1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
|
/* Definitions of target machine for GNU compiler. AT&T DSP1600.
Copyright (C) 1994, 1995 Free Software Foundation, Inc.
Contributed by Michael Collison (collison@world.std.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
extern char *low_reg_names[];
extern char *text_seg_name;
extern char *rsect_text;
extern char *data_seg_name;
extern char *rsect_data;
extern char *bss_seg_name;
extern char *rsect_bss;
extern char *const_seg_name;
extern char *rsect_const;
extern char *chip_name;
extern char *save_chip_name;
extern struct rtx_def *dsp16xx_compare_op0, *dsp16xx_compare_op1;
extern struct rtx_def *(*dsp16xx_compare_gen)();
extern struct rtx_def *gen_compare_reg();
extern struct rtx_def *dsp16xx_addhf3_libcall;
extern struct rtx_def *dsp16xx_subhf3_libcall;
extern struct rtx_def *dsp16xx_mulhf3_libcall;
extern struct rtx_def *dsp16xx_divhf3_libcall;
extern struct rtx_def *dsp16xx_cmphf3_libcall;
extern struct rtx_def *dsp16xx_fixhfhi2_libcall;
extern struct rtx_def *dsp16xx_floathihf2_libcall;
extern struct rtx_def *dsp16xx_neghf2_libcall;
extern struct rtx_def *dsp16xx_umulhi3_libcall;
extern struct rtx_def *dsp16xx_mulhi3_libcall;
extern struct rtx_def *dsp16xx_udivqi3_libcall;
extern struct rtx_def *dsp16xx_udivhi3_libcall;
extern struct rtx_def *dsp16xx_divqi3_libcall;
extern struct rtx_def *dsp16xx_divhi3_libcall;
extern struct rtx_def *dsp16xx_modqi3_libcall;
extern struct rtx_def *dsp16xx_modhi3_libcall;
extern struct rtx_def *dsp16xx_umodqi3_libcall;
extern struct rtx_def *dsp16xx_umodhi3_libcall;
extern struct rtx_def *dsp16xx_ashrhi3_libcall;
extern struct rtx_def *dsp16xx_ashlhi3_libcall;
extern struct rtx_def *dsp16xx_lshrhi3_libcall;
extern int hard_regno_mode_ok ();
extern enum reg_class dsp16xx_reg_class_from_letter ();
extern enum reg_class dsp16xx_limit_reload_class ();
extern int hard_regno_nregs ();
extern int regno_reg_class ();
extern int move_operand ();
extern int symbolic_address_p ();
extern int Y_address ();
extern int call_address_operand ();
extern void notice_update_cc();
extern void function_prologue ();
extern void function_epilogue ();
extern int dsp1600_comparison_reverse ();
extern void double_reg_from_memory ();
extern void double_reg_to_memory ();
extern void bss_section ();
extern struct rtx_def *dsp16xx_function_arg ();
extern void dsp16xx_function_arg_advance ();
extern enum rtx_code next_cc_user_code ();
extern enum rtx_code save_next_cc_user_code;
extern struct rtx_def *gen_tst_reg ();
extern char *output_block_move();
/* RUN-TIME TARGET SPECIFICATION */
#define DSP16XX 1
/* Name of the AT&T assembler */
#define ASM_PROG "as1600"
/* Name of the AT&T linker */
#define LD_PROG "ld1600"
/* Define which switches take word arguments */
#define WORD_SWITCH_TAKES_ARG(STR) \
(!strcmp (STR, "ifile") ? 1 : \
0)
#ifdef CC1_SPEC
#undef CC1_SPEC
#endif
#define CC1_SPEC ""
/* Define this as a spec to call the AT&T assembler */
#define CROSS_ASM_SPEC "%{!S:as1600 %a %i\n }"
/* Define this as a spec to call the AT&T linker */
#define CROSS_LINK_SPEC "%{!c:%{!M:%{!MM:%{!E:%{!S:ld1600 %l %X %{o*} %{m} \
%{r} %{s} %{t} %{u*} %{x}\
%{!A:%{!nostdlib:%{!nostartfiles:%S}}} %{static:}\
%{L*} %D %o %{!nostdlib:-le1600 %L -le1600}\
%{!A:%{!nostdlib:%{!nostartfiles:%E}}}\n }}}}}"
/* Nothing complicated here, just link with libc.a under normal
circumstances */
#define LIB_SPEC "-lc"
/* Specify the startup file to link with. */
#define STARTFILE_SPEC "%{mmap1:m1_crt0.o%s} \
%{mmap2:m2_crt0.o%s} \
%{mmap3:m3_crt0.o%s} \
%{mmap4:m4_crt0.o%s} \
%{!mmap*: %{!ifile*: m4_crt0.o%s} %{ifile*: \
%eA -ifile option requires a -map option}}"
/* Specify the end file to link with */
#define ENDFILE_SPEC "%{mmap1:m1_crtn.o%s} \
%{mmap2:m2_crtn.o%s} \
%{mmap3:m3_crtn.o%s} \
%{mmap4:m4_crtn.o%s} \
%{!mmap*: %{!ifile*: m4_crtn.o%s} %{ifile*: \
%eA -ifile option requires a -map option}}"
/* Tell gcc where to look for the startfile */
#define STANDARD_STARTFILE_PREFIX "/d1600/lib"
/* Tell gcc where to look for it's executables */
#define STANDARD_EXEC_PREFIX "/d1600/bin"
/* Command line options to the AT&T assembler */
#define ASM_SPEC "%{V} %{v:%{!V:-V}} %{g*:-g}"
/* Command line options for the AT&T linker */
#define LINK_SPEC "%{V} %{v:%{!V:-V}} %{minit:-i} \
%{!ifile*:%{mmap1:-ifile m1_deflt.if%s} \
%{mmap2:-ifile m2_deflt.if%s} \
%{mmap3:-ifile m3_deflt.if%s} \
%{mmap4:-ifile m4_deflt.if%s} \
%{!mmap*:-ifile m4_deflt.if%s}} \
%{ifile*} %{!r:-a}"
/* Names to predefine in the preprocessor for this target machine. */
#ifdef __MSDOS__
#define CPP_PREDEFINES "-Ddsp1600 -DDSP1600 -DMSDOS"
#else
#define CPP_PREDEFINES "-Ddsp1600 -DDSP1600 -Ddsp1610 -DDSP1610"
#endif
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
#define MASK_REGPARM 0x00000001 /* Pass parameters in registers */
#define MASK_NEAR_CALL 0x00000002 /* The call is on the same 4k page */
#define MASK_NEAR_JUMP 0x00000004 /* The jump is on the same 4k page */
#define MASK_BMU 0x00000008 /* Use the 'bmu' shift instructions */
#define MASK_OPTIMIZE_MEMORY 0x00000010 /* Optimize to conserve memory */
#define MASK_OPTIMIZE_SPEED 0x00000020 /* Optimize for speed */
#define MASK_MAP1 0x00000040 /* Link with map1 */
#define MASK_MAP2 0x00000080 /* Link with map2 */
#define MASK_MAP3 0x00000100 /* Link with map3 */
#define MASK_MAP4 0x00000200 /* Link with map4 */
#define MASK_YBASE_HIGH 0x00000400 /* The ybase register window starts high */
#define MASK_INIT 0x00000800 /* Have the linker generate tables to
initialize data at startup */
#define MASK_INLINE_MULT 0x00001000 /* Inline 32 bit multiplies */
#define MASK_RESERVE_YBASE 0x00002000 /* Reserved the ybase registers */
/* Compile passing first two args in regs 0 and 1.
This exists only to test compiler features that will
be needed for RISC chips. It is not usable
and is not intended to be usable on this cpu. */
#define TARGET_REGPARM (target_flags & MASK_REGPARM)
/* The call is on the same 4k page, so instead of loading
the 'pt' register and branching, we can branch directly */
#define TARGET_NEAR_CALL (target_flags & MASK_NEAR_CALL)
/* The jump is on the same 4k page, so instead of loading
the 'pt' register and branching, we can branch directly */
#define TARGET_NEAR_JUMP (target_flags & MASK_NEAR_JUMP)
/* Generate shift instructions to use the 1610 Bit Manipulation
Unit. */
#define TARGET_BMU (target_flags & MASK_BMU)
/* Optimize to conserve memory */
#define TARGET_OPTIMIZE_MEMORY (target_flags & MASK_OPTIMIZE_MEMORY)
/* Optimize for maximum speed */
#define TARGET_OPTIMIZE_SPEED (target_flags & MASK_OPTIMIZE_SPEED)
#define TARGET_YBASE_HIGH (target_flags & MASK_YBASE_HIGH)
/* Direct the linker to output extra info for initialized data */
#define TARGET_MASK_INIT (target_flags & MASK_INIT)
#define TARGET_INLINE_MULT (target_flags & MASK_INLINE_MULT)
/* Reserve the ybase registers *(0) - *(31) */
#define TARGET_RESERVE_YBASE (target_flags & MASK_RESERVE_YBASE)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ \
{ "regparm", MASK_REGPARM}, \
{ "no-regparm", -MASK_REGPARM}, \
{ "no-near-call", -MASK_NEAR_CALL}, \
{ "near-jump", MASK_NEAR_JUMP}, \
{ "no-near-jump", -MASK_NEAR_JUMP}, \
{ "bmu", MASK_BMU}, \
{ "no-bmu", -MASK_BMU}, \
{ "Om", MASK_OPTIMIZE_MEMORY}, \
{ "Os", MASK_OPTIMIZE_SPEED}, \
{ "map1", MASK_MAP1}, \
{ "map2", MASK_MAP2}, \
{ "map3", MASK_MAP3}, \
{ "map4", MASK_MAP4}, \
{ "ybase-high", MASK_YBASE_HIGH}, \
{ "init", MASK_INIT}, \
{ "inline-mult", MASK_INLINE_MULT}, \
{ "reserve-ybase", MASK_RESERVE_YBASE}, \
{ "", TARGET_DEFAULT} \
}
/* Default target_flags if no switches are specified */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT MASK_OPTIMIZE_MEMORY|MASK_REGPARM|MASK_YBASE_HIGH
#endif
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable.
The variable, type `char *', is set to the variable part of the
given option if the fixed part matches. The actual option name
is made by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
#define TARGET_OPTIONS \
{ \
{ "text=", &text_seg_name }, \
{ "data=", &data_seg_name }, \
{ "bss=", &bss_seg_name }, \
{ "const=", &const_seg_name }, \
{ "chip=", &chip_name } \
}
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed. */
#define OVERRIDE_OPTIONS override_options ()
#define OPTIMIZATION_OPTIONS(LEVEL) \
{ \
flag_gnu_linker = FALSE; \
\
if (LEVEL) \
{ \
flag_omit_frame_pointer = TRUE; \
flag_thread_jumps = TRUE; \
} \
\
if (LEVEL >= 2) \
{ \
flag_strength_reduce = TRUE; \
flag_cse_follow_jumps = TRUE; \
flag_cse_skip_blocks = TRUE; \
flag_expensive_optimizations = TRUE; \
flag_rerun_cse_after_loop = TRUE; \
} \
\
if (LEVEL >= 3) \
{ \
flag_inline_functions = 1; \
} \
}
/* STORAGE LAYOUT */
/* Define if you don't want extended real, but do want to use the
software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
#define REAL_ARITHMETIC
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
*/
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered.
We define big-endian, but since the 1600 series cannot address bytes
it does not matter. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is numbered.
For the 1600 we can decide arbitrarily since there are no machine instructions for them. */
#define WORDS_BIG_ENDIAN 1
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 16
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 16
/* Maximum number of bits in a word. */
#define MAX_BITS_PER_WORD 16
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 1
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 16
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 16
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 16
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 16
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16
/* Biggest alignment that any data type can require on this machine, in bits. */
#define BIGGEST_ALIGNMENT 16
/* Biggest alignment that any structure field can require on this machine, in bits */
#define BIGGEST_FIELD_ALIGNMENT 16
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 16
/* Number of bits which any structure or union's size must be a multiple of. Each structure
or union's size is rounded up to a multiple of this */
#define STRUCTURE_SIZE_BOUNDARY 16
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* An integer expression for the size in bits of the largest integer machine mode that
should actually be used. All integer machine modes of this size or smaller can be
used for structures and unions with the appropriate sizes. */
#define MAX_FIXED_MODE_SIZE 32
/* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
#define CHAR_TYPE_SIZE 16
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 32
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 32
#define LONG_DOUBLE_TYPE_SIZE 32
/* An expression whose value is 1 or 0, according to whether the type char should be
signed or unsigned by default. */
#define DEFAULT_SIGNED_CHAR 1
/* A C expression to determine whether to give an enum type only as many bytes
as it takes to represent the range of possible values of that type. A nonzero
value means to do that; a zero value means all enum types should be allocated
like int. */
#define DEFAULT_SHORT_ENUMS 0
/* A C expression for a string describing the name of the data type to use for
size values. */
#define SIZE_TYPE "long unsigned int"
/* A C expression for a string describing the name of the datat type to use for the
result of subtracting two pointers */
#define PTRDIFF_TYPE "long int"
#define TARGET_BELL '\a'
#define TARGET_BS '\b'
#define TARGET_TAB '\t'
#define TARGET_NEWLINE '\n'
#define TARGET_VT '\v'
#define TARGET_FF '\f'
#define TARGET_CR '\r'
/* REGISTER USAGE. */
#define ALL_16_BIT_REGISTERS 1
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to FIRST_PSEUDO_REGISTER-1 */
#define FIRST_PSEUDO_REGISTER REG_YBASE31 + 1
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
The registers are layed out as follows:
{a0,a0l,a1,a1l,x,y,yl,p,pl} - Data Arithmetic Unit
{r0,r1,r2,r3,j,k,ybase} - Y Space Address Arithmetic Unit
{pt} - X Space Address Arithmetic Unit
{ar0,ar1,ar2,ar3} - Bit Manipulation UNit
{pr} - Return Address Register
We reserve r2 for the Stack Pointer.
We specify r3 for the Frame Pointer but allow the compiler
to omit it when possible since we have so few pointer registers. */
#define REG_A0 0
#define REG_A0L 1
#define REG_A1 2
#define REG_A1L 3
#define REG_X 4
#define REG_Y 5
#define REG_YL 6
#define REG_PROD 7
#define REG_PRODL 8
#define REG_R0 9
#define REG_R1 10
#define REG_R2 11
#define REG_R3 12
#define REG_J 13
#define REG_K 14
#define REG_YBASE 15
#define REG_PT 16
#define REG_AR0 17
#define REG_AR1 18
#define REG_AR2 19
#define REG_AR3 20
#define REG_C0 21
#define REG_C1 22
#define REG_C2 23
#define REG_PR 24
#define REG_RB 25
#define REG_YBASE0 26
#define REG_YBASE1 27
#define REG_YBASE2 28
#define REG_YBASE3 29
#define REG_YBASE4 30
#define REG_YBASE5 31
#define REG_YBASE6 32
#define REG_YBASE7 33
#define REG_YBASE8 34
#define REG_YBASE9 35
#define REG_YBASE10 36
#define REG_YBASE11 37
#define REG_YBASE12 38
#define REG_YBASE13 39
#define REG_YBASE14 40
#define REG_YBASE15 41
#define REG_YBASE16 42
#define REG_YBASE17 43
#define REG_YBASE18 44
#define REG_YBASE19 45
#define REG_YBASE20 46
#define REG_YBASE21 47
#define REG_YBASE22 48
#define REG_YBASE23 49
#define REG_YBASE24 50
#define REG_YBASE25 51
#define REG_YBASE26 52
#define REG_YBASE27 53
#define REG_YBASE28 54
#define REG_YBASE29 55
#define REG_YBASE30 56
#define REG_YBASE31 57
/* Do we have a accumulator register? */
#define IS_ACCUM_REG(REGNO) ((REGNO) >= REG_A0 && (REGNO) <= REG_A1L)
#define IS_ACCUM_LOW_REG(REGNO) ((REGNO) == REG_A0L || (REGNO) == REG_A1L)
/* Do we have a virtual ybase register */
#define IS_YBASE_REGISTER_WINDOW(REGNO) ((REGNO) >= REG_YBASE0 && (REGNO) <= REG_YBASE31)
#define IS_ADDRESS_REGISTER(REGNO) ((REGNO) >= REG_R0 && (REGNO) <= REG_R3)
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 1, \
1, \
0, 0, 0, 0, \
1, 1, 1, \
0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
On the 1610 'a0' holds return values from functions. 'r0' holds
structure-value addresses.
In addition we don't save either j, k, ybase or any of the
bit manipulation registers. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 0, 1, 1, 1, 1, \
1, 0, 0, 1, 1, 1, 1, \
1, \
0, 0, 1, 1, \
1, 1, 1, \
0, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0}
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
We allocate in the following order:
*/
#define REG_ALLOC_ORDER \
{ REG_R0, REG_R1, REG_R2, REG_PROD, REG_Y, REG_X, \
REG_PRODL, REG_YL, REG_AR0, REG_AR1, \
REG_RB, REG_A0, REG_A1, REG_A0L, \
REG_A1L, REG_AR2, REG_AR3, \
REG_YBASE, REG_J, REG_K, REG_PR, REG_PT, REG_C0, \
REG_C1, REG_C2, REG_R3, \
REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31 }
/* Zero or more C statements that may conditionally modify two
variables `fixed_regs' and `call_used_regs' (both of type `char
[]') after they have been initialized from the two preceding
macros.
This is necessary in case the fixed or call-clobbered registers
depend on target flags.
You need not define this macro if it has no work to do.
If the usage of an entire class of registers depends on the target
flags, you may indicate this to GCC by using this macro to modify
`fixed_regs' and `call_used_regs' to 1 for each of the registers in
the classes which should not be used by GCC. Also define the macro
`REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
letter for a class that shouldn't be used.
(However, if this class is not included in `GENERAL_REGS' and all
of the insn patterns whose constraints permit this class are
controlled by target switches, then GCC will automatically avoid
using these registers when the target switches are opposed to
them.) If the user tells us there is no BMU, we can't use
ar0-ar3 for register allocation */
#define CONDITIONAL_REGISTER_USAGE \
do \
{ \
if (!TARGET_BMU) \
{ \
int regno; \
\
for (regno = REG_AR0; regno <= REG_AR3; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
if (TARGET_RESERVE_YBASE) \
{ \
int regno; \
\
for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
} \
while (0)
/* Determine which register classes are very likely used by spill registers.
local-alloc.c won't allocate pseudos that have these classes as their
preferred class unless they are "preferred or nothing". */
#define CLASS_LIKELY_SPILLED_P(CLASS) \
((CLASS) != ALL_REGS && (CLASS) != YBASE_VIRT_REGS)
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(GET_MODE_SIZE(MODE))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok(REGNO, MODE)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(((MODE1) == (MODE2)) || \
(GET_MODE_CLASS((MODE1)) == MODE_FLOAT) \
== (GET_MODE_CLASS((MODE2)) == MODE_FLOAT))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* DSP1600 pc isn't overloaded on a register. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments.
This is r3 in our case */
#define STACK_POINTER_REGNUM REG_R3
/* Base register for access to local variables of the function.
This is r2 in our case */
#define FRAME_POINTER_REGNUM REG_R2
/* We can debug without the frame pointer */
#define CAN_DEBUG_WITHOUT_FP 1
/* The 1610 saves the return address in this register */
#define RETURN_ADDRESS_REGNUM REG_PR
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 4
/* Register in which address to store a structure value
is passed to a function. This is 'r0' in our case */
#define STRUCT_VALUE_REGNUM REG_R0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS,
A0H_REG,
A0L_REG,
A0_REG,
A1H_REG,
ACCUM_HIGH_REGS,
A1L_REG,
ACCUM_LOW_REGS,
A1_REG,
ACCUM_REGS,
X_REG,
X_OR_ACCUM_LOW_REGS,
X_OR_ACCUM_REGS,
YH_REG,
YH_OR_ACCUM_HIGH_REGS,
X_OR_YH_REGS,
YL_REG,
YL_OR_ACCUM_LOW_REGS,
X_OR_YL_REGS,
X_OR_Y_REGS,
Y_REG,
ACCUM_OR_Y_REGS,
PH_REG,
X_OR_PH_REGS,
PL_REG,
PL_OR_ACCUM_LOW_REGS,
X_OR_PL_REGS,
YL_OR_PL_OR_ACCUM_LOW_REGS,
P_REG,
ACCUM_OR_P_REGS,
YL_OR_P_REGS,
ACCUM_LOW_OR_YL_OR_P_REGS,
Y_OR_P_REGS,
ACCUM_Y_OR_P_REGS,
NO_FRAME_Y_ADDR_REGS,
Y_ADDR_REGS,
ACCUM_LOW_OR_Y_ADDR_REGS,
ACCUM_OR_Y_ADDR_REGS,
X_OR_Y_ADDR_REGS,
Y_OR_Y_ADDR_REGS,
P_OR_Y_ADDR_REGS,
NON_HIGH_YBASE_ELIGIBLE_REGS,
YBASE_ELIGIBLE_REGS,
J_REG,
J_OR_DAU_16_BIT_REGS,
BMU_REGS,
NOHIGH_NON_ADDR_REGS,
NON_ADDR_REGS,
SLOW_MEM_LOAD_REGS,
NOHIGH_NON_YBASE_REGS,
NO_ACCUM_NON_YBASE_REGS,
NON_YBASE_REGS,
YBASE_VIRT_REGS,
ACCUM_LOW_OR_YBASE_REGS,
ACCUM_OR_YBASE_REGS,
X_OR_YBASE_REGS,
Y_OR_YBASE_REGS,
ACCUM_LOW_YL_PL_OR_YBASE_REGS,
P_OR_YBASE_REGS,
ACCUM_Y_P_OR_YBASE_REGS,
Y_ADDR_OR_YBASE_REGS,
YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS,
YBASE_OR_YBASE_ELIGIBLE_REGS,
NO_HIGH_ALL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
/* GENERAL_REGS must be the name of a register class */
#define GENERAL_REGS ALL_REGS
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"A0H_REG", \
"A0L_REG", \
"A0_REG", \
"A1H_REG", \
"ACCUM_HIGH_REGS", \
"A1L_REG", \
"ACCUM_LOW_REGS", \
"A1_REG", \
"ACCUM_REGS", \
"X_REG", \
"X_OR_ACCUM_LOW_REGS", \
"X_OR_ACCUM_REGS", \
"YH_REG", \
"YH_OR_ACCUM_HIGH_REGS", \
"X_OR_YH_REGS", \
"YL_REG", \
"YL_OR_ACCUM_LOW_REGS", \
"X_OR_YL_REGS", \
"X_OR_Y_REGS", \
"Y_REG", \
"ACCUM_OR_Y_REGS", \
"PH_REG", \
"X_OR_PH_REGS", \
"PL_REG", \
"PL_OR_ACCUM_LOW_REGS", \
"X_OR_PL_REGS", \
"PL_OR_YL_OR_ACCUM_LOW_REGS", \
"P_REG", \
"ACCUM_OR_P_REGS", \
"YL_OR_P_REGS", \
"ACCUM_LOW_OR_YL_OR_P_REGS", \
"Y_OR_P_REGS", \
"ACCUM_Y_OR_P_REGS", \
"NO_FRAME_Y_ADDR_REGS", \
"Y_ADDR_REGS", \
"ACCUM_LOW_OR_Y_ADDR_REGS", \
"ACCUM_OR_Y_ADDR_REGS", \
"X_OR_Y_ADDR_REGS", \
"Y_OR_Y_ADDR_REGS", \
"P_OR_Y_ADDR_REGS", \
"NON_HIGH_YBASE_ELIGIBLE_REGS", \
"YBASE_ELIGIBLE_REGS", \
"J_REG", \
"J_OR_DAU_16_BIT_REGS", \
"BMU_REGS", \
"NOHIGH_NON_ADDR_REGS", \
"NON_ADDR_REGS", \
"SLOW_MEM_LOAD_REGS", \
"NOHIGH_NON_YBASE_REGS", \
"NO_ACCUM_NON_YBASE_REGS", \
"NON_YBASE_REGS", \
"YBASE_VIRT_REGS", \
"ACCUM_LOW_OR_YBASE_REGS", \
"ACCUM_OR_YBASE_REGS", \
"X_OR_YBASE_REGS", \
"Y_OR_YBASE_REGS", \
"ACCUM_LOW_YL_PL_OR_YBASE_REGS", \
"P_OR_YBASE_REGS", \
"ACCUM_Y_P_OR_YBASE_REGS", \
"Y_ADDR_OR_YBASE_REGS", \
"YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS", \
"YBASE_OR_YBASE_ELIGIBLE_REGS", \
"NO_HIGH_ALL_REGS", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
{0x00000000, 0x00000000}, /* no reg */ \
{0x00000001, 0x00000000}, /* a0h */ \
{0x00000002, 0x00000000}, /* a0l */ \
{0x00000003, 0x00000000}, /* a0h:a0l */ \
{0x00000004, 0x00000000}, /* a1h */ \
{0x00000005, 0x00000000}, /* accum high */ \
{0x00000008, 0x00000000}, /* a1l */ \
{0x0000000A, 0x00000000}, /* accum low */ \
{0x0000000c, 0x00000000}, /* a1h:a1l */ \
{0x0000000f, 0x00000000}, /* accum regs */ \
{0x00000010, 0x00000000}, /* x reg */ \
{0x0000001A, 0x00000000}, /* x & accum_low_regs */ \
{0x0000001f, 0x00000000}, /* x & accum regs */ \
{0x00000020, 0x00000000}, /* y high */ \
{0x00000025, 0x00000000}, /* yh, accum high */ \
{0x00000030, 0x00000000}, /* x & yh */ \
{0x00000040, 0x00000000}, /* y low */ \
{0x0000004A, 0x00000000}, /* y low, accum_low */ \
{0x00000050, 0x00000000}, /* x & yl */ \
{0x00000060, 0x00000000}, /* yl:yh */ \
{0x00000070, 0x00000000}, /* x, yh,a nd yl */ \
{0x0000006F, 0x00000000}, /* accum, y */ \
{0x00000080, 0x00000000}, /* p high */ \
{0x00000090, 0x00000000}, /* x & ph */ \
{0x00000100, 0x00000000}, /* p low */ \
{0x0000010A, 0x00000000}, /* p_low and accum_low */ \
{0x00000110, 0x00000000}, /* x & pl */ \
{0x0000014A, 0x00000000}, /* pl,yl,a1l,a0l */ \
{0x00000180, 0x00000000}, /* pl:ph */ \
{0x0000018F, 0x00000000}, /* accum, p */ \
{0x000001C0, 0x00000000}, /* pl:ph and yl */ \
{0x000001CA, 0x00000000}, /* pl:ph, yl, a0l, a1l */ \
{0x000001E0, 0x00000000}, /* y or p */ \
{0x000001EF, 0x00000000}, /* accum, y or p */ \
{0x00000E00, 0x00000000}, /* r0-r2 */ \
{0x00001E00, 0x00000000}, /* r0-r3 */ \
{0x00001E0A, 0x00000000}, /* r0-r3, accum_low */ \
{0x00001E0F, 0x00000000}, /* accum,r0-r3 */ \
{0x00001E10, 0x00000000}, /* x,r0-r3 */ \
{0x00001E60, 0x00000000}, /* y,r0-r3 */ \
{0x00001F80, 0x00000000}, /* p,r0-r3 */ \
{0x00001FDA, 0x00000000}, /* ph:pl, r0-r3, x,a0l,a1l */ \
{0x00001fff, 0x00000000}, /* accum,x,y,p,r0-r3 */ \
{0x00002000, 0x00000000}, /* j */ \
{0x00002025, 0x00000000}, /* j, yh, a1h, a0h */ \
{0x001E0000, 0x00000000}, /* ar0-ar3 */ \
{0x03FFE1DA, 0x00000000}, /* non_addr except yh,a0h,a1h */ \
{0x03FFE1FF, 0x00000000}, /* non_addr regs */ \
{0x03FFFF8F, 0x00000000}, /* non ybase except yh, yl, and x */ \
{0x03FFFFDA, 0x00000000}, /* non ybase regs except yh,a0h,a1h */ \
{0x03FFFFF0, 0x00000000}, /* non ybase except a0,a0l,a1,a1l */ \
{0x03FFFFFF, 0x00000000}, /* non ybase regs */ \
{0xFC000000, 0x03FFFFFF}, /* virt ybase regs */ \
{0xFC00000A, 0x03FFFFFF}, /* accum_low, virt ybase regs */ \
{0xFC00000F, 0x03FFFFFF}, /* accum, virt ybase regs */ \
{0xFC000010, 0x03FFFFFF}, /* x,virt ybase regs */ \
{0xFC000060, 0x03FFFFFF}, /* y,virt ybase regs */ \
{0xFC00014A, 0x03FFFFFF}, /* accum_low, yl, pl, ybase */ \
{0xFC000180, 0x03FFFFFF}, /* p,virt ybase regs */ \
{0xFC0001EF, 0x03FFFFFF}, /* accum,y,p,ybase regs */ \
{0xFC001E00, 0x03FFFFFF}, /* r0-r3, ybase regs */ \
{0xFC001FDA, 0x03FFFFFF}, /* r0-r3, pl:ph,yl,x,a1l,a0l */ \
{0xFC001FFF, 0x03FFFFFF}, /* virt ybase, ybase eligible regs */ \
{0xFCFFFFDA, 0x03FFFFFF}, /* all regs except yh,a0h,a1h */ \
{0xFFFFFFFF, 0x03FFFFFF} /* all regs */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) regno_reg_class(REGNO)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS Y_ADDR_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
dsp16xx_reg_class_from_letter(C)
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
secondary_reload_class(CLASS, MODE, X)
/* When defined, the compiler allows registers explicitly used in the
rtl to be used as spill registers but prevents the compiler from
extending the lifetime of these registers. */
#define SMALL_REGISTER_CLASSES
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
/* A C expression which is nonzero if register REGNO is suitable for use
as a base register in operand addresses. It may be either a suitable
hard register or a pseudo register that has been allocated such a
hard register.
On the 1610 the Y address pointers can be used as a base registers */
#define REGNO_OK_FOR_BASE_P(REGNO) \
(((REGNO) >= REG_R0 && (REGNO) < REG_R3 + 1) || ((unsigned) reg_renumber[REGNO] >= REG_R0 \
&& (unsigned) reg_renumber[REGNO] < REG_R3 + 1))
#define REGNO_OK_FOR_YBASE_P(REGNO) \
(((REGNO) == REG_YBASE) || ((unsigned) reg_renumber[REGNO] == REG_YBASE))
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
#ifdef ALL_16_BIT_REGISTERS
#define IS_32_BIT_REG(REGNO) 0
#else
#define IS_32_BIT_REG(REGNO) \
((REGNO) == REG_A0 || (REGNO) == REG_A1 || (REGNO) == REG_Y || (REGNO) == REG_PROD)
#endif
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
Also, we must ensure that a PLUS is reloaded either
into an accumulator or an address register. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class (X, CLASS)
/* A C expression that places additional restrictions on the register
class to use when it is necessary to be able to hold a value of
mode MODE in a reload register for which class CLASS would
ordinarily be used.
Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
there are certain modes that simply can't go in certain reload
classes.
The value is a register class; perhaps CLASS, or perhaps another,
smaller class.
Don't define this macro unless the target machine has limitations
which require the macro to do something nontrivial. */
#if 0
#define LIMIT_RELOAD_CLASS(MODE, CLASS) dsp16xx_limit_reload_class (MODE, CLASS)
#endif
/* A C expression for the maximum number of consecutive registers of class CLASS
needed to hold a vlaue of mode MODE */
#define CLASS_MAX_NREGS(CLASS, MODE) \
class_max_nregs(CLASS, MODE)
/* The letters 'I' through 'P' in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
For the 16xx, the following constraints are used:
'I' requires a non-negative 16-bit value.
'J' requires a non-negative 9-bit value
'K' requires a constant 0 operand.
'L' requires 16-bit value
'M' 32-bit value -- low 16-bits zero
*/
#define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
#define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
#define SHORT_IMMEDIATE(X) (SHORT_INTVAL (INTVAL(X)))
#define SHORT_INTVAL(I) ((unsigned) (I) < 0x100)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (SMALL_INTVAL(VALUE)) \
: (C) == 'J' ? (SHORT_INTVAL(VALUE)) \
: (C) == 'K' ? ((VALUE) == 0) \
: (C) == 'L' ? ! ((VALUE) & ~0x0000ffff) \
: (C) == 'M' ? ! ((VALUE) & ~0xffff0000) \
: (C) == 'N' ? ((VALUE) == -1 || (VALUE) == 1 || \
(VALUE) == -2 || (VALUE) == 2) \
: 0)
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
/* Optional extra constraints for this machine */
#define EXTRA_CONSTRAINT(OP,C) \
((C) == 'R' ? symbolic_address_p (OP) \
: 0)
/* DESCRIBING STACK LAYOUT AND CALLING CONVENTIONS */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
/* #define STACK_GROWS_DOWNWARD */
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
#define ARGS_GROW_DOWNWARD
/* We use post decrement on the 1600 because there isn't
a pre-decrement addressing mode. This means that we
assume the stack pointer always points at the next
FREE location on the stack. */
#define STACK_PUSH_CODE POST_INC
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* Offset from the stack pointer register to the first
location at which outgoing arguments are placed. */
#define STACK_POINTER_OFFSET (0)
struct dsp16xx_frame_info
{
unsigned long total_size; /* # bytes that the entire frame takes up */
unsigned long var_size; /* # bytes that variables take up */
unsigned long args_size; /* # bytes that outgoing arguments take up */
unsigned long extra_size; /* # bytes of extra gunk */
unsigned int reg_size; /* # bytes needed to store regs */
long fp_save_offset; /* offset from vfp to store registers */
unsigned long sp_save_offset; /* offset from new sp to store registers */
int initialized; /* != 0 if frame size already calculated */
int num_regs; /* number of registers saved */
int function_makes_calls; /* Does the function make calls */
};
extern struct dsp16xx_frame_info current_frame_info;
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
/* #define PUSH_ROUNDING(BYTES) ((BYTES)) */
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
'current_function_outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount.
It is not proper to define both 'PUSH_ROUNDING' and
'ACCUMULATE_OUTGOING_ARGS'. */
#define ACCUMULATE_OUTGOING_ARGS
/* Offset of first parameter from the argument pointer
register value. */
#define FIRST_PARM_OFFSET(FNDECL) (0)
/* Value is 1 if returning from a function call automatically
pops the arguments described by the number-of-args field in the call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. On the 1610 all function return their values
in a0 (i.e. the upper 16 bits). If the return value is 32-bits the
entire register is significant. */
#define VALUE_REGNO(MODE) (REG_Y)
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), VALUE_REGNO(TYPE_MODE(VALTYPE)))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, VALUE_REGNO(MODE))
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_Y)
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the 1610 all args are pushed, except if -mregparm is specified
then the first two words of arguments are passed in a0, a1. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
dsp16xx_function_arg (CUM, MODE, TYPE, NAMED)
/* Define the first register to be used for argument passing */
#define FIRST_REG_FOR_FUNCTION_ARG REG_Y
/* Define the profitability of saving registers around calls.
NOTE: For now we turn this off because of a bug in the
caller-saves code and also because i'm not sure it is helpful
on the 1610. */
#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
/* This indicates that an argument is to be passed with an invisible reference
(i.e., a pointer to the object is passed).
On the dsp16xx, we do this if it must be passed on the stack. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
(MUST_PASS_IN_STACK (MODE, TYPE))
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
dsp16xx_function_arg_advance (&CUM, MODE,TYPE, NAMED)
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) \
((N) == REG_Y || (N) == REG_YL || (N) == REG_PROD || (N) == REG_PRODL)
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) fatal("Profiling not implemented yet.")
/* Output assembler code to FILE to initialize this source file's
basic block profiling info, if that has not already been done. */
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) fatal("Profiling not implemented yet.")
/* Output assembler code to FILE to increment the entry-count for
the BLOCKNO'th basic block in this source file. */
#define BLOCK_PROFILER(FILE, BLOCKNO) fatal("Profiling not implemented yet.")
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK (0)
#define TRAMPOLINE_TEMPLATE(FILE) fatal ("Trampolines not yet implemented");
/* Length in units of the trampoline for entering a nested function.
This is a dummy value */
#define TRAMPOLINE_SIZE 20
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
fatal ("Trampolines not yet implemented");
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
#define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
/* A C expression which is nonzero if a function must have and use a
frame pointer. If its value is nonzero the functions will have a
frame pointer. */
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
/* A C statement to store in the variable 'DEPTH' the difference
between the frame pointer and the stack pointer values immediately
after the function prologue. */
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
{ (DEPTH) = initial_frame_pointer_offset(); \
}
/* IMPLICIT CALLS TO LIBRARY ROUTINES */
#define ADDHF3_LIBCALL "__Emulate_addhf3"
#define SUBHF3_LIBCALL "__Emulate_subhf3"
#define MULHF3_LIBCALL "__Emulate_mulhf3"
#define DIVHF3_LIBCALL "__Emulate_divhf3"
#define CMPHF3_LIBCALL "__Emulate_cmphf3"
#define FIXHFHI2_LIBCALL "__Emulate_fixhfhi2"
#define FLOATHIHF2_LIBCALL "__Emulate_floathihf2"
#define NEGHF2_LIBCALL "__Emulate_neghf2"
#define UMULHI3_LIBCALL "__Emulate_umulhi3"
#define MULHI3_LIBCALL "__Emulate_mulhi3"
#define UDIVQI3_LIBCALL "__Emulate_udivqi3"
#define UDIVHI3_LIBCALL "__Emulate_udivhi3"
#define DIVQI3_LIBCALL "__Emulate_divqi3"
#define DIVHI3_LIBCALL "__Emulate_divhi3"
#define MODQI3_LIBCALL "__Emulate_modqi3"
#define MODHI3_LIBCALL "__Emulate_modhi3"
#define UMODQI3_LIBCALL "__Emulate_umodqi3"
#define UMODHI3_LIBCALL "__Emulate_umodhi3"
#define ASHRHI3_LIBCALL "__Emulate_ashrhi3"
#define LSHRHI3_LIBCALL "__Emulate_lshrhi3"
#define ASHLHI3_LIBCALL "__Emulate_ashlhi3"
#define LSHLHI3_LIBCALL "__Emulate_lshlhi3" /* NOT USED */
/* Define this macro if calls to the ANSI C library functions memcpy and
memset should be generated instead of the BSD function bcopy & bzero. */
#define TARGET_MEM_FUNCTIONS
/* ADDRESSING MODES */
/* The 1610 has post-increment and decrement, but no pre-modify */
#define HAVE_POST_INCREMENT
#define HAVE_POST_DECREMENT
/* #define HAVE_PRE_DECREMENT */
/* #define HAVE_PRE_INCREMENT */
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
((REGNO (X) >= REG_R0 && REGNO (X) < REG_R3 + 1 ) \
|| (REGNO (X) >= FIRST_PSEUDO_REGISTER))
/* Nonzero if X is the 'ybase' register */
#define REG_OK_FOR_YBASE_P(X) \
(REGNO(X) == REG_YBASE || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
/* Nonzero if X is the 'ybase' register */
#define REG_OK_FOR_YBASE_P(X) REGNO_OK_FOR_YBASE_P (REGNO(X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On the 1610, the actual legitimate addresses must be N (N must fit in
5 bits), *rn (register indirect), *rn++, or *rn-- */
#define INT_FITS_5_BITS(I) ((unsigned long) (I) < 0x20)
#define INT_FITS_16_BITS(I) ((unsigned long) (I) < 0x10000)
#define YBASE_CONST_OFFSET(I) ((I) >= -31 && (I) <= 0)
#define YBASE_OFFSET(X) (GET_CODE (X) == CONST_INT && YBASE_CONST_OFFSET (INTVAL(X)))
#define FITS_16_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_16_BITS(INTVAL(X)))
#define FITS_5_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_5_BITS(INTVAL(X)))
#define ILLEGAL_HIMODE_ADDR(MODE, CONST) ((MODE) == HImode && CONST == -31)
#define INDIRECTABLE_ADDRESS_P(X) \
((GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X)) \
|| ((GET_CODE(X) == POST_DEC || GET_CODE(X) == POST_INC) \
&& REG_P(XEXP(X,0)) && REG_OK_FOR_BASE_P(XEXP(X,0))) \
|| (GET_CODE(X) == CONST_INT && (unsigned long) (X) < 0x20))
#define INDEXABLE_ADDRESS_P(X,MODE) \
((GET_CODE(X) == PLUS && GET_CODE (XEXP (X,0)) == REG && \
XEXP(X,0) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,1)) && \
!ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,1)))) || \
(GET_CODE(X) == PLUS && GET_CODE (XEXP (X,1)) == REG && \
XEXP(X,1) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,0)) && \
!ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,0)))))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (INDIRECTABLE_ADDRESS_P(X)) \
goto ADDR; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 1610, we need not do anything. However, if we don't,
`memory_address' will try lots of things to get a valid address, most of
which will result in dead code and extra pseudos. So we make the address
valid here.
This is easy: The only valid addresses are an offset from a register
and we know the address isn't valid. So just call either `force_operand'
or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
X = XEXP (x, 0); \
if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
X = force_operand (X, 0); \
else \
X = force_reg (Pmode, X); \
goto WIN; \
}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the 1610, only postdecrement and postincrement address depend thus
(the amount of decrement or increment being the length of the operand). */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) (1)
/* CONDITION CODE INFORMATION */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define NOTICE_UPDATE_CC(EXP, INSN) \
notice_update_cc( (EXP) )
/* DESCRIBING RELATIVE COSTS OF OPERATIONS */
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
return 0; \
case LABEL_REF: \
case SYMBOL_REF: \
case CONST: \
return COSTS_N_INSNS (1); \
\
case CONST_DOUBLE: \
return COSTS_N_INSNS (2);
/* Like CONST_COSTS but applies to nonconstant RTL expressions.
This can be used, for example to indicate how costly a multiply
instruction is. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case MEM: \
return GET_MODE (X) == QImode ? COSTS_N_INSNS (2) : \
COSTS_N_INSNS (4); \
case DIV: \
case MOD: \
return COSTS_N_INSNS (38); \
case MULT: \
if (GET_MODE (X) == QImode) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (38); \
case PLUS: \
if (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
{ \
if (GET_CODE (XEXP (X,1)) == CONST_INT) \
{ \
int number = INTVAL(XEXP (X,1)); \
if (number == 1) \
return COSTS_N_INSNS (1); \
if (INT_FITS_16_BITS(number)) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (4); \
} \
return COSTS_N_INSNS (1); \
} \
else \
return COSTS_N_INSNS (38); \
case MINUS: \
if (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
{ \
if (GET_CODE (XEXP (X,1)) == CONST_INT) \
{ \
if (INT_FITS_16_BITS(INTVAL(XEXP(X,1)))) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (4); \
} \
return COSTS_N_INSNS (1); \
} \
else \
return COSTS_N_INSNS (38); \
case AND: case IOR: case XOR: \
if (GET_CODE (XEXP (X,1)) == CONST_INT) \
{ \
if (INT_FITS_16_BITS(INTVAL(XEXP(X,1)))) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (4); \
} \
return COSTS_N_INSNS (1); \
case NEG: case NOT: \
return COSTS_N_INSNS (1); \
case ASHIFT: \
case ASHIFTRT: \
case LSHIFTRT: \
if (GET_CODE (XEXP (X,1)) == CONST_INT) \
{ \
int number = INTVAL(XEXP (X,1)); \
if (number == 1 || number == 4 || number == 8 || \
number == 16) \
return COSTS_N_INSNS (1); \
else \
return COSTS_N_INSNS (2); \
} \
return COSTS_N_INSNS (1);
/* An expression giving the cost of an addressing mode that contains
address. */
#define ADDRESS_COST(ADDR) dsp16xx_address_cost (ADDR)
/* A c expression for the cost of moving data from a register in
class FROM to one in class TO. The classes are expressed using
the enumeration values such as GENERAL_REGS. A value of 2 is
the default. */
#define REGISTER_MOVE_COST(FROM,TO) dsp16xx_register_move_cost (FROM, TO)
/* A C expression for the cost of moving data of mode MODE between
a register and memory. A value of 2 is the default. */
#define MEMORY_MOVE_COST(MODE) \
(GET_MODE_CLASS(MODE) == MODE_INT && MODE == QImode ? 12 \
: 16)
/* A C expression for the cost of a branch instruction. A value of
1 is the default; */
#define BRANCH_COST 2
/* Define this because otherwise gcc will try to put the function address
in any old pseudo register. We can only use pt. */
#define NO_FUNCTION_CSE
/* Define this macro as a C expression which is nonzero if accessing less
than a word of memory (i.e a char or short) is no faster than accessing
a word of memory, i.e if such access require more than one instruction
or if ther is no difference in cost between byte and (aligned) word
loads. */
#define SLOW_BYTE_ACCESS 1
/* Define this macro if zero-extension (of a char or short to an int) can
be done faster if the destination is a register that is know to be zero. */
/* #define SLOW_ZERO_EXTEND */
/* Define this macro if unaligned accesses have a cost many times greater than
aligned accesses, for example if they are emulated in a trap handler */
/* define SLOW_UNALIGNED_ACCESS */
/* Define this macro to inhibit strength reduction of memory addresses */
/* #define DONT_REDUCE_ADDR */
/* DIVIDING THE OUTPUT IN SECTIONS */
/* Output before read-only data. */
#define DEFAULT_TEXT_SEG_NAME ".text"
#define TEXT_SECTION_ASM_OP rsect_text
/* Output before constants and strings */
#define DEFAULT_CONST_SEG_NAME ".const"
#define READONLY_SECTION_ASM_OP rsect_const
#define READONLY_DATA_SECTION const_section
/* Output before writable data. */
#define DEFAULT_DATA_SEG_NAME ".data"
#define DATA_SECTION_ASM_OP rsect_data
#define DEFAULT_BSS_SEG_NAME ".bss"
#define BSS_SECTION_ASM_OP rsect_bss
/* We will default to using 1610 if the user doesn't
specify it. */
#define DEFAULT_CHIP_NAME "1610"
/* A list of names for sections other than the standard two, which are
'in_text' and 'in_data'. */
#define EXTRA_SECTIONS in_bss, in_const
#define EXTRA_SECTION_FUNCTIONS \
void \
const_section () \
{ \
if (in_section != in_const) \
{ \
fprintf (asm_out_file, "%s\n", READONLY_SECTION_ASM_OP); \
in_section = in_const; \
} \
} \
void \
bss_section () \
{ \
if (in_section != in_bss) { \
fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
in_section = in_bss; \
} \
}
/* THE OVERALL FRAMEWORK OF AN ASSEMBLER FILE */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) dsp16xx_file_start ()
/* Prevent output of .gcc_compiled */
#define ASM_IDENTIFY_GCC(FILE)
/* A C string constant describing how to begin a comment in the target
assembler language. */
/* define ASM_COMMENT_START */
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* OUTPUT OF DATA */
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) asm_output_float (FILE,VALUE)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) asm_output_float (FILE, VALUE)
/* This is how to output and assembler line defininf a 'float' constant of
size HFmode. */
#define ASM_OUTPUT_SHORT_FLOAT(FILE,VALUE) asm_output_float (FILE, VALUE)
/* This is how to output an assembler line defining an `char' constant. */
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\tint "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line defining an `short' constant. */
#define ASM_OUTPUT_SHORT(FILE,EXP) asm_output_long(FILE,INTVAL(EXP))
/* This is how to output an assembler line defining a 'int' constant. */
#define ASM_OUTPUT_INT(FILE, EXP) asm_output_long(FILE,INTVAL(EXP))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) ASM_OUTPUT_CHAR(FILE,VALUE)
/* This is how we output a 'c' character string. For the 16xx
assembler we have to do it one letter at a time */
#define ASCII_LENGTH 10
#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
do { \
FILE *_hide_asm_out_file = (MYFILE); \
unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
int _hide_thissize = (MYLENGTH); \
{ \
FILE *asm_out_file = _hide_asm_out_file; \
unsigned char *p = _hide_p; \
int thissize = _hide_thissize; \
int i; \
\
for (i = 0; i < thissize; i++) \
{ \
register int c = p[i]; \
\
if (i % ASCII_LENGTH == 0) \
fprintf (asm_out_file, "\tint "); \
\
if (c >= ' ' && c < 0177 && c != '\'') \
{ \
putc ('\'', asm_out_file); \
putc (c, asm_out_file); \
putc ('\'', asm_out_file); \
} \
else \
{ \
fprintf (asm_out_file, "%d", c); \
/* After an octal-escape, if a digit follows, \
terminate one string constant and start another. \
The Vax assembler fails to stop reading the escape \
after three digits, so this is the only way we \
can get it to parse the data properly. \
if (i < thissize - 1 \
&& p[i + 1] >= '0' && p[i + 1] <= '9') \
fprintf (asm_out_file, "\'\n\tint \'"); \
*/ \
} \
/* if: \
we are not at the last char (i != thissize -1) \
and (we are not at a line break multiple \
but i == 0) (it will be the very first time) \
then put out a comma to extend. \
*/ \
if ((i != thissize - 1) && ((i + 1) % ASCII_LENGTH)) \
fprintf(asm_out_file, ","); \
if (!((i + 1) % ASCII_LENGTH)) \
fprintf (asm_out_file, "\n"); \
} \
fprintf (asm_out_file, "\n"); \
} \
} \
while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable or function
named NAME. LABELNO is an integer which is different for
each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
do { \
int len = strlen (NAME); \
char *temp = (char *) alloca (len + 3); \
temp[0] = 'L'; \
strcpy (&temp[1], (NAME)); \
temp[len + 1] = '_'; \
temp[len + 2] = 0; \
(OUTPUT) = (char *) alloca (strlen (NAME) + 11); \
ASM_GENERATE_INTERNAL_LABEL (OUTPUT, temp, LABELNO); \
} while (0)
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* OUTPUT OF UNINITIALIZED VARIABLES */
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
asm_output_common (FILE, NAME, SIZE, ROUNDED);
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
asm_output_local (FILE, NAME, SIZE, ROUNDED);
/* OUTPUT AND GENERATION OF LABELS */
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fputs (".global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* A C statement to output to the stdio stream any text necessary
for declaring the name of an external symbol named name which
is referenced in this compilation but not defined. */
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
{ \
fprintf (FILE, ".extern "); \
assemble_name (FILE, NAME); \
fprintf (FILE, "\n"); \
}
/* A C statement to output on stream an assembler pseudo-op to
declare a library function named external. */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
{ \
fprintf (FILE, ".extern "); \
assemble_name (FILE, XSTR (FUN, 0)); \
fprintf (FILE, "\n"); \
}
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf (FILE, "_%s", NAME)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s%d", PREFIX, NUM)
/* OUTPUT OF ASSEMBLER INSTRUCTIONS */
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"a0", "a0l", "a1", "a1l", "x", "y", "yl", "p", "pl", \
"r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
"ar0", "ar1", "ar2", "ar3", \
"c0", "c1", "c2", "pr", "rb", \
"*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
"*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
"*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
"*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
"*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
"*(30)", "*(31)" }
#define HIMODE_REGISTER_NAMES \
{"a0", "a0", "a1", "a1", "x", "y", "y", "p", "p", \
"r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
"ar0", "ar1", "ar2", "ar3", \
"c0", "c1", "c2", "pr", "rb", \
"*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
"*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
"*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
"*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
"*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
"*(30)", "*(31)" }
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null.
DSP1610 extensions for operand codes:
%H - print lower 16 bits of constant
%U - print upper 16 bits of constant
%w - print low half of register (e.g 'a0l')
%u - print upper half of register (e.g 'a0')
%b - print high half of accumulator for F3 ALU instructions
%h - print constant in decimal */
#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* This is how to output an insn to push a register on the stack.
It need not be very fast code since it is used only for profiling */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) fatal("Profiling not implemented yet.");
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code since it is used only for profiling */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) fatal("Profiling not implemented yet.");
/* OUTPUT OF DISPATCH TABLES */
/* This macro should be provided on machines where the addresses in a dispatch
table are relative to the table's own address. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\tint L%d-L%d\n", VALUE, REL)
/* This macro should be provided on machines where the addresses in a dispatch
table are absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\tint L%d\n", VALUE)
/* ASSEMBLER COMMANDS FOR ALIGNMENT */
/* This is how to output an assembler line that says to advance
the location counter to a multiple of 2**LOG bytes. We should
not have to do any alignment since the 1610 is a word machine. */
#define ASM_OUTPUT_ALIGN(FILE,LOG)
/* Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
because it fails to put zero1 in the bytes that are skipped. */
#define ASM_NO_SKIP_IN_TEXT 1
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t%d * int 0\n", (SIZE))
/* CONTROLLING DEBUGGING INFORMATION FORMAT */
/* Define this macro if GCC should produce COFF-style debugging output
for SDB in response to the '-g' option */
#define SDB_DEBUGGING_INFO
/* Support generating stabs for the listing file generator */
#define DBX_DEBUGGING_INFO
/* The default format when -g is given is still COFF debug info */
#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* MISCELLANEOUS PARAMETERS */
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE QImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 1
/* Defining this macro causes the compiler to omit a sign-extend, zero-extend,
or bitwise 'and' instruction that truncates the count of a shift operation
to a width equal to the number of bits needed to represent the size of the
object being shifted. Do not define this macro unless the truncation applies
to both shift operations and bit-field operations (if any). */
/* #define SHIFT_COUNT_TRUNCATED */
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* When a prototype says `char' or `short', really pass an `int'. */
#define PROMOTE_PROTOTYPES
/* An alias for the machine mode used for pointers */
#define Pmode QImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
#if !defined(__DATE__)
#define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO1)
#else
#define TARGET_VERSION fprintf (stderr, " (%s, %s)", VERSION_INFO1, __DATE__)
#endif
#define VERSION_INFO1 "AT&T DSP16xx C Cross Compiler, version 1.2.0"
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* If this macro is defined, GNU CC gathers statistics about the number and
kind of tree node it allocates during each run. The option '-fstats' will
tell the compiler to print these statistics about the sizes of it obstacks. */
#define GATHER_STATISTICS
/* Define this so gcc does not output a call to __main, since we
are not currently supporting c++. */
#define INIT_SECTION_ASM_OP 1
|