mode = VOIDmode;
switch (clonei->vecsize_mangle)
{
case 'b':
clonei->vecsize_int = 128;
clonei->vecsize_float = 128;
break;
case 'c':
clonei->vecsize_int = 128;
clonei->vecsize_float = 256;
break;
case 'd':
clonei->vecsize_int = 256;
clonei->vecsize_float = 256;
break;
case 'e':
clonei->vecsize_int = 512;
clonei->vecsize_float = 512;
if (TYPE_MODE (base_type) == QImode)
clonei->mask_mode = DImode;
else
clonei->mask_mode = SImode;
break;
}
if (clonei->simdlen == 0)
{
if (SCALAR_INT_MODE_P (TYPE_MODE (base_type)))
clonei->simdlen = clonei->vecsize_int;
else
clonei->simdlen = clonei->vecsize_float;
clonei->simdlen = clonei->simdlen
/ GET_MODE_BITSIZE (TYPE_MODE (base_type));
}
else if (clonei->simdlen > 16)
{
/* For compatibility with ICC, use the same upper bounds
for simdlen. In particular, for CTYPE below, use the return type,
unless the function returns void, in that case use the characteristic
type. If it is possible for given SIMDLEN to pass CTYPE value
in registers (8 [XYZ]MM* regs for 32-bit code, 16 [XYZ]MM* regs
for 64-bit code), accept that SIMDLEN, otherwise warn and don't
emit corresponding clone. */
tree ctype = ret_type;
if (TREE_CODE (ret_type) == VOID_TYPE)
ctype = base_type;
int cnt = GET_MODE_BITSIZE (TYPE_MODE (ctype)) * clonei->simdlen;
if (SCALAR_INT_MODE_P (TYPE_MODE (ctype)))
cnt /= clonei->vecsize_int;
else
cnt /= clonei->vecsize_float;
if (cnt > (TARGET_64BIT ? 16 : 8))
{
warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
"unsupported simdlen %wd",
clonei->simdlen.to_constant ());
return 0;
}
}
return ret;
}
/* If SIMD clone NODE can't be used in a vectorized loop
in current function, return -1, otherwise return a badness of using it
(0 if it is most desirable from vecsize_mangle point of view, 1
slightly less desirable, etc.). */
static int
ix86_simd_clone_usable (struct cgraph_node *node)
{
switch (node->simdclone->vecsize_mangle)
{
case 'b':
if (!TARGET_SSE2)
return -1;
if (!TARGET_AVX)
return 0;
return TARGET_AVX512F ? 3 : TARGET_AVX2 ? 2 : 1;
case 'c':
if (!TARGET_AVX)
return -1;
return TARGET_AVX512F ? 2 : TARGET_AVX2 ? 1 : 0;
case 'd':
if (!TARGET_AVX2)
return -1;
return TARGET_AVX512F ? 1 : 0;
case 'e':
if (!TARGET_AVX512F)
return -1;
return 0;
default:
gcc_unreachable ();
}
}
/* This function adjusts the unroll factor based on
the hardware capabilities. For ex, bdver3 has
a loop buffer which makes unrolling of smaller
loops less important. This function decides the
unroll factor using number of memory references
(value 32 is used) as a heuristic. */
static unsigned
ix86_loop_unroll_adjust (unsigned nunroll, class loop *loop)
{
basic_block *bbs;
rtx_insn *insn;
unsigned i;
unsigned mem_count = 0;
if (!TARGET_ADJUST_UNROLL)
return nunroll;
/* Count the number of memory references within the loop body.
This value determines the unrolling factor for bdver3 and bdver4
architectures. */
subrtx_iterator::array_type array;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
FOR_BB_INSNS (bbs[i], insn)
if (NONDEBUG_INSN_P (insn))
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
if (const_rtx x = *iter)
if (MEM_P (x))
{
machine_mode mode = GET_MODE (x);
unsigned int n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
if (n_words > 4)
mem_count += 2;
else
mem_count += 1;
}
free (bbs);
if (mem_count && mem_count <=32)
return MIN (nunroll, 32 / mem_count);
return nunroll;
}
/* Implement TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P. */
static bool
ix86_float_exceptions_rounding_supported_p (void)
{
/* For x87 floating point with standard excess precision handling,
there is no adddf3 pattern (since x87 floating point only has
XFmode operations) so the default hook implementation gets this
wrong. */
return TARGET_80387 || (TARGET_SSE && TARGET_SSE_MATH);
}
/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */
static void
ix86_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
if (!TARGET_80387 && !(TARGET_SSE && TARGET_SSE_MATH))
return;
tree exceptions_var = create_tmp_var_raw (integer_type_node);
if (TARGET_80387)
{
tree fenv_index_type = build_index_type (size_int (6));
tree fenv_type = build_array_type (unsigned_type_node, fenv_index_type);
tree fenv_var = create_tmp_var_raw (fenv_type);
TREE_ADDRESSABLE (fenv_var) = 1;
tree fenv_ptr = build_pointer_type (fenv_type);
tree fenv_addr = build1 (ADDR_EXPR, fenv_ptr, fenv_var);
fenv_addr = fold_convert (ptr_type_node, fenv_addr);
tree fnstenv = get_ix86_builtin (IX86_BUILTIN_FNSTENV);
tree fldenv = get_ix86_builtin (IX86_BUILTIN_FLDENV);
tree fnstsw = get_ix86_builtin (IX86_BUILTIN_FNSTSW);
tree fnclex = get_ix86_builtin (IX86_BUILTIN_FNCLEX);
tree hold_fnstenv = build_call_expr (fnstenv, 1, fenv_addr);
tree hold_fnclex = build_call_expr (fnclex, 0);
fenv_var = build4 (TARGET_EXPR, fenv_type, fenv_var, hold_fnstenv,
NULL_TREE, NULL_TREE);
*hold = build2 (COMPOUND_EXPR, void_type_node, fenv_var,
hold_fnclex);
*clear = build_call_expr (fnclex, 0);
tree sw_var = create_tmp_var_raw (short_unsigned_type_node);
tree fnstsw_call = build_call_expr (fnstsw, 0);
tree sw_mod = build4 (TARGET_EXPR, short_unsigned_type_node, sw_var,
fnstsw_call, NULL_TREE, NULL_TREE);
tree exceptions_x87 = fold_convert (integer_type_node, sw_var);
tree update_mod = build4 (TARGET_EXPR, integer_type_node,
exceptions_var, exceptions_x87,
NULL_TREE, NULL_TREE);
*update = build2 (COMPOUND_EXPR, integer_type_node,
sw_mod, update_mod);
tree update_fldenv = build_call_expr (fldenv, 1, fenv_addr);
*update = build2 (COMPOUND_EXPR, void_type_node, *update, update_fldenv);
}
if (TARGET_SSE && TARGET_SSE_MATH)
{
tree mxcsr_orig_var = create_tmp_var_raw (unsigned_type_node);
tree mxcsr_mod_var = create_tmp_var_raw (unsigned_type_node);
tree stmxcsr = get_ix86_builtin (IX86_BUILTIN_STMXCSR);
tree ldmxcsr = get_ix86_builtin (IX86_BUILTIN_LDMXCSR);
tree stmxcsr_hold_call = build_call_expr (stmxcsr, 0);
tree hold_assign_orig = build4 (TARGET_EXPR, unsigned_type_node,
mxcsr_orig_var, stmxcsr_hold_call,
NULL_TREE, NULL_TREE);
tree hold_mod_val = build2 (BIT_IOR_EXPR, unsigned_type_node,
mxcsr_orig_var,
build_int_cst (unsigned_type_node, 0x1f80));
hold_mod_val = build2 (BIT_AND_EXPR, unsigned_type_node, hold_mod_val,
build_int_cst (unsigned_type_node, 0xffffffc0));
tree hold_assign_mod = build4 (TARGET_EXPR, unsigned_type_node,
mxcsr_mod_var, hold_mod_val,
NULL_TREE, NULL_TREE);
tree ldmxcsr_hold_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var);
tree hold_all = build2 (COMPOUND_EXPR, unsigned_type_node,
hold_assign_orig, hold_assign_mod);
hold_all = build2 (COMPOUND_EXPR, void_type_node, hold_all,
ldmxcsr_hold_call);
if (*hold)
*hold = build2 (COMPOUND_EXPR, void_type_node, *hold, hold_all);
else
*hold = hold_all;
tree ldmxcsr_clear_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var);
if (*clear)
*clear = build2 (COMPOUND_EXPR, void_type_node, *clear,
ldmxcsr_clear_call);
else
*clear = ldmxcsr_clear_call;
tree stxmcsr_update_call = build_call_expr (stmxcsr, 0);
tree exceptions_sse = fold_convert (integer_type_node,
stxmcsr_update_call);
if (*update)
{
tree exceptions_mod = build2 (BIT_IOR_EXPR, integer_type_node,
exceptions_var, exceptions_sse);
tree exceptions_assign = build2 (MODIFY_EXPR, integer_type_node,
exceptions_var, exceptions_mod);
*update = build2 (COMPOUND_EXPR, integer_type_node, *update,
exceptions_assign);
}
else
*update = build4 (TARGET_EXPR, integer_type_node, exceptions_var,
exceptions_sse, NULL_TREE, NULL_TREE);
tree ldmxcsr_update_call = build_call_expr (ldmxcsr, 1, mxcsr_orig_var);
*update = build2 (COMPOUND_EXPR, void_type_node, *update,
ldmxcsr_update_call);
}
tree atomic_feraiseexcept
= builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept,
1, exceptions_var);
*update = build2 (COMPOUND_EXPR, void_type_node, *update,
atomic_feraiseexcept_call);
}
#if !TARGET_MACHO && !TARGET_DLLIMPORT_DECL_ATTRIBUTES
/* For i386, common symbol is local only for non-PIE binaries. For
x86-64, common symbol is local only for non-PIE binaries or linker
supports copy reloc in PIE binaries. */
static bool
ix86_binds_local_p (const_tree exp)
{
bool direct_extern_access
= (ix86_direct_extern_access
&& !(VAR_OR_FUNCTION_DECL_P (exp)
&& lookup_attribute ("nodirect_extern_access",
DECL_ATTRIBUTES (exp))));
if (!direct_extern_access)
ix86_has_no_direct_extern_access = true;
return default_binds_local_p_3 (exp, flag_shlib != 0, true,
direct_extern_access,
(direct_extern_access
&& (!flag_pic
|| (TARGET_64BIT
&& HAVE_LD_PIE_COPYRELOC != 0))));
}
/* If flag_pic or ix86_direct_extern_access is false, then neither
local nor global relocs should be placed in readonly memory. */
static int
ix86_reloc_rw_mask (void)
{
return (flag_pic || !ix86_direct_extern_access) ? 3 : 0;
}
#endif
/* If MEM is in the form of [base+offset], extract the two parts
of address and set to BASE and OFFSET, otherwise return false. */
static bool
extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset)
{
rtx addr;
gcc_assert (MEM_P (mem));
addr = XEXP (mem, 0);
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (REG_P (addr) || GET_CODE (addr) == SYMBOL_REF)
{
*base = addr;
*offset = const0_rtx;
return true;
}
if (GET_CODE (addr) == PLUS
&& (REG_P (XEXP (addr, 0))
|| GET_CODE (XEXP (addr, 0)) == SYMBOL_REF)
&& CONST_INT_P (XEXP (addr, 1)))
{
*base = XEXP (addr, 0);
*offset = XEXP (addr, 1);
return true;
}
return false;
}
/* Given OPERANDS of consecutive load/store, check if we can merge
them into move multiple. LOAD is true if they are load instructions.
MODE is the mode of memory operands. */
bool
ix86_operands_ok_for_move_multiple (rtx *operands, bool load,
machine_mode mode)
{
HOST_WIDE_INT offval_1, offval_2, msize;
rtx mem_1, mem_2, reg_1, reg_2, base_1, base_2, offset_1, offset_2;
if (load)
{
mem_1 = operands[1];
mem_2 = operands[3];
reg_1 = operands[0];
reg_2 = operands[2];
}
else
{
mem_1 = operands[0];
mem_2 = operands[2];
reg_1 = operands[1];
reg_2 = operands[3];
}
gcc_assert (REG_P (reg_1) && REG_P (reg_2));
if (REGNO (reg_1) != REGNO (reg_2))
return false;
/* Check if the addresses are in the form of [base+offset]. */
if (!extract_base_offset_in_addr (mem_1, &base_1, &offset_1))
return false;
if (!extract_base_offset_in_addr (mem_2, &base_2, &offset_2))
return false;
/* Check if the bases are the same. */
if (!rtx_equal_p (base_1, base_2))
return false;
offval_1 = INTVAL (offset_1);
offval_2 = INTVAL (offset_2);
msize = GET_MODE_SIZE (mode);
/* Check if mem_1 is adjacent to mem_2 and mem_1 has lower address. */
if (offval_1 + msize != offval_2)
return false;
return true;
}
/* Implement the TARGET_OPTAB_SUPPORTED_P hook. */
static bool
ix86_optab_supported_p (int op, machine_mode mode1, machine_mode,
optimization_type opt_type)
{
switch (op)
{
case asin_optab:
case acos_optab:
case log1p_optab:
case exp_optab:
case exp10_optab:
case exp2_optab:
case expm1_optab:
case ldexp_optab:
case scalb_optab:
case round_optab:
case lround_optab:
return opt_type == OPTIMIZE_FOR_SPEED;
case rint_optab:
if (SSE_FLOAT_MODE_P (mode1)
&& TARGET_SSE_MATH
&& !flag_trapping_math
&& !TARGET_SSE4_1
&& mode1 != HFmode)
return opt_type == OPTIMIZE_FOR_SPEED;
return true;
case floor_optab:
case ceil_optab:
case btrunc_optab:
if (((SSE_FLOAT_MODE_P (mode1)
&& TARGET_SSE_MATH
&& TARGET_SSE4_1)
|| mode1 == HFmode)
&& !flag_trapping_math)
return true;
return opt_type == OPTIMIZE_FOR_SPEED;
case rsqrt_optab:
return opt_type == OPTIMIZE_FOR_SPEED && use_rsqrt_p (mode1);
default:
return true;
}
}
/* Implement the TARGET_GEN_MEMSET_SCRATCH_RTX hook. Return a scratch
register in MODE for vector load and store. */
rtx
ix86_gen_scratch_sse_rtx (machine_mode mode)
{
return gen_reg_rtx (mode);
}
/* Address space support.
This is not "far pointers" in the 16-bit sense, but an easy way
to use %fs and %gs segment prefixes. Therefore:
(a) All address spaces have the same modes,
(b) All address spaces have the same addresss forms,
(c) While %fs and %gs are technically subsets of the generic
address space, they are probably not subsets of each other.
(d) Since we have no access to the segment base register values
without resorting to a system call, we cannot convert a
non-default address space to a default address space.
Therefore we do not claim %fs or %gs are subsets of generic.
Therefore we can (mostly) use the default hooks. */
/* All use of segmentation is assumed to make address 0 valid. */
static bool
ix86_addr_space_zero_address_valid (addr_space_t as)
{
return as != ADDR_SPACE_GENERIC;
}
static void
ix86_init_libfuncs (void)
{
if (TARGET_64BIT)
{
set_optab_libfunc (sdivmod_optab, TImode, "__divmodti4");
set_optab_libfunc (udivmod_optab, TImode, "__udivmodti4");
}
else
{
set_optab_libfunc (sdivmod_optab, DImode, "__divmoddi4");
set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4");
}
#if TARGET_MACHO
darwin_rename_builtins ();
#endif
}
/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
FPU, assume that the fpcw is set to extended precision; when using
only SSE, rounding is correct; when using both SSE and the FPU,
the rounding precision is indeterminate, since either may be chosen
apparently at random. */
static enum flt_eval_method
ix86_get_excess_precision (enum excess_precision_type type)
{
switch (type)
{
case EXCESS_PRECISION_TYPE_FAST:
/* The fastest type to promote to will always be the native type,
whether that occurs with implicit excess precision or
otherwise. */
return TARGET_AVX512FP16
? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
: FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
case EXCESS_PRECISION_TYPE_STANDARD:
case EXCESS_PRECISION_TYPE_IMPLICIT:
/* Otherwise, the excess precision we want when we are
in a standards compliant mode, and the implicit precision we
provide would be identical were it not for the unpredictable
cases. */
if (TARGET_AVX512FP16 && TARGET_SSE_MATH)
return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16;
else if (!TARGET_80387)
return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
else if (!TARGET_MIX_SSE_I387)
{
if (!(TARGET_SSE && TARGET_SSE_MATH))
return FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE;
else if (TARGET_SSE2)
return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
}
/* If we are in standards compliant mode, but we know we will
calculate in unpredictable precision, return
FLT_EVAL_METHOD_FLOAT. There is no reason to introduce explicit
excess precision if the target can't guarantee it will honor
it. */
return (type == EXCESS_PRECISION_TYPE_STANDARD
? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT
: FLT_EVAL_METHOD_UNPREDICTABLE);
case EXCESS_PRECISION_TYPE_FLOAT16:
if (TARGET_80387
&& !(TARGET_SSE_MATH && TARGET_SSE))
error ("%<-fexcess-precision=16%> is not compatible with %<-mfpmath=387%>");
return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16;
default:
gcc_unreachable ();
}
return FLT_EVAL_METHOD_UNPREDICTABLE;
}
/* Implement PUSH_ROUNDING. On 386, we have pushw instruction that
decrements by exactly 2 no matter what the position was, there is no pushb.
But as CIE data alignment factor on this arch is -4 for 32bit targets
and -8 for 64bit targets, we need to make sure all stack pointer adjustments
are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
poly_int64
ix86_push_rounding (poly_int64 bytes)
{
return ROUND_UP (bytes, UNITS_PER_WORD);
}
/* Target-specific selftests. */
#if CHECKING_P
namespace selftest {
/* Verify that hard regs are dumped as expected (in compact mode). */
static void
ix86_test_dumping_hard_regs ()
{
ASSERT_RTL_DUMP_EQ ("(reg:SI ax)", gen_raw_REG (SImode, 0));
ASSERT_RTL_DUMP_EQ ("(reg:SI dx)", gen_raw_REG (SImode, 1));
}
/* Test dumping an insn with repeated references to the same SCRATCH,
to verify the rtx_reuse code. */
static void
ix86_test_dumping_memory_blockage ()
{
set_new_first_and_last_insn (NULL, NULL);
rtx pat = gen_memory_blockage ();
rtx_reuse_manager r;
r.preprocess (pat);
/* Verify that the repeated references to the SCRATCH show use
reuse IDS. The first should be prefixed with a reuse ID,
and the second should be dumped as a "reuse_rtx" of that ID.
The expected string assumes Pmode == DImode. */
if (Pmode == DImode)
ASSERT_RTL_DUMP_EQ_WITH_REUSE
("(cinsn 1 (set (mem/v:BLK (0|scratch:DI) [0 A8])\n"
" (unspec:BLK [\n"
" (mem/v:BLK (reuse_rtx 0) [0 A8])\n"
" ] UNSPEC_MEMORY_BLOCKAGE)))\n", pat, &r);
}
/* Verify loading an RTL dump; specifically a dump of copying
a param on x86_64 from a hard reg into the frame.
This test is target-specific since the dump contains target-specific
hard reg names. */
static void
ix86_test_loading_dump_fragment_1 ()
{
rtl_dump_test t (SELFTEST_LOCATION,
locate_file ("x86_64/copy-hard-reg-into-frame.rtl"));
rtx_insn *insn = get_insn_by_uid (1);
/* The block structure and indentation here is purely for
readability; it mirrors the structure of the rtx. */
tree mem_expr;
{
rtx pat = PATTERN (insn);
ASSERT_EQ (SET, GET_CODE (pat));
{
rtx dest = SET_DEST (pat);
ASSERT_EQ (MEM, GET_CODE (dest));
/* Verify the "/c" was parsed. */
ASSERT_TRUE (RTX_FLAG (dest, call));
ASSERT_EQ (SImode, GET_MODE (dest));
{
rtx addr = XEXP (dest, 0);
ASSERT_EQ (PLUS, GET_CODE (addr));
ASSERT_EQ (DImode, GET_MODE (addr));
{
rtx lhs = XEXP (addr, 0);
/* Verify that the "frame" REG was consolidated. */
ASSERT_RTX_PTR_EQ (frame_pointer_rtx, lhs);
}
{
rtx rhs = XEXP (addr, 1);
ASSERT_EQ (CONST_INT, GET_CODE (rhs));
ASSERT_EQ (-4, INTVAL (rhs));
}
}
/* Verify the "[1 i+0 S4 A32]" was parsed. */
ASSERT_EQ (1, MEM_ALIAS_SET (dest));
/* "i" should have been handled by synthesizing a global int
variable named "i". */
mem_expr = MEM_EXPR (dest);
ASSERT_NE (mem_expr, NULL);
ASSERT_EQ (VAR_DECL, TREE_CODE (mem_expr));
ASSERT_EQ (integer_type_node, TREE_TYPE (mem_expr));
ASSERT_EQ (IDENTIFIER_NODE, TREE_CODE (DECL_NAME (mem_expr)));
ASSERT_STREQ ("i", IDENTIFIER_POINTER (DECL_NAME (mem_expr)));
/* "+0". */
ASSERT_TRUE (MEM_OFFSET_KNOWN_P (dest));
ASSERT_EQ (0, MEM_OFFSET (dest));
/* "S4". */
ASSERT_EQ (4, MEM_SIZE (dest));
/* "A32. */
ASSERT_EQ (32, MEM_ALIGN (dest));
}
{
rtx src = SET_SRC (pat);
ASSERT_EQ (REG, GET_CODE (src));
ASSERT_EQ (SImode, GET_MODE (src));
ASSERT_EQ (5, REGNO (src));
tree reg_expr = REG_EXPR (src);
/* "i" here should point to the same var as for the MEM_EXPR. */
ASSERT_EQ (reg_expr, mem_expr);
}
}
}
/* Verify that the RTL loader copes with a call_insn dump.
This test is target-specific since the dump contains a target-specific
hard reg name. */
static void
ix86_test_loading_call_insn ()
{
/* The test dump includes register "xmm0", where requires TARGET_SSE
to exist. */
if (!TARGET_SSE)
return;
rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/call-insn.rtl"));
rtx_insn *insn = get_insns ();
ASSERT_EQ (CALL_INSN, GET_CODE (insn));
/* "/j". */
ASSERT_TRUE (RTX_FLAG (insn, jump));
rtx pat = PATTERN (insn);
ASSERT_EQ (CALL, GET_CODE (SET_SRC (pat)));
/* Verify REG_NOTES. */
{
/* "(expr_list:REG_CALL_DECL". */
ASSERT_EQ (EXPR_LIST, GET_CODE (REG_NOTES (insn)));
rtx_expr_list *note0 = as_a <rtx_expr_list *> (REG_NOTES (insn));
ASSERT_EQ (REG_CALL_DECL, REG_NOTE_KIND (note0));
/* "(expr_list:REG_EH_REGION (const_int 0 [0])". */
rtx_expr_list *note1 = note0->next ();
ASSERT_EQ (REG_EH_REGION, REG_NOTE_KIND (note1));
ASSERT_EQ (NULL, note1->next ());
}
/* Verify CALL_INSN_FUNCTION_USAGE. */
{
/* "(expr_list:DF (use (reg:DF 21 xmm0))". */
rtx_expr_list *usage
= as_a <rtx_expr_list *> (CALL_INSN_FUNCTION_USAGE (insn));
ASSERT_EQ (EXPR_LIST, GET_CODE (usage));
ASSERT_EQ (DFmode, GET_MODE (usage));
ASSERT_EQ (USE, GET_CODE (usage->element ()));
ASSERT_EQ (NULL, usage->next ());
}
}
/* Verify that the RTL loader copes a dump from print_rtx_function.
This test is target-specific since the dump contains target-specific
hard reg names. */
static void
ix86_test_loading_full_dump ()
{
rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/times-two.rtl"));
ASSERT_STREQ ("times_two", IDENTIFIER_POINTER (DECL_NAME (cfun->decl)));
rtx_insn *insn_1 = get_insn_by_uid (1);
ASSERT_EQ (NOTE, GET_CODE (insn_1));
rtx_insn *insn_7 = get_insn_by_uid (7);
ASSERT_EQ (INSN, GET_CODE (insn_7));
ASSERT_EQ (PARALLEL, GET_CODE (PATTERN (insn_7)));
rtx_insn *insn_15 = get_insn_by_uid (15);
ASSERT_EQ (INSN, GET_CODE (insn_15));
ASSERT_EQ (USE, GET_CODE (PATTERN (insn_15)));
/* Verify crtl->return_rtx. */
ASSERT_EQ (REG, GET_CODE (crtl->return_rtx));
ASSERT_EQ (0, REGNO (crtl->return_rtx));
ASSERT_EQ (SImode, GET_MODE (crtl->return_rtx));
}
/* Verify that the RTL loader copes with UNSPEC and UNSPEC_VOLATILE insns.
In particular, verify that it correctly loads the 2nd operand.
This test is target-specific since these are machine-specific
operands (and enums). */
static void
ix86_test_loading_unspec ()
{
rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/unspec.rtl"));
ASSERT_STREQ ("test_unspec", IDENTIFIER_POINTER (DECL_NAME (cfun->decl)));
ASSERT_TRUE (cfun);
/* Test of an UNSPEC. */
rtx_insn *insn = get_insns ();
ASSERT_EQ (INSN, GET_CODE (insn));
rtx set = single_set (insn);
ASSERT_NE (NULL, set);
rtx dst = SET_DEST (set);
ASSERT_EQ (MEM, GET_CODE (dst));
rtx src = SET_SRC (set);
ASSERT_EQ (UNSPEC, GET_CODE (src));
ASSERT_EQ (BLKmode, GET_MODE (src));
ASSERT_EQ (UNSPEC_MEMORY_BLOCKAGE, XINT (src, 1));
rtx v0 = XVECEXP (src, 0, 0);
/* Verify that the two uses of the first SCRATCH have pointer
equality. */
rtx scratch_a = XEXP (dst, 0);
ASSERT_EQ (SCRATCH, GET_CODE (scratch_a));
rtx scratch_b = XEXP (v0, 0);
ASSERT_EQ (SCRATCH, GET_CODE (scratch_b));
ASSERT_EQ (scratch_a, scratch_b);
/* Verify that the two mems are thus treated as equal. */
ASSERT_TRUE (rtx_equal_p (dst, v0));
/* Verify that the insn is recognized. */
ASSERT_NE(-1, recog_memoized (insn));
/* Test of an UNSPEC_VOLATILE, which has its own enum values. */
insn = NEXT_INSN (insn);
ASSERT_EQ (INSN, GET_CODE (insn));
set = single_set (insn);
ASSERT_NE (NULL, set);
src = SET_SRC (set);
ASSERT_EQ (UNSPEC_VOLATILE, GET_CODE (src));
ASSERT_EQ (UNSPECV_RDTSCP, XINT (src, 1));
}
/* Run all target-specific selftests. */
static void
ix86_run_selftests (void)
{
ix86_test_dumping_hard_regs ();
ix86_test_dumping_memory_blockage ();
/* Various tests of loading RTL dumps, here because they contain
ix86-isms (e.g. names of hard regs). */
ix86_test_loading_dump_fragment_1 ();
ix86_test_loading_call_insn ();
ix86_test_loading_full_dump ();
ix86_test_loading_unspec ();
}
} // namespace selftest
#endif /* CHECKING_P */
/* Initialize the GCC target structure. */
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY ix86_return_in_memory
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS ix86_legitimize_address
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE ix86_attribute_table
#undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
#define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
# undef TARGET_MERGE_DECL_ATTRIBUTES
# define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
#endif
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS ix86_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL ix86_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN ix86_expand_builtin
#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
ix86_builtin_vectorized_function
#undef TARGET_VECTORIZE_BUILTIN_GATHER
#define TARGET_VECTORIZE_BUILTIN_GATHER ix86_vectorize_builtin_gather
#undef TARGET_VECTORIZE_BUILTIN_SCATTER
#define TARGET_VECTORIZE_BUILTIN_SCATTER ix86_vectorize_builtin_scatter
#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue
#undef TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY
#define TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY \
ix86_print_patchable_function_entry
#undef TARGET_ENCODE_SECTION_INFO
#ifndef SUBTARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
#else
#define TARGET_ENCODE_SECTION_INFO SUBTARGET_ENCODE_SECTION_INFO
#endif
#undef TARGET_ASM_OPEN_PAREN
#define TARGET_ASM_OPEN_PAREN ""
#undef TARGET_ASM_CLOSE_PAREN
#define TARGET_ASM_CLOSE_PAREN ""
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP ASM_BYTE
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP ASM_LONG
#ifdef ASM_QUAD
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD
#endif
#undef TARGET_PROFILE_BEFORE_PROLOGUE
#define TARGET_PROFILE_BEFORE_PROLOGUE ix86_profile_before_prologue
#undef TARGET_MANGLE_DECL_ASSEMBLER_NAME
#define TARGET_MANGLE_DECL_ASSEMBLER_NAME ix86_mangle_decl_assembler_name
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND ix86_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS ix86_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P ix86_print_operand_punct_valid_p
#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA i386_asm_output_addr_const_extra
#undef TARGET_SCHED_INIT_GLOBAL
#define TARGET_SCHED_INIT_GLOBAL ix86_sched_init_global
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST ix86_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE ix86_issue_rate
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
ia32_multipass_dfa_lookahead
#undef TARGET_SCHED_MACRO_FUSION_P
#define TARGET_SCHED_MACRO_FUSION_P ix86_macro_fusion_p
#undef TARGET_SCHED_MACRO_FUSION_PAIR_P
#define TARGET_SCHED_MACRO_FUSION_PAIR_P ix86_macro_fusion_pair_p
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall
#undef TARGET_MEMMODEL_CHECK
#define TARGET_MEMMODEL_CHECK ix86_memmodel_check
#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV ix86_atomic_assign_expand_fenv
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address
#undef TARGET_CONST_NOT_OK_FOR_DEBUG_P
#define TARGET_CONST_NOT_OK_FOR_DEBUG_P ix86_const_not_ok_for_debug_p
#undef TARGET_MS_BITFIELD_LAYOUT_P
#define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p
#if TARGET_MACHO
#undef TARGET_BINDS_LOCAL_P
#define TARGET_BINDS_LOCAL_P darwin_binds_local_p
#else
#undef TARGET_BINDS_LOCAL_P
#define TARGET_BINDS_LOCAL_P ix86_binds_local_p
#endif
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
#undef TARGET_BINDS_LOCAL_P
#define TARGET_BINDS_LOCAL_P i386_pe_binds_local_p
#endif
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START x86_file_start
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE ix86_option_override
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST ix86_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST ix86_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS ix86_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST ix86_address_cost
#undef TARGET_OVERLAP_OP_BY_PIECES_P
#define TARGET_OVERLAP_OP_BY_PIECES_P hook_bool_void_true
#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM FLAGS_REG
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs
#undef TARGET_CC_MODES_COMPATIBLE
#define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list
#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN ix86_fold_builtin
#undef TARGET_GIMPLE_FOLD_BUILTIN
#define TARGET_GIMPLE_FOLD_BUILTIN ix86_gimple_fold_builtin
#undef TARGET_COMPARE_VERSION_PRIORITY
#define TARGET_COMPARE_VERSION_PRIORITY ix86_compare_version_priority
#undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
#define TARGET_GENERATE_VERSION_DISPATCHER_BODY \
ix86_generate_version_dispatcher_body
#undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
#define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \
ix86_get_function_versions_dispatcher
#undef TARGET_ENUM_VA_LIST_P
#define TARGET_ENUM_VA_LIST_P ix86_enum_va_list
#undef TARGET_FN_ABI_VA_LIST
#define TARGET_FN_ABI_VA_LIST ix86_fn_abi_va_list
#undef TARGET_CANONICAL_VA_LIST_TYPE
#define TARGET_CANONICAL_VA_LIST_TYPE ix86_canonical_va_list_type
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START ix86_va_start
#undef TARGET_MD_ASM_ADJUST
#define TARGET_MD_ASM_ADJUST ix86_md_asm_adjust
#undef TARGET_C_EXCESS_PRECISION
#define TARGET_C_EXCESS_PRECISION ix86_get_excess_precision
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_PUSH_ARGUMENT
#define TARGET_PUSH_ARGUMENT ix86_push_argument
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack
#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS ix86_allocate_stack_slots_for_args
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE ix86_function_arg_advance
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG ix86_function_arg
#undef TARGET_INIT_PIC_REG
#define TARGET_INIT_PIC_REG ix86_init_pic_reg
#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG ix86_use_pseudo_pic_reg
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY ix86_function_arg_boundary
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference
#undef TARGET_INTERNAL_ARG_POINTER
#define TARGET_INTERNAL_ARG_POINTER ix86_internal_arg_pointer
#undef TARGET_UPDATE_STACK_BOUNDARY
#define TARGET_UPDATE_STACK_BOUNDARY ix86_update_stack_boundary
#undef TARGET_GET_DRAP_RTX
#define TARGET_GET_DRAP_RTX ix86_get_drap_rtx
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_STATIC_CHAIN
#define TARGET_STATIC_CHAIN ix86_static_chain
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT ix86_trampoline_init
#undef TARGET_RETURN_POPS_ARGS
#define TARGET_RETURN_POPS_ARGS ix86_return_pops_args
#undef TARGET_WARN_FUNC_RETURN
#define TARGET_WARN_FUNC_RETURN ix86_warn_func_return
#undef TARGET_LEGITIMATE_COMBINED_INSN
#define TARGET_LEGITIMATE_COMBINED_INSN ix86_legitimate_combined_insn
#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET ix86_asan_shadow_offset
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P ix86_scalar_mode_supported_p
#undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
#define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \
ix86_libgcc_floating_mode_supported_p
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p
#undef TARGET_C_MODE_FOR_SUFFIX
#define TARGET_C_MODE_FOR_SUFFIX ix86_c_mode_for_suffix
#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL i386_output_dwarf_dtprel
#endif
#ifdef SUBTARGET_INSERT_ATTRIBUTES
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES
#endif
#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE ix86_mangle_type
#undef TARGET_INVALID_CONVERSION
#define TARGET_INVALID_CONVERSION ix86_invalid_conversion
#undef TARGET_INVALID_UNARY_OP
#define TARGET_INVALID_UNARY_OP ix86_invalid_unary_op
#undef TARGET_INVALID_BINARY_OP
#define TARGET_INVALID_BINARY_OP ix86_invalid_binary_op
#undef TARGET_STACK_PROTECT_GUARD
#define TARGET_STACK_PROTECT_GUARD ix86_stack_protect_guard
#if !TARGET_MACHO
#undef TARGET_STACK_PROTECT_FAIL
#define TARGET_STACK_PROTECT_FAIL ix86_stack_protect_fail
#endif
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE ix86_function_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P ix86_function_value_regno_p
#undef TARGET_ZERO_CALL_USED_REGS
#define TARGET_ZERO_CALL_USED_REGS ix86_zero_call_used_regs
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE ix86_promote_function_mode
#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE ix86_override_options_after_change
#undef TARGET_MEMBER_TYPE_FORCES_BLK
#define TARGET_MEMBER_TYPE_FORCES_BLK ix86_member_type_forces_blk
#undef TARGET_INSTANTIATE_DECLS
#define TARGET_INSTANTIATE_DECLS ix86_instantiate_decls
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD ix86_secondary_reload
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED ix86_secondary_memory_needed
#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
#define TARGET_SECONDARY_MEMORY_NEEDED_MODE ix86_secondary_memory_needed_mode
#undef TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS ix86_class_max_nregs
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS ix86_preferred_reload_class
#undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS ix86_preferred_output_reload_class
#undef TARGET_CLASS_LIKELY_SPILLED_P
#define TARGET_CLASS_LIKELY_SPILLED_P ix86_class_likely_spilled_p
#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
ix86_builtin_vectorization_cost
#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST ix86_vectorize_vec_perm_const
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \
ix86_preferred_simd_mode
#undef TARGET_VECTORIZE_SPLIT_REDUCTION
#define TARGET_VECTORIZE_SPLIT_REDUCTION \
ix86_split_reduction
#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \
ix86_autovectorize_vector_modes
#undef TARGET_VECTORIZE_GET_MASK_MODE
#define TARGET_VECTORIZE_GET_MASK_MODE ix86_get_mask_mode
#undef TARGET_VECTORIZE_CREATE_COSTS
#define TARGET_VECTORIZE_CREATE_COSTS ix86_vectorize_create_costs
#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION ix86_set_current_function
#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P ix86_valid_target_attribute_p
#undef TARGET_OPTION_SAVE
#define TARGET_OPTION_SAVE ix86_function_specific_save
#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE ix86_function_specific_restore
#undef TARGET_OPTION_POST_STREAM_IN
#define TARGET_OPTION_POST_STREAM_IN ix86_function_specific_post_stream_in
#undef TARGET_OPTION_PRINT
#define TARGET_OPTION_PRINT ix86_function_specific_print
#undef TARGET_OPTION_FUNCTION_VERSIONS
#define TARGET_OPTION_FUNCTION_VERSIONS common_function_versions
#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P ix86_can_inline_p
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P ix86_legitimate_address_p
#undef TARGET_REGISTER_PRIORITY
#define TARGET_REGISTER_PRIORITY ix86_register_priority
#undef TARGET_REGISTER_USAGE_LEVELING_P
#define TARGET_REGISTER_USAGE_LEVELING_P hook_bool_void_true
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P ix86_legitimate_constant_p
#undef TARGET_COMPUTE_FRAME_LAYOUT
#define TARGET_COMPUTE_FRAME_LAYOUT ix86_compute_frame_layout
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED ix86_frame_pointer_required
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE ix86_can_eliminate
#undef TARGET_EXTRA_LIVE_ON_ENTRY
#define TARGET_EXTRA_LIVE_ON_ENTRY ix86_live_on_entry
#undef TARGET_ASM_CODE_END
#define TARGET_ASM_CODE_END ix86_code_end
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage
#undef TARGET_CANONICALIZE_COMPARISON
#define TARGET_CANONICALIZE_COMPARISON ix86_canonicalize_comparison
#undef TARGET_LOOP_UNROLL_ADJUST
#define TARGET_LOOP_UNROLL_ADJUST ix86_loop_unroll_adjust
/* Disabled due to PRs 70902, 71453, 71555, 71596 and 71657. */
#undef TARGET_SPILL_CLASS
#define TARGET_SPILL_CLASS ix86_spill_class
#undef TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
#define TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN \
ix86_simd_clone_compute_vecsize_and_simdlen
#undef TARGET_SIMD_CLONE_ADJUST
#define TARGET_SIMD_CLONE_ADJUST ix86_simd_clone_adjust
#undef TARGET_SIMD_CLONE_USABLE
#define TARGET_SIMD_CLONE_USABLE ix86_simd_clone_usable
#undef TARGET_OMP_DEVICE_KIND_ARCH_ISA
#define TARGET_OMP_DEVICE_KIND_ARCH_ISA ix86_omp_device_kind_arch_isa
#undef TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P
#define TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P \
ix86_float_exceptions_rounding_supported_p
#undef TARGET_MODE_EMIT
#define TARGET_MODE_EMIT ix86_emit_mode_set
#undef TARGET_MODE_NEEDED
#define TARGET_MODE_NEEDED ix86_mode_needed
#undef TARGET_MODE_AFTER
#define TARGET_MODE_AFTER ix86_mode_after
#undef TARGET_MODE_ENTRY
#define TARGET_MODE_ENTRY ix86_mode_entry
#undef TARGET_MODE_EXIT
#define TARGET_MODE_EXIT ix86_mode_exit
#undef TARGET_MODE_PRIORITY
#define TARGET_MODE_PRIORITY ix86_mode_priority
#undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
#define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true
#undef TARGET_OFFLOAD_OPTIONS
#define TARGET_OFFLOAD_OPTIONS \
ix86_offload_options
#undef TARGET_ABSOLUTE_BIGGEST_ALIGNMENT
#define TARGET_ABSOLUTE_BIGGEST_ALIGNMENT 512
#undef TARGET_OPTAB_SUPPORTED_P
#define TARGET_OPTAB_SUPPORTED_P ix86_optab_supported_p
#undef TARGET_HARD_REGNO_SCRATCH_OK
#define TARGET_HARD_REGNO_SCRATCH_OK ix86_hard_regno_scratch_ok
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
#undef TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID
#define TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID ix86_addr_space_zero_address_valid
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS ix86_init_libfuncs
#undef TARGET_EXPAND_DIVMOD_LIBFUNC
#define TARGET_EXPAND_DIVMOD_LIBFUNC ix86_expand_divmod_libfunc
#undef TARGET_MAX_NOCE_IFCVT_SEQ_COST
#define TARGET_MAX_NOCE_IFCVT_SEQ_COST ix86_max_noce_ifcvt_seq_cost
#undef TARGET_NOCE_CONVERSION_PROFITABLE_P
#define TARGET_NOCE_CONVERSION_PROFITABLE_P ix86_noce_conversion_profitable_p
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS ix86_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK ix86_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P ix86_modes_tieable_p
#undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
#define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
ix86_hard_regno_call_part_clobbered
#undef TARGET_INSN_CALLEE_ABI
#define TARGET_INSN_CALLEE_ABI ix86_insn_callee_abi
#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS ix86_can_change_mode_class
#undef TARGET_LOWER_LOCAL_DECL_ALIGNMENT
#define TARGET_LOWER_LOCAL_DECL_ALIGNMENT ix86_lower_local_decl_alignment
#undef TARGET_STATIC_RTX_ALIGNMENT
#define TARGET_STATIC_RTX_ALIGNMENT ix86_static_rtx_alignment
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT ix86_constant_alignment
#undef TARGET_EMPTY_RECORD_P
#define TARGET_EMPTY_RECORD_P ix86_is_empty_record
#undef TARGET_WARN_PARAMETER_PASSING_ABI
#define TARGET_WARN_PARAMETER_PASSING_ABI ix86_warn_parameter_passing_abi
#undef TARGET_GET_MULTILIB_ABI_NAME
#define TARGET_GET_MULTILIB_ABI_NAME \
ix86_get_multilib_abi_name
#undef TARGET_IFUNC_REF_LOCAL_OK
#define TARGET_IFUNC_REF_LOCAL_OK ix86_ifunc_ref_local_ok
#if !TARGET_MACHO && !TARGET_DLLIMPORT_DECL_ATTRIBUTES
# undef TARGET_ASM_RELOC_RW_MASK
# define TARGET_ASM_RELOC_RW_MASK ix86_reloc_rw_mask
#endif
static bool ix86_libc_has_fast_function (int fcode ATTRIBUTE_UNUSED)
{
#ifdef OPTION_GLIBC
if (OPTION_GLIBC)
return (built_in_function)fcode == BUILT_IN_MEMPCPY;
else
return false;
#else
return false;
#endif
}
#undef TARGET_LIBC_HAS_FAST_FUNCTION
#define TARGET_LIBC_HAS_FAST_FUNCTION ix86_libc_has_fast_function
#undef TARGET_GEN_MEMSET_SCRATCH_RTX
#define TARGET_GEN_MEMSET_SCRATCH_RTX ix86_gen_scratch_sse_rtx
#if CHECKING_P
#undef TARGET_RUN_TARGET_SELFTESTS
#define TARGET_RUN_TARGET_SELFTESTS selftest::ix86_run_selftests
#endif /* #if CHECKING_P */
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-i386.h"
|