1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
|
/* Definitions of target machine for GNU compiler, Argonaut ARC cpu.
Copyright (C) 1994, 1995, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* ??? This is an old port, and is undoubtedly suffering from bit rot. */
/* Things to do:
- PREDICATE_CODES
- incscc, decscc?
- print active compiler options in assembler output
*/
/* ??? Create elf.h and have svr4.h include it. */
#include "svr4.h"
#undef ASM_SPEC
#undef LINK_SPEC
#undef STARTFILE_SPEC
#undef ENDFILE_SPEC
#undef SIZE_TYPE
#undef PTRDIFF_TYPE
#undef WCHAR_TYPE
#undef WCHAR_TYPE_SIZE
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (arc)")
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Acpu(arc) -Amachine(arc) -D__arc__"
/* Additional flags for the preprocessor. */
#define CPP_SPEC "\
%{!mcpu=*:-D__base__} %{mcpu=base:-D__base__} \
%{EB:-D__big_endian__} \
"
/* Pass -mmangle-cpu if we get -mcpu=*.
Doing it this way lets one have it on as default with -mcpu=*,
but also lets one turn it off with -mno-mangle-cpu. */
#define CC1_SPEC "\
%{mcpu=*:-mmangle-cpu} \
%{EB:%{EL:%emay not use both -EB and -EL}} \
%{EB:-mbig-endian} %{EL:-mlittle-endian} \
"
#define ASM_SPEC "%{v} %{EB} %{EL}"
#define LINK_SPEC "%{v} %{EB} %{EL}"
#define STARTFILE_SPEC "%{!shared:crt0.o%s} crtinit.o%s"
#define ENDFILE_SPEC "crtfini.o%s"
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Mangle all user symbols for the specified cpu.
ARC's can be shipped in which a collection of cpus are coupled together.
Each CPU may be different in some way, and thus we may need to distinguish
code compiled for one to ensure it isn't linked with code compiled for
another. */
#define TARGET_MASK_MANGLE_CPU 1
#define TARGET_MANGLE_CPU (target_flags & TARGET_MASK_MANGLE_CPU)
#if 0
/* Mangle libgcc symbols by adding a suffix for the specified cpu. */
#define TARGET_MASK_MANGLE_CPU_LIBGCC 2
#define TARGET_MANGLE_CPU_LIBGCC (target_flags & TARGET_MASK_MANGLE_CPU_LIBGCC)
#endif
/* Align loops to 32 byte boundaries (cache line size). */
#define TARGET_MASK_ALIGN_LOOPS 4
#define TARGET_ALIGN_LOOPS (target_flags & TARGET_MASK_ALIGN_LOOPS)
/* Big Endian. */
#define TARGET_MASK_BIG_ENDIAN 8
#define TARGET_BIG_ENDIAN (target_flags & TARGET_MASK_BIG_ENDIAN)
/* Turn off conditional execution optimization,
so we can see how well it does, or in case it's buggy. */
#define TARGET_MASK_NO_COND_EXEC 0x10
#define TARGET_NO_COND_EXEC (target_flags & TARGET_MASK_NO_COND_EXEC)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ \
{ "mangle-cpu", TARGET_MASK_MANGLE_CPU }, \
{ "no-mangle-cpu", -TARGET_MASK_MANGLE_CPU }, \
/* { "mangle-cpu-libgcc", TARGET_MASK_MANGLE_CPU_LIBGCC }, */ \
/* { "no-mangle-cpu-libgcc", -TARGET_MASK_MANGLE_CPU_LIBGCC }, */ \
{ "align-loops", TARGET_MASK_ALIGN_LOOPS }, \
{ "no-align-loops", -TARGET_MASK_ALIGN_LOOPS }, \
{ "big-endian", TARGET_MASK_BIG_ENDIAN }, \
{ "little-endian", -TARGET_MASK_BIG_ENDIAN }, \
{ "no-cond-exec", TARGET_MASK_NO_COND_EXEC }, \
SUBTARGET_SWITCHES \
{ "", TARGET_DEFAULT } \
}
#define TARGET_DEFAULT (0)
#define SUBTARGET_SWITCHES
/* Instruction set characteristics.
These are internal macros, set by the appropriate -mcpu= option. */
/* Non-zero means the cpu has a barrel shifter. */
#define TARGET_SHIFTER 0
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable.
The variable, type `char *', is set to the variable part of the
given option if the fixed part matches. The actual option name
is made by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
extern char *arc_cpu_string;
extern char *arc_text_string,*arc_data_string,*arc_rodata_string;
#define TARGET_OPTIONS \
{ \
{ "cpu=", &arc_cpu_string }, \
{ "text=", &arc_text_string }, \
{ "data=", &arc_data_string }, \
{ "rodata=", &arc_rodata_string }, \
}
/* Which cpu we're compiling for. */
extern int arc_cpu_type;
/* Check if CPU is an extension and set `arc_cpu_type' and `arc_mangle_cpu'
appropriately. The result should be non-zero if the cpu is recognized,
otherwise zero. This is intended to be redefined in a cover file.
This is used by arc_init. */
#define ARC_EXTENSION_CPU(cpu) 0
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
extern void arc_init ();
#define OVERRIDE_OPTIONS \
do { \
/* These need to be done at start up. It's convenient to do them here. */ \
arc_init (); \
} while (0)
/* Target machine storage layout. */
/* Define to use software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
#define REAL_ARITHMETIC
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
/* Define this to set the endianness to use in libgcc2.c, which can
not depend on target_flags. */
#ifdef __big_endian__
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif
/* Number of bits in an addressable storage unit. */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
{ \
(MODE) = SImode; \
}
/* Define this macro if the promotion described by `PROMOTE_MODE'
should also be done for outgoing function arguments. */
#define PROMOTE_FUNCTION_ARGS
/* Likewise, if the function return value is promoted. */
#define PROMOTE_FUNCTION_RETURN
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 64
/* ALIGN FRAMES on word boundaries */
#define ARC_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* No data type wants to be aligned rounder than this. */
/* This is bigger than currently necessary for the ARC. If 8 byte floats are
ever added it's not clear whether they'll need such alignment or not. For
now we assume they will. We can always relax it if necessary but the
reverse isn't true. */
#define BIGGEST_ALIGNMENT 64
/* The best alignment to use in cases where we have a choice. */
#define FASTEST_ALIGNMENT 32
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT : (ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
/* On the ARC the lower address bits are masked to 0 as necessary. The chip
won't croak when given an unaligned address, but the insn will still fail
to produce the correct result. */
#define STRICT_ALIGNMENT 1
/* Layout of source language data types. */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long int"
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
/* Registers 61, 62, and 63 are not really registers and we needn't treat
them as such. We still need a register for the condition code. */
#define FIRST_PSEUDO_REGISTER 62
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
0-28 - general purpose registers
29 - ilink1 (interrupt link register)
30 - ilink2 (interrupt link register)
31 - blink (branch link register)
32-59 - reserved for extensions
60 - LP_COUNT
61 - condition code
For doc purposes:
61 - short immediate data indicator (setting flags)
62 - long immediate data indicator
63 - short immediate data indicator (not setting flags).
The general purpose registers are further broken down into:
0-7 - arguments/results
8-15 - call used
16-23 - call saved
24 - call used, static chain pointer
25 - call used, gptmp
26 - global pointer
27 - frame pointer
28 - stack pointer
By default, the extension registers are not available. */
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 1, 1, 1, 0, \
\
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1 }
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, \
\
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1 }
/* If defined, an initializer for a vector of integers, containing the
numbers of hard registers in the order in which GNU CC should
prefer to use them (from most preferred to least). */
#define REG_ALLOC_ORDER \
{ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, \
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, \
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, \
27, 28, 29, 30 }
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
extern unsigned int arc_hard_regno_mode_ok[];
extern unsigned int arc_mode_class[];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((arc_hard_regno_mode_ok[REGNO] & arc_mode_class[MODE]) != 0)
/* A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode MODE1 and a value of mode MODE2.
If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
MODE2)' must be zero. */
/* Tie QI/HI/SI modes together. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == MODE_INT \
&& GET_MODE_CLASS (MODE2) == MODE_INT \
&& GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
&& GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)
/* Register classes and constants. */
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union.
It is important that any condition codes have class NO_REGS.
See `register_operand'. */
enum reg_class {
NO_REGS, LPCOUNT_REG, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "LPCOUNT_REG", "GENERAL_REGS", "ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ {0, 0}, {0, 0x10000000}, {0xffffffff, 0xfffffff}, \
{0xffffffff, 0x1fffffff} }
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern enum reg_class arc_regno_reg_class[];
#define REGNO_REG_CLASS(REGNO) \
(arc_regno_reg_class[REGNO])
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'l' ? LPCOUNT_REG /* ??? needed? */ \
: NO_REGS)
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 29 || (unsigned) reg_renumber[REGNO] < 29)
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < 29 || (unsigned) reg_renumber[REGNO] < 29)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(CLASS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The letters I, J, K, L, M, N, O, P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C. */
/* 'I' is used for short immediates (always signed).
'J' is used for long immediates.
'K' is used for any constant up to 64 bits (for 64x32 situations?). */
/* local to this file */
#define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
/* local to this file */
#define LARGE_INT(X) \
((X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
&& (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? SMALL_INT (VALUE) \
: (C) == 'J' ? LARGE_INT (VALUE) \
: (C) == 'K' ? 1 \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
/* 'G' is used for integer values for the multiplication insns where the
operands are extended from 4 bytes to 8 bytes.
'H' is used when any 64 bit constant is allowed. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? arc_double_limm_p (VALUE) \
: (C) == 'H' ? 1 \
: 0)
/* A C expression that defines the optional machine-dependent constraint
letters that can be used to segregate specific types of operands,
usually memory references, for the target machine. It should return 1 if
VALUE corresponds to the operand type represented by the constraint letter
C. If C is not defined as an extra constraint, the value returned should
be 0 regardless of VALUE. */
/* ??? This currently isn't used. Waiting for PIC. */
#if 0
#define EXTRA_CONSTRAINT(VALUE, C) \
((C) == 'R' ? (SYMBOL_REF_FLAG (VALUE) || GET_CODE (VALUE) == LABEL_REF) \
: 0)
#endif
/* Stack layout and stack pointer usage. */
/* Define this macro if pushing a word onto the stack moves the stack
pointer to a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* Offset from the stack pointer register to the first location at which
outgoing arguments are placed. */
#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET (0)
/* Offset of first parameter from the argument pointer register value. */
/* 4 bytes for each of previous fp, return address, and previous gp.
4 byte reserved area for future considerations. */
#define FIRST_PARM_OFFSET(FNDECL) 16
/* A C expression whose value is RTL representing the address in a
stack frame where the pointer to the caller's frame is stored.
Assume that FRAMEADDR is an RTL expression for the address of the
stack frame itself.
If you don't define this macro, the default is to return the value
of FRAMEADDR--that is, the stack frame address is also the address
of the stack word that points to the previous frame. */
/* ??? unfinished */
/*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
/* A C expression whose value is RTL representing the value of the
return address for the frame COUNT steps up from the current frame.
FRAMEADDR is the frame pointer of the COUNT frame, or the frame
pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
is defined. */
/* The current return address is in r31. The return address of anything
farther back is at [%fp,4]. */
#if 0 /* The default value should work. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(((COUNT) == -1) \
? gen_rtx (REG, Pmode, 31) \
: copy_to_reg (gen_rtx (MEM, Pmode, \
memory_address (Pmode, plus_constant ((FRAME), UNITS_PER_WORD)))))
#endif
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 28
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 27
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
/* Register in which static-chain is passed to a function. This must
not be a register used by the prologue. */
#define STATIC_CHAIN_REGNUM 24
/* A C expression which is nonzero if a function must have and use a
frame pointer. This expression is evaluated in the reload pass.
If its value is nonzero the function will have a frame pointer. */
#define FRAME_POINTER_REQUIRED \
(current_function_calls_alloca)
/* C statement to store the difference between the frame pointer
and the stack pointer values immediately after the function prologue. */
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
((VAR) = arc_compute_frame_size (get_frame_size ()))
/* Function argument passing. */
/* When a prototype says `char' or `short', really pass an `int'. */
#define PROMOTE_PROTOTYPES
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
`current_function_outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount. */
#define ACCUMULATE_OUTGOING_ARGS
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
((CUM) = 0)
/* The number of registers used for parameter passing. Local to this file. */
#define MAX_ARC_PARM_REGS 8
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) \
((unsigned) (N) < MAX_ARC_PARM_REGS)
/* The ROUND_ADVANCE* macros are local to this file. */
/* Round SIZE up to a word boundary. */
#define ROUND_ADVANCE(SIZE) \
(((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Round arg MODE/TYPE up to the next word boundary. */
#define ROUND_ADVANCE_ARG(MODE, TYPE) \
((MODE) == BLKmode \
? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
: ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
/* Round CUM up to the necessary point for argument MODE/TYPE. */
#define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
((((MODE) == BLKmode ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) \
> BITS_PER_WORD) \
? ((CUM) + 1 & ~1) \
: (CUM))
/* Return boolean indicating arg of type TYPE and mode MODE will be passed in
a reg. This includes arguments that have to be passed by reference as the
pointer to them is passed in a reg if one is available (and that is what
we're given).
When passing arguments NAMED is always 1. When receiving arguments NAMED
is 1 for each argument except the last in a stdarg/varargs function. In
a stdarg function we want to treat the last named arg as named. In a
varargs function we want to treat the last named arg (which is
`__builtin_va_alist') as unnamed.
This macro is only used in this file. */
extern int current_function_varargs;
#define PASS_IN_REG_P(CUM, MODE, TYPE, NAMED) \
((!current_function_varargs || (NAMED)) \
&& (CUM) < MAX_ARC_PARM_REGS \
&& ((ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
+ ROUND_ADVANCE_ARG ((MODE), (TYPE)) \
<= MAX_ARC_PARM_REGS)))
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the ARC the first MAX_ARC_PARM_REGS args are normally in registers
and the rest are pushed. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(PASS_IN_REG_P ((CUM), (MODE), (TYPE), (NAMED)) \
? gen_rtx (REG, (MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
: 0)
/* A C expression for the number of words, at the beginning of an
argument, must be put in registers. The value must be zero for
arguments that are passed entirely in registers or that are entirely
pushed on the stack.
On some machines, certain arguments must be passed partially in
registers and partially in memory. On these machines, typically the
first @var{n} words of arguments are passed in registers, and the rest
on the stack. If a multi-word argument (a @code{double} or a
structure) crosses that boundary, its first few words must be passed
in registers and the rest must be pushed. This macro tells the
compiler when this occurs, and how many of the words should go in
registers. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* A C expression that indicates when an argument must be passed by
reference. If nonzero for an argument, a copy of that argument is
made in memory and a pointer to the argument is passed instead of
the argument itself. The pointer is passed in whatever way is
appropriate for passing a pointer to that type. */
/* All aggregates and arguments greater than 8 bytes are passed this way. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
(TYPE \
&& (AGGREGATE_TYPE_P (TYPE) \
|| int_size_in_bytes (TYPE) > 8))
/* A C expression that indicates when it is the called function's
responsibility to make copies of arguments passed by reference.
If the callee can determine that the argument won't be modified, it can
avoid the copy. */
/* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't
include the last named argument so we keep track of the args ourselves. */
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
FUNCTION_ARG_PASS_BY_REFERENCE ((CUM), (MODE), (TYPE), (NAMED))
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
+ ROUND_ADVANCE_ARG ((MODE), (TYPE))))
/* If defined, a C expression that gives the alignment boundary, in bits,
of an argument with the specified mode and type. If it is not defined,
PARM_BOUNDARY is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
? PARM_BOUNDARY \
: 2 * PARM_BOUNDARY)
/* This macro offers an alternative
to using `__builtin_saveregs' and defining the macro
`EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have
been passed consecutively on the stack. Once this is done, you
can use the standard implementation of varargs that works for
machines that pass all their arguments on the stack.
The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
containing the values that obtain after processing of the named
arguments. The arguments MODE and TYPE describe the last named
argument--its machine mode and its data type as a tree node.
The macro implementation should do two things: first, push onto the
stack all the argument registers *not* used for the named
arguments, and second, store the size of the data thus pushed into
the `int'-valued variable whose name is supplied as the argument
PRETEND_SIZE. The value that you store here will serve as
additional offset for setting up the stack frame.
If the argument NO_RTL is nonzero, it means that the
arguments of the function are being analyzed for the second time.
This happens for an inline function, which is not actually
compiled until the end of the source file. The macro
`SETUP_INCOMING_VARARGS' should not generate any instructions in
this case. */
#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
arc_setup_incoming_varargs(&ARGS_SO_FAR, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
/* Function results. */
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
/* 1 if N is a possible register number for a function value
as seen by the caller. */
/* ??? What about r1 in DI/DF values. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
/* A C expression which can inhibit the returning of certain function
values in registers, based on the type of value. A nonzero value says
to return the function value in memory, just as large structures are
always returned. Here TYPE will be a C expression of type `tree',
representing the data type of the value. */
#define RETURN_IN_MEMORY(TYPE) \
(AGGREGATE_TYPE_P (TYPE) \
|| int_size_in_bytes (TYPE) > 8 \
|| TREE_ADDRESSABLE (TYPE))
/* Tell GCC to use RETURN_IN_MEMORY. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Register in which address to store a structure value
is passed to a function, or 0 to use `invisible' first argument. */
#define STRUCT_VALUE 0
/* Function entry and exit. */
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
arc_output_function_prologue (FILE, SIZE)
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 0
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
#define FUNCTION_EPILOGUE(FILE, SIZE) \
arc_output_function_epilogue (FILE, SIZE)
/* Epilogue delay slots. */
#define DELAY_SLOTS_FOR_EPILOGUE arc_delay_slots_for_epilogue ()
#define ELIGIBLE_FOR_EPILOGUE_DELAY(TRIAL, SLOTS_FILLED) \
arc_eligible_for_epilogue_delay (TRIAL, SLOTS_FILLED)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO)
/* Trampolines. */
/* ??? This doesn't work yet because GCC will use as the address of a nested
function the address of the trampoline. We need to use that address
right shifted by 2. It looks like we'll need PSImode after all. :-( */
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
/* On the ARC, the trampoline is quite simple as we have 32 bit immediate
constants.
mov r24,STATIC
j.nd FUNCTION
*/
#define TRAMPOLINE_TEMPLATE(FILE) \
do { \
ASM_OUTPUT_INT (FILE, GEN_INT (0x631f7c00)); \
ASM_OUTPUT_INT (FILE, const0_rtx); \
ASM_OUTPUT_INT (FILE, GEN_INT (0x381f0000)); \
ASM_OUTPUT_INT (FILE, const0_rtx); \
} while (0)
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 16
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
do { \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), CXT); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), FNADDR); \
emit_insn (gen_flush_icache (validize_mem (gen_rtx (MEM, SImode, TRAMP)))); \
} while (0)
/* Library calls. */
/* Generate calls to memcpy, memcmp and memset. */
#define TARGET_MEM_FUNCTIONS
/* Addressing modes, and classification of registers for them. */
/* Maximum number of registers that can appear in a valid memory address. */
/* The `ld' insn allows 2, but the `st' insn only allows 1. */
#define MAX_REGS_PER_ADDRESS 1
/* We have pre inc/dec (load/store with update). */
#define HAVE_PRE_INCREMENT
#define HAVE_PRE_DECREMENT
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
/* Nonzero if the constant value X is a legitimate general operand.
We can handle any 32 or 64 bit constant. */
/* "1" should work since the largest constant should be a 64 bit critter. */
/* ??? Not sure what to do for 64x32 compiler. */
#define LEGITIMATE_CONSTANT_P(X) 1
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
((unsigned) REGNO (X) - 29 >= FIRST_PSEUDO_REGISTER - 29)
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
((unsigned) REGNO (X) - 29 >= FIRST_PSEUDO_REGISTER - 29)
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address. */
/* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
but the `st' insn only allows [reg],[reg+shimm],[limm].
The only thing we can do is only allow the most strict case `st' and hope
other parts optimize out the restrictions for `ld'. */
/* local to this file */
#define RTX_OK_FOR_BASE_P(X) \
(REG_P (X) && REG_OK_FOR_BASE_P (X))
/* local to this file */
#define RTX_OK_FOR_INDEX_P(X) \
(0 && /*???*/ REG_P (X) && REG_OK_FOR_INDEX_P (X))
/* local to this file */
/* ??? Loads can handle any constant, stores can only handle small ones. */
#define RTX_OK_FOR_OFFSET_P(X) \
(GET_CODE (X) == CONST_INT && SMALL_INT (INTVAL (X)))
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
(GET_CODE (X) == PLUS \
&& RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
&& (RTX_OK_FOR_INDEX_P (XEXP (X, 1)) \
|| RTX_OK_FOR_OFFSET_P (XEXP (X, 1))))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (RTX_OK_FOR_BASE_P (X)) \
goto ADDR; \
if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \
goto ADDR; \
if (GET_CODE (X) == CONST_INT && LARGE_INT (INTVAL (X))) \
goto ADDR; \
if (GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| GET_CODE (X) == CONST) \
goto ADDR; \
if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
/* We're restricted here by the `st' insn. */ \
&& RTX_OK_FOR_BASE_P (XEXP ((X), 0))) \
goto ADDR; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
{ if (GET_CODE (ADDR) == PRE_DEC) \
goto LABEL; \
if (GET_CODE (ADDR) == PRE_INC) \
goto LABEL; \
}
/* Condition code usage. */
/* Some insns set all condition code flags, some only set the ZNC flags, and
some only set the ZN flags. */
#define EXTRA_CC_MODES CCZNCmode, CCZNmode
#define EXTRA_CC_NAMES "CCZNC", "CCZN"
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. */
extern enum machine_mode arc_select_cc_mode ();
#define SELECT_CC_MODE(OP, X, Y) \
arc_select_cc_mode (OP, X, Y)
/* Return non-zero if SELECT_CC_MODE will never return MODE for a
floating point inequality comparison. */
#define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
/* Costs. */
/* An insn is define to cost 4 "units", and we work from there.
COSTS_N_INSNS (N) is defined as (N) * 4 - 2 so that seems reasonable.
Some values are supposed to be defined relative to each other and thus
aren't necessarily related to COSTS_N_INSNS. */
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
/* Small integers are as cheap as registers. 4 byte values can be fetched
as immediate constants - let's give that the cost of an extra insn. */
#define CONST_COSTS(X, CODE, OUTER_CODE) \
case CONST_INT : \
if (SMALL_INT (INTVAL (X))) \
return 0; \
/* fall through */ \
case CONST : \
case LABEL_REF : \
case SYMBOL_REF : \
return 4; \
case CONST_DOUBLE : \
{ \
rtx high, low; \
split_double (X, &high, &low); \
return 4 * (!SMALL_INT (INTVAL (high)) \
+ !SMALL_INT (INTVAL (low))); \
}
/* Compute the cost of an address. */
#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : arc_address_cost (ADDR))
/* Compute extra cost of moving data between one register class
and another. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) 2
/* Compute the cost of moving data between registers and memory. */
/* Memory is 3 times as expensive as registers.
??? Is that the right way to look at it? */
#define MEMORY_MOVE_COST(MODE) \
(GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
/* The cost of a branch insn. */
/* ??? What's the right value here? Branches are certainly more
expensive than reg->reg moves. */
#define BRANCH_COST 2
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE. The purpose for the cost of MULT is to encourage
`synth_mult' to find a synthetic multiply when reasonable.
If we need more than 12 insns to do a multiply, then go out-of-line,
since the call overhead will be < 10% of the cost of the multiply. */
#define RTX_COSTS(X, CODE, OUTER_CODE) \
case ASHIFT : \
case ASHIFTRT : \
case LSHIFTRT : \
if (TARGET_SHIFTER) \
return COSTS_N_INSNS (1); \
if (GET_CODE (XEXP ((X), 1)) != CONST_INT) \
return COSTS_N_INSNS (16); \
return COSTS_N_INSNS (INTVAL (XEXP ((X), 1)));
/* Nonzero if access to memory by bytes is slow and undesirable.
For RISC chips, it means that access to memory by bytes is no
better than access by words when possible, so grab a whole word
and maybe make use of that. */
#define SLOW_BYTE_ACCESS 1
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register. */
/* On the ARC, calling through registers is slow. */
#define NO_FUNCTION_CSE
/* Define this macro if it is as good or better for a function to call
itself with an explicit address than to call an address kept in a
register. */
/* On the ARC, calling through registers is slow. */
#define NO_RECURSIVE_FUNCTION_CSE
/* Section selection. */
/* WARNING: These section names also appear in dwarfout.c. */
/* The names of the text, data, and readonly-data sections are runtime
selectable. */
#define ARC_SECTION_FORMAT "\t.section %s"
#define ARC_DEFAULT_TEXT_SECTION ".text"
#define ARC_DEFAULT_DATA_SECTION ".data"
#define ARC_DEFAULT_RODATA_SECTION ".rodata"
extern char *arc_text_section,*arc_data_section,*arc_rodata_section;
/* initfini.c uses this in an asm. */
#if defined (CRT_INIT) || defined (CRT_FINI)
#define TEXT_SECTION_ASM_OP "\t.section .text"
#else
#define TEXT_SECTION_ASM_OP arc_text_section /*"\t.section .text"*/
#endif
#define DATA_SECTION_ASM_OP arc_data_section /*"\t.section .data"*/
#undef CONST_SECTION_ASM_OP
#define CONST_SECTION_ASM_OP arc_rodata_section /*"\t.section .rodata"*/
#define BSS_SECTION_ASM_OP "\t.section .bss"
/* Define this macro if jump tables (for tablejump insns) should be
output in the text section, along with the assembler instructions.
Otherwise, the readonly data section is used.
This macro is irrelevant if there is no separate readonly data section. */
/*#define JUMP_TABLES_IN_TEXT_SECTION*/
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
The macro definition, if any, is executed immediately after the
rtl for DECL or other node is created.
The value of the rtl will be a `mem' whose address is a
`symbol_ref'.
The usual thing for this macro to do is to store a flag in the
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
name string in the `symbol_ref' (if one bit is not enough
information). */
/* On the ARC, function addresses are not the same as normal addresses.
Branch to absolute address insns take an address that is right-shifted
by 2. We encode the fact that we have a function here, and then emit a
special assembler op when outputting the address. */
#define ENCODE_SECTION_INFO(DECL) \
do { \
if (TREE_CODE (DECL) == FUNCTION_DECL) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
} while (0)
/* Decode SYM_NAME and store the real name part in VAR, sans
the characters that encode section info. Define this macro if
ENCODE_SECTION_INFO alters the symbol's name string. */
/*#define STRIP_NAME_ENCODING(VAR, SYM_NAME)*/
/* For DWARF. Marginally different than default so output is "prettier"
(and consistent with above). */
#define PUSHSECTION_FORMAT "\t%s %s\n"
/* Tell crtstuff.c we're using ELF. */
#define OBJECT_FORMAT_ELF
/* PIC */
/* The register number of the register used to address a table of static
data addresses in memory. In some cases this register is defined by a
processor's ``application binary interface'' (ABI). When this macro
is defined, RTL is generated for this register once, as with the stack
pointer and frame pointer registers. If this macro is not defined, it
is up to the machine-dependent files to allocate such a register (if
necessary). */
#define PIC_OFFSET_TABLE_REGNUM 26
/* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
is not defined. */
/* This register is call-saved on the ARC. */
/*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
/* By generating position-independent code, when two different programs (A
and B) share a common library (libC.a), the text of the library can be
shared whether or not the library is linked at the same address for both
programs. In some of these environments, position-independent code
requires not only the use of different addressing modes, but also
special code to enable the use of these addressing modes.
The FINALIZE_PIC macro serves as a hook to emit these special
codes once the function is being compiled into assembly code, but not
before. (It is not done before, because in the case of compiling an
inline function, it would lead to multiple PIC prologues being
included in functions which used inline functions and were compiled to
assembly language.) */
#define INITIALIZE_PIC arc_initialize_pic ()
#define FINALIZE_PIC arc_finalize_pic ()
/* A C expression that is nonzero if X is a legitimate immediate
operand on the target machine when generating position independent code.
You can assume that X satisfies CONSTANT_P, so you need not
check this. You can also assume `flag_pic' is true, so you need not
check it either. You need not define this macro if all constants
(including SYMBOL_REF) can be immediate operands when generating
position independent code. */
/*#define LEGITIMATE_PIC_OPERAND_P(X)*/
/* Control the assembler format that we output. */
/* Output at beginning of assembler file. */
extern void arc_asm_file_start ();
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) arc_asm_file_start (FILE)
/* A C statement to output assembler commands which will identify the
object file as having been compiled with GNU CC (or another GNU
compiler). */
#undef ASM_IDENTIFY_GCC
#define ASM_IDENTIFY_GCC(FILE) /* nothing */
/* Needed because we define ASM_IDENTIFY_GCC. */
#define ASM_IDENTIFY_LANGUAGE(FILE) output_lang_identify (FILE)
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will
end at the end of the line. */
#define ASM_COMMENT_START ";"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* This is how to output an assembler line defining a `char' constant. */
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
( fprintf (FILE, "\t.byte\t"), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line defining a `short' constant. */
#define ASM_OUTPUT_SHORT(FILE, VALUE) \
( fprintf (FILE, "\t.hword\t"), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line defining an `int' constant.
We also handle symbol output here. Code addresses must be right shifted
by 2 because that's how the jump instruction wants them. */
#define ASM_OUTPUT_INT(FILE, VALUE) \
do { \
fprintf (FILE, "\t.word\t"); \
if ((GET_CODE (VALUE) == SYMBOL_REF && SYMBOL_REF_FLAG (VALUE)) \
|| GET_CODE (VALUE) == LABEL_REF) \
{ \
fprintf (FILE, "%%st("); \
output_addr_const (FILE, (VALUE)); \
fprintf (FILE, ")"); \
} \
else \
output_addr_const (FILE, (VALUE)); \
fprintf (FILE, "\n"); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
{ \
long t; \
char str[30]; \
REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
fprintf (FILE, "\t.word\t0x%lx %s %s\n", \
t, ASM_COMMENT_START, str); \
}
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
{ \
long t[2]; \
char str[30]; \
REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
t[0], ASM_COMMENT_START, str, t[1]); \
}
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_BYTE_OP ".byte"
#define ASM_OUTPUT_BYTE(FILE, VALUE) \
fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
/* The assembler's parentheses characters. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { \
fputs ("\t.global\t", FILE); \
assemble_name (FILE, NAME); \
fputs ("\n", FILE); \
} while (0)
/* A C statement (sans semicolon) to output on FILE an assembler pseudo-op to
declare a library function name external. The name of the library function
is given by SYMREF, which has type RTX and is a SYMBOL_REF. */
#if 0
/* On the ARC we want to have libgcc's for multiple cpus in one binary.
We can't use `assemble_name' here as that will call ASM_OUTPUT_LABELREF
and we'll get another suffix added on if -mmangle-cpu. */
extern char *arc_mangle_cpu;
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, SYMREF) \
do { \
if (TARGET_MANGLE_CPU_LIBGCC) \
{ \
fprintf (FILE, "\t.rename\t_%s, _%s%s\n", \
XSTR (SYMREF, 0), XSTR (SYMREF, 0), \
arc_mangle_suffix); \
} \
} while (0)
#endif
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
/* We mangle all user labels to provide protection from linking code
compiled for different cpus. */
/* We work around a dwarfout.c deficiency by watching for labels from it and
not adding the '_' prefix nor the cpu suffix. There is a comment in
dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL. */
extern char *arc_mangle_cpu;
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
do { \
if ((NAME)[0] == '.' && (NAME)[1] == 'L') \
fprintf (FILE, "%s", NAME); \
else \
{ \
fputc ('_', FILE); \
if (TARGET_MANGLE_CPU && arc_mangle_cpu != NULL) \
fprintf (FILE, "%s_", arc_mangle_cpu); \
fprintf (FILE, "%s", NAME); \
} \
} while (0)
/* This is how to output a definition of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#undef ASM_OUTPUT_INTERNAL_LABEL
#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
do { \
arc_ccfsm_at_label (PREFIX, NUM); \
fprintf (FILE, ".%s%d:\n", PREFIX, NUM); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Assembler pseudo-op to equate one value with another. */
/* ??? This is needed because dwarfout.c provides a default definition too
late for defaults.h (which contains the default definition of ASM_OUTPUT_DEF
that we use). */
#define SET_ASM_OP ".set"
/* A C statement (sans semicolon) to output an element in the table of
global constructors. */
#undef ASM_OUTPUT_CONSTRUCTOR
#define ASM_OUTPUT_CONSTRUCTOR(FILE, NAME) \
do { \
ctors_section (); \
fprintf (FILE, "\t.word\t%%st("); \
assemble_name (FILE, NAME); \
fprintf (FILE, ")\n"); \
} while (0)
/* A C statement (sans semicolon) to output an element in the table of
global destructors. */
#undef ASM_OUTPUT_DESTRUCTOR
#define ASM_OUTPUT_DESTRUCTOR(FILE, NAME) \
do { \
dtors_section (); \
fprintf (FILE, "\t.word\t%%st("); \
assemble_name (FILE, NAME); \
fprintf (FILE, ")\n"); \
} while (0)
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "fp", "sp", "ilink1", "ilink2", "blink", \
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
"r56", "r57", "r58", "r59", "lp_count", "cc"}
/* Entry to the insn conditionalizer. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
/* A C expression which evaluates to true if CODE is a valid
punctuation character for use in the `PRINT_OPERAND' macro. */
extern char arc_punct_chars[];
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
arc_punct_chars[(unsigned char) (CHAR)]
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(FILE, X, CODE) \
arc_print_operand (FILE, X, CODE)
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression.
On some machines, the syntax for a symbolic address depends on
the section that the address refers to. On these machines,
define the macro `ENCODE_SECTION_INFO' to store the information
into the `symbol_ref', and then check for it here. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
arc_print_operand_address (FILE, ADDR)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { \
char label[30]; \
ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
fprintf (FILE, "\t.word %%st("); \
assemble_name (FILE, label); \
fprintf (FILE, ")\n"); \
} while (0)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { \
char label[30]; \
ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
fprintf (FILE, "\t.word %%st("); \
assemble_name (FILE, label); \
fprintf (FILE, "-"); \
ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
assemble_name (FILE, label); \
fprintf (FILE, ")\n"); \
} while (0)
/* The desired alignment for the location counter at the beginning
of a loop. */
/* On the ARC, align loops to 32 byte boundaries (cache line size)
if -malign-loops. */
#define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
do { if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); } while (0)
/* Debugging information. */
/* Generate DBX and DWARF debugging information. */
#define DBX_DEBUGGING_INFO
#define DWARF_DEBUGGING_INFO
/* Prefer STABS (for now). */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* Turn off splitting of long stabs. */
#define DBX_CONTIN_LENGTH 0
/* Miscellaneous. */
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
/* It's not clear what PIC will look like or whether we want to use -fpic
for the embedded form currently being talked about. For now require -fpic
to get pc relative switch tables. */
/*#define CASE_VECTOR_PC_RELATIVE 1 */
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
/* ??? The arc doesn't have full 32 bit pointers, but making this PSImode has
it's own problems (you have to add extendpsisi2 and trucnsipsi2 but how does
one do it without getting excess code?). Try to avoid it. */
#define Pmode SImode
/* A function address in a call instruction. */
#define FUNCTION_MODE SImode
/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
is a valid machine specific attribute for DECL.
The attributes in ATTRIBUTES have previously been assigned to TYPE. */
extern int arc_valid_machine_attribute ();
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
arc_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
/* A C expression that returns zero if the attributes on TYPE1 and TYPE2 are
incompatible, one if they are compatible, and two if they are
nearly compatible (which causes a warning to be generated). */
extern int arc_comp_type_attributes ();
#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
arc_comp_type_attributes (TYPE1, TYPE2)
/* Give newly defined TYPE some default attributes. */
extern void arc_set_default_type_attributes ();
#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
arc_set_default_type_attributes (TYPE)
/* Define this if the target system supports the function
atexit from the ANSI C standard. If this is not defined,
and INIT_SECTION_ASM_OP is not defined, a default
exit function will be provided to support C++. */
#define HAVE_ATEXIT
/* alloca should avoid clobbering the old register save area. */
/* ??? Not defined in tm.texi. */
#define SETJMP_VIA_SAVE_AREA
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
/* Define the function that build the compare insn for scc and bcc. */
extern struct rtx_def *gen_compare_reg ();
/* Declarations for various fns used in the .md file. */
extern char *output_shift ();
/* ARC function types. */
enum arc_function_type {
ARC_FUNCTION_UNKNOWN, ARC_FUNCTION_NORMAL,
/* These are interrupt handlers. The name corresponds to the register
name that contains the return address. */
ARC_FUNCTION_ILINK1, ARC_FUNCTION_ILINK2
};
#define ARC_INTERRUPT_P(TYPE) \
((TYPE) == ARC_FUNCTION_ILINK1 || (TYPE) == ARC_FUNCTION_ILINK2)
/* Compute the type of a function from its DECL. */
enum arc_function_type arc_compute_function_type ();
|