aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/gcn/gcn.cc
blob: 8fce1c9234acaebd16eb22014e3163cb2a0efb4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
/* Copyright (C) 2016-2024 Free Software Foundation, Inc.

   This file is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3 of the License, or (at your option)
   any later version.

   This file is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

/* {{{ Includes.  */

/* We want GET_MODE_SIZE et al to return integers, please.  */
#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "memmodel.h"
#include "rtl.h"
#include "tree.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "insn-attr.h"
#include "fold-const.h"
#include "calls.h"
#include "explow.h"
#include "expr.h"
#include "output.h"
#include "cfgrtl.h"
#include "langhooks.h"
#include "builtins.h"
#include "omp-general.h"
#include "print-rtl.h"
#include "attribs.h"
#include "varasm.h"
#include "intl.h"
#include "rtl-iter.h"
#include "dwarf2.h"
#include "gimple.h"
#include "cgraph.h"
#include "case-cfn-macros.h"

/* This file should be included last.  */
#include "target-def.h"

/* }}}  */
/* {{{ Global variables.  */

/* Constants used by FP instructions.  */

static REAL_VALUE_TYPE dconst4, dconst1over2pi;
static bool ext_gcn_constants_init = 0;

/* Holds the ISA variant, derived from the command line parameters.  */

enum gcn_isa gcn_isa = ISA_GCN5;	/* Default to GCN5.  */

/* Reserve this much space for LDS (for propagating variables from
   worker-single mode to worker-partitioned mode), per workgroup.  Global
   analysis could calculate an exact bound, but we don't do that yet.

   We want to permit full occupancy, so size accordingly.  */

/* Use this as a default, but allow it to grow if the user requests a large
   amount of gang-private shared-memory space.  */
static int acc_lds_size = 0x600;

#define OMP_LDS_SIZE 0x600    /* 0x600 is 1/40 total, rounded down.  */
#define ACC_LDS_SIZE acc_lds_size
#define OTHER_LDS_SIZE 65536  /* If in doubt, reserve all of it.  */

#define LDS_SIZE (flag_openacc ? ACC_LDS_SIZE \
		  : flag_openmp ? OMP_LDS_SIZE \
		  : OTHER_LDS_SIZE)

static int gang_private_hwm = 32;
static hash_map<tree, int> lds_allocs;

/* The number of registers usable by normal non-kernel functions.
   The SGPR count includes any special extra registers such as VCC.  */

#define MAX_NORMAL_SGPR_COUNT	62  // i.e. 64 with VCC
#define MAX_NORMAL_VGPR_COUNT	24
#define MAX_NORMAL_AVGPR_COUNT	24

/* Import all the data from gcn-devices.def.
   The PROCESSOR_GFXnnn should be indices for this table.  */
const struct gcn_device_def gcn_devices[] = {
#define GCN_DEVICE(name, NAME, ELF, ISA, XNACK, SRAMECC, WAVE64, CU, VGPRS, GEN_VER,ARCH_FAM) \
    {PROCESSOR_ ## NAME, #name, #NAME, ISA, XNACK, SRAMECC, WAVE64, CU, VGPRS, \
     GEN_VER, #ARCH_FAM},
#include "gcn-devices.def"
};

/* }}}  */
/* {{{ Initialization and options.  */

/* Initialize machine_function.  */

static struct machine_function *
gcn_init_machine_status (void)
{
  struct machine_function *f;

  f = ggc_cleared_alloc<machine_function> ();

  // FIXME: re-enable global addressing with safety for LDS-flat addresses
  //if (TARGET_GCN3)
    f->use_flat_addressing = true;

  return f;
}

/* Implement TARGET_OPTION_OVERRIDE.

   Override option settings where defaults are variable, or we have specific
   needs to consider.  */

static void
gcn_option_override (void)
{
  init_machine_status = gcn_init_machine_status;

  /* The HSA runtime does not respect ELF load addresses, so force PIE.  */
  if (!flag_pie)
    flag_pie = 2;
  if (!flag_pic)
    flag_pic = flag_pie;

  gcc_assert (gcn_arch >= 0 && gcn_arch < PROCESSOR_COUNT);
  gcn_isa = gcn_devices[gcn_arch].isa;

  /* Reserve 1Kb (somewhat arbitrarily) of LDS space for reduction results and
     worker broadcasts.  */
  if (gang_private_size_opt == -1)
    gang_private_size_opt = 512;
  else if (gang_private_size_opt < gang_private_hwm)
    gang_private_size_opt = gang_private_hwm;
  else if (gang_private_size_opt >= acc_lds_size - 1024)
    {
      /* We need some space for reductions and worker broadcasting.  If the
	 user requests a large amount of gang-private LDS space, we might not
	 have enough left for the former.  Increase the LDS allocation in that
	 case, although this may reduce the maximum occupancy on the
	 hardware.  */
      acc_lds_size = gang_private_size_opt + 1024;
      if (acc_lds_size > 32768)
	acc_lds_size = 32768;
    }

  /* gfx1030 and gfx1100 do not support XNACK.  */
  if (gcn_devices[gcn_arch].xnack_default == HSACO_ATTR_UNSUPPORTED)
    {
      if (flag_xnack == HSACO_ATTR_ON)
	error ("%<-mxnack=on%> is incompatible with %<-march=%s%>",
	       gcn_devices[gcn_arch].name);
      /* Allow HSACO_ATTR_ANY silently.  */
      flag_xnack = HSACO_ATTR_UNSUPPORTED;
    }

  /* There's no need for XNACK on devices without USM, and there are register
     allocation problems caused by the early-clobber when AVGPR spills are not
     available.
     FIXME: can the regalloc mean the default can be really "any"?  */
  if (flag_xnack == HSACO_ATTR_DEFAULT)
    flag_xnack = gcn_devices[gcn_arch].xnack_default;

  if (flag_sram_ecc == HSACO_ATTR_DEFAULT)
    flag_sram_ecc = gcn_devices[gcn_arch].sramecc_default;
}

/* }}}  */
/* {{{ Attributes.  */

/* This table defines the arguments that are permitted in
   __attribute__ ((amdgpu_hsa_kernel (...))).

   The names and values correspond to the HSA metadata that is encoded
   into the assembler file and binary.  */

static const struct gcn_kernel_arg_type
{
  const char *name;
  const char *header_pseudo;
  machine_mode mode;

  /* This should be set to -1 or -2 for a dynamically allocated register
     number.  Use -1 if this argument contributes to the user_sgpr_count,
     -2 otherwise.  */
  int fixed_regno;
} gcn_kernel_arg_types[] = {
  {"exec", NULL, DImode, EXEC_REG},
#define PRIVATE_SEGMENT_BUFFER_ARG 1
  {"private_segment_buffer",
    ".amdhsa_user_sgpr_private_segment_buffer", TImode, -1},
#define DISPATCH_PTR_ARG 2
  {"dispatch_ptr", ".amdhsa_user_sgpr_dispatch_ptr", DImode, -1},
#define QUEUE_PTR_ARG 3
  {"queue_ptr", ".amdhsa_user_sgpr_queue_ptr", DImode, -1},
#define KERNARG_SEGMENT_PTR_ARG 4
  {"kernarg_segment_ptr", ".amdhsa_user_sgpr_kernarg_segment_ptr", DImode, -1},
  {"dispatch_id", ".amdhsa_user_sgpr_dispatch_id", DImode, -1},
#define FLAT_SCRATCH_INIT_ARG 6
  {"flat_scratch_init", ".amdhsa_user_sgpr_flat_scratch_init", DImode, -1},
#define FLAT_SCRATCH_SEGMENT_SIZE_ARG 7
  {"private_segment_size", ".amdhsa_user_sgpr_private_segment_size", SImode, -1},
#define WORKGROUP_ID_X_ARG 8
  {"workgroup_id_X", ".amdhsa_system_sgpr_workgroup_id_x", SImode, -2},
  {"workgroup_id_Y", ".amdhsa_system_sgpr_workgroup_id_y", SImode, -2},
  {"workgroup_id_Z", ".amdhsa_system_sgpr_workgroup_id_z", SImode, -2},
  {"workgroup_info", ".amdhsa_system_sgpr_workgroup_info", SImode, -1},
#define PRIVATE_SEGMENT_WAVE_OFFSET_ARG 12
  {"private_segment_wave_offset",
    ".amdhsa_system_sgpr_private_segment_wavefront_offset", SImode, -2},
#define WORK_ITEM_ID_X_ARG 13
  {"work_item_id_X", NULL, V64SImode, FIRST_VGPR_REG},
#define WORK_ITEM_ID_Y_ARG 14
  {"work_item_id_Y", NULL, V64SImode, FIRST_VGPR_REG + 1},
#define WORK_ITEM_ID_Z_ARG 15
  {"work_item_id_Z", NULL, V64SImode, FIRST_VGPR_REG + 2}
};

static const long default_requested_args
	= (1 << DISPATCH_PTR_ARG)
	  | (1 << QUEUE_PTR_ARG)
	  | (1 << KERNARG_SEGMENT_PTR_ARG)
	  | (1 << WORKGROUP_ID_X_ARG)
	  | (1 << WORK_ITEM_ID_X_ARG)
	  | (1 << WORK_ITEM_ID_Y_ARG)
	  | (1 << WORK_ITEM_ID_Z_ARG);

/* Extract parameter settings from __attribute__((amdgpu_hsa_kernel ())).
   This function also sets the default values for some arguments.

   Return true on success, with ARGS populated.  */

static bool
gcn_parse_amdgpu_hsa_kernel_attribute (struct gcn_kernel_args *args,
				       tree list)
{
  bool err = false;
  args->requested = default_requested_args;
  args->nargs = 0;

  for (int a = 0; a < GCN_KERNEL_ARG_TYPES; a++)
    args->reg[a] = -1;

  for (; list; list = TREE_CHAIN (list))
    {
      const char *str;
      if (TREE_CODE (TREE_VALUE (list)) != STRING_CST)
	{
	  error ("%<amdgpu_hsa_kernel%> attribute requires string constant "
		 "arguments");
	  break;
	}
      str = TREE_STRING_POINTER (TREE_VALUE (list));
      int a;
      for (a = 0; a < GCN_KERNEL_ARG_TYPES; a++)
	{
	  if (!strcmp (str, gcn_kernel_arg_types[a].name))
	    break;
	}
      if (a == GCN_KERNEL_ARG_TYPES)
	{
	  error ("unknown specifier %qs in %<amdgpu_hsa_kernel%> attribute",
		 str);
	  err = true;
	  break;
	}
      if (args->requested & (1 << a))
	{
	  error ("duplicated parameter specifier %qs in %<amdgpu_hsa_kernel%> "
		 "attribute", str);
	  err = true;
	  break;
	}
      args->requested |= (1 << a);
      args->order[args->nargs++] = a;
    }

  /* Requesting WORK_ITEM_ID_Z_ARG implies requesting WORK_ITEM_ID_X_ARG and
     WORK_ITEM_ID_Y_ARG.  Similarly, requesting WORK_ITEM_ID_Y_ARG implies
     requesting WORK_ITEM_ID_X_ARG.  */
  if (args->requested & (1 << WORK_ITEM_ID_Z_ARG))
    args->requested |= (1 << WORK_ITEM_ID_Y_ARG);
  if (args->requested & (1 << WORK_ITEM_ID_Y_ARG))
    args->requested |= (1 << WORK_ITEM_ID_X_ARG);

  int sgpr_regno = FIRST_SGPR_REG;
  args->nsgprs = 0;
  for (int a = 0; a < GCN_KERNEL_ARG_TYPES; a++)
    {
      if (!(args->requested & (1 << a)))
	continue;

      if (gcn_kernel_arg_types[a].fixed_regno >= 0)
	args->reg[a] = gcn_kernel_arg_types[a].fixed_regno;
      else
	{
	  int reg_count;

	  switch (gcn_kernel_arg_types[a].mode)
	    {
	    case E_SImode:
	      reg_count = 1;
	      break;
	    case E_DImode:
	      reg_count = 2;
	      break;
	    case E_TImode:
	      reg_count = 4;
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  args->reg[a] = sgpr_regno;
	  sgpr_regno += reg_count;
	  if (gcn_kernel_arg_types[a].fixed_regno == -1)
	    args->nsgprs += reg_count;
	}
    }
  if (sgpr_regno > FIRST_SGPR_REG + 16)
    {
      error ("too many arguments passed in sgpr registers");
    }
  return err;
}

/* Referenced by TARGET_ATTRIBUTE_TABLE.

   Validates target specific attributes.  */

static tree
gcn_handle_amdgpu_hsa_kernel_attribute (tree *node, tree name,
					tree args, int, bool *no_add_attrs)
{
  if (!FUNC_OR_METHOD_TYPE_P (*node))
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
      return NULL_TREE;
    }

  /* Can combine regparm with all attributes but fastcall, and thiscall.  */
  if (is_attribute_p ("gcnhsa_kernel", name))
    {
      struct gcn_kernel_args kernelarg;

      if (gcn_parse_amdgpu_hsa_kernel_attribute (&kernelarg, args))
	*no_add_attrs = true;

      return NULL_TREE;
    }

  return NULL_TREE;
}

/* Implement TARGET_ATTRIBUTE_TABLE.

   Create target-specific __attribute__ types.  */

TARGET_GNU_ATTRIBUTES (gcn_attribute_table, {
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
     affects_type_identity } */
  {"amdgpu_hsa_kernel", 0, GCN_KERNEL_ARG_TYPES, false, true,
   true, true, gcn_handle_amdgpu_hsa_kernel_attribute, NULL}
});

/* }}}  */
/* {{{ Registers and modes.  */

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P.  */

bool
gcn_scalar_mode_supported_p (scalar_mode mode)
{
  return (mode == BImode
	  || mode == QImode
	  || mode == HImode /* || mode == HFmode  */
	  || mode == SImode || mode == SFmode
	  || mode == DImode || mode == DFmode
	  || mode == TImode);
}

/* Return a vector mode with N lanes of MODE.  */

static machine_mode
VnMODE (int n, machine_mode mode)
{
  switch (mode)
    {
    case E_QImode:
      switch (n)
	{
	case 2: return V2QImode;
	case 4: return V4QImode;
	case 8: return V8QImode;
	case 16: return V16QImode;
	case 32: return V32QImode;
	case 64: return V64QImode;
	}
      break;
    case E_HImode:
      switch (n)
	{
	case 2: return V2HImode;
	case 4: return V4HImode;
	case 8: return V8HImode;
	case 16: return V16HImode;
	case 32: return V32HImode;
	case 64: return V64HImode;
	}
      break;
    case E_HFmode:
      switch (n)
	{
	case 2: return V2HFmode;
	case 4: return V4HFmode;
	case 8: return V8HFmode;
	case 16: return V16HFmode;
	case 32: return V32HFmode;
	case 64: return V64HFmode;
	}
      break;
    case E_SImode:
      switch (n)
	{
	case 2: return V2SImode;
	case 4: return V4SImode;
	case 8: return V8SImode;
	case 16: return V16SImode;
	case 32: return V32SImode;
	case 64: return V64SImode;
	}
      break;
    case E_SFmode:
      switch (n)
	{
	case 2: return V2SFmode;
	case 4: return V4SFmode;
	case 8: return V8SFmode;
	case 16: return V16SFmode;
	case 32: return V32SFmode;
	case 64: return V64SFmode;
	}
      break;
    case E_DImode:
      switch (n)
	{
	case 2: return V2DImode;
	case 4: return V4DImode;
	case 8: return V8DImode;
	case 16: return V16DImode;
	case 32: return V32DImode;
	case 64: return V64DImode;
	}
      break;
    case E_DFmode:
      switch (n)
	{
	case 2: return V2DFmode;
	case 4: return V4DFmode;
	case 8: return V8DFmode;
	case 16: return V16DFmode;
	case 32: return V32DFmode;
	case 64: return V64DFmode;
	}
      break;
    default:
      break;
    }

  return VOIDmode;
}

/* Implement TARGET_CLASS_MAX_NREGS.

   Return the number of hard registers needed to hold a value of MODE in
   a register of class RCLASS.  */

static unsigned char
gcn_class_max_nregs (reg_class_t rclass, machine_mode mode)
{
  /* Scalar registers are 32bit, vector registers are in fact tuples of
     64 lanes.  */
  if (rclass == VGPR_REGS || rclass == AVGPR_REGS
      || rclass == ALL_VGPR_REGS)
    {
      if (vgpr_1reg_mode_p (mode))
	return 1;
      if (vgpr_2reg_mode_p (mode))
	return 2;
      /* TImode is used by DImode compare_and_swap.  */
      if (vgpr_4reg_mode_p (mode))
	return 4;
    }
  else if (rclass == VCC_CONDITIONAL_REG && mode == BImode)
    return 2;

  /* Vector modes in SGPRs are not supposed to happen (disallowed by
     gcn_hard_regno_mode_ok), but there are some patterns that have an "Sv"
     constraint and are used by splitters, post-reload.
     This ensures that we don't accidentally mark the following 63 scalar
     registers as "live".  */
  if (rclass == SGPR_REGS && VECTOR_MODE_P (mode))
    return CEIL (GET_MODE_SIZE (GET_MODE_INNER (mode)), 4);

  return CEIL (GET_MODE_SIZE (mode), 4);
}

/* Implement TARGET_HARD_REGNO_NREGS.

   Return the number of hard registers needed to hold a value of MODE in
   REGNO.  */

unsigned int
gcn_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
  return gcn_class_max_nregs (REGNO_REG_CLASS (regno), mode);
}

/* Implement TARGET_HARD_REGNO_MODE_OK.

   Return true if REGNO can hold value in MODE.  */

bool
gcn_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  /* Treat a complex mode as if it were a scalar mode of the same overall
     size for the purposes of allocating hard registers.  */
  if (COMPLEX_MODE_P (mode))
    switch (mode)
      {
      case E_CQImode:
      case E_CHImode:
	mode = SImode;
	break;
      case E_CSImode:
	mode = DImode;
	break;
      case E_CDImode:
	mode = TImode;
	break;
      case E_HCmode:
	mode = SFmode;
	break;
      case E_SCmode:
	mode = DFmode;
	break;
      default:
	/* Not supported.  */
	return false;
      }

  switch (regno)
    {
    case FLAT_SCRATCH_LO_REG:
    case XNACK_MASK_LO_REG:
    case TBA_LO_REG:
    case TMA_LO_REG:
      return (mode == SImode || mode == DImode);
    case VCC_LO_REG:
    case EXEC_LO_REG:
      return (mode == BImode || mode == SImode || mode == DImode);
    case M0_REG:
    case FLAT_SCRATCH_HI_REG:
    case XNACK_MASK_HI_REG:
    case TBA_HI_REG:
    case TMA_HI_REG:
      return mode == SImode;
    case VCC_HI_REG:
      return false;
    case EXEC_HI_REG:
      return mode == SImode /*|| mode == V32BImode */ ;
    case SCC_REG:
    case VCCZ_REG:
    case EXECZ_REG:
      return mode == BImode;
    }
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
    return true;
  if (SGPR_REGNO_P (regno))
    /* We restrict double register values to aligned registers.  */
    return (sgpr_1reg_mode_p (mode)
	    || (!((regno - FIRST_SGPR_REG) & 1) && sgpr_2reg_mode_p (mode))
	    || (((regno - FIRST_SGPR_REG) & 3) == 0 && mode == TImode));
  if (VGPR_REGNO_P (regno) || (AVGPR_REGNO_P (regno) && TARGET_AVGPRS))
    /* Vector instructions do not care about the alignment of register
       pairs, but where there is no 64-bit instruction, many of the
       define_split do not work if the input and output registers partially
       overlap.  We tried to fix this with early clobber and match
       constraints, but it was bug prone, added complexity, and conflicts
       with the 'U0' constraints on vec_merge.
       Therefore, we restrict ourselved to aligned registers.  */
    return (vgpr_1reg_mode_p (mode)
	    || (!((regno - FIRST_VGPR_REG) & 1) && vgpr_2reg_mode_p (mode))
	    /* TImode is used by DImode compare_and_swap,
	       and by DIVMOD V64DImode libfuncs.  */
	    || (!((regno - FIRST_VGPR_REG) & 3) && vgpr_4reg_mode_p (mode)));
  return false;
}

/* Implement REGNO_REG_CLASS via gcn.h.

   Return smallest class containing REGNO.  */

enum reg_class
gcn_regno_reg_class (int regno)
{
  switch (regno)
    {
    case SCC_REG:
      return SCC_CONDITIONAL_REG;
    case VCC_LO_REG:
    case VCC_HI_REG:
      return VCC_CONDITIONAL_REG;
    case VCCZ_REG:
      return VCCZ_CONDITIONAL_REG;
    case EXECZ_REG:
      return EXECZ_CONDITIONAL_REG;
    case EXEC_LO_REG:
    case EXEC_HI_REG:
      return EXEC_MASK_REG;
    }
  if (VGPR_REGNO_P (regno))
    return VGPR_REGS;
  if (AVGPR_REGNO_P (regno))
    return AVGPR_REGS;
  if (SGPR_REGNO_P (regno))
    return SGPR_REGS;
  if (regno < FIRST_VGPR_REG)
    return GENERAL_REGS;
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
    return AFP_REGS;
  return ALL_REGS;
}

/* Implement TARGET_CAN_CHANGE_MODE_CLASS.

   GCC assumes that lowpart contains first part of value as stored in memory.
   This is not the case for vector registers.  */

bool
gcn_can_change_mode_class (machine_mode from, machine_mode to,
			   reg_class_t regclass)
{
  if (!vgpr_vector_mode_p (from) && !vgpr_vector_mode_p (to))
    return true;

  /* Vector conversions are only valid when changing mode with a fixed number
     of lanes, or changing number of lanes with a fixed mode.  Anything else
     would require actual data movement.  */
  if (VECTOR_MODE_P (from) && VECTOR_MODE_P (to)
      && GET_MODE_NUNITS (from) != GET_MODE_NUNITS (to)
      && GET_MODE_INNER (from) != GET_MODE_INNER (to))
    return false;

  /* Vector/scalar conversions are only permitted when the scalar mode
     is the same or smaller than the inner vector mode.  */
  if ((VECTOR_MODE_P (from) && !VECTOR_MODE_P (to)
       && GET_MODE_SIZE (to) >= GET_MODE_SIZE (GET_MODE_INNER (from)))
      || (VECTOR_MODE_P (to) && !VECTOR_MODE_P (from)
	  && GET_MODE_SIZE (from) >= GET_MODE_SIZE (GET_MODE_INNER (to))))
    return false;

  return (gcn_class_max_nregs (regclass, from)
	  == gcn_class_max_nregs (regclass, to));
}

/* Implement TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P.

   When this hook returns true for MODE, the compiler allows
   registers explicitly used in the rtl to be used as spill registers
   but prevents the compiler from extending the lifetime of these
   registers.  */

bool
gcn_small_register_classes_for_mode_p (machine_mode mode)
{
  /* We allocate into exec and vcc regs.  Those make small register class.  */
  return mode == DImode || mode == SImode;
}

/* Implement TARGET_CLASS_LIKELY_SPILLED_P.

   Returns true if pseudos that have been assigned to registers of class RCLASS
   would likely be spilled because registers of RCLASS are needed for spill
   registers.  */

static bool
gcn_class_likely_spilled_p (reg_class_t rclass)
{
  return (rclass == EXEC_MASK_REG
	  || reg_classes_intersect_p (ALL_CONDITIONAL_REGS, rclass));
}

/* Implement TARGET_MODES_TIEABLE_P.

   Returns true if a value of MODE1 is accessible in MODE2 without
   copying.  */

bool
gcn_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  if (VECTOR_MODE_P (mode1) || VECTOR_MODE_P (mode2))
    {
      int vf1 = (VECTOR_MODE_P (mode1) ? GET_MODE_NUNITS (mode1) : 1);
      int vf2 = (VECTOR_MODE_P (mode2) ? GET_MODE_NUNITS (mode2) : 1);
      machine_mode inner1 = (vf1 > 1 ? GET_MODE_INNER (mode1) : mode1);
      machine_mode inner2 = (vf2 > 1 ? GET_MODE_INNER (mode2) : mode2);

      return (vf1 == vf2 || (inner1 == inner2 && vf2 <= vf1));
    }

  return (GET_MODE_BITSIZE (mode1) <= MAX_FIXED_MODE_SIZE
	  && GET_MODE_BITSIZE (mode2) <= MAX_FIXED_MODE_SIZE);
}

/* Implement TARGET_TRULY_NOOP_TRUNCATION.

   Returns true if it is safe to “convert” a value of INPREC bits to one of
   OUTPREC bits (where OUTPREC is smaller than INPREC) by merely operating on
   it as if it had only OUTPREC bits.  */

bool
gcn_truly_noop_truncation (poly_uint64 outprec, poly_uint64 inprec)
{
  return ((inprec <= 32) && (outprec <= inprec));
}

/* Return N-th part of value occupying multiple registers.  */

rtx
gcn_operand_part (machine_mode mode, rtx op, int n)
{
  int vf = VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1;

  if (vf > 1)
    {
      machine_mode vsimode = VnMODE (vf, SImode);

      if (REG_P (op))
	{
	  gcc_assert (REGNO (op) + n < FIRST_PSEUDO_REGISTER);
	  return gen_rtx_REG (vsimode, REGNO (op) + n);
	}
      if (GET_CODE (op) == CONST_VECTOR)
	{
	  int units = GET_MODE_NUNITS (mode);
	  rtvec v = rtvec_alloc (units);

	  for (int i = 0; i < units; ++i)
	    RTVEC_ELT (v, i) = gcn_operand_part (GET_MODE_INNER (mode),
						 CONST_VECTOR_ELT (op, i), n);

	  return gen_rtx_CONST_VECTOR (vsimode, v);
	}
      if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_VECTOR)
	return gcn_gen_undef (vsimode);
      gcc_unreachable ();
    }
  else if (GET_MODE_SIZE (mode) == 8 && REG_P (op))
    {
      gcc_assert (REGNO (op) + n < FIRST_PSEUDO_REGISTER);
      return gen_rtx_REG (SImode, REGNO (op) + n);
    }
  else
    {
      if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_VECTOR)
	return gcn_gen_undef (SImode);

      /* If it's a constant then let's assume it is of the largest mode
	 available, otherwise simplify_gen_subreg will fail.  */
      if (mode == VOIDmode && CONST_INT_P (op))
	mode = DImode;
      return simplify_gen_subreg (SImode, op, mode, n * 4);
    }
}

/* Return N-th part of value occupying multiple registers.  */

rtx
gcn_operand_doublepart (machine_mode mode, rtx op, int n)
{
  return simplify_gen_subreg (DImode, op, mode, n * 8);
}

/* Return true if OP can be split into subregs or high/low parts.
   This is always true for scalars, but not normally true for vectors.
   However, for vectors in hardregs we can use the low and high registers.  */

bool
gcn_can_split_p (machine_mode, rtx op)
{
  if (vgpr_vector_mode_p (GET_MODE (op)))
    {
      if (GET_CODE (op) == SUBREG)
	op = SUBREG_REG (op);
      if (!REG_P (op))
	return true;
      return REGNO (op) <= FIRST_PSEUDO_REGISTER;
    }
  return true;
}

/* Implement TARGET_SPILL_CLASS.

   Return class of registers which could be used for pseudo of MODE
   and of class RCLASS for spilling instead of memory.  Return NO_REGS
   if it is not possible or non-profitable.  */

static reg_class_t
gcn_spill_class (reg_class_t c, machine_mode /*mode */ )
{
  if (reg_classes_intersect_p (ALL_CONDITIONAL_REGS, c)
      || c == VCC_CONDITIONAL_REG || c == EXEC_MASK_REG)
    return SGPR_REGS;
  else
    return c == VGPR_REGS && TARGET_AVGPRS ? AVGPR_REGS : NO_REGS;
}

/* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS.

   Change allocno class for given pseudo from allocno and best class
   calculated by IRA.  */

static reg_class_t
gcn_ira_change_pseudo_allocno_class (int regno, reg_class_t cl,
				     reg_class_t best_cl)
{
  /* Avoid returning classes that contain both vgpr and sgpr registers.  */
  if (cl != ALL_REGS && cl != SRCDST_REGS && cl != ALL_GPR_REGS)
    return cl;
  if (best_cl != ALL_REGS && best_cl != SRCDST_REGS
      && best_cl != ALL_GPR_REGS)
    return best_cl;

  machine_mode mode = PSEUDO_REGNO_MODE (regno);
  if (vgpr_vector_mode_p (mode))
    return VGPR_REGS;

  return GENERAL_REGS;
}

/* Create a new DImode pseudo reg and emit an instruction to initialize
   it to VAL.  */

rtx
get_exec (int64_t val)
{
  rtx reg = gen_reg_rtx (DImode);
  emit_insn (gen_rtx_SET (reg, gen_int_mode (val, DImode)));
  return reg;
}

rtx
get_exec (machine_mode mode)
{
  int vf = (VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1);
  return get_exec (0xffffffffffffffffUL >> (64-vf));
}

/* }}}  */
/* {{{ Immediate constants.  */

/* Initialize shared numeric constants.  */

static void
init_ext_gcn_constants (void)
{
  real_from_integer (&dconst4, DFmode, 4, SIGNED);

  /* FIXME: this constant probably does not match what hardware really loads.
     Reality check it eventually.  */
  real_from_string (&dconst1over2pi,
		    "0.15915494309189532");
  real_convert (&dconst1over2pi, SFmode, &dconst1over2pi);

  ext_gcn_constants_init = 1;
}

REAL_VALUE_TYPE
gcn_dconst1over2pi (void)
{
  if (!ext_gcn_constants_init)
    init_ext_gcn_constants ();
  return dconst1over2pi;
}

/* Return non-zero if X is a constant that can appear as an inline operand.
   This is 0, 0.5, -0.5, 1, -1, 2, -2, 4,-4, 1/(2*pi)
   Or a vector of those.
   The value returned should be the encoding of this constant.  */

int
gcn_inline_fp_constant_p (rtx x, bool allow_vector)
{
  machine_mode mode = GET_MODE (x);
  int vf = VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1;

  if (vf > 1)
    mode = GET_MODE_INNER (mode);

  if (vf > 1
      && (mode == HFmode || mode == SFmode || mode == DFmode)
      && allow_vector)
    {
      int n;
      if (GET_CODE (x) != CONST_VECTOR)
	return 0;
      n = gcn_inline_fp_constant_p (CONST_VECTOR_ELT (x, 0), false);
      if (!n)
	return 0;
      for (int i = 1; i < vf; i++)
	if (CONST_VECTOR_ELT (x, i) != CONST_VECTOR_ELT (x, 0))
	  return 0;
      return 1;
    }

  if (mode != HFmode && mode != SFmode && mode != DFmode)
    return 0;

  const REAL_VALUE_TYPE *r;

  if (x == CONST0_RTX (mode))
    return 128;
  if (x == CONST1_RTX (mode))
    return 242;

  r = CONST_DOUBLE_REAL_VALUE (x);

  if (real_identical (r, &dconstm1))
    return 243;

  if (real_identical (r, &dconsthalf))
    return 240;
  if (real_identical (r, &dconstm1))
    return 243;
  if (real_identical (r, &dconst2))
    return 244;
  if (real_identical (r, &dconst4))
    return 246;
  if (real_identical (r, &dconst1over2pi))
    return 248;
  if (!ext_gcn_constants_init)
    init_ext_gcn_constants ();
  real_value_negate (r);
  if (real_identical (r, &dconsthalf))
    return 241;
  if (real_identical (r, &dconst2))
    return 245;
  if (real_identical (r, &dconst4))
    return 247;

  /* FIXME: add 4, -4 and 1/(2*PI).  */

  return 0;
}

/* Return non-zero if X is a constant that can appear as an immediate operand.
   This is 0, 0.5, -0.5, 1, -1, 2, -2, 4,-4, 1/(2*pi)
   Or a vector of those.
   The value returned should be the encoding of this constant.  */

bool
gcn_fp_constant_p (rtx x, bool allow_vector)
{
  machine_mode mode = GET_MODE (x);
  int vf = VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1;

  if (vf > 1)
    mode = GET_MODE_INNER (mode);

  if (vf > 1
      && (mode == HFmode || mode == SFmode || mode == DFmode)
      && allow_vector)
    {
      int n;
      if (GET_CODE (x) != CONST_VECTOR)
	return false;
      n = gcn_fp_constant_p (CONST_VECTOR_ELT (x, 0), false);
      if (!n)
	return false;
      for (int i = 1; i < vf; i++)
	if (CONST_VECTOR_ELT (x, i) != CONST_VECTOR_ELT (x, 0))
	  return false;
      return true;
    }
  if (mode != HFmode && mode != SFmode && mode != DFmode)
    return false;

  if (gcn_inline_fp_constant_p (x, false))
    return true;
  /* FIXME: It is not clear how 32bit immediates are interpreted here.  */
  return (mode != DFmode);
}

/* Return true if X is a constant representable as an inline immediate
   constant in a 32-bit instruction encoding.  */

bool
gcn_inline_constant_p (rtx x)
{
  if (GET_CODE (x) == CONST_INT)
    return INTVAL (x) >= -16 && INTVAL (x) <= 64;
  if (GET_CODE (x) == CONST_DOUBLE)
    return gcn_inline_fp_constant_p (x, false);
  if (GET_CODE (x) == CONST_VECTOR)
    {
      int n;
      if (!vgpr_vector_mode_p (GET_MODE (x)))
	return false;
      n = gcn_inline_constant_p (CONST_VECTOR_ELT (x, 0));
      if (!n)
	return false;
      for (int i = 1; i < 64; i++)
	if (CONST_VECTOR_ELT (x, i) != CONST_VECTOR_ELT (x, 0))
	  return false;
      return 1;
    }
  return false;
}

/* Return true if X is a constant representable as an immediate constant
   in a 32 or 64-bit instruction encoding.  */

bool
gcn_constant_p (rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST_INT:
      return true;

    case CONST_DOUBLE:
      return gcn_fp_constant_p (x, false);

    case CONST_VECTOR:
      {
	int n;
	if (!vgpr_vector_mode_p (GET_MODE (x)))
	  return false;
	n = gcn_constant_p (CONST_VECTOR_ELT (x, 0));
	if (!n)
	  return false;
	for (int i = 1; i < 64; i++)
	  if (CONST_VECTOR_ELT (x, i) != CONST_VECTOR_ELT (x, 0))
	    return false;
	return true;
      }

    case SYMBOL_REF:
    case LABEL_REF:
      return true;

    default:
      ;
    }

  return false;
}

/* Return true if X is a constant representable as two inline immediate
   constants in a 64-bit instruction that is split into two 32-bit
   instructions.
   When MIXED is set, the low-part is permitted to use the full 32-bits.  */

bool
gcn_inline_constant64_p (rtx x, bool mixed)
{
  if (GET_CODE (x) == CONST_VECTOR)
    {
      if (!vgpr_vector_mode_p (GET_MODE (x)))
	return false;
      if (!gcn_inline_constant64_p (CONST_VECTOR_ELT (x, 0), mixed))
	return false;
      for (int i = 1; i < 64; i++)
	if (CONST_VECTOR_ELT (x, i) != CONST_VECTOR_ELT (x, 0))
	  return false;

      return true;
    }

  if (GET_CODE (x) != CONST_INT)
    return false;

  rtx val_lo = gcn_operand_part (DImode, x, 0);
  rtx val_hi = gcn_operand_part (DImode, x, 1);
  return ((mixed || gcn_inline_constant_p (val_lo))
	  && gcn_inline_constant_p (val_hi));
}

/* Return true if X is a constant representable as an immediate constant
   in a 32 or 64-bit instruction encoding where the hardware will
   extend the immediate to 64-bits.  */

bool
gcn_constant64_p (rtx x)
{
  if (!gcn_constant_p (x))
    return false;

  if (GET_CODE (x) != CONST_INT)
    return true;

  /* Negative numbers are only allowed if they can be encoded within src0,
     because the 32-bit immediates do not get sign-extended.
     Unsigned numbers must not be encodable as 32-bit -1..-16, because the
     assembler will use a src0 inline immediate and that will get
     sign-extended.  */
  HOST_WIDE_INT val = INTVAL (x);
  return (((val & 0xffffffff) == val	/* Positive 32-bit.  */
	   && (val & 0xfffffff0) != 0xfffffff0)	/* Not -1..-16.  */
	  || gcn_inline_constant_p (x));	/* Src0.  */
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.

   Returns true if X is a legitimate constant for a MODE immediate operand.  */

bool
gcn_legitimate_constant_p (machine_mode, rtx x)
{
  return gcn_constant_p (x);
}

/* Return true if X is a CONST_VECTOR of single constant.  */

static bool
single_cst_vector_p (rtx x)
{
  if (GET_CODE (x) != CONST_VECTOR)
    return false;
  for (int i = 1; i < 64; i++)
    if (CONST_VECTOR_ELT (x, i) != CONST_VECTOR_ELT (x, 0))
      return false;
  return true;
}

/* Create a CONST_VECTOR of duplicated value A.  */

rtx
gcn_vec_constant (machine_mode mode, int a)
{
  /*if (!a)
    return CONST0_RTX (mode);
  if (a == -1)
    return CONSTM1_RTX (mode);
  if (a == 1)
    return CONST1_RTX (mode);
  if (a == 2)
    return CONST2_RTX (mode);*/

  int units = GET_MODE_NUNITS (mode);
  machine_mode innermode = GET_MODE_INNER (mode);

  rtx tem;
  if (FLOAT_MODE_P (innermode))
    {
      REAL_VALUE_TYPE rv;
      real_from_integer (&rv, NULL, a, SIGNED);
      tem = const_double_from_real_value (rv, innermode);
    }
  else
    tem = gen_int_mode (a, innermode);

  rtvec v = rtvec_alloc (units);
  for (int i = 0; i < units; ++i)
    RTVEC_ELT (v, i) = tem;

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Create a CONST_VECTOR of duplicated value A.  */

rtx
gcn_vec_constant (machine_mode mode, rtx a)
{
  int units = GET_MODE_NUNITS (mode);
  rtvec v = rtvec_alloc (units);

  for (int i = 0; i < units; ++i)
    RTVEC_ELT (v, i) = a;

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Create an undefined vector value, used where an insn operand is
   optional.  */

rtx
gcn_gen_undef (machine_mode mode)
{
  return gen_rtx_UNSPEC (mode, gen_rtvec (1, const0_rtx), UNSPEC_VECTOR);
}

/* }}}  */
/* {{{ Utility functions.  */

/*  Generalised accessor functions for instruction patterns.
    The machine desription '@' prefix does something similar, but as of
    GCC 10 is incompatible with define_subst, and anyway it doesn't
    auto-handle the exec feature.

    Four macros are provided; each function only needs one:

    GEN_VN         - create accessor functions for all sizes of one mode
    GEN_VNM        - create accessor functions for all sizes of all modes
    GEN_VN_NOEXEC  - for insns without "_exec" variants
    GEN_VNM_NOEXEC - likewise

    E.g.  add<mode>3
      GEN_VNM (add, 3, A(rtx dest, rtx s1, rtx s2), A(dest, s1, s2)

      gen_addvNsi3 (dst, a, b)
        -> calls gen_addv64si3, or gen_addv32si3, etc.

      gen_addvNm3 (dst, a, b)
        -> calls gen_addv64qi3, or gen_addv2di3, etc.

    The mode is determined from the first parameter, which must be called
    "dest" (or else the macro doesn't work).

    Each function has two optional parameters at the end: merge_src and exec.
    If exec is non-null, the function will call the "_exec" variant of the
    insn.  If exec is non-null but merge_src is null then an undef unspec
    will be created.

    E.g. cont.
      gen_addvNsi3 (v64sidst, a, b, oldval, exec)
        -> calls gen_addv64si3_exec (v64sidst, a, b, oldval, exec)

      gen_addvNm3 (v2qidst, a, b, NULL, exec)
        -> calls gen_addv2qi3_exec (v2qidst, a, b,
                                    gcn_gen_undef (V2QImode), exec)
   */

#define A(...) __VA_ARGS__
#define GEN_VN_NOEXEC(PREFIX, SUFFIX, PARAMS, ARGS) \
static rtx \
gen_##PREFIX##vN##SUFFIX (PARAMS) \
{ \
  machine_mode mode = GET_MODE (dest); \
  int n = GET_MODE_NUNITS (mode); \
  \
  switch (n) \
    { \
    case 2: return gen_##PREFIX##v2##SUFFIX (ARGS); \
    case 4: return gen_##PREFIX##v4##SUFFIX (ARGS); \
    case 8: return gen_##PREFIX##v8##SUFFIX (ARGS); \
    case 16: return gen_##PREFIX##v16##SUFFIX (ARGS); \
    case 32: return gen_##PREFIX##v32##SUFFIX (ARGS); \
    case 64: return gen_##PREFIX##v64##SUFFIX (ARGS); \
    } \
  \
  gcc_unreachable (); \
  return NULL_RTX; \
}

#define GEN_VNM_NOEXEC(PREFIX, SUFFIX, PARAMS, ARGS) \
GEN_VN_NOEXEC (PREFIX, qi##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN_NOEXEC (PREFIX, hi##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN_NOEXEC (PREFIX, hf##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN_NOEXEC (PREFIX, si##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN_NOEXEC (PREFIX, sf##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN_NOEXEC (PREFIX, di##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN_NOEXEC (PREFIX, df##SUFFIX, A(PARAMS), A(ARGS)) \
static rtx \
gen_##PREFIX##vNm##SUFFIX (PARAMS) \
{ \
  machine_mode mode = GET_MODE_INNER (GET_MODE (dest)); \
  \
  switch (mode) \
    { \
    case E_QImode: return gen_##PREFIX##vNqi##SUFFIX (ARGS); \
    case E_HImode: return gen_##PREFIX##vNhi##SUFFIX (ARGS); \
    case E_HFmode: return gen_##PREFIX##vNhf##SUFFIX (ARGS); \
    case E_SImode: return gen_##PREFIX##vNsi##SUFFIX (ARGS); \
    case E_SFmode: return gen_##PREFIX##vNsf##SUFFIX (ARGS); \
    case E_DImode: return gen_##PREFIX##vNdi##SUFFIX (ARGS); \
    case E_DFmode: return gen_##PREFIX##vNdf##SUFFIX (ARGS); \
    default: \
      break; \
    } \
  \
  gcc_unreachable (); \
  return NULL_RTX; \
}

#define GEN_VN(PREFIX, SUFFIX, PARAMS, ARGS) \
static rtx \
gen_##PREFIX##vN##SUFFIX (PARAMS, rtx merge_src=NULL, rtx exec=NULL) \
{ \
  machine_mode mode = GET_MODE (dest); \
  int n = GET_MODE_NUNITS (mode); \
  \
  if (exec && !merge_src) \
	merge_src = gcn_gen_undef (mode); \
      \
  if (exec) \
    switch (n) \
      { \
      case 2: return gen_##PREFIX##v2##SUFFIX##_exec (ARGS, merge_src, exec); \
      case 4: return gen_##PREFIX##v4##SUFFIX##_exec (ARGS, merge_src, exec); \
      case 8: return gen_##PREFIX##v8##SUFFIX##_exec (ARGS, merge_src, exec); \
      case 16: return gen_##PREFIX##v16##SUFFIX##_exec (ARGS, merge_src, exec); \
      case 32: return gen_##PREFIX##v32##SUFFIX##_exec (ARGS, merge_src, exec); \
      case 64: return gen_##PREFIX##v64##SUFFIX##_exec (ARGS, merge_src, exec); \
      } \
  else \
    switch (n) \
      { \
      case 2: return gen_##PREFIX##v2##SUFFIX (ARGS); \
      case 4: return gen_##PREFIX##v4##SUFFIX (ARGS); \
      case 8: return gen_##PREFIX##v8##SUFFIX (ARGS); \
      case 16: return gen_##PREFIX##v16##SUFFIX (ARGS); \
      case 32: return gen_##PREFIX##v32##SUFFIX (ARGS); \
      case 64: return gen_##PREFIX##v64##SUFFIX (ARGS); \
      } \
  \
  gcc_unreachable (); \
  return NULL_RTX; \
}

#define GEN_VNM(PREFIX, SUFFIX, PARAMS, ARGS) \
GEN_VN (PREFIX, qi##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN (PREFIX, hi##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN (PREFIX, hf##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN (PREFIX, si##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN (PREFIX, sf##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN (PREFIX, di##SUFFIX, A(PARAMS), A(ARGS)) \
GEN_VN (PREFIX, df##SUFFIX, A(PARAMS), A(ARGS)) \
USE_TI (GEN_VN (PREFIX, ti##SUFFIX, A(PARAMS), A(ARGS))) \
static rtx \
gen_##PREFIX##vNm##SUFFIX (PARAMS, rtx merge_src=NULL, rtx exec=NULL) \
{ \
  machine_mode mode = GET_MODE_INNER (GET_MODE (dest)); \
  \
  switch (mode) \
    { \
    case E_QImode: return gen_##PREFIX##vNqi##SUFFIX (ARGS, merge_src, exec); \
    case E_HImode: return gen_##PREFIX##vNhi##SUFFIX (ARGS, merge_src, exec); \
    case E_HFmode: return gen_##PREFIX##vNhf##SUFFIX (ARGS, merge_src, exec); \
    case E_SImode: return gen_##PREFIX##vNsi##SUFFIX (ARGS, merge_src, exec); \
    case E_SFmode: return gen_##PREFIX##vNsf##SUFFIX (ARGS, merge_src, exec); \
    case E_DImode: return gen_##PREFIX##vNdi##SUFFIX (ARGS, merge_src, exec); \
    case E_DFmode: return gen_##PREFIX##vNdf##SUFFIX (ARGS, merge_src, exec); \
    case E_TImode: \
	USE_TI (return gen_##PREFIX##vNti##SUFFIX (ARGS, merge_src, exec);) \
    default: \
      break; \
    } \
  \
  gcc_unreachable (); \
  return NULL_RTX; \
}

/* These have TImode support.  */
#define USE_TI(ARGS) ARGS
GEN_VNM (mov,, A(rtx dest, rtx src), A(dest, src))
GEN_VNM (vec_duplicate,, A(rtx dest, rtx src), A(dest, src))

/* These do not have TImode support.  */
#undef USE_TI
#define USE_TI(ARGS)
GEN_VNM (add,3, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN (add,si3_dup, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN (add,si3_vcc_dup, A(rtx dest, rtx src1, rtx src2, rtx vcc),
	A(dest, src1, src2, vcc))
GEN_VN (add,di3_sext_dup2, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN (add,di3_vcc_zext_dup, A(rtx dest, rtx src1, rtx src2, rtx vcc),
	A(dest, src1, src2, vcc))
GEN_VN (add,di3_zext_dup2, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN (add,di3_vcc_zext_dup2, A(rtx dest, rtx src1, rtx src2, rtx vcc),
	A(dest, src1, src2, vcc))
GEN_VN (addc,si3, A(rtx dest, rtx src1, rtx src2, rtx vccout, rtx vccin),
	A(dest, src1, src2, vccout, vccin))
GEN_VN (and,si3, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN (ashl,si3, A(rtx dest, rtx src, rtx shift), A(dest, src, shift))
GEN_VNM_NOEXEC (ds_bpermute,, A(rtx dest, rtx addr, rtx src, rtx exec),
		A(dest, addr, src, exec))
GEN_VNM (gather,_expr, A(rtx dest, rtx addr, rtx as, rtx vol),
	 A(dest, addr, as, vol))
GEN_VN (mul,si3_dup, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN (sub,si3, A(rtx dest, rtx src1, rtx src2), A(dest, src1, src2))
GEN_VN_NOEXEC (vec_series,si, A(rtx dest, rtx x, rtx c), A(dest, x, c))

#undef USE_TI
#undef GEN_VNM
#undef GEN_VN
#undef GET_VN_FN
#undef A

/* Return true if OP is a PARALLEL of CONST_INTs that form a linear
   series with step STEP.  */

bool
gcn_stepped_zero_int_parallel_p (rtx op, int step)
{
  if (GET_CODE (op) != PARALLEL || !CONST_INT_P (XVECEXP (op, 0, 0)))
    return false;

  unsigned HOST_WIDE_INT base = 0;
  for (int i = 0; i < XVECLEN (op, 0); ++i)
    if (!CONST_INT_P (XVECEXP (op, 0, i))
	|| UINTVAL (XVECEXP (op, 0, i)) != base + i * step)
      return false;

  return true;
}

/* }}}  */
/* {{{ Addresses, pointers and moves.  */

/* Return true is REG is a valid place to store a pointer,
   for instructions that require an SGPR.
   FIXME rename. */

static bool
gcn_address_register_p (rtx reg, machine_mode mode, bool strict)
{
  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return false;

  if (GET_MODE (reg) != mode)
    return false;

  int regno = REGNO (reg);

  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (!strict)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }

  return (SGPR_REGNO_P (regno) || regno == M0_REG
	  || regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM);
}

/* Return true is REG is a valid place to store a pointer,
   for instructions that require a VGPR.  */

static bool
gcn_vec_address_register_p (rtx reg, machine_mode mode, bool strict)
{
  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return false;

  if (GET_MODE (reg) != mode)
    return false;

  int regno = REGNO (reg);

  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (!strict)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }

  return VGPR_REGNO_P (regno);
}

/* Return true if X would be valid inside a MEM using the Flat address
   space.  */

bool
gcn_flat_address_p (rtx x, machine_mode mode)
{
  bool vec_mode = (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
		   || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);

  if (vec_mode && gcn_address_register_p (x, DImode, false))
    return true;

  if (!vec_mode && gcn_vec_address_register_p (x, DImode, false))
    return true;

  if (GET_CODE (x) == PLUS
      && gcn_vec_address_register_p (XEXP (x, 0), DImode, false)
      && CONST_INT_P (XEXP (x, 1)))
    return true;

  return false;
}

/* Return true if X would be valid inside a MEM using the Scalar Flat
   address space.  */

bool
gcn_scalar_flat_address_p (rtx x)
{
  if (gcn_address_register_p (x, DImode, false))
    return true;

  if (GET_CODE (x) == PLUS
      && gcn_address_register_p (XEXP (x, 0), DImode, false)
      && CONST_INT_P (XEXP (x, 1)))
    return true;

  return false;
}

/* Return true if MEM X would be valid for the Scalar Flat address space.  */

bool
gcn_scalar_flat_mem_p (rtx x)
{
  if (!MEM_P (x))
    return false;

  if (GET_MODE_SIZE (GET_MODE (x)) < 4)
    return false;

  return gcn_scalar_flat_address_p (XEXP (x, 0));
}

/* Return true if X would be valid inside a MEM using the LDS or GDS
   address spaces.  */

bool
gcn_ds_address_p (rtx x)
{
  if (gcn_vec_address_register_p (x, SImode, false))
    return true;

  if (GET_CODE (x) == PLUS
      && gcn_vec_address_register_p (XEXP (x, 0), SImode, false)
      && CONST_INT_P (XEXP (x, 1)))
    return true;

  return false;
}

/* Return true if ADDR would be valid inside a MEM using the Global
   address space.  */

bool
gcn_global_address_p (rtx addr)
{
  if (gcn_address_register_p (addr, DImode, false)
      || gcn_vec_address_register_p (addr, DImode, false))
    return true;

  if (GET_CODE (addr) == PLUS)
    {
      rtx base = XEXP (addr, 0);
      rtx offset = XEXP (addr, 1);
      int offsetbits = (TARGET_11BIT_GLOBAL_OFFSET ? 11 : 12);
      bool immediate_p = (CONST_INT_P (offset)
			  && INTVAL (offset) >= -(1 << offsetbits)
			  && INTVAL (offset) < (1 << offsetbits));

      if ((gcn_address_register_p (base, DImode, false)
	   || gcn_vec_address_register_p (base, DImode, false))
	  && immediate_p)
	/* SGPR + CONST or VGPR + CONST  */
	return true;

      if (gcn_address_register_p (base, DImode, false)
	  && gcn_vgpr_register_operand (offset, SImode))
	/* SPGR + VGPR  */
	return true;

      if (GET_CODE (base) == PLUS
	  && gcn_address_register_p (XEXP (base, 0), DImode, false)
	  && gcn_vgpr_register_operand (XEXP (base, 1), SImode)
	  && immediate_p)
	/* (SGPR + VGPR) + CONST  */
	return true;
    }

  return false;
}

/* Implement TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P.

   Recognizes RTL expressions that are valid memory addresses for an
   instruction.  The MODE argument is the machine mode for the MEM
   expression that wants to use this address.

   It only recognizes address in canonical form.  LEGITIMIZE_ADDRESS should
   convert common non-canonical forms to canonical form so that they will
   be recognized.  */

static bool
gcn_addr_space_legitimate_address_p (machine_mode mode, rtx x, bool strict,
				     addr_space_t as, code_helper = ERROR_MARK)
{
  if (AS_SCALAR_FLAT_P (as))
    {
      if (mode == QImode || mode == HImode)
	return 0;

      switch (GET_CODE (x))
	{
	case REG:
	  return gcn_address_register_p (x, DImode, strict);
	/* Addresses are in the form BASE+OFFSET
	   OFFSET is either 20bit unsigned immediate, SGPR or M0.
	   Writes and atomics do not accept SGPR.  */
	case PLUS:
	  {
	    rtx x0 = XEXP (x, 0);
	    rtx x1 = XEXP (x, 1);
	    if (!gcn_address_register_p (x0, DImode, strict))
	      return false;
	    /* FIXME: This is disabled because of the mode mismatch between
	       SImode (for the address or m0 register) and the DImode PLUS.
	       We'll need a zero_extend or similar.

	    if (gcn_m0_register_p (x1, SImode, strict)
		|| gcn_address_register_p (x1, SImode, strict))
	      return true;
	    else*/
	    if (GET_CODE (x1) == CONST_INT)
	      {
		if (INTVAL (x1) >= 0 && INTVAL (x1) < (1 << 20)
		    /* The low bits of the offset are ignored, even when
		       they're meant to realign the pointer.  */
		    && !(INTVAL (x1) & 0x3))
		  return true;
	      }
	    return false;
	  }

	default:
	  break;
	}
    }
  else if (AS_SCRATCH_P (as))
    return gcn_address_register_p (x, SImode, strict);
  else if (AS_FLAT_P (as) || AS_FLAT_SCRATCH_P (as))
    {
      if (GET_CODE (x) == REG)
       return ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
		|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
	       ? gcn_address_register_p (x, DImode, strict)
	       : gcn_vec_address_register_p (x, DImode, strict));
      else
	{
	  if (GET_CODE (x) == PLUS)
	    {
	      rtx x1 = XEXP (x, 1);

	      if (VECTOR_MODE_P (mode)
		  ? !gcn_address_register_p (x, DImode, strict)
		  : !gcn_vec_address_register_p (x, DImode, strict))
		return false;

	      if (GET_CODE (x1) == CONST_INT)
		{
		  if (INTVAL (x1) >= 0 && INTVAL (x1) < (1 << 12)
		      /* The low bits of the offset are ignored, even when
		         they're meant to realign the pointer.  */
		      && !(INTVAL (x1) & 0x3))
		    return true;
		}
	    }
	  return false;
	}
    }
  else if (AS_GLOBAL_P (as))
    {
      if (GET_CODE (x) == REG)
       return (gcn_address_register_p (x, DImode, strict)
	       || (!VECTOR_MODE_P (mode)
		   && gcn_vec_address_register_p (x, DImode, strict)));
      else if (GET_CODE (x) == PLUS)
	{
	  rtx base = XEXP (x, 0);
	  rtx offset = XEXP (x, 1);

	  int offsetbits = (TARGET_11BIT_GLOBAL_OFFSET ? 11 : 12);
	  bool immediate_p = (GET_CODE (offset) == CONST_INT
			      /* Signed 12/13-bit immediate.  */
			      && INTVAL (offset) >= -(1 << offsetbits)
			      && INTVAL (offset) < (1 << offsetbits)
			      /* The low bits of the offset are ignored, even
			         when they're meant to realign the pointer.  */
			      && !(INTVAL (offset) & 0x3));

	  if (!VECTOR_MODE_P (mode))
	    {
	      if ((gcn_address_register_p (base, DImode, strict)
		   || gcn_vec_address_register_p (base, DImode, strict))
		  && immediate_p)
		/* SGPR + CONST or VGPR + CONST  */
		return true;

	      if (gcn_address_register_p (base, DImode, strict)
		  && gcn_vgpr_register_operand (offset, SImode))
		/* SGPR + VGPR  */
		return true;

	      if (GET_CODE (base) == PLUS
		  && gcn_address_register_p (XEXP (base, 0), DImode, strict)
		  && gcn_vgpr_register_operand (XEXP (base, 1), SImode)
		  && immediate_p)
		/* (SGPR + VGPR) + CONST  */
		return true;
	    }
	  else
	    {
	      if (gcn_address_register_p (base, DImode, strict)
		  && immediate_p)
		/* SGPR + CONST  */
		return true;
	    }
	}
      else
	return false;
    }
  else if (AS_ANY_DS_P (as))
    switch (GET_CODE (x))
      {
      case REG:
	return (VECTOR_MODE_P (mode)
		? gcn_address_register_p (x, SImode, strict)
		: gcn_vec_address_register_p (x, SImode, strict));
      /* Addresses are in the form BASE+OFFSET
	 OFFSET is either 20bit unsigned immediate, SGPR or M0.
	 Writes and atomics do not accept SGPR.  */
      case PLUS:
	{
	  rtx x0 = XEXP (x, 0);
	  rtx x1 = XEXP (x, 1);
	  if (!gcn_vec_address_register_p (x0, DImode, strict))
	    return false;
	  if (GET_CODE (x1) == REG)
	    {
	      if (GET_CODE (x1) != REG
		  || (REGNO (x1) <= FIRST_PSEUDO_REGISTER
		      && !gcn_ssrc_register_operand (x1, DImode)))
		return false;
	    }
	  else if (GET_CODE (x1) == CONST_VECTOR
		   && GET_CODE (CONST_VECTOR_ELT (x1, 0)) == CONST_INT
		   && single_cst_vector_p (x1))
	    {
	      x1 = CONST_VECTOR_ELT (x1, 0);
	      if (INTVAL (x1) >= 0 && INTVAL (x1) < (1 << 20))
		return true;
	    }
	  return false;
	}

      default:
	break;
      }
  else
    gcc_unreachable ();
  return false;
}

/* Implement TARGET_ADDR_SPACE_POINTER_MODE.

   Return the appropriate mode for a named address pointer.  */

static scalar_int_mode
gcn_addr_space_pointer_mode (addr_space_t addrspace)
{
  switch (addrspace)
    {
    case ADDR_SPACE_SCRATCH:
    case ADDR_SPACE_LDS:
    case ADDR_SPACE_GDS:
      return SImode;
    case ADDR_SPACE_DEFAULT:
    case ADDR_SPACE_FLAT:
    case ADDR_SPACE_FLAT_SCRATCH:
    case ADDR_SPACE_SCALAR_FLAT:
      return DImode;
    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_ADDR_SPACE_ADDRESS_MODE.

   Return the appropriate mode for a named address space address.  */

static scalar_int_mode
gcn_addr_space_address_mode (addr_space_t addrspace)
{
  return gcn_addr_space_pointer_mode (addrspace);
}

/* Implement TARGET_ADDR_SPACE_SUBSET_P.

   Determine if one named address space is a subset of another.  */

static bool
gcn_addr_space_subset_p (addr_space_t subset, addr_space_t superset)
{
  if (subset == superset)
    return true;
  /* FIXME is this true?  */
  if (AS_FLAT_P (superset) || AS_SCALAR_FLAT_P (superset))
    return true;
  return false;
}

/* Convert from one address space to another.  */

static rtx
gcn_addr_space_convert (rtx op, tree from_type, tree to_type)
{
  gcc_assert (POINTER_TYPE_P (from_type));
  gcc_assert (POINTER_TYPE_P (to_type));

  addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (from_type));
  addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (to_type));

  if (AS_LDS_P (as_from) && AS_FLAT_P (as_to))
    {
      /* The high bits of the QUEUE_PTR_ARG register are used by
	 GCN_BUILTIN_FIRST_CALL_THIS_THREAD_P, so mask them out.  */
      rtx queue_reg = gen_rtx_REG (DImode,
				   cfun->machine->args.reg[QUEUE_PTR_ARG]);
      rtx queue_ptr = gen_reg_rtx (DImode);
      emit_insn (gen_anddi3 (queue_ptr, queue_reg, GEN_INT (0xffffffffffff)));
      rtx group_seg_aperture_hi = gen_rtx_MEM (SImode,
				     gen_rtx_PLUS (DImode, queue_ptr,
						   gen_int_mode (64, SImode)));
      rtx tmp = gen_reg_rtx (DImode);

      emit_move_insn (gen_lowpart (SImode, tmp), op);
      emit_move_insn (gen_highpart_mode (SImode, DImode, tmp),
		      group_seg_aperture_hi);

      return tmp;
    }
  else if (as_from == as_to)
    return op;
  else
    gcc_unreachable ();
}

/* Implement TARGET_ADDR_SPACE_DEBUG.

   Return the dwarf address space class for each hardware address space.  */

static int
gcn_addr_space_debug (addr_space_t as)
{
  switch (as)
    {
      case ADDR_SPACE_DEFAULT:
      case ADDR_SPACE_FLAT:
      case ADDR_SPACE_SCALAR_FLAT:
      case ADDR_SPACE_FLAT_SCRATCH:
	return DW_ADDR_none;
      case ADDR_SPACE_GLOBAL:
	return 1;      // DW_ADDR_LLVM_global
      case ADDR_SPACE_LDS:
	return 3;      // DW_ADDR_LLVM_group
      case ADDR_SPACE_SCRATCH:
	return 4;      // DW_ADDR_LLVM_private
      case ADDR_SPACE_GDS:
	return 0x8000; // DW_ADDR_AMDGPU_region
    }
  gcc_unreachable ();
}


/* Implement REGNO_MODE_CODE_OK_FOR_BASE_P via gcn.h

   Retun true if REGNO is OK for memory adressing.  */

bool
gcn_regno_mode_code_ok_for_base_p (int regno,
				   machine_mode, addr_space_t as, int, int)
{
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (reg_renumber)
	regno = reg_renumber[regno];
      else
	return true;
    }
  if (AS_FLAT_P (as))
    return (VGPR_REGNO_P (regno)
	    || regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM);
  else if (AS_SCALAR_FLAT_P (as))
    return (SGPR_REGNO_P (regno)
	    || regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM);
  else if (AS_GLOBAL_P (as))
    {
      return (SGPR_REGNO_P (regno)
	      || VGPR_REGNO_P (regno)
	      || regno == ARG_POINTER_REGNUM
	      || regno == FRAME_POINTER_REGNUM);
    }
  else
    /* For now.  */
    return false;
}

/* Implement MODE_CODE_BASE_REG_CLASS via gcn.h.

   Return a suitable register class for memory addressing.  */

reg_class
gcn_mode_code_base_reg_class (machine_mode mode, addr_space_t as, int oc,
			      int ic)
{
  switch (as)
    {
    case ADDR_SPACE_DEFAULT:
      return gcn_mode_code_base_reg_class (mode, DEFAULT_ADDR_SPACE, oc, ic);
    case ADDR_SPACE_SCALAR_FLAT:
    case ADDR_SPACE_SCRATCH:
      return SGPR_REGS;
      break;
    case ADDR_SPACE_FLAT:
    case ADDR_SPACE_FLAT_SCRATCH:
    case ADDR_SPACE_LDS:
    case ADDR_SPACE_GDS:
      return ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	       || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
	      ? SGPR_REGS : VGPR_REGS);
    case ADDR_SPACE_GLOBAL:
      return ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	       || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
	      ? SGPR_REGS : ALL_GPR_REGS);
    }
  gcc_unreachable ();
}

/* Implement REGNO_OK_FOR_INDEX_P via gcn.h.

   Return true if REGNO is OK for index of memory addressing.  */

bool
regno_ok_for_index_p (int regno)
{
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (reg_renumber)
	regno = reg_renumber[regno];
      else
	return true;
    }
  return regno == M0_REG || VGPR_REGNO_P (regno);
}

/* Expand vector init of OP0 by VEC.
   Implements vec_init instruction pattern.  */

void
gcn_expand_vector_init (rtx op0, rtx vec)
{
  rtx val[64];
  machine_mode mode = GET_MODE (op0);
  int vf = GET_MODE_NUNITS (mode);
  machine_mode addrmode = VnMODE (vf, DImode);
  machine_mode offsetmode = VnMODE (vf, SImode);

  int64_t mem_mask = 0;
  int64_t item_mask[64];
  rtx ramp = gen_reg_rtx (offsetmode);
  rtx addr = gen_reg_rtx (addrmode);

  int unit_size = GET_MODE_SIZE (GET_MODE_INNER (GET_MODE (op0)));
  emit_insn (gen_mulvNsi3_dup (ramp, gen_rtx_REG (offsetmode, VGPR_REGNO (1)),
			       GEN_INT (unit_size)));

  bool simple_repeat = true;

  /* Expand nested vectors into one vector.  */
  int item_count = XVECLEN (vec, 0);
  for (int i = 0, j = 0; i < item_count; i++)
    {
      rtx item = XVECEXP (vec, 0, i);
      machine_mode mode = GET_MODE (item);
      int units = VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1;
      item_mask[j] = (((uint64_t)-1)>>(64-units)) << j;

      if (simple_repeat && i != 0)
	simple_repeat = item == XVECEXP (vec, 0, i-1);

      /* If its a vector of values then copy them into the final location.  */
      if (GET_CODE (item) == CONST_VECTOR)
	{
	  for (int k = 0; k < units; k++)
	    val[j++] = XVECEXP (item, 0, k);
	  continue;
	}
      /* Otherwise, we have a scalar or an expression that expands...  */

      if (MEM_P (item))
	{
	  rtx base = XEXP (item, 0);
	  if (MEM_ADDR_SPACE (item) == DEFAULT_ADDR_SPACE
	      && REG_P (base))
	    {
	      /* We have a simple vector load.  We can put the addresses in
		 the vector, combine it with any other such MEMs, and load it
		 all with a single gather at the end.  */
	      int64_t mask = ((0xffffffffffffffffUL
			       >> (64-GET_MODE_NUNITS (mode)))
			      << j);
	      rtx exec = get_exec (mask);
	      emit_insn (gen_subvNsi3
			 (ramp, ramp,
			  gcn_vec_constant (offsetmode, j*unit_size),
			  ramp, exec));
	      emit_insn (gen_addvNdi3_zext_dup2
			 (addr, ramp, base,
			  (mem_mask ? addr : gcn_gen_undef (addrmode)),
			  exec));
	      mem_mask |= mask;
	    }
	  else
	    /* The MEM is non-trivial, so let's load it independently.  */
	    item = force_reg (mode, item);
	}
      else if (!CONST_INT_P (item) && !CONST_DOUBLE_P (item))
	/* The item may be a symbol_ref, or something else non-trivial.  */
	item = force_reg (mode, item);

      /* Duplicate the vector across each item.
	 It is either a smaller vector register that needs shifting,
	 or a MEM that needs loading.  */
      val[j] = item;
      j += units;
    }

  int64_t initialized_mask = 0;
  rtx prev = NULL;

  if (mem_mask)
    {
      emit_insn (gen_gathervNm_expr
		 (op0, gen_rtx_PLUS (addrmode, addr,
				     gen_rtx_VEC_DUPLICATE (addrmode,
							    const0_rtx)),
		  GEN_INT (DEFAULT_ADDR_SPACE), GEN_INT (0),
		  NULL, get_exec (mem_mask)));
      prev = op0;
      initialized_mask = mem_mask;
    }

  if (simple_repeat && item_count > 1 && !prev)
    {
      /* Special case for instances of {A, B, A, B, A, B, ....}, etc.  */
      rtx src = gen_rtx_SUBREG (mode, val[0], 0);
      rtx input_vf_mask = GEN_INT (GET_MODE_NUNITS (GET_MODE (val[0]))-1);

      rtx permutation = gen_reg_rtx (VnMODE (vf, SImode));
      emit_insn (gen_vec_seriesvNsi (permutation, GEN_INT (0), GEN_INT (1)));
      rtx mask_dup = gen_reg_rtx (VnMODE (vf, SImode));
      emit_insn (gen_vec_duplicatevNsi (mask_dup, input_vf_mask));
      emit_insn (gen_andvNsi3 (permutation, permutation, mask_dup));
      emit_insn (gen_ashlvNsi3 (permutation, permutation, GEN_INT (2)));
      emit_insn (gen_ds_bpermutevNm (op0, permutation, src, get_exec (mode)));
      return;
    }

  /* Write each value, elementwise, but coalesce matching values into one
     instruction, where possible.  */
  for (int i = 0; i < vf; i++)
    if (!(initialized_mask & ((int64_t) 1 << i)))
      {
	if (gcn_constant_p (val[i]))
	  emit_insn (gen_movvNm (op0, gcn_vec_constant (mode, val[i]), prev,
				 get_exec (item_mask[i])));
	else if (VECTOR_MODE_P (GET_MODE (val[i]))
		 && (GET_MODE_NUNITS (GET_MODE (val[i])) == vf
		     || i == 0))
	  emit_insn (gen_movvNm (op0, gen_rtx_SUBREG (mode, val[i], 0), prev,
				 get_exec (item_mask[i])));
	else if (VECTOR_MODE_P (GET_MODE (val[i])))
	  {
	    rtx permutation = gen_reg_rtx (VnMODE (vf, SImode));
	    emit_insn (gen_vec_seriesvNsi (permutation, GEN_INT (-i*4),
					   GEN_INT (4)));
	    rtx tmp = gen_reg_rtx (mode);
	    emit_insn (gen_ds_bpermutevNm (tmp, permutation,
					   gen_rtx_SUBREG (mode, val[i], 0),
					   get_exec (-1)));
	    emit_insn (gen_movvNm (op0, tmp, prev, get_exec (item_mask[i])));
	  }
	else
	  {
	    rtx reg = force_reg (GET_MODE_INNER (mode), val[i]);
	    emit_insn (gen_vec_duplicatevNm (op0, reg, prev,
					     get_exec (item_mask[i])));
	  }

	initialized_mask |= item_mask[i];
	prev = op0;
      }
}

/* Load vector constant where n-th lane contains BASE+n*VAL.  */

static rtx
strided_constant (machine_mode mode, int base, int val)
{
  rtx x = gen_reg_rtx (mode);
  emit_move_insn (x, gcn_vec_constant (mode, base));
  emit_insn (gen_addvNm3 (x, x, gcn_vec_constant (mode, val * 32),
			  x, get_exec (0xffffffff00000000)));
  emit_insn (gen_addvNm3 (x, x, gcn_vec_constant (mode, val * 16),
			  x, get_exec (0xffff0000ffff0000)));
  emit_insn (gen_addvNm3 (x, x, gcn_vec_constant (mode, val * 8),
			  x, get_exec (0xff00ff00ff00ff00)));
  emit_insn (gen_addvNm3 (x, x, gcn_vec_constant (mode, val * 4),
			  x, get_exec (0xf0f0f0f0f0f0f0f0)));
  emit_insn (gen_addvNm3 (x, x, gcn_vec_constant (mode, val * 2),
			  x, get_exec (0xcccccccccccccccc)));
  emit_insn (gen_addvNm3 (x, x, gcn_vec_constant (mode, val * 1),
			  x, get_exec (0xaaaaaaaaaaaaaaaa)));
  return x;
}

/* Implement TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS.  */

static rtx
gcn_addr_space_legitimize_address (rtx x, rtx old, machine_mode mode,
				   addr_space_t as)
{
  switch (as)
    {
    case ADDR_SPACE_DEFAULT:
      return gcn_addr_space_legitimize_address (x, old, mode,
						DEFAULT_ADDR_SPACE);
    case ADDR_SPACE_SCALAR_FLAT:
    case ADDR_SPACE_SCRATCH:
      /* Instructions working on vectors need the address to be in
         a register.  */
      if (vgpr_vector_mode_p (mode))
	return force_reg (GET_MODE (x), x);

      return x;
    case ADDR_SPACE_FLAT:
    case ADDR_SPACE_FLAT_SCRATCH:
    case ADDR_SPACE_GLOBAL:
      return x;
    case ADDR_SPACE_LDS:
    case ADDR_SPACE_GDS:
      /* FIXME: LDS support offsets, handle them!.  */
      if (vgpr_vector_mode_p (mode)
	  && GET_MODE_INNER (GET_MODE (x)) != SImode)
	{
	  machine_mode simode = VnMODE (GET_MODE_NUNITS (mode), SImode);
	  rtx addrs = gen_reg_rtx (simode);
	  rtx base = force_reg (SImode, x);
	  rtx offsets = strided_constant (simode, 0,
					  GET_MODE_UNIT_SIZE (mode));

	  emit_insn (gen_vec_duplicatevNsi (addrs, base));
	  emit_insn (gen_addvNsi3 (addrs, offsets, addrs));
	  return addrs;
	}
      return x;
    }
  gcc_unreachable ();
}

/* Convert a (mem:<MODE> (reg:DI)) to (mem:<MODE> (reg:VnDI)) with the
   proper vector of stepped addresses.

   MEM will be a DImode address of a vector in an SGPR.
   TMP will be a VnDImode VGPR pair or (scratch:VnDI).  */

rtx
gcn_expand_scalar_to_vector_address (machine_mode mode, rtx exec, rtx mem,
				     rtx tmp)
{
  machine_mode pmode = VnMODE (GET_MODE_NUNITS (mode), DImode);
  machine_mode offmode = VnMODE (GET_MODE_NUNITS (mode), SImode);
  gcc_assert (MEM_P (mem));
  rtx mem_base = XEXP (mem, 0);
  rtx mem_index = NULL_RTX;

  if (GET_CODE (mem_base) == PLUS)
    {
      mem_index = XEXP (mem_base, 1);
      mem_base = XEXP (mem_base, 0);
    }

  /* RF and RM base registers for vector modes should be always an SGPR.  */
  gcc_assert (SGPR_REGNO_P (REGNO (mem_base))
	      || REGNO (mem_base) >= FIRST_PSEUDO_REGISTER);

  machine_mode inner = GET_MODE_INNER (mode);
  int shift = exact_log2 (GET_MODE_SIZE (inner));
  rtx ramp = gen_rtx_REG (offmode, VGPR_REGNO (1));
  rtx new_base = NULL_RTX;
  addr_space_t as = MEM_ADDR_SPACE (mem);

  rtx tmplo = (REG_P (tmp)
	       ? gcn_operand_part (pmode, tmp, 0)
	       : gen_reg_rtx (offmode));

  /* tmplo[:] = ramp[:] << shift  */
  emit_insn (gen_ashlvNsi3 (tmplo, ramp,
			    gen_int_mode (shift, SImode),
			    NULL, exec));

  if (AS_FLAT_P (as))
    {
      rtx vcc = gen_rtx_REG (DImode, CC_SAVE_REG);

      if (REG_P (tmp))
	{
	  rtx mem_base_lo = gcn_operand_part (DImode, mem_base, 0);
	  rtx mem_base_hi = gcn_operand_part (DImode, mem_base, 1);
	  rtx tmphi = gcn_operand_part (pmode, tmp, 1);

	  /* tmphi[:] = mem_base_hi  */
	  emit_insn (gen_vec_duplicatevNsi (tmphi, mem_base_hi, NULL, exec));

	  /* tmp[:] += zext (mem_base)  */
	  if (exec)
	    {
	      emit_insn (gen_addvNsi3_vcc_dup (tmplo, mem_base_lo, tmplo,
					       vcc, NULL, exec));
	      emit_insn (gen_addcvNsi3 (tmphi, tmphi, const0_rtx,
				        vcc, vcc, NULL, exec));
	    }
	  else
	    emit_insn (gen_addvNdi3_vcc_zext_dup (tmp, mem_base_lo, tmp, vcc));
	}
      else
	{
	  tmp = gen_reg_rtx (pmode);
	  emit_insn (gen_addvNdi3_vcc_zext_dup2 (tmp, tmplo, mem_base, vcc,
						 NULL, exec));
	}

      new_base = tmp;
    }
  else if (AS_ANY_DS_P (as))
    {
      emit_insn (gen_addvNsi3_dup (tmplo, tmplo, mem_base, NULL, exec));
      new_base = tmplo;
    }
  else
    {
      mem_base = gen_rtx_VEC_DUPLICATE (pmode, mem_base);
      new_base = gen_rtx_PLUS (pmode, mem_base,
			       gen_rtx_SIGN_EXTEND (pmode, tmplo));
    }

  return gen_rtx_PLUS (GET_MODE (new_base), new_base,
		       gen_rtx_VEC_DUPLICATE (GET_MODE (new_base),
					      (mem_index ? mem_index
					       : const0_rtx)));
}

/* Convert a BASE address, a vector of OFFSETS, and a SCALE, to addresses
   suitable for the given address space.  This is indented for use in
   gather/scatter patterns.

   The offsets may be signed or unsigned, according to UNSIGNED_P.
   If EXEC is set then _exec patterns will be used, otherwise plain.

   Return values.
     ADDR_SPACE_FLAT   - return VnDImode vector of absolute addresses.
     ADDR_SPACE_GLOBAL - return VnSImode vector of offsets.  */

rtx
gcn_expand_scaled_offsets (addr_space_t as, rtx base, rtx offsets, rtx scale,
			   bool unsigned_p, rtx exec)
{
  int vf = GET_MODE_NUNITS (GET_MODE (offsets));
  rtx tmpsi = gen_reg_rtx (VnMODE (vf, SImode));
  rtx tmpdi = gen_reg_rtx (VnMODE (vf, DImode));

  if (CONST_INT_P (scale)
      && INTVAL (scale) > 0
      && exact_log2 (INTVAL (scale)) >= 0)
    emit_insn (gen_ashlvNsi3 (tmpsi, offsets,
			      GEN_INT (exact_log2 (INTVAL (scale))),
			      NULL, exec));
  else
     emit_insn (gen_mulvNsi3_dup (tmpsi, offsets, scale, NULL, exec));

  /* "Global" instructions do not support negative register offsets.  */
  if (as == ADDR_SPACE_FLAT || !unsigned_p)
    {
      if (unsigned_p)
	 emit_insn (gen_addvNdi3_zext_dup2 (tmpdi, tmpsi, base, NULL, exec));
      else
	 emit_insn (gen_addvNdi3_sext_dup2 (tmpdi, tmpsi, base, NULL, exec));
      return tmpdi;
    }
  else if (as == ADDR_SPACE_GLOBAL)
    return tmpsi;

  gcc_unreachable ();
}

/* Return true if move from OP0 to OP1 is known to be executed in vector
   unit.  */

bool
gcn_vgpr_move_p (rtx op0, rtx op1)
{
  if (MEM_P (op0) && AS_SCALAR_FLAT_P (MEM_ADDR_SPACE (op0)))
    return true;
  if (MEM_P (op1) && AS_SCALAR_FLAT_P (MEM_ADDR_SPACE (op1)))
    return true;
  return ((REG_P (op0) && VGPR_REGNO_P (REGNO (op0)))
	  || (REG_P (op1) && VGPR_REGNO_P (REGNO (op1)))
	  || vgpr_vector_mode_p (GET_MODE (op0)));
}

/* Return true if move from OP0 to OP1 is known to be executed in scalar
   unit.  Used in the machine description.  */

bool
gcn_sgpr_move_p (rtx op0, rtx op1)
{
  if (MEM_P (op0) && AS_SCALAR_FLAT_P (MEM_ADDR_SPACE (op0)))
    return true;
  if (MEM_P (op1) && AS_SCALAR_FLAT_P (MEM_ADDR_SPACE (op1)))
    return true;
  if (!REG_P (op0)
      || REGNO (op0) >= FIRST_PSEUDO_REGISTER
      || VGPR_REGNO_P (REGNO (op0))
      || AVGPR_REGNO_P (REGNO (op0)))
    return false;
  if (REG_P (op1)
      && REGNO (op1) < FIRST_PSEUDO_REGISTER
      && !VGPR_REGNO_P (REGNO (op1))
      && !AVGPR_REGNO_P (REGNO (op1)))
    return true;
  return immediate_operand (op1, VOIDmode) || memory_operand (op1, VOIDmode);
}

/* Implement TARGET_SECONDARY_RELOAD.

   The address space determines which registers can be used for loads and
   stores.  */

static reg_class_t
gcn_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
		      machine_mode reload_mode, secondary_reload_info *sri)
{
  reg_class_t result = NO_REGS;
  bool spilled_pseudo =
    (REG_P (x) || GET_CODE (x) == SUBREG) && true_regnum (x) == -1;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "gcn_secondary_reload: ");
      dump_value_slim (dump_file, x, 1);
      fprintf (dump_file, " %s %s:%s", (in_p ? "->" : "<-"),
	       reg_class_names[rclass], GET_MODE_NAME (reload_mode));
      if (REG_P (x) || GET_CODE (x) == SUBREG)
	fprintf (dump_file, " (true regnum: %d \"%s\")", true_regnum (x),
		 (true_regnum (x) >= 0
		  && true_regnum (x) < FIRST_PSEUDO_REGISTER
		  ? reg_names[true_regnum (x)]
		  : (spilled_pseudo ? "stack spill" : "??")));
      fprintf (dump_file, "\n");
    }

  /* Some callers don't use or initialize icode.  */
  sri->icode = CODE_FOR_nothing;

  if (MEM_P (x) || spilled_pseudo)
    {
      addr_space_t as = DEFAULT_ADDR_SPACE;

      /* If we have a spilled pseudo, we can't find the address space
	 directly, but we know it's in ADDR_SPACE_FLAT space for GCN3 or
	 ADDR_SPACE_GLOBAL for GCN5.  */
      if (MEM_P (x))
	as = MEM_ADDR_SPACE (x);

      if (as == ADDR_SPACE_DEFAULT)
	as = DEFAULT_ADDR_SPACE;

      switch (as)
	{
	case ADDR_SPACE_SCALAR_FLAT:
	  result =
	    ((!MEM_P (x) || rclass == SGPR_REGS) ? NO_REGS : SGPR_REGS);
	  break;
	case ADDR_SPACE_FLAT:
	case ADDR_SPACE_FLAT_SCRATCH:
	case ADDR_SPACE_GLOBAL:
	  if (GET_MODE_CLASS (reload_mode) == MODE_VECTOR_INT
	      || GET_MODE_CLASS (reload_mode) == MODE_VECTOR_FLOAT)
	    {
	      sri->icode = code_for_mov_sgprbase (reload_mode);
	      break;
	    }
	  /* Fallthrough.  */
	case ADDR_SPACE_LDS:
	case ADDR_SPACE_GDS:
	case ADDR_SPACE_SCRATCH:
	  result = (rclass == VGPR_REGS ? NO_REGS : VGPR_REGS);
	  break;
	}

      /* CDNA1 doesn't have an instruction for going between the accumulator
	 registers and memory.  Go via a VGPR in this case.  */
      if (!TARGET_AVGPR_MEMOPS
	  && rclass == AVGPR_REGS && result != VGPR_REGS)
	result = VGPR_REGS;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "   <= %s (icode: %s)\n", reg_class_names[result],
	     get_insn_name (sri->icode));

  return result;
}

/* Update register usage after having seen the compiler flags and kernel
   attributes.  We typically want to fix registers that contain values
   set by the HSA runtime.  */

static void
gcn_conditional_register_usage (void)
{
  /* Some architectures have a register allocation granularity that does not
     permit use of the full register count.  */
  for (int i = 256 - (256 % TARGET_VGPR_GRANULARITY);
       i < 256;
       i++)
    fixed_regs[VGPR_REGNO (i)] = call_used_regs[VGPR_REGNO (i)] = 1;

  if (!cfun || !cfun->machine)
    return;

  if (cfun->machine->normal_function)
    {
      /* Restrict the set of SGPRs, VGPRs and AVGPRs used by non-kernel
	 functions.  */
      for (int i = SGPR_REGNO (MAX_NORMAL_SGPR_COUNT);
	   i <= LAST_SGPR_REG; i++)
	fixed_regs[i] = 1, call_used_regs[i] = 1;

      for (int i = VGPR_REGNO (MAX_NORMAL_VGPR_COUNT);
	   i <= LAST_VGPR_REG; i++)
	fixed_regs[i] = 1, call_used_regs[i] = 1;

      for (int i = AVGPR_REGNO (MAX_NORMAL_AVGPR_COUNT);
	   i <= LAST_AVGPR_REG; i++)
	fixed_regs[i] = 1, call_used_regs[i] = 1;
      return;
    }

  /* If the set of requested args is the default set, nothing more needs to
     be done.  */
  if (cfun->machine->args.requested == default_requested_args)
    return;

  /* Requesting a set of args different from the default violates the ABI.  */
  if (!leaf_function_p ())
    warning (0, "A non-default set of initial values has been requested, "
		"which violates the ABI");

  for (int i = SGPR_REGNO (0); i < SGPR_REGNO (14); i++)
    fixed_regs[i] = 0;

  /* Fix the runtime argument register containing values that may be
     needed later.  DISPATCH_PTR_ARG and FLAT_SCRATCH_* should not be
     needed after the prologue so there's no need to fix them.  */
  if (cfun->machine->args.reg[PRIVATE_SEGMENT_WAVE_OFFSET_ARG] >= 0)
    fixed_regs[cfun->machine->args.reg[PRIVATE_SEGMENT_WAVE_OFFSET_ARG]] = 1;
  if (cfun->machine->args.reg[PRIVATE_SEGMENT_BUFFER_ARG] >= 0)
    {
      /* The upper 32-bits of the 64-bit descriptor are not used, so allow
	the containing registers to be used for other purposes.  */
      fixed_regs[cfun->machine->args.reg[PRIVATE_SEGMENT_BUFFER_ARG]] = 1;
      fixed_regs[cfun->machine->args.reg[PRIVATE_SEGMENT_BUFFER_ARG] + 1] = 1;
    }
  if (cfun->machine->args.reg[KERNARG_SEGMENT_PTR_ARG] >= 0)
    {
      fixed_regs[cfun->machine->args.reg[KERNARG_SEGMENT_PTR_ARG]] = 1;
      fixed_regs[cfun->machine->args.reg[KERNARG_SEGMENT_PTR_ARG] + 1] = 1;
    }
  if (cfun->machine->args.reg[DISPATCH_PTR_ARG] >= 0)
    {
      fixed_regs[cfun->machine->args.reg[DISPATCH_PTR_ARG]] = 1;
      fixed_regs[cfun->machine->args.reg[DISPATCH_PTR_ARG] + 1] = 1;
    }
  if (cfun->machine->args.reg[QUEUE_PTR_ARG] >= 0)
    {
      fixed_regs[cfun->machine->args.reg[QUEUE_PTR_ARG]] = 1;
      fixed_regs[cfun->machine->args.reg[QUEUE_PTR_ARG] + 1] = 1;
    }
  if (cfun->machine->args.reg[WORKGROUP_ID_X_ARG] >= 0)
    fixed_regs[cfun->machine->args.reg[WORKGROUP_ID_X_ARG]] = 1;
  if (cfun->machine->args.reg[WORK_ITEM_ID_X_ARG] >= 0)
    fixed_regs[cfun->machine->args.reg[WORK_ITEM_ID_X_ARG]] = 1;
  if (cfun->machine->args.reg[WORK_ITEM_ID_Y_ARG] >= 0)
    fixed_regs[cfun->machine->args.reg[WORK_ITEM_ID_Y_ARG]] = 1;
  if (cfun->machine->args.reg[WORK_ITEM_ID_Z_ARG] >= 0)
    fixed_regs[cfun->machine->args.reg[WORK_ITEM_ID_Z_ARG]] = 1;
}

static bool
gcn_vgpr_equivalent_register_operand (rtx x, machine_mode mode)
{
  if (gcn_vgpr_register_operand (x, mode))
    return true;
  if (TARGET_AVGPR_MEMOPS && gcn_avgpr_register_operand (x, mode))
    return true;
  return false;
}

/* Determine if a load or store is valid, according to the register classes
   and address space.  Used primarily by the machine description to decide
   when to split a move into two steps.  */

bool
gcn_valid_move_p (machine_mode mode, rtx dest, rtx src)
{
  if (!MEM_P (dest) && !MEM_P (src))
    {
      if (gcn_vgpr_register_operand (src, mode)
	  && gcn_avgpr_register_operand (dest, mode))
	return true;
      if (gcn_avgpr_register_operand (src, mode)
	  && gcn_vgpr_register_operand (dest, mode))
	return true;
      if (TARGET_AVGPR_MEMOPS
	  && gcn_avgpr_register_operand (src, mode)
	  && gcn_avgpr_register_operand (dest, mode))
	return true;
      if (gcn_avgpr_hard_register_operand (src, mode)
	  || gcn_avgpr_hard_register_operand (dest, mode))
	return false;
      return true;
    }

  if (MEM_P (dest)
      && AS_FLAT_P (MEM_ADDR_SPACE (dest))
      && (gcn_flat_address_p (XEXP (dest, 0), mode)
	  || GET_CODE (XEXP (dest, 0)) == SYMBOL_REF
	  || GET_CODE (XEXP (dest, 0)) == LABEL_REF)
      && gcn_vgpr_equivalent_register_operand (src, mode))
    return true;
  else if (MEM_P (src)
	   && AS_FLAT_P (MEM_ADDR_SPACE (src))
	   && (gcn_flat_address_p (XEXP (src, 0), mode)
	       || GET_CODE (XEXP (src, 0)) == SYMBOL_REF
	       || GET_CODE (XEXP (src, 0)) == LABEL_REF)
	   && gcn_vgpr_equivalent_register_operand (dest, mode))
    return true;

  if (MEM_P (dest)
      && AS_GLOBAL_P (MEM_ADDR_SPACE (dest))
      && (gcn_global_address_p (XEXP (dest, 0))
	  || GET_CODE (XEXP (dest, 0)) == SYMBOL_REF
	  || GET_CODE (XEXP (dest, 0)) == LABEL_REF)
      && gcn_vgpr_equivalent_register_operand (src, mode))
    return true;
  else if (MEM_P (src)
	   && AS_GLOBAL_P (MEM_ADDR_SPACE (src))
	   && (gcn_global_address_p (XEXP (src, 0))
	       || GET_CODE (XEXP (src, 0)) == SYMBOL_REF
	       || GET_CODE (XEXP (src, 0)) == LABEL_REF)
	   && gcn_vgpr_equivalent_register_operand (dest, mode))
    return true;

  if (MEM_P (dest)
      && MEM_ADDR_SPACE (dest) == ADDR_SPACE_SCALAR_FLAT
      && (gcn_scalar_flat_address_p (XEXP (dest, 0))
	  || GET_CODE (XEXP (dest, 0)) == SYMBOL_REF
	  || GET_CODE (XEXP (dest, 0)) == LABEL_REF)
      && gcn_ssrc_register_operand (src, mode))
    return true;
  else if (MEM_P (src)
	   && MEM_ADDR_SPACE (src) == ADDR_SPACE_SCALAR_FLAT
	   && (gcn_scalar_flat_address_p (XEXP (src, 0))
	       || GET_CODE (XEXP (src, 0)) == SYMBOL_REF
	       || GET_CODE (XEXP (src, 0)) == LABEL_REF)
	   && gcn_sdst_register_operand (dest, mode))
    return true;

  if (MEM_P (dest)
      && AS_ANY_DS_P (MEM_ADDR_SPACE (dest))
      && gcn_ds_address_p (XEXP (dest, 0))
      && gcn_vgpr_equivalent_register_operand (src, mode))
    return true;
  else if (MEM_P (src)
	   && AS_ANY_DS_P (MEM_ADDR_SPACE (src))
	   && gcn_ds_address_p (XEXP (src, 0))
	   && gcn_vgpr_equivalent_register_operand (dest, mode))
    return true;

  return false;
}

/* }}}  */
/* {{{ Functions and ABI.  */

/* Implement TARGET_FUNCTION_VALUE.

   Define how to find the value returned by a function.
   The register location is always the same, but the mode depends on
   VALTYPE.  */

static rtx
gcn_function_value (const_tree valtype, const_tree, bool)
{
  machine_mode mode = TYPE_MODE (valtype);

  if (INTEGRAL_TYPE_P (valtype)
      && GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_SIZE (mode) < 4)
    mode = SImode;

  return gen_rtx_REG (mode, RETURN_VALUE_REG);
}

/* Implement TARGET_FUNCTION_VALUE_REGNO_P.

   Return true if N is a possible register number for the function return
   value.  */

static bool
gcn_function_value_regno_p (const unsigned int n)
{
  return n == RETURN_VALUE_REG;
}

/* Calculate the number of registers required to hold function argument
   ARG.  */

static int
num_arg_regs (const function_arg_info &arg)
{
  if (targetm.calls.must_pass_in_stack (arg))
    return 0;

  int size = arg.promoted_size_in_bytes ();
  int regsize = UNITS_PER_WORD * (VECTOR_MODE_P (arg.mode)
				  ? GET_MODE_NUNITS (arg.mode) : 1);
  return (size + regsize - 1) / regsize;
}

/* Implement TARGET_STRICT_ARGUMENT_NAMING.

   Return true if the location where a function argument is passed
   depends on whether or not it is a named argument

   For gcn, we know how to handle functions declared as stdarg: by
   passing an extra pointer to the unnamed arguments.  However, the
   Fortran frontend can produce a different situation, where a
   function pointer is declared with no arguments, but the actual
   function and calls to it take more arguments.  In that case, we
   want to ensure the call matches the definition of the function.  */

static bool
gcn_strict_argument_naming (cumulative_args_t cum_v)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  return cum->fntype == NULL_TREE || stdarg_p (cum->fntype);
}

/* Implement TARGET_PRETEND_OUTGOING_VARARGS_NAMED.

   See comment on gcn_strict_argument_naming.  */

static bool
gcn_pretend_outgoing_varargs_named (cumulative_args_t cum_v)
{
  return !gcn_strict_argument_naming (cum_v);
}

/* Implement TARGET_FUNCTION_ARG.

   Return an RTX indicating whether a function argument is passed in a register
   and if so, which register.  */

static rtx
gcn_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  if (cum->normal_function)
    {
      if (!arg.named || arg.end_marker_p ())
	return 0;

      if (targetm.calls.must_pass_in_stack (arg))
	return 0;

      int first_reg = (VECTOR_MODE_P (arg.mode)
		       ? FIRST_VPARM_REG : FIRST_PARM_REG);
      int cum_num = (VECTOR_MODE_P (arg.mode)
		     ? cum->vnum : cum->num);
      int reg_num = first_reg + cum_num;
      int num_regs = num_arg_regs (arg);
      if (num_regs > 0)
	while (reg_num % num_regs != 0)
	  reg_num++;
      if (reg_num + num_regs <= first_reg + NUM_PARM_REGS)
	return gen_rtx_REG (arg.mode, reg_num);
    }
  else
    {
      if (cum->num >= cum->args.nargs)
	{
	  cum->offset = (cum->offset + TYPE_ALIGN (arg.type) / 8 - 1)
	    & -(TYPE_ALIGN (arg.type) / 8);
	  cfun->machine->kernarg_segment_alignment
	    = MAX ((unsigned) cfun->machine->kernarg_segment_alignment,
		   TYPE_ALIGN (arg.type) / 8);
	  rtx addr = gen_rtx_REG (DImode,
				  cum->args.reg[KERNARG_SEGMENT_PTR_ARG]);
	  if (cum->offset)
	    addr = gen_rtx_PLUS (DImode, addr,
				 gen_int_mode (cum->offset, DImode));
	  rtx mem = gen_rtx_MEM (arg.mode, addr);
	  set_mem_attributes (mem, arg.type, 1);
	  set_mem_addr_space (mem, ADDR_SPACE_SCALAR_FLAT);
	  MEM_READONLY_P (mem) = 1;
	  return mem;
	}

      int a = cum->args.order[cum->num];
      if (arg.mode != gcn_kernel_arg_types[a].mode)
	{
	  error ("wrong type of argument %s", gcn_kernel_arg_types[a].name);
	  return 0;
	}
      return gen_rtx_REG ((machine_mode) gcn_kernel_arg_types[a].mode,
			  cum->args.reg[a]);
    }
  return 0;
}

/* Implement TARGET_FUNCTION_ARG_ADVANCE.

   Updates the summarizer variable pointed to by CUM_V to advance past an
   argument in the argument list.  */

static void
gcn_function_arg_advance (cumulative_args_t cum_v,
			  const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if (cum->normal_function)
    {
      if (!arg.named)
	return;

      int first_reg = (VECTOR_MODE_P (arg.mode)
		       ? FIRST_VPARM_REG : FIRST_PARM_REG);
      int *cum_num = (VECTOR_MODE_P (arg.mode)
		      ? &cum->vnum : &cum->num);
      int num_regs = num_arg_regs (arg);
      if (num_regs > 0)
	while ((first_reg + *cum_num) % num_regs != 0)
	  (*cum_num)++;
      *cum_num += num_regs;
    }
  else
    {
      if (cum->num < cum->args.nargs)
	cum->num++;
      else
	{
	  cum->offset += tree_to_uhwi (TYPE_SIZE_UNIT (arg.type));
	  cfun->machine->kernarg_segment_byte_size = cum->offset;
	}
    }
}

/* Implement TARGET_ARG_PARTIAL_BYTES.

   Returns the number of bytes at the beginning of an argument that must be put
   in registers.  The value must be zero for arguments that are passed entirely
   in registers or that are entirely pushed on the stack.  */

static int
gcn_arg_partial_bytes (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if (!arg.named)
    return 0;

  if (targetm.calls.must_pass_in_stack (arg))
    return 0;

  int cum_num = (VECTOR_MODE_P (arg.mode) ? cum->vnum : cum->num);
  int regsize = UNITS_PER_WORD * (VECTOR_MODE_P (arg.mode)
				  ? GET_MODE_NUNITS (arg.mode) : 1);

  if (cum_num >= NUM_PARM_REGS)
    return 0;

  /* If the argument fits entirely in registers, return 0.  */
  if (cum_num + num_arg_regs (arg) <= NUM_PARM_REGS)
    return 0;

  return (NUM_PARM_REGS - cum_num) * regsize;
}

/* A normal function which takes a pointer argument may be passed a pointer to
   LDS space (via a high-bits-set aperture), and that only works with FLAT
   addressing, not GLOBAL.  Force FLAT addressing if the function has an
   incoming pointer parameter.  NOTE: This is a heuristic that works in the
   offloading case, but in general, a function might read global pointer
   variables, etc. that may refer to LDS space or other special memory areas
   not supported by GLOBAL instructions, and then this argument check would not
   suffice.  */

static void
gcn_detect_incoming_pointer_arg (tree fndecl)
{
  gcc_assert (cfun && cfun->machine);

  for (tree arg = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
       arg;
       arg = TREE_CHAIN (arg))
    if (POINTER_TYPE_P (TREE_VALUE (arg)))
      cfun->machine->use_flat_addressing = true;
}

/* Implement INIT_CUMULATIVE_ARGS, via gcn.h.

   Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function
   whose data type is FNTYPE.  For a library call, FNTYPE is 0.  */

void
gcn_init_cumulative_args (CUMULATIVE_ARGS *cum /* Argument info to init */ ,
			  tree fntype /* tree ptr for function decl */ ,
			  rtx libname /* SYMBOL_REF of library name or 0 */ ,
			  tree fndecl, int caller)
{
  memset (cum, 0, sizeof (*cum));
  cum->fntype = fntype;
  if (libname)
    {
      gcc_assert (cfun && cfun->machine);
      cum->normal_function = true;
      if (!caller)
	{
	  cfun->machine->normal_function = true;
	  gcn_detect_incoming_pointer_arg (fndecl);
	}
      return;
    }
  tree attr = NULL;
  if (fndecl)
    attr = lookup_attribute ("amdgpu_hsa_kernel", DECL_ATTRIBUTES (fndecl));
  if (fndecl && !attr)
    attr = lookup_attribute ("amdgpu_hsa_kernel",
			     TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
  if (!attr && fntype)
    attr = lookup_attribute ("amdgpu_hsa_kernel", TYPE_ATTRIBUTES (fntype));
  /* Handle main () as kernel, so we can run testsuite.
     Handle OpenACC kernels similarly to main.  */
  if (!attr && !caller && fndecl
      && (MAIN_NAME_P (DECL_NAME (fndecl))
	  || lookup_attribute ("omp target entrypoint",
			       DECL_ATTRIBUTES (fndecl)) != NULL_TREE))
    gcn_parse_amdgpu_hsa_kernel_attribute (&cum->args, NULL_TREE);
  else
    {
      if (!attr || caller)
	{
	  gcc_assert (cfun && cfun->machine);
	  cum->normal_function = true;
	  if (!caller)
	    cfun->machine->normal_function = true;
	}
      gcn_parse_amdgpu_hsa_kernel_attribute
	(&cum->args, attr ? TREE_VALUE (attr) : NULL_TREE);
    }
  cfun->machine->args = cum->args;
  if (!caller && cfun->machine->normal_function)
    gcn_detect_incoming_pointer_arg (fndecl);

  reinit_regs ();
}

static bool
gcn_return_in_memory (const_tree type, const_tree ARG_UNUSED (fntype))
{
  machine_mode mode = TYPE_MODE (type);
  HOST_WIDE_INT size = int_size_in_bytes (type);

  if (AGGREGATE_TYPE_P (type))
    return true;

  if (mode == BLKmode)
    return true;

  if ((!VECTOR_TYPE_P (type) && size > 2 * UNITS_PER_WORD)
      || size > 2 * UNITS_PER_WORD * 64)
    return true;

  return false;
}

/* Implement TARGET_PROMOTE_FUNCTION_MODE.

   Return the mode to use for outgoing function arguments.  */

machine_mode
gcn_promote_function_mode (const_tree ARG_UNUSED (type), machine_mode mode,
			   int *ARG_UNUSED (punsignedp),
			   const_tree ARG_UNUSED (funtype),
			   int ARG_UNUSED (for_return))
{
  if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) < 4)
    return SImode;

  return mode;
}

/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR.

   Derived from hppa_gimplify_va_arg_expr.  The generic routine doesn't handle
   ARGS_GROW_DOWNWARDS.  */

static tree
gcn_gimplify_va_arg_expr (tree valist, tree type,
			  gimple_seq *ARG_UNUSED (pre_p),
			  gimple_seq *ARG_UNUSED (post_p))
{
  tree ptr = build_pointer_type (type);
  tree valist_type;
  tree t, u;
  bool indirect;

  indirect = pass_va_arg_by_reference (type);
  if (indirect)
    {
      type = ptr;
      ptr = build_pointer_type (type);
    }
  valist_type = TREE_TYPE (valist);

  /* Args grow down.  Not handled by generic routines.  */

  u = fold_convert (sizetype, size_in_bytes (type));
  u = fold_build1 (NEGATE_EXPR, sizetype, u);
  t = fold_build_pointer_plus (valist, u);

  /* Align to 8 byte boundary.  */

  u = build_int_cst (TREE_TYPE (t), -8);
  t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, u);
  t = fold_convert (valist_type, t);

  t = build2 (MODIFY_EXPR, valist_type, valist, t);

  t = fold_convert (ptr, t);
  t = build_va_arg_indirect_ref (t);

  if (indirect)
    t = build_va_arg_indirect_ref (t);

  return t;
}

/* Return 1 if TRAIT NAME is present in the OpenMP context's
   device trait set, return 0 if not present in any OpenMP context in the
   whole translation unit, or -1 if not present in the current OpenMP context
   but might be present in another OpenMP context in the same TU.  */

int
gcn_omp_device_kind_arch_isa (enum omp_device_kind_arch_isa trait,
			      const char *name)
{
  switch (trait)
    {
    case omp_device_kind:
      return strcmp (name, "gpu") == 0;
    case omp_device_arch:
      return strcmp (name, "amdgcn") == 0 || strcmp (name, "gcn") == 0;
    case omp_device_isa:
      return strcmp (name, gcn_devices[gcn_arch].name) == 0;
    default:
      gcc_unreachable ();
    }
}

/* Calculate stack offsets needed to create prologues and epilogues.  */

static struct machine_function *
gcn_compute_frame_offsets (void)
{
  machine_function *offsets = cfun->machine;

  if (reload_completed)
    return offsets;

  offsets->need_frame_pointer = frame_pointer_needed;

  offsets->outgoing_args_size = crtl->outgoing_args_size;
  offsets->pretend_size = crtl->args.pretend_args_size;

  offsets->local_vars = get_frame_size ();

  offsets->lr_needs_saving = (!leaf_function_p ()
			      || df_regs_ever_live_p (LR_REGNUM)
			      || df_regs_ever_live_p (LR_REGNUM + 1));

  offsets->callee_saves = offsets->lr_needs_saving ? 8 : 0;

  for (int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((df_regs_ever_live_p (regno) && !call_used_or_fixed_reg_p (regno))
	|| ((regno & ~1) == HARD_FRAME_POINTER_REGNUM
	    && frame_pointer_needed))
      offsets->callee_saves += (VGPR_REGNO_P (regno)
			       	|| AVGPR_REGNO_P (regno) ? 256 : 4);

  /* Round up to 64-bit boundary to maintain stack alignment.  */
  offsets->callee_saves = (offsets->callee_saves + 7) & ~7;

  return offsets;
}

/* Insert code into the prologue or epilogue to store or load any
   callee-save register to/from the stack.

   Helper function for gcn_expand_prologue and gcn_expand_epilogue.  */

static void
move_callee_saved_registers (rtx sp, machine_function *offsets,
			     bool prologue)
{
  int regno, offset, saved_scalars;
  rtx exec = gen_rtx_REG (DImode, EXEC_REG);
  rtx vcc = gen_rtx_REG (DImode, VCC_LO_REG);
  rtx offreg = gen_rtx_REG (SImode, SGPR_REGNO (22));
  rtx as = gen_rtx_CONST_INT (VOIDmode, STACK_ADDR_SPACE);
  HOST_WIDE_INT exec_set = 0;
  int offreg_set = 0;
  auto_vec<int> saved_sgprs;

  start_sequence ();

  /* Move scalars into two vector registers.  */
  for (regno = 0, saved_scalars = 0; regno < FIRST_VGPR_REG; regno++)
    if ((df_regs_ever_live_p (regno) && !call_used_or_fixed_reg_p (regno))
	|| ((regno & ~1) == LINK_REGNUM && offsets->lr_needs_saving)
	|| ((regno & ~1) == HARD_FRAME_POINTER_REGNUM
	    && offsets->need_frame_pointer))
      {
	rtx reg = gen_rtx_REG (SImode, regno);
	rtx vreg = gen_rtx_REG (V64SImode,
				VGPR_REGNO (6 + (saved_scalars / 64)));
	int lane = saved_scalars % 64;

	if (prologue)
	  {
	    emit_insn (gen_vec_setv64si (vreg, reg, GEN_INT (lane)));
	    saved_sgprs.safe_push (regno);
	  }
	else
	  emit_insn (gen_vec_extractv64sisi (reg, vreg, GEN_INT (lane)));

	saved_scalars++;
      }

  rtx move_scalars = get_insns ();
  end_sequence ();
  start_sequence ();

  /* Ensure that all vector lanes are moved.  */
  exec_set = -1;
  emit_move_insn (exec, GEN_INT (exec_set));

  /* Set up a vector stack pointer.  */
  rtx _0_1_2_3 = gen_rtx_REG (V64SImode, VGPR_REGNO (1));
  rtx _0_4_8_12 = gen_rtx_REG (V64SImode, VGPR_REGNO (3));
  emit_insn (gen_ashlv64si3_exec (_0_4_8_12, _0_1_2_3, GEN_INT (2),
				  gcn_gen_undef (V64SImode), exec));
  rtx vsp = gen_rtx_REG (V64DImode, VGPR_REGNO (4));
  emit_insn (gen_vec_duplicatev64di_exec (vsp, sp, gcn_gen_undef (V64DImode),
					  exec));
  emit_insn (gen_addv64si3_vcc_exec (gcn_operand_part (V64SImode, vsp, 0),
				     gcn_operand_part (V64SImode, vsp, 0),
				     _0_4_8_12, vcc, gcn_gen_undef (V64SImode),
				     exec));
  emit_insn (gen_addcv64si3_exec (gcn_operand_part (V64SImode, vsp, 1),
				  gcn_operand_part (V64SImode, vsp, 1),
				  const0_rtx, vcc, vcc,
				  gcn_gen_undef (V64SImode), exec));

  /* Move vectors.  */
  for (regno = FIRST_VGPR_REG, offset = 0;
       regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((df_regs_ever_live_p (regno) && !call_used_or_fixed_reg_p (regno))
	|| (regno == VGPR_REGNO (6) && saved_scalars > 0)
	|| (regno == VGPR_REGNO (7) && saved_scalars > 63))
      {
	rtx reg = gen_rtx_REG (V64SImode, regno);
	int size = 256;

	if (regno == VGPR_REGNO (6) && saved_scalars < 64)
	  size = saved_scalars * 4;
	else if (regno == VGPR_REGNO (7) && saved_scalars < 128)
	  size = (saved_scalars - 64) * 4;

	if (size != 256 || exec_set != -1)
	  {
	    exec_set = ((unsigned HOST_WIDE_INT) 1 << (size / 4)) - 1;
	    emit_move_insn (exec, gen_int_mode (exec_set, DImode));
	  }

	if (prologue)
	  {
	    rtx insn = emit_insn (gen_scatterv64si_insn_1offset_exec
				  (vsp, const0_rtx, reg, as, const0_rtx,
				   exec));

	    /* Add CFI metadata.  */
	    rtx note;
	    if (regno == VGPR_REGNO (6) || regno == VGPR_REGNO (7))
	      {
		int start = (regno == VGPR_REGNO (7) ? 64 : 0);
		int count = MIN (saved_scalars - start, 64);
		int add_lr = (regno == VGPR_REGNO (6)
			      && offsets->lr_needs_saving);
		int lrdest = -1;
		rtvec seq = rtvec_alloc (count + add_lr);

		/* Add an REG_FRAME_RELATED_EXPR entry for each scalar
		   register that was saved in this batch.  */
		for (int idx = 0; idx < count; idx++)
		  {
		    int stackaddr = offset + idx * 4;
		    rtx dest = gen_rtx_MEM (SImode,
					    gen_rtx_PLUS
					    (DImode, sp,
					     GEN_INT (stackaddr)));
		    rtx src = gen_rtx_REG (SImode, saved_sgprs[start + idx]);
		    rtx set = gen_rtx_SET (dest, src);
		    RTX_FRAME_RELATED_P (set) = 1;
		    RTVEC_ELT (seq, idx) = set;

		    if (saved_sgprs[start + idx] == LINK_REGNUM)
		      lrdest = stackaddr;
		  }

		/* Add an additional expression for DWARF_LINK_REGISTER if
		   LINK_REGNUM was saved.  */
		if (lrdest != -1)
		  {
		    rtx dest = gen_rtx_MEM (DImode,
					    gen_rtx_PLUS
					    (DImode, sp,
					     GEN_INT (lrdest)));
		    rtx src = gen_rtx_REG (DImode, DWARF_LINK_REGISTER);
		    rtx set = gen_rtx_SET (dest, src);
		    RTX_FRAME_RELATED_P (set) = 1;
		    RTVEC_ELT (seq, count) = set;
		  }

		note = gen_rtx_SEQUENCE (VOIDmode, seq);
	      }
	    else
	      {
		rtx dest = gen_rtx_MEM (V64SImode,
					gen_rtx_PLUS (DImode, sp,
						      GEN_INT (offset)));
		rtx src = gen_rtx_REG (V64SImode, regno);
		note = gen_rtx_SET (dest, src);
	      }
	    RTX_FRAME_RELATED_P (insn) = 1;
	    add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
	  }
	else
	  emit_insn (gen_gatherv64si_insn_1offset_exec
		     (reg, vsp, const0_rtx, as, const0_rtx,
		      gcn_gen_undef (V64SImode), exec));

	/* Move our VSP to the next stack entry.  */
	if (offreg_set != size)
	  {
	    offreg_set = size;
	    emit_move_insn (offreg, GEN_INT (size));
	  }
	if (exec_set != -1)
	  {
	    exec_set = -1;
	    emit_move_insn (exec, GEN_INT (exec_set));
	  }
	emit_insn (gen_addv64si3_vcc_dup_exec
		   (gcn_operand_part (V64SImode, vsp, 0),
		    offreg, gcn_operand_part (V64SImode, vsp, 0),
		    vcc, gcn_gen_undef (V64SImode), exec));
	emit_insn (gen_addcv64si3_exec
		   (gcn_operand_part (V64SImode, vsp, 1),
		    gcn_operand_part (V64SImode, vsp, 1),
		    const0_rtx, vcc, vcc, gcn_gen_undef (V64SImode), exec));

	offset += size;
      }

  rtx move_vectors = get_insns ();
  end_sequence ();

  if (prologue)
    {
      emit_insn (move_scalars);
      emit_insn (move_vectors);
    }
  else
    {
      emit_insn (move_vectors);
      emit_insn (move_scalars);
    }

  /* This happens when a new register becomes "live" after reload.
     Check your splitters!  */
  gcc_assert (offset <= offsets->callee_saves);
}

/* Generate prologue.  Called from gen_prologue during pro_and_epilogue pass.

   For a non-kernel function, the stack layout looks like this (interim),
   growing *upwards*:

 hi | + ...
    |__________________| <-- current SP
    | outgoing args    |
    |__________________|
    | (alloca space)   |
    |__________________|
    | local vars       |
    |__________________| <-- FP/hard FP
    | callee-save regs |
    |__________________| <-- soft arg pointer
    | pretend args     |
    |__________________| <-- incoming SP
    | incoming args    |
 lo |..................|

   This implies arguments (beyond the first N in registers) must grow
   downwards (as, apparently, PA has them do).

   For a kernel function we have the simpler:

 hi | + ...
    |__________________| <-- current SP
    | outgoing args    |
    |__________________|
    | (alloca space)   |
    |__________________|
    | local vars       |
 lo |__________________| <-- FP/hard FP

*/

void
gcn_expand_prologue ()
{
  machine_function *offsets = gcn_compute_frame_offsets ();

  if (!cfun || !cfun->machine || cfun->machine->normal_function)
    {
      rtx sp = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
      rtx sp_hi = gcn_operand_part (Pmode, sp, 1);
      rtx sp_lo = gcn_operand_part (Pmode, sp, 0);
      rtx fp = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
      rtx fp_hi = gcn_operand_part (Pmode, fp, 1);
      rtx fp_lo = gcn_operand_part (Pmode, fp, 0);

      start_sequence ();

      if (offsets->pretend_size > 0)
	{
	  /* FIXME: Do the actual saving of register pretend args to the stack.
	     Register order needs consideration.  */
	}

      /* Save callee-save regs.  */
      move_callee_saved_registers (sp, offsets, true);

      HOST_WIDE_INT sp_adjust = offsets->pretend_size
	+ offsets->callee_saves
	+ offsets->local_vars + offsets->outgoing_args_size;
      if (sp_adjust > 0)
	{
	  /* Adding RTX_FRAME_RELATED_P effectively disables spliting, so
	     we use split add explictly, and specify the DImode add in
	     the note.  */
	  rtx scc = gen_rtx_REG (BImode, SCC_REG);
	  rtx adjustment = gen_int_mode (sp_adjust, SImode);
	  rtx insn = emit_insn (gen_addsi3_scalar_carry (sp_lo, sp_lo,
							 adjustment, scc));
	  if (!offsets->need_frame_pointer)
	    {
	      RTX_FRAME_RELATED_P (insn) = 1;
	      add_reg_note (insn, REG_FRAME_RELATED_EXPR,
			    gen_rtx_SET (sp,
					 gen_rtx_PLUS (DImode, sp,
						       adjustment)));
	    }
	  emit_insn (gen_addcsi3_scalar_zero (sp_hi, sp_hi, scc));
	}

      if (offsets->need_frame_pointer)
	{
	  /* Adding RTX_FRAME_RELATED_P effectively disables spliting, so
	     we use split add explictly, and specify the DImode add in
	     the note.  */
	  rtx scc = gen_rtx_REG (BImode, SCC_REG);
	  int fp_adjust = -(offsets->local_vars + offsets->outgoing_args_size);
	  rtx adjustment = gen_int_mode (fp_adjust, SImode);
	  rtx insn = emit_insn (gen_addsi3_scalar_carry(fp_lo, sp_lo,
							adjustment, scc));
	  emit_insn (gen_addcsi3_scalar (fp_hi, sp_hi,
					 (fp_adjust < 0 ? GEN_INT (-1)
					  : const0_rtx),
					 scc, scc));

	  /* Set the CFA to the entry stack address, as an offset from the
	     frame pointer.  This is preferred because the frame pointer is
	     saved in each frame, whereas the stack pointer is not.  */
	  RTX_FRAME_RELATED_P (insn) = 1;
	  add_reg_note (insn, REG_CFA_DEF_CFA,
			gen_rtx_PLUS (DImode, fp,
				      GEN_INT (-(offsets->pretend_size
						 + offsets->callee_saves))));
	}

      rtx_insn *seq = get_insns ();
      end_sequence ();

      emit_insn (seq);
    }
  else
    {
      if (TARGET_PACKED_WORK_ITEMS)
	{
	  /* v0 conatins the X, Y and Z dimensions all in one.
	     Expand them out for ABI compatibility.  */
	  /* TODO: implement and use zero_extract.  */
	  rtx v1 = gen_rtx_REG (V64SImode, VGPR_REGNO (1));
	  emit_insn (gen_andv64si3 (v1, gen_rtx_REG (V64SImode, VGPR_REGNO (0)),
				    gen_rtx_CONST_INT (VOIDmode, 0x3FF << 10)));
	  emit_insn (gen_lshrv64si3 (v1, v1, gen_rtx_CONST_INT (VOIDmode, 10)));
	  emit_insn (gen_prologue_use (v1));

	  rtx v2 = gen_rtx_REG (V64SImode, VGPR_REGNO (2));
	  emit_insn (gen_andv64si3 (v2, gen_rtx_REG (V64SImode, VGPR_REGNO (0)),
				    gen_rtx_CONST_INT (VOIDmode, 0x3FF << 20)));
	  emit_insn (gen_lshrv64si3 (v2, v2, gen_rtx_CONST_INT (VOIDmode, 20)));
	  emit_insn (gen_prologue_use (v2));
	}

      /* We no longer use the private segment for the stack (it's not
	 accessible to reverse offload), so we must calculate a wave offset
	 from the grid dimensions and stack size, which is calculated on the
	 host, and passed in the kernargs region.
	 See libgomp-gcn.h for details.  */
      rtx wave_offset = gen_rtx_REG (SImode, FIRST_PARM_REG);

      rtx num_waves_mem = gcn_oacc_dim_size (1);
      rtx num_waves = gen_rtx_REG (SImode, FIRST_PARM_REG+1);
      set_mem_addr_space (num_waves_mem, ADDR_SPACE_SCALAR_FLAT);
      emit_move_insn (num_waves, num_waves_mem);

      rtx workgroup_num = gcn_oacc_dim_pos (0);
      rtx wave_num = gen_rtx_REG (SImode, FIRST_PARM_REG+2);
      emit_move_insn(wave_num, gcn_oacc_dim_pos (1));

      rtx thread_id = gen_rtx_REG (SImode, FIRST_PARM_REG+3);
      emit_insn (gen_mulsi3 (thread_id, num_waves, workgroup_num));
      emit_insn (gen_addsi3_scc (thread_id, thread_id, wave_num));

      rtx kernarg_reg = gen_rtx_REG (DImode, cfun->machine->args.reg
				     [KERNARG_SEGMENT_PTR_ARG]);
      rtx stack_size_mem = gen_rtx_MEM (SImode,
					gen_rtx_PLUS (DImode, kernarg_reg,
						      GEN_INT (52)));
      set_mem_addr_space (stack_size_mem, ADDR_SPACE_SCALAR_FLAT);
      emit_move_insn (wave_offset, stack_size_mem);

      emit_insn (gen_mulsi3 (wave_offset, wave_offset, thread_id));

      /* The FLAT_SCRATCH_INIT is not usually needed, but can be enabled
	 via the function attributes.  */
      if (cfun->machine->args.requested & (1 << FLAT_SCRATCH_INIT_ARG))
	{
	  rtx fs_init_lo =
	    gen_rtx_REG (SImode,
			 cfun->machine->args.reg[FLAT_SCRATCH_INIT_ARG]);
	  rtx fs_init_hi =
	    gen_rtx_REG (SImode,
			 cfun->machine->args.reg[FLAT_SCRATCH_INIT_ARG] + 1);
	  rtx fs_reg_lo = gen_rtx_REG (SImode, FLAT_SCRATCH_REG);
	  rtx fs_reg_hi = gen_rtx_REG (SImode, FLAT_SCRATCH_REG + 1);

	  /*rtx queue = gen_rtx_REG(DImode,
				  cfun->machine->args.reg[QUEUE_PTR_ARG]);
	  rtx aperture = gen_rtx_MEM (SImode,
				      gen_rtx_PLUS (DImode, queue,
						    gen_int_mode (68, SImode)));
	  set_mem_addr_space (aperture, ADDR_SPACE_SCALAR_FLAT);*/

	  /* Set up flat_scratch.  */
	  emit_insn (gen_addsi3_scc (fs_reg_hi, fs_init_lo, wave_offset));
	  emit_insn (gen_lshrsi3_scc (fs_reg_hi, fs_reg_hi,
				      gen_int_mode (8, SImode)));
	  emit_move_insn (fs_reg_lo, fs_init_hi);
	}

      /* Set up frame pointer and stack pointer.  */
      rtx sp = gen_rtx_REG (DImode, STACK_POINTER_REGNUM);
      rtx sp_hi = simplify_gen_subreg (SImode, sp, DImode, 4);
      rtx sp_lo = simplify_gen_subreg (SImode, sp, DImode, 0);
      rtx fp = gen_rtx_REG (DImode, HARD_FRAME_POINTER_REGNUM);
      rtx fp_hi = simplify_gen_subreg (SImode, fp, DImode, 4);
      rtx fp_lo = simplify_gen_subreg (SImode, fp, DImode, 0);

      HOST_WIDE_INT sp_adjust = (offsets->local_vars
				 + offsets->outgoing_args_size);

      /* Initialize FP and SP from space allocated on the host.  */
      rtx stack_addr_mem = gen_rtx_MEM (DImode,
					gen_rtx_PLUS (DImode, kernarg_reg,
						      GEN_INT (40)));
      set_mem_addr_space (stack_addr_mem, ADDR_SPACE_SCALAR_FLAT);
      emit_move_insn (fp, stack_addr_mem);
      rtx scc = gen_rtx_REG (BImode, SCC_REG);
      emit_insn (gen_addsi3_scalar_carry (fp_lo, fp_lo, wave_offset, scc));
      emit_insn (gen_addcsi3_scalar_zero (fp_hi, fp_hi, scc));

      /* Adding RTX_FRAME_RELATED_P effectively disables spliting, so we use
	 split add explictly, and specify the DImode add in the note.
         The DWARF info expects that the callee-save data is in the frame,
         even though it isn't (because this is the entry point), so we
         make a notional adjustment to the DWARF frame offset here.  */
      rtx dbg_adjustment = gen_int_mode (sp_adjust + offsets->callee_saves,
					 DImode);
      rtx insn;
      if (sp_adjust > 0)
	{
	  rtx scc = gen_rtx_REG (BImode, SCC_REG);
	  rtx adjustment = gen_int_mode (sp_adjust, DImode);
	  insn = emit_insn (gen_addsi3_scalar_carry(sp_lo, fp_lo, adjustment,
						    scc));
	  emit_insn (gen_addcsi3_scalar_zero (sp_hi, fp_hi, scc));
	}
      else
	insn = emit_move_insn (sp, fp);
      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_FRAME_RELATED_EXPR,
		    gen_rtx_SET (sp, gen_rtx_PLUS (DImode, sp,
						   dbg_adjustment)));

      if (offsets->need_frame_pointer)
	{
	  /* Set the CFA to the entry stack address, as an offset from the
	     frame pointer.  This is necessary when alloca is used, and
	     harmless otherwise.  */
	  rtx neg_adjust = gen_int_mode (-offsets->callee_saves, DImode);
	  add_reg_note (insn, REG_CFA_DEF_CFA,
			gen_rtx_PLUS (DImode, fp, neg_adjust));
	}

      /* Make sure the flat scratch reg doesn't get optimised away.  */
      emit_insn (gen_prologue_use (gen_rtx_REG (DImode, FLAT_SCRATCH_REG)));
    }

  /* Ensure that the scheduler doesn't do anything unexpected.  */
  emit_insn (gen_blockage ());

  if (cfun && cfun->machine && !cfun->machine->normal_function && flag_openmp)
    {
      /* OpenMP kernels have an implicit call to gomp_gcn_enter_kernel.  */
      rtx fn_reg = gen_rtx_REG (Pmode, FIRST_PARM_REG);
      emit_move_insn (fn_reg, gen_rtx_SYMBOL_REF (Pmode,
						  "gomp_gcn_enter_kernel"));
      emit_call_insn (gen_gcn_indirect_call (fn_reg, const0_rtx));
    }
}

/* Generate epilogue.  Called from gen_epilogue during pro_and_epilogue pass.

   See gcn_expand_prologue for stack details.  */

void
gcn_expand_epilogue (void)
{
  /* Ensure that the scheduler doesn't do anything unexpected.  */
  emit_insn (gen_blockage ());

  if (!cfun || !cfun->machine || cfun->machine->normal_function)
    {
      machine_function *offsets = gcn_compute_frame_offsets ();
      rtx sp = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
      rtx fp = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);

      HOST_WIDE_INT sp_adjust = offsets->callee_saves + offsets->pretend_size;

      if (offsets->need_frame_pointer)
	{
	  /* Restore old SP from the frame pointer.  */
	  if (sp_adjust > 0)
	    emit_insn (gen_subdi3 (sp, fp, gen_int_mode (sp_adjust, DImode)));
	  else
	    emit_move_insn (sp, fp);
	}
      else
	{
	  /* Restore old SP from current SP.  */
	  sp_adjust += offsets->outgoing_args_size + offsets->local_vars;

	  if (sp_adjust > 0)
	    emit_insn (gen_subdi3 (sp, sp, gen_int_mode (sp_adjust, DImode)));
	}

      move_callee_saved_registers (sp, offsets, false);

      /* There's no explicit use of the link register on the return insn.  Emit
         one here instead.  */
      if (offsets->lr_needs_saving)
	emit_use (gen_rtx_REG (DImode, LINK_REGNUM));

      /* Similar for frame pointer.  */
      if (offsets->need_frame_pointer)
	emit_use (gen_rtx_REG (DImode, HARD_FRAME_POINTER_REGNUM));
    }
  else if (flag_openmp)
    {
      /* OpenMP kernels have an implicit call to gomp_gcn_exit_kernel.  */
      rtx fn_reg = gen_rtx_REG (Pmode, FIRST_PARM_REG);
      emit_move_insn (fn_reg,
		      gen_rtx_SYMBOL_REF (Pmode, "gomp_gcn_exit_kernel"));
      emit_call_insn (gen_gcn_indirect_call (fn_reg, const0_rtx));
    }
  else if (TREE_CODE (TREE_TYPE (DECL_RESULT (cfun->decl))) != VOID_TYPE)
    {
      /* Assume that an exit value compatible with gcn-run is expected.
         That is, the third input parameter is an int*.

         We can't allocate any new registers, but the dispatch_ptr and
	 kernarg_reg are dead after this, so we'll use those.  */
      rtx dispatch_ptr_reg = gen_rtx_REG (DImode, cfun->machine->args.reg
					  [DISPATCH_PTR_ARG]);
      rtx kernarg_reg = gen_rtx_REG (DImode, cfun->machine->args.reg
				     [KERNARG_SEGMENT_PTR_ARG]);
      rtx retptr_mem = gen_rtx_MEM (DImode,
				    gen_rtx_PLUS (DImode, kernarg_reg,
						  GEN_INT (16)));
      set_mem_addr_space (retptr_mem, ADDR_SPACE_SCALAR_FLAT);
      emit_move_insn (dispatch_ptr_reg, retptr_mem);

      rtx retval_addr = gen_rtx_REG (DImode, FIRST_VPARM_REG + 2);
      emit_move_insn (retval_addr, dispatch_ptr_reg);
      rtx retval_mem = gen_rtx_MEM (SImode, retval_addr);
      set_mem_addr_space (retval_mem, ADDR_SPACE_FLAT);
      emit_move_insn (retval_mem, gen_rtx_REG (SImode, RETURN_VALUE_REG));
    }

  emit_jump_insn (gen_gcn_return ());
}

/* Implement TARGET_FRAME_POINTER_REQUIRED.

   Return true if the frame pointer should not be eliminated.  */

bool
gcn_frame_pointer_rqd (void)
{
  /* GDB needs the frame pointer in order to unwind properly,
     but that's not important for the entry point, unless alloca is used.
     It's not important for code execution, so we should repect the
     -fomit-frame-pointer flag.  */
  return (!flag_omit_frame_pointer
	  && cfun
	  && (cfun->calls_alloca
	      || (cfun->machine && cfun->machine->normal_function)));
}

/* Implement TARGET_CAN_ELIMINATE.

   Return true if the compiler is allowed to try to replace register number
   FROM_REG with register number TO_REG.

   FIXME: is the default "true" not enough? Should this be a negative set?  */

bool
gcn_can_eliminate_p (int /*from_reg */ , int to_reg)
{
  return (to_reg == HARD_FRAME_POINTER_REGNUM
	  || to_reg == STACK_POINTER_REGNUM);
}

/* Implement INITIAL_ELIMINATION_OFFSET.

   Returns the initial difference between the specified pair of registers, in
   terms of stack position.  */

HOST_WIDE_INT
gcn_initial_elimination_offset (int from, int to)
{
  machine_function *offsets = gcn_compute_frame_offsets ();

  switch (from)
    {
    case ARG_POINTER_REGNUM:
      if (to == STACK_POINTER_REGNUM)
	return -(offsets->callee_saves + offsets->local_vars
		 + offsets->outgoing_args_size);
      else if (to == FRAME_POINTER_REGNUM || to == HARD_FRAME_POINTER_REGNUM)
	return -offsets->callee_saves;
      else
	gcc_unreachable ();
      break;

    case FRAME_POINTER_REGNUM:
      if (to == STACK_POINTER_REGNUM)
	return -(offsets->local_vars + offsets->outgoing_args_size);
      else if (to == HARD_FRAME_POINTER_REGNUM)
	return 0;
      else
	gcc_unreachable ();
      break;

    default:
      gcc_unreachable ();
    }
}

/* Implement HARD_REGNO_RENAME_OK.

   Return true if it is permissible to rename a hard register from
   FROM_REG to TO_REG.  */

bool
gcn_hard_regno_rename_ok (unsigned int from_reg, unsigned int to_reg)
{
  if (from_reg == SCC_REG
      || from_reg == VCC_LO_REG || from_reg == VCC_HI_REG
      || from_reg == EXEC_LO_REG || from_reg == EXEC_HI_REG
      || to_reg == SCC_REG
      || to_reg == VCC_LO_REG || to_reg == VCC_HI_REG
      || to_reg == EXEC_LO_REG || to_reg == EXEC_HI_REG)
    return false;

  /* Allow the link register to be used if it was saved.  */
  if ((to_reg & ~1) == LINK_REGNUM)
    return !cfun || cfun->machine->lr_needs_saving;

  /* Allow the registers used for the static chain to be used if the chain is
     not in active use.  */
  if ((to_reg & ~1) == STATIC_CHAIN_REGNUM)
    return !cfun
	|| !(cfun->static_chain_decl
	     && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
	     && df_regs_ever_live_p (STATIC_CHAIN_REGNUM + 1));

  return true;
}

/* Implement HARD_REGNO_CALLER_SAVE_MODE.

   Which mode is required for saving NREGS of a pseudo-register in
   call-clobbered hard register REGNO.  */

machine_mode
gcn_hard_regno_caller_save_mode (unsigned int regno, unsigned int nregs,
				 machine_mode regmode)
{
  machine_mode result = choose_hard_reg_mode (regno, nregs, NULL);

  if (VECTOR_MODE_P (result) && !VECTOR_MODE_P (regmode))
    result = (nregs == 1 ? SImode : DImode);

  return result;
}

/* Implement TARGET_ASM_TRAMPOLINE_TEMPLATE.

   Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.  */

static void
gcn_asm_trampoline_template (FILE *f)
{
  /* The source operand of the move instructions must be a 32-bit
     constant following the opcode.  */
  asm_fprintf (f, "\ts_mov_b32\ts%i, 0xffff\n", STATIC_CHAIN_REGNUM);
  asm_fprintf (f, "\ts_mov_b32\ts%i, 0xffff\n", STATIC_CHAIN_REGNUM + 1);
  asm_fprintf (f, "\ts_mov_b32\ts%i, 0xffff\n", CC_SAVE_REG);
  asm_fprintf (f, "\ts_mov_b32\ts%i, 0xffff\n", CC_SAVE_REG + 1);
  asm_fprintf (f, "\ts_setpc_b64\ts[%i:%i]\n", CC_SAVE_REG, CC_SAVE_REG + 1);
  asm_fprintf (f, "\t.align 8\n");
}

/* Implement TARGET_TRAMPOLINE_INIT.

   Emit RTL insns to initialize the variable parts of a trampoline.
   FNDECL is the decl of the target address, M_TRAMP is a MEM for
   the trampoline, and CHAIN_VALUE is an RTX for the static chain
   to be passed to the target function.  */

static void
gcn_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx chain_value_reg = copy_to_reg (chain_value);
  rtx fnaddr_reg = copy_to_reg (fnaddr);

  for (int i = 0; i < 4; i++)
    {
      rtx mem = adjust_address (m_tramp, SImode, i * 8 + 4);
      rtx reg = i < 2 ? chain_value_reg : fnaddr_reg;
      emit_move_insn (mem, gen_rtx_SUBREG (SImode, reg, (i % 2) * 4));
    }

  rtx tramp_addr = XEXP (m_tramp, 0);
  emit_insn (gen_clear_icache (tramp_addr,
			       plus_constant (ptr_mode, tramp_addr,
					      TRAMPOLINE_SIZE)));
}

/* Implement TARGET_EXPAND_DIVMOD_LIBFUNC.

   There are divmod libfuncs for all modes except TImode.  They return the
   two values packed into a larger integer/vector.  */

void
gcn_expand_divmod_libfunc (rtx libfunc, machine_mode mode, rtx op0, rtx op1,
			   rtx *quot, rtx *rem)
{
  machine_mode innermode = (VECTOR_MODE_P (mode)
			    ? GET_MODE_INNER (mode) : mode);
  machine_mode wideinnermode = VOIDmode;
  machine_mode widemode = VOIDmode;

  switch (innermode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      wideinnermode = DImode;
      break;
    case E_DImode:
      wideinnermode = TImode;
      break;
    default:
      gcc_unreachable ();
    }

  if (VECTOR_MODE_P (mode))
    widemode = VnMODE (GET_MODE_NUNITS (mode), wideinnermode);
  else
    widemode = wideinnermode;

  emit_library_call_value (libfunc, gen_rtx_REG (widemode, RETURN_VALUE_REG),
			   LCT_NORMAL, widemode, op0, mode, op1, mode);

  *quot = gen_rtx_REG (mode, RETURN_VALUE_REG);
  *rem = gen_rtx_REG (mode,
		      RETURN_VALUE_REG + (wideinnermode == TImode ? 2 : 1));
}

/* }}}  */
/* {{{ Miscellaneous.  */

/* Implement TARGET_CANNOT_COPY_INSN_P.

   Return true if INSN must not be duplicated.  */

static bool
gcn_cannot_copy_insn_p (rtx_insn *insn)
{
  if (recog_memoized (insn) == CODE_FOR_gcn_wavefront_barrier)
    return true;

  return false;
}

/* Implement TARGET_DEBUG_UNWIND_INFO.

   Defines the mechanism that will be used for describing frame unwind
   information to the debugger.  */

static enum unwind_info_type
gcn_debug_unwind_info ()
{
  return UI_DWARF2;
}

/* Determine if there is a suitable hardware conversion instruction.
   Used primarily by the machine description.  */

bool
gcn_valid_cvt_p (machine_mode from, machine_mode to, enum gcn_cvt_t op)
{
  if (VECTOR_MODE_P (from) != VECTOR_MODE_P (to))
    return false;

  if (VECTOR_MODE_P (from))
    {
      if (GET_MODE_NUNITS (from) != GET_MODE_NUNITS (to))
	return false;

      from = GET_MODE_INNER (from);
      to = GET_MODE_INNER (to);
    }

  switch (op)
    {
    case fix_trunc_cvt:
    case fixuns_trunc_cvt:
      if (GET_MODE_CLASS (from) != MODE_FLOAT
	  || GET_MODE_CLASS (to) != MODE_INT)
	return false;
      break;
    case float_cvt:
    case floatuns_cvt:
      if (GET_MODE_CLASS (from) != MODE_INT
	  || GET_MODE_CLASS (to) != MODE_FLOAT)
	return false;
      break;
    case extend_cvt:
      if (GET_MODE_CLASS (from) != MODE_FLOAT
	  || GET_MODE_CLASS (to) != MODE_FLOAT
	  || GET_MODE_SIZE (from) >= GET_MODE_SIZE (to))
	return false;
      break;
    case trunc_cvt:
      if (GET_MODE_CLASS (from) != MODE_FLOAT
	  || GET_MODE_CLASS (to) != MODE_FLOAT
	  || GET_MODE_SIZE (from) <= GET_MODE_SIZE (to))
	return false;
      break;
    }

  return ((to == HImode && from == HFmode)
	  || (to == SImode && (from == SFmode || from == DFmode))
	  || (to == HFmode && (from == HImode || from == SFmode))
	  || (to == SFmode && (from == SImode || from == HFmode
			       || from == DFmode))
	  || (to == DFmode && (from == SImode || from == SFmode)));
}

/* Implement TARGET_EMUTLS_VAR_INIT.

   Disable emutls (gthr-gcn.h does not support it, yet).  */

tree
gcn_emutls_var_init (tree, tree decl, tree)
{
  sorry_at (DECL_SOURCE_LOCATION (decl), "TLS is not implemented for GCN.");
  return NULL_TREE;
}

/* }}}  */
/* {{{ Costs.  */

/* Implement TARGET_RTX_COSTS.

   Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */

static bool
gcn_rtx_costs (rtx x, machine_mode, int, int, int *total, bool)
{
  enum rtx_code code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_INT:
      if (gcn_inline_constant_p (x))
	*total = 0;
      else if (code == CONST_INT
	  && ((unsigned HOST_WIDE_INT) INTVAL (x) + 0x8000) < 0x10000)
	*total = 1;
      else if (gcn_constant_p (x))
	*total = 2;
      else
	*total = vgpr_vector_mode_p (GET_MODE (x)) ? 64 : 4;
      return true;

    case DIV:
      *total = 100;
      return false;

    default:
      *total = 3;
      return false;
    }
}

/* Implement TARGET_MEMORY_MOVE_COST.

   Return the cost of moving data of mode M between a
   register and memory.  A value of 2 is the default; this cost is
   relative to those in `REGISTER_MOVE_COST'.

   This function is used extensively by register_move_cost that is used to
   build tables at startup.  Make it inline in this case.
   When IN is 2, return maximum of in and out move cost.

   If moving between registers and memory is more expensive than
   between two registers, you should define this macro to express the
   relative cost.

   Model also increased moving costs of QImode registers in non
   Q_REGS classes.  */

#define LOAD_COST  32
#define STORE_COST 32
static int
gcn_memory_move_cost (machine_mode mode, reg_class_t regclass, bool in)
{
  int nregs = CEIL (GET_MODE_SIZE (mode), 4);
  switch (regclass)
    {
    case SCC_CONDITIONAL_REG:
    case VCCZ_CONDITIONAL_REG:
    case VCC_CONDITIONAL_REG:
    case EXECZ_CONDITIONAL_REG:
    case ALL_CONDITIONAL_REGS:
    case SGPR_REGS:
    case SGPR_EXEC_REGS:
    case EXEC_MASK_REG:
    case SGPR_VOP_SRC_REGS:
    case SGPR_MEM_SRC_REGS:
    case SGPR_SRC_REGS:
    case SGPR_DST_REGS:
    case GENERAL_REGS:
    case AFP_REGS:
      if (!in)
	return (STORE_COST + 2) * nregs;
      return LOAD_COST * nregs;
    case VGPR_REGS:
      if (in)
	return (LOAD_COST + 2) * nregs;
      return STORE_COST * nregs;
    case AVGPR_REGS:
    case ALL_VGPR_REGS:
      if (in)
	return (LOAD_COST + (TARGET_CDNA2_MEM_COSTS ? 2 : 4)) * nregs;
      return (STORE_COST + (TARGET_CDNA2_MEM_COSTS ? 0 : 2)) * nregs;
    case ALL_REGS:
    case ALL_GPR_REGS:
    case SRCDST_REGS:
      if (in)
	return (LOAD_COST + 2) * nregs;
      return (STORE_COST + 2) * nregs;
    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_REGISTER_MOVE_COST.

   Return the cost of moving data from a register in class CLASS1 to
   one in class CLASS2.  Base value is 2.  */

static int
gcn_register_move_cost (machine_mode, reg_class_t dst, reg_class_t src)
{
  if (src == AVGPR_REGS)
    {
      if (dst == AVGPR_REGS)
	return !TARGET_AVGPR_MEMOPS ? 6 : 2;
      if (dst != VGPR_REGS)
	return 6;
    }
  if (dst == AVGPR_REGS && src != VGPR_REGS)
    return 6;
  /* Increase cost of moving from and to vector registers.  While this is
     fast in hardware (I think), it has hidden cost of setting up the exec
     flags.  */
  if ((src < VGPR_REGS) != (dst < VGPR_REGS))
    return 4;
  return 2;
}

/* }}}  */
/* {{{ Builtins.  */

/* Type codes used by GCN built-in definitions.  */

enum gcn_builtin_type_index
{
  GCN_BTI_END_OF_PARAMS,

  GCN_BTI_VOID,
  GCN_BTI_BOOL,
  GCN_BTI_INT,
  GCN_BTI_UINT,
  GCN_BTI_SIZE_T,
  GCN_BTI_LLINT,
  GCN_BTI_LLUINT,
  GCN_BTI_EXEC,

  GCN_BTI_SF,
  GCN_BTI_V64SI,
  GCN_BTI_V64SF,
  GCN_BTI_V64DF,
  GCN_BTI_V64PTR,
  GCN_BTI_SIPTR,
  GCN_BTI_SFPTR,
  GCN_BTI_VOIDPTR,

  GCN_BTI_LDS_VOIDPTR,

  GCN_BTI_MAX
};

static GTY(()) tree gcn_builtin_types[GCN_BTI_MAX];

#define exec_type_node (gcn_builtin_types[GCN_BTI_EXEC])
#define sf_type_node (gcn_builtin_types[GCN_BTI_SF])
#define v64si_type_node (gcn_builtin_types[GCN_BTI_V64SI])
#define v64sf_type_node (gcn_builtin_types[GCN_BTI_V64SF])
#define v64df_type_node (gcn_builtin_types[GCN_BTI_V64DF])
#define v64ptr_type_node (gcn_builtin_types[GCN_BTI_V64PTR])
#define siptr_type_node (gcn_builtin_types[GCN_BTI_SIPTR])
#define sfptr_type_node (gcn_builtin_types[GCN_BTI_SFPTR])
#define voidptr_type_node (gcn_builtin_types[GCN_BTI_VOIDPTR])
#define size_t_type_node (gcn_builtin_types[GCN_BTI_SIZE_T])

static rtx gcn_expand_builtin_1 (tree, rtx, rtx, machine_mode, int,
				 struct gcn_builtin_description *);
static rtx gcn_expand_builtin_binop (tree, rtx, rtx, machine_mode, int,
				     struct gcn_builtin_description *);

struct gcn_builtin_description;
typedef rtx (*gcn_builtin_expander) (tree, rtx, rtx, machine_mode, int,
				     struct gcn_builtin_description *);

enum gcn_builtin_type
{
  B_UNIMPLEMENTED,		/* Sorry out */
  B_INSN,			/* Emit a pattern */
  B_OVERLOAD			/* Placeholder for an overloaded function */
};

struct gcn_builtin_description
{
  int fcode;
  int icode;
  const char *name;
  enum gcn_builtin_type type;
  /* The first element of parm is always the return type.  The rest
     are a zero terminated list of parameters.  */
  int parm[6];
  gcn_builtin_expander expander;
};

/* Read in the GCN builtins from gcn-builtins.def.  */

extern GTY(()) struct gcn_builtin_description gcn_builtins[GCN_BUILTIN_MAX];

struct gcn_builtin_description gcn_builtins[] = {
#define DEF_BUILTIN(fcode, icode, name, type, params, expander)	\
  {GCN_BUILTIN_ ## fcode, icode, name, type, params, expander},

#define DEF_BUILTIN_BINOP_INT_FP(fcode, ic, name)			\
  {GCN_BUILTIN_ ## fcode ## _V64SI,					\
   CODE_FOR_ ## ic ##v64si3_exec, name "_v64int", B_INSN,		\
   {GCN_BTI_V64SI, GCN_BTI_EXEC, GCN_BTI_V64SI, GCN_BTI_V64SI,		\
    GCN_BTI_V64SI, GCN_BTI_END_OF_PARAMS}, gcn_expand_builtin_binop},	\
  {GCN_BUILTIN_ ## fcode ## _V64SI_unspec,				\
   CODE_FOR_ ## ic ##v64si3_exec, name "_v64int_unspec", B_INSN, 	\
   {GCN_BTI_V64SI, GCN_BTI_EXEC, GCN_BTI_V64SI, GCN_BTI_V64SI,		\
    GCN_BTI_END_OF_PARAMS}, gcn_expand_builtin_binop},

#include "gcn-builtins.def"
#undef DEF_BUILTIN_BINOP_INT_FP
#undef DEF_BUILTIN
};

static GTY(()) tree gcn_builtin_decls[GCN_BUILTIN_MAX];

/* Implement TARGET_BUILTIN_DECL.

   Return the GCN builtin for CODE.  */

tree
gcn_builtin_decl (unsigned code, bool ARG_UNUSED (initialize_p))
{
  if (code >= GCN_BUILTIN_MAX)
    return error_mark_node;

  return gcn_builtin_decls[code];
}

/* Helper function for gcn_init_builtins.  */

static void
gcn_init_builtin_types (void)
{
  gcn_builtin_types[GCN_BTI_VOID] = void_type_node;
  gcn_builtin_types[GCN_BTI_BOOL] = boolean_type_node;
  gcn_builtin_types[GCN_BTI_INT] = intSI_type_node;
  gcn_builtin_types[GCN_BTI_UINT] = unsigned_type_for (intSI_type_node);
  gcn_builtin_types[GCN_BTI_SIZE_T] = size_type_node;
  gcn_builtin_types[GCN_BTI_LLINT] = intDI_type_node;
  gcn_builtin_types[GCN_BTI_LLUINT] = unsigned_type_for (intDI_type_node);

  exec_type_node = unsigned_intDI_type_node;
  sf_type_node = float32_type_node;
  v64si_type_node = build_vector_type (intSI_type_node, 64);
  v64sf_type_node = build_vector_type (float_type_node, 64);
  v64df_type_node = build_vector_type (double_type_node, 64);
  v64ptr_type_node = build_vector_type (unsigned_intDI_type_node
					/*build_pointer_type
					  (integer_type_node) */
					, 64);
  tree tmp = build_distinct_type_copy (intSI_type_node);
  TYPE_ADDR_SPACE (tmp) = ADDR_SPACE_DEFAULT;
  siptr_type_node = build_pointer_type (tmp);

  tmp = build_distinct_type_copy (float_type_node);
  TYPE_ADDR_SPACE (tmp) = ADDR_SPACE_DEFAULT;
  sfptr_type_node = build_pointer_type (tmp);

  tmp = build_distinct_type_copy (void_type_node);
  TYPE_ADDR_SPACE (tmp) = ADDR_SPACE_DEFAULT;
  voidptr_type_node = build_pointer_type (tmp);

  tmp = build_distinct_type_copy (void_type_node);
  TYPE_ADDR_SPACE (tmp) = ADDR_SPACE_LDS;
  gcn_builtin_types[GCN_BTI_LDS_VOIDPTR] = build_pointer_type (tmp);
}

/* Implement TARGET_INIT_BUILTINS.

   Set up all builtin functions for this target.  */

static void
gcn_init_builtins (void)
{
  gcn_init_builtin_types ();

  struct gcn_builtin_description *d;
  unsigned int i;
  for (i = 0, d = gcn_builtins; i < GCN_BUILTIN_MAX; i++, d++)
    {
      tree p;
      char name[64];		/* build_function will make a copy.  */
      int parm;

      /* FIXME: Is this necessary/useful? */
      if (d->name == 0)
	continue;

      /* Find last parm.  */
      for (parm = 1; d->parm[parm] != GCN_BTI_END_OF_PARAMS; parm++)
	;

      p = void_list_node;
      while (parm > 1)
	p = tree_cons (NULL_TREE, gcn_builtin_types[d->parm[--parm]], p);

      p = build_function_type (gcn_builtin_types[d->parm[0]], p);

      sprintf (name, "__builtin_gcn_%s", d->name);
      gcn_builtin_decls[i]
	= add_builtin_function (name, p, i, BUILT_IN_MD, NULL, NULL_TREE);

      /* These builtins don't throw.  */
      TREE_NOTHROW (gcn_builtin_decls[i]) = 1;
    }

  /* These builtins need to take/return an LDS pointer: override the generic
     versions here.  */

  set_builtin_decl (BUILT_IN_GOACC_SINGLE_START,
		    gcn_builtin_decls[GCN_BUILTIN_ACC_SINGLE_START], false);

  set_builtin_decl (BUILT_IN_GOACC_SINGLE_COPY_START,
		    gcn_builtin_decls[GCN_BUILTIN_ACC_SINGLE_COPY_START],
		    false);

  set_builtin_decl (BUILT_IN_GOACC_SINGLE_COPY_END,
		    gcn_builtin_decls[GCN_BUILTIN_ACC_SINGLE_COPY_END],
		    false);

  set_builtin_decl (BUILT_IN_GOACC_BARRIER,
		    gcn_builtin_decls[GCN_BUILTIN_ACC_BARRIER], false);
}

/* Implement TARGET_INIT_LIBFUNCS.  */

static void
gcn_init_libfuncs (void)
{
  /* BITS_PER_UNIT * 2 is 64 bits, which causes
     optabs-libfuncs.cc:gen_int_libfunc to omit TImode (i.e 128 bits)
     libcalls that we need to support operations for that type.  Initialise
     them here instead.  */
  set_optab_libfunc (udiv_optab, TImode, "__udivti3");
  set_optab_libfunc (umod_optab, TImode, "__umodti3");
  set_optab_libfunc (sdiv_optab, TImode, "__divti3");
  set_optab_libfunc (smod_optab, TImode, "__modti3");
  set_optab_libfunc (smul_optab, TImode, "__multi3");
  set_optab_libfunc (addv_optab, TImode, "__addvti3");
  set_optab_libfunc (subv_optab, TImode, "__subvti3");
  set_optab_libfunc (negv_optab, TImode, "__negvti2");
  set_optab_libfunc (absv_optab, TImode, "__absvti2");
  set_optab_libfunc (smulv_optab, TImode, "__mulvti3");
  set_optab_libfunc (ffs_optab, TImode, "__ffsti2");
  set_optab_libfunc (clz_optab, TImode, "__clzti2");
  set_optab_libfunc (ctz_optab, TImode, "__ctzti2");
  set_optab_libfunc (clrsb_optab, TImode, "__clrsbti2");
  set_optab_libfunc (popcount_optab, TImode, "__popcountti2");
  set_optab_libfunc (parity_optab, TImode, "__parityti2");
  set_optab_libfunc (bswap_optab, TImode, "__bswapti2");

  set_optab_libfunc (sdivmod_optab, SImode, "__divmodsi4");
  set_optab_libfunc (udivmod_optab, SImode, "__udivmodsi4");
  set_optab_libfunc (sdivmod_optab, DImode, "__divmoddi4");
  set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4");

  set_optab_libfunc (sdiv_optab, V2QImode, "__divv2qi3");
  set_optab_libfunc (udiv_optab, V2QImode, "__udivv2qi3");
  set_optab_libfunc (smod_optab, V2QImode, "__modv2qi3");
  set_optab_libfunc (umod_optab, V2QImode, "__umodv2qi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V2QImode, "__divmodv2qi4");
  set_optab_libfunc (udivmod_optab, V2QImode, "__udivmodv2qi4");
#endif
  set_optab_libfunc (sdiv_optab, V4QImode, "__divv4qi3");
  set_optab_libfunc (udiv_optab, V4QImode, "__udivv4qi3");
  set_optab_libfunc (smod_optab, V4QImode, "__modv4qi3");
  set_optab_libfunc (umod_optab, V4QImode, "__umodv4qi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V4QImode, "__divmodv4qi4");
  set_optab_libfunc (udivmod_optab, V4QImode, "__udivmodv4qi4");
#endif
  set_optab_libfunc (sdiv_optab, V8QImode, "__divv8qi3");
  set_optab_libfunc (udiv_optab, V8QImode, "__udivv8qi3");
  set_optab_libfunc (smod_optab, V8QImode, "__modv8qi3");
  set_optab_libfunc (umod_optab, V8QImode, "__umodv8qi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V8QImode, "__divmodv8qi4");
  set_optab_libfunc (udivmod_optab, V8QImode, "__udivmodv8qi4");
#endif
  set_optab_libfunc (sdiv_optab, V16QImode, "__divv16qi3");
  set_optab_libfunc (udiv_optab, V16QImode, "__udivv16qi3");
  set_optab_libfunc (smod_optab, V16QImode, "__modv16qi3");
  set_optab_libfunc (umod_optab, V16QImode, "__umodv16qi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V16QImode, "__divmodv16qi4");
  set_optab_libfunc (udivmod_optab, V16QImode, "__udivmodv16qi4");
#endif
  set_optab_libfunc (sdiv_optab, V32QImode, "__divv32qi3");
  set_optab_libfunc (udiv_optab, V32QImode, "__udivv32qi3");
  set_optab_libfunc (smod_optab, V32QImode, "__modv32qi3");
  set_optab_libfunc (umod_optab, V32QImode, "__umodv32qi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V32QImode, "__divmodv32qi4");
  set_optab_libfunc (udivmod_optab, V32QImode, "__udivmodv32qi4");
#endif
  set_optab_libfunc (sdiv_optab, V64QImode, "__divv64qi3");
  set_optab_libfunc (udiv_optab, V64QImode, "__udivv64qi3");
  set_optab_libfunc (smod_optab, V64QImode, "__modv64qi3");
  set_optab_libfunc (umod_optab, V64QImode, "__umodv64qi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V64QImode, "__divmodv64qi4");
  set_optab_libfunc (udivmod_optab, V64QImode, "__udivmodv64qi4");
#endif

  set_optab_libfunc (sdiv_optab, V2HImode, "__divv2hi3");
  set_optab_libfunc (udiv_optab, V2HImode, "__udivv2hi3");
  set_optab_libfunc (smod_optab, V2HImode, "__modv2hi3");
  set_optab_libfunc (umod_optab, V2HImode, "__umodv2hi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V2HImode, "__divmodv2hi4");
  set_optab_libfunc (udivmod_optab, V2HImode, "__udivmodv2hi4");
#endif
  set_optab_libfunc (sdiv_optab, V4HImode, "__divv4hi3");
  set_optab_libfunc (udiv_optab, V4HImode, "__udivv4hi3");
  set_optab_libfunc (smod_optab, V4HImode, "__modv4hi3");
  set_optab_libfunc (umod_optab, V4HImode, "__umodv4hi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V4HImode, "__divmodv4hi4");
  set_optab_libfunc (udivmod_optab, V4HImode, "__udivmodv4hi4");
#endif
  set_optab_libfunc (sdiv_optab, V8HImode, "__divv8hi3");
  set_optab_libfunc (udiv_optab, V8HImode, "__udivv8hi3");
  set_optab_libfunc (smod_optab, V8HImode, "__modv8hi3");
  set_optab_libfunc (umod_optab, V8HImode, "__umodv8hi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V8HImode, "__divmodv8hi4");
  set_optab_libfunc (udivmod_optab, V8HImode, "__udivmodv8hi4");
#endif
  set_optab_libfunc (sdiv_optab, V16HImode, "__divv16hi3");
  set_optab_libfunc (udiv_optab, V16HImode, "__udivv16hi3");
  set_optab_libfunc (smod_optab, V16HImode, "__modv16hi3");
  set_optab_libfunc (umod_optab, V16HImode, "__umodv16hi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V16HImode, "__divmodv16hi4");
  set_optab_libfunc (udivmod_optab, V16HImode, "__udivmodv16hi4");
#endif
  set_optab_libfunc (sdiv_optab, V32HImode, "__divv32hi3");
  set_optab_libfunc (udiv_optab, V32HImode, "__udivv32hi3");
  set_optab_libfunc (smod_optab, V32HImode, "__modv32hi3");
  set_optab_libfunc (umod_optab, V32HImode, "__umodv32hi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V32HImode, "__divmodv32hi4");
  set_optab_libfunc (udivmod_optab, V32HImode, "__udivmodv32hi4");
#endif
  set_optab_libfunc (sdiv_optab, V64HImode, "__divv64hi3");
  set_optab_libfunc (udiv_optab, V64HImode, "__udivv64hi3");
  set_optab_libfunc (smod_optab, V64HImode, "__modv64hi3");
  set_optab_libfunc (umod_optab, V64HImode, "__umodv64hi3");
#if 0
  set_optab_libfunc (sdivmod_optab, V64HImode, "__divmodv64hi4");
  set_optab_libfunc (udivmod_optab, V64HImode, "__udivmodv64hi4");
#endif

  set_optab_libfunc (sdiv_optab, V2SImode, "__divv2si3");
  set_optab_libfunc (udiv_optab, V2SImode, "__udivv2si3");
  set_optab_libfunc (smod_optab, V2SImode, "__modv2si3");
  set_optab_libfunc (umod_optab, V2SImode, "__umodv2si3");
#if 0
  set_optab_libfunc (sdivmod_optab, V2SImode, "__divmodv2si4");
  set_optab_libfunc (udivmod_optab, V2SImode, "__udivmodv2si4");
#endif
  set_optab_libfunc (sdiv_optab, V4SImode, "__divv4si3");
  set_optab_libfunc (udiv_optab, V4SImode, "__udivv4si3");
  set_optab_libfunc (smod_optab, V4SImode, "__modv4si3");
  set_optab_libfunc (umod_optab, V4SImode, "__umodv4si3");
#if 0
  set_optab_libfunc (sdivmod_optab, V4SImode, "__divmodv4si4");
  set_optab_libfunc (udivmod_optab, V4SImode, "__udivmodv4si4");
#endif
  set_optab_libfunc (sdiv_optab, V8SImode, "__divv8si3");
  set_optab_libfunc (udiv_optab, V8SImode, "__udivv8si3");
  set_optab_libfunc (smod_optab, V8SImode, "__modv8si3");
  set_optab_libfunc (umod_optab, V8SImode, "__umodv8si3");
#if 0
  set_optab_libfunc (sdivmod_optab, V8SImode, "__divmodv8si4");
  set_optab_libfunc (udivmod_optab, V8SImode, "__udivmodv8si4");
#endif
  set_optab_libfunc (sdiv_optab, V16SImode, "__divv16si3");
  set_optab_libfunc (udiv_optab, V16SImode, "__udivv16si3");
  set_optab_libfunc (smod_optab, V16SImode, "__modv16si3");
  set_optab_libfunc (umod_optab, V16SImode, "__umodv16si3");
#if 0
  set_optab_libfunc (sdivmod_optab, V16SImode, "__divmodv16si4");
  set_optab_libfunc (udivmod_optab, V16SImode, "__udivmodv16si4");
#endif
  set_optab_libfunc (sdiv_optab, V32SImode, "__divv32si3");
  set_optab_libfunc (udiv_optab, V32SImode, "__udivv32si3");
  set_optab_libfunc (smod_optab, V32SImode, "__modv32si3");
  set_optab_libfunc (umod_optab, V32SImode, "__umodv32si3");
#if 0
  set_optab_libfunc (sdivmod_optab, V32SImode, "__divmodv32si4");
  set_optab_libfunc (udivmod_optab, V32SImode, "__udivmodv32si4");
#endif
  set_optab_libfunc (sdiv_optab, V64SImode, "__divv64si3");
  set_optab_libfunc (udiv_optab, V64SImode, "__udivv64si3");
  set_optab_libfunc (smod_optab, V64SImode, "__modv64si3");
  set_optab_libfunc (umod_optab, V64SImode, "__umodv64si3");
#if 0
  set_optab_libfunc (sdivmod_optab, V64SImode, "__divmodv64si4");
  set_optab_libfunc (udivmod_optab, V64SImode, "__udivmodv64si4");
#endif

  set_optab_libfunc (sdiv_optab, V2DImode, "__divv2di3");
  set_optab_libfunc (udiv_optab, V2DImode, "__udivv2di3");
  set_optab_libfunc (smod_optab, V2DImode, "__modv2di3");
  set_optab_libfunc (umod_optab, V2DImode, "__umodv2di3");
#if 0
  set_optab_libfunc (sdivmod_optab, V2DImode, "__divmodv2di4");
  set_optab_libfunc (udivmod_optab, V2DImode, "__udivmodv2di4");
#endif
  set_optab_libfunc (sdiv_optab, V4DImode, "__divv4di3");
  set_optab_libfunc (udiv_optab, V4DImode, "__udivv4di3");
  set_optab_libfunc (smod_optab, V4DImode, "__modv4di3");
  set_optab_libfunc (umod_optab, V4DImode, "__umodv4di3");
#if 0
  set_optab_libfunc (sdivmod_optab, V4DImode, "__divmodv4di4");
  set_optab_libfunc (udivmod_optab, V4DImode, "__udivmodv4di4");
#endif
  set_optab_libfunc (sdiv_optab, V8DImode, "__divv8di3");
  set_optab_libfunc (udiv_optab, V8DImode, "__udivv8di3");
  set_optab_libfunc (smod_optab, V8DImode, "__modv8di3");
  set_optab_libfunc (umod_optab, V8DImode, "__umodv8di3");
#if 0
  set_optab_libfunc (sdivmod_optab, V8DImode, "__divmodv8di4");
  set_optab_libfunc (udivmod_optab, V8DImode, "__udivmodv8di4");
#endif
  set_optab_libfunc (sdiv_optab, V16DImode, "__divv16di3");
  set_optab_libfunc (udiv_optab, V16DImode, "__udivv16di3");
  set_optab_libfunc (smod_optab, V16DImode, "__modv16di3");
  set_optab_libfunc (umod_optab, V16DImode, "__umodv16di3");
#if 0
  set_optab_libfunc (sdivmod_optab, V16DImode, "__divmodv16di4");
  set_optab_libfunc (udivmod_optab, V16DImode, "__udivmodv16di4");
#endif
  set_optab_libfunc (sdiv_optab, V32DImode, "__divv32di3");
  set_optab_libfunc (udiv_optab, V32DImode, "__udivv32di3");
  set_optab_libfunc (smod_optab, V32DImode, "__modv32di3");
  set_optab_libfunc (umod_optab, V32DImode, "__umodv32di3");
#if 0
  set_optab_libfunc (sdivmod_optab, V32DImode, "__divmodv32di4");
  set_optab_libfunc (udivmod_optab, V32DImode, "__udivmodv32di4");
#endif
  set_optab_libfunc (sdiv_optab, V64DImode, "__divv64di3");
  set_optab_libfunc (udiv_optab, V64DImode, "__udivv64di3");
  set_optab_libfunc (smod_optab, V64DImode, "__modv64di3");
  set_optab_libfunc (umod_optab, V64DImode, "__umodv64di3");
#if 0
  set_optab_libfunc (sdivmod_optab, V64DImode, "__divmodv64di4");
  set_optab_libfunc (udivmod_optab, V64DImode, "__udivmodv64di4");
#endif
}

/* Expand the CMP_SWAP GCN builtins.  We have our own versions that do
   not require taking the address of any object, other than the memory
   cell being operated on.

   Helper function for gcn_expand_builtin_1.  */

static rtx
gcn_expand_cmp_swap (tree exp, rtx target)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
  addr_space_t as
    = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (exp, 0))));
  machine_mode as_mode = gcn_addr_space_address_mode (as);

  if (!target)
    target = gen_reg_rtx (mode);

  rtx addr = expand_expr (CALL_EXPR_ARG (exp, 0),
			  NULL_RTX, as_mode, EXPAND_NORMAL);
  rtx cmp = expand_expr (CALL_EXPR_ARG (exp, 1),
			 NULL_RTX, mode, EXPAND_NORMAL);
  rtx src = expand_expr (CALL_EXPR_ARG (exp, 2),
			 NULL_RTX, mode, EXPAND_NORMAL);
  rtx pat;

  rtx mem = gen_rtx_MEM (mode, force_reg (as_mode, addr));
  set_mem_addr_space (mem, as);

  if (!REG_P (cmp))
    cmp = copy_to_mode_reg (mode, cmp);
  if (!REG_P (src))
    src = copy_to_mode_reg (mode, src);

  if (mode == SImode)
    pat = gen_sync_compare_and_swapsi (target, mem, cmp, src);
  else
    pat = gen_sync_compare_and_swapdi (target, mem, cmp, src);

  emit_insn (pat);

  return target;
}

/* Expand many different builtins.

   Intended for use in gcn-builtins.def.  */

static rtx
gcn_expand_builtin_1 (tree exp, rtx target, rtx /*subtarget */ ,
		      machine_mode /*mode */ , int ignore,
		      struct gcn_builtin_description *)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  switch (DECL_MD_FUNCTION_CODE (fndecl))
    {
    case GCN_BUILTIN_FLAT_LOAD_INT32:
      {
	if (ignore)
	  return target;
	/*rtx exec = */
	force_reg (DImode,
		   expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX, DImode,
				EXPAND_NORMAL));
	/*rtx ptr = */
	force_reg (V64DImode,
		   expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX, V64DImode,
				EXPAND_NORMAL));
	/*emit_insn (gen_vector_flat_loadv64si
		     (target, gcn_gen_undef (V64SImode), ptr, exec)); */
	return target;
      }
    case GCN_BUILTIN_FLAT_LOAD_PTR_INT32:
    case GCN_BUILTIN_FLAT_LOAD_PTR_FLOAT:
      {
	if (ignore)
	  return target;
	rtx exec = force_reg (DImode,
			      expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					   DImode,
					   EXPAND_NORMAL));
	rtx ptr = force_reg (DImode,
			     expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX,
					  V64DImode,
					  EXPAND_NORMAL));
	rtx offsets = force_reg (V64SImode,
				 expand_expr (CALL_EXPR_ARG (exp, 2),
					      NULL_RTX, V64DImode,
					      EXPAND_NORMAL));
	rtx addrs = gen_reg_rtx (V64DImode);
	rtx tmp = gen_reg_rtx (V64SImode);
	emit_insn (gen_ashlv64si3_exec (tmp, offsets,
					  GEN_INT (2),
					  gcn_gen_undef (V64SImode), exec));
	emit_insn (gen_addv64di3_zext_dup2_exec (addrs, tmp, ptr,
						 gcn_gen_undef (V64DImode),
						 exec));
	rtx mem = gen_rtx_MEM (GET_MODE (target), addrs);
	/*set_mem_addr_space (mem, ADDR_SPACE_FLAT); */
	/* FIXME: set attributes.  */
	emit_insn (gen_movvNm (target, mem, NULL, exec));
	return target;
      }
    case GCN_BUILTIN_FLAT_STORE_PTR_INT32:
    case GCN_BUILTIN_FLAT_STORE_PTR_FLOAT:
      {
	rtx exec = force_reg (DImode,
			      expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					   DImode,
					   EXPAND_NORMAL));
	rtx ptr = force_reg (DImode,
			     expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX,
					  V64DImode,
					  EXPAND_NORMAL));
	rtx offsets = force_reg (V64SImode,
				 expand_expr (CALL_EXPR_ARG (exp, 2),
					      NULL_RTX, V64DImode,
					      EXPAND_NORMAL));
	machine_mode vmode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp,
								       3)));
	rtx val = force_reg (vmode,
			     expand_expr (CALL_EXPR_ARG (exp, 3), NULL_RTX,
					  vmode,
					  EXPAND_NORMAL));
	rtx addrs = gen_reg_rtx (V64DImode);
	rtx tmp = gen_reg_rtx (V64SImode);
	emit_insn (gen_ashlv64si3_exec (tmp, offsets,
					  GEN_INT (2),
					  gcn_gen_undef (V64SImode), exec));
	emit_insn (gen_addv64di3_zext_dup2_exec (addrs, tmp, ptr,
						 gcn_gen_undef (V64DImode),
						 exec));
	rtx mem = gen_rtx_MEM (vmode, addrs);
	/*set_mem_addr_space (mem, ADDR_SPACE_FLAT); */
	/* FIXME: set attributes.  */
	emit_insn (gen_movvNm (mem, val, NULL, exec));
	return target;
      }
    case GCN_BUILTIN_SQRTVF:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64SFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64SFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_sqrtv64sf2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_SQRTF:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (SFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  SFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_sqrtsf2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FABSVF:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64SFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64SFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_absv64sf2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FABSV:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64DFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64DFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_absv64df2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FLOORVF:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64SFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64SFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_floorv64sf2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FLOORV:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64DFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64DFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_floorv64df2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_LDEXPVF:
      {
	if (ignore)
	  return target;
	rtx arg1 = force_reg (V64SFmode,
			      expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					   V64SFmode,
					   EXPAND_NORMAL));
	rtx arg2 = force_reg (V64SImode,
			      expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX,
					   V64SImode,
					   EXPAND_NORMAL));
	emit_insn (gen_ldexpv64sf3 (target, arg1, arg2));
	return target;
      }
    case GCN_BUILTIN_LDEXPV:
      {
	if (ignore)
	  return target;
	rtx arg1 = force_reg (V64DFmode,
			      expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					   V64DFmode,
					   EXPAND_NORMAL));
	rtx arg2 = force_reg (V64SImode,
			      expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX,
					   V64SImode,
					   EXPAND_NORMAL));
	emit_insn (gen_ldexpv64df3 (target, arg1, arg2));
	return target;
      }
    case GCN_BUILTIN_FREXPVF_EXP:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64SFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64SFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_frexpv64sf_exp2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FREXPVF_MANT:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64SFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64SFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_frexpv64sf_mant2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FREXPV_EXP:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64DFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64DFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_frexpv64df_exp2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_FREXPV_MANT:
      {
	if (ignore)
	  return target;
	rtx arg = force_reg (V64DFmode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  V64DFmode,
					  EXPAND_NORMAL));
	emit_insn (gen_frexpv64df_mant2 (target, arg));
	return target;
      }
    case GCN_BUILTIN_OMP_DIM_SIZE:
      {
	if (ignore)
	  return target;
	emit_insn (gen_oacc_dim_size (target,
				      expand_expr (CALL_EXPR_ARG (exp, 0),
						   NULL_RTX, SImode,
						   EXPAND_NORMAL)));
	return target;
      }
    case GCN_BUILTIN_OMP_DIM_POS:
      {
	if (ignore)
	  return target;
	emit_insn (gen_oacc_dim_pos (target,
				     expand_expr (CALL_EXPR_ARG (exp, 0),
						  NULL_RTX, SImode,
						  EXPAND_NORMAL)));
	return target;
      }
    case GCN_BUILTIN_CMP_SWAP:
    case GCN_BUILTIN_CMP_SWAPLL:
      return gcn_expand_cmp_swap (exp, target);

    case GCN_BUILTIN_ACC_SINGLE_START:
      {
	if (ignore)
	  return target;

	rtx wavefront = gcn_oacc_dim_pos (1);
	rtx cond = gen_rtx_EQ (VOIDmode, wavefront, const0_rtx);
	rtx cc = (target && REG_P (target)) ? target : gen_reg_rtx (BImode);
	emit_insn (gen_cstoresi4 (cc, cond, wavefront, const0_rtx));
	return cc;
      }

    case GCN_BUILTIN_ACC_SINGLE_COPY_START:
      {
	rtx blk = force_reg (SImode,
			     expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
					  SImode, EXPAND_NORMAL));
	rtx wavefront = gcn_oacc_dim_pos (1);
	rtx cond = gen_rtx_NE (VOIDmode, wavefront, const0_rtx);
	rtx not_zero = gen_label_rtx ();
	emit_insn (gen_cbranchsi4 (cond, wavefront, const0_rtx, not_zero));
	emit_move_insn (blk, const0_rtx);
	emit_label (not_zero);
	return blk;
      }

    case GCN_BUILTIN_ACC_SINGLE_COPY_END:
      return target;

    case GCN_BUILTIN_ACC_BARRIER:
      emit_insn (gen_gcn_wavefront_barrier ());
      return target;

    case GCN_BUILTIN_GET_STACK_LIMIT:
      {
	/* stackbase = (stack_segment_decr & 0x0000ffffffffffff)
			+ stack_wave_offset);
	   seg_size = dispatch_ptr->private_segment_size;
	   stacklimit = stackbase + seg_size*64;
	   with segsize = *(uint32_t *) ((char *) dispatch_ptr
				       + 6*sizeof(int16_t) + 3*sizeof(int32_t));
	   cf. struct hsa_kernel_dispatch_packet_s in the HSA doc.  */
	rtx ptr;
	if (cfun->machine->args.reg[DISPATCH_PTR_ARG] >= 0
	    && cfun->machine->args.reg[KERNARG_SEGMENT_PTR_ARG] >= 0)
	  {
	    rtx num_waves_mem = gcn_oacc_dim_size (1);
	    rtx num_waves = gen_reg_rtx (SImode);
	    set_mem_addr_space (num_waves_mem, ADDR_SPACE_SCALAR_FLAT);
	    emit_move_insn (num_waves, num_waves_mem);

	    rtx workgroup_num = gcn_oacc_dim_pos (0);
	    rtx wave_num = gen_reg_rtx (SImode);
	    emit_move_insn(wave_num, gcn_oacc_dim_pos (1));

	    rtx thread_id = gen_reg_rtx (SImode);
	    emit_insn (gen_mulsi3 (thread_id, num_waves, workgroup_num));
	    emit_insn (gen_addsi3_scc (thread_id, thread_id, wave_num));

	    rtx kernarg_reg = gen_rtx_REG (DImode, cfun->machine->args.reg
					   [KERNARG_SEGMENT_PTR_ARG]);
	    rtx stack_size_mem = gen_rtx_MEM (SImode,
					      gen_rtx_PLUS (DImode,
							    kernarg_reg,
							    GEN_INT (52)));
	    set_mem_addr_space (stack_size_mem, ADDR_SPACE_SCALAR_FLAT);
	    rtx stack_size = gen_reg_rtx (SImode);
	    emit_move_insn (stack_size, stack_size_mem);

	    rtx wave_offset = gen_reg_rtx (SImode);
	    emit_insn (gen_mulsi3 (wave_offset, stack_size, thread_id));

	    rtx stack_limit_offset = gen_reg_rtx (SImode);
	    emit_insn (gen_addsi3 (stack_limit_offset, wave_offset,
				   stack_size));

	    rtx stack_limit_offset_di = gen_reg_rtx (DImode);
	    emit_move_insn (gen_rtx_SUBREG (SImode, stack_limit_offset_di, 4),
			    const0_rtx);
	    emit_move_insn (gen_rtx_SUBREG (SImode, stack_limit_offset_di, 0),
			    stack_limit_offset);

	    rtx stack_addr_mem = gen_rtx_MEM (DImode,
					      gen_rtx_PLUS (DImode,
							    kernarg_reg,
							    GEN_INT (40)));
	    set_mem_addr_space (stack_addr_mem, ADDR_SPACE_SCALAR_FLAT);
	    rtx stack_addr = gen_reg_rtx (DImode);
	    emit_move_insn (stack_addr, stack_addr_mem);

	    ptr = gen_rtx_PLUS (DImode, stack_addr, stack_limit_offset_di);
	  }
	else
	  {
	    ptr = gen_reg_rtx (DImode);
	    emit_move_insn (ptr, const0_rtx);
	  }
	return ptr;
      }
    case GCN_BUILTIN_KERNARG_PTR:
      {
	rtx ptr;
	if (cfun->machine->args.reg[KERNARG_SEGMENT_PTR_ARG] >= 0)
	   ptr = gen_rtx_REG (DImode,
			      cfun->machine->args.reg[KERNARG_SEGMENT_PTR_ARG]);
	else
	  {
	    ptr = gen_reg_rtx (DImode);
	    emit_move_insn (ptr, const0_rtx);
	  }
	return ptr;
      }
    case GCN_BUILTIN_DISPATCH_PTR:
      {
	rtx ptr;
	if (cfun->machine->args.reg[DISPATCH_PTR_ARG] >= 0)
	   ptr = gen_rtx_REG (DImode,
			      cfun->machine->args.reg[DISPATCH_PTR_ARG]);
	else
	  {
	    ptr = gen_reg_rtx (DImode);
	    emit_move_insn (ptr, const0_rtx);
	  }
	return ptr;
      }
    case GCN_BUILTIN_FIRST_CALL_THIS_THREAD_P:
      {
	/* Stash a marker in the unused upper 16 bits of QUEUE_PTR_ARG to
	   indicate whether it was the first call.  */
	rtx result = gen_reg_rtx (BImode);
	emit_move_insn (result, const0_rtx);
	if (cfun->machine->args.reg[QUEUE_PTR_ARG] >= 0)
	  {
	    rtx not_first = gen_label_rtx ();
	    rtx reg = gen_rtx_REG (DImode,
			cfun->machine->args.reg[QUEUE_PTR_ARG]);
	    reg = gcn_operand_part (DImode, reg, 1);
	    rtx cmp = force_reg (SImode,
				 gen_rtx_LSHIFTRT (SImode, reg, GEN_INT (16)));
	    emit_insn (gen_cstoresi4 (result, gen_rtx_NE (BImode, cmp,
							  GEN_INT(12345)),
				      cmp, GEN_INT(12345)));
	    emit_jump_insn (gen_cjump (not_first, gen_rtx_EQ (BImode, result,
							      const0_rtx),
				       result));
	    emit_move_insn (reg,
	      force_reg (SImode,
		gen_rtx_IOR (SImode,
			     gen_rtx_AND (SImode, reg, GEN_INT (0x0000ffff)),
			     GEN_INT (12345L << 16))));
	    emit_insn (gen_rtx_USE (VOIDmode, reg));
	    emit_label (not_first);
	  }
	return result;
      }
    default:
      gcc_unreachable ();
    }
}

/* Expansion of simple arithmetic and bit binary operation builtins.

   Intended for use with gcn_builtins table.  */

static rtx
gcn_expand_builtin_binop (tree exp, rtx target, rtx /*subtarget */ ,
			  machine_mode /*mode */ , int ignore,
			  struct gcn_builtin_description *d)
{
  int icode = d->icode;
  if (ignore)
    return target;

  rtx exec = force_reg (DImode,
			expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX, DImode,
				     EXPAND_NORMAL));

  machine_mode m1 = insn_data[icode].operand[1].mode;
  rtx arg1 = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX, m1,
			  EXPAND_NORMAL);
  if (!insn_data[icode].operand[1].predicate (arg1, m1))
    arg1 = force_reg (m1, arg1);

  machine_mode m2 = insn_data[icode].operand[2].mode;
  rtx arg2 = expand_expr (CALL_EXPR_ARG (exp, 2), NULL_RTX, m2,
			  EXPAND_NORMAL);
  if (!insn_data[icode].operand[2].predicate (arg2, m2))
    arg2 = force_reg (m2, arg2);

  rtx arg_prev;
  if (call_expr_nargs (exp) == 4)
    {
      machine_mode m_prev = insn_data[icode].operand[4].mode;
      arg_prev = force_reg (m_prev,
			    expand_expr (CALL_EXPR_ARG (exp, 3), NULL_RTX,
					 m_prev, EXPAND_NORMAL));
    }
  else
    arg_prev = gcn_gen_undef (GET_MODE (target));

  rtx pat = GEN_FCN (icode) (target, arg1, arg2, exec, arg_prev);
  emit_insn (pat);
  return target;
}

/* Implement TARGET_EXPAND_BUILTIN.

   Expand an expression EXP that calls a built-in function, with result going
   to TARGET if that's convenient (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

rtx
gcn_expand_builtin (tree exp, rtx target, rtx subtarget, machine_mode mode,
		    int ignore)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
  struct gcn_builtin_description *d;

  gcc_assert (fcode < GCN_BUILTIN_MAX);
  d = &gcn_builtins[fcode];

  if (d->type == B_UNIMPLEMENTED)
    sorry ("Builtin not implemented");

  return d->expander (exp, target, subtarget, mode, ignore, d);
}

/* }}}  */
/* {{{ Vectorization.  */

/* Implement TARGET_VECTORIZE_GET_MASK_MODE.

   A vector mask is a value that holds one boolean result for every element in
   a vector.  */

opt_machine_mode
gcn_vectorize_get_mask_mode (machine_mode)
{
  /* GCN uses a DImode bit-mask.  */
  return DImode;
}

/* Return an RTX that references a vector with the i-th lane containing
   PERM[i]*4.

   Helper function for gcn_vectorize_vec_perm_const.  */

static rtx
gcn_make_vec_perm_address (unsigned int *perm, int nelt)
{
  machine_mode mode = VnMODE (nelt, SImode);
  rtx x = gen_reg_rtx (mode);
  emit_move_insn (x, gcn_vec_constant (mode, 0));

  /* Permutation addresses use byte addressing.  With each vector lane being
     4 bytes wide, and with 64 lanes in total, only bits 2..7 are significant,
     so only set those.

     The permutation given to the vec_perm* patterns range from 0 to 2N-1 to
     select between lanes in two vectors, but as the DS_BPERMUTE* instructions
     only take one source vector, the most-significant bit can be ignored
     here.  Instead, we can use EXEC masking to select the relevant part of
     each source vector after they are permuted separately.  */
  uint64_t bit_mask = 1 << 2;
  for (int i = 2; i < 8; i++, bit_mask <<= 1)
    {
      uint64_t exec_mask = 0;
      uint64_t lane_mask = 1;
      for (int j = 0; j < nelt; j++, lane_mask <<= 1)
	if (((perm[j] % nelt) * 4) & bit_mask)
	  exec_mask |= lane_mask;

      if (exec_mask)
	emit_insn (gen_addvNsi3 (x, x, gcn_vec_constant (mode, bit_mask),
				 x, get_exec (exec_mask)));
    }

  return x;
}

/* Implement TARGET_VECTORIZE_VEC_PERM_CONST.

   Return true if permutation with SEL is possible.

   If DST/SRC0/SRC1 are non-null, emit the instructions to perform the
   permutations.  */

static bool
gcn_vectorize_vec_perm_const (machine_mode vmode, machine_mode op_mode,
			      rtx dst, rtx src0, rtx src1,
			      const vec_perm_indices & sel)
{
  if (vmode != op_mode
      || !VECTOR_MODE_P (vmode)
      || GET_MODE_INNER (vmode) == TImode)
    return false;

  unsigned int nelt = GET_MODE_NUNITS (vmode);

  gcc_assert (VECTOR_MODE_P (vmode));
  gcc_assert (nelt <= 64);
  gcc_assert (sel.length () == nelt);

  unsigned int perm[64];
  for (unsigned int i = 0; i < nelt; ++i)
    perm[i] = sel[i] & (2 * nelt - 1);
  for (unsigned int i = nelt; i < 64; ++i)
    perm[i] = 0;

  /* RDNA devices can only do permutations within each group of 32-lanes.
     Reject permutations that cross the boundary.  */
  if (TARGET_WAVE64_COMPAT)
    for (unsigned int i = 0; i < nelt; i++)
      if (i < 32 ? (perm[i] % nelt) > 31 : (perm[i] % nelt) < 32)
	return false;

  /* All vector permutations are possible on other architectures,
     with varying degrees of efficiency depending on the permutation. */
  if (!dst)
    return true;

  src0 = force_reg (vmode, src0);
  src1 = force_reg (vmode, src1);

  /* Make life a bit easier by swapping operands if necessary so that
     the first element always comes from src0.  */
  if (perm[0] >= nelt)
    {
      std::swap (src0, src1);

      for (unsigned int i = 0; i < nelt; ++i)
	if (perm[i] < nelt)
	  perm[i] += nelt;
	else
	  perm[i] -= nelt;
    }

  /* TODO: There are more efficient ways to implement certain permutations
     using ds_swizzle_b32 and/or DPP.  Test for and expand them here, before
     this more inefficient generic approach is used.  */

  int64_t src1_lanes = 0;
  int64_t lane_bit = 1;

  for (unsigned int i = 0; i < nelt; ++i, lane_bit <<= 1)
    {
      /* Set the bits for lanes from src1.  */
      if (perm[i] >= nelt)
	src1_lanes |= lane_bit;
    }

  rtx addr = gcn_make_vec_perm_address (perm, nelt);

  /* Load elements from src0 to dst.  */
  gcc_assert ((~src1_lanes) & (0xffffffffffffffffUL > (64-nelt)));
  emit_insn (gen_ds_bpermutevNm (dst, addr, src0, get_exec (vmode)));

  /* Load elements from src1 to dst.  */
  if (src1_lanes)
    {
      /* Masking a lane masks both the destination and source lanes for
         DS_BPERMUTE, so we need to have all lanes enabled for the permute,
         then add an extra masked move to merge the results of permuting
         the two source vectors together.
       */
      rtx tmp = gen_reg_rtx (vmode);
      emit_insn (gen_ds_bpermutevNm (tmp, addr, src1, get_exec (vmode)));
      emit_insn (gen_movvNm (dst, tmp, dst, get_exec (src1_lanes)));
    }

  return true;
}

/* Implements TARGET_VECTOR_MODE_SUPPORTED_P.

   Return nonzero if vector MODE is supported with at least move
   instructions.  */

static bool
gcn_vector_mode_supported_p (machine_mode mode)
{
  return (mode == V64QImode || mode == V64HImode
	  || mode == V64SImode || mode == V64DImode
	  || mode == V64SFmode || mode == V64DFmode
	  || mode == V32QImode || mode == V32HImode
	  || mode == V32SImode || mode == V32DImode
	  || mode == V32SFmode || mode == V32DFmode
	  || mode == V16QImode || mode == V16HImode
	  || mode == V16SImode || mode == V16DImode
	  || mode == V16SFmode || mode == V16DFmode
	  || mode == V8QImode || mode == V8HImode
	  || mode == V8SImode || mode == V8DImode
	  || mode == V8SFmode || mode == V8DFmode
	  || mode == V4QImode || mode == V4HImode
	  || mode == V4SImode || mode == V4DImode
	  || mode == V4SFmode || mode == V4DFmode
	  || mode == V2QImode || mode == V2HImode
	  || mode == V2SImode || mode == V2DImode
	  || mode == V2SFmode || mode == V2DFmode
	  /* TImode vectors are allowed to exist for divmod, but there
	     are almost no instructions defined for them, and the
	     autovectorizer does not use them.  */
	  || mode == V64TImode || mode == V32TImode
	  || mode == V16TImode || mode == V8TImode
	  || mode == V4TImode || mode == V2TImode);
}

/* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE.

   Enables autovectorization for all supported modes.  */

static machine_mode
gcn_vectorize_preferred_simd_mode (scalar_mode mode)
{
  bool v32;
  if (gcn_preferred_vectorization_factor == 32)
    v32 = true;
  else if (gcn_preferred_vectorization_factor == 64)
    v32 = false;
  else if (gcn_preferred_vectorization_factor != -1)
    gcc_unreachable ();
  else if (TARGET_WAVE64_COMPAT)
  /* RDNA devices have 32-lane vectors with limited support for 64-bit vectors
     (in particular, permute operations are only available for cases that don't
     span the 32-lane boundary).

     From the RDNA3 manual: "Hardware may choose to skip either half if the
     EXEC mask for that half is all zeros...". This means that preferring
     32-lanes is a good stop-gap until we have proper wave32 support.  */
    v32 = true;
  else
    v32 = false;

  if (v32)
    switch (mode)
      {
      case E_QImode:
	return V32QImode;
      case E_HImode:
	return V32HImode;
      case E_SImode:
	return V32SImode;
      case E_DImode:
	return V32DImode;
      case E_SFmode:
	return V32SFmode;
      case E_DFmode:
	return V32DFmode;
      default:
	return word_mode;
      }

  switch (mode)
    {
    case E_QImode:
      return V64QImode;
    case E_HImode:
      return V64HImode;
    case E_SImode:
      return V64SImode;
    case E_DImode:
      return V64DImode;
    case E_SFmode:
      return V64SFmode;
    case E_DFmode:
      return V64DFmode;
    default:
      return word_mode;
    }
}

/* Implement TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES.

   Try all the vector modes.  */

unsigned int gcn_autovectorize_vector_modes (vector_modes *modes,
					     bool ARG_UNUSED (all))
{
  modes->safe_push (V64QImode);
  modes->safe_push (V64HImode);
  modes->safe_push (V64SImode);
  modes->safe_push (V64SFmode);
  modes->safe_push (V64DImode);
  modes->safe_push (V64DFmode);

  modes->safe_push (V32QImode);
  modes->safe_push (V32HImode);
  modes->safe_push (V32SImode);
  modes->safe_push (V32SFmode);
  modes->safe_push (V32DImode);
  modes->safe_push (V32DFmode);

  modes->safe_push (V16QImode);
  modes->safe_push (V16HImode);
  modes->safe_push (V16SImode);
  modes->safe_push (V16SFmode);
  modes->safe_push (V16DImode);
  modes->safe_push (V16DFmode);

  modes->safe_push (V8QImode);
  modes->safe_push (V8HImode);
  modes->safe_push (V8SImode);
  modes->safe_push (V8SFmode);
  modes->safe_push (V8DImode);
  modes->safe_push (V8DFmode);

  modes->safe_push (V4QImode);
  modes->safe_push (V4HImode);
  modes->safe_push (V4SImode);
  modes->safe_push (V4SFmode);
  modes->safe_push (V4DImode);
  modes->safe_push (V4DFmode);

  modes->safe_push (V2QImode);
  modes->safe_push (V2HImode);
  modes->safe_push (V2SImode);
  modes->safe_push (V2SFmode);
  modes->safe_push (V2DImode);
  modes->safe_push (V2DFmode);

  /* We shouldn't need VECT_COMPARE_COSTS as they should all cost the same.  */
  return 0;
}

/* Implement TARGET_VECTORIZE_RELATED_MODE.

   All GCN vectors are 64-lane, so this is simpler than other architectures.
   In particular, we do *not* want to match vector bit-size.  */

static opt_machine_mode
gcn_related_vector_mode (machine_mode vector_mode,
			 scalar_mode element_mode, poly_uint64 nunits)
{
  int n = nunits.to_constant ();

  if (n == 0)
    n = GET_MODE_NUNITS (vector_mode);

  return VnMODE (n, element_mode);
}

/* Implement TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT.

   Returns the preferred alignment in bits for accesses to vectors of type type
   in vectorized code. This might be less than or greater than the ABI-defined
   value returned by TARGET_VECTOR_ALIGNMENT. It can be equal to the alignment
   of a single element, in which case the vectorizer will not try to optimize
   for alignment.  */

static poly_uint64
gcn_preferred_vector_alignment (const_tree type)
{
  return TYPE_ALIGN (TREE_TYPE (type));
}

/* Implement TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT.

   Return true if the target supports misaligned vector store/load of a
   specific factor denoted in the misalignment parameter.  */

static bool
gcn_vectorize_support_vector_misalignment (machine_mode ARG_UNUSED (mode),
					   const_tree type, int misalignment,
					   bool is_packed)
{
  if (is_packed)
    return false;

  /* If the misalignment is unknown, we should be able to handle the access
     so long as it is not to a member of a packed data structure.  */
  if (misalignment == -1)
    return true;

  /* Return true if the misalignment is a multiple of the natural alignment
     of the vector's element type.  This is probably always going to be
     true in practice, since we've already established that this isn't a
     packed access.  */
  return misalignment % TYPE_ALIGN_UNIT (type) == 0;
}

/* Implement TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE.

   Return true if vector alignment is reachable (by peeling N iterations) for
   the given scalar type TYPE.  */

static bool
gcn_vector_alignment_reachable (const_tree ARG_UNUSED (type), bool is_packed)
{
  /* Vectors which aren't in packed structures will not be less aligned than
     the natural alignment of their element type, so this is safe.  */
  return !is_packed;
}

/* Generate DPP pairwise swap instruction.
   This instruction swaps the values in each even lane with the value in the
   next one:
     a, b, c, d -> b, a, d, c.
   The opcode is given by INSN.  */

char *
gcn_expand_dpp_swap_pairs_insn (machine_mode mode, const char *insn,
				int ARG_UNUSED (unspec))
{
  static char buf[128];
  const char *dpp;

  /* Add the DPP modifiers.  */
  dpp = "quad_perm:[1,0,3,2]";

  if (vgpr_2reg_mode_p (mode))
    sprintf (buf, "%s\t%%L0, %%L1 %s\n\t%s\t%%H0, %%H1 %s",
	     insn, dpp, insn, dpp);
  else
    sprintf (buf, "%s\t%%0, %%1 %s", insn, dpp);

  return buf;
}

/* Generate DPP distribute even instruction.
   This instruction copies the value in each even lane to the next one:
     a, b, c, d -> a, a, c, c.
   The opcode is given by INSN.  */

char *
gcn_expand_dpp_distribute_even_insn (machine_mode mode, const char *insn,
				     int ARG_UNUSED (unspec))
{
  static char buf[128];
  const char *dpp;

  /* Add the DPP modifiers.  */
  dpp = "quad_perm:[0,0,2,2]";

  if (vgpr_2reg_mode_p (mode))
    sprintf (buf, "%s\t%%L0, %%L1 %s\n\t%s\t%%H0, %%H1 %s",
	     insn, dpp, insn, dpp);
  else
    sprintf (buf, "%s\t%%0, %%1 %s", insn, dpp);

  return buf;
}

/* Generate DPP distribute odd instruction.
   This isntruction copies the value in each odd lane to the previous one:
     a, b, c, d -> b, b, d, d.
   The opcode is given by INSN.  */

char *
gcn_expand_dpp_distribute_odd_insn (machine_mode mode, const char *insn,
				    int ARG_UNUSED (unspec))
{
  static char buf[128];
  const char *dpp;

  /* Add the DPP modifiers.  */
  dpp = "quad_perm:[1,1,3,3]";

  if (vgpr_2reg_mode_p (mode))
    sprintf (buf, "%s\t%%L0, %%L1 %s\n\t%s\t%%H0, %%H1 %s",
	     insn, dpp, insn, dpp);
  else
    sprintf (buf, "%s\t%%0, %%1 %s", insn, dpp);

  return buf;
}

/* Generate DPP instructions used for vector reductions.

   The opcode is given by INSN.
   The first operand of the operation is shifted right by SHIFT vector lanes.
   SHIFT must be a power of 2.  If SHIFT is 16, the 15th lane of each row is
   broadcast the next row (thereby acting like a shift of 16 for the end of
   each row).  If SHIFT is 32, lane 31 is broadcast to all the
   following lanes (thereby acting like a shift of 32 for lane 63).  */

char *
gcn_expand_dpp_shr_insn (machine_mode mode, const char *insn,
			 int unspec, int shift)
{
  gcc_checking_assert (TARGET_DPP_FULL);

  static char buf[128];
  const char *dpp;
  const char *vcc_in = "";
  const char *vcc_out = "";

  /* Add the vcc operand if needed.  */
  if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
    {
      if (unspec == UNSPEC_PLUS_CARRY_IN_DPP_SHR)
	vcc_in = ", vcc";

      if (unspec == UNSPEC_PLUS_CARRY_DPP_SHR
	  || unspec == UNSPEC_PLUS_CARRY_IN_DPP_SHR)
	vcc_out = ", vcc";
    }

  /* Add the DPP modifiers.  */
  switch (shift)
    {
    case 1:
      dpp = "row_shr:1 bound_ctrl:0";
      break;
    case 2:
      dpp = "row_shr:2 bound_ctrl:0";
      break;
    case 4:
      dpp = "row_shr:4 bank_mask:0xe";
      break;
    case 8:
      dpp = "row_shr:8 bank_mask:0xc";
      break;
    case 16:
      dpp = "row_bcast:15 row_mask:0xa";
      break;
    case 32:
      dpp = "row_bcast:31 row_mask:0xc";
      break;
    default:
      gcc_unreachable ();
    }

  if (unspec == UNSPEC_MOV_DPP_SHR && vgpr_2reg_mode_p (mode))
    sprintf (buf, "%s\t%%L0, %%L1 %s\n\t%s\t%%H0, %%H1 %s",
	     insn, dpp, insn, dpp);
  else if (unspec == UNSPEC_MOV_DPP_SHR)
    sprintf (buf, "%s\t%%0, %%1 %s", insn, dpp);
  else
    sprintf (buf, "%s\t%%0%s, %%1, %%2%s %s", insn, vcc_out, vcc_in, dpp);

  return buf;
}

/* Generate vector reductions in terms of DPP instructions.

   The vector register SRC of mode MODE is reduced using the operation given
   by UNSPEC, and the scalar result is returned in lane 63 of a vector
   register (or lane 31, 15, 7, 3, 1 for partial vectors).  */

rtx
gcn_expand_reduc_scalar (machine_mode mode, rtx src, int unspec)
{
  gcc_checking_assert (TARGET_DPP_FULL);

  machine_mode orig_mode = mode;
  machine_mode scalar_mode = GET_MODE_INNER (mode);
  int vf = GET_MODE_NUNITS (mode);
  bool use_moves = (((unspec == UNSPEC_SMIN_DPP_SHR
		      || unspec == UNSPEC_SMAX_DPP_SHR
		      || unspec == UNSPEC_UMIN_DPP_SHR
		      || unspec == UNSPEC_UMAX_DPP_SHR)
		     && (scalar_mode == DImode
			 || scalar_mode == DFmode))
		    || (unspec == UNSPEC_PLUS_DPP_SHR
			&& scalar_mode == DFmode));
  rtx_code code = (unspec == UNSPEC_SMIN_DPP_SHR ? SMIN
		   : unspec == UNSPEC_SMAX_DPP_SHR ? SMAX
		   : unspec == UNSPEC_UMIN_DPP_SHR ? UMIN
		   : unspec == UNSPEC_UMAX_DPP_SHR ? UMAX
		   : unspec == UNSPEC_PLUS_DPP_SHR ? PLUS
		   : UNKNOWN);
  bool use_extends = ((unspec == UNSPEC_SMIN_DPP_SHR
		       || unspec == UNSPEC_SMAX_DPP_SHR
		       || unspec == UNSPEC_UMIN_DPP_SHR
		       || unspec == UNSPEC_UMAX_DPP_SHR)
		      && (scalar_mode == QImode
			  || scalar_mode == HImode));
  bool unsignedp = (unspec == UNSPEC_UMIN_DPP_SHR
		    || unspec == UNSPEC_UMAX_DPP_SHR);
  bool use_plus_carry = unspec == UNSPEC_PLUS_DPP_SHR
			&& GET_MODE_CLASS (mode) == MODE_VECTOR_INT
			&& scalar_mode == DImode;

  if (use_plus_carry)
    unspec = UNSPEC_PLUS_CARRY_DPP_SHR;

  if (use_extends)
    {
      mode = VnMODE (vf, SImode);
      rtx tmp = gen_reg_rtx (mode);
      convert_move (tmp, src, unsignedp);
      src = tmp;
    }

  /* Perform reduction by first performing the reduction operation on every
     pair of lanes, then on every pair of results from the previous
     iteration (thereby effectively reducing every 4 lanes) and so on until
     all lanes are reduced.  */
  rtx in, out = force_reg (mode, src);
  int iterations = exact_log2 (vf);
  for (int i = 0, shift = 1; i < iterations; i++, shift <<= 1)
    {
      rtx shift_val = gen_rtx_CONST_INT (VOIDmode, shift);
      in = out;
      out = gen_reg_rtx (mode);

      if (use_moves)
	{
	  rtx tmp = gen_reg_rtx (mode);
	  emit_insn (gen_dpp_move (mode, tmp, in, shift_val));
	  rtx insn = gen_rtx_SET (out, gen_rtx_fmt_ee (code, mode, tmp, in));
	  if (scalar_mode == DImode)
	    {
	      rtx clobber = gen_rtx_CLOBBER (VOIDmode,
					     gen_rtx_REG (DImode, VCC_REG));
	      insn = gen_rtx_PARALLEL (VOIDmode,
				       gen_rtvec (2, insn, clobber));
	    }
	  emit_insn (insn);
	}
      else
	{
	  rtx insn = gen_rtx_SET (out,
				  gen_rtx_UNSPEC (mode,
						  gen_rtvec (3, in, in,
							     shift_val),
						  unspec));

	  /* Add clobber for instructions that set the carry flags.  */
	  if (use_plus_carry)
	    {
	      rtx clobber = gen_rtx_CLOBBER (VOIDmode,
					     gen_rtx_REG (DImode, VCC_REG));
	      insn = gen_rtx_PARALLEL (VOIDmode,
				       gen_rtvec (2, insn, clobber));
	    }

	  emit_insn (insn);
	}
    }

  if (use_extends)
    {
      rtx tmp = gen_reg_rtx (orig_mode);
      convert_move (tmp, out, unsignedp);
      out = tmp;
    }

  return out;
}

/* Implement TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST.  */

int
gcn_vectorization_cost (enum vect_cost_for_stmt ARG_UNUSED (type_of_cost),
			tree ARG_UNUSED (vectype), int ARG_UNUSED (misalign))
{
  /* Always vectorize.  */
  return 1;
}

/* Implement TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN.  */

static int
gcn_simd_clone_compute_vecsize_and_simdlen (struct cgraph_node *ARG_UNUSED (node),
					    struct cgraph_simd_clone *clonei,
					    tree ARG_UNUSED (base_type),
					    int ARG_UNUSED (num),
					    bool explicit_p)
{
  if (known_eq (clonei->simdlen, 0U))
    clonei->simdlen = 64;
  else if (maybe_ne (clonei->simdlen, 64U))
    {
      /* Note that x86 has a similar message that is likely to trigger on
	 sizes that are OK for gcn; the user can't win.  */
      if (explicit_p)
	warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
		    "unsupported simdlen %wd (amdgcn)",
		    clonei->simdlen.to_constant ());
      return 0;
    }

  clonei->vecsize_mangle = 'n';
  clonei->vecsize_int = 0;
  clonei->vecsize_float = 0;

  /* DImode ought to be more natural here, but VOIDmode produces better code,
     at present, due to the shift-and-test steps not being optimized away
     inside the in-branch clones.  */
  clonei->mask_mode = VOIDmode;

  return 1;
}

/* Implement TARGET_SIMD_CLONE_ADJUST.  */

static void
gcn_simd_clone_adjust (struct cgraph_node *ARG_UNUSED (node))
{
  /* This hook has to be defined when
     TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN is defined, but we don't
     need it to do anything yet.  */
}

/* Implement TARGET_SIMD_CLONE_USABLE.  */

static int
gcn_simd_clone_usable (struct cgraph_node *ARG_UNUSED (node))
{
  /* We don't need to do anything here because
     gcn_simd_clone_compute_vecsize_and_simdlen currently only returns one
     possibility.  */
  return 0;
}

tree mathfn_built_in_explicit (tree, combined_fn);

/* Implement TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION.
   Return the function declaration of the vectorized version of the builtin
   in the math library if available.  */

tree
gcn_vectorize_builtin_vectorized_function (unsigned int fn, tree type_out,
					   tree type_in)
{
  if (TREE_CODE (type_out) != VECTOR_TYPE
      || TREE_CODE (type_in) != VECTOR_TYPE)
    return NULL_TREE;

  machine_mode out_mode = TYPE_MODE (TREE_TYPE (type_out));
  int out_n = TYPE_VECTOR_SUBPARTS (type_out);
  combined_fn cfn = combined_fn (fn);

  /* Keep this consistent with the list of vectorized math routines.  */
  int implicit_p;
  switch (fn)
    {
    CASE_CFN_ACOS:
    CASE_CFN_ACOSH:
    CASE_CFN_ASIN:
    CASE_CFN_ASINH:
    CASE_CFN_ATAN:
    CASE_CFN_ATAN2:
    CASE_CFN_ATANH:
    CASE_CFN_COPYSIGN:
    CASE_CFN_COS:
    CASE_CFN_COSH:
    CASE_CFN_ERF:
    CASE_CFN_EXP:
    CASE_CFN_EXP2:
    CASE_CFN_FINITE:
    CASE_CFN_FMOD:
    CASE_CFN_GAMMA:
    CASE_CFN_HYPOT:
    CASE_CFN_ISNAN:
    CASE_CFN_LGAMMA:
    CASE_CFN_LOG:
    CASE_CFN_LOG10:
    CASE_CFN_LOG2:
    CASE_CFN_POW:
    CASE_CFN_REMAINDER:
    CASE_CFN_RINT:
    CASE_CFN_SIN:
    CASE_CFN_SINH:
    CASE_CFN_SQRT:
    CASE_CFN_TAN:
    CASE_CFN_TANH:
    CASE_CFN_TGAMMA:
      implicit_p = 1;
      break;

    CASE_CFN_SCALB:
    CASE_CFN_SIGNIFICAND:
      implicit_p = 0;
      break;

    default:
      return NULL_TREE;
    }

  tree out_t_node = (out_mode == DFmode) ? double_type_node : float_type_node;
  tree fndecl = implicit_p ? mathfn_built_in (out_t_node, cfn)
			   : mathfn_built_in_explicit (out_t_node, cfn);

  const char *bname = IDENTIFIER_POINTER (DECL_NAME (fndecl));
  char name[20];
  sprintf (name, out_mode == DFmode ? "v%ddf_%s" : "v%dsf_%s",
	   out_n, bname + 10);

  unsigned arity = 0;
  for (tree args = DECL_ARGUMENTS (fndecl); args; args = TREE_CHAIN (args))
    arity++;

  tree fntype = (arity == 1)
		? build_function_type_list (type_out, type_in, NULL)
		: build_function_type_list (type_out, type_in, type_in, NULL);

  /* Build a function declaration for the vectorized function.  */
  tree new_fndecl = build_decl (BUILTINS_LOCATION,
				FUNCTION_DECL, get_identifier (name), fntype);
  TREE_PUBLIC (new_fndecl) = 1;
  DECL_EXTERNAL (new_fndecl) = 1;
  DECL_IS_NOVOPS (new_fndecl) = 1;
  TREE_READONLY (new_fndecl) = 1;

  return new_fndecl;
}

/* Implement TARGET_LIBC_HAS_FUNCTION.  */

bool
gcn_libc_has_function (enum function_class fn_class,
		       tree type)
{
  return bsd_libc_has_function (fn_class, type);
}

/* }}}  */
/* {{{ md_reorg pass.  */

/* Identify VMEM instructions from their "type" attribute.  */

static bool
gcn_vmem_insn_p (attr_type type)
{
  switch (type)
    {
    case TYPE_MUBUF:
    case TYPE_MTBUF:
    case TYPE_FLAT:
    case TYPE_VOP3P_MAI:
      return true;
    case TYPE_UNKNOWN:
    case TYPE_SOP1:
    case TYPE_SOP2:
    case TYPE_SOPK:
    case TYPE_SOPC:
    case TYPE_SOPP:
    case TYPE_SMEM:
    case TYPE_DS:
    case TYPE_VOP2:
    case TYPE_VOP1:
    case TYPE_VOPC:
    case TYPE_VOP3A:
    case TYPE_VOP3B:
    case TYPE_VOP_SDWA:
    case TYPE_VOP_DPP:
    case TYPE_MULT:
    case TYPE_VMULT:
      return false;
    }
  gcc_unreachable ();
  return false;
}

/* If INSN sets the EXEC register to a constant value, return the value,
   otherwise return zero.  */

static int64_t
gcn_insn_exec_value (rtx_insn *insn)
{
  if (!NONDEBUG_INSN_P (insn))
    return 0;

  rtx pattern = PATTERN (insn);

  if (GET_CODE (pattern) == SET)
    {
      rtx dest = XEXP (pattern, 0);
      rtx src = XEXP (pattern, 1);

      if (GET_MODE (dest) == DImode
	  && REG_P (dest) && REGNO (dest) == EXEC_REG
	  && CONST_INT_P (src))
	return INTVAL (src);
    }

  return 0;
}

/* Sets the EXEC register before INSN to the value that it had after
   LAST_EXEC_DEF.  The constant value of the EXEC register is returned if
   known, otherwise it returns zero.  */

static int64_t
gcn_restore_exec (rtx_insn *insn, rtx_insn *last_exec_def, int64_t curr_exec,
		  bool curr_exec_known, bool &last_exec_def_saved)
{
  rtx exec_reg = gen_rtx_REG (DImode, EXEC_REG);
  rtx exec;

  int64_t exec_value = gcn_insn_exec_value (last_exec_def);

  if (exec_value)
    {
      /* If the EXEC value is a constant and it happens to be the same as the
         current EXEC value, the restore can be skipped.  */
      if (curr_exec_known && exec_value == curr_exec)
	return exec_value;

      exec = GEN_INT (exec_value);
    }
  else
    {
      /* If the EXEC value is not a constant, save it in a register after the
	 point of definition.  */
      rtx exec_save_reg = gen_rtx_REG (DImode, EXEC_SAVE_REG);

      if (!last_exec_def_saved)
	{
	  start_sequence ();
	  emit_move_insn (exec_save_reg, exec_reg);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();

	  emit_insn_after (seq, last_exec_def);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Saving EXEC after insn %d.\n",
		     INSN_UID (last_exec_def));

	  last_exec_def_saved = true;
	}

      exec = exec_save_reg;
    }

  /* Restore EXEC register before the usage.  */
  start_sequence ();
  emit_move_insn (exec_reg, exec);
  rtx_insn *seq = get_insns ();
  end_sequence ();
  emit_insn_before (seq, insn);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (exec_value)
	fprintf (dump_file, "Restoring EXEC to %ld before insn %d.\n",
		 exec_value, INSN_UID (insn));
      else
	fprintf (dump_file,
		 "Restoring EXEC from saved value before insn %d.\n",
		 INSN_UID (insn));
    }

  return exec_value;
}

/* Implement TARGET_MACHINE_DEPENDENT_REORG.

   Ensure that pipeline dependencies and lane masking are set correctly.  */

static void
gcn_md_reorg (void)
{
  basic_block bb;
  rtx exec_reg = gen_rtx_REG (DImode, EXEC_REG);
  regset_head live;

  INIT_REG_SET (&live);

  compute_bb_for_insn ();

  if (!optimize)
    {
      split_all_insns ();
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "After split:\n");
	  print_rtl_with_bb (dump_file, get_insns (), dump_flags);
	}

      /* Update data-flow information for split instructions.  */
      df_insn_rescan_all ();
    }

  df_live_add_problem ();
  df_live_set_all_dirty ();
  df_analyze ();

  /* This pass ensures that the EXEC register is set correctly, according
     to the "exec" attribute.  However, care must be taken so that the
     value that reaches explicit uses of the EXEC register remains the
     same as before.
   */

  FOR_EACH_BB_FN (bb, cfun)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "BB %d:\n", bb->index);

      rtx_insn *insn, *curr;
      rtx_insn *last_exec_def = BB_HEAD (bb);
      bool last_exec_def_saved = false;
      bool curr_exec_explicit = true;
      bool curr_exec_known = true;
      int64_t curr_exec = 0;	/* 0 here means 'the value is that of EXEC
				   after last_exec_def is executed'.  */

      bitmap live_in = DF_LR_IN (bb);
      bool exec_live_on_entry = false;
      if (bitmap_bit_p (live_in, EXEC_LO_REG)
	  || bitmap_bit_p (live_in, EXEC_HI_REG))
	{
	  if (dump_file)
	    fprintf (dump_file, "EXEC reg is live on entry to block %d\n",
		     (int) bb->index);
	  exec_live_on_entry = true;
	}

      FOR_BB_INSNS_SAFE (bb, insn, curr)
	{
	  if (!NONDEBUG_INSN_P (insn))
	    continue;

	  if (GET_CODE (PATTERN (insn)) == USE
	      || GET_CODE (PATTERN (insn)) == CLOBBER)
	    continue;

	  HARD_REG_SET defs, uses;
	  CLEAR_HARD_REG_SET (defs);
	  CLEAR_HARD_REG_SET (uses);
	  note_stores (insn, record_hard_reg_sets, &defs);
	  note_uses (&PATTERN (insn), record_hard_reg_uses, &uses);

	  bool exec_lo_def_p = TEST_HARD_REG_BIT (defs, EXEC_LO_REG);
	  bool exec_hi_def_p = TEST_HARD_REG_BIT (defs, EXEC_HI_REG);
	  bool exec_used = (hard_reg_set_intersect_p
			    (uses, reg_class_contents[(int) EXEC_MASK_REG])
			    || TEST_HARD_REG_BIT (uses, EXECZ_REG));

	  /* Check the instruction for implicit setting of EXEC via an
	     attribute.  */
	  attr_exec exec_attr = get_attr_exec (insn);
	  int64_t new_exec;

	  switch (exec_attr)
	    {
	    case EXEC_NONE:
	      new_exec = 0;
	      break;

	    case EXEC_SINGLE:
	      /* Instructions that do not involve memory accesses only require
		 bit 0 of EXEC to be set.  */
	      if (gcn_vmem_insn_p (get_attr_type (insn))
		  || get_attr_type (insn) == TYPE_DS)
		new_exec = 1;
	      else
		new_exec = curr_exec | 1;
	      break;

	    case EXEC_FULL:
	      new_exec = -1;
	      break;

	    default:  /* Auto-detect what setting is appropriate.  */
	      {
	        new_exec = 0;

		/* If EXEC is referenced explicitly then we don't need to do
		   anything to set it, so we're done.  */
		if (exec_used)
		  break;

		/* Scan the insn for VGPRs defs or uses.  The mode determines
		   what kind of exec is needed.  */
		subrtx_iterator::array_type array;
		FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
		  {
		    const_rtx x = *iter;
		    if (REG_P (x) && (VGPR_REGNO_P (REGNO (x))
				      || AVGPR_REGNO_P (REGNO (x))))
		      {
			if (VECTOR_MODE_P (GET_MODE (x)))
			  {
			    int vf = GET_MODE_NUNITS (GET_MODE (x));
			    new_exec = MAX ((uint64_t)new_exec,
					    0xffffffffffffffffUL >> (64-vf));
			  }
			else if (new_exec == 0)
			  new_exec = 1;
		      }
		  }
	        }
	      break;
	    }

	  if (new_exec && (!curr_exec_known || new_exec != curr_exec))
	    {
	      start_sequence ();
	      emit_move_insn (exec_reg, GEN_INT (new_exec));
	      rtx_insn *seq = get_insns ();
	      end_sequence ();
	      emit_insn_before (seq, insn);

	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "Setting EXEC to %ld before insn %d.\n",
			 new_exec, INSN_UID (insn));

	      curr_exec = new_exec;
	      curr_exec_explicit = false;
	      curr_exec_known = true;
	    }
	  else if (new_exec && dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Exec already is %ld before insn %d.\n",
		       new_exec, INSN_UID (insn));
	    }

	  /* The state of the EXEC register is unknown after a
	     function call.  */
	  if (CALL_P (insn))
	    curr_exec_known = false;

	  /* Handle explicit uses of EXEC.  If the instruction is a partial
	     explicit definition of EXEC, then treat it as an explicit use of
	     EXEC as well.  */
	  if (exec_used || exec_lo_def_p != exec_hi_def_p)
	    {
	      /* An instruction that explicitly uses EXEC should not also
		 implicitly define it.  */
	      gcc_assert (!exec_used || !new_exec);

	      if (!curr_exec_known || !curr_exec_explicit)
		{
		  /* Restore the previous explicitly defined value.  */
		  curr_exec = gcn_restore_exec (insn, last_exec_def,
						curr_exec, curr_exec_known,
						last_exec_def_saved);
		  curr_exec_explicit = true;
		  curr_exec_known = true;
		}
	    }

	  /* Handle explicit definitions of EXEC.  */
	  if (exec_lo_def_p || exec_hi_def_p)
	    {
	      last_exec_def = insn;
	      last_exec_def_saved = false;
	      curr_exec = gcn_insn_exec_value (insn);
	      curr_exec_explicit = true;
	      curr_exec_known = true;

	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file,
			 "Found %s definition of EXEC at insn %d.\n",
			 exec_lo_def_p == exec_hi_def_p ? "full" : "partial",
			 INSN_UID (insn));
	    }

	  exec_live_on_entry = false;
	}

      COPY_REG_SET (&live, DF_LR_OUT (bb));
      df_simulate_initialize_backwards (bb, &live);

      /* If EXEC is live after the basic block, restore the value of EXEC
	 at the end of the block.  */
      if ((REGNO_REG_SET_P (&live, EXEC_LO_REG)
	   || REGNO_REG_SET_P (&live, EXEC_HI_REG))
	  && (!curr_exec_known || !curr_exec_explicit || exec_live_on_entry))
	{
	  rtx_insn *end_insn = BB_END (bb);

	  /* If the instruction is not a jump instruction, do the restore
	     after the last instruction in the basic block.  */
	  if (NONJUMP_INSN_P (end_insn))
	    end_insn = NEXT_INSN (end_insn);

	  gcn_restore_exec (end_insn, last_exec_def, curr_exec,
			    curr_exec_known, last_exec_def_saved);
	}
    }

  CLEAR_REG_SET (&live);

  /* "Manually Inserted Wait States (NOPs)."

     GCN hardware detects most kinds of register dependencies, but there
     are some exceptions documented in the ISA manual.  This pass
     detects the missed cases, and inserts the documented number of NOPs
     required for correct execution.  */

  const int max_waits = 5;
  struct ilist
  {
    rtx_insn *insn;
    attr_unit unit;
    attr_delayeduse delayeduse;
    HARD_REG_SET writes;
    HARD_REG_SET reads;
    int age;
  } back[max_waits];
  int oldest = 0;
  for (int i = 0; i < max_waits; i++)
    back[i].insn = NULL;

  rtx_insn *insn, *last_insn = NULL;
  for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
    {
      if (!NONDEBUG_INSN_P (insn))
	continue;

      if (GET_CODE (PATTERN (insn)) == USE
	  || GET_CODE (PATTERN (insn)) == CLOBBER)
	continue;

      attr_type itype = get_attr_type (insn);
      attr_unit iunit = get_attr_unit (insn);
      attr_delayeduse idelayeduse = get_attr_delayeduse (insn);
      int ivccwait = get_attr_vccwait (insn);
      HARD_REG_SET ireads, iwrites;
      CLEAR_HARD_REG_SET (ireads);
      CLEAR_HARD_REG_SET (iwrites);
      note_stores (insn, record_hard_reg_sets, &iwrites);
      note_uses (&PATTERN (insn), record_hard_reg_uses, &ireads);

      /* Scan recent previous instructions for dependencies not handled in
         hardware.  */
      int nops_rqd = 0;
      for (int i = oldest; i < oldest + max_waits; i++)
	{
	  struct ilist *prev_insn = &back[i % max_waits];

	  if (!prev_insn->insn)
	    continue;

	  HARD_REG_SET depregs = prev_insn->writes & ireads;

	  /* VALU writes SGPR followed by VMEM reading the same SGPR
	     requires 5 wait states.  */
	  if ((prev_insn->age + nops_rqd) < 5
	      && prev_insn->unit == UNIT_VECTOR
	      && gcn_vmem_insn_p (itype)
	      && hard_reg_set_intersect_p
		   (depregs, reg_class_contents[(int) SGPR_REGS]))
	    nops_rqd = 5 - prev_insn->age;

	  /* VALU sets VCC/EXEC followed by VALU uses VCCZ/EXECZ
	     requires 5 wait states.  */
	  if ((prev_insn->age + nops_rqd) < 5
	      && prev_insn->unit == UNIT_VECTOR
	      && iunit == UNIT_VECTOR
	      && ((hard_reg_set_intersect_p
		   (prev_insn->writes,
		    reg_class_contents[(int) EXEC_MASK_REG])
		   && TEST_HARD_REG_BIT (ireads, EXECZ_REG))
		  ||
		  (hard_reg_set_intersect_p
		   (prev_insn->writes,
		    reg_class_contents[(int) VCC_CONDITIONAL_REG])
		   && TEST_HARD_REG_BIT (ireads, VCCZ_REG))))
	    nops_rqd = 5 - prev_insn->age;

	  /* VALU writes SGPR/VCC followed by v_{read,write}lane using
	     SGPR/VCC as lane select requires 4 wait states.  */
	  if ((prev_insn->age + nops_rqd) < 4
	      && prev_insn->unit == UNIT_VECTOR
	      && get_attr_laneselect (insn) == LANESELECT_YES
	      && (hard_reg_set_intersect_p
		    (depregs, reg_class_contents[(int) SGPR_REGS])
		  || hard_reg_set_intersect_p
		       (depregs, reg_class_contents[(int) VCC_CONDITIONAL_REG])))
	    nops_rqd = 4 - prev_insn->age;

	  /* VALU writes VGPR followed by VALU_DPP reading that VGPR
	     requires 2 wait states.  */
	  if ((prev_insn->age + nops_rqd) < 2
	      && prev_insn->unit == UNIT_VECTOR
	      && itype == TYPE_VOP_DPP)
	    {
	      if (hard_reg_set_intersect_p
		  (depregs, reg_class_contents[(int) VGPR_REGS]))
		nops_rqd = 2 - prev_insn->age;
	    }

	  /* Store that requires input registers are not overwritten by
	     following instruction.  */
	  if ((prev_insn->age + nops_rqd) < 1
	      && prev_insn->delayeduse == DELAYEDUSE_YES
	      && ((hard_reg_set_intersect_p
		   (prev_insn->reads, iwrites))))
	    nops_rqd = 1 - prev_insn->age;

	  /* Instruction that requires VCC is not written too close before
	     using it.  */
	  if (prev_insn->age < ivccwait
	      && (hard_reg_set_intersect_p
		  (prev_insn->writes,
		   reg_class_contents[(int)VCC_CONDITIONAL_REG])))
	    nops_rqd = ivccwait - prev_insn->age;

	  /* CDNA1: write VGPR before v_accvgpr_write reads it.  */
	  if (TARGET_AVGPR_CDNA1_NOPS
	      && (prev_insn->age + nops_rqd) < 2
	      && hard_reg_set_intersect_p
		  (depregs, reg_class_contents[(int) VGPR_REGS])
	      && hard_reg_set_intersect_p
		  (iwrites, reg_class_contents[(int) AVGPR_REGS]))
	    nops_rqd = 2 - prev_insn->age;

	  /* CDNA1: v_accvgpr_write writes AVGPR before v_accvgpr_read.  */
	  if (TARGET_AVGPR_CDNA1_NOPS
	      && (prev_insn->age + nops_rqd) < 3
	      && hard_reg_set_intersect_p
		  (depregs, reg_class_contents[(int) AVGPR_REGS])
	      && hard_reg_set_intersect_p
		  (iwrites, reg_class_contents[(int) VGPR_REGS]))
	    nops_rqd = 3 - prev_insn->age;

	  /* CDNA1: Undocumented(?!) read-after-write when restoring values
	     from AVGPRs to VGPRS.  Observed problem was for address register
	     of flat_load instruction, but others may be affected?  */
	  if (TARGET_AVGPR_CDNA1_NOPS
	      && (prev_insn->age + nops_rqd) < 2
	      && hard_reg_set_intersect_p
		   (prev_insn->reads, reg_class_contents[(int) AVGPR_REGS])
	      && hard_reg_set_intersect_p
		   (depregs, reg_class_contents[(int) VGPR_REGS]))
	    nops_rqd = 2 - prev_insn->age;
	}

      /* Insert the required number of NOPs.  */
      for (int i = nops_rqd; i > 0; i--)
	emit_insn_after (gen_nop (), last_insn);

      /* Age the previous instructions.  We can also ignore writes to
         registers subsequently overwritten.  */
      HARD_REG_SET written;
      CLEAR_HARD_REG_SET (written);
      for (int i = oldest + max_waits - 1; i > oldest; i--)
	{
	  struct ilist *prev_insn = &back[i % max_waits];

	  /* Assume all instructions are equivalent to one "wait", the same
	     as s_nop.  This is probably true for SALU, but not VALU (which
	     may take longer), so this is not optimal.  However, AMD do
	     not publish the cycle times for instructions.  */
	  prev_insn->age += 1 + nops_rqd;

	  written |= iwrites;
	  prev_insn->writes &= ~written;
	}

      /* Track the current instruction as a previous instruction.  */
      back[oldest].insn = insn;
      back[oldest].unit = iunit;
      back[oldest].delayeduse = idelayeduse;
      back[oldest].writes = iwrites;
      back[oldest].reads = ireads;
      back[oldest].age = 0;
      oldest = (oldest + 1) % max_waits;

      last_insn = insn;
    }
}

/* }}}  */
/* {{{ OpenACC / OpenMP.  */

#define GCN_DEFAULT_GANGS 0	/* Choose at runtime.  */
#define GCN_DEFAULT_WORKERS 0	/* Choose at runtime.  */
#define GCN_DEFAULT_VECTORS 1	/* Use autovectorization only, for now.  */

/* Implement TARGET_GOACC_VALIDATE_DIMS.

   Check the launch dimensions provided for an OpenACC compute
   region, or routine.  */

static bool
gcn_goacc_validate_dims (tree decl, int dims[], int fn_level,
			 unsigned /*used*/)
{
  bool changed = false;
  const int max_workers = 16;

  /* The vector size must appear to be 64, to the user, unless this is a
     SEQ routine.  The real, internal value is always 1, which means use
     autovectorization, but the user should not see that.  */
  if (fn_level <= GOMP_DIM_VECTOR && fn_level >= -1
      && dims[GOMP_DIM_VECTOR] >= 0)
    {
      if (fn_level < 0 && dims[GOMP_DIM_VECTOR] >= 0
	  && dims[GOMP_DIM_VECTOR] != 64)
	warning_at (decl ? DECL_SOURCE_LOCATION (decl) : UNKNOWN_LOCATION,
		    OPT_Wopenacc_dims,
		    (dims[GOMP_DIM_VECTOR]
		     ? G_("using %<vector_length (64)%>, ignoring %d")
		     : G_("using %<vector_length (64)%>, "
			  "ignoring runtime setting")),
		    dims[GOMP_DIM_VECTOR]);
      dims[GOMP_DIM_VECTOR] = 1;
      changed = true;
    }

  /* Check the num workers is not too large.  */
  if (dims[GOMP_DIM_WORKER] > max_workers)
    {
      warning_at (decl ? DECL_SOURCE_LOCATION (decl) : UNKNOWN_LOCATION,
		  OPT_Wopenacc_dims,
		  "using %<num_workers (%d)%>, ignoring %d",
		  max_workers, dims[GOMP_DIM_WORKER]);
      dims[GOMP_DIM_WORKER] = max_workers;
      changed = true;
    }

  /* Set global defaults.  */
  if (!decl)
    {
      dims[GOMP_DIM_VECTOR] = GCN_DEFAULT_VECTORS;
      if (dims[GOMP_DIM_WORKER] < 0)
	dims[GOMP_DIM_WORKER] = GCN_DEFAULT_WORKERS;
      if (dims[GOMP_DIM_GANG] < 0)
	dims[GOMP_DIM_GANG] = GCN_DEFAULT_GANGS;
      changed = true;
    }

  return changed;
}

/* Helper function for oacc_dim_size instruction.
   Also used for OpenMP, via builtin_gcn_dim_size, and the omp_gcn pass.  */

rtx
gcn_oacc_dim_size (int dim)
{
  if (dim < 0 || dim > 2)
    error ("offload dimension out of range (%d)", dim);

  /* Vectors are a special case.  */
  if (dim == 2)
    return const1_rtx;		/* Think of this as 1 times 64.  */

  static int offset[] = {
    /* Offsets into dispatch packet.  */
    12,				/* X dim = Gang / Team / Work-group.  */
    20,				/* Z dim = Worker / Thread / Wavefront.  */
    16				/* Y dim = Vector / SIMD / Work-item.  */
  };
  rtx addr = gen_rtx_PLUS (DImode,
			   gen_rtx_REG (DImode,
					cfun->machine->args.
					reg[DISPATCH_PTR_ARG]),
			   GEN_INT (offset[dim]));
  rtx mem = gen_rtx_MEM (SImode, addr);
  set_mem_addr_space (mem, ADDR_SPACE_SCALAR_FLAT);
  return mem;
}

/* Helper function for oacc_dim_pos instruction.
   Also used for OpenMP, via builtin_gcn_dim_pos, and the omp_gcn pass.  */

rtx
gcn_oacc_dim_pos (int dim)
{
  if (dim < 0 || dim > 2)
    error ("offload dimension out of range (%d)", dim);

  static const int reg[] = {
    WORKGROUP_ID_X_ARG,		/* Gang / Team / Work-group.  */
    WORK_ITEM_ID_Z_ARG,		/* Worker / Thread / Wavefront.  */
    WORK_ITEM_ID_Y_ARG		/* Vector / SIMD / Work-item.  */
  };

  int reg_num = cfun->machine->args.reg[reg[dim]];

  /* The information must have been requested by the kernel.  */
  gcc_assert (reg_num >= 0);

  return gen_rtx_REG (SImode, reg_num);
}

/* Implement TARGET_GOACC_FORK_JOIN.  */

static bool
gcn_fork_join (gcall *call, const int dims[], bool is_fork)
{
  tree arg = gimple_call_arg (call, 2);
  unsigned axis = TREE_INT_CST_LOW (arg);

  if (!is_fork && axis == GOMP_DIM_WORKER && dims[axis] != 1)
    return true;

  return false;
}

/* Implement ???????
   FIXME make this a real hook.

   Adjust FNDECL such that options inherited from the host compiler
   are made appropriate for the accelerator compiler.  */

void
gcn_fixup_accel_lto_options (tree fndecl)
{
  tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);
  if (!func_optimize)
    return;

  tree old_optimize
    = build_optimization_node (&global_options, &global_options_set);
  tree new_optimize;

  /* If the function changed the optimization levels as well as
     setting target options, start with the optimizations
     specified.  */
  if (func_optimize != old_optimize)
    cl_optimization_restore (&global_options, &global_options_set,
			     TREE_OPTIMIZATION (func_optimize));

  gcn_option_override ();

  /* The target attributes may also change some optimization flags,
     so update the optimization options if necessary.  */
  new_optimize = build_optimization_node (&global_options,
					  &global_options_set);

  if (old_optimize != new_optimize)
    {
      DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
      cl_optimization_restore (&global_options, &global_options_set,
			       TREE_OPTIMIZATION (old_optimize));
    }
}

/* Implement TARGET_GOACC_SHARED_MEM_LAYOUT hook.  */

static void
gcn_shared_mem_layout (unsigned HOST_WIDE_INT *lo,
		       unsigned HOST_WIDE_INT *hi,
		       int ARG_UNUSED (dims[GOMP_DIM_MAX]),
		       unsigned HOST_WIDE_INT
			 ARG_UNUSED (private_size[GOMP_DIM_MAX]),
		       unsigned HOST_WIDE_INT reduction_size[GOMP_DIM_MAX])
{
  *lo = gang_private_size_opt + reduction_size[GOMP_DIM_WORKER];
  /* !!! We can maybe use dims[] to estimate the maximum number of work
     groups/wavefronts/etc. we will launch, and therefore tune the maximum
     amount of LDS we should use.  For now, use a minimal amount to try to
     maximise occupancy.  */
  *hi = acc_lds_size;
  machine_function *machfun = cfun->machine;
  machfun->reduction_base = gang_private_size_opt;
  machfun->reduction_limit
    = gang_private_size_opt + reduction_size[GOMP_DIM_WORKER];
}

/* }}}  */
/* {{{ ASM Output.  */

/*  Implement TARGET_ASM_FILE_START.

    Print assembler file header text.  */

static void
output_file_start (void)
{
  /* In HSACOv4 no attribute setting means the binary supports "any" hardware
     configuration.  */
  const char *xnack = (flag_xnack == HSACO_ATTR_ON ? ":xnack+"
		       : flag_xnack == HSACO_ATTR_OFF ? ":xnack-"
		       : "" /* Unsupported or "any".  */);
  const char *sram_ecc = (flag_sram_ecc == HSACO_ATTR_ON ? ":sramecc+"
			  : flag_sram_ecc == HSACO_ATTR_OFF ? ":sramecc-"
			  : "" /* Unsupported or "any".  */);
  const char *cpu = gcn_devices[gcn_arch].name;

  fprintf(asm_out_file, "\t.amdgcn_target \"amdgcn-unknown-amdhsa--%s%s%s\"\n",
	  cpu, sram_ecc, xnack);
}

/* Implement ASM_DECLARE_FUNCTION_NAME via gcn-hsa.h.

   Print the initial definition of a function name.

   For GCN kernel entry points this includes all the HSA meta-data, special
   alignment constraints that don't apply to regular functions, and magic
   comments that pass information to mkoffload.  */

void
gcn_hsa_declare_function_name (FILE *file, const char *name,
			       tree decl ATTRIBUTE_UNUSED)
{
  int sgpr, vgpr, avgpr;
  bool xnack_enabled = TARGET_XNACK;

  fputs ("\n\n", file);

  if (cfun && cfun->machine && cfun->machine->normal_function)
    {
      fputs ("\t.type\t", file);
      assemble_name (file, name);
      fputs (",@function\n", file);
      assemble_name (file, name);
      fputs (":\n", file);
      return;
    }

  /* Determine count of sgpr/vgpr registers by looking for last
     one used.  */
  for (sgpr = LAST_SGPR_REG - FIRST_SGPR_REG; sgpr >= 0; sgpr--)
    if (df_regs_ever_live_p (FIRST_SGPR_REG + sgpr))
      break;
  sgpr++;
  for (vgpr = LAST_VGPR_REG - FIRST_VGPR_REG; vgpr >= 0; vgpr--)
    if (df_regs_ever_live_p (FIRST_VGPR_REG + vgpr))
      break;
  vgpr++;
  for (avgpr = LAST_AVGPR_REG - FIRST_AVGPR_REG; avgpr >= 0; avgpr--)
    if (df_regs_ever_live_p (FIRST_AVGPR_REG + avgpr))
      break;
  avgpr++;

  /* The main function epilogue uses v8, but df doesn't see that.  */
  if (vgpr < 9)
    vgpr = 9;

  if (!leaf_function_p ())
    {
      /* We can't know how many registers function calls might use.  */
      if (vgpr < MAX_NORMAL_VGPR_COUNT)
	vgpr = MAX_NORMAL_VGPR_COUNT;
      if (sgpr < MAX_NORMAL_SGPR_COUNT)
	sgpr = MAX_NORMAL_SGPR_COUNT;
      if (avgpr < MAX_NORMAL_AVGPR_COUNT)
	avgpr = MAX_NORMAL_AVGPR_COUNT;
    }

  /* SIMD32 devices count double in wavefront64 mode.  */
  if (TARGET_WAVE64_COMPAT)
    vgpr *= 2;

  /* Round up to the allocation block size.  */
  int vgpr_block_size = TARGET_VGPR_GRANULARITY;
  if (vgpr % vgpr_block_size)
    vgpr += vgpr_block_size - (vgpr % vgpr_block_size);
  if (avgpr % vgpr_block_size)
    avgpr += vgpr_block_size - (avgpr % vgpr_block_size);

  fputs ("\t.rodata\n"
	 "\t.p2align\t6\n"
	 "\t.amdhsa_kernel\t", file);
  assemble_name (file, name);
  fputs ("\n", file);
  int reg = FIRST_SGPR_REG;
  for (int a = 0; a < GCN_KERNEL_ARG_TYPES; a++)
    {
      int reg_first = -1;
      int reg_last;
      if ((cfun->machine->args.requested & (1 << a))
	  && (gcn_kernel_arg_types[a].fixed_regno < 0))
	{
	  reg_first = reg;
	  reg_last = (reg_first
		      + (GET_MODE_SIZE (gcn_kernel_arg_types[a].mode)
			 / UNITS_PER_WORD) - 1);
	  reg = reg_last + 1;
	}

      if (gcn_kernel_arg_types[a].header_pseudo)
	{
	  fprintf (file, "\t  %s%s\t%i",
		   (cfun->machine->args.requested & (1 << a)) != 0 ? "" : ";",
		   gcn_kernel_arg_types[a].header_pseudo,
		   (cfun->machine->args.requested & (1 << a)) != 0);
	  if (reg_first != -1)
	    {
	      fprintf (file, " ; (");
	      for (int i = reg_first; i <= reg_last; ++i)
		{
		  if (i != reg_first)
		    fprintf (file, ", ");
		  fprintf (file, "%s", reg_names[i]);
		}
	      fprintf (file, ")");
	    }
	  fprintf (file, "\n");
	}
      else if (gcn_kernel_arg_types[a].fixed_regno >= 0
	       && cfun->machine->args.requested & (1 << a))
	fprintf (file, "\t  ; %s\t%i (%s)\n",
		 gcn_kernel_arg_types[a].name,
		 (cfun->machine->args.requested & (1 << a)) != 0,
		 reg_names[gcn_kernel_arg_types[a].fixed_regno]);
    }
  fprintf (file, "\t  .amdhsa_system_vgpr_workitem_id\t%i\n",
	   (cfun->machine->args.requested & (1 << WORK_ITEM_ID_Z_ARG))
	   ? 2
	   : cfun->machine->args.requested & (1 << WORK_ITEM_ID_Y_ARG)
	   ? 1 : 0);
  int next_free_vgpr = vgpr;
  if (TARGET_AVGPR_COMBINED)
    next_free_vgpr += avgpr;
  else if (TARGET_AVGPRS && avgpr > vgpr)
    next_free_vgpr = avgpr;
  fprintf (file,
	   "\t  .amdhsa_next_free_vgpr\t%i\n"
	   "\t  .amdhsa_next_free_sgpr\t%i\n"
	   "\t  .amdhsa_reserve_vcc\t1\n"
	   "\t  .amdhsa_reserve_xnack_mask\t%i\n"
	   "\t  .amdhsa_private_segment_fixed_size\t0\n"
	   "\t  .amdhsa_group_segment_fixed_size\t%u\n"
	   "\t  .amdhsa_float_denorm_mode_32\t3\n"
	   "\t  .amdhsa_float_denorm_mode_16_64\t3\n",
	   next_free_vgpr,
	   sgpr,
	   xnack_enabled,
	   LDS_SIZE);
  /* Not supported with 'architected flat scratch'.  */
  if (!TARGET_ARCHITECTED_FLAT_SCRATCH)
    fprintf (file,
	   "\t  .amdhsa_reserve_flat_scratch\t0\n");
  if (TARGET_AVGPR_COMBINED)
    fprintf (file,
	     "\t  .amdhsa_accum_offset\t%i\n",
	     vgpr); /* The AGPRs come after the VGPRs.  */
  if (TARGET_TGSPLIT)
    fprintf (file,
	     "\t  .amdhsa_tg_split\t0\n");
  fputs ("\t.end_amdhsa_kernel\n", file);

#if 1
  /* The following is YAML embedded in assembler; tabs are not allowed.  */
  fputs ("        .amdgpu_metadata\n"
	 "        amdhsa.version:\n"
	 "          - 1\n"
	 "          - 0\n"
	 "        amdhsa.kernels:\n"
	 "          - .name: ", file);
  assemble_name (file, name);
  fputs ("\n            .symbol: ", file);
  assemble_name (file, name);
  fprintf (file,
	   ".kd\n"
	   "            .kernarg_segment_size: %i\n"
	   "            .kernarg_segment_align: %i\n"
	   "            .group_segment_fixed_size: %u\n"
	   "            .private_segment_fixed_size: 0\n"
	   "            .wavefront_size: 64\n"
	   "            .sgpr_count: %i\n"
	   "            .vgpr_count: %i%s\n"
	   "            .max_flat_workgroup_size: 1024\n",
	   cfun->machine->kernarg_segment_byte_size,
	   cfun->machine->kernarg_segment_alignment,
	   LDS_SIZE,
	   sgpr, next_free_vgpr,
	   (TARGET_WAVE64_COMPAT
	    ? " ; wavefrontsize64 counts double on SIMD32"
	    : ""));
  if (TARGET_AVGPRS)
    fprintf (file, "            .agpr_count: %i\n", avgpr);
  fputs ("        .end_amdgpu_metadata\n", file);
#endif

  fputs ("\t.text\n", file);
  fputs ("\t.align\t256\n", file);
  fputs ("\t.type\t", file);
  assemble_name (file, name);
  fputs (",@function\n", file);
  ASM_OUTPUT_FUNCTION_LABEL (file, name, decl);

  /* This comment is read by mkoffload.  */
  if (flag_openacc)
    fprintf (file, "\t;; OPENACC-DIMS: %d, %d, %d : %s\n",
	     oacc_get_fn_dim_size (cfun->decl, GOMP_DIM_GANG),
	     oacc_get_fn_dim_size (cfun->decl, GOMP_DIM_WORKER),
	     oacc_get_fn_dim_size (cfun->decl, GOMP_DIM_VECTOR), name);
}

/* Implement TARGET_ASM_SELECT_SECTION.

   Return the section into which EXP should be placed.  */

static section *
gcn_asm_select_section (tree exp, int reloc, unsigned HOST_WIDE_INT align)
{
  if (TREE_TYPE (exp) != error_mark_node
      && TYPE_ADDR_SPACE (TREE_TYPE (exp)) == ADDR_SPACE_LDS)
    {
      if (!DECL_P (exp))
	return get_section (".lds_bss",
			    SECTION_WRITE | SECTION_BSS | SECTION_DEBUG,
			    NULL);

      return get_named_section (exp, ".lds_bss", reloc);
    }

  return default_elf_select_section (exp, reloc, align);
}

/* Implement TARGET_ASM_FUNCTION_PROLOGUE.

   Emits custom text into the assembler file at the head of each function.  */

static void
gcn_target_asm_function_prologue (FILE *file)
{
  machine_function *offsets = gcn_compute_frame_offsets ();

  asm_fprintf (file, "\t; using %s addressing in function\n",
	       offsets->use_flat_addressing ? "flat" : "global");

  if (offsets->normal_function)
    {
      asm_fprintf (file, "\t; frame pointer needed: %s\n",
		   offsets->need_frame_pointer ? "true" : "false");
      asm_fprintf (file, "\t; lr needs saving: %s\n",
		   offsets->lr_needs_saving ? "true" : "false");
      asm_fprintf (file, "\t; outgoing args size: %wd\n",
		   offsets->outgoing_args_size);
      asm_fprintf (file, "\t; pretend size: %wd\n", offsets->pretend_size);
      asm_fprintf (file, "\t; local vars size: %wd\n", offsets->local_vars);
      asm_fprintf (file, "\t; callee save size: %wd\n",
		   offsets->callee_saves);
    }
  else
    {
      asm_fprintf (file, "\t; HSA kernel entry point\n");
      asm_fprintf (file, "\t; local vars size: %wd\n", offsets->local_vars);
      asm_fprintf (file, "\t; outgoing args size: %wd\n",
		   offsets->outgoing_args_size);
    }
}

/* Helper function for print_operand and print_operand_address.

   Print a register as the assembler requires, according to mode and name.  */

static void
print_reg (FILE *file, rtx x)
{
  machine_mode mode = GET_MODE (x);
  if (VECTOR_MODE_P (mode))
    mode = GET_MODE_INNER (mode);
  if (mode == BImode || mode == QImode || mode == HImode || mode == SImode
      || mode == HFmode || mode == SFmode)
    fprintf (file, "%s", reg_names[REGNO (x)]);
  else if (mode == DImode || mode == DFmode)
    {
      if (SGPR_REGNO_P (REGNO (x)))
	fprintf (file, "s[%i:%i]", REGNO (x) - FIRST_SGPR_REG,
		 REGNO (x) - FIRST_SGPR_REG + 1);
      else if (VGPR_REGNO_P (REGNO (x)))
	fprintf (file, "v[%i:%i]", REGNO (x) - FIRST_VGPR_REG,
		 REGNO (x) - FIRST_VGPR_REG + 1);
      else if (AVGPR_REGNO_P (REGNO (x)))
	fprintf (file, "a[%i:%i]", REGNO (x) - FIRST_AVGPR_REG,
		 REGNO (x) - FIRST_AVGPR_REG + 1);
      else if (REGNO (x) == FLAT_SCRATCH_REG)
	fprintf (file, "flat_scratch");
      else if (REGNO (x) == EXEC_REG)
	fprintf (file, "exec");
      else if (REGNO (x) == VCC_LO_REG)
	fprintf (file, "vcc");
      else
	fprintf (file, "[%s:%s]",
		 reg_names[REGNO (x)], reg_names[REGNO (x) + 1]);
    }
  else if (mode == TImode)
    {
      if (SGPR_REGNO_P (REGNO (x)))
	fprintf (file, "s[%i:%i]", REGNO (x) - FIRST_SGPR_REG,
		 REGNO (x) - FIRST_SGPR_REG + 3);
      else if (VGPR_REGNO_P (REGNO (x)))
	fprintf (file, "v[%i:%i]", REGNO (x) - FIRST_VGPR_REG,
		 REGNO (x) - FIRST_VGPR_REG + 3);
      else if (AVGPR_REGNO_P (REGNO (x)))
	fprintf (file, "a[%i:%i]", REGNO (x) - FIRST_AVGPR_REG,
		 REGNO (x) - FIRST_AVGPR_REG + 3);
      else
	gcc_unreachable ();
    }
  else
    gcc_unreachable ();
}

/* Implement TARGET_SECTION_TYPE_FLAGS.

   Return a set of section attributes for use by TARGET_ASM_NAMED_SECTION.  */

static unsigned int
gcn_section_type_flags (tree decl, const char *name, int reloc)
{
  if (strcmp (name, ".lds_bss") == 0)
    return SECTION_WRITE | SECTION_BSS | SECTION_DEBUG;

  return default_section_type_flags (decl, name, reloc);
}

/* Helper function for gcn_asm_output_symbol_ref.

   FIXME: This function is used to lay out gang-private variables in LDS
   on a per-CU basis.
   There may be cases in which gang-private variables in different compilation
   units could clobber each other.  In that case we should be relying on the
   linker to lay out gang-private LDS space, but that doesn't appear to be
   possible at present.  */

static void
gcn_print_lds_decl (FILE *f, tree var)
{
  int *offset;
  if ((offset = lds_allocs.get (var)))
    fprintf (f, "%u", (unsigned) *offset);
  else
    {
      unsigned HOST_WIDE_INT align = DECL_ALIGN_UNIT (var);
      tree type = TREE_TYPE (var);
      unsigned HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE_UNIT (type));
      if (size > align && size > 4 && align < 8)
	align = 8;

      gang_private_hwm = ((gang_private_hwm + align - 1) & ~(align - 1));

      lds_allocs.put (var, gang_private_hwm);
      fprintf (f, "%u", gang_private_hwm);
      gang_private_hwm += size;
      if (gang_private_hwm > gang_private_size_opt)
	error ("%d bytes of gang-private data-share memory exhausted"
	       " (increase with %<-mgang-private-size=%d%>, for example)",
	       gang_private_size_opt, gang_private_hwm);
    }
}

/* Implement ASM_OUTPUT_SYMBOL_REF via gcn-hsa.h.  */

void
gcn_asm_output_symbol_ref (FILE *file, rtx x)
{
  tree decl;
  if (cfun
      && (decl = SYMBOL_REF_DECL (x)) != 0
      && VAR_P (decl)
      && AS_LDS_P (TYPE_ADDR_SPACE (TREE_TYPE (decl))))
    {
      /* LDS symbols (emitted using this hook) are only used at present
         to propagate worker values from an active thread to neutered
         threads.  Use the same offset for each such block, but don't
         use zero because null pointers are used to identify the active
         thread in GOACC_single_copy_start calls.  */
      gcn_print_lds_decl (file, decl);
    }
  else
    {
      assemble_name (file, XSTR (x, 0));
      /* FIXME: See above -- this condition is unreachable.  */
      if (cfun
	  && (decl = SYMBOL_REF_DECL (x)) != 0
	  && VAR_P (decl)
	  && AS_LDS_P (TYPE_ADDR_SPACE (TREE_TYPE (decl))))
	fputs ("@abs32", file);
    }
}

/* Implement TARGET_CONSTANT_ALIGNMENT.

   Returns the alignment in bits of a constant that is being placed in memory.
   CONSTANT is the constant and BASIC_ALIGN is the alignment that the object
   would ordinarily have.  */

static HOST_WIDE_INT
gcn_constant_alignment (const_tree ARG_UNUSED (constant),
			HOST_WIDE_INT basic_align)
{
  return basic_align > 128 ? basic_align : 128;
}

/* Implement PRINT_OPERAND_ADDRESS via gcn.h.  */

void
print_operand_address (FILE *file, rtx mem)
{
  gcc_assert (MEM_P (mem));

  rtx reg;
  rtx offset;
  addr_space_t as = MEM_ADDR_SPACE (mem);
  rtx addr = XEXP (mem, 0);
  gcc_assert (REG_P (addr) || GET_CODE (addr) == PLUS);

  if (AS_SCRATCH_P (as))
    switch (GET_CODE (addr))
      {
      case REG:
	print_reg (file, addr);
	break;

      case PLUS:
	reg = XEXP (addr, 0);
	offset = XEXP (addr, 1);
	print_reg (file, reg);
	if (GET_CODE (offset) == CONST_INT)
	  fprintf (file, " offset:" HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
	else
	  abort ();
	break;

      default:
	debug_rtx (addr);
	abort ();
      }
  else if (AS_ANY_FLAT_P (as))
    {
      if (GET_CODE (addr) == REG)
	print_reg (file, addr);
      else
	print_reg (file, XEXP (addr, 0));
    }
  else if (AS_GLOBAL_P (as))
    {
      rtx base = addr;
      rtx vgpr_offset = NULL_RTX;

      if (GET_CODE (addr) == PLUS)
	{
	  base = XEXP (addr, 0);

	  if (GET_CODE (base) == PLUS)
	    {
	      /* (SGPR + VGPR) + CONST  */
	      vgpr_offset = XEXP (base, 1);
	      base = XEXP (base, 0);
	    }
	  else
	    {
	      rtx offset = XEXP (addr, 1);

	      if (REG_P (offset))
		/* SGPR + VGPR  */
		vgpr_offset = offset;
	      else if (CONST_INT_P (offset))
		/* VGPR + CONST or SGPR + CONST  */
		;
	      else
		output_operand_lossage ("bad ADDR_SPACE_GLOBAL address");
	    }
	}

      if (REG_P (base))
	{
	  if (VGPR_REGNO_P (REGNO (base)))
	    print_reg (file, base);
	  else if (SGPR_REGNO_P (REGNO (base)))
	    {
	      /* The assembler requires a 64-bit VGPR pair here, even though
	         the offset should be only 32-bit.  */
	      if (vgpr_offset == NULL_RTX)
		/* In this case, the vector offset is zero, so we use the first
		   lane of v1, which is initialized to zero.  */
		fprintf (file, "v1");
	      else if (REG_P (vgpr_offset)
		       && VGPR_REGNO_P (REGNO (vgpr_offset)))
		fprintf (file, "v%d", REGNO (vgpr_offset) - FIRST_VGPR_REG);
	      else
		output_operand_lossage ("bad ADDR_SPACE_GLOBAL address");
	    }
	}
      else
	output_operand_lossage ("bad ADDR_SPACE_GLOBAL address");
    }
  else if (AS_ANY_DS_P (as))
    switch (GET_CODE (addr))
      {
      case REG:
	print_reg (file, addr);
	break;

      case PLUS:
	reg = XEXP (addr, 0);
	print_reg (file, reg);
	break;

      default:
	debug_rtx (addr);
	abort ();
      }
  else
    switch (GET_CODE (addr))
      {
      case REG:
	print_reg (file, addr);
	fprintf (file, ", 0");
	break;

      case PLUS:
	reg = XEXP (addr, 0);
	offset = XEXP (addr, 1);
	print_reg (file, reg);
	fprintf (file, ", ");
	if (GET_CODE (offset) == REG)
	  print_reg (file, reg);
	else if (GET_CODE (offset) == CONST_INT)
	  fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
	else
	  abort ();
	break;

      default:
	debug_rtx (addr);
	abort ();
      }
}

/* Implement PRINT_OPERAND via gcn.h.

   b - print operand size as untyped operand (b8/b16/b32/b64)
   B - print operand size as SI/DI untyped operand (b32/b32/b32/b64)
   i - print operand size as untyped operand (i16/b32/i64)
   I - print operand size as SI/DI untyped operand(i32/b32/i64)
   u - print operand size as untyped operand (u16/u32/u64)
   U - print operand size as SI/DI untyped operand(u32/u64)
   o - print operand size as memory access size for loads
       (ubyte/ushort/dword/dwordx2/wordx3/dwordx4)
   s - print operand size as memory access size for stores
       (byte/short/dword/dwordx2/wordx3/dwordx4)
   C - print conditional code for s_cbranch (_sccz/_sccnz/_vccz/_vccnz...)
   c - print inverse conditional code for s_cbranch
   D - print conditional code for s_cmp (eq_u64/lg_u64...)
   E - print conditional code for v_cmp (eq_u64/ne_u64...)
   A - print address in formatting suitable for given address space.
   O - print offset:n for data share operations.
   g - print "glc", if appropriate for given MEM
   L - print low-part of a multi-reg value
   H - print second part of a multi-reg value (high-part of 2-reg value)
   J - print third part of a multi-reg value
   K - print fourth part of a multi-reg value
 */

void
print_operand (FILE *file, rtx x, int code)
{
  rtx_code xcode = x ? GET_CODE (x) : UNKNOWN;
  bool invert = false;
  switch (code)
    {
      /* Instructions have the following suffixes.
         If there are two suffixes, the first is the destination type,
	 and the second is the source type.

         B32 Bitfield (untyped data) 32-bit
         B64 Bitfield (untyped data) 64-bit
         F16 floating-point 16-bit
         F32 floating-point 32-bit (IEEE 754 single-precision float)
         F64 floating-point 64-bit (IEEE 754 double-precision float)
         I16 signed 32-bit integer
         I32 signed 32-bit integer
         I64 signed 64-bit integer
         U16 unsigned 32-bit integer
         U32 unsigned 32-bit integer
         U64 unsigned 64-bit integer  */

      /* Print operand size as untyped suffix.  */
    case 'b':
      {
	const char *s = "";
	machine_mode mode = GET_MODE (x);
	if (VECTOR_MODE_P (mode))
	  mode = GET_MODE_INNER (mode);
	switch (GET_MODE_SIZE (mode))
	  {
	  case 1:
	    s = "_b8";
	    break;
	  case 2:
	    s = "_b16";
	    break;
	  case 4:
	    s = "_b32";
	    break;
	  case 8:
	    s = "_b64";
	    break;
	  default:
	    output_operand_lossage ("invalid operand %%xn code");
	    return;
	  }
	fputs (s, file);
      }
      return;
    case 'B':
      {
	const char *s = "";
	machine_mode mode = GET_MODE (x);
	if (VECTOR_MODE_P (mode))
	  mode = GET_MODE_INNER (mode);
	switch (GET_MODE_SIZE (mode))
	  {
	  case 1:
	  case 2:
	  case 4:
	    s = "_b32";
	    break;
	  case 8:
	    s = "_b64";
	    break;
	  default:
	    output_operand_lossage ("invalid operand %%xn code");
	    return;
	  }
	fputs (s, file);
      }
      return;
    case 'e':
      fputs ("sext(", file);
      print_operand (file, x, 0);
      fputs (")", file);
      return;
    case 'i':
    case 'I':
    case 'u':
    case 'U':
      {
	bool signed_p = code == 'i';
	bool min32_p = code == 'I' || code == 'U';
	const char *s = "";
	machine_mode mode = GET_MODE (x);
	if (VECTOR_MODE_P (mode))
	  mode = GET_MODE_INNER (mode);
	if (mode == VOIDmode)
	  switch (GET_CODE (x))
	    {
	    case CONST_INT:
	      s = signed_p ? "_i32" : "_u32";
	      break;
	    case CONST_DOUBLE:
	      s = "_f64";
	      break;
	    default:
	      output_operand_lossage ("invalid operand %%xn code");
	      return;
	    }
	else if (FLOAT_MODE_P (mode))
	  switch (GET_MODE_SIZE (mode))
	    {
	    case 2:
	      s = "_f16";
	      break;
	    case 4:
	      s = "_f32";
	      break;
	    case 8:
	      s = "_f64";
	      break;
	    default:
	      output_operand_lossage ("invalid operand %%xn code");
	      return;
	    }
	else if (min32_p)
	  switch (GET_MODE_SIZE (mode))
	    {
	    case 1:
	    case 2:
	    case 4:
	      s = signed_p ? "_i32" : "_u32";
	      break;
	    case 8:
	      s = signed_p ? "_i64" : "_u64";
	      break;
	    default:
	      output_operand_lossage ("invalid operand %%xn code");
	      return;
	    }
	else
	  switch (GET_MODE_SIZE (mode))
	    {
	    case 1:
	      s = signed_p ? "_i8" : "_u8";
	      break;
	    case 2:
	      s = signed_p ? "_i16" : "_u16";
	      break;
	    case 4:
	      s = signed_p ? "_i32" : "_u32";
	      break;
	    case 8:
	      s = signed_p ? "_i64" : "_u64";
	      break;
	    default:
	      output_operand_lossage ("invalid operand %%xn code");
	      return;
	    }
	fputs (s, file);
      }
      return;
      /* Print operand size as untyped suffix.  */
    case 'o':
      {
	const char *s = 0;
	machine_mode mode = GET_MODE (x);
	if (VECTOR_MODE_P (mode))
	  mode = GET_MODE_INNER (mode);

	switch (mode)
	  {
	  case E_QImode:
	    s = "_ubyte";
	    break;
	  case E_HImode:
	  case E_HFmode:
	    s = "_ushort";
	    break;
	  default:
	    break;
	  }

	if (s)
	  {
	    fputs (s, file);
	    return;
	  }

	/* Fall-through - the other cases for 'o' are the same as for 's'.  */
	gcc_fallthrough();
      }
    case 's':
      {
	const char *s;
	machine_mode mode = GET_MODE (x);
	if (VECTOR_MODE_P (mode))
	  mode = GET_MODE_INNER (mode);

	switch (mode)
	  {
	  case E_QImode:
	    s = "_byte";
	    break;
	  case E_HImode:
	  case E_HFmode:
	    s = "_short";
	    break;
	  case E_SImode:
	  case E_SFmode:
	    s = "_dword";
	    break;
	  case E_DImode:
	  case E_DFmode:
	    s = "_dwordx2";
	    break;
	  case E_TImode:
	    s = "_dwordx4";
	    break;
	  default:
	    output_operand_lossage ("invalid operand %%xn code");
	    return;
	  }
	fputs (s, file);
      }
      return;
    case 'A':
      if (xcode != MEM)
	{
	  output_operand_lossage ("invalid %%xn code");
	  return;
	}
      print_operand_address (file, x);
      return;
    case 'O':
      {
	if (xcode != MEM)
	  {
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	if (AS_GDS_P (MEM_ADDR_SPACE (x)))
	  fprintf (file, " gds");

	rtx x0 = XEXP (x, 0);
	if (AS_GLOBAL_P (MEM_ADDR_SPACE (x)))
	  {
	    fprintf (file, ", ");

	    rtx base = x0;
	    rtx const_offset = NULL_RTX;

	    if (GET_CODE (base) == PLUS)
	      {
		rtx offset = XEXP (x0, 1);
		base = XEXP (x0, 0);

		if (GET_CODE (base) == PLUS)
		  /* (SGPR + VGPR) + CONST  */
		  /* Ignore the VGPR offset for this operand.  */
		  base = XEXP (base, 0);

		if (CONST_INT_P (offset))
		  const_offset = XEXP (x0, 1);
		else if (REG_P (offset))
		  /* SGPR + VGPR  */
		  /* Ignore the VGPR offset for this operand.  */
		  ;
		else
		  output_operand_lossage ("bad ADDR_SPACE_GLOBAL address");
	      }

	    if (REG_P (base))
	      {
		if (VGPR_REGNO_P (REGNO (base)))
		  /* The VGPR address is specified in the %A operand.  */
		  fprintf (file, "off");
		else if (SGPR_REGNO_P (REGNO (base)))
		  print_reg (file, base);
		else
		  output_operand_lossage ("bad ADDR_SPACE_GLOBAL address");
	      }
	    else
	      output_operand_lossage ("bad ADDR_SPACE_GLOBAL address");

	    if (const_offset != NULL_RTX)
	      fprintf (file, " offset:" HOST_WIDE_INT_PRINT_DEC,
		       INTVAL (const_offset));

	    return;
	  }

	if (GET_CODE (x0) == REG)
	  return;
	if (GET_CODE (x0) != PLUS)
	  {
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	rtx val = XEXP (x0, 1);
	if (GET_CODE (val) == CONST_VECTOR)
	  val = CONST_VECTOR_ELT (val, 0);
	if (GET_CODE (val) != CONST_INT)
	  {
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	fprintf (file, " offset:" HOST_WIDE_INT_PRINT_DEC, INTVAL (val));

      }
      return;
    case 'c':
      invert = true;
      /* Fall through.  */
    case 'C':
      {
	const char *s;
	bool num = false;
	if ((xcode != EQ && xcode != NE) || !REG_P (XEXP (x, 0)))
	  {
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	switch (REGNO (XEXP (x, 0)))
	  {
	  case VCC_REG:
	  case VCCZ_REG:
	    s = "_vcc";
	    break;
	  case SCC_REG:
	    /* For some reason llvm-mc insists on scc0 instead of sccz.  */
	    num = true;
	    s = "_scc";
	    break;
	  case EXECZ_REG:
	    s = "_exec";
	    break;
	  default:
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	fputs (s, file);
	if (xcode == (invert ? NE : EQ))
	  fputc (num ? '0' : 'z', file);
	else
	  fputs (num ? "1" : "nz", file);
	return;
      }
    case 'D':
      {
	const char *s;
	bool cmp_signed = false;
	switch (xcode)
	  {
	  case EQ:
	    s = "_eq_";
	    break;
	  case NE:
	    s = "_lg_";
	    break;
	  case LT:
	    s = "_lt_";
	    cmp_signed = true;
	    break;
	  case LE:
	    s = "_le_";
	    cmp_signed = true;
	    break;
	  case GT:
	    s = "_gt_";
	    cmp_signed = true;
	    break;
	  case GE:
	    s = "_ge_";
	    cmp_signed = true;
	    break;
	  case LTU:
	    s = "_lt_";
	    break;
	  case LEU:
	    s = "_le_";
	    break;
	  case GTU:
	    s = "_gt_";
	    break;
	  case GEU:
	    s = "_ge_";
	    break;
	  default:
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	fputs (s, file);
	fputc (cmp_signed ? 'i' : 'u', file);

	machine_mode mode = GET_MODE (XEXP (x, 0));

	if (mode == VOIDmode)
	  mode = GET_MODE (XEXP (x, 1));

	/* If both sides are constants, then assume the instruction is in
	   SImode since s_cmp can only do integer compares.  */
	if (mode == VOIDmode)
	  mode = SImode;

	switch (GET_MODE_SIZE (mode))
	  {
	  case 4:
	    s = "32";
	    break;
	  case 8:
	    s = "64";
	    break;
	  default:
	    output_operand_lossage ("invalid operand %%xn code");
	    return;
	  }
	fputs (s, file);
	return;
      }
    case 'E':
      {
	const char *s;
	bool cmp_signed = false;
	machine_mode mode = GET_MODE (XEXP (x, 0));

	if (mode == VOIDmode)
	  mode = GET_MODE (XEXP (x, 1));

	/* If both sides are constants, assume the instruction is in SFmode
	   if either operand is floating point, otherwise assume SImode.  */
	if (mode == VOIDmode)
	  {
	    if (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE
		|| GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
	      mode = SFmode;
	    else
	      mode = SImode;
	  }

	/* Use the same format code for vector comparisons.  */
	if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
	  mode = GET_MODE_INNER (mode);

	bool float_p = GET_MODE_CLASS (mode) == MODE_FLOAT;

	switch (xcode)
	  {
	  case EQ:
	    s = "_eq_";
	    break;
	  case NE:
	    s = float_p ? "_neq_" : "_ne_";
	    break;
	  case LT:
	    s = "_lt_";
	    cmp_signed = true;
	    break;
	  case LE:
	    s = "_le_";
	    cmp_signed = true;
	    break;
	  case GT:
	    s = "_gt_";
	    cmp_signed = true;
	    break;
	  case GE:
	    s = "_ge_";
	    cmp_signed = true;
	    break;
	  case LTU:
	    s = "_lt_";
	    break;
	  case LEU:
	    s = "_le_";
	    break;
	  case GTU:
	    s = "_gt_";
	    break;
	  case GEU:
	    s = "_ge_";
	    break;
	  case ORDERED:
	    s = "_o_";
	    break;
	  case UNORDERED:
	    s = "_u_";
	    break;
	  case UNEQ:
	    s = "_nlg_";
	    break;
	  case UNGE:
	    s = "_nlt_";
	    break;
	  case UNGT:
	    s = "_nle_";
	    break;
	  case UNLE:
	    s = "_ngt_";
	    break;
	  case UNLT:
	    s = "_nge_";
	    break;
	  case LTGT:
	    s = "_lg_";
	    break;
	  default:
	    output_operand_lossage ("invalid %%xn code");
	    return;
	  }
	fputs (s, file);
	fputc (float_p ? 'f' : cmp_signed ? 'i' : 'u', file);

	switch (GET_MODE_SIZE (mode))
	  {
	  case 1:
	    output_operand_lossage ("operand %%xn code invalid for QImode");
	    return;
	  case 2:
	    s = "16";
	    break;
	  case 4:
	    s = "32";
	    break;
	  case 8:
	    s = "64";
	    break;
	  default:
	    output_operand_lossage ("invalid operand %%xn code");
	    return;
	  }
	fputs (s, file);
	return;
      }
    case 'L':
      print_operand (file, gcn_operand_part (GET_MODE (x), x, 0), 0);
      return;
    case 'H':
      print_operand (file, gcn_operand_part (GET_MODE (x), x, 1), 0);
      return;
    case 'J':
      print_operand (file, gcn_operand_part (GET_MODE (x), x, 2), 0);
      return;
    case 'K':
      print_operand (file, gcn_operand_part (GET_MODE (x), x, 3), 0);
      return;
    case 'R':
      /* Print a scalar register number as an integer.  Temporary hack.  */
      gcc_assert (REG_P (x));
      fprintf (file, "%u", (int) REGNO (x));
      return;
    case 'V':
      /* Print a vector register number as an integer.  Temporary hack.  */
      gcc_assert (REG_P (x));
      fprintf (file, "%u", (int) REGNO (x) - FIRST_VGPR_REG);
      return;
    case 0:
      if (xcode == REG)
	print_reg (file, x);
      else if (xcode == MEM)
	output_address (GET_MODE (x), x);
      else if (xcode == CONST_INT)
	fprintf (file, "%i", (int) INTVAL (x));
      else if (xcode == CONST_VECTOR)
	print_operand (file, CONST_VECTOR_ELT (x, 0), code);
      else if (xcode == CONST_DOUBLE)
	{
	  const char *str;
	  switch (gcn_inline_fp_constant_p (x, false))
	    {
	    case 240:
	      str = "0.5";
	      break;
	    case 241:
	      str = "-0.5";
	      break;
	    case 242:
	      str = "1.0";
	      break;
	    case 243:
	      str = "-1.0";
	      break;
	    case 244:
	      str = "2.0";
	      break;
	    case 245:
	      str = "-2.0";
	      break;
	    case 246:
	      str = "4.0";
	      break;
	    case 247:
	      str = "-4.0";
	      break;
	    case 248:
	      str = "0.15915494";
	      break;
	    default:
	      rtx ix = simplify_gen_subreg (GET_MODE (x) == DFmode
					    ? DImode : SImode,
					    x, GET_MODE (x), 0);
	      if (x)
		print_operand (file, ix, code);
	      else
		output_operand_lossage ("invalid fp constant");
	      return;
	      break;
	    }
	  fprintf (file, str);
	  return;
	}
      else
	output_addr_const (file, x);
      return;
    case 'g':
      gcc_assert (xcode == MEM);
      if (MEM_VOLATILE_P (x))
	fputs (" glc", file);
      return;
    default:
      output_operand_lossage ("invalid %%xn code");
    }
  gcc_unreachable ();
}

/* Implement DEBUGGER_REGNO macro.

   Return the DWARF register number that corresponds to the GCC internal
   REGNO.  */

unsigned int
gcn_dwarf_register_number (unsigned int regno)
{
  /* Registers defined in DWARF.  */
  if (regno == EXEC_LO_REG)
    return 17;
  /* We need to use a more complex DWARF expression for this
  else if (regno == EXEC_HI_REG)
    return 17; */
  else if (regno == VCC_LO_REG)
    return 768;
  /* We need to use a more complex DWARF expression for this
  else if (regno == VCC_HI_REG)
    return 768;  */
  else if (regno == SCC_REG)
    return 128;
  else if (regno == DWARF_LINK_REGISTER)
    return 16;
  else if (SGPR_REGNO_P (regno))
    {
      if (regno - FIRST_SGPR_REG < 64)
	return (regno - FIRST_SGPR_REG + 32);
      else
	return (regno - FIRST_SGPR_REG + 1024);
    }
  else if (VGPR_REGNO_P (regno))
    return (regno - FIRST_VGPR_REG + 2560);
  else if (AVGPR_REGNO_P (regno))
    return (regno - FIRST_AVGPR_REG + 3072);

  /* Otherwise, there's nothing sensible to do.  */
  return regno + 100000;
}

/* Implement TARGET_DWARF_REGISTER_SPAN.

   DImode and Vector DImode require additional registers.  */

static rtx
gcn_dwarf_register_span (rtx rtl)
{
  machine_mode mode = GET_MODE (rtl);

  if (VECTOR_MODE_P (mode))
    mode = GET_MODE_INNER (mode);

  if (GET_MODE_SIZE (mode) != 8)
    return NULL_RTX;

  unsigned regno = REGNO (rtl);

  if (regno == DWARF_LINK_REGISTER)
    return NULL_RTX;

  rtx p = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
  XVECEXP (p, 0, 0) = gen_rtx_REG (SImode, regno);
  XVECEXP (p, 0, 1) = gen_rtx_REG (SImode, regno + 1);

  return p;
}

/* }}}  */
/* {{{ TARGET hook overrides.  */

#undef  TARGET_ADDR_SPACE_ADDRESS_MODE
#define TARGET_ADDR_SPACE_ADDRESS_MODE gcn_addr_space_address_mode
#undef  TARGET_ADDR_SPACE_DEBUG
#define TARGET_ADDR_SPACE_DEBUG gcn_addr_space_debug
#undef  TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P \
  gcn_addr_space_legitimate_address_p
#undef  TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
#define TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS gcn_addr_space_legitimize_address
#undef  TARGET_ADDR_SPACE_POINTER_MODE
#define TARGET_ADDR_SPACE_POINTER_MODE gcn_addr_space_pointer_mode
#undef  TARGET_ADDR_SPACE_SUBSET_P
#define TARGET_ADDR_SPACE_SUBSET_P gcn_addr_space_subset_p
#undef  TARGET_ADDR_SPACE_CONVERT
#define TARGET_ADDR_SPACE_CONVERT gcn_addr_space_convert
#undef  TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES gcn_arg_partial_bytes
#undef  TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.8byte\t"
#undef  TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START output_file_start
#undef  TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE gcn_target_asm_function_prologue
#undef  TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION gcn_asm_select_section
#undef  TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE gcn_asm_trampoline_template
#undef  TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE gcn_attribute_table
#undef  TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \
  gcn_autovectorize_vector_modes
#undef  TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL gcn_builtin_decl
#undef  TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS gcn_can_change_mode_class
#undef  TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE gcn_can_eliminate_p
#undef  TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P gcn_cannot_copy_insn_p
#undef  TARGET_CLASS_LIKELY_SPILLED_P
#define TARGET_CLASS_LIKELY_SPILLED_P gcn_class_likely_spilled_p
#undef  TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS gcn_class_max_nregs
#undef  TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE gcn_conditional_register_usage
#undef  TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT gcn_constant_alignment
#undef  TARGET_DEBUG_UNWIND_INFO
#define TARGET_DEBUG_UNWIND_INFO gcn_debug_unwind_info
#undef  TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN gcn_dwarf_register_span
#undef  TARGET_EMUTLS_VAR_INIT
#define TARGET_EMUTLS_VAR_INIT gcn_emutls_var_init
#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN gcn_expand_builtin
#undef  TARGET_EXPAND_DIVMOD_LIBFUNC
#define TARGET_EXPAND_DIVMOD_LIBFUNC gcn_expand_divmod_libfunc
#undef  TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED gcn_frame_pointer_rqd
#undef  TARGET_FUNCTION_ARG
#undef  TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE gcn_function_arg_advance
#define TARGET_FUNCTION_ARG gcn_function_arg
#undef  TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE gcn_function_value
#undef  TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P gcn_function_value_regno_p
#undef  TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR gcn_gimplify_va_arg_expr
#undef TARGET_OMP_DEVICE_KIND_ARCH_ISA
#define TARGET_OMP_DEVICE_KIND_ARCH_ISA gcn_omp_device_kind_arch_isa
#undef  TARGET_GOACC_ADJUST_PRIVATE_DECL
#define TARGET_GOACC_ADJUST_PRIVATE_DECL gcn_goacc_adjust_private_decl
#undef  TARGET_GOACC_CREATE_WORKER_BROADCAST_RECORD
#define TARGET_GOACC_CREATE_WORKER_BROADCAST_RECORD \
  gcn_goacc_create_worker_broadcast_record
#undef  TARGET_GOACC_FORK_JOIN
#define TARGET_GOACC_FORK_JOIN gcn_fork_join
#undef  TARGET_GOACC_REDUCTION
#define TARGET_GOACC_REDUCTION gcn_goacc_reduction
#undef  TARGET_GOACC_VALIDATE_DIMS
#define TARGET_GOACC_VALIDATE_DIMS gcn_goacc_validate_dims
#undef  TARGET_GOACC_SHARED_MEM_LAYOUT
#define TARGET_GOACC_SHARED_MEM_LAYOUT gcn_shared_mem_layout
#undef  TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK gcn_hard_regno_mode_ok
#undef  TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS gcn_hard_regno_nregs
#undef  TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS gcn_init_builtins
#undef  TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS gcn_init_libfuncs
#undef  TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
#define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS \
  gcn_ira_change_pseudo_allocno_class
#undef  TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P gcn_legitimate_constant_p
#undef  TARGET_LIBC_HAS_FUNCTION
#define TARGET_LIBC_HAS_FUNCTION gcn_libc_has_function
#undef  TARGET_LRA_P
#define TARGET_LRA_P hook_bool_void_true
#undef  TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG gcn_md_reorg
#undef  TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST gcn_memory_move_cost
#undef  TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P gcn_modes_tieable_p
#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE gcn_option_override
#undef  TARGET_PRETEND_OUTGOING_VARARGS_NAMED
#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED \
  gcn_pretend_outgoing_varargs_named
#undef  TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE gcn_promote_function_mode
#undef  TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST gcn_register_move_cost
#undef  TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY gcn_return_in_memory
#undef  TARGET_RTX_COSTS
#define TARGET_RTX_COSTS gcn_rtx_costs
#undef  TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD gcn_secondary_reload
#undef  TARGET_SECTION_TYPE_FLAGS
#define TARGET_SECTION_TYPE_FLAGS gcn_section_type_flags
#undef  TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P gcn_scalar_mode_supported_p
#undef  TARGET_SIMD_CLONE_ADJUST
#define TARGET_SIMD_CLONE_ADJUST gcn_simd_clone_adjust
#undef  TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
#define TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN \
  gcn_simd_clone_compute_vecsize_and_simdlen
#undef  TARGET_SIMD_CLONE_USABLE
#define TARGET_SIMD_CLONE_USABLE gcn_simd_clone_usable
#undef  TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
  gcn_small_register_classes_for_mode_p
#undef  TARGET_SPILL_CLASS
#define TARGET_SPILL_CLASS gcn_spill_class
#undef  TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING gcn_strict_argument_naming
#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT gcn_trampoline_init
#undef  TARGET_TRULY_NOOP_TRUNCATION
#define TARGET_TRULY_NOOP_TRUNCATION gcn_truly_noop_truncation
#undef  TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST gcn_vectorization_cost
#undef  TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
  gcn_vectorize_builtin_vectorized_function
#undef  TARGET_VECTORIZE_GET_MASK_MODE
#define TARGET_VECTORIZE_GET_MASK_MODE gcn_vectorize_get_mask_mode
#undef  TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE gcn_vectorize_preferred_simd_mode
#undef  TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT
#define TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT \
  gcn_preferred_vector_alignment
#undef  TARGET_VECTORIZE_RELATED_MODE
#define TARGET_VECTORIZE_RELATED_MODE gcn_related_vector_mode
#undef  TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
  gcn_vectorize_support_vector_misalignment
#undef  TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST gcn_vectorize_vec_perm_const
#undef  TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
  gcn_vector_alignment_reachable
#undef  TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P gcn_vector_mode_supported_p

#undef TARGET_DOCUMENTATION_NAME
#define TARGET_DOCUMENTATION_NAME "AMD GCN"

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-gcn.h"
/* }}}  */