1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
|
;; FR30 machine description.
;; Copyright (C) 1998-2022 Free Software Foundation, Inc.
;; Contributed by Cygnus Solutions.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;;{{{ Attributes
(define_attr "length" "" (const_int 2))
;; Used to distinguish between small memory model targets and big mode targets.
(define_attr "size" "small,big"
(const (if_then_else (symbol_ref "TARGET_SMALL_MODEL")
(const_string "small")
(const_string "big"))))
;; Define an attribute to be used by the delay slot code.
;; An instruction by default is considered to be 'delayable'
;; that is, it can be placed into a delay slot, but it is not
;; itself a delayed branch type instruction. An instruction
;; whose type is 'delayed' is one which has a delay slot, and
;; an instruction whose delay_type is 'other' is one which does
;; not have a delay slot, nor can it be placed into a delay slot.
(define_attr "delay_type" "delayable,delayed,other" (const_string "delayable"))
;;}}}
;;{{{ Delay Slot Specifications
(define_delay (eq_attr "delay_type" "delayed")
[(and (eq_attr "delay_type" "delayable")
(eq_attr "length" "2"))
(nil)
(nil)]
)
(include "predicates.md")
(include "constraints.md")
;;}}}
;;{{{ Moves
;;{{{ Comment
;; Wrap moves in define_expand to prevent memory->memory moves from being
;; generated at the RTL level, which generates better code for most machines
;; which can't do mem->mem moves.
;; If operand 0 is a `subreg' with mode M of a register whose own mode is wider
;; than M, the effect of this instruction is to store the specified value in
;; the part of the register that corresponds to mode M. The effect on the rest
;; of the register is undefined.
;; This class of patterns is special in several ways. First of all, each of
;; these names *must* be defined, because there is no other way to copy a datum
;; from one place to another.
;; Second, these patterns are not used solely in the RTL generation pass. Even
;; the reload pass can generate move insns to copy values from stack slots into
;; temporary registers. When it does so, one of the operands is a hard
;; register and the other is an operand that can need to be reloaded into a
;; register.
;; Therefore, when given such a pair of operands, the pattern must
;; generate RTL which needs no reloading and needs no temporary
;; registers--no registers other than the operands. For example, if
;; you support the pattern with a `define_expand', then in such a
;; case the `define_expand' mustn't call `force_reg' or any other such
;; function which might generate new pseudo registers.
;; This requirement exists even for subword modes on a RISC machine
;; where fetching those modes from memory normally requires several
;; insns and some temporary registers. Look in `spur.md' to see how
;; the requirement can be satisfied.
;; During reload a memory reference with an invalid address may be passed as an
;; operand. Such an address will be replaced with a valid address later in the
;; reload pass. In this case, nothing may be done with the address except to
;; use it as it stands. If it is copied, it will not be replaced with a valid
;; address. No attempt should be made to make such an address into a valid
;; address and no routine (such as `change_address') that will do so may be
;; called. Note that `general_operand' will fail when applied to such an
;; address.
;;
;; The global variable `reload_in_progress' (which must be explicitly declared
;; if required) can be used to determine whether such special handling is
;; required.
;;
;; The variety of operands that have reloads depends on the rest of
;; the machine description, but typically on a RISC machine these can
;; only be pseudo registers that did not get hard registers, while on
;; other machines explicit memory references will get optional
;; reloads.
;;
;; If a scratch register is required to move an object to or from memory, it
;; can be allocated using `gen_reg_rtx' prior to reload. But this is
;; impossible during and after reload. If there are cases needing scratch
;; registers after reload, you must define `SECONDARY_INPUT_RELOAD_CLASS' and
;; perhaps also `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
;; patterns `reload_inM' or `reload_outM' to handle them.
;; The constraints on a `moveM' must permit moving any hard register to any
;; other hard register provided that `TARGET_HARD_REGNO_MODE_OK' permits mode
;; M in both registers and `REGISTER_MOVE_COST' applied to their classes
;; returns a value of 2.
;; It is obligatory to support floating point `moveM' instructions
;; into and out of any registers that can hold fixed point values,
;; because unions and structures (which have modes `SImode' or
;; `DImode') can be in those registers and they may have floating
;; point members.
;; There may also be a need to support fixed point `moveM' instructions
;; in and out of floating point registers. Unfortunately, I have
;; forgotten why this was so, and I don't know whether it is still true.
;; If `TARGET_HARD_REGNO_MODE_OK' rejects fixed point values in floating
;; point registers, then the constraints of the fixed point `moveM'
;; instructions must be designed to avoid ever trying to reload into a
;; floating point register.
;;}}}
;;{{{ Push and Pop
;; Push a register onto the stack
(define_insn "movsi_push"
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "register_operand" "a"))]
""
"st %0, @-r15"
)
;; Pop a register off the stack
(define_insn "movsi_pop"
[(set (match_operand:SI 0 "register_operand" "=a")
(mem:SI (post_inc:SI (reg:SI 15))))]
""
"ld @r15+, %0"
)
;;}}}
;;{{{ 1 Byte Moves
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
if (!reload_in_progress
&& !reload_completed
&& GET_CODE (operands[0]) == MEM
&& (GET_CODE (operands[1]) == MEM
|| immediate_operand (operands[1], QImode)))
operands[1] = copy_to_mode_reg (QImode, operands[1]);
}")
(define_insn "movqi_unsigned_register_load"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
""
"ldub %1, %0"
)
(define_expand "movqi_signed_register_load"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:QI 1 "memory_operand" "")))]
""
"
emit_insn (gen_movqi_unsigned_register_load (operands[0], operands[1]));
emit_insn (gen_extendqisi2 (operands[0], operands[0]));
DONE;
"
)
(define_insn "*movqi_internal"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,red,m,r")
(match_operand:QI 1 "general_operand" "i,red,r,rm"))]
""
"@
ldi:8\\t#%A1, %0
mov \\t%1, %0
stb \\t%1, %0
ldub \\t%1, %0"
)
;;}}}
;;{{{ 2 Byte Moves
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
if (!reload_in_progress
&& !reload_completed
&& GET_CODE (operands[0]) == MEM
&& (GET_CODE (operands[1]) == MEM
|| immediate_operand (operands[1], HImode)))
operands[1] = copy_to_mode_reg (HImode, operands[1]);
}")
(define_insn "movhi_unsigned_register_load"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
""
"lduh %1, %0"
)
(define_expand "movhi_signed_register_load"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:HI 1 "memory_operand" "")))]
""
"
emit_insn (gen_movhi_unsigned_register_load (operands[0], operands[1]));
emit_insn (gen_extendhisi2 (operands[0], operands[0]));
DONE;
"
)
(define_insn "*movhi_internal"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,red,m,r")
(match_operand:HI 1 "general_operand" "L,M,n,red,r,rm"))]
""
"@
ldi:8 \\t#%1, %0
ldi:20\\t#%1, %0
ldi:32\\t#%1, %0
mov \\t%1, %0
sth \\t%1, %0
lduh \\t%1, %0"
[(set_attr "length" "*,4,6,*,*,*")]
)
;;}}}
;;{{{ 4 Byte Moves
;; If the destination is a MEM and the source is a
;; MEM or an CONST_INT move the source into a register.
(define_expand "movsi"
[(set (match_operand:SI 0 "nonimmediate_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"{
if (!reload_in_progress
&& !reload_completed
&& GET_CODE(operands[0]) == MEM
&& (GET_CODE (operands[1]) == MEM
|| immediate_operand (operands[1], SImode)))
operands[1] = copy_to_mode_reg (SImode, operands[1]);
}"
)
;; We can do some clever tricks when loading certain immediate
;; values. We implement these tricks as define_splits, rather
;; than putting the code into the define_expand "movsi" above,
;; because if we put them there, they will be evaluated at RTL
;; generation time and then the combiner pass will come along
;; and replace the multiple insns that have been generated with
;; the original, slower, load insns. (The combiner pass only
;; cares about reducing the number of instructions, it does not
;; care about instruction lengths or speeds). Splits are
;; evaluated after the combine pass and before the scheduling
;; passes, so that they are the perfect place to put this
;; intelligence.
;;
;; XXX we probably ought to implement these for QI and HI mode
;; loads as well.
;; If we are loading a small negative constant we can save space
;; and time by loading the positive value and then sign extending it.
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))]
"INTVAL (operands[1]) <= -1 && INTVAL (operands[1]) >= -128
&& (GET_CODE (operands[0]) != SUBREG
|| SCALAR_INT_MODE_P (GET_MODE (XEXP (operands[0], 0))))"
[(set (match_dup 0) (match_dup 1))
(set (match_dup 0) (sign_extend:SI (match_dup 2)))]
"{
operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff);
operands[2] = gen_lowpart (QImode, operands[0]);
}"
)
;; If we are loading a large negative constant, one which does
;; not have any of its bottom 24 bit set, then we can save time
;; and space by loading the byte value and shifting it into place.
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))]
"(INTVAL (operands[1]) < 0) && ((INTVAL (operands[1]) & 0x00ffffff) == 0)"
[(set (match_dup 0) (match_dup 2))
(parallel [(set (match_dup 0) (ashift:SI (match_dup 0) (const_int 24)))
(clobber (reg:CC 16))])]
"{
HOST_WIDE_INT val = INTVAL (operands[1]);
operands[2] = GEN_INT (val >> 24);
}"
)
;; If we are loading a large positive constant, one which has bits
;; in the top byte set, but whose set bits all lie within an 8 bit
;; range, then we can save time and space by loading the byte value
;; and shifting it into place.
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))]
"(INTVAL (operands[1]) > 0x00ffffff)
&& ((INTVAL (operands[1]) >> exact_log2 (INTVAL (operands[1]) & (- INTVAL (operands[1])))) < 0x100)"
[(set (match_dup 0) (match_dup 2))
(parallel [(set (match_dup 0) (ashift:SI (match_dup 0) (match_dup 3)))
(clobber (reg:CC 16))])]
"{
HOST_WIDE_INT val = INTVAL (operands[1]);
int shift = exact_log2 (val & ( - val));
operands[2] = GEN_INT (val >> shift);
operands[3] = GEN_INT (shift);
}"
)
;; When TARGET_SMALL_MODEL is defined we assume that all symbolic
;; values are addresses which will fit in 20 bits.
(define_insn "movsi_internal"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,red,V,r,m")
(match_operand:SI 1 "general_operand" "L,M,n,i,rde,r,rm,r"))]
""
"*
{
switch (which_alternative)
{
case 0: return \"ldi:8 \\t#%1, %0\";
case 1: return \"ldi:20\\t#%1, %0\";
case 2: return \"ldi:32\\t#%1, %0\";
case 3: if (TARGET_SMALL_MODEL)
return \"ldi:20\\t%1, %0\";
else
return \"ldi:32\\t%1, %0\";
case 4: return \"mov \\t%1, %0\";
case 5: return \"st \\t%1, %0\";
case 6: return \"ld \\t%1, %0\";
case 7: return \"st \\t%1, %0\";
default: gcc_unreachable ();
}
}"
[(set (attr "length") (cond [(eq_attr "alternative" "1") (const_int 4)
(eq_attr "alternative" "2") (const_int 6)
(eq_attr "alternative" "3")
(if_then_else (eq_attr "size" "small")
(const_int 4)
(const_int 6))]
(const_int 2)))]
)
;;}}}
;;{{{ 8 Byte Moves
;; Note - the FR30 does not have an 8 byte load/store instruction
;; but we have to support this pattern because some other patterns
;; (e.g. muldisi2) can produce a DImode result.
;; (This code is stolen from the M32R port.)
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
"
/* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DImode, operands[1]);
"
)
;; We use an insn and a split so that we can generate
;; RTL rather than text from fr30_move_double().
(define_insn "*movdi_insn"
[(set (match_operand:DI 0 "nonimmediate_di_operand" "=r,r,m,r")
(match_operand:DI 1 "di_operand" "r,m,r,nF"))]
"register_operand (operands[0], DImode) || register_operand (operands[1], DImode)"
"#"
[(set_attr "length" "4,8,12,12")]
)
(define_split
[(set (match_operand:DI 0 "nonimmediate_di_operand" "")
(match_operand:DI 1 "di_operand" ""))]
"reload_completed"
[(match_dup 2)]
"operands[2] = fr30_move_double (operands);"
)
;;}}}
;;{{{ Load & Store Multiple Registers
;; The load multiple and store multiple patterns are implemented
;; as peepholes because the only time they are expected to occur
;; is during function prologues and epilogues.
(define_peephole
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "high_register_operand" "h"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 1 "high_register_operand" "h"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 2 "high_register_operand" "h"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 3 "high_register_operand" "h"))]
"fr30_check_multiple_regs (operands, 4, 1)"
"stm1 (%0, %1, %2, %3)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "high_register_operand" "h"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 1 "high_register_operand" "h"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 2 "high_register_operand" "h"))]
"fr30_check_multiple_regs (operands, 3, 1)"
"stm1 (%0, %1, %2)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "high_register_operand" "h"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 1 "high_register_operand" "h"))]
"fr30_check_multiple_regs (operands, 2, 1)"
"stm1 (%0, %1)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (match_operand:SI 0 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))
(set (match_operand:SI 1 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))
(set (match_operand:SI 2 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))
(set (match_operand:SI 3 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))]
"fr30_check_multiple_regs (operands, 4, 0)"
"ldm1 (%0, %1, %2, %3)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (match_operand:SI 0 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))
(set (match_operand:SI 1 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))
(set (match_operand:SI 2 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))]
"fr30_check_multiple_regs (operands, 3, 0)"
"ldm1 (%0, %1, %2)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (match_operand:SI 0 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))
(set (match_operand:SI 1 "high_register_operand" "h")
(mem:SI (post_inc:SI (reg:SI 15))))]
"fr30_check_multiple_regs (operands, 2, 0)"
"ldm1 (%0, %1)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "low_register_operand" "l"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 1 "low_register_operand" "l"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 2 "low_register_operand" "l"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 3 "low_register_operand" "l"))]
"fr30_check_multiple_regs (operands, 4, 1)"
"stm0 (%0, %1, %2, %3)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "low_register_operand" "l"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 1 "low_register_operand" "l"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 2 "low_register_operand" "l"))]
"fr30_check_multiple_regs (operands, 3, 1)"
"stm0 (%0, %1, %2)"
[(set_attr "delay_type" "other")]
)
(define_peephole
[(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 0 "low_register_operand" "l"))
(set (mem:SI (pre_dec:SI (reg:SI 15)))
(match_operand:SI 1 "low_register_operand" "l"))]
"fr30_check_multiple_regs (operands, 2, 1)"
"stm0 (%0, %1)"
[(set_attr "delay_type" "other")]
)
;;}}}
;;{{{ Floating Point Moves
;; Note - Patterns for SF mode moves are compulsory, but
;; patterns for DF are optional, as GCC can synthesize them.
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"{
if (!reload_in_progress && !reload_completed
&& memory_operand (operands[0], SFmode)
&& memory_operand (operands[1], SFmode))
operands[1] = copy_to_mode_reg (SFmode, operands[1]);
}"
)
(define_insn "*movsf_internal"
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,red,m,r")
(match_operand:SF 1 "general_operand" "Fn,i,rde,r,rm"))]
""
"*
{
switch (which_alternative)
{
case 0: return \"ldi:32\\t%1, %0\";
case 1: if (TARGET_SMALL_MODEL)
return \"ldi:20\\t%1, %0\";
else
return \"ldi:32\\t%1, %0\";
case 2: return \"mov \\t%1, %0\";
case 3: return \"st \\t%1, %0\";
case 4: return \"ld \\t%1, %0\";
default: gcc_unreachable ();
}
}"
[(set (attr "length") (cond [(eq_attr "alternative" "0") (const_int 6)
(eq_attr "alternative" "1")
(if_then_else (eq_attr "size" "small")
(const_int 4)
(const_int 6))]
(const_int 2)))]
)
(define_insn "*movsf_constant_store"
[(set (match_operand:SF 0 "memory_operand" "=m")
(match_operand:SF 1 "immediate_operand" "F"))]
""
"*
{
const char * ldi_instr;
const char * tmp_reg;
static char buffer[100];
ldi_instr = fr30_const_double_is_zero (operands[1]) ? \"ldi:8\" : \"ldi:32\";
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
sprintf (buffer, \"%s\\t#%%1, %s\\t;\\n\\tst\\t%s, %%0\\t; Created by movsf_constant_store\",
ldi_instr, tmp_reg, tmp_reg);
return buffer;
}"
[(set_attr "length" "8")]
)
;;}}}
;;}}}
;;{{{ Conversions
;; Signed conversions from a smaller integer to a larger integer
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "register_operand" "0")))]
""
"extsb %0"
)
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "register_operand" "0")))]
""
"extsh %0"
)
;; Unsigned conversions from a smaller integer to a larger integer
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "register_operand" "0")))]
""
"extub %0"
)
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))]
""
"extuh %0"
)
;;}}}
;;{{{ Arithmetic
;;{{{ Addition
;; This is a special pattern just for adjusting the stack size.
(define_insn "add_to_stack"
[(set (reg:SI 15)
(plus:SI (reg:SI 15)
(match_operand:SI 0 "stack_add_operand" "i")))]
""
"addsp %0"
)
;; We need some trickery to be able to handle the addition of
;; large (i.e. outside +/- 16) constants. We need to be able to
;; handle this because reload assumes that it can generate add
;; instructions with arbitrary sized constants.
(define_expand "addsi3"
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]
""
"{
if ( GET_CODE (operands[2]) == REG
|| GET_CODE (operands[2]) == SUBREG)
emit_insn (gen_addsi_regs (operands[0], operands[1], operands[2]));
else if (GET_CODE (operands[2]) != CONST_INT)
emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
else if (INTVAL (operands[2]) >= -16
&& INTVAL (operands[2]) <= 15
&& (!REG_P (operands[1])
|| !REGNO_PTR_FRAME_P (REGNO (operands[1]))
|| REGNO (operands[1]) == STACK_POINTER_REGNUM))
emit_insn (gen_addsi_small_int (operands[0], operands[1], operands[2]));
else
emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
DONE;
}"
)
(define_insn "addsi_regs"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "r")))]
""
"addn %2, %0"
)
;; Do not allow an eliminable register in the source register. It
;; might be eliminated in favor of the stack pointer, probably
;; increasing the offset, and so rendering the instruction illegal.
(define_insn "addsi_small_int"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(plus:SI (match_operand:SI 1 "register_operand" "0,0")
(match_operand:SI 2 "add_immediate_operand" "I,J")))]
"!REG_P (operands[1])
|| !REGNO_PTR_FRAME_P (REGNO (operands[1]))
|| REGNO (operands[1]) == STACK_POINTER_REGNUM"
"@
addn %2, %0
addn2 %2, %0"
)
(define_expand "addsi_big_int"
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "immediate_operand" "")))]
""
"{
/* Cope with the possibility that ops 0 and 1 are the same register. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (reload_in_progress || reload_completed)
{
rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
emit_insn (gen_movsi (reg, operands[2]));
emit_insn (gen_addsi_regs (operands[0], operands[0], reg));
}
else
{
operands[2] = force_reg (SImode, operands[2]);
emit_insn (gen_addsi_regs (operands[0], operands[0], operands[2]));
}
}
else
{
emit_insn (gen_movsi (operands[0], operands[2]));
emit_insn (gen_addsi_regs (operands[0], operands[0], operands[1]));
}
DONE;
}"
)
(define_insn "*addsi_for_reload"
[(set (match_operand:SI 0 "register_operand" "=&r,r,r")
(plus:SI (match_operand:SI 1 "register_operand" "r,r,r")
(match_operand:SI 2 "immediate_operand" "L,M,n")))]
"reload_in_progress || reload_completed"
"@
ldi:8\\t#%2, %0 \\n\\taddn\\t%1, %0
ldi:20\\t#%2, %0 \\n\\taddn\\t%1, %0
ldi:32\\t#%2, %0 \\n\\taddn\\t%1, %0"
[(set_attr "length" "4,6,8")]
)
;;}}}
;;{{{ Subtraction
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(minus:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "register_operand" "r")))]
""
"subn %2, %0"
)
;;}}}
;;{{{ Multiplication
;; Signed multiplication producing 64-bit results from 32-bit inputs
(define_insn "mulsidi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
(sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))
(clobber (reg:CC 16))]
""
"mul %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
[(set_attr "length" "6")]
)
;; Unsigned multiplication producing 64-bit results from 32-bit inputs
(define_insn "umulsidi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))
(clobber (reg:CC 16))]
""
"mulu %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
[(set_attr "length" "6")]
)
;; Signed multiplication producing 32-bit result from 16-bit inputs
(define_insn "mulhisi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))
(clobber (reg:CC 16))]
""
"mulh %2, %1\\n\\tmov\\tmdl, %0"
[(set_attr "length" "4")]
)
;; Unsigned multiplication producing 32-bit result from 16-bit inputs
(define_insn "umulhisi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "%r"))
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))
(clobber (reg:CC 16))]
""
"muluh %2, %1\\n\\tmov\\tmdl, %0"
[(set_attr "length" "4")]
)
;; Signed multiplication producing 32-bit result from 32-bit inputs
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))
(clobber (reg:CC 16))]
""
"mul %2, %1\\n\\tmov\\tmdl, %0"
[(set_attr "length" "4")]
)
;;}}}
;;}}}
;;{{{ Shifts
;; Arithmetic Shift Left
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(ashift:SI (match_operand:SI 1 "register_operand" "0,0,0")
(match_operand:SI 2 "nonmemory_operand" "r,I,K")))
(clobber (reg:CC 16))]
""
"@
lsl %2, %0
lsl %2, %0
lsl2 %x2, %0"
)
;; Arithmetic Shift Right
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
(match_operand:SI 2 "nonmemory_operand" "r,I,K")))
(clobber (reg:CC 16))]
""
"@
asr %2, %0
asr %2, %0
asr2 %x2, %0"
)
;; Logical Shift Right
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
(match_operand:SI 2 "nonmemory_operand" "r,I,K")))
(clobber (reg:CC 16))]
""
"@
lsr %2, %0
lsr %2, %0
lsr2 %x2, %0"
)
;;}}}
;;{{{ Logical Operations
;; Logical AND, 32-bit integers
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(and:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "0")))
(clobber (reg:CC 16))]
""
"and %1, %0"
)
;; Inclusive OR, 32-bit integers
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ior:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "0")))
(clobber (reg:CC 16))]
""
"or %1, %0"
)
;; Exclusive OR, 32-bit integers
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(xor:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "0")))
(clobber (reg:CC 16))]
""
"eor %1, %0"
)
;; One's complement, 32-bit integers
(define_expand "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "")
(not:SI (match_operand:SI 1 "register_operand" "")))]
""
"{
if (rtx_equal_p (operands[0], operands[1]))
{
if (reload_in_progress || reload_completed)
{
rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
emit_insn (gen_movsi (reg, constm1_rtx));
emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
}
else
{
rtx reg = gen_reg_rtx (SImode);
emit_insn (gen_movsi (reg, constm1_rtx));
emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
}
}
else
{
emit_insn (gen_movsi_internal (operands[0], constm1_rtx));
emit_insn (gen_xorsi3 (operands[0], operands[1], operands[0]));
}
DONE;
}"
)
;;}}}
;;{{{ Comparisons
;; The actual comparisons, generated by the cbranch and/or cstore expanders
(define_insn "*cmpsi_internal"
[(set (reg:CC 16)
(compare:CC (match_operand:SI 0 "register_operand" "r,r,r")
(match_operand:SI 1 "nonmemory_operand" "r,I,J")))]
""
"@
cmp %1, %0
cmp %1, %0
cmp2 %1, %0"
)
;;}}}
;;{{{ Branches
;; Define_expands called by the machine independent part of the compiler
;; to allocate a new comparison register
(define_expand "cbranchsi4"
[(set (reg:CC 16)
(compare:CC (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))
(set (pc)
(if_then_else (match_operator 0 "ordered_comparison_operator"
[(reg:CC 16) (const_int 0)])
(label_ref (match_operand 3 "" ""))
(pc)))]
""
""
)
;; Actual branches. We must allow for the (label_ref) and the (pc) to be
;; swapped. If they are swapped, it reverses the sense of the branch.
;; This pattern matches the (branch-if-true) branches generated above.
;; It generates two different instruction sequences depending upon how
;; far away the destination is.
;; The calculation for the instruction length is derived as follows:
;; The branch instruction has a 9-bit signed displacement so we have
;; this inequality for the displacement:
;;
;; -256 <= pc < 256
;; or
;; -256 + 256 <= pc + 256 < 256 + 256
;; i.e.
;; 0 <= pc + 256 < 512
;;
;; if we consider the displacement as an unsigned value, then negative
;; displacements become very large positive displacements, and the
;; inequality becomes:
;;
;; pc + 256 < 512
;;
;; In order to allow for the fact that the real branch instruction works
;; from pc + 2, we increase the offset to 258.
;;
;; Note - we do not have to worry about whether the branch is delayed or
;; not, as branch shortening happens after delay slot reorganization.
(define_insn "*branch_true"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC 16)
(const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))]
""
"*
{
if (get_attr_length (insn) == 2)
return \"b%b0%#\\t%l1\";
else
{
static char buffer [100];
const char * tmp_reg;
const char * ldi_insn;
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
/* The code produced here is, for say the EQ case:
Bne 1f
LDI <label>, r0
JMP r0
1: */
sprintf (buffer,
\"b%%B0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
ldi_insn, tmp_reg, tmp_reg);
return buffer;
}
}"
[(set (attr "length") (if_then_else
(ltu
(plus
(minus
(match_dup 1)
(pc))
(const_int 254))
(const_int 506))
(const_int 2)
(if_then_else (eq_attr "size" "small")
(const_int 8)
(const_int 10))))
(set_attr "delay_type" "delayed")]
)
;; This pattern is a duplicate of the previous one, except that the
;; branch occurs if the test is false, so the %B operator is used.
(define_insn "*branch_false"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC 16)
(const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
""
"*
{
if (get_attr_length (insn) == 2)
return \"b%B0%#\\t%l1 \";
else
{
static char buffer [100];
const char * tmp_reg;
const char * ldi_insn;
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
sprintf (buffer,
\"b%%b0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
ldi_insn, tmp_reg, tmp_reg);
return buffer;
}
}"
[(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 1) (pc))
(const_int 254))
(const_int 506))
(const_int 2)
(if_then_else (eq_attr "size" "small")
(const_int 8)
(const_int 10))))
(set_attr "delay_type" "delayed")]
)
;;}}}
;;{{{ Calls & Jumps
;; Subroutine call instruction returning no value. Operand 0 is the function
;; to call; operand 1 is the number of bytes of arguments pushed (in mode
;; `SImode', except it is normally a `const_int'); operand 2 is the number of
;; registers used as operands.
(define_insn "call"
[(call (match_operand 0 "call_operand" "Qm")
(match_operand 1 "" "g"))
(clobber (reg:SI 17))]
""
"call%#\\t%0"
[(set_attr "delay_type" "delayed")]
)
;; Subroutine call instruction returning a value. Operand 0 is the hard
;; register in which the value is returned. There are three more operands, the
;; same as the three operands of the `call' instruction (but with numbers
;; increased by one).
;; Subroutines that return `BLKmode' objects use the `call' insn.
(define_insn "call_value"
[(set (match_operand 0 "register_operand" "=r")
(call (match_operand 1 "call_operand" "Qm")
(match_operand 2 "" "g")))
(clobber (reg:SI 17))]
""
"call%#\\t%1"
[(set_attr "delay_type" "delayed")]
)
;; Normal unconditional jump.
;; For a description of the computation of the length
;; attribute see the branch patterns above.
;;
;; Although this instruction really clobbers r0, flow
;; relies on jump being simplejump_p in several places
;; and as r0 is fixed, this doesn't change anything
(define_insn "jump"
[(set (pc) (label_ref (match_operand 0 "" "")))]
""
"*
{
if (get_attr_length (insn) == 2)
return \"bra%#\\t%0\";
else
{
static char buffer [100];
const char * tmp_reg;
const char * ldi_insn;
tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
sprintf (buffer, \"%s\\t%%0, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\",
ldi_insn, tmp_reg, tmp_reg);
return buffer;
}
}"
[(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
(const_int 254))
(const_int 506))
(const_int 2)
(if_then_else (eq_attr "size" "small")
(const_int 6)
(const_int 8))))
(set_attr "delay_type" "delayed")]
)
;; Indirect jump through a register
(define_insn "indirect_jump"
[(set (pc) (match_operand 0 "pmode_register_operand" "r"))]
""
"jmp%#\\t@%0"
[(set_attr "delay_type" "delayed")]
)
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp%#\\t@%0"
[(set_attr "delay_type" "delayed")]
)
;;}}}
;;{{{ Function Prologues and Epilogues
;; Called after register allocation to add any instructions needed for the
;; prologue. Using a prologue insn is favored compared to putting all of the
;; instructions in output_function_prologue(), since it allows the scheduler
;; to intermix instructions with the saves of the caller saved registers. In
;; some cases, it might be necessary to emit a barrier instruction as the last
;; insn to prevent such scheduling.
(define_expand "prologue"
[(clobber (const_int 0))]
""
"{
fr30_expand_prologue ();
DONE;
}"
)
;; Called after register allocation to add any instructions needed for the
;; epilogue. Using an epilogue insn is favored compared to putting all of the
;; instructions in output_function_epilogue(), since it allows the scheduler
;; to intermix instructions with the restores of the caller saved registers.
;; In some cases, it might be necessary to emit a barrier instruction as the
;; first insn to prevent such scheduling.
(define_expand "epilogue"
[(return)]
""
"{
fr30_expand_epilogue ();
DONE;
}"
)
(define_insn "return_from_func"
[(return)
(use (reg:SI 17))]
"reload_completed"
"ret%#"
[(set_attr "delay_type" "delayed")]
)
(define_insn "leave_func"
[(set (reg:SI 15) (plus:SI (reg:SI 14) (const_int 4)))
(set (reg:SI 14) (mem:SI (minus:SI (reg:SI 15) (const_int 4))))]
"reload_completed"
"leave"
)
(define_expand "enter_func"
[(parallel
[(set (mem:SI (minus:SI (match_dup 1)
(const_int 4)))
(match_dup 2))
(set (match_dup 2)
(minus:SI (match_dup 1)
(const_int 4)))
(set (match_dup 1)
(minus:SI (match_dup 1)
(match_operand:SI 0 "immediate_operand")))]
)]
""
{
operands[1] = stack_pointer_rtx;
operands[2] = hard_frame_pointer_rtx;
})
(define_insn "*enter_func"
[(set (mem:SI (minus:SI (reg:SI 15)
(const_int 4)))
(reg:SI 14))
(set (reg:SI 14)
(minus:SI (reg:SI 15)
(const_int 4)))
(set (reg:SI 15)
(minus:SI (reg:SI 15)
(match_operand 0 "immediate_operand" "i")))]
"reload_completed"
"enter #%0"
[(set_attr "delay_type" "other")]
)
;;}}}
;;{{{ Miscellaneous
;; No operation, needed in case the user uses -g but not -O.
(define_insn "nop"
[(const_int 0)]
""
"nop"
)
;; Pseudo instruction that prevents the scheduler from moving code above this
;; point.
(define_insn "blockage"
[(unspec_volatile [(const_int 0)] 0)]
""
""
[(set_attr "length" "0")]
)
;;}}}
;; Local Variables:
;; mode: md
;; folded-file: t
;; End:
|