1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
|
/* Definitions of target machine for GNU compiler, for Acorn RISC Machine.
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
and Martin Simmons (@harleqn.co.uk).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Sometimes the directive `riscos' is checked. This does not imply that this
tm file can be used unchanged to build a GCC for RISC OS.
(Since in fact, it can't.) */
extern void output_prologue ();
extern void output_epilogue ();
extern char *arm_output_asm_insn ();
extern char *arm_output_llc ();
extern char *output_add_immediate ();
extern char *output_call ();
extern char *output_move_double ();
extern char *output_mov_double_fpu_from_arm ();
extern char *output_mov_double_arm_from_fpu ();
extern char *output_mov_immediate ();
extern char *output_multi_immediate ();
extern char *output_shifted_move ();
/* Translation to find startup files. On RISCiX boxes, gcrt0.o is in
/usr/lib. */
#define STARTFILE_SPEC \
"%{pg:/usr/lib/gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}"
#ifdef riscos
#define CPP_PREDEFINES "-Darm -Driscos"
#else
#define CPP_PREDEFINES "-Darm -Driscix -Dunix"
#endif
/* Run-time Target Specification. */
#define TARGET_VERSION \
fputs (" (ARM/RISCiX)", stderr);
/* Run-time compilation parameters selecting different hardware subsets.
On the ARM, misuse it in a different way. */
extern int target_flags;
/* Nonzero if the function prologue (and epilogue) should obey
the ARM Procedure Call Standard. */
#define TARGET_APCS (target_flags & 1)
/* Nonzero if the function prologue should output the function name to enable
the post mortem debugger to print a backtrace (very useful on RISCOS,
unused on RISCiX). Specifying this flag also enables -mapcs.
XXX Must still be implemented in the prologue. */
#define TARGET_POKE_FUNCTION_NAME (target_flags & 2)
/* Nonzero if floating point instructions are emulated by the FPE, in which
case instruction scheduling becomes very uninteresting. */
#define TARGET_FPE (target_flags & 4)
#define TARGET_SWITCHES \
{ \
{"apcs", 1}, \
{"poke-function-name", 2}, \
{"fpe", 4}, \
{"", TARGET_DEFAULT } \
}
#define TARGET_DEFAULT 0
#define TARGET_MEM_FUNCTIONS 1
/* OVERRIDE_OPTIONS takes care of the following:
- if -mpoke-function-name, then -mapcs.
- if doing debugging, then -mapcs; if RISCOS, then -mpoke-function-name.
- if floating point is done by emulation, forget about instruction
scheduling. Note that this only saves compilation time; it doesn't
matter for the final code. */
#ifdef riscos
#define TARGET_WHEN_DEBUGGING 3
#else
#define TARGET_WHEN_DEBUGGING 1
#endif
#define OVERRIDE_OPTIONS \
{ \
if (write_symbols != NO_DEBUG) \
target_flags |= TARGET_WHEN_DEBUGGING; \
else if (TARGET_POKE_FUNCTION_NAME) \
target_flags |= 1; \
if (TARGET_FPE) \
flag_schedule_insns = flag_schedule_insns_after_reload = 0; \
}
/* Omitting the frame pointer is a very good idea on the ARM, especially if
not TARGET_APCS, in which case all that pushing on function entry isn't
mandatory anymore. */
#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
{ \
if (OPTIMIZE) \
flag_omit_frame_pointer = 1; \
}
/* Target machine storage Layout. */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN 0
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
#define BITS_PER_WORD 32
#define UNITS_PER_WORD 4
#define POINTER_SIZE 32
#define PARM_BOUNDARY 32
#define STACK_BOUNDARY 32
#define FUNCTION_BOUNDARY 32
#define EMPTY_FIELD_BOUNDARY 32
#define BIGGEST_ALIGNMENT 32
/* Every structures size must be a multiple of 32 bits. */
#define STRUCTURE_SIZE_BOUNDARY 32
#define STRICT_ALIGNMENT 1
/* Define number of bits in most basic integer type.
(If undefined, default is BITS_PER_WORD). */
/* #define INT_TYPE_SIZE */
/* Standard register usage. */
/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
(S - saved over call).
r0 * argument word/integer result
r1-r3 argument word
r4-r8 S register variable
r9 S (rfp) register variable (real frame pointer)
r10 F S (sl) stack limit (not currently used)
r11 F S (fp) argument pointer
r12 (ip) temp workspace
r13 F S (sp) lower end of current stack frame
r14 (lr) link address/workspace
r15 F (pc) program counter
f0 floating point result
f1-f3 floating point scratch
f4-f7 S floating point variable
*: See CONDITIONAL_REGISTER_USAGE */
/* The number of hard registers is 16 ARM + 8 FPU. */
#define FIRST_PSEUDO_REGISTER 24
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ \
0,0,0,0,0,0,0,0, \
0,0,1,1,0,1,0,1, \
0,0,0,0,0,0,0,0 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ \
1,1,1,1,0,0,0,0, \
0,0,1,1,1,1,1,1, \
1,1,1,1,0,0,0,0 \
}
/* If doing stupid life analysis, avoid a bug causing a return value r0 to be
trampled. This effectively reduces the number of available registers by 1.
XXX It is a hack, I know.
XXX Is this still needed? */
#define CONDITIONAL_REGISTER_USAGE \
{ \
if (obey_regdecls) \
fixed_regs[0] = 1; \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
mode. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((REGNO) >= 16 ? 1 \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
This is TRUE for ARM regs since they can hold anything, and TRUE for FPU
regs holding FP. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(((MODE1) == SFmode || (MODE1) == DFmode) \
== ((MODE2) == SFmode || (MODE2) == DFmode))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Define this if the program counter is overloaded on a register. */
#define PC_REGNUM 15
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 13
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 9
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may be accessed
via the stack pointer) in functions that seem suitable. */
#define FRAME_POINTER_REQUIRED 0
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 11
/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
as an invisible last argument (possible since varargs don't exist in
Pascal), so the following is not true. */
#define STATIC_CHAIN_REGNUM 8
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 0
/* The order in which register should be allocated. It is good to use ip
since no saving is required (though calls clobber it). It is quite good to
use lr since other calls may clobber it anyway. */
#define REG_ALLOC_ORDER \
{ \
0, 1, 2, 3, 12, 14, 4, 5, \
6, 7, 8, 10, 9, 11, 13, 15, \
16, 17, 18, 19, 20, 21, 22, 23 \
}
/* Register and constant classes. */
/* Register classes: all ARM regs or all FPU regs---simple! */
enum reg_class
{
NO_REGS,
FPU_REGS,
GENERAL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"FPU_REGS", \
"GENERAL_REGS", \
"ALL_REGS", \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
0x000000, /* NO_REGS */ \
0xFF0000, /* FPU_REGS */ \
0x00FFFF, /* GENERAL_REGS */ \
0xFFFFFF /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) < 16 ? GENERAL_REGS : FPU_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description.
We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS). */
#define REG_CLASS_FROM_LETTER(C) \
((C)=='f' ? FPU_REGS : NO_REGS)
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
I: immediate arithmetic operand (i.e. 8 bits shifted as required).
J: valid indexing constants. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? const_ok_for_arm (VALUE) : \
(C) == 'J' ? (abs (VALUE) < 4096) : 0)
/* Constant letter 'G' for the FPU immediate constants. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(X,C) \
((C) == 'G' ? const_double_rtx_ok_for_fpu (X) : 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FPU_REGS ? 1 \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Moves between FPU_REGS and GENERAL_REGS are two insns. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
((((CLASS1) == FPU_REGS && (CLASS2) != FPU_REGS) \
|| ((CLASS2) == FPU_REGS && (CLASS1) != FPU_REGS)) \
? 4 : 2)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD 1
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 4
/* Value is the number of byte of arguments automatically
popped when returning from a subroutine call.
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the ARM, the caller does not pop any of its arguments that were passed
on the stack. */
#define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
(GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT \
? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
: gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
? gen_rtx (REG, MODE, 16) \
: gen_rtx (REG, MODE, 0))
/* 1 if N is a possible register number for a function value.
On the ARM, only r0 and f0 can return results. */
#define FUNCTION_VALUE_REGNO_P(REGNO) \
((REGNO) == 0 || (REGNO) == 16)
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
other arguments are passed on the stack. If (NAMED == 0) (which happens
only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
passed in the stack (function_prologue will indeed make it pass in the
stack if necessary). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
((NAMED) \
? ((CUM) >= 16 ? 0 : gen_rtx (REG, MODE, (CUM) / 4)) \
: 0)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
((CUM) < 16 && 16 < (CUM) + ((MODE) != BLKmode \
? GET_MODE_SIZE (MODE) \
: int_size_in_bytes (TYPE)) \
? 4 - (CUM) / 4 : 0)
/* A C type for declaring a variable that is used as the first argument of
`FUNCTION_ARG' and other related values. For some target machines, the
type `int' suffices and can hold the number of bytes of argument so far.
On the ARM, this is the number of bytes of arguments scanned so far. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On the ARM, the offset starts at 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
((CUM) = (((FNTYPE) && aggregate_value_p (FNTYPE)) ? 4 : 0))
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
: (int_size_in_bytes (TYPE) + 3) & ~3) \
/* 1 if N is a possible register number for function argument passing.
On the ARM, r0-r3 are used to pass args. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
((REGNO) >= 0 && (REGNO) <= 3)
/* Perform any actions needed for a function that is receiving a variable
number of arguments. CUM is as above. MODE and TYPE are the mode and type
of the current parameter. PRETEND_SIZE is a variable that should be set to
the amount of stack that must be pushed by the prolog to pretend that our
caller pushed it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed.
On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
named arg and all anonymous args onto the stack.
XXX I know the prologue shouldn't be pushing registers, but it is faster
that way. */
#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
{ \
extern int current_function_anonymous_args; \
current_function_anonymous_args = 1; \
if ((CUM) < 16) \
(PRETEND_SIZE) = 16 - (CUM); \
}
/* Generate assembly output for the start of a function. */
#define FUNCTION_PROLOGUE(STREAM, SIZE) \
output_prologue ((STREAM), (SIZE))
/* Call the function profiler with a given profile label. The Acorn compiler
puts this BEFORE the prolog but gcc pust it afterwards. The ``mov ip,lr''
seems like a good idea to stick with cc convention. ``prof'' doesn't seem
to mind about this! */
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
fprintf(STREAM, "\tmov\tip, lr\n"); \
fprintf(STREAM, "\tbl\tmcount\n"); \
fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
arm_increase_location (12); \
}
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero.
On the ARM, the function epilogue recovers the stack pointer from the
frame. */
#define EXIT_IGNORE_STACK 1
/* Generate the assembly code for function exit. */
#define FUNCTION_EPILOGUE(STREAM, SIZE) \
output_epilogue ((STREAM), (SIZE))
/* Determine if the epilogue should be output as RTL.
You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
/* #define USE_RETURN_INSN use_return_insn () */
/* Store in the variable DEPTH the initial difference between the frame
pointer reg contents and the stack pointer reg contents, as of the start of
the function body. This depends on the layout of the fixed parts of the
stack frame and on how registers are saved. */
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
(DEPTH) = (get_frame_size () + 3) & ~3;
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts.
On the ARM, (if r8 is the static chain regnum, and remembering that
referencing pc adds an offset of 8) the trampoline looks like:
ldr r8, [pc, #0]
ldr pc, [pc]
.word static chain value
.word function's address */
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
fprintf ((FILE), "\tldr\tr8, [pc, #0]\n"); \
fprintf ((FILE), "\tldr\tpc, [pc, #0]\n"); \
fprintf ((FILE), "\t.word\t0\n"); \
fprintf ((FILE), "\t.word\t0\n"); \
}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 16
/* Alignment required for a trampoline in units. */
#define TRAMPOLINE_ALIGN 4
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
(CXT)); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
(FNADDR)); \
}
/* Call the function profiler with a given profile label. The Acorn compiler
puts this BEFORE the prolog but gcc pust it afterwards. The ``mov ip,lr''
seems like a good idea to stick with cc convention. ``prof'' doesn't seem
to mind about this! */
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
fprintf(STREAM, "\tmov\tip, lr\n"); \
fprintf(STREAM, "\tbl\tmcount\n"); \
fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
arm_increase_location (12); \
}
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_DECREMENT 1
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c.
On the ARM, don't allow the pc to be used. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 15 || (unsigned) reg_renumber[(REGNO)] < 15)
#define REGNO_OK_FOR_INDEX_P(REGNO) \
REGNO_OK_FOR_BASE_P(REGNO)
/* Maximum number of registers that can appear in a valid memory address.
The addressing mode [ra,rb, <shift> rc] uses the greatest number of
registers. */
#define MAX_REGS_PER_ADDRESS 3
/* Recognize any constant value that is a valid address. */
/* XXX We can address any constant, eventually... */
#if 0
#define CONSTANT_ADDRESS_P(X) \
( GET_CODE(X) == LABEL_REF \
|| GET_CODE(X) == SYMBOL_REF \
|| GET_CODE(X) == CONST_INT \
|| GET_CODE(X) == CONST )
#endif
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
On the ARM, allow any integer (invalid ones are removed later by insn
patterns), nice doubles and symbol_refs which refer to the function's
constant pool XXX. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) == CONST_INT \
|| (GET_CODE (X) == CONST_DOUBLE \
&& const_double_rtx_ok_for_fpu (X)))
#if 0
|| GET_CODE(X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P(X))
#endif
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) < 16 || REGNO (X) >= 24)
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
REG_OK_FOR_BASE_P(X)
#define REG_OK_FOR_PRE_POST_P(X) \
(REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
#else
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_PRE_POST_P(X) \
(REGNO (X) < 16 || (unsigned) reg_renumber[REGNO (X)] < 16)
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
#define BASE_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
#define INDEX_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
/* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
only be small constants. */
#define GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
do \
{ \
int range; \
\
if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
range = 1024; \
else \
{ \
if (INDEX_REGISTER_RTX_P (INDEX)) \
goto LABEL; \
if (GET_MODE_SIZE (MODE) <= 4 && GET_CODE (INDEX) == MULT) \
{ \
rtx xiop0 = XEXP (INDEX, 0); \
rtx xiop1 = XEXP (INDEX, 1); \
if (INDEX_REGISTER_RTX_P (xiop0) && power_of_two_operand (xiop1, SImode)) \
goto LABEL; \
if (INDEX_REGISTER_RTX_P (xiop1) && power_of_two_operand (xiop0, SImode)) \
goto LABEL; \
} \
range = 4096; \
} \
\
if (GET_CODE (INDEX) == CONST_INT && abs (INTVAL (INDEX)) < range) \
goto LABEL; \
} while (0)
/* Jump to LABEL if X is a valid address RTX. This must also take
REG_OK_STRICT into account when deciding about valid registers, but it uses
the above macros so we are in luck. Allow REG, REG+REG, REG+INDEX,
INDEX+REG, REG-INDEX, and non floating SYMBOL_REF to the constant pool.
Allow REG-only and AUTINC-REG if handling TImode. Other symbol refs must
be forced though a static cell to ensure addressability. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (BASE_REGISTER_RTX_P (X)) \
goto LABEL; \
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
goto LABEL; \
else if ((MODE) == TImode) \
; \
else if (GET_CODE (X) == PLUS) \
{ \
rtx xop0 = XEXP(X,0); \
rtx xop1 = XEXP(X,1); \
\
if (BASE_REGISTER_RTX_P (xop0)) \
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
else if (BASE_REGISTER_RTX_P (xop1)) \
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
} \
else if (GET_CODE (X) == MINUS) \
{ \
rtx xop0 = XEXP (X,0); \
rtx xop1 = XEXP (X,1); \
\
if (BASE_REGISTER_RTX_P (xop0)) \
GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
} \
else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
&& GET_CODE (X) == SYMBOL_REF \
&& CONSTANT_POOL_ADDRESS_P (X)) \
goto LABEL; \
else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
goto LABEL; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
On the ARM, try to convert [REG, #BIGCONST]
into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
where VALIDCONST == 0 in case of TImode. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
if (GET_CODE (X) == PLUS) \
{ \
rtx xop0 = XEXP (X, 0); \
rtx xop1 = XEXP (X, 1); \
\
if (BASE_REGISTER_RTX_P (xop0) && GET_CODE (xop1) == CONST_INT) \
{ \
int n = INTVAL (xop1); \
int low_n = ((MODE) == TImode ? 0 \
: n >= 0 ? (n & 0xFFF) : -((-n) & 0xFFF)); \
rtx base_reg = gen_reg_rtx (SImode); \
rtx val = force_operand (gen_rtx (PLUS, SImode, xop0, \
gen_rtx (CONST_INT, \
VOIDmode, n - low_n)), \
0); \
emit_move_insn (base_reg, val); \
(X) = (low_n == 0 ? base_reg \
: gen_rtx (PLUS, SImode, base_reg, \
gen_rtx (CONST_INT, VOIDmode, low_n))); \
} \
else if (BASE_REGISTER_RTX_P (xop1) && GET_CODE (xop0) == CONST_INT) \
{ \
int n = INTVAL (xop0); \
int low_n = ((MODE) == TImode ? 0 \
: n >= 0 ? (n & 0xFFF) : -((-n) & 0xFFF)); \
rtx base_reg = gen_reg_rtx (SImode); \
rtx val = force_operand (gen_rtx (PLUS, SImode, xop1, \
gen_rtx (CONST_INT, \
VOIDmode, n - low_n)), \
0); \
emit_move_insn (base_reg, val); \
(X) = (low_n == 0 ? base_reg \
: gen_rtx (PLUS, SImode, base_reg, \
gen_rtx (CONST_INT, VOIDmode, low_n))); \
} \
} \
if (memory_address_p (MODE, X)) \
goto win; \
}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ \
if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
|| GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
goto LABEL; \
}
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* 'char' is signed by default on RISCiX, unsigned on RISCOS. */
#ifdef riscos
#define DEFAULT_SIGNED_CHAR 0
#else
#define DEFAULT_SIGNED_CHAR 1
#endif
/* Don't cse the address of the function being compiled. */
#define NO_RECURSIVE_FUNCTION_CSE 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define if normal loads of shorter-than-word items from memory clears
the rest of the bigs in the register.
On the ARM, movhi does a garbage extend. */
/* #define BYTE_LOADS_ZERO_EXTEND */
/* Define this if zero-extension is slow (more than one real instruction).
On the ARM, it is more than one instruction only if not fetching from
memory. */
/* #define SLOW_ZERO_EXTEND */
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
/* Immediate shift counts are truncated by the output routines (or was it
the assembler?). Shift counts in a register are truncated by ARM. Note
that the native compiler puts too large (> 32) immediate shift counts
into a register and shifts by the register, letting the ARM decide what
to do instead of doing that itself. */
#define SHIFT_COUNT_TRUNCATED 1
/* We have the vprintf function. */
#define HAVE_VPRINTF 1
/* XX This is not true, is it? */
/* All integers have the same format so truncation is easy. */
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
/* Calling from registers is a massive pain. */
#define NO_FUNCTION_CSE 1
/* Chars and shorts should be passed as ints. */
#define PROMOTE_PROTOTYPES 1
/* The machine modes of pointers and functions */
#define Pmode SImode
#define FUNCTION_MODE Pmode
/* The structure type of the machine dependent info field of insns
No uses for this yet. */
/* #define INSN_MACHINE_INFO struct machine_info */
/* The relative costs of various types of constants. Note that cse.c defines
REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
case CONST_INT: \
if (const_ok_for_arm (INTVAL (RTX))) \
return (2); \
else \
return (5); \
\
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return (6); \
\
case CONST_DOUBLE: \
if (const_double_rtx_ok_for_fpu (RTX)) \
return(2); \
else \
return(7);
/* Condition code information. */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
/* On the ARM nothing sets the condition code implicitly---apart from DImode
operations excluding moves---but we have to watch for registers in the
condition code value being clobbered. This clobbering includes (alas)
function calls. XXX They could just be considered to clobber regs 0-3 and
10-15 with extra work. */
#define NOTICE_UPDATE_CC(EXP, INSN) \
{ \
if (GET_MODE (EXP) == DImode \
&& GET_CODE (EXP) == SET \
&& GET_CODE (SET_SRC (EXP)) != REG \
&& GET_CODE (SET_SRC (EXP)) != MEM \
&& GET_CODE (SET_SRC (EXP)) != CONST_INT) \
CC_STATUS_INIT; \
else if (GET_CODE (EXP) == SET) \
{ \
rtx dest = SET_DEST (EXP); \
if (dest == cc0_rtx) \
{ \
cc_status.flags = 0; \
cc_status.value1 = SET_DEST (EXP); \
cc_status.value2 = SET_SRC (EXP); \
} \
if (BASE_REGISTER_RTX_P (dest)) \
{ \
if (cc_status.value1 \
&& reg_overlap_mentioned_p (dest, cc_status.value1)) \
cc_status.value1 = 0; \
if (cc_status.value2 \
&& reg_overlap_mentioned_p (dest, cc_status.value2)) \
cc_status.value2 = 0; \
} \
} \
else if (GET_CODE (INSN) != JUMP_INSN && GET_CODE (EXP) == PARALLEL) \
{ \
CC_STATUS_INIT; \
} \
}
/* Assembler output control */
/* The text to go at the start of the assembler file */
#define ASM_FILE_START(STREAM) \
{ \
extern char *version_string; \
\
fprintf (STREAM,"@ Generated by gcc %s for ARM/RISCiX\n", version_string); \
fprintf (STREAM,"rfp\t.req\tr9\n"); \
fprintf (STREAM,"fp\t.req\tr11\n"); \
fprintf (STREAM,"ip\t.req\tr12\n"); \
fprintf (STREAM,"sp\t.req\tr13\n"); \
fprintf (STREAM,"lr\t.req\tr14\n"); \
fprintf (STREAM,"pc\t.req\tr15\n"); \
}
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
/* Switch to the text or data segment. */
#define TEXT_SECTION_ASM_OP ".text"
#define DATA_SECTION_ASM_OP ".data"
/* The assembler's names for the registers. RFP need not always be used as
the Real framepointer; it can also be used as a normal general register.
Note that the name `fp' is horribly misleading since `fp' is in fact only
the argument-and-return-context pointer. */
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8","rfp", "sl", "fp", "ip", "sp", "lr", "pc", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7" \
}
/* DBX register number for a given compiler register number */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* Generate DBX debugging information. */
#define DBX_DEBUGGING_INFO 1
/* Acorn dbx moans about continuation chars, so don't use any. */
#define DBX_CONTIN_LENGTH 0
/* Output a label definition. */
#define ASM_OUTPUT_LABEL(STREAM,NAME) \
arm_asm_output_label ((STREAM), (NAME))
/* Output a function label definition. */
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
ASM_OUTPUT_LABEL(STREAM, NAME)
/* Output a globalising directive for a label. */
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
(fprintf (STREAM, "\t.global\t"), \
assemble_name (STREAM, NAME), \
fputc ('\n',STREAM)) \
/* Output a reference to a label. */
#define ASM_OUTPUT_LABELREF(STREAM,NAME) \
fprintf (STREAM, "_%s", NAME)
/* Make an internal label into a string. */
#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
sprintf (STRING, "*%s%d", PREFIX, NUM)
/* Output an internal label definition. */
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
do \
{ \
char *s = (char *) alloca (11 + strlen (PREFIX)); \
extern int arm_target_label, arm_ccfsm_state; \
\
if (arm_ccfsm_state == 3 && arm_target_label == (NUM)) \
arm_ccfsm_state = 0; \
strcpy (s, "*"); \
sprintf (&s[strlen (s)], "%s%d", (PREFIX), (NUM)); \
arm_asm_output_label (STREAM, s); \
} while (0)
/* Nothing special is done about jump tables */
/* #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) */
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
/* Construct a private name. */
#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
/* Output a push or a pop instruction (only used when profiling). */
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
(arm_increase_location (4) \
, fprintf(STREAM,"\tstmfd\tsp!,{%s}\n", reg_names[REGNO]))
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
(arm_increase_location (4) \
, fprintf(STREAM,"\tldmfd\tsp!,{%s}\n", reg_names[REGNO]))
/* Output a relative address. Not needed since jump tables are absolute
but we must define it anyway. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
/* Output an element of a dispatch table. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
(arm_increase_location (4) \
, fprintf (STREAM, "\t.word\tL%d\n", VALUE))
/* Output various types of constants. */
#define ASM_OUTPUT_DOUBLE(STREAM, VALUE) \
(arm_increase_location (sizeof (double)) \
, fprintf (STREAM, "\t.double\t%20.20f\n", VALUE))
#define ASM_OUTPUT_FLOAT(STREAM, VALUE) \
(arm_increase_location (sizeof (float)) \
, fprintf (STREAM, "\t.float\t%20.20f\n", VALUE))
#define ASM_OUTPUT_INT(STREAM, EXP) \
(fprintf (STREAM, "\t.word\t"), \
output_addr_const (STREAM, (EXP)), \
arm_increase_location (4), \
fputc ('\n', STREAM))
#define ASM_OUTPUT_SHORT(STREAM, EXP) \
(fprintf (STREAM, "\t.short\t"), \
output_addr_const (STREAM, (EXP)), \
arm_increase_location (2), \
fputc ('\n', STREAM))
#define ASM_OUTPUT_CHAR(STREAM, EXP) \
(fprintf (STREAM, "\t.byte\t"), \
output_addr_const (STREAM, (EXP)), \
arm_increase_location (1), \
fputc ('\n', STREAM))
#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
(fprintf (STREAM, "\t.byte\t%d\n", VALUE), \
arm_increase_location (1))
#define ASM_OUTPUT_ASCII(STREAM, PTR, LEN) \
output_ascii_pseudo_op ((STREAM), (PTR), (LEN))
/* Output a gap. In fact we fill it with nulls. */
#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
(arm_increase_location (NBYTES), \
fprintf (STREAM, "\t.space\t%d\n", NBYTES))
/* Align output to a power of two. Horrible /bin/as. */
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
do \
{ \
register int amount = 1 << (POWER); \
extern int arm_text_location; \
\
if (amount == 2) \
fprintf (STREAM, "\t.even\n"); \
else \
fprintf (STREAM, "\t.align\t%d\n", amount - 4); \
\
if (in_text_section ()) \
arm_text_location = ((arm_text_location + amount - 1) \
& ~(amount - 1)); \
} while (0)
/* Output a common block */
#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
(fprintf (STREAM, "\t.comm\t"), \
assemble_name ((STREAM), (NAME)), \
fprintf(STREAM, ", %d\t@%d\n", ROUNDED, SIZE))
/* Output a local common block. /bin/as can't do this, so hack a `.space' into
the bss segment. Note that this is *bad* practice. */
#define ASM_OUTPUT_LOCAL(STREAM,NAME,SIZE,ROUNDED) \
output_lcomm_directive (STREAM, NAME, SIZE, ROUNDED)
/* Output a source filename for the debugger. RISCiX dbx insists that the
``desc'' field is set to compiler version number >= 315 (sic). */
#if 0
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM,NAME) \
fprintf (STREAM, "\t.stabs\t\"%s\", %d, 0, 315, Ltext\n", (NAME), N_SOL)
#endif
/* Output a source line for the debugger. */
/* #define ASM_OUTPUT_SOURCE_LINE(STREAM,LINE) */
/* Output a #ident directive. */
#define ASM_OUTPUT_IDENT(STREAM,STRING) \
fprintf (STREAM,"- - - ident %s\n",STRING)
/* The assembler's parentheses characters. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Target characters. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* FINAL_PRESCAN_INSN is used to take a look at the insns, in order to delete
small-distance conditional branches and have ASM_OUTPUT_OPCODE make the
instructions conditional. Suffixes like s (affect flags) and b (bytewise
load/store) need to stay suffixes, so the possible condition code comes
before these suffixes. */
#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
{ \
extern int arm_ccfsm_state, arm_current_cc; \
extern char *arm_condition_codes[]; \
int i; \
\
fflush (STREAM); /* XXX for debugging only. */ \
if (arm_ccfsm_state == 1 || arm_ccfsm_state == 2) \
{ \
fprintf (STREAM, "@ \t"); \
arm_ccfsm_state += 2; \
} \
else if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4) \
{ \
for (i = 0; *(PTR) != ' ' && *(PTR) != '\t' && i < 3; i++, (PTR)++) \
putc (*(PTR), STREAM); \
fprintf (STREAM, "%s", arm_condition_codes[arm_current_cc]); \
for (; *(PTR) != ' ' && *(PTR) != '\t'; (PTR)++) \
putc (*(PTR), STREAM); \
} \
}
/* Only perform branch elimination (by making instructions conditional) if
we're optimising. Otherwise it's of no use anyway. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
if (optimize) \
final_prescan_insn (INSN, OPVEC, NOPERANDS)
/* Output an operand of an instruction. If X is a REG and CODE is `M', output
a ldm/stm style multi-reg. */
#define PRINT_OPERAND(STREAM, X, CODE) \
{ \
if ((CODE) == 'R') \
fputs (reg_names[REGNO (X) + 1], (STREAM)); \
else if (GET_CODE (X) == REG) \
{ \
if ((CODE) != 'M') \
fputs (reg_names[REGNO (X)], (STREAM)); \
else \
fprintf ((STREAM), "{%s-%s}", \
reg_names[REGNO (X)], \
reg_names[REGNO (X) - 1 \
+ ((GET_MODE_SIZE (GET_MODE (X)) \
+ GET_MODE_SIZE (SImode) - 1) \
/ GET_MODE_SIZE (SImode))]); \
} \
else if (GET_CODE (X) == MEM) \
{ \
extern int output_memory_reference_mode; \
output_memory_reference_mode = GET_MODE (X); \
output_address (XEXP (X, 0)); \
} \
else if (GET_CODE(X) == CONST_DOUBLE) \
{ \
union real_extract u; \
u.i[0] = CONST_DOUBLE_LOW (X); \
u.i[1] = CONST_DOUBLE_HIGH (X); \
fprintf(STREAM,"#%20.20f",u.d); \
} \
else if (GET_CODE (X) == NEG) \
{ \
fputc ('-', (STREAM)); \
output_operand ((X), 0); \
} \
else \
{ \
fputc('#', STREAM); \
output_addr_const(STREAM, X); \
} \
}
/* Output the address of an operand. */
#define PRINT_OPERAND_ADDRESS(STREAM,X) \
{ \
int is_minus = GET_CODE (X) == MINUS; \
\
if (GET_CODE (X) == REG) \
fprintf (STREAM, "[%s, #0]", reg_names[REGNO (X)]); \
else if (GET_CODE (X) == PLUS || is_minus) \
{ \
rtx base = XEXP (X, 0); \
rtx index = XEXP (X, 1); \
char *base_reg_name; \
int offset = 0; \
int shift; \
if (GET_CODE (base) != REG) \
{ \
/* Ensure that BASE is a register (one of them must be). */ \
rtx temp = base; \
base = index; \
index = temp; \
} \
base_reg_name = reg_names[REGNO (base)]; \
switch (GET_CODE (index)) \
{ \
case CONST_INT: \
offset = INTVAL (index); \
if (is_minus) \
offset = -offset; \
fprintf (STREAM, "[%s, #%d]", base_reg_name, offset); \
break; \
\
case REG: \
fprintf (STREAM, "[%s, %s%s]", base_reg_name, \
is_minus ? "-" : "", reg_names[REGNO (index)] ); \
break; \
\
case MULT: \
if (GET_CODE (XEXP (index,0)) == CONST_INT) \
{ \
shift = int_log2 (INTVAL (XEXP (index, 0))); \
index = XEXP (index, 1); \
} \
else if (GET_CODE(XEXP(index,1)) == CONST_INT) \
{ \
shift = int_log2 (INTVAL (XEXP (index, 1))); \
index = XEXP (index, 0); \
} \
else \
abort(); \
fprintf (STREAM, "[%s, %s%s, asl#%d]", base_reg_name, \
is_minus ? "-" : "", reg_names[REGNO (index)], \
shift); \
break; \
\
default: \
abort(); \
} \
} \
else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
|| GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
{ \
extern int output_memory_reference_mode; \
\
if (GET_CODE (XEXP (X, 0)) != REG) \
abort (); \
\
if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
fprintf (STREAM, "[%s, #%s%d]!", reg_names[REGNO (XEXP (X, 0))],\
GET_CODE (X) == PRE_DEC ? "-" : "", \
GET_MODE_SIZE (output_memory_reference_mode)); \
else \
fprintf (STREAM, "[%s], #%s%d", reg_names[REGNO (XEXP (X, 0))], \
GET_CODE (X) == POST_DEC ? "-" : "", \
GET_MODE_SIZE (output_memory_reference_mode)); \
} \
else output_addr_const(STREAM, X); \
}
/* EOF arm.h */
|