1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
|
/* Subroutines used for code generation on the Synopsys DesignWare ARC cpu.
Copyright (C) 1994-2022 Free Software Foundation, Inc.
Sources derived from work done by Sankhya Technologies (www.sankhya.com) on
behalf of Synopsys Inc.
Position Independent Code support added,Code cleaned up,
Comments and Support For ARC700 instructions added by
Saurabh Verma (saurabh.verma@codito.com)
Ramana Radhakrishnan(ramana.radhakrishnan@codito.com)
Fixing ABI inconsistencies, optimizations for ARC600 / ARC700 pipelines,
profiling support added by Joern Rennecke <joern.rennecke@embecosm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "varasm.h"
#include "stor-layout.h"
#include "calls.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "langhooks.h"
#include "tm-constrs.h"
#include "reload.h" /* For operands_match_p */
#include "cfgrtl.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "alias.h"
#include "opts.h"
#include "hw-doloop.h"
/* Which cpu we're compiling for (ARC600, ARC601, ARC700). */
static char arc_cpu_name[10] = "";
static const char *arc_cpu_string = arc_cpu_name;
typedef struct GTY (()) _arc_jli_section
{
const char *name;
struct _arc_jli_section *next;
} arc_jli_section;
static arc_jli_section *arc_jli_sections = NULL;
/* Track which regs are set fixed/call saved/call used from commnad line. */
HARD_REG_SET overrideregs;
/* Maximum size of a loop. */
#define ARC_MAX_LOOP_LENGTH 4095
/* Check if an rtx fits in the store instruction format. Loads can
handle any constant. */
#define RTX_OK_FOR_OFFSET_P(MODE, X) \
(GET_CODE (X) == CONST_INT \
&& SMALL_INT_RANGE (INTVAL (X), (GET_MODE_SIZE (MODE) - 1) & (~0x03), \
(INTVAL (X) & (GET_MODE_SIZE (MODE) - 1) & 3 \
? 0 \
: -(-GET_MODE_SIZE (MODE) | (~0x03)) >> 1)))
/* Array of valid operand punctuation characters. */
char arc_punct_chars[256];
/* State used by arc_ccfsm_advance to implement conditional execution. */
struct GTY (()) arc_ccfsm
{
int state;
int cc;
rtx cond;
rtx_insn *target_insn;
int target_label;
};
/* Status of the IRQ_CTRL_AUX register. */
typedef struct irq_ctrl_saved_t
{
/* Last register number used by IRQ_CTRL_SAVED aux_reg. */
short irq_save_last_reg;
/* True if BLINK is automatically saved. */
bool irq_save_blink;
/* True if LPCOUNT is automatically saved. */
bool irq_save_lpcount;
} irq_ctrl_saved_t;
static irq_ctrl_saved_t irq_ctrl_saved;
#define ARC_AUTOBLINK_IRQ_P(FNTYPE) \
((ARC_INTERRUPT_P (FNTYPE) \
&& irq_ctrl_saved.irq_save_blink) \
|| (ARC_FAST_INTERRUPT_P (FNTYPE) \
&& rgf_banked_register_count > 8))
#define ARC_AUTOFP_IRQ_P(FNTYPE) \
((ARC_INTERRUPT_P (FNTYPE) \
&& (irq_ctrl_saved.irq_save_last_reg > 26)) \
|| (ARC_FAST_INTERRUPT_P (FNTYPE) \
&& rgf_banked_register_count > 8))
#define ARC_AUTO_IRQ_P(FNTYPE) \
(ARC_INTERRUPT_P (FNTYPE) && !ARC_FAST_INTERRUPT_P (FNTYPE) \
&& (irq_ctrl_saved.irq_save_blink \
|| (irq_ctrl_saved.irq_save_last_reg >= 0)))
/* Number of registers in second bank for FIRQ support. */
static int rgf_banked_register_count;
#define arc_ccfsm_current cfun->machine->ccfsm_current
#define ARC_CCFSM_BRANCH_DELETED_P(STATE) \
((STATE)->state == 1 || (STATE)->state == 2)
/* Indicate we're conditionalizing insns now. */
#define ARC_CCFSM_RECORD_BRANCH_DELETED(STATE) \
((STATE)->state += 2)
#define ARC_CCFSM_COND_EXEC_P(STATE) \
((STATE)->state == 3 || (STATE)->state == 4 || (STATE)->state == 5 \
|| current_insn_predicate)
/* Check if INSN has a 16 bit opcode considering struct arc_ccfsm *STATE. */
#define CCFSM_ISCOMPACT(INSN,STATE) \
(ARC_CCFSM_COND_EXEC_P (STATE) \
? (get_attr_iscompact (INSN) == ISCOMPACT_TRUE \
|| get_attr_iscompact (INSN) == ISCOMPACT_TRUE_LIMM) \
: get_attr_iscompact (INSN) != ISCOMPACT_FALSE)
/* Likewise, but also consider that INSN might be in a delay slot of JUMP. */
#define CCFSM_DBR_ISCOMPACT(INSN,JUMP,STATE) \
((ARC_CCFSM_COND_EXEC_P (STATE) \
|| (JUMP_P (JUMP) \
&& INSN_ANNULLED_BRANCH_P (JUMP) \
&& (TARGET_AT_DBR_CONDEXEC || INSN_FROM_TARGET_P (INSN)))) \
? (get_attr_iscompact (INSN) == ISCOMPACT_TRUE \
|| get_attr_iscompact (INSN) == ISCOMPACT_TRUE_LIMM) \
: get_attr_iscompact (INSN) != ISCOMPACT_FALSE)
/* Start enter/leave register range. */
#define ENTER_LEAVE_START_REG 13
/* End enter/leave register range. */
#define ENTER_LEAVE_END_REG 26
/* The maximum number of insns skipped which will be conditionalised if
possible. */
/* When optimizing for speed:
Let p be the probability that the potentially skipped insns need to
be executed, pn the cost of a correctly predicted non-taken branch,
mt the cost of a mis/non-predicted taken branch,
mn mispredicted non-taken, pt correctly predicted taken ;
costs expressed in numbers of instructions like the ones considered
skipping.
Unfortunately we don't have a measure of predictability - this
is linked to probability only in that in the no-eviction-scenario
there is a lower bound 1 - 2 * min (p, 1-p), and a somewhat larger
value that can be assumed *if* the distribution is perfectly random.
A predictability of 1 is perfectly plausible not matter what p is,
because the decision could be dependent on an invocation parameter
of the program.
For large p, we want MAX_INSNS_SKIPPED == pn/(1-p) + mt - pn
For small p, we want MAX_INSNS_SKIPPED == pt
When optimizing for size:
We want to skip insn unless we could use 16 opcodes for the
non-conditionalized insn to balance the branch length or more.
Performance can be tie-breaker. */
/* If the potentially-skipped insns are likely to be executed, we'll
generally save one non-taken branch
o
this to be no less than the 1/p */
#define MAX_INSNS_SKIPPED 3
/* ZOL control registers. */
#define AUX_LP_START 0x02
#define AUX_LP_END 0x03
/* FPX AUX registers. */
#define AUX_DPFP_START 0x301
/* ARC600 MULHI register. */
#define AUX_MULHI 0x12
/* A nop is needed between a 4 byte insn that sets the condition codes and
a branch that uses them (the same isn't true for an 8 byte insn that sets
the condition codes). Set by arc_ccfsm_advance. Used by
arc_print_operand. */
static int get_arc_condition_code (rtx);
static tree arc_handle_interrupt_attribute (tree *, tree, tree, int, bool *);
static tree arc_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
static tree arc_handle_jli_attribute (tree *, tree, tree, int, bool *);
static tree arc_handle_secure_attribute (tree *, tree, tree, int, bool *);
static tree arc_handle_uncached_attribute (tree *, tree, tree, int, bool *);
static tree arc_handle_aux_attribute (tree *, tree, tree, int, bool *);
/* Initialized arc_attribute_table to NULL since arc doesnot have any
machine specific supported attributes. */
const struct attribute_spec arc_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req,
affects_type_identity, handler, exclude } */
{ "interrupt", 1, 1, true, false, false, true,
arc_handle_interrupt_attribute, NULL },
/* Function calls made to this symbol must be done indirectly, because
it may lie outside of the 21/25 bit addressing range of a normal function
call. */
{ "long_call", 0, 0, false, true, true, false, NULL, NULL },
/* Whereas these functions are always known to reside within the 25 bit
addressing range of unconditionalized bl. */
{ "medium_call", 0, 0, false, true, true, false, NULL, NULL },
/* And these functions are always known to reside within the 21 bit
addressing range of blcc. */
{ "short_call", 0, 0, false, true, true, false, NULL, NULL },
/* Function which are not having the prologue and epilogue generated
by the compiler. */
{ "naked", 0, 0, true, false, false, false, arc_handle_fndecl_attribute,
NULL },
/* Functions calls made using jli instruction. The pointer in JLI
table is found latter. */
{ "jli_always", 0, 0, false, true, true, false, NULL, NULL },
/* Functions calls made using jli instruction. The pointer in JLI
table is given as input parameter. */
{ "jli_fixed", 1, 1, false, true, true, false, arc_handle_jli_attribute,
NULL },
/* Call a function using secure-mode. */
{ "secure_call", 1, 1, false, true, true, false, arc_handle_secure_attribute,
NULL },
/* Bypass caches using .di flag. */
{ "uncached", 0, 0, false, true, false, false, arc_handle_uncached_attribute,
NULL },
{ "aux", 0, 1, true, false, false, false, arc_handle_aux_attribute, NULL },
{ NULL, 0, 0, false, false, false, false, NULL, NULL }
};
static int arc_comp_type_attributes (const_tree, const_tree);
static void arc_file_start (void);
static void arc_internal_label (FILE *, const char *, unsigned long);
static void arc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
tree);
static int arc_address_cost (rtx, machine_mode, addr_space_t, bool);
static void arc_encode_section_info (tree decl, rtx rtl, int first);
static void arc_init_builtins (void);
static rtx arc_expand_builtin (tree, rtx, rtx, machine_mode, int);
static int branch_dest (rtx);
static void arc_output_pic_addr_const (FILE *, rtx, int);
static bool arc_function_ok_for_sibcall (tree, tree);
static rtx arc_function_value (const_tree, const_tree, bool);
const char * output_shift (rtx *);
static void arc_reorg (void);
static bool arc_in_small_data_p (const_tree);
static void arc_init_reg_tables (void);
static bool arc_return_in_memory (const_tree, const_tree);
static bool arc_vector_mode_supported_p (machine_mode);
static bool arc_can_use_doloop_p (const widest_int &, const widest_int &,
unsigned int, bool);
static const char *arc_invalid_within_doloop (const rtx_insn *);
static void output_short_suffix (FILE *file);
static bool arc_frame_pointer_required (void);
static bool arc_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT,
unsigned int,
enum by_pieces_operation op,
bool);
/* Globally visible information about currently selected cpu. */
const arc_cpu_t *arc_selected_cpu;
/* Traditionally, we push saved registers first in the prologue,
then we allocate the rest of the frame - and reverse in the epilogue.
This has still its merits for ease of debugging, or saving code size
or even execution time if the stack frame is so large that some accesses
can't be encoded anymore with offsets in the instruction code when using
a different scheme.
Also, it would be a good starting point if we got instructions to help
with register save/restore.
However, often stack frames are small, and the pushing / popping has
some costs:
- the stack modification prevents a lot of scheduling.
- frame allocation / deallocation may need extra instructions.
- we need to place a memory barrier after frame allocation to avoid
the delay slot scheduler to reschedule a frame related info and
messing up with dwarf unwinding. The barrier before deallocation
is for flushing all pending sp operations.
Thus, for small frames, we'd like to use a different scheme:
- The frame is allocated in full with the first prologue instruction,
and deallocated in full with the last epilogue instruction.
Thus, the instructions in-between can be freely scheduled.
- If the function has no outgoing arguments on the stack, we can allocate
one register save slot at the top of the stack. This register can then
be saved simultaneously with frame allocation, and restored with
frame deallocation.
This register can be picked depending on scheduling considerations,
although same though should go into having some set of registers
to be potentially lingering after a call, and others to be available
immediately - i.e. in the absence of interprocedual optimization, we
can use an ABI-like convention for register allocation to reduce
stalls after function return. */
/* ARCompact stack frames look like:
Before call After call
high +-----------------------+ +-----------------------+
mem | reg parm save area | | reg parm save area |
| only created for | | only created for |
| variable arg fns | | variable arg fns |
AP +-----------------------+ +-----------------------+
| return addr register | | return addr register |
| (if required) | | (if required) |
+-----------------------+ +-----------------------+
| | | |
| reg save area | | reg save area |
| | | |
+-----------------------+ +-----------------------+
| frame pointer | | frame pointer |
| (if required) | | (if required) |
FP +-----------------------+ +-----------------------+
| | | |
| local/temp variables | | local/temp variables |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack | | arguments on stack |
| | | |
SP +-----------------------+ +-----------------------+
| reg parm save area |
| only created for |
| variable arg fns |
AP +-----------------------+
| return addr register |
| (if required) |
+-----------------------+
| |
| reg save area |
| |
+-----------------------+
| frame pointer |
| (if required) |
FP +-----------------------+
| |
| local/temp variables |
| |
+-----------------------+
| |
| arguments on stack |
low | |
mem SP +-----------------------+
Notes:
1) The "reg parm save area" does not exist for non variable argument fns.
The "reg parm save area" can be eliminated completely if we created our
own va-arc.h, but that has tradeoffs as well (so it's not done). */
/* Structure to be filled in by arc_compute_frame_size with register
save masks, and offsets for the current function. */
struct GTY (()) arc_frame_info
{
unsigned int total_size; /* # bytes that the entire frame takes up. */
unsigned int extra_size; /* # bytes of extra stuff. */
unsigned int pretend_size; /* # bytes we push and pretend caller did. */
unsigned int args_size; /* # bytes that outgoing arguments take up. */
unsigned int reg_size; /* # bytes needed to store regs. */
unsigned int var_size; /* # bytes that variables take up. */
uint64_t gmask; /* Mask of saved gp registers. */
bool initialized; /* FALSE if frame size already calculated. */
short millicode_start_reg;
short millicode_end_reg;
bool save_return_addr;
};
/* GMASK bit length -1. */
#define GMASK_LEN 63
/* Defining data structures for per-function information. */
typedef struct GTY (()) machine_function
{
unsigned int fn_type;
struct arc_frame_info frame_info;
/* To keep track of unalignment caused by short insns. */
int unalign;
struct arc_ccfsm ccfsm_current;
/* Map from uid to ccfsm state during branch shortening. */
rtx ccfsm_current_insn;
char arc_reorg_started;
char prescan_initialized;
} machine_function;
/* Given a symbol RTX (const (symb <+ const_int>), returns its
alignment. */
static int
get_symbol_alignment (rtx x)
{
tree decl = NULL_TREE;
int align = 0;
switch (GET_CODE (x))
{
case SYMBOL_REF:
decl = SYMBOL_REF_DECL (x);
break;
case CONST:
return get_symbol_alignment (XEXP (x, 0));
case PLUS:
gcc_assert (CONST_INT_P (XEXP (x, 1)));
return get_symbol_alignment (XEXP (x, 0));
default:
return 0;
}
if (decl)
align = DECL_ALIGN (decl);
align = align / BITS_PER_UNIT;
return align;
}
/* Return true if x is ok to be used as a small data address. */
static bool
legitimate_small_data_address_p (rtx x, machine_mode mode)
{
switch (GET_CODE (x))
{
case CONST:
return legitimate_small_data_address_p (XEXP (x, 0), mode);
case SYMBOL_REF:
return SYMBOL_REF_SMALL_P (x);
case PLUS:
{
bool p0 = (GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
&& SYMBOL_REF_SMALL_P (XEXP (x, 0));
/* If no constant then we cannot do small data. */
if (!CONST_INT_P (XEXP (x, 1)))
return false;
/* Small data relocs works with scalled addresses, check if
the immediate fits the requirements. */
switch (GET_MODE_SIZE (mode))
{
case 1:
return p0;
case 2:
return p0 && ((INTVAL (XEXP (x, 1)) & 0x1) == 0);
case 4:
case 8:
return p0 && ((INTVAL (XEXP (x, 1)) & 0x3) == 0);
default:
return false;
}
}
default:
return false;
}
}
/* TRUE if op is an scaled address. */
static bool
legitimate_scaled_address_p (machine_mode mode, rtx op, bool strict)
{
if (GET_CODE (op) != PLUS)
return false;
if (GET_CODE (XEXP (op, 0)) != MULT)
return false;
/* Check multiplication operands. */
if (!RTX_OK_FOR_INDEX_P (XEXP (XEXP (op, 0), 0), strict))
return false;
if (!CONST_INT_P (XEXP (XEXP (op, 0), 1)))
return false;
switch (GET_MODE_SIZE (mode))
{
case 2:
if (INTVAL (XEXP (XEXP (op, 0), 1)) != 2)
return false;
break;
case 8:
if (!TARGET_LL64)
return false;
/* Fall through. */
case 4:
if (INTVAL (XEXP (XEXP (op, 0), 1)) != 4)
return false;
/* Fall through. */
default:
return false;
}
/* Check the base. */
if (RTX_OK_FOR_BASE_P (XEXP (op, 1), (strict)))
return true;
if (flag_pic)
{
if (CONST_INT_P (XEXP (op, 1)))
return true;
return false;
}
/* Scalled addresses for sdata is done other places. */
if (legitimate_small_data_address_p (op, mode))
return false;
if (CONSTANT_P (XEXP (op, 1)))
return true;
return false;
}
/* Check for constructions like REG + OFFS, where OFFS can be a
register, an immediate or an long immediate. */
static bool
legitimate_offset_address_p (machine_mode mode, rtx x, bool index, bool strict)
{
if (GET_CODE (x) != PLUS)
return false;
if (!RTX_OK_FOR_BASE_P (XEXP (x, 0), (strict)))
return false;
/* Check for: [Rx + small offset] or [Rx + Ry]. */
if (((index && RTX_OK_FOR_INDEX_P (XEXP (x, 1), (strict))
&& GET_MODE_SIZE ((mode)) <= 4)
|| RTX_OK_FOR_OFFSET_P (mode, XEXP (x, 1))))
return true;
/* Check for [Rx + symbol]. */
if (!flag_pic
&& (GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
/* Avoid this type of address for double or larger modes. */
&& (GET_MODE_SIZE (mode) <= 4)
/* Avoid small data which ends in something like GP +
symb@sda. */
&& (!SYMBOL_REF_SMALL_P (XEXP (x, 1))))
return true;
return false;
}
/* Implements target hook vector_mode_supported_p. */
static bool
arc_vector_mode_supported_p (machine_mode mode)
{
switch (mode)
{
case E_V2HImode:
return TARGET_PLUS_DMPY;
case E_V4HImode:
case E_V2SImode:
return TARGET_PLUS_QMACW;
case E_V4SImode:
case E_V8HImode:
return TARGET_SIMD_SET;
default:
return false;
}
}
/* Implements target hook TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
static machine_mode
arc_preferred_simd_mode (scalar_mode mode)
{
switch (mode)
{
case E_HImode:
return TARGET_PLUS_QMACW ? V4HImode : V2HImode;
case E_SImode:
return V2SImode;
default:
return word_mode;
}
}
/* Implements target hook
TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES. */
static unsigned int
arc_autovectorize_vector_modes (vector_modes *modes, bool)
{
if (TARGET_PLUS_QMACW)
{
modes->quick_push (V4HImode);
modes->quick_push (V2HImode);
}
return 0;
}
/* Implements target hook TARGET_SCHED_ISSUE_RATE. */
static int
arc_sched_issue_rate (void)
{
switch (arc_tune)
{
case ARC_TUNE_ARCHS4X:
case ARC_TUNE_ARCHS4XD:
return 3;
default:
break;
}
return 1;
}
/* TARGET_PRESERVE_RELOAD_P is still awaiting patch re-evaluation / review. */
static bool arc_preserve_reload_p (rtx in) ATTRIBUTE_UNUSED;
static rtx arc_delegitimize_address (rtx);
static bool arc_can_follow_jump (const rtx_insn *follower,
const rtx_insn *followee);
static rtx frame_insn (rtx);
static void arc_function_arg_advance (cumulative_args_t,
const function_arg_info &);
static rtx arc_legitimize_address_0 (rtx, rtx, machine_mode mode);
/* initialize the GCC target structure. */
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES arc_comp_type_attributes
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START arc_file_start
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE arc_attribute_table
#undef TARGET_ASM_INTERNAL_LABEL
#define TARGET_ASM_INTERNAL_LABEL arc_internal_label
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS arc_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST arc_address_cost
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO arc_encode_section_info
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM arc_cannot_force_const_mem
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS arc_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN arc_expand_builtin
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL arc_builtin_decl
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK arc_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL arc_function_ok_for_sibcall
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG arc_reorg
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P arc_in_small_data_p
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE \
default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY arc_return_in_memory
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE arc_pass_by_reference
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS arc_setup_incoming_varargs
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES arc_arg_partial_bytes
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE arc_function_value
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY arc_sched_adjust_priority
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE arc_sched_issue_rate
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P arc_vector_mode_supported_p
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE arc_preferred_simd_mode
#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES arc_autovectorize_vector_modes
#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P arc_can_use_doloop_p
#undef TARGET_INVALID_WITHIN_DOLOOP
#define TARGET_INVALID_WITHIN_DOLOOP arc_invalid_within_doloop
#undef TARGET_PRESERVE_RELOAD_P
#define TARGET_PRESERVE_RELOAD_P arc_preserve_reload_p
#undef TARGET_CAN_FOLLOW_JUMP
#define TARGET_CAN_FOLLOW_JUMP arc_can_follow_jump
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS arc_delegitimize_address
#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
arc_use_by_pieces_infrastructure_p
/* Usually, we will be able to scale anchor offsets.
When this fails, we want LEGITIMIZE_ADDRESS to kick in. */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET (-1024)
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET (1020)
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD arc_secondary_reload
#define TARGET_OPTION_OVERRIDE arc_override_options
#define TARGET_CONDITIONAL_REGISTER_USAGE arc_conditional_register_usage
#define TARGET_TRAMPOLINE_INIT arc_initialize_trampoline
#define TARGET_CAN_ELIMINATE arc_can_eliminate
#define TARGET_FRAME_POINTER_REQUIRED arc_frame_pointer_required
#define TARGET_FUNCTION_ARG arc_function_arg
#define TARGET_FUNCTION_ARG_ADVANCE arc_function_arg_advance
#define TARGET_LEGITIMATE_CONSTANT_P arc_legitimate_constant_p
#define TARGET_LEGITIMATE_ADDRESS_P arc_legitimate_address_p
#define TARGET_MODE_DEPENDENT_ADDRESS_P arc_mode_dependent_address_p
#define TARGET_LEGITIMIZE_ADDRESS arc_legitimize_address
#undef TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P
#define TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P \
arc_no_speculation_in_delay_slots_p
#undef TARGET_LRA_P
#define TARGET_LRA_P arc_lra_p
#define TARGET_REGISTER_PRIORITY arc_register_priority
/* Stores with scaled offsets have different displacement ranges. */
#define TARGET_DIFFERENT_ADDR_DISPLACEMENT_P hook_bool_void_true
#define TARGET_SPILL_CLASS arc_spill_class
#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS arc_allocate_stack_slots_for_args
#undef TARGET_WARN_FUNC_RETURN
#define TARGET_WARN_FUNC_RETURN arc_warn_func_return
#include "target-def.h"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
#endif
#undef TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN arc_dwarf_register_span
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS arc_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK arc_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P arc_modes_tieable_p
/* Try to keep the (mov:DF _, reg) as early as possible so
that the d<add/sub/mul>h-lr insns appear together and can
use the peephole2 pattern. */
static int
arc_sched_adjust_priority (rtx_insn *insn, int priority)
{
rtx set = single_set (insn);
if (set
&& GET_MODE (SET_SRC(set)) == DFmode
&& GET_CODE (SET_SRC(set)) == REG)
{
/* Incrementing priority by 20 (empirically derived). */
return priority + 20;
}
return priority;
}
/* For ARC base register + offset addressing, the validity of the
address is mode-dependent for most of the offset range, as the
offset can be scaled by the access size.
We don't expose these as mode-dependent addresses in the
mode_dependent_address_p target hook, because that would disable
lots of optimizations, and most uses of these addresses are for 32
or 64 bit accesses anyways, which are fine.
However, that leaves some addresses for 8 / 16 bit values not
properly reloaded by the generic code, which is why we have to
schedule secondary reloads for these. */
static reg_class_t
arc_secondary_reload (bool in_p,
rtx x,
reg_class_t cl,
machine_mode mode,
secondary_reload_info *sri)
{
enum rtx_code code = GET_CODE (x);
if (cl == DOUBLE_REGS)
return GENERAL_REGS;
/* If we have a subreg (reg), where reg is a pseudo (that will end in
a memory location), then we may need a scratch register to handle
the fp/sp+largeoffset address. */
if (code == SUBREG)
{
rtx addr = NULL_RTX;
x = SUBREG_REG (x);
if (REG_P (x))
{
int regno = REGNO (x);
if (regno >= FIRST_PSEUDO_REGISTER)
regno = reg_renumber[regno];
if (regno != -1)
return NO_REGS;
/* It is a pseudo that ends in a stack location. This
procedure only works with the old reload step. */
if (!lra_in_progress && reg_equiv_mem (REGNO (x)))
{
/* Get the equivalent address and check the range of the
offset. */
rtx mem = reg_equiv_mem (REGNO (x));
addr = find_replacement (&XEXP (mem, 0));
}
}
else
{
gcc_assert (MEM_P (x));
addr = XEXP (x, 0);
addr = simplify_rtx (addr);
}
if (addr && GET_CODE (addr) == PLUS
&& CONST_INT_P (XEXP (addr, 1))
&& (!RTX_OK_FOR_OFFSET_P (mode, XEXP (addr, 1))))
{
switch (mode)
{
case E_QImode:
sri->icode =
in_p ? CODE_FOR_reload_qi_load : CODE_FOR_reload_qi_store;
break;
case E_HImode:
sri->icode =
in_p ? CODE_FOR_reload_hi_load : CODE_FOR_reload_hi_store;
break;
default:
break;
}
}
}
return NO_REGS;
}
/* Convert reloads using offsets that are too large to use indirect
addressing. */
void
arc_secondary_reload_conv (rtx reg, rtx mem, rtx scratch, bool store_p)
{
rtx addr;
gcc_assert (GET_CODE (mem) == MEM);
addr = XEXP (mem, 0);
/* Large offset: use a move. FIXME: ld ops accepts limms as
offsets. Hence, the following move insn is not required. */
emit_move_insn (scratch, addr);
mem = replace_equiv_address_nv (mem, scratch);
/* Now create the move. */
if (store_p)
emit_insn (gen_rtx_SET (mem, reg));
else
emit_insn (gen_rtx_SET (reg, mem));
return;
}
static unsigned arc_ifcvt (void);
namespace {
const pass_data pass_data_arc_ifcvt =
{
RTL_PASS,
"arc_ifcvt", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IFCVT2, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish /* todo_flags_finish */
};
class pass_arc_ifcvt : public rtl_opt_pass
{
public:
pass_arc_ifcvt (gcc::context *ctxt)
: rtl_opt_pass (pass_data_arc_ifcvt, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone ()
{
return new pass_arc_ifcvt (m_ctxt);
}
virtual unsigned int execute (function *)
{
return arc_ifcvt ();
}
virtual bool gate (function *)
{
return (optimize > 1 && !TARGET_NO_COND_EXEC);
}
};
} // anon namespace
rtl_opt_pass *
make_pass_arc_ifcvt (gcc::context *ctxt)
{
return new pass_arc_ifcvt (ctxt);
}
static unsigned arc_predicate_delay_insns (void);
namespace {
const pass_data pass_data_arc_predicate_delay_insns =
{
RTL_PASS,
"arc_predicate_delay_insns", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IFCVT2, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish /* todo_flags_finish */
};
class pass_arc_predicate_delay_insns : public rtl_opt_pass
{
public:
pass_arc_predicate_delay_insns(gcc::context *ctxt)
: rtl_opt_pass(pass_data_arc_predicate_delay_insns, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *)
{
return arc_predicate_delay_insns ();
}
virtual bool gate (function *)
{
return flag_delayed_branch;
}
};
} // anon namespace
rtl_opt_pass *
make_pass_arc_predicate_delay_insns (gcc::context *ctxt)
{
return new pass_arc_predicate_delay_insns (ctxt);
}
/* Called by OVERRIDE_OPTIONS to initialize various things. */
static void
arc_init (void)
{
if (TARGET_V2)
{
/* I have the multiplier, then use it*/
if (TARGET_MPYW || TARGET_MULTI)
arc_multcost = COSTS_N_INSNS (1);
}
/* Note: arc_multcost is only used in rtx_cost if speed is true. */
if (arc_multcost < 0)
switch (arc_tune)
{
case ARC_TUNE_ARC700_4_2_STD:
/* latency 7;
max throughput (1 multiply + 4 other insns) / 5 cycles. */
arc_multcost = COSTS_N_INSNS (4);
if (TARGET_NOMPY_SET)
arc_multcost = COSTS_N_INSNS (30);
break;
case ARC_TUNE_ARC700_4_2_XMAC:
/* latency 5;
max throughput (1 multiply + 2 other insns) / 3 cycles. */
arc_multcost = COSTS_N_INSNS (3);
if (TARGET_NOMPY_SET)
arc_multcost = COSTS_N_INSNS (30);
break;
case ARC_TUNE_ARC600:
if (TARGET_MUL64_SET)
{
arc_multcost = COSTS_N_INSNS (4);
break;
}
/* Fall through. */
default:
arc_multcost = COSTS_N_INSNS (30);
break;
}
/* MPY instructions valid only for ARC700 or ARCv2. */
if (TARGET_NOMPY_SET && TARGET_ARC600_FAMILY)
error ("%<-mno-mpy%> supported only for ARC700 or ARCv2");
if (!TARGET_DPFP && TARGET_DPFP_DISABLE_LRSR)
error ("%<-mno-dpfp-lrsr%> supported only with %<-mdpfp%>");
/* FPX-1. No fast and compact together. */
if ((TARGET_DPFP_FAST_SET && TARGET_DPFP_COMPACT_SET)
|| (TARGET_SPFP_FAST_SET && TARGET_SPFP_COMPACT_SET))
error ("FPX fast and compact options cannot be specified together");
/* FPX-2. No fast-spfp for arc600 or arc601. */
if (TARGET_SPFP_FAST_SET && TARGET_ARC600_FAMILY)
error ("%<-mspfp_fast%> not available on ARC600 or ARC601");
/* FPX-4. No FPX extensions mixed with FPU extensions. */
if ((TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET || TARGET_SPFP)
&& TARGET_HARD_FLOAT)
error ("no FPX/FPU mixing allowed");
/* Warn for unimplemented PIC in pre-ARC700 cores, and disable flag_pic. */
if (flag_pic && TARGET_ARC600_FAMILY)
{
warning (0, "PIC is not supported for %qs",
arc_cpu_string);
flag_pic = 0;
}
arc_init_reg_tables ();
/* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
memset (arc_punct_chars, 0, sizeof (arc_punct_chars));
arc_punct_chars['#'] = 1;
arc_punct_chars['*'] = 1;
arc_punct_chars['?'] = 1;
arc_punct_chars['!'] = 1;
arc_punct_chars['^'] = 1;
arc_punct_chars['&'] = 1;
arc_punct_chars['+'] = 1;
arc_punct_chars['_'] = 1;
}
/* Parse -mirq-ctrl-saved=RegisterRange, blink, lp_copunt. The
register range is specified as two registers separated by a dash.
It always starts with r0, and its upper limit is fp register.
blink and lp_count registers are optional. */
static void
irq_range (const char *cstr)
{
int i, first, last, blink, lpcount, xreg;
char *str, *dash, *comma;
i = strlen (cstr);
str = (char *) alloca (i + 1);
memcpy (str, cstr, i + 1);
blink = -1;
lpcount = -1;
dash = strchr (str, '-');
if (!dash)
{
warning (OPT_mirq_ctrl_saved_, "missing dash");
return;
}
*dash = '\0';
comma = strchr (dash + 1, ',');
if (comma)
*comma = '\0';
first = decode_reg_name (str);
if (first != 0)
{
warning (OPT_mirq_ctrl_saved_, "first register must be R0");
return;
}
/* At this moment we do not have the register names initialized
accordingly. */
if (!strcmp (dash + 1, "ilink"))
last = 29;
else
last = decode_reg_name (dash + 1);
if (last < 0)
{
warning (OPT_mirq_ctrl_saved_, "unknown register name: %s", dash + 1);
return;
}
if (!(last & 0x01))
{
warning (OPT_mirq_ctrl_saved_,
"last register name %s must be an odd register", dash + 1);
return;
}
*dash = '-';
if (first > last)
{
warning (OPT_mirq_ctrl_saved_,
"%s-%s is an empty range", str, dash + 1);
return;
}
while (comma)
{
*comma = ',';
str = comma + 1;
comma = strchr (str, ',');
if (comma)
*comma = '\0';
xreg = decode_reg_name (str);
switch (xreg)
{
case 31:
blink = 31;
break;
case 60:
lpcount = 60;
break;
default:
warning (OPT_mirq_ctrl_saved_,
"unknown register name: %s", str);
return;
}
}
irq_ctrl_saved.irq_save_last_reg = last;
irq_ctrl_saved.irq_save_blink = (blink == 31) || (last == 31);
irq_ctrl_saved.irq_save_lpcount = (lpcount == 60);
}
/* Parse -mrgf-banked-regs=NUM option string. Valid values for NUM are 4,
8, 16, or 32. */
static void
parse_mrgf_banked_regs_option (const char *arg)
{
long int val;
char *end_ptr;
errno = 0;
val = strtol (arg, &end_ptr, 10);
if (errno != 0 || *arg == '\0' || *end_ptr != '\0'
|| (val != 0 && val != 4 && val != 8 && val != 16 && val != 32))
{
error ("invalid number in %<-mrgf-banked-regs=%s%> "
"valid values are 0, 4, 8, 16, or 32", arg);
return;
}
rgf_banked_register_count = (int) val;
}
/* Check ARC options, generate derived target attributes. */
static void
arc_override_options (void)
{
unsigned int i;
cl_deferred_option *opt;
vec<cl_deferred_option> *vopt
= (vec<cl_deferred_option> *) arc_deferred_options;
if (arc_cpu == PROCESSOR_NONE)
arc_cpu = TARGET_CPU_DEFAULT;
/* Set the default cpu options. */
arc_selected_cpu = &arc_cpu_types[(int) arc_cpu];
/* Set the architectures. */
switch (arc_selected_cpu->arch_info->arch_id)
{
case BASE_ARCH_em:
arc_cpu_string = "EM";
break;
case BASE_ARCH_hs:
arc_cpu_string = "HS";
break;
case BASE_ARCH_700:
if (arc_selected_cpu->processor == PROCESSOR_nps400)
arc_cpu_string = "NPS400";
else
arc_cpu_string = "ARC700";
break;
case BASE_ARCH_6xx:
arc_cpu_string = "ARC600";
break;
default:
gcc_unreachable ();
}
irq_ctrl_saved.irq_save_last_reg = -1;
irq_ctrl_saved.irq_save_blink = false;
irq_ctrl_saved.irq_save_lpcount = false;
rgf_banked_register_count = 0;
/* Handle the deferred options. */
if (vopt)
FOR_EACH_VEC_ELT (*vopt, i, opt)
{
switch (opt->opt_index)
{
case OPT_mirq_ctrl_saved_:
if (TARGET_V2)
irq_range (opt->arg);
else
warning (OPT_mirq_ctrl_saved_,
"option %<-mirq-ctrl-saved%> valid only "
"for ARC v2 processors");
break;
case OPT_mrgf_banked_regs_:
if (TARGET_V2)
parse_mrgf_banked_regs_option (opt->arg);
else
warning (OPT_mrgf_banked_regs_,
"option %<-mrgf-banked-regs%> valid only for "
"ARC v2 processors");
break;
default:
gcc_unreachable();
}
}
CLEAR_HARD_REG_SET (overrideregs);
if (common_deferred_options)
{
vec<cl_deferred_option> v =
*((vec<cl_deferred_option> *) common_deferred_options);
int reg, nregs, j;
FOR_EACH_VEC_ELT (v, i, opt)
{
switch (opt->opt_index)
{
case OPT_ffixed_:
case OPT_fcall_used_:
case OPT_fcall_saved_:
if ((reg = decode_reg_name_and_count (opt->arg, &nregs)) >= 0)
for (j = reg; j < reg + nregs; j++)
SET_HARD_REG_BIT (overrideregs, j);
break;
default:
break;
}
}
}
/* Check options against architecture options. Throw an error if
option is not allowed. Extra, check options against default
architecture/cpu flags and throw an warning if we find a
mismatch. */
/* TRANSLATORS: the DOC/DOC0/DOC1 are strings which shouldn't be
translated. They are like keywords which one can relate with the
architectural choices taken for an ARC CPU implementation. */
#define ARC_OPTX(NAME, CODE, VAR, VAL, DOC0, DOC1) \
do { \
if ((!(arc_selected_cpu->arch_info->flags & CODE)) \
&& (VAR == VAL)) \
error ("option %<%s=%s%> is not available for %qs CPU", \
DOC0, DOC1, arc_selected_cpu->name); \
if ((arc_selected_cpu->arch_info->dflags & CODE) \
&& (VAR != DEFAULT_##VAR) \
&& (VAR != VAL)) \
warning (0, "option %qs is ignored, the default value %qs" \
" is considered for %qs CPU", DOC0, DOC1, \
arc_selected_cpu->name); \
} while (0);
#define ARC_OPT(NAME, CODE, MASK, DOC) \
do { \
if ((!(arc_selected_cpu->arch_info->flags & CODE)) \
&& (target_flags & MASK)) \
error ("option %qs is not available for %qs CPU", \
DOC, arc_selected_cpu->name); \
if ((arc_selected_cpu->arch_info->dflags & CODE) \
&& (target_flags_explicit & MASK) \
&& (!(target_flags & MASK))) \
warning (0, "unset option %qs is ignored, it is always" \
" enabled for %qs CPU", DOC, \
arc_selected_cpu->name); \
} while (0);
#include "arc-options.def"
#undef ARC_OPTX
#undef ARC_OPT
/* Set cpu flags accordingly to architecture/selected cpu. The cpu
specific flags are set in arc-common.cc. The architecture forces
the default hardware configurations in, regardless what command
line options are saying. The CPU optional hw options can be
turned on or off. */
#define ARC_OPT(NAME, CODE, MASK, DOC) \
do { \
if ((arc_selected_cpu->flags & CODE) \
&& ((target_flags_explicit & MASK) == 0)) \
target_flags |= MASK; \
if (arc_selected_cpu->arch_info->dflags & CODE) \
target_flags |= MASK; \
} while (0);
#define ARC_OPTX(NAME, CODE, VAR, VAL, DOC0, DOC1) \
do { \
if ((arc_selected_cpu->flags & CODE) \
&& (VAR == DEFAULT_##VAR)) \
VAR = VAL; \
if (arc_selected_cpu->arch_info->dflags & CODE) \
VAR = VAL; \
} while (0);
#include "arc-options.def"
#undef ARC_OPTX
#undef ARC_OPT
/* Set extras. */
switch (arc_selected_cpu->extra)
{
case HAS_LPCOUNT_16:
arc_lpcwidth = 16;
break;
default:
break;
}
/* Set Tune option. */
if (arc_tune == ARC_TUNE_NONE)
arc_tune = (enum arc_tune_attr) arc_selected_cpu->tune;
if (arc_size_opt_level == 3)
optimize_size = 1;
if (TARGET_V2 && optimize_size && (ATTRIBUTE_PCS == 2))
TARGET_CODE_DENSITY_FRAME = 1;
if (flag_pic)
target_flags |= MASK_NO_SDATA_SET;
/* Check for small data option */
if (!OPTION_SET_P (g_switch_value) && !TARGET_NO_SDATA_SET)
g_switch_value = TARGET_LL64 ? 8 : 4;
/* A7 has an issue with delay slots. */
if (TARGET_ARC700 && (arc_tune != ARC_TUNE_ARC7XX))
flag_delayed_branch = 0;
/* Millicode thunks doesn't work for long calls. */
if (TARGET_LONG_CALLS_SET
/* neither for RF16. */
|| TARGET_RF16)
target_flags &= ~MASK_MILLICODE_THUNK_SET;
/* Set unaligned to all HS cpus. */
if (!OPTION_SET_P (unaligned_access) && TARGET_HS)
unaligned_access = 1;
if (TARGET_HS && (arc_tune == ARC_TUNE_ARCHS4X_REL31A))
{
TARGET_CODE_DENSITY_FRAME = 0;
flag_delayed_branch = 0;
}
/* These need to be done at start up. It's convenient to do them here. */
arc_init ();
}
/* The condition codes of the ARC, and the inverse function. */
/* For short branches, the "c" / "nc" names are not defined in the ARC
Programmers manual, so we have to use "lo" / "hs"" instead. */
static const char *arc_condition_codes[] =
{
"al", 0, "eq", "ne", "p", "n", "lo", "hs", "v", "nv",
"gt", "le", "ge", "lt", "hi", "ls", "pnz", 0
};
enum arc_cc_code_index
{
ARC_CC_AL, ARC_CC_EQ = ARC_CC_AL+2, ARC_CC_NE, ARC_CC_P, ARC_CC_N,
ARC_CC_C, ARC_CC_NC, ARC_CC_V, ARC_CC_NV,
ARC_CC_GT, ARC_CC_LE, ARC_CC_GE, ARC_CC_LT, ARC_CC_HI, ARC_CC_LS, ARC_CC_PNZ,
ARC_CC_LO = ARC_CC_C, ARC_CC_HS = ARC_CC_NC
};
#define ARC_INVERSE_CONDITION_CODE(X) ((X) ^ 1)
/* Returns the index of the ARC condition code string in
`arc_condition_codes'. COMPARISON should be an rtx like
`(eq (...) (...))'. */
static int
get_arc_condition_code (rtx comparison)
{
switch (GET_MODE (XEXP (comparison, 0)))
{
case E_CCmode:
case E_SImode: /* For BRcc. */
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case GT : return ARC_CC_GT;
case LE : return ARC_CC_LE;
case GE : return ARC_CC_GE;
case LT : return ARC_CC_LT;
case GTU : return ARC_CC_HI;
case LEU : return ARC_CC_LS;
case LTU : return ARC_CC_LO;
case GEU : return ARC_CC_HS;
default : gcc_unreachable ();
}
case E_CC_ZNmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case GE: return ARC_CC_P;
case LT: return ARC_CC_N;
case GT : return ARC_CC_PNZ;
default : gcc_unreachable ();
}
case E_CC_Zmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
default : gcc_unreachable ();
}
case E_CC_Cmode:
switch (GET_CODE (comparison))
{
case LTU : return ARC_CC_C;
case GEU : return ARC_CC_NC;
default : gcc_unreachable ();
}
case E_CC_FP_GTmode:
if (TARGET_ARGONAUT_SET && TARGET_SPFP)
switch (GET_CODE (comparison))
{
case GT : return ARC_CC_N;
case UNLE: return ARC_CC_P;
default : gcc_unreachable ();
}
else
switch (GET_CODE (comparison))
{
case GT : return ARC_CC_HI;
case UNLE : return ARC_CC_LS;
default : gcc_unreachable ();
}
case E_CC_FP_GEmode:
/* Same for FPX and non-FPX. */
switch (GET_CODE (comparison))
{
case GE : return ARC_CC_HS;
case UNLT : return ARC_CC_LO;
default : gcc_unreachable ();
}
case E_CC_FP_UNEQmode:
switch (GET_CODE (comparison))
{
case UNEQ : return ARC_CC_EQ;
case LTGT : return ARC_CC_NE;
default : gcc_unreachable ();
}
case E_CC_FP_ORDmode:
switch (GET_CODE (comparison))
{
case UNORDERED : return ARC_CC_C;
case ORDERED : return ARC_CC_NC;
default : gcc_unreachable ();
}
case E_CC_FPXmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case UNORDERED : return ARC_CC_C;
case ORDERED : return ARC_CC_NC;
case LTGT : return ARC_CC_HI;
case UNEQ : return ARC_CC_LS;
default : gcc_unreachable ();
}
case E_CC_FPUmode:
case E_CC_FPUEmode:
switch (GET_CODE (comparison))
{
case EQ : return ARC_CC_EQ;
case NE : return ARC_CC_NE;
case GT : return ARC_CC_GT;
case GE : return ARC_CC_GE;
case LT : return ARC_CC_C;
case LE : return ARC_CC_LS;
case UNORDERED : return ARC_CC_V;
case ORDERED : return ARC_CC_NV;
case UNGT : return ARC_CC_HI;
case UNGE : return ARC_CC_HS;
case UNLT : return ARC_CC_LT;
case UNLE : return ARC_CC_LE;
/* UNEQ and LTGT do not have representation. */
case LTGT : /* Fall through. */
case UNEQ : /* Fall through. */
default : gcc_unreachable ();
}
case E_CC_FPU_UNEQmode:
switch (GET_CODE (comparison))
{
case LTGT : return ARC_CC_NE;
case UNEQ : return ARC_CC_EQ;
default : gcc_unreachable ();
}
default : gcc_unreachable ();
}
/*NOTREACHED*/
return (42);
}
/* Return true if COMPARISON has a short form that can accomodate OFFSET. */
bool
arc_short_comparison_p (rtx comparison, int offset)
{
gcc_assert (ARC_CC_NC == ARC_CC_HS);
gcc_assert (ARC_CC_C == ARC_CC_LO);
switch (get_arc_condition_code (comparison))
{
case ARC_CC_EQ: case ARC_CC_NE:
return offset >= -512 && offset <= 506;
case ARC_CC_GT: case ARC_CC_LE: case ARC_CC_GE: case ARC_CC_LT:
case ARC_CC_HI: case ARC_CC_LS: case ARC_CC_LO: case ARC_CC_HS:
return offset >= -64 && offset <= 58;
default:
return false;
}
}
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. */
machine_mode
arc_select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
machine_mode mode = GET_MODE (x);
rtx x1;
/* For an operation that sets the condition codes as a side-effect, the
C and V flags is not set as for cmp, so we can only use comparisons where
this doesn't matter. (For LT and GE we can use "mi" and "pl"
instead.) */
/* ??? We could use "pnz" for greater than zero, however, we could then
get into trouble because the comparison could not be reversed. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& y == const0_rtx
&& (op == EQ || op == NE
|| ((op == LT || op == GE) && GET_MODE_SIZE (GET_MODE (x)) <= 4)))
return CC_ZNmode;
/* add.f for if (a+b) */
if (mode == SImode
&& GET_CODE (y) == NEG
&& (op == EQ || op == NE))
return CC_ZNmode;
/* Check if this is a test suitable for bxor.f . */
if (mode == SImode && (op == EQ || op == NE) && CONST_INT_P (y)
&& ((INTVAL (y) - 1) & INTVAL (y)) == 0
&& INTVAL (y))
return CC_Zmode;
/* Check if this is a test suitable for add / bmsk.f . */
if (mode == SImode && (op == EQ || op == NE) && CONST_INT_P (y)
&& GET_CODE (x) == AND && CONST_INT_P ((x1 = XEXP (x, 1)))
&& ((INTVAL (x1) + 1) & INTVAL (x1)) == 0
&& (~INTVAL (x1) | INTVAL (y)) < 0
&& (~INTVAL (x1) | INTVAL (y)) > -0x800)
return CC_Zmode;
if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
&& GET_CODE (x) == PLUS
&& (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
return CC_Cmode;
if (TARGET_ARGONAUT_SET
&& ((mode == SFmode && TARGET_SPFP) || (mode == DFmode && TARGET_DPFP)))
switch (op)
{
case EQ: case NE: case UNEQ: case LTGT: case ORDERED: case UNORDERED:
return CC_FPXmode;
case LT: case UNGE: case GT: case UNLE:
return CC_FP_GTmode;
case LE: case UNGT: case GE: case UNLT:
return CC_FP_GEmode;
default: gcc_unreachable ();
}
else if (TARGET_HARD_FLOAT
&& ((mode == SFmode && TARGET_FP_SP_BASE)
|| (mode == DFmode && TARGET_FP_DP_BASE)))
switch (op)
{
case EQ:
case NE:
case UNORDERED:
case ORDERED:
case UNLT:
case UNLE:
case UNGT:
case UNGE:
return CC_FPUmode;
case LT:
case LE:
case GT:
case GE:
return CC_FPUEmode;
case LTGT:
case UNEQ:
return CC_FPU_UNEQmode;
default:
gcc_unreachable ();
}
else if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_OPTFPE)
{
switch (op)
{
case EQ: case NE: return CC_Zmode;
case LT: case UNGE:
case GT: case UNLE: return CC_FP_GTmode;
case LE: case UNGT:
case GE: case UNLT: return CC_FP_GEmode;
case UNEQ: case LTGT: return CC_FP_UNEQmode;
case ORDERED: case UNORDERED: return CC_FP_ORDmode;
default: gcc_unreachable ();
}
}
return CCmode;
}
/* Vectors to keep interesting information about registers where it can easily
be got. We use to use the actual mode value as the bit number, but there
is (or may be) more than 32 modes now. Instead we use two tables: one
indexed by hard register number, and one indexed by mode. */
/* The purpose of arc_mode_class is to shrink the range of modes so that
they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
mapped into one arc_mode_class mode. */
enum arc_mode_class {
C_MODE,
S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE,
V_MODE
};
/* Modes for condition codes. */
#define C_MODES (1 << (int) C_MODE)
/* Modes for single-word and smaller quantities. */
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-word and smaller quantities. */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
/* Mode for 8-byte DF values only. */
#define DF_MODES (1 << DF_MODE)
/* Modes for quad-word and smaller quantities. */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
/* Modes for 128-bit vectors. */
#define V_MODES (1 << (int) V_MODE)
/* Value is 1 if register/mode pair is acceptable on arc. */
static unsigned int arc_hard_regno_modes[] = {
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, D_MODES,
D_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
/* ??? Leave these as S_MODES for now. */
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
DF_MODES, 0, DF_MODES, 0, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, C_MODES, S_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES, V_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES, S_MODES,
S_MODES, S_MODES
};
static unsigned int arc_mode_class [NUM_MACHINE_MODES];
enum reg_class arc_regno_reg_class[FIRST_PSEUDO_REGISTER];
enum reg_class
arc_preferred_reload_class (rtx, enum reg_class cl)
{
return cl;
}
/* Initialize the arc_mode_class array. */
static void
arc_init_reg_tables (void)
{
int i;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
machine_mode m = (machine_mode) i;
switch (GET_MODE_CLASS (m))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
if (GET_MODE_SIZE (m) <= 4)
arc_mode_class[i] = 1 << (int) S_MODE;
else if (GET_MODE_SIZE (m) == 8)
arc_mode_class[i] = 1 << (int) D_MODE;
else if (GET_MODE_SIZE (m) == 16)
arc_mode_class[i] = 1 << (int) T_MODE;
else if (GET_MODE_SIZE (m) == 32)
arc_mode_class[i] = 1 << (int) O_MODE;
else
arc_mode_class[i] = 0;
break;
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
if (GET_MODE_SIZE (m) <= 4)
arc_mode_class[i] = 1 << (int) SF_MODE;
else if (GET_MODE_SIZE (m) == 8)
arc_mode_class[i] = 1 << (int) DF_MODE;
else if (GET_MODE_SIZE (m) == 16)
arc_mode_class[i] = 1 << (int) TF_MODE;
else if (GET_MODE_SIZE (m) == 32)
arc_mode_class[i] = 1 << (int) OF_MODE;
else
arc_mode_class[i] = 0;
break;
case MODE_VECTOR_INT:
if (GET_MODE_SIZE (m) == 4)
arc_mode_class[i] = (1 << (int) S_MODE);
else if (GET_MODE_SIZE (m) == 8)
arc_mode_class[i] = (1 << (int) D_MODE);
else
arc_mode_class[i] = (1 << (int) V_MODE);
break;
case MODE_CC:
default:
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
we must explicitly check for them here. */
if (i == (int) CCmode || i == (int) CC_ZNmode || i == (int) CC_Zmode
|| i == (int) CC_Cmode
|| i == CC_FP_GTmode || i == CC_FP_GEmode || i == CC_FP_ORDmode
|| i == CC_FPUmode || i == CC_FPUEmode || i == CC_FPU_UNEQmode)
arc_mode_class[i] = 1 << (int) C_MODE;
else
arc_mode_class[i] = 0;
break;
}
}
}
/* Core registers 56..59 are used for multiply extension options.
The dsp option uses r56 and r57, these are then named acc1 and acc2.
acc1 is the highpart, and acc2 the lowpart, so which register gets which
number depends on endianness.
The mul64 multiplier options use r57 for mlo, r58 for mmid and r59 for mhi.
Because mlo / mhi form a 64 bit value, we use different gcc internal
register numbers to make them form a register pair as the gcc internals
know it. mmid gets number 57, if still available, and mlo / mhi get
number 58 and 59, depending on endianness. We use DBX_REGISTER_NUMBER
to map this back. */
char rname56[5] = "r56";
char rname57[5] = "r57";
char rname58[5] = "r58";
char rname59[5] = "r59";
char rname29[7] = "ilink1";
char rname30[7] = "ilink2";
static void
arc_conditional_register_usage (void)
{
int regno;
int i;
int fix_start = 60, fix_end = 55;
if (TARGET_V2)
{
/* For ARCv2 the core register set is changed. */
strcpy (rname29, "ilink");
strcpy (rname30, "r30");
if (!TEST_HARD_REG_BIT (overrideregs, R30_REG))
{
/* No user interference. Set the r30 to be used by the
compiler. */
call_used_regs[R30_REG] = 1;
fixed_regs[R30_REG] = 0;
arc_regno_reg_class[R30_REG] = GENERAL_REGS;
}
}
if (TARGET_MUL64_SET)
{
fix_start = R57_REG;
fix_end = R59_REG;
/* We don't provide a name for mmed. In rtl / assembly resource lists,
you are supposed to refer to it as mlo & mhi, e.g
(zero_extract:SI (reg:DI 58) (const_int 32) (16)) .
In an actual asm instruction, you are of course use mmed.
The point of avoiding having a separate register for mmed is that
this way, we don't have to carry clobbers of that reg around in every
isntruction that modifies mlo and/or mhi. */
strcpy (rname57, "");
strcpy (rname58, "mlo");
strcpy (rname59, "mhi");
}
/* The nature of arc_tp_regno is actually something more like a global
register, however globalize_reg requires a declaration.
We use EPILOGUE_USES to compensate so that sets from
__builtin_set_frame_pointer are not deleted. */
if (arc_tp_regno != -1)
fixed_regs[arc_tp_regno] = call_used_regs[arc_tp_regno] = 1;
if (TARGET_MULMAC_32BY16_SET)
{
fix_start = MUL32x16_REG;
fix_end = fix_end > R57_REG ? fix_end : R57_REG;
strcpy (rname56, TARGET_BIG_ENDIAN ? "acc1" : "acc2");
strcpy (rname57, TARGET_BIG_ENDIAN ? "acc2" : "acc1");
}
for (regno = fix_start; regno <= fix_end; regno++)
{
if (!fixed_regs[regno])
warning (0, "multiply option implies r%d is fixed", regno);
fixed_regs [regno] = call_used_regs[regno] = 1;
}
/* Reduced configuration: don't use r4-r9, r16-r25. */
if (TARGET_RF16)
{
for (i = R4_REG; i <= R9_REG; i++)
fixed_regs[i] = call_used_regs[i] = 1;
for (i = R16_REG; i <= R25_REG; i++)
fixed_regs[i] = call_used_regs[i] = 1;
}
/* ARCHS has 64-bit data-path which makes use of the even-odd paired
registers. */
if (TARGET_HS)
for (regno = R1_REG; regno < R32_REG; regno +=2)
arc_hard_regno_modes[regno] = S_MODES;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (i < ILINK1_REG)
{
if ((i <= R3_REG) || ((i >= R12_REG) && (i <= R15_REG)))
arc_regno_reg_class[i] = ARCOMPACT16_REGS;
else
arc_regno_reg_class[i] = GENERAL_REGS;
}
else if (i < LP_COUNT)
arc_regno_reg_class[i] = GENERAL_REGS;
else
arc_regno_reg_class[i] = NO_REGS;
/* Handle Special Registers. */
arc_regno_reg_class[CC_REG] = NO_REGS; /* CC_REG: must be NO_REGS. */
arc_regno_reg_class[FRAME_POINTER_REGNUM] = GENERAL_REGS;
arc_regno_reg_class[ARG_POINTER_REGNUM] = GENERAL_REGS;
if (TARGET_DPFP)
for (i = R40_REG; i < R44_REG; ++i)
{
arc_regno_reg_class[i] = DOUBLE_REGS;
if (!TARGET_ARGONAUT_SET)
CLEAR_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i);
}
else
{
/* Disable all DOUBLE_REGISTER settings, if not generating DPFP
code. */
arc_regno_reg_class[R40_REG] = ALL_REGS;
arc_regno_reg_class[R41_REG] = ALL_REGS;
arc_regno_reg_class[R42_REG] = ALL_REGS;
arc_regno_reg_class[R43_REG] = ALL_REGS;
fixed_regs[R40_REG] = 1;
fixed_regs[R41_REG] = 1;
fixed_regs[R42_REG] = 1;
fixed_regs[R43_REG] = 1;
arc_hard_regno_modes[R40_REG] = 0;
arc_hard_regno_modes[R42_REG] = 0;
}
if (TARGET_SIMD_SET)
{
gcc_assert (ARC_FIRST_SIMD_VR_REG == 64);
gcc_assert (ARC_LAST_SIMD_VR_REG == 127);
for (i = ARC_FIRST_SIMD_VR_REG; i <= ARC_LAST_SIMD_VR_REG; i++)
arc_regno_reg_class [i] = SIMD_VR_REGS;
gcc_assert (ARC_FIRST_SIMD_DMA_CONFIG_REG == 128);
gcc_assert (ARC_FIRST_SIMD_DMA_CONFIG_IN_REG == 128);
gcc_assert (ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG == 136);
gcc_assert (ARC_LAST_SIMD_DMA_CONFIG_REG == 143);
for (i = ARC_FIRST_SIMD_DMA_CONFIG_REG;
i <= ARC_LAST_SIMD_DMA_CONFIG_REG; i++)
arc_regno_reg_class [i] = SIMD_DMA_CONFIG_REGS;
}
/* pc : r63 */
arc_regno_reg_class[PCL_REG] = NO_REGS;
/*ARCV2 Accumulator. */
if ((TARGET_V2
&& (TARGET_FP_DP_FUSED || TARGET_FP_SP_FUSED))
|| TARGET_PLUS_DMPY)
{
arc_regno_reg_class[ACCL_REGNO] = GENERAL_REGS;
arc_regno_reg_class[ACCH_REGNO] = GENERAL_REGS;
/* Allow the compiler to freely use them. */
if (!TEST_HARD_REG_BIT (overrideregs, ACCL_REGNO))
fixed_regs[ACCL_REGNO] = 0;
if (!TEST_HARD_REG_BIT (overrideregs, ACCH_REGNO))
fixed_regs[ACCH_REGNO] = 0;
if (!fixed_regs[ACCH_REGNO] && !fixed_regs[ACCL_REGNO])
arc_hard_regno_modes[ACC_REG_FIRST] = D_MODES;
}
}
/* Implement TARGET_HARD_REGNO_NREGS. */
static unsigned int
arc_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
if (GET_MODE_SIZE (mode) == 16
&& regno >= ARC_FIRST_SIMD_VR_REG
&& regno <= ARC_LAST_SIMD_VR_REG)
return 1;
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}
/* Implement TARGET_HARD_REGNO_MODE_OK. */
static bool
arc_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
return (arc_hard_regno_modes[regno] & arc_mode_class[mode]) != 0;
}
/* Implement TARGET_MODES_TIEABLE_P. Tie QI/HI/SI modes together. */
static bool
arc_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
return (GET_MODE_CLASS (mode1) == MODE_INT
&& GET_MODE_CLASS (mode2) == MODE_INT
&& GET_MODE_SIZE (mode1) <= UNITS_PER_WORD
&& GET_MODE_SIZE (mode2) <= UNITS_PER_WORD);
}
/* Handle an "interrupt" attribute; arguments as in
struct attribute_spec.handler. */
static tree
arc_handle_interrupt_attribute (tree *, tree name, tree args, int,
bool *no_add_attrs)
{
gcc_assert (args);
tree value = TREE_VALUE (args);
if (TREE_CODE (value) != STRING_CST)
{
warning (OPT_Wattributes,
"argument of %qE attribute is not a string constant",
name);
*no_add_attrs = true;
}
else if (!TARGET_V2
&& strcmp (TREE_STRING_POINTER (value), "ilink1")
&& strcmp (TREE_STRING_POINTER (value), "ilink2"))
{
warning (OPT_Wattributes,
"argument of %qE attribute is not \"ilink1\" or \"ilink2\"",
name);
*no_add_attrs = true;
}
else if (TARGET_V2
&& strcmp (TREE_STRING_POINTER (value), "ilink")
&& strcmp (TREE_STRING_POINTER (value), "firq"))
{
warning (OPT_Wattributes,
"argument of %qE attribute is not \"ilink\" or \"firq\"",
name);
*no_add_attrs = true;
}
return NULL_TREE;
}
static tree
arc_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Type of function DECL.
The result is cached. To reset the cache at the end of a function,
call with DECL = NULL_TREE. */
static unsigned int
arc_compute_function_type (struct function *fun)
{
tree attr, decl = fun->decl;
unsigned int fn_type = fun->machine->fn_type;
if (fn_type != ARC_FUNCTION_UNKNOWN)
return fn_type;
/* Check if it is a naked function. */
if (lookup_attribute ("naked", DECL_ATTRIBUTES (decl)) != NULL_TREE)
fn_type |= ARC_FUNCTION_NAKED;
else
fn_type |= ARC_FUNCTION_NORMAL;
/* Now see if this is an interrupt handler. */
attr = lookup_attribute ("interrupt", DECL_ATTRIBUTES (decl));
if (attr != NULL_TREE)
{
tree value, args = TREE_VALUE (attr);
gcc_assert (list_length (args) == 1);
value = TREE_VALUE (args);
gcc_assert (TREE_CODE (value) == STRING_CST);
if (!strcmp (TREE_STRING_POINTER (value), "ilink1")
|| !strcmp (TREE_STRING_POINTER (value), "ilink"))
fn_type |= ARC_FUNCTION_ILINK1;
else if (!strcmp (TREE_STRING_POINTER (value), "ilink2"))
fn_type |= ARC_FUNCTION_ILINK2;
else if (!strcmp (TREE_STRING_POINTER (value), "firq"))
fn_type |= ARC_FUNCTION_FIRQ;
else
gcc_unreachable ();
}
return fun->machine->fn_type = fn_type;
}
/* Implement `TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS' */
static bool
arc_allocate_stack_slots_for_args (void)
{
/* Naked functions should not allocate stack slots for arguments. */
unsigned int fn_type = arc_compute_function_type (cfun);
return !ARC_NAKED_P(fn_type);
}
/* Implement `TARGET_WARN_FUNC_RETURN'. */
static bool
arc_warn_func_return (tree decl)
{
struct function *func = DECL_STRUCT_FUNCTION (decl);
unsigned int fn_type = arc_compute_function_type (func);
return !ARC_NAKED_P (fn_type);
}
/* Return zero if TYPE1 and TYPE are incompatible, one if they are compatible,
and two if they are nearly compatible (which causes a warning to be
generated). */
static int
arc_comp_type_attributes (const_tree type1,
const_tree type2)
{
int l1, l2, m1, m2, s1, s2;
/* Check for mismatch of non-default calling convention. */
if (TREE_CODE (type1) != FUNCTION_TYPE)
return 1;
/* Check for mismatched call attributes. */
l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
m1 = lookup_attribute ("medium_call", TYPE_ATTRIBUTES (type1)) != NULL;
m2 = lookup_attribute ("medium_call", TYPE_ATTRIBUTES (type2)) != NULL;
s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;
/* Only bother to check if an attribute is defined. */
if (l1 | l2 | m1 | m2 | s1 | s2)
{
/* If one type has an attribute, the other must have the same attribute. */
if ((l1 != l2) || (m1 != m2) || (s1 != s2))
return 0;
/* Disallow mixed attributes. */
if (l1 + m1 + s1 > 1)
return 0;
}
return 1;
}
/* Misc. utilities. */
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for the cc reg in the proper mode. */
rtx
gen_compare_reg (rtx comparison, machine_mode omode)
{
enum rtx_code code = GET_CODE (comparison);
rtx x = XEXP (comparison, 0);
rtx y = XEXP (comparison, 1);
rtx tmp, cc_reg;
machine_mode mode, cmode;
cmode = GET_MODE (x);
if (cmode == VOIDmode)
cmode = GET_MODE (y);
/* If ifcvt passed us a MODE_CC comparison we can
just return it. It should be in the proper form already. */
if (GET_MODE_CLASS (cmode) == MODE_CC)
return comparison;
if (cmode != SImode && cmode != SFmode && cmode != DFmode)
return NULL_RTX;
if (cmode == SImode)
{
if (!register_operand (x, SImode))
{
if (register_operand (y, SImode))
{
tmp = x;
x = y;
y = tmp;
code = swap_condition (code);
}
else
x = copy_to_mode_reg (SImode, x);
}
if (GET_CODE (y) == SYMBOL_REF && flag_pic)
y = copy_to_mode_reg (SImode, y);
}
else
{
x = force_reg (cmode, x);
y = force_reg (cmode, y);
}
mode = SELECT_CC_MODE (code, x, y);
cc_reg = gen_rtx_REG (mode, CC_REG);
/* ??? FIXME (x-y)==0, as done by both cmpsfpx_raw and
cmpdfpx_raw, is not a correct comparison for floats:
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
*/
if (TARGET_ARGONAUT_SET
&& ((cmode == SFmode && TARGET_SPFP) || (cmode == DFmode && TARGET_DPFP)))
{
switch (code)
{
case NE: case EQ: case LT: case UNGE: case LE: case UNGT:
case UNEQ: case LTGT: case ORDERED: case UNORDERED:
break;
case GT: case UNLE: case GE: case UNLT:
code = swap_condition (code);
tmp = x;
x = y;
y = tmp;
break;
default:
gcc_unreachable ();
}
if (cmode == SFmode)
{
emit_insn (gen_cmpsfpx_raw (x, y));
}
else /* DFmode */
{
/* Accepts Dx regs directly by insns. */
emit_insn (gen_cmpdfpx_raw (x, y));
}
if (mode != CC_FPXmode)
emit_insn (gen_rtx_SET (cc_reg,
gen_rtx_COMPARE (mode,
gen_rtx_REG (CC_FPXmode, 61),
const0_rtx)));
}
else if (TARGET_FPX_QUARK && (cmode == SFmode))
{
switch (code)
{
case NE: case EQ: case GT: case UNLE: case GE: case UNLT:
case UNEQ: case LTGT: case ORDERED: case UNORDERED:
break;
case LT: case UNGE: case LE: case UNGT:
code = swap_condition (code);
tmp = x;
x = y;
y = tmp;
break;
default:
gcc_unreachable ();
}
emit_insn (gen_cmp_quark (cc_reg,
gen_rtx_COMPARE (mode, x, y)));
}
else if (TARGET_HARD_FLOAT
&& ((cmode == SFmode && TARGET_FP_SP_BASE)
|| (cmode == DFmode && TARGET_FP_DP_BASE)))
emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y)));
else if (GET_MODE_CLASS (cmode) == MODE_FLOAT && TARGET_OPTFPE)
{
rtx op0 = gen_rtx_REG (cmode, 0);
rtx op1 = gen_rtx_REG (cmode, GET_MODE_SIZE (cmode) / UNITS_PER_WORD);
bool swap = false;
switch (code)
{
case NE: case EQ: case GT: case UNLE: case GE: case UNLT:
case UNEQ: case LTGT: case ORDERED: case UNORDERED:
break;
case LT: case UNGE: case LE: case UNGT:
code = swap_condition (code);
swap = true;
break;
default:
gcc_unreachable ();
}
if (currently_expanding_to_rtl)
{
if (swap)
{
tmp = x;
x = y;
y = tmp;
}
emit_move_insn (op0, x);
emit_move_insn (op1, y);
}
else
{
gcc_assert (rtx_equal_p (op0, x));
gcc_assert (rtx_equal_p (op1, y));
if (swap)
{
op0 = y;
op1 = x;
}
}
emit_insn (gen_cmp_float (cc_reg, gen_rtx_COMPARE (mode, op0, op1)));
}
else
emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y)));
return gen_rtx_fmt_ee (code, omode, cc_reg, const0_rtx);
}
/* Return true if VALUE, a const_double, will fit in a limm (4 byte number).
We assume the value can be either signed or unsigned. */
bool
arc_double_limm_p (rtx value)
{
HOST_WIDE_INT low, high;
gcc_assert (GET_CODE (value) == CONST_DOUBLE);
if (TARGET_DPFP)
return true;
low = CONST_DOUBLE_LOW (value);
high = CONST_DOUBLE_HIGH (value);
if (low & 0x80000000)
{
return (((unsigned HOST_WIDE_INT) low <= 0xffffffff && high == 0)
|| (((low & - (unsigned HOST_WIDE_INT) 0x80000000)
== - (unsigned HOST_WIDE_INT) 0x80000000)
&& high == -1));
}
else
{
return (unsigned HOST_WIDE_INT) low <= 0x7fffffff && high == 0;
}
}
/* Do any needed setup for a variadic function. For the ARC, we must
create a register parameter block, and then copy any anonymous arguments
in registers to memory.
CUM has not been updated for the last named argument (which is given
by ARG), and we rely on this fact. */
static void
arc_setup_incoming_varargs (cumulative_args_t args_so_far,
const function_arg_info &arg,
int *pretend_size, int no_rtl)
{
int first_anon_arg;
CUMULATIVE_ARGS next_cum;
/* We must treat `__builtin_va_alist' as an anonymous arg. */
next_cum = *get_cumulative_args (args_so_far);
arc_function_arg_advance (pack_cumulative_args (&next_cum), arg);
first_anon_arg = next_cum;
if (FUNCTION_ARG_REGNO_P (first_anon_arg))
{
/* First anonymous (unnamed) argument is in a reg. */
/* Note that first_reg_offset < MAX_ARC_PARM_REGS. */
int first_reg_offset = first_anon_arg;
if (!no_rtl)
{
rtx regblock
= gen_rtx_MEM (BLKmode, plus_constant (Pmode, arg_pointer_rtx,
FIRST_PARM_OFFSET (0)));
move_block_from_reg (first_reg_offset, regblock,
MAX_ARC_PARM_REGS - first_reg_offset);
}
*pretend_size
= ((MAX_ARC_PARM_REGS - first_reg_offset ) * UNITS_PER_WORD);
}
}
/* Cost functions. */
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant. */
static int
arc_address_cost (rtx addr, machine_mode, addr_space_t, bool speed)
{
switch (GET_CODE (addr))
{
case REG :
return speed || satisfies_constraint_Rcq (addr) ? 0 : 1;
case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
case PRE_MODIFY: case POST_MODIFY:
return !speed;
case LABEL_REF :
case SYMBOL_REF :
case CONST :
if (TARGET_NPS_CMEM && cmem_address (addr, SImode))
return 0;
/* Most likely needs a LIMM. */
return COSTS_N_INSNS (1);
case PLUS :
{
rtx plus0 = XEXP (addr, 0);
rtx plus1 = XEXP (addr, 1);
if (GET_CODE (plus0) != REG
&& (GET_CODE (plus0) != MULT
|| !CONST_INT_P (XEXP (plus0, 1))
|| (INTVAL (XEXP (plus0, 1)) != 2
&& INTVAL (XEXP (plus0, 1)) != 4)))
break;
switch (GET_CODE (plus1))
{
case CONST_INT :
return (!RTX_OK_FOR_OFFSET_P (SImode, plus1)
? COSTS_N_INSNS (1)
: speed
? 0
: (satisfies_constraint_Rcq (plus0)
&& satisfies_constraint_O (plus1))
? 0
: 1);
case REG:
return (speed < 1 ? 0
: (satisfies_constraint_Rcq (plus0)
&& satisfies_constraint_Rcq (plus1))
? 0 : 1);
case CONST :
case SYMBOL_REF :
case LABEL_REF :
return COSTS_N_INSNS (1);
default:
break;
}
break;
}
default:
break;
}
return 4;
}
/* Emit instruction X with the frame related bit set. */
static rtx
frame_insn (rtx x)
{
x = emit_insn (x);
RTX_FRAME_RELATED_P (x) = 1;
return x;
}
/* Emit a frame insn to move SRC to DST. */
static rtx
frame_move (rtx dst, rtx src)
{
rtx tmp = gen_rtx_SET (dst, src);
RTX_FRAME_RELATED_P (tmp) = 1;
return frame_insn (tmp);
}
/* Like frame_move, but add a REG_INC note for REG if ADDR contains an
auto increment address, or is zero. */
static rtx
frame_move_inc (rtx dst, rtx src, rtx reg, rtx addr)
{
rtx insn = frame_move (dst, src);
if (!addr
|| GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC
|| GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
add_reg_note (insn, REG_INC, reg);
return insn;
}
/* Emit a frame insn which adjusts a frame address register REG by OFFSET. */
static rtx
frame_add (rtx reg, HOST_WIDE_INT offset)
{
gcc_assert ((offset & 0x3) == 0);
if (!offset)
return NULL_RTX;
return frame_move (reg, plus_constant (Pmode, reg, offset));
}
/* Emit a frame insn which adjusts stack pointer by OFFSET. */
static rtx
frame_stack_add (HOST_WIDE_INT offset)
{
return frame_add (stack_pointer_rtx, offset);
}
/* Helper function to wrap FRAME_POINTER_NEEDED. We do this as
FRAME_POINTER_NEEDED will not be true until the IRA (Integrated
Register Allocator) pass, while we want to get the frame size
correct earlier than the IRA pass.
When a function uses eh_return we must ensure that the fp register
is saved and then restored so that the unwinder can restore the
correct value for the frame we are going to jump to.
To do this we force all frames that call eh_return to require a
frame pointer (see arc_frame_pointer_required), this
will ensure that the previous frame pointer is stored on entry to
the function, and will then be reloaded at function exit.
As the frame pointer is handled as a special case in our prologue
and epilogue code it must not be saved and restored using the
MUST_SAVE_REGISTER mechanism otherwise we run into issues where GCC
believes that the function is not using a frame pointer and that
the value in the fp register is the frame pointer, while the
prologue and epilogue are busy saving and restoring the fp
register.
During compilation of a function the frame size is evaluated
multiple times, it is not until the reload pass is complete the
frame size is considered fixed (it is at this point that space for
all spills has been allocated). However the frame_pointer_needed
variable is not set true until the register allocation pass, as a
result in the early stages the frame size does not include space
for the frame pointer to be spilled.
The problem that this causes is that the rtl generated for
EH_RETURN_HANDLER_RTX uses the details of the frame size to compute
the offset from the frame pointer at which the return address
lives. However, in early passes GCC has not yet realised we need a
frame pointer, and so has not included space for the frame pointer
in the frame size, and so gets the offset of the return address
wrong. This should not be an issue as in later passes GCC has
realised that the frame pointer needs to be spilled, and has
increased the frame size. However, the rtl for the
EH_RETURN_HANDLER_RTX is not regenerated to use the newer, larger
offset, and the wrong smaller offset is used. */
static bool
arc_frame_pointer_needed (void)
{
return (frame_pointer_needed || crtl->calls_eh_return);
}
/* Tell prologue and epilogue if register REGNO should be saved /
restored. The SPECIAL_P is true when the register may need special
ld/st sequence. The return address, and stack pointer are treated
separately. Don't consider them here. */
static bool
arc_must_save_register (int regno, struct function *func, bool special_p)
{
unsigned int fn_type = arc_compute_function_type (func);
bool irq_auto_save_p = ((irq_ctrl_saved.irq_save_last_reg >= regno)
&& ARC_AUTO_IRQ_P (fn_type));
bool firq_auto_save_p = ARC_FAST_INTERRUPT_P (fn_type);
switch (rgf_banked_register_count)
{
case 4:
firq_auto_save_p &= (regno < 4);
break;
case 8:
firq_auto_save_p &= ((regno < 4) || ((regno > 11) && (regno < 16)));
break;
case 16:
firq_auto_save_p &= ((regno < 4) || ((regno > 9) && (regno < 16))
|| ((regno > 25) && (regno < 29))
|| ((regno > 29) && (regno < 32)));
break;
case 32:
firq_auto_save_p &= (regno != 29) && (regno < 32);
break;
default:
firq_auto_save_p = false;
break;
}
switch (regno)
{
case ILINK1_REG:
case RETURN_ADDR_REGNUM:
case STACK_POINTER_REGNUM:
/* The stack pointer and the return address are handled
separately. */
return false;
case R30_REG:
/* r30 is either used as ilink2 by ARCv1 or as a free register
by ARCv2. */
if (!TARGET_V2)
return false;
break;
case R40_REG:
case R41_REG:
case R42_REG:
case R43_REG:
case R44_REG:
/* If those ones are used by the FPX machinery, we handle them
separately. */
if (TARGET_DPFP && !special_p)
return false;
/* FALLTHRU. */
case R32_REG:
case R33_REG:
case R34_REG:
case R35_REG:
case R36_REG:
case R37_REG:
case R38_REG:
case R39_REG:
case R45_REG:
case R46_REG:
case R47_REG:
case R48_REG:
case R49_REG:
case R50_REG:
case R51_REG:
case R52_REG:
case R53_REG:
case R54_REG:
case R55_REG:
case R56_REG:
case R57_REG:
/* The Extension Registers. */
if (ARC_INTERRUPT_P (fn_type)
&& (df_regs_ever_live_p (RETURN_ADDR_REGNUM)
|| df_regs_ever_live_p (regno))
/* Not all extension registers are available, choose the
real ones. */
&& !fixed_regs[regno])
return true;
return false;
case R58_REG:
case R59_REG:
/* ARC600 specifies those ones as mlo/mhi registers, otherwise
just handle them like any other extension register. */
if (ARC_INTERRUPT_P (fn_type)
&& (df_regs_ever_live_p (RETURN_ADDR_REGNUM)
|| df_regs_ever_live_p (regno))
/* Not all extension registers are available, choose the
real ones. */
&& ((!fixed_regs[regno] && !special_p)
|| (TARGET_MUL64_SET && special_p)))
return true;
return false;
case 61:
case 62:
case 63:
/* Fixed/control register, nothing to do. LP_COUNT is
different. */
return false;
case HARD_FRAME_POINTER_REGNUM:
/* If we need FP reg as a frame pointer then don't save it as a
regular reg. */
if (arc_frame_pointer_needed ())
return false;
break;
default:
break;
}
if (((df_regs_ever_live_p (regno) && !call_used_or_fixed_reg_p (regno))
/* In an interrupt save everything. */
|| (ARC_INTERRUPT_P (fn_type)
&& (df_regs_ever_live_p (RETURN_ADDR_REGNUM)
|| df_regs_ever_live_p (regno))))
/* Do not emit code for auto saved regs. */
&& !irq_auto_save_p
&& !firq_auto_save_p)
return true;
return false;
}
/* Return true if the return address must be saved in the current function,
otherwise return false. */
static bool
arc_must_save_return_addr (struct function *func)
{
if (func->machine->frame_info.save_return_addr)
return true;
return false;
}
/* Return non-zero if there are registers to be saved or loaded using
millicode thunks. We can only use consecutive sequences starting
with r13, and not going beyond r25.
GMASK is a bitmask of registers to save. This function sets
FRAME->millicod_start_reg .. FRAME->millicode_end_reg to the range
of registers to be saved / restored with a millicode call. */
static int
arc_compute_millicode_save_restore_regs (uint64_t gmask,
struct arc_frame_info *frame)
{
int regno;
int start_reg = 13, end_reg = 25;
for (regno = start_reg; regno <= end_reg && (gmask & (1ULL << regno));)
regno++;
end_reg = regno - 1;
/* There is no point in using millicode thunks if we don't save/restore
at least three registers. For non-leaf functions we also have the
blink restore. */
if (regno - start_reg >= 3 - (crtl->is_leaf == 0))
{
frame->millicode_start_reg = 13;
frame->millicode_end_reg = regno - 1;
return 1;
}
return 0;
}
/* Return the bytes needed to compute the frame pointer from the
current stack pointer. */
static unsigned int
arc_compute_frame_size (void)
{
int regno;
unsigned int total_size, var_size, args_size, pretend_size, extra_size;
unsigned int reg_size;
uint64_t gmask;
struct arc_frame_info *frame_info;
int size;
unsigned int extra_plus_reg_size;
unsigned int extra_plus_reg_size_aligned;
unsigned int fn_type = arc_compute_function_type (cfun);
/* The answer might already be known. */
if (cfun->machine->frame_info.initialized)
return cfun->machine->frame_info.total_size;
frame_info = &cfun->machine->frame_info;
size = ARC_STACK_ALIGN (get_frame_size ());
/* 1) Size of locals and temporaries. */
var_size = size;
/* 2) Size of outgoing arguments. */
args_size = crtl->outgoing_args_size;
/* 3) Calculate space needed for saved registers.
??? We ignore the extension registers for now. */
/* See if this is an interrupt handler. Call used registers must be saved
for them too. */
reg_size = 0;
gmask = 0;
/* The last 4 regs are special, avoid them. */
for (regno = 0; regno <= (GMASK_LEN - 4); regno++)
{
if (arc_must_save_register (regno, cfun, false))
{
reg_size += UNITS_PER_WORD;
gmask |= 1ULL << regno;
}
}
/* In a frame that calls __builtin_eh_return two data registers are
used to pass values back to the exception handler.
Ensure that these registers are spilled to the stack so that the
exception throw code can find them, and update the saved values.
The handling code will then consume these reloaded values to
handle the exception. */
if (crtl->calls_eh_return)
for (regno = 0; EH_RETURN_DATA_REGNO (regno) != INVALID_REGNUM; regno++)
{
reg_size += UNITS_PER_WORD;
gmask |= 1ULL << regno;
}
/* Check if we need to save the return address. */
frame_info->save_return_addr = (!crtl->is_leaf
|| df_regs_ever_live_p (RETURN_ADDR_REGNUM)
|| crtl->calls_eh_return);
/* Saving blink reg for millicode thunk calls. */
if (TARGET_MILLICODE_THUNK_SET
&& !ARC_INTERRUPT_P (fn_type)
&& !crtl->calls_eh_return)
{
if (arc_compute_millicode_save_restore_regs (gmask, frame_info))
frame_info->save_return_addr = true;
}
/* Save lp_count, lp_start and lp_end. */
if (arc_lpcwidth != 0 && arc_must_save_register (LP_COUNT, cfun, true))
reg_size += UNITS_PER_WORD * 3;
/* Check for the special R40-R44 regs used by FPX extension. */
if (arc_must_save_register (TARGET_BIG_ENDIAN ? R41_REG : R40_REG,
cfun, TARGET_DPFP))
reg_size += UNITS_PER_WORD * 2;
if (arc_must_save_register (TARGET_BIG_ENDIAN ? R43_REG : R42_REG,
cfun, TARGET_DPFP))
reg_size += UNITS_PER_WORD * 2;
/* Check if R58 is used. */
if (arc_must_save_register (R58_REG, cfun, true))
reg_size += UNITS_PER_WORD * 2;
/* 4) Calculate extra size made up of the blink + fp size. */
extra_size = 0;
if (arc_must_save_return_addr (cfun))
extra_size = 4;
/* Add FP size only when it is not autosaved. */
if (arc_frame_pointer_needed ()
&& !ARC_AUTOFP_IRQ_P (fn_type))
extra_size += 4;
/* 5) Space for variable arguments passed in registers */
pretend_size = crtl->args.pretend_args_size;
/* Ensure everything before the locals is aligned appropriately. */
extra_plus_reg_size = extra_size + reg_size;
extra_plus_reg_size_aligned = ARC_STACK_ALIGN (extra_plus_reg_size);
reg_size = extra_plus_reg_size_aligned - extra_size;
/* Compute total frame size. */
total_size = var_size + args_size + extra_size + pretend_size + reg_size;
/* It used to be the case that the alignment was forced at this
point. However, that is dangerous, calculations based on
total_size would be wrong. Given that this has never cropped up
as an issue I've changed this to an assert for now. */
gcc_assert (total_size == ARC_STACK_ALIGN (total_size));
/* Save computed information. */
frame_info->total_size = total_size;
frame_info->extra_size = extra_size;
frame_info->pretend_size = pretend_size;
frame_info->var_size = var_size;
frame_info->args_size = args_size;
frame_info->reg_size = reg_size;
frame_info->gmask = gmask;
frame_info->initialized = reload_completed;
/* Ok, we're done. */
return total_size;
}
/* Build dwarf information when the context is saved via AUX_IRQ_CTRL
mechanism. */
static void
arc_dwarf_emit_irq_save_regs (void)
{
rtx tmp, par, insn, reg;
int i, offset, j;
par = gen_rtx_SEQUENCE (VOIDmode,
rtvec_alloc (irq_ctrl_saved.irq_save_last_reg + 1
+ irq_ctrl_saved.irq_save_blink
+ irq_ctrl_saved.irq_save_lpcount
+ 1));
/* Build the stack adjustment note for unwind info. */
j = 0;
offset = UNITS_PER_WORD * (irq_ctrl_saved.irq_save_last_reg + 1
+ irq_ctrl_saved.irq_save_blink
+ irq_ctrl_saved.irq_save_lpcount);
tmp = plus_constant (Pmode, stack_pointer_rtx, -1 * offset);
tmp = gen_rtx_SET (stack_pointer_rtx, tmp);
RTX_FRAME_RELATED_P (tmp) = 1;
XVECEXP (par, 0, j++) = tmp;
offset -= UNITS_PER_WORD;
/* 1st goes LP_COUNT. */
if (irq_ctrl_saved.irq_save_lpcount)
{
reg = gen_rtx_REG (SImode, 60);
tmp = plus_constant (Pmode, stack_pointer_rtx, offset);
tmp = gen_frame_mem (SImode, tmp);
tmp = gen_rtx_SET (tmp, reg);
RTX_FRAME_RELATED_P (tmp) = 1;
XVECEXP (par, 0, j++) = tmp;
offset -= UNITS_PER_WORD;
}
/* 2nd goes BLINK. */
if (irq_ctrl_saved.irq_save_blink)
{
reg = gen_rtx_REG (SImode, 31);
tmp = plus_constant (Pmode, stack_pointer_rtx, offset);
tmp = gen_frame_mem (SImode, tmp);
tmp = gen_rtx_SET (tmp, reg);
RTX_FRAME_RELATED_P (tmp) = 1;
XVECEXP (par, 0, j++) = tmp;
offset -= UNITS_PER_WORD;
}
/* Build the parallel of the remaining registers recorded as saved
for unwind. */
for (i = irq_ctrl_saved.irq_save_last_reg; i >= 0; i--)
{
reg = gen_rtx_REG (SImode, i);
tmp = plus_constant (Pmode, stack_pointer_rtx, offset);
tmp = gen_frame_mem (SImode, tmp);
tmp = gen_rtx_SET (tmp, reg);
RTX_FRAME_RELATED_P (tmp) = 1;
XVECEXP (par, 0, j++) = tmp;
offset -= UNITS_PER_WORD;
}
/* Dummy insn used to anchor the dwarf info. */
insn = emit_insn (gen_stack_irq_dwarf());
add_reg_note (insn, REG_FRAME_RELATED_EXPR, par);
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Helper for prologue: emit frame store with pre_modify or pre_dec to
save register REG on stack. An initial offset OFFSET can be passed
to the function. */
static int
frame_save_reg (rtx reg, HOST_WIDE_INT offset)
{
rtx addr;
if (offset)
{
rtx tmp = plus_constant (Pmode, stack_pointer_rtx,
offset - GET_MODE_SIZE (GET_MODE (reg)));
addr = gen_frame_mem (GET_MODE (reg),
gen_rtx_PRE_MODIFY (Pmode,
stack_pointer_rtx,
tmp));
}
else
addr = gen_frame_mem (GET_MODE (reg), gen_rtx_PRE_DEC (Pmode,
stack_pointer_rtx));
frame_move_inc (addr, reg, stack_pointer_rtx, 0);
return GET_MODE_SIZE (GET_MODE (reg)) - offset;
}
/* Helper used when saving AUX regs during ISR. */
static int
push_reg (rtx reg)
{
rtx stkslot = gen_rtx_MEM (GET_MODE (reg), gen_rtx_PRE_DEC (Pmode,
stack_pointer_rtx));
rtx insn = emit_move_insn (stkslot, reg);
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
-GET_MODE_SIZE (GET_MODE (reg)))));
return GET_MODE_SIZE (GET_MODE (reg));
}
/* Helper for epilogue: emit frame load with post_modify or post_inc
to restore register REG from stack. The initial offset is passed
via OFFSET. */
static int
frame_restore_reg (rtx reg, HOST_WIDE_INT offset)
{
rtx addr, insn;
if (offset)
{
rtx tmp = plus_constant (Pmode, stack_pointer_rtx,
offset + GET_MODE_SIZE (GET_MODE (reg)));
addr = gen_frame_mem (GET_MODE (reg),
gen_rtx_POST_MODIFY (Pmode,
stack_pointer_rtx,
tmp));
}
else
addr = gen_frame_mem (GET_MODE (reg), gen_rtx_POST_INC (Pmode,
stack_pointer_rtx));
insn = frame_move_inc (reg, addr, stack_pointer_rtx, 0);
add_reg_note (insn, REG_CFA_RESTORE, reg);
if (reg == hard_frame_pointer_rtx)
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
GET_MODE_SIZE (GET_MODE (reg)) + offset));
else
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
GET_MODE_SIZE (GET_MODE (reg))
+ offset)));
return GET_MODE_SIZE (GET_MODE (reg)) + offset;
}
/* Helper used when restoring AUX regs during ISR. */
static int
pop_reg (rtx reg)
{
rtx stkslot = gen_rtx_MEM (GET_MODE (reg), gen_rtx_POST_INC (Pmode,
stack_pointer_rtx));
rtx insn = emit_move_insn (reg, stkslot);
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
GET_MODE_SIZE (GET_MODE (reg)))));
return GET_MODE_SIZE (GET_MODE (reg));
}
/* Check if we have a continous range to be save/restored with the
help of enter/leave instructions. A vaild register range starts
from $r13 and is up to (including) $r26. */
static bool
arc_enter_leave_p (uint64_t gmask)
{
int regno;
unsigned int rmask = 0;
if (!gmask)
return false;
for (regno = ENTER_LEAVE_START_REG;
regno <= ENTER_LEAVE_END_REG && (gmask & (1ULL << regno)); regno++)
rmask |= 1ULL << regno;
if (rmask ^ gmask)
return false;
return true;
}
/* ARC's prologue, save any needed call-saved regs (and call-used if
this is an interrupt handler) for ARCompact ISA, using ST/STD
instructions. */
static int
arc_save_callee_saves (uint64_t gmask,
bool save_blink,
bool save_fp,
HOST_WIDE_INT offset,
bool emit_move)
{
rtx reg;
int frame_allocated = 0;
int i;
/* The home-grown ABI says link register is saved first. */
if (save_blink)
{
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
frame_allocated += frame_save_reg (reg, offset);
offset = 0;
}
/* N.B. FRAME_POINTER_MASK and RETURN_ADDR_MASK are cleared in gmask. */
if (gmask)
for (i = GMASK_LEN; i >= 0; i--)
{
machine_mode save_mode = SImode;
if (TARGET_LL64
&& ((i - 1) % 2 == 0)
&& ((gmask & (1ULL << i)) != 0)
&& ((gmask & (1ULL << (i - 1))) != 0))
{
save_mode = DImode;
--i;
}
else if ((gmask & (1ULL << i)) == 0)
continue;
reg = gen_rtx_REG (save_mode, i);
frame_allocated += frame_save_reg (reg, offset);
offset = 0;
}
/* Save frame pointer if needed. First save the FP on stack, if not
autosaved. Unfortunately, I cannot add it to gmask and use the
above loop to save fp because our ABI states fp goes aftert all
registers are saved. */
if (save_fp)
{
frame_allocated += frame_save_reg (hard_frame_pointer_rtx, offset);
offset = 0;
}
/* Emit mov fp,sp. */
if (emit_move)
frame_move (hard_frame_pointer_rtx, stack_pointer_rtx);
return frame_allocated;
}
/* ARC's epilogue, restore any required call-saved regs (and call-used
if it is for an interrupt handler) using LD/LDD instructions. */
static int
arc_restore_callee_saves (uint64_t gmask,
bool restore_blink,
bool restore_fp,
HOST_WIDE_INT offset,
HOST_WIDE_INT allocated)
{
rtx reg;
int frame_deallocated = 0;
HOST_WIDE_INT offs = cfun->machine->frame_info.reg_size;
unsigned int fn_type = arc_compute_function_type (cfun);
bool early_blink_restore;
int i;
/* Emit mov fp,sp. */
if (arc_frame_pointer_needed () && offset)
{
frame_move (stack_pointer_rtx, hard_frame_pointer_rtx);
frame_deallocated += offset;
offset = 0;
}
if (restore_fp)
{
/* Any offset is taken care by previous if-statement. */
gcc_assert (offset == 0);
frame_deallocated += frame_restore_reg (hard_frame_pointer_rtx, 0);
}
if (offset)
{
/* No $fp involved, we need to do an add to set the $sp to the
location of the first register. */
frame_stack_add (offset);
frame_deallocated += offset;
offset = 0;
}
/* When we do not optimize for size or we aren't in an interrupt,
restore first blink. */
early_blink_restore = restore_blink && !optimize_size && offs
&& !ARC_INTERRUPT_P (fn_type);
if (early_blink_restore)
{
rtx addr = plus_constant (Pmode, stack_pointer_rtx, offs);
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
rtx insn = frame_move_inc (reg, gen_frame_mem (Pmode, addr),
stack_pointer_rtx, NULL_RTX);
add_reg_note (insn, REG_CFA_RESTORE, reg);
restore_blink = false;
}
/* N.B. FRAME_POINTER_MASK and RETURN_ADDR_MASK are cleared in gmask. */
if (gmask)
for (i = 0; i <= GMASK_LEN; i++)
{
machine_mode restore_mode = SImode;
if (TARGET_LL64
&& ((i % 2) == 0)
&& ((gmask & (1ULL << i)) != 0)
&& ((gmask & (1ULL << (i + 1))) != 0))
restore_mode = DImode;
else if ((gmask & (1ULL << i)) == 0)
continue;
reg = gen_rtx_REG (restore_mode, i);
offs = 0;
switch (restore_mode)
{
case E_DImode:
if ((GMASK_LEN - __builtin_clzll (gmask)) == (i + 1)
&& early_blink_restore)
offs = 4;
break;
case E_SImode:
if ((GMASK_LEN - __builtin_clzll (gmask)) == i
&& early_blink_restore)
offs = 4;
break;
default:
offs = 0;
}
frame_deallocated += frame_restore_reg (reg, offs);
offset = 0;
if (restore_mode == DImode)
i++;
}
if (restore_blink)
{
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
frame_deallocated += frame_restore_reg (reg, allocated
- frame_deallocated
/* Consider as well the
current restored
register size. */
- UNITS_PER_WORD);
}
return frame_deallocated;
}
/* ARC prologue, save the registers using enter instruction. Leave
instruction can also save $blink (SAVE_BLINK) and $fp (SAVE_FP)
register. */
static int
arc_save_callee_enter (uint64_t gmask,
bool save_blink,
bool save_fp,
HOST_WIDE_INT offset)
{
int start_reg = ENTER_LEAVE_START_REG;
int end_reg = ENTER_LEAVE_END_REG;
int regno, indx, off, nregs;
rtx insn, reg, mem;
int frame_allocated = 0;
for (regno = start_reg; regno <= end_reg && (gmask & (1ULL << regno));)
regno++;
end_reg = regno - 1;
nregs = end_reg - start_reg + 1;
nregs += save_blink ? 1 : 0;
nregs += save_fp ? 1 : 0;
if (offset)
frame_stack_add (offset);
insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs + (save_fp ? 1 : 0)
+ 1));
indx = 0;
reg = gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
-nregs * UNITS_PER_WORD));
RTX_FRAME_RELATED_P (reg) = 1;
XVECEXP (insn, 0, indx++) = reg;
off = nregs * UNITS_PER_WORD;
if (save_blink)
{
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
mem = gen_frame_mem (Pmode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (mem, reg);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx++)) = 1;
off -= UNITS_PER_WORD;
save_blink = false;
}
for (regno = start_reg;
regno <= end_reg;
regno++, indx++, off -= UNITS_PER_WORD)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (mem, reg);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx)) = 1;
gmask = gmask & ~(1ULL << regno);
}
if (save_fp)
{
mem = gen_frame_mem (Pmode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (mem, hard_frame_pointer_rtx);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx++)) = 1;
off -= UNITS_PER_WORD;
XVECEXP (insn, 0, indx) = gen_rtx_SET (hard_frame_pointer_rtx,
stack_pointer_rtx);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx++)) = 1;
save_fp = false;
}
gcc_assert (off == 0);
insn = frame_insn (insn);
add_reg_note (insn, REG_INC, stack_pointer_rtx);
frame_allocated = nregs * UNITS_PER_WORD;
/* offset is a negative number, make sure we add it. */
return frame_allocated - offset;
}
/* ARC epilogue, restore the registers using leave instruction. An
initial offset is passed in OFFSET. Besides restoring an register
range, leave can also restore $blink (RESTORE_BLINK), or $fp
(RESTORE_FP), and can automatic return (RETURN_P). */
static int
arc_restore_callee_leave (uint64_t gmask,
bool restore_blink,
bool restore_fp,
bool return_p,
HOST_WIDE_INT offset)
{
int start_reg = ENTER_LEAVE_START_REG;
int end_reg = ENTER_LEAVE_END_REG;
int regno, indx, off, nregs;
rtx insn, reg, mem;
int frame_allocated = 0;
for (regno = start_reg; regno <= end_reg && (gmask & (1ULL << regno));)
regno++;
end_reg = regno - 1;
nregs = end_reg - start_reg + 1;
nregs += restore_blink ? 1 : 0;
nregs += restore_fp ? 1 : 0;
insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs + 1
+ (return_p ? 1 : 0)));
indx = 0;
if (return_p)
XVECEXP (insn, 0, indx++) = ret_rtx;
if (restore_fp)
{
/* I cannot emit set (sp, fp) here as cselib expects a single sp
set and not two. Thus, use the offset, and change sp adjust
value. */
frame_allocated += offset;
}
if (offset && !restore_fp)
{
/* This add is only emmited when we do not restore fp with leave
instruction. */
frame_stack_add (offset);
frame_allocated += offset;
offset = 0;
}
reg = gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
offset + nregs * UNITS_PER_WORD));
RTX_FRAME_RELATED_P (reg) = 1;
XVECEXP (insn, 0, indx++) = reg;
off = nregs * UNITS_PER_WORD;
if (restore_blink)
{
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
mem = gen_frame_mem (Pmode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (reg, mem);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx++)) = 1;
off -= UNITS_PER_WORD;
}
for (regno = start_reg;
regno <= end_reg;
regno++, indx++, off -= UNITS_PER_WORD)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (reg, mem);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx)) = 1;
gmask = gmask & ~(1ULL << regno);
}
if (restore_fp)
{
mem = gen_frame_mem (Pmode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (hard_frame_pointer_rtx, mem);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx++)) = 1;
off -= UNITS_PER_WORD;
}
gcc_assert (off == 0);
if (return_p)
{
insn = emit_jump_insn (insn);
RTX_FRAME_RELATED_P (insn) = 1;
}
else
insn = frame_insn (insn);
add_reg_note (insn, REG_INC, stack_pointer_rtx);
/* Dwarf related info. */
if (restore_fp)
{
add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx);
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx,
offset + nregs * UNITS_PER_WORD));
}
else
{
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
nregs * UNITS_PER_WORD)));
}
if (restore_blink)
add_reg_note (insn, REG_CFA_RESTORE,
gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM));
for (regno = start_reg; regno <= end_reg; regno++)
add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (SImode, regno));
frame_allocated += nregs * UNITS_PER_WORD;
return frame_allocated;
}
/* Millicode thunks implementation:
Generates calls to millicodes for registers starting from r13 to r25
Present Limitations:
- Only one range supported. The remaining regs will have the ordinary
st and ld instructions for store and loads. Hence a gmask asking
to store r13-14, r16-r25 will only generate calls to store and
load r13 to r14 while store and load insns will be generated for
r16 to r25 in the prologue and epilogue respectively.
- Presently library only supports register ranges starting from r13.
*/
static int
arc_save_callee_milli (uint64_t gmask,
bool save_blink,
bool save_fp,
HOST_WIDE_INT offset,
HOST_WIDE_INT reg_size)
{
int start_reg = 13;
int end_reg = 25;
int regno, indx, off, nregs;
rtx insn, reg, mem;
int frame_allocated = 0;
for (regno = start_reg; regno <= end_reg && (gmask & (1ULL << regno));)
regno++;
end_reg = regno - 1;
nregs = end_reg - start_reg + 1;
gcc_assert (end_reg > 14);
/* Allocate space on stack for the registers, and take into account
also the initial offset. The registers will be saved using
offsets. N.B. OFFSET is a negative number. */
if (save_blink)
{
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
frame_allocated += frame_save_reg (reg, offset);
offset = 0;
}
if (reg_size || offset)
{
frame_stack_add (offset - reg_size);
frame_allocated += nregs * UNITS_PER_WORD - offset;
offset = 0;
}
/* Start generate millicode call. */
insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs + 1));
indx = 0;
/* This is a call, we clobber blink. */
XVECEXP (insn, 0, nregs) =
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM));
for (regno = start_reg, indx = 0, off = 0;
regno <= end_reg;
regno++, indx++, off += UNITS_PER_WORD)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (mem, reg);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx)) = 1;
gmask = gmask & ~(1ULL << regno);
}
insn = frame_insn (insn);
/* Add DWARF info. */
for (regno = start_reg, off = 0;
regno <= end_reg;
regno++, off += UNITS_PER_WORD)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_rtx_MEM (SImode, plus_constant (Pmode,
stack_pointer_rtx, off));
add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (mem, reg));
}
/* In the case of millicode thunk, we need to restore the
clobbered blink register. */
if (arc_must_save_return_addr (cfun))
{
emit_insn (gen_rtx_SET (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM),
gen_rtx_MEM (Pmode,
plus_constant (Pmode,
stack_pointer_rtx,
reg_size))));
}
/* Save remaining registers using st instructions. */
for (regno = 0; regno <= GMASK_LEN; regno++)
{
if ((gmask & (1ULL << regno)) == 0)
continue;
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
off));
frame_move_inc (mem, reg, stack_pointer_rtx, 0);
frame_allocated += UNITS_PER_WORD;
off += UNITS_PER_WORD;
}
/* Save frame pointer if needed. First save the FP on stack, if not
autosaved. Unfortunately, I cannot add it to gmask and use the
above loop to save fp because our ABI states fp goes aftert all
registers are saved. */
if (save_fp)
frame_allocated += frame_save_reg (hard_frame_pointer_rtx, offset);
/* Emit mov fp,sp. */
if (arc_frame_pointer_needed ())
frame_move (hard_frame_pointer_rtx, stack_pointer_rtx);
return frame_allocated;
}
/* Like the previous function but restore. */
static int
arc_restore_callee_milli (uint64_t gmask,
bool restore_blink,
bool restore_fp,
bool return_p,
HOST_WIDE_INT offset)
{
int start_reg = 13;
int end_reg = 25;
int regno, indx, off, nregs;
rtx insn, reg, mem;
int frame_allocated = 0;
for (regno = start_reg; regno <= end_reg && (gmask & (1ULL << regno));)
regno++;
end_reg = regno - 1;
nregs = end_reg - start_reg + 1;
gcc_assert (end_reg > 14);
/* Emit mov fp,sp. */
if (arc_frame_pointer_needed () && offset)
{
frame_move (stack_pointer_rtx, hard_frame_pointer_rtx);
frame_allocated = offset;
offset = 0;
}
if (restore_fp)
frame_allocated += frame_restore_reg (hard_frame_pointer_rtx, 0);
if (offset)
{
/* No fp involved, hence, we need to adjust the sp via an
add. */
frame_stack_add (offset);
frame_allocated += offset;
offset = 0;
}
/* Start generate millicode call. */
insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc ((return_p ? 1 : 0)
+ nregs + 1));
indx = 0;
if (return_p)
{
/* sibling call, the blink is restored with the help of the
value held into r12. */
reg = gen_rtx_REG (Pmode, 12);
XVECEXP (insn, 0, indx++) = ret_rtx;
XVECEXP (insn, 0, indx++) =
gen_rtx_SET (stack_pointer_rtx,
gen_rtx_PLUS (Pmode, stack_pointer_rtx, reg));
frame_allocated += UNITS_PER_WORD;
}
else
{
/* This is a call, we clobber blink. */
XVECEXP (insn, 0, nregs) =
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM));
}
for (regno = start_reg, off = 0;
regno <= end_reg;
regno++, indx++, off += UNITS_PER_WORD)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
off));
XVECEXP (insn, 0, indx) = gen_rtx_SET (reg, mem);
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, indx)) = 1;
gmask = gmask & ~(1ULL << regno);
}
/* Restore remaining registers using LD instructions. */
for (regno = 0; regno <= GMASK_LEN; regno++)
{
if ((gmask & (1ULL << regno)) == 0)
continue;
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
off));
rtx tmp = frame_move_inc (reg, mem, stack_pointer_rtx, 0);
add_reg_note (tmp, REG_CFA_RESTORE, reg);
off += UNITS_PER_WORD;
}
/* Emit millicode call. */
if (return_p)
{
reg = gen_rtx_REG (Pmode, 12);
frame_insn (gen_rtx_SET (reg, GEN_INT (off)));
frame_allocated += off;
insn = emit_jump_insn (insn);
RTX_FRAME_RELATED_P (insn) = 1;
}
else
insn = frame_insn (insn);
/* Add DWARF info. */
for (regno = start_reg; regno <= end_reg; regno++)
{
reg = gen_rtx_REG (SImode, regno);
add_reg_note (insn, REG_CFA_RESTORE, reg);
}
if (restore_blink && !return_p)
{
reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx,
off));
insn = frame_insn (gen_rtx_SET (reg, mem));
add_reg_note (insn, REG_CFA_RESTORE, reg);
}
return frame_allocated;
}
/* Set up the stack and frame pointer (if desired) for the function. */
void
arc_expand_prologue (void)
{
int size;
uint64_t gmask = cfun->machine->frame_info.gmask;
struct arc_frame_info *frame = &cfun->machine->frame_info;
unsigned int frame_size_to_allocate;
int first_offset = 0;
unsigned int fn_type = arc_compute_function_type (cfun);
bool save_blink = false;
bool save_fp = false;
bool emit_move = false;
/* Naked functions don't have prologue. */
if (ARC_NAKED_P (fn_type))
{
if (flag_stack_usage_info)
current_function_static_stack_size = 0;
return;
}
/* Compute total frame size. */
size = arc_compute_frame_size ();
if (flag_stack_usage_info)
current_function_static_stack_size = size;
/* Keep track of frame size to be allocated. */
frame_size_to_allocate = size;
/* These cases shouldn't happen. Catch them now. */
gcc_assert (!(size == 0 && gmask));
/* Allocate space for register arguments if this is a variadic function. */
if (frame->pretend_size != 0)
first_offset = -frame->pretend_size;
/* IRQ using automatic save mechanism will save the register before
anything we do. */
if (ARC_AUTO_IRQ_P (fn_type)
&& !ARC_FAST_INTERRUPT_P (fn_type))
{
frame_stack_add (first_offset);
first_offset = 0;
arc_dwarf_emit_irq_save_regs ();
}
save_blink = arc_must_save_return_addr (cfun)
&& !ARC_AUTOBLINK_IRQ_P (fn_type);
save_fp = arc_frame_pointer_needed () && !ARC_AUTOFP_IRQ_P (fn_type)
&& !ARC_INTERRUPT_P (fn_type);
emit_move = arc_frame_pointer_needed () && !ARC_INTERRUPT_P (fn_type);
/* Use enter/leave only for non-interrupt functions. */
if (TARGET_CODE_DENSITY
&& TARGET_CODE_DENSITY_FRAME
&& !ARC_AUTOFP_IRQ_P (fn_type)
&& !ARC_AUTOBLINK_IRQ_P (fn_type)
&& !ARC_INTERRUPT_P (fn_type)
&& arc_enter_leave_p (gmask))
frame_size_to_allocate -= arc_save_callee_enter (gmask, save_blink,
save_fp,
first_offset);
else if (frame->millicode_end_reg > 14)
frame_size_to_allocate -= arc_save_callee_milli (gmask, save_blink,
save_fp,
first_offset,
frame->reg_size);
else
frame_size_to_allocate -= arc_save_callee_saves (gmask, save_blink, save_fp,
first_offset, emit_move);
/* Check if we need to save the ZOL machinery. */
if (arc_lpcwidth != 0 && arc_must_save_register (LP_COUNT, cfun, true))
{
rtx reg0 = gen_rtx_REG (SImode, R0_REG);
emit_insn (gen_rtx_SET (reg0,
gen_rtx_UNSPEC_VOLATILE
(Pmode, gen_rtvec (1, GEN_INT (AUX_LP_START)),
VUNSPEC_ARC_LR)));
frame_size_to_allocate -= push_reg (reg0);
emit_insn (gen_rtx_SET (reg0,
gen_rtx_UNSPEC_VOLATILE
(Pmode, gen_rtvec (1, GEN_INT (AUX_LP_END)),
VUNSPEC_ARC_LR)));
frame_size_to_allocate -= push_reg (reg0);
emit_move_insn (reg0, gen_rtx_REG (SImode, LP_COUNT));
frame_size_to_allocate -= push_reg (reg0);
}
/* Save AUX regs used by FPX machinery. */
if (arc_must_save_register (TARGET_BIG_ENDIAN ? R41_REG : R40_REG,
cfun, TARGET_DPFP))
{
rtx reg0 = gen_rtx_REG (SImode, R0_REG);
int i;
for (i = 0; i < 4; i++)
{
emit_insn (gen_rtx_SET (reg0,
gen_rtx_UNSPEC_VOLATILE
(Pmode, gen_rtvec (1, GEN_INT (AUX_DPFP_START
+ i)),
VUNSPEC_ARC_LR)));
frame_size_to_allocate -= push_reg (reg0);
}
}
/* Save accumulator registers. */
if (arc_must_save_register (R58_REG, cfun, true))
frame_size_to_allocate -= arc_save_callee_saves (3ULL << 58,
false, false, 0, false);
if (arc_frame_pointer_needed () && ARC_INTERRUPT_P (fn_type))
{
/* Just save fp at the end of the saving context. */
frame_size_to_allocate -=
arc_save_callee_saves (0, false, !ARC_AUTOFP_IRQ_P (fn_type), 0, true);
}
/* Allocate the stack frame. */
if (frame_size_to_allocate > 0)
frame_stack_add ((HOST_WIDE_INT) 0 - frame_size_to_allocate);
/* Emit a blockage to avoid delay slot scheduling. */
emit_insn (gen_blockage ());
}
/* Return the register number of the register holding the return address
for a function of type TYPE. */
static int
arc_return_address_register (unsigned int fn_type)
{
int regno = 0;
if (ARC_INTERRUPT_P (fn_type))
{
if ((fn_type & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_FIRQ)) != 0)
regno = ILINK1_REG;
else if ((fn_type & ARC_FUNCTION_ILINK2) != 0)
regno = ILINK2_REG;
else
gcc_unreachable ();
}
else if (ARC_NORMAL_P (fn_type) || ARC_NAKED_P (fn_type))
regno = RETURN_ADDR_REGNUM;
gcc_assert (regno != 0);
return regno;
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
void
arc_expand_epilogue (int sibcall_p)
{
int size;
unsigned int fn_type = arc_compute_function_type (cfun);
unsigned int size_to_deallocate;
int restored;
int can_trust_sp_p = !cfun->calls_alloca;
int first_offset;
bool restore_fp = arc_frame_pointer_needed () && !ARC_AUTOFP_IRQ_P (fn_type);
bool restore_blink = arc_must_save_return_addr (cfun)
&& !ARC_AUTOBLINK_IRQ_P (fn_type);
uint64_t gmask = cfun->machine->frame_info.gmask;
bool return_p = !sibcall_p && fn_type == ARC_FUNCTION_NORMAL
&& !cfun->machine->frame_info.pretend_size;
struct arc_frame_info *frame = &cfun->machine->frame_info;
/* Naked functions don't have epilogue. */
if (ARC_NAKED_P (fn_type))
return;
size = arc_compute_frame_size ();
size_to_deallocate = size;
first_offset = size - (frame->pretend_size + frame->reg_size
+ frame->extra_size);
if (!can_trust_sp_p)
gcc_assert (arc_frame_pointer_needed ());
/* Emit a blockage to avoid/flush all pending sp operations. */
if (size)
emit_insn (gen_blockage ());
if (ARC_INTERRUPT_P (fn_type))
{
/* We need to restore FP before any SP operation in an
interrupt. */
size_to_deallocate -= arc_restore_callee_saves (0, false,
restore_fp,
first_offset,
size_to_deallocate);
restore_fp = false;
first_offset = 0;
}
/* Restore accumulator registers. */
if (arc_must_save_register (R58_REG, cfun, true))
{
rtx insn;
rtx reg0 = gen_rtx_REG (SImode, R0_REG);
rtx reg1 = gen_rtx_REG (SImode, R1_REG);
size_to_deallocate -= pop_reg (reg0);
size_to_deallocate -= pop_reg (reg1);
insn = emit_insn (gen_mulu64 (reg0, const1_rtx));
add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (SImode, R58_REG));
RTX_FRAME_RELATED_P (insn) = 1;
emit_insn (gen_arc600_stall ());
insn = emit_insn (gen_rtx_UNSPEC_VOLATILE
(VOIDmode, gen_rtvec (2, reg1, GEN_INT (AUX_MULHI)),
VUNSPEC_ARC_SR));
add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (SImode, R59_REG));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Restore AUX-regs used by FPX machinery. */
if (arc_must_save_register (TARGET_BIG_ENDIAN ? R41_REG : R40_REG,
cfun, TARGET_DPFP))
{
rtx reg0 = gen_rtx_REG (SImode, R0_REG);
int i;
for (i = 0; i < 4; i++)
{
size_to_deallocate -= pop_reg (reg0);
emit_insn (gen_rtx_UNSPEC_VOLATILE
(VOIDmode, gen_rtvec (2, reg0, GEN_INT (AUX_DPFP_START
+ i)),
VUNSPEC_ARC_SR));
}
}
/* Check if we need to restore the ZOL machinery. */
if (arc_lpcwidth !=0 && arc_must_save_register (LP_COUNT, cfun, true))
{
rtx reg0 = gen_rtx_REG (SImode, R0_REG);
size_to_deallocate -= pop_reg (reg0);
emit_move_insn (gen_rtx_REG (SImode, LP_COUNT), reg0);
size_to_deallocate -= pop_reg (reg0);
emit_insn (gen_rtx_UNSPEC_VOLATILE
(VOIDmode, gen_rtvec (2, reg0, GEN_INT (AUX_LP_END)),
VUNSPEC_ARC_SR));
size_to_deallocate -= pop_reg (reg0);
emit_insn (gen_rtx_UNSPEC_VOLATILE
(VOIDmode, gen_rtvec (2, reg0, GEN_INT (AUX_LP_START)),
VUNSPEC_ARC_SR));
}
if (TARGET_CODE_DENSITY
&& TARGET_CODE_DENSITY_FRAME
&& !ARC_AUTOFP_IRQ_P (fn_type)
&& !ARC_AUTOBLINK_IRQ_P (fn_type)
&& !ARC_INTERRUPT_P (fn_type)
&& arc_enter_leave_p (gmask))
{
/* Using leave instruction. */
size_to_deallocate -= arc_restore_callee_leave (gmask, restore_blink,
restore_fp,
return_p,
first_offset);
if (return_p)
{
gcc_assert (size_to_deallocate == 0);
return;
}
}
else if (frame->millicode_end_reg > 14)
{
/* Using millicode calls. */
size_to_deallocate -= arc_restore_callee_milli (gmask, restore_blink,
restore_fp,
return_p,
first_offset);
if (return_p)
{
gcc_assert (size_to_deallocate == 0);
return;
}
}
else
size_to_deallocate -= arc_restore_callee_saves (gmask, restore_blink,
restore_fp,
first_offset,
size_to_deallocate);
/* Keep track of how much of the stack pointer we've restored. It
makes the following a lot more readable. */
restored = size - size_to_deallocate;
if (size > restored)
frame_stack_add (size - restored);
/* For frames that use __builtin_eh_return, the register defined by
EH_RETURN_STACKADJ_RTX is set to 0 for all standard return paths.
On eh_return paths however, the register is set to the value that
should be added to the stack pointer in order to restore the
correct stack pointer for the exception handling frame.
For ARC we are going to use r2 for EH_RETURN_STACKADJ_RTX, add
this onto the stack for eh_return frames. */
if (crtl->calls_eh_return)
emit_insn (gen_add2_insn (stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
/* Emit the return instruction. */
if (ARC_INTERRUPT_P (fn_type))
{
rtx ra = gen_rtx_REG (Pmode, arc_return_address_register (fn_type));
if (TARGET_V2)
emit_jump_insn (gen_rtie ());
else if (TARGET_ARC700)
emit_jump_insn (gen_rtie ());
else
emit_jump_insn (gen_arc600_rtie (ra));
}
else if (sibcall_p == FALSE)
emit_jump_insn (gen_simple_return ());
}
/* Helper for {push/pop}_multi_operand: check if rtx OP is a suitable
construct to match either enter or leave instruction. Which one
which is selected by PUSH_P argument. */
bool
arc_check_multi (rtx op, bool push_p)
{
HOST_WIDE_INT len = XVECLEN (op, 0);
unsigned int regno, i, start;
unsigned int memp = push_p ? 0 : 1;
rtx elt;
if (len <= 1)
return false;
start = 1;
elt = XVECEXP (op, 0, 0);
if (!push_p && GET_CODE (elt) == RETURN)
start = 2;
for (i = start, regno = ENTER_LEAVE_START_REG; i < len; i++, regno++)
{
rtx elt = XVECEXP (op, 0, i);
rtx reg, mem, addr;
if (GET_CODE (elt) != SET)
return false;
mem = XEXP (elt, memp);
reg = XEXP (elt, 1 - memp);
if (!REG_P (reg)
|| !MEM_P (mem))
return false;
/* Check for blink. */
if (REGNO (reg) == RETURN_ADDR_REGNUM
&& i == start)
regno = 12;
else if (REGNO (reg) == HARD_FRAME_POINTER_REGNUM)
++i;
else if (REGNO (reg) != regno)
return false;
addr = XEXP (mem, 0);
if (GET_CODE (addr) == PLUS)
{
if (!rtx_equal_p (stack_pointer_rtx, XEXP (addr, 0))
|| !CONST_INT_P (XEXP (addr, 1)))
return false;
}
else
{
if (!rtx_equal_p (stack_pointer_rtx, addr))
return false;
}
}
return true;
}
/* Return rtx for the location of the return address on the stack,
suitable for use in __builtin_eh_return. The new return address
will be written to this location in order to redirect the return to
the exception handler. Our ABI says the blink is pushed first on
stack followed by an unknown number of register saves, and finally
by fp. Hence we cannot use the EH_RETURN_ADDRESS macro as the
stack is not finalized. */
void
arc_eh_return_address_location (rtx source)
{
rtx mem;
int offset;
struct arc_frame_info *afi;
arc_compute_frame_size ();
afi = &cfun->machine->frame_info;
gcc_assert (crtl->calls_eh_return);
gcc_assert (afi->save_return_addr);
gcc_assert (afi->extra_size >= 4);
/* The '-4' removes the size of the return address, which is
included in the 'extra_size' field. */
offset = afi->reg_size + afi->extra_size - 4;
mem = gen_frame_mem (Pmode,
plus_constant (Pmode, hard_frame_pointer_rtx, offset));
/* The following should not be needed, and is, really a hack. The
issue being worked around here is that the DSE (Dead Store
Elimination) pass will remove this write to the stack as it sees
a single store and no corresponding read. The read however
occurs in the epilogue code, which is not added into the function
rtl until a later pass. So, at the time of DSE, the decision to
remove this store seems perfectly sensible. Marking the memory
address as volatile obviously has the effect of preventing DSE
from removing the store. */
MEM_VOLATILE_P (mem) = true;
emit_move_insn (mem, source);
}
/* PIC */
/* Helper to generate unspec constant. */
static rtx
arc_unspec_offset (rtx loc, int unspec)
{
return gen_rtx_CONST (Pmode, gen_rtx_UNSPEC (Pmode, gen_rtvec (1, loc),
unspec));
}
/* !TARGET_BARREL_SHIFTER support. */
/* Emit a shift insn to set OP0 to OP1 shifted by OP2; CODE specifies what
kind of shift. */
void
emit_shift (enum rtx_code code, rtx op0, rtx op1, rtx op2)
{
rtx shift = gen_rtx_fmt_ee (code, SImode, op1, op2);
rtx pat
= ((shift4_operator (shift, SImode) ? gen_shift_si3 : gen_shift_si3_loop)
(op0, op1, op2, shift));
emit_insn (pat);
}
/* Output the assembler code for doing a shift.
We go to a bit of trouble to generate efficient code as the ARC601 only has
single bit shifts. This is taken from the h8300 port. We only have one
mode of shifting and can't access individual bytes like the h8300 can, so
this is greatly simplified (at the expense of not generating hyper-
efficient code).
This function is not used if the variable shift insns are present. */
/* FIXME: This probably can be done using a define_split in arc.md.
Alternately, generate rtx rather than output instructions. */
const char *
output_shift (rtx *operands)
{
/* static int loopend_lab;*/
rtx shift = operands[3];
machine_mode mode = GET_MODE (shift);
enum rtx_code code = GET_CODE (shift);
const char *shift_one;
gcc_assert (mode == SImode);
switch (code)
{
case ASHIFT: shift_one = "add %0,%1,%1"; break;
case ASHIFTRT: shift_one = "asr %0,%1"; break;
case LSHIFTRT: shift_one = "lsr %0,%1"; break;
default: gcc_unreachable ();
}
if (GET_CODE (operands[2]) != CONST_INT)
{
output_asm_insn ("and.f lp_count,%2, 0x1f", operands);
goto shiftloop;
}
else
{
int n;
n = INTVAL (operands[2]);
/* Only consider the lower 5 bits of the shift count. */
n = n & 0x1f;
/* First see if we can do them inline. */
/* ??? We could get better scheduling & shorter code (using short insns)
by using splitters. Alas, that'd be even more verbose. */
if (code == ASHIFT && n <= 9 && n > 2
&& dest_reg_operand (operands[4], SImode))
{
output_asm_insn ("mov %4,0\n\tadd3 %0,%4,%1", operands);
for (n -=3 ; n >= 3; n -= 3)
output_asm_insn ("add3 %0,%4,%0", operands);
if (n == 2)
output_asm_insn ("add2 %0,%4,%0", operands);
else if (n)
output_asm_insn ("add %0,%0,%0", operands);
}
else if (n <= 4)
{
while (--n >= 0)
{
output_asm_insn (shift_one, operands);
operands[1] = operands[0];
}
}
/* See if we can use a rotate/and. */
else if (n == BITS_PER_WORD - 1)
{
switch (code)
{
case ASHIFT :
output_asm_insn ("and %0,%1,1\n\tror %0,%0", operands);
break;
case ASHIFTRT :
/* The ARC doesn't have a rol insn. Use something else. */
output_asm_insn ("add.f 0,%1,%1\n\tsbc %0,%0,%0", operands);
break;
case LSHIFTRT :
/* The ARC doesn't have a rol insn. Use something else. */
output_asm_insn ("add.f 0,%1,%1\n\trlc %0,0", operands);
break;
default:
break;
}
}
else if (n == BITS_PER_WORD - 2 && dest_reg_operand (operands[4], SImode))
{
switch (code)
{
case ASHIFT :
output_asm_insn ("and %0,%1,3\n\tror %0,%0\n\tror %0,%0", operands);
break;
case ASHIFTRT :
#if 1 /* Need some scheduling comparisons. */
output_asm_insn ("add.f %4,%1,%1\n\tsbc %0,%0,%0\n\t"
"add.f 0,%4,%4\n\trlc %0,%0", operands);
#else
output_asm_insn ("add.f %4,%1,%1\n\tbxor %0,%4,31\n\t"
"sbc.f %0,%0,%4\n\trlc %0,%0", operands);
#endif
break;
case LSHIFTRT :
#if 1
output_asm_insn ("add.f %4,%1,%1\n\trlc %0,0\n\t"
"add.f 0,%4,%4\n\trlc %0,%0", operands);
#else
output_asm_insn ("add.f %0,%1,%1\n\trlc.f %0,0\n\t"
"and %0,%0,1\n\trlc %0,%0", operands);
#endif
break;
default:
break;
}
}
else if (n == BITS_PER_WORD - 3 && code == ASHIFT)
output_asm_insn ("and %0,%1,7\n\tror %0,%0\n\tror %0,%0\n\tror %0,%0",
operands);
/* Must loop. */
else
{
operands[2] = GEN_INT (n);
output_asm_insn ("mov.f lp_count, %2", operands);
shiftloop:
{
output_asm_insn ("lpnz\t2f", operands);
output_asm_insn (shift_one, operands);
output_asm_insn ("nop", operands);
fprintf (asm_out_file, "2:\t%s end single insn loop\n",
ASM_COMMENT_START);
}
}
}
return "";
}
/* Nested function support. */
/* Output assembler code for a block containing the constant parts of
a trampoline, leaving space for variable parts. A trampoline looks
like this:
ld_s r12,[pcl,8]
ld r11,[pcl,12]
j_s [r12]
.word function's address
.word static chain value
*/
static void
arc_asm_trampoline_template (FILE *f)
{
asm_fprintf (f, "\tld_s\t%s,[pcl,8]\n", ARC_TEMP_SCRATCH_REG);
asm_fprintf (f, "\tld\t%s,[pcl,12]\n", reg_names[STATIC_CHAIN_REGNUM]);
asm_fprintf (f, "\tj_s\t[%s]\n", ARC_TEMP_SCRATCH_REG);
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
}
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code. CXT
is an RTX for the static chain value for the function.
The fastest trampoline to execute for trampolines within +-8KB of CTX
would be:
add2 r11,pcl,s12
j [limm] 0x20200f80 limm
and that would also be faster to write to the stack by computing
the offset from CTX to TRAMP at compile time. However, it would
really be better to get rid of the high cost of cache invalidation
when generating trampolines, which requires that the code part of
trampolines stays constant, and additionally either making sure
that no executable code but trampolines is on the stack, no icache
entries linger for the area of the stack from when before the stack
was allocated, and allocating trampolines in trampoline-only cache
lines or allocate trampolines fram a special pool of pre-allocated
trampolines. */
static void
arc_initialize_trampoline (rtx tramp, tree fndecl, rtx cxt)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
emit_block_move (tramp, assemble_trampoline_template (),
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
emit_move_insn (adjust_address (tramp, SImode, 8), fnaddr);
emit_move_insn (adjust_address (tramp, SImode, 12), cxt);
maybe_emit_call_builtin___clear_cache (XEXP (tramp, 0),
plus_constant (Pmode,
XEXP (tramp, 0),
TRAMPOLINE_SIZE));
}
/* Add the given function declaration to emit code in JLI section. */
static void
arc_add_jli_section (rtx pat)
{
const char *name;
tree attrs;
arc_jli_section *sec = arc_jli_sections, *new_section;
tree decl = SYMBOL_REF_DECL (pat);
if (!pat)
return;
if (decl)
{
/* For fixed locations do not generate the jli table entry. It
should be provided by the user as an asm file. */
attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
if (lookup_attribute ("jli_fixed", attrs))
return;
}
name = XSTR (pat, 0);
/* Don't insert the same symbol twice. */
while (sec != NULL)
{
if(strcmp (name, sec->name) == 0)
return;
sec = sec->next;
}
/* New name, insert it. */
new_section = (arc_jli_section *) xmalloc (sizeof (arc_jli_section));
gcc_assert (new_section != NULL);
new_section->name = name;
new_section->next = arc_jli_sections;
arc_jli_sections = new_section;
}
/* This is set briefly to 1 when we output a ".as" address modifer, and then
reset when we output the scaled address. */
static int output_scaled = 0;
/* Set when we force sdata output. */
static int output_sdata = 0;
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
/* In final.cc:output_asm_insn:
'l' : label
'a' : address
'c' : constant address if CONSTANT_ADDRESS_P
'n' : negative
Here:
'Z': log2(x+1)-1
'z': log2
'M': log2(~x)
'p': bit Position of lsb
's': size of bit field
'#': condbranch delay slot suffix
'*': jump delay slot suffix
'?' : nonjump-insn suffix for conditional execution or short instruction
'!' : jump / call suffix for conditional execution or short instruction
'`': fold constant inside unary o-perator, re-recognize, and emit.
'd'
'D'
'R': Second word
'S': JLI instruction
'j': used by mov instruction to properly emit jli related labels.
'B': Branch comparison operand - suppress sda reference
'H': Most significant word
'L': Least significant word
'A': ASCII decimal representation of floating point value
'U': Load/store update or scaling indicator
'V': cache bypass indicator for volatile
'P'
'F'
'^'
'O': Operator
'o': original symbol - no @ prepending. */
void
arc_print_operand (FILE *file, rtx x, int code)
{
switch (code)
{
case 'Z':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d",exact_log2(INTVAL (x) + 1) - 1 );
else
output_operand_lossage ("invalid operand to %%Z code");
return;
case 'z':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d",exact_log2 (INTVAL (x) & 0xffffffff));
else
output_operand_lossage ("invalid operand to %%z code");
return;
case 'c':
if (GET_CODE (x) == CONST_INT)
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) );
else
output_operand_lossage ("invalid operands to %%c code");
return;
case 'M':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d",exact_log2(~INTVAL (x)) );
else
output_operand_lossage ("invalid operand to %%M code");
return;
case 'p':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d", exact_log2 (INTVAL (x) & -INTVAL (x)));
else
output_operand_lossage ("invalid operand to %%p code");
return;
case 's':
if (GET_CODE (x) == CONST_INT)
{
HOST_WIDE_INT i = INTVAL (x);
HOST_WIDE_INT s = exact_log2 (i & -i);
fprintf (file, "%d", exact_log2 (((0xffffffffUL & i) >> s) + 1));
}
else
output_operand_lossage ("invalid operand to %%s code");
return;
case '#' :
/* Conditional branches depending on condition codes.
Note that this is only for branches that were known to depend on
condition codes before delay slot scheduling;
out-of-range brcc / bbit expansions should use '*'.
This distinction is important because of the different
allowable delay slot insns and the output of the delay suffix
for TARGET_AT_DBR_COND_EXEC. */
case '*' :
/* Unconditional branches / branches not depending on condition codes.
This could also be a CALL_INSN.
Output the appropriate delay slot suffix. */
if (final_sequence && final_sequence->len () != 1)
{
rtx_insn *jump = final_sequence->insn (0);
rtx_insn *delay = final_sequence->insn (1);
/* For TARGET_PAD_RETURN we might have grabbed the delay insn. */
if (delay->deleted ())
return;
if (JUMP_P (jump) && INSN_ANNULLED_BRANCH_P (jump))
fputs (INSN_FROM_TARGET_P (delay) ? ".d"
: TARGET_AT_DBR_CONDEXEC && code == '#' ? ".d"
: get_attr_type (jump) == TYPE_RETURN && code == '#' ? ""
: ".nd",
file);
else
fputs (".d", file);
}
return;
case '?' : /* with leading "." */
case '!' : /* without leading "." */
/* This insn can be conditionally executed. See if the ccfsm machinery
says it should be conditionalized.
If it shouldn't, we'll check the compact attribute if this insn
has a short variant, which may be used depending on code size and
alignment considerations. */
if (current_insn_predicate)
arc_ccfsm_current.cc
= get_arc_condition_code (current_insn_predicate);
if (ARC_CCFSM_COND_EXEC_P (&arc_ccfsm_current))
{
/* Is this insn in a delay slot sequence? */
if (!final_sequence || XVECLEN (final_sequence, 0) < 2
|| current_insn_predicate
|| CALL_P (final_sequence->insn (0))
|| simplejump_p (final_sequence->insn (0)))
{
/* This insn isn't in a delay slot sequence, or conditionalized
independently of its position in a delay slot. */
fprintf (file, "%s%s",
code == '?' ? "." : "",
arc_condition_codes[arc_ccfsm_current.cc]);
/* If this is a jump, there are still short variants. However,
only beq_s / bne_s have the same offset range as b_s,
and the only short conditional returns are jeq_s and jne_s. */
if (code == '!'
&& (arc_ccfsm_current.cc == ARC_CC_EQ
|| arc_ccfsm_current.cc == ARC_CC_NE
|| 0 /* FIXME: check if branch in 7 bit range. */))
output_short_suffix (file);
}
else if (code == '!') /* Jump with delay slot. */
fputs (arc_condition_codes[arc_ccfsm_current.cc], file);
else /* An Instruction in a delay slot of a jump or call. */
{
rtx jump = XVECEXP (final_sequence, 0, 0);
rtx insn = XVECEXP (final_sequence, 0, 1);
/* If the insn is annulled and is from the target path, we need
to inverse the condition test. */
if (JUMP_P (jump) && INSN_ANNULLED_BRANCH_P (jump))
{
if (INSN_FROM_TARGET_P (insn))
fprintf (file, "%s%s",
code == '?' ? "." : "",
arc_condition_codes[ARC_INVERSE_CONDITION_CODE (arc_ccfsm_current.cc)]);
else
fprintf (file, "%s%s",
code == '?' ? "." : "",
arc_condition_codes[arc_ccfsm_current.cc]);
if (arc_ccfsm_current.state == 5)
arc_ccfsm_current.state = 0;
}
else
/* This insn is executed for either path, so don't
conditionalize it at all. */
output_short_suffix (file);
}
}
else
output_short_suffix (file);
return;
case'`':
/* FIXME: fold constant inside unary operator, re-recognize, and emit. */
gcc_unreachable ();
case 'd' :
fputs (arc_condition_codes[get_arc_condition_code (x)], file);
return;
case 'D' :
fputs (arc_condition_codes[ARC_INVERSE_CONDITION_CODE
(get_arc_condition_code (x))],
file);
return;
case 'R' :
/* Write second word of DImode or DFmode reference,
register or memory. */
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)+1], file);
else if (GET_CODE (x) == MEM)
{
fputc ('[', file);
/* Handle possible auto-increment. For PRE_INC / PRE_DEC /
PRE_MODIFY, we will have handled the first word already;
For POST_INC / POST_DEC / POST_MODIFY, the access to the
first word will be done later. In either case, the access
to the first word will do the modify, and we only have
to add an offset of four here. */
if (GET_CODE (XEXP (x, 0)) == PRE_INC
|| GET_CODE (XEXP (x, 0)) == PRE_DEC
|| GET_CODE (XEXP (x, 0)) == PRE_MODIFY
|| GET_CODE (XEXP (x, 0)) == POST_INC
|| GET_CODE (XEXP (x, 0)) == POST_DEC
|| GET_CODE (XEXP (x, 0)) == POST_MODIFY)
output_address (VOIDmode,
plus_constant (Pmode, XEXP (XEXP (x, 0), 0), 4));
else if (output_scaled)
{
rtx addr = XEXP (x, 0);
int size = GET_MODE_SIZE (GET_MODE (x));
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0),
((INTVAL (XEXP (addr, 1)) + 4)
>> (size == 2 ? 1 : 2))));
output_scaled = 0;
}
else
output_address (VOIDmode,
plus_constant (Pmode, XEXP (x, 0), 4));
fputc (']', file);
}
else
output_operand_lossage ("invalid operand to %%R code");
return;
case 'j':
case 'S' :
if (GET_CODE (x) == SYMBOL_REF
&& arc_is_jli_call_p (x))
{
if (SYMBOL_REF_DECL (x))
{
tree attrs = (TREE_TYPE (SYMBOL_REF_DECL (x)) != error_mark_node
? TYPE_ATTRIBUTES (TREE_TYPE (SYMBOL_REF_DECL (x)))
: NULL_TREE);
if (lookup_attribute ("jli_fixed", attrs))
{
/* No special treatment for jli_fixed functions. */
if (code == 'j')
break;
fprintf (file, HOST_WIDE_INT_PRINT_DEC "\t; @",
TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attrs))));
assemble_name (file, XSTR (x, 0));
return;
}
}
fprintf (file, "@__jli.");
assemble_name (file, XSTR (x, 0));
if (code == 'j')
arc_add_jli_section (x);
return;
}
if (GET_CODE (x) == SYMBOL_REF
&& arc_is_secure_call_p (x))
{
/* No special treatment for secure functions. */
if (code == 'j' )
break;
tree attrs = (TREE_TYPE (SYMBOL_REF_DECL (x)) != error_mark_node
? TYPE_ATTRIBUTES (TREE_TYPE (SYMBOL_REF_DECL (x)))
: NULL_TREE);
fprintf (file, HOST_WIDE_INT_PRINT_DEC "\t; @",
TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attrs))));
assemble_name (file, XSTR (x, 0));
return;
}
break;
case 'B' /* Branch or other LIMM ref - must not use sda references. */ :
if (CONSTANT_P (x))
{
output_addr_const (file, x);
return;
}
break;
case 'H' :
case 'L' :
if (GET_CODE (x) == REG)
{
/* L = least significant word, H = most significant word. */
if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
fputs (reg_names[REGNO (x)], file);
else
fputs (reg_names[REGNO (x)+1], file);
}
else if (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE)
{
rtx first, second, word;
split_double (x, &first, &second);
if((WORDS_BIG_ENDIAN) == 0)
word = (code == 'L' ? first : second);
else
word = (code == 'L' ? second : first);
fprintf (file, "0x%08" PRIx32, ((uint32_t) INTVAL (word)));
}
else
output_operand_lossage ("invalid operand to %%H/%%L code");
return;
case 'A' :
{
char str[30];
gcc_assert (GET_CODE (x) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT);
real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
fprintf (file, "%s", str);
return;
}
case 'U' :
/* Output a load/store with update indicator if appropriate. */
if (GET_CODE (x) == MEM)
{
rtx addr = XEXP (x, 0);
switch (GET_CODE (addr))
{
case PRE_INC: case PRE_DEC: case PRE_MODIFY:
fputs (".a", file); break;
case POST_INC: case POST_DEC: case POST_MODIFY:
fputs (".ab", file); break;
case PLUS:
/* Are we using a scaled index? */
if (GET_CODE (XEXP (addr, 0)) == MULT)
fputs (".as", file);
/* Can we use a scaled offset? */
else if (CONST_INT_P (XEXP (addr, 1))
&& GET_MODE_SIZE (GET_MODE (x)) > 1
&& (!(INTVAL (XEXP (addr, 1))
& (GET_MODE_SIZE (GET_MODE (x)) - 1) & 3))
/* Does it make a difference? */
&& !SMALL_INT_RANGE(INTVAL (XEXP (addr, 1)),
GET_MODE_SIZE (GET_MODE (x)) - 2, 0))
{
fputs (".as", file);
output_scaled = 1;
}
break;
case SYMBOL_REF:
case CONST:
if (legitimate_small_data_address_p (addr, GET_MODE (x))
&& GET_MODE_SIZE (GET_MODE (x)) > 1)
{
int align = get_symbol_alignment (addr);
int mask = 0;
switch (GET_MODE (x))
{
case E_HImode:
mask = 1;
break;
default:
mask = 3;
break;
}
if (align && ((align & mask) == 0))
fputs (".as", file);
}
break;
case REG:
break;
default:
gcc_assert (CONSTANT_P (addr)); break;
}
}
else
output_operand_lossage ("invalid operand to %%U code");
return;
case 'V' :
/* Output cache bypass indicator for a load/store insn. Volatile memory
refs are defined to use the cache bypass mechanism. */
if (GET_CODE (x) == MEM)
{
if ((MEM_VOLATILE_P (x) && !TARGET_VOLATILE_CACHE_SET)
|| arc_is_uncached_mem_p (x))
fputs (".di", file);
}
else
output_operand_lossage ("invalid operand to %%V code");
return;
/* plt code. */
case 'P':
case 0 :
/* Do nothing special. */
break;
case 'F':
fputs (reg_names[REGNO (x)]+1, file);
return;
case '^':
/* This punctuation character is needed because label references are
printed in the output template using %l. This is a front end
character, and when we want to emit a '@' before it, we have to use
this '^'. */
fputc('@',file);
return;
case 'O':
/* Output an operator. */
switch (GET_CODE (x))
{
case PLUS: fputs ("add", file); return;
case SS_PLUS: fputs ("adds", file); return;
case AND: fputs ("and", file); return;
case IOR: fputs ("or", file); return;
case XOR: fputs ("xor", file); return;
case MINUS: fputs ("sub", file); return;
case SS_MINUS: fputs ("subs", file); return;
case ASHIFT: fputs ("asl", file); return;
case ASHIFTRT: fputs ("asr", file); return;
case LSHIFTRT: fputs ("lsr", file); return;
case ROTATERT: fputs ("ror", file); return;
case MULT: fputs ("mpy", file); return;
case ABS: fputs ("abs", file); return; /* Unconditional. */
case NEG: fputs ("neg", file); return;
case SS_NEG: fputs ("negs", file); return;
case NOT: fputs ("not", file); return; /* Unconditional. */
case ZERO_EXTEND:
fputs ("ext", file); /* bmsk allows predication. */
goto size_suffix;
case SIGN_EXTEND: /* Unconditional. */
fputs ("sex", file);
size_suffix:
switch (GET_MODE (XEXP (x, 0)))
{
case E_QImode: fputs ("b", file); return;
case E_HImode: fputs ("w", file); return;
default: break;
}
break;
case SS_TRUNCATE:
if (GET_MODE (x) != HImode)
break;
fputs ("sat16", file);
default: break;
}
output_operand_lossage ("invalid operand to %%O code"); return;
case 'o':
if (GET_CODE (x) == SYMBOL_REF)
{
assemble_name (file, XSTR (x, 0));
return;
}
break;
case '&':
if (TARGET_ANNOTATE_ALIGN)
fprintf (file, "; unalign: %d", cfun->machine->unalign);
return;
case '+':
if (TARGET_V2)
fputs ("m", file);
else
fputs ("h", file);
return;
case '_':
if (TARGET_V2)
fputs ("h", file);
else
fputs ("w", file);
return;
default :
/* Unknown flag. */
output_operand_lossage ("invalid operand output code");
}
switch (GET_CODE (x))
{
case REG :
fputs (reg_names[REGNO (x)], file);
break;
case MEM :
{
rtx addr = XEXP (x, 0);
int size = GET_MODE_SIZE (GET_MODE (x));
if (legitimate_small_data_address_p (addr, GET_MODE (x)))
output_sdata = 1;
fputc ('[', file);
switch (GET_CODE (addr))
{
case PRE_INC: case POST_INC:
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0), size)); break;
case PRE_DEC: case POST_DEC:
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0), -size));
break;
case PRE_MODIFY: case POST_MODIFY:
output_address (VOIDmode, XEXP (addr, 1)); break;
case PLUS:
if (output_scaled)
{
output_address (VOIDmode,
plus_constant (Pmode, XEXP (addr, 0),
(INTVAL (XEXP (addr, 1))
>> (size == 2 ? 1 : 2))));
output_scaled = 0;
}
else
output_address (VOIDmode, addr);
break;
default:
if (flag_pic && CONSTANT_ADDRESS_P (addr))
arc_output_pic_addr_const (file, addr, code);
else
output_address (VOIDmode, addr);
break;
}
fputc (']', file);
break;
}
case CONST_DOUBLE :
/* We handle SFmode constants here as output_addr_const doesn't. */
if (GET_MODE (x) == SFmode)
{
long l;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
fprintf (file, "0x%08lx", l);
break;
}
/* FALLTHRU */
/* Let output_addr_const deal with it. */
default :
if (flag_pic
|| (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == UNSPEC
&& (XINT (XEXP (x, 0), 1) == UNSPEC_TLS_OFF
|| XINT (XEXP (x, 0), 1) == UNSPEC_TLS_GD))
|| (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == UNSPEC
&& (XINT (XEXP (XEXP (x, 0), 0), 1) == UNSPEC_TLS_OFF
|| XINT (XEXP (XEXP (x, 0), 0), 1) == UNSPEC_TLS_GD)))
arc_output_pic_addr_const (file, x, code);
else
output_addr_const (file, x);
break;
}
}
/* Print a memory address as an operand to reference that memory location. */
void
arc_print_operand_address (FILE *file , rtx addr)
{
rtx base, index = 0;
switch (GET_CODE (addr))
{
case REG :
fputs (reg_names[REGNO (addr)], file);
break;
case SYMBOL_REF:
if (output_sdata)
fputs ("gp,", file);
output_addr_const (file, addr);
if (output_sdata)
fputs ("@sda", file);
output_sdata = 0;
break;
case PLUS :
if (GET_CODE (XEXP (addr, 0)) == MULT)
index = XEXP (XEXP (addr, 0), 0), base = XEXP (addr, 1);
else if (CONST_INT_P (XEXP (addr, 0)))
index = XEXP (addr, 0), base = XEXP (addr, 1);
else
base = XEXP (addr, 0), index = XEXP (addr, 1);
gcc_assert (OBJECT_P (base));
arc_print_operand_address (file, base);
if (CONSTANT_P (base) && CONST_INT_P (index))
fputc ('+', file);
else
fputc (',', file);
gcc_assert (OBJECT_P (index));
arc_print_operand_address (file, index);
break;
case CONST:
{
rtx c = XEXP (addr, 0);
if ((GET_CODE (c) == UNSPEC
&& (XINT (c, 1) == UNSPEC_TLS_OFF
|| XINT (c, 1) == UNSPEC_TLS_IE))
|| (GET_CODE (c) == PLUS
&& GET_CODE (XEXP (c, 0)) == UNSPEC
&& (XINT (XEXP (c, 0), 1) == UNSPEC_TLS_OFF
|| XINT (XEXP (c, 0), 1) == ARC_UNSPEC_GOTOFFPC)))
{
arc_output_pic_addr_const (file, c, 0);
break;
}
gcc_assert (GET_CODE (c) == PLUS);
gcc_assert (GET_CODE (XEXP (c, 0)) == SYMBOL_REF);
gcc_assert (GET_CODE (XEXP (c, 1)) == CONST_INT);
output_address (VOIDmode, XEXP (addr, 0));
break;
}
case PRE_INC :
case PRE_DEC :
/* We shouldn't get here as we've lost the mode of the memory object
(which says how much to inc/dec by. */
gcc_unreachable ();
break;
default :
if (flag_pic)
arc_output_pic_addr_const (file, addr, 0);
else
output_addr_const (file, addr);
break;
}
}
/* Conditional execution support.
This is based on the ARM port but for now is much simpler.
A finite state machine takes care of noticing whether or not instructions
can be conditionally executed, and thus decrease execution time and code
size by deleting branch instructions. The fsm is controlled by
arc_ccfsm_advance (called by arc_final_prescan_insn), and controls the
actions of PRINT_OPERAND. The patterns in the .md file for the branch
insns also have a hand in this. */
/* The way we leave dealing with non-anulled or annull-false delay slot
insns to the consumer is awkward. */
/* The state of the fsm controlling condition codes are:
0: normal, do nothing special
1: don't output this insn
2: don't output this insn
3: make insns conditional
4: make insns conditional
5: make insn conditional (only for outputting anulled delay slot insns)
special value for cfun->machine->uid_ccfsm_state:
6: return with but one insn before it since function start / call
State transitions (state->state by whom, under what condition):
0 -> 1 arc_ccfsm_advance, if insn is a conditional branch skipping over
some instructions.
0 -> 2 arc_ccfsm_advance, if insn is a conditional branch followed
by zero or more non-jump insns and an unconditional branch with
the same target label as the condbranch.
1 -> 3 branch patterns, after having not output the conditional branch
2 -> 4 branch patterns, after having not output the conditional branch
0 -> 5 branch patterns, for anulled delay slot insn.
3 -> 0 ASM_OUTPUT_INTERNAL_LABEL, if the `target' label is reached
(the target label has CODE_LABEL_NUMBER equal to
arc_ccfsm_target_label).
4 -> 0 arc_ccfsm_advance, if `target' unconditional branch is reached
3 -> 1 arc_ccfsm_advance, finding an 'else' jump skipping over some insns.
5 -> 0 when outputting the delay slot insn
If the jump clobbers the conditions then we use states 2 and 4.
A similar thing can be done with conditional return insns.
We also handle separating branches from sets of the condition code.
This is done here because knowledge of the ccfsm state is required,
we may not be outputting the branch. */
/* arc_final_prescan_insn calls arc_ccfsm_advance to adjust arc_ccfsm_current,
before letting final output INSN. */
static void
arc_ccfsm_advance (rtx_insn *insn, struct arc_ccfsm *state)
{
/* BODY will hold the body of INSN. */
rtx body;
/* This will be 1 if trying to repeat the trick (ie: do the `else' part of
an if/then/else), and things need to be reversed. */
int reverse = 0;
/* If we start with a return insn, we only succeed if we find another one. */
int seeking_return = 0;
/* START_INSN will hold the insn from where we start looking. This is the
first insn after the following code_label if REVERSE is true. */
rtx_insn *start_insn = insn;
/* Type of the jump_insn. Brcc insns don't affect ccfsm changes,
since they don't rely on a cmp preceding the. */
enum attr_type jump_insn_type;
/* Allow -mdebug-ccfsm to turn this off so we can see how well it does.
We can't do this in macro FINAL_PRESCAN_INSN because its called from
final_scan_insn which has `optimize' as a local. */
if (optimize < 2 || TARGET_NO_COND_EXEC)
return;
/* Ignore notes and labels. */
if (!INSN_P (insn))
return;
body = PATTERN (insn);
/* If in state 4, check if the target branch is reached, in order to
change back to state 0. */
if (state->state == 4)
{
if (insn == state->target_insn)
{
state->target_insn = NULL;
state->state = 0;
}
return;
}
/* If in state 3, it is possible to repeat the trick, if this insn is an
unconditional branch to a label, and immediately following this branch
is the previous target label which is only used once, and the label this
branch jumps to is not too far off. Or in other words "we've done the
`then' part, see if we can do the `else' part." */
if (state->state == 3)
{
if (simplejump_p (insn))
{
start_insn = next_nonnote_insn (start_insn);
if (GET_CODE (start_insn) == BARRIER)
{
/* ??? Isn't this always a barrier? */
start_insn = next_nonnote_insn (start_insn);
}
if (GET_CODE (start_insn) == CODE_LABEL
&& CODE_LABEL_NUMBER (start_insn) == state->target_label
&& LABEL_NUSES (start_insn) == 1)
reverse = TRUE;
else
return;
}
else if (GET_CODE (body) == SIMPLE_RETURN)
{
start_insn = next_nonnote_insn (start_insn);
if (GET_CODE (start_insn) == BARRIER)
start_insn = next_nonnote_insn (start_insn);
if (GET_CODE (start_insn) == CODE_LABEL
&& CODE_LABEL_NUMBER (start_insn) == state->target_label
&& LABEL_NUSES (start_insn) == 1)
{
reverse = TRUE;
seeking_return = 1;
}
else
return;
}
else
return;
}
if (GET_CODE (insn) != JUMP_INSN
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
return;
/* We can't predicate BRCC or loop ends.
Also, when generating PIC code, and considering a medium range call,
we can't predicate the call. */
jump_insn_type = get_attr_type (insn);
if (jump_insn_type == TYPE_BRCC
|| jump_insn_type == TYPE_BRCC_NO_DELAY_SLOT
|| jump_insn_type == TYPE_LOOP_END
|| (jump_insn_type == TYPE_CALL && !get_attr_predicable (insn)))
return;
/* This jump might be paralleled with a clobber of the condition codes,
the jump should always come first. */
if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
body = XVECEXP (body, 0, 0);
if (reverse
|| (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
&& GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
{
int insns_skipped = 0, fail = FALSE, succeed = FALSE;
/* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
int then_not_else = TRUE;
/* Nonzero if next insn must be the target label. */
int next_must_be_target_label_p;
rtx_insn *this_insn = start_insn;
rtx label = 0;
/* Register the insn jumped to. */
if (reverse)
{
if (!seeking_return)
label = XEXP (SET_SRC (body), 0);
}
else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
label = XEXP (XEXP (SET_SRC (body), 1), 0);
else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
{
label = XEXP (XEXP (SET_SRC (body), 2), 0);
then_not_else = FALSE;
}
else if (GET_CODE (XEXP (SET_SRC (body), 1)) == SIMPLE_RETURN)
seeking_return = 1;
else if (GET_CODE (XEXP (SET_SRC (body), 2)) == SIMPLE_RETURN)
{
seeking_return = 1;
then_not_else = FALSE;
}
else
gcc_unreachable ();
/* If this is a non-annulled branch with a delay slot, there is
no need to conditionalize the delay slot. */
if ((GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (insn)))) == SEQUENCE)
&& state->state == 0 && !INSN_ANNULLED_BRANCH_P (insn))
{
this_insn = NEXT_INSN (this_insn);
}
/* See how many insns this branch skips, and what kind of insns. If all
insns are okay, and the label or unconditional branch to the same
label is not too far away, succeed. */
for (insns_skipped = 0, next_must_be_target_label_p = FALSE;
!fail && !succeed && insns_skipped < MAX_INSNS_SKIPPED;
insns_skipped++)
{
rtx scanbody;
this_insn = next_nonnote_insn (this_insn);
if (!this_insn)
break;
if (next_must_be_target_label_p)
{
if (GET_CODE (this_insn) == BARRIER)
continue;
if (GET_CODE (this_insn) == CODE_LABEL
&& this_insn == label)
{
state->state = 1;
succeed = TRUE;
}
else
fail = TRUE;
break;
}
switch (GET_CODE (this_insn))
{
case CODE_LABEL:
/* Succeed if it is the target label, otherwise fail since
control falls in from somewhere else. */
if (this_insn == label)
{
state->state = 1;
succeed = TRUE;
}
else
fail = TRUE;
break;
case BARRIER:
/* Succeed if the following insn is the target label.
Otherwise fail.
If return insns are used then the last insn in a function
will be a barrier. */
next_must_be_target_label_p = TRUE;
break;
case CALL_INSN:
/* Can handle a call insn if there are no insns after it.
IE: The next "insn" is the target label. We don't have to
worry about delay slots as such insns are SEQUENCE's inside
INSN's. ??? It is possible to handle such insns though. */
if (get_attr_cond (this_insn) == COND_CANUSE)
next_must_be_target_label_p = TRUE;
else
fail = TRUE;
break;
case JUMP_INSN:
scanbody = PATTERN (this_insn);
/* If this is an unconditional branch to the same label, succeed.
If it is to another label, do nothing. If it is conditional,
fail. */
/* ??? Probably, the test for the SET and the PC are
unnecessary. */
if (GET_CODE (scanbody) == SET
&& GET_CODE (SET_DEST (scanbody)) == PC)
{
if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
&& XEXP (SET_SRC (scanbody), 0) == label && !reverse)
{
state->state = 2;
succeed = TRUE;
}
else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
fail = TRUE;
else if (get_attr_cond (this_insn) != COND_CANUSE)
fail = TRUE;
}
else if (GET_CODE (scanbody) == SIMPLE_RETURN
&& seeking_return)
{
state->state = 2;
succeed = TRUE;
}
else if (GET_CODE (scanbody) == PARALLEL)
{
if (get_attr_cond (this_insn) != COND_CANUSE)
fail = TRUE;
}
break;
case INSN:
scanbody = PATTERN (this_insn);
/* We can only do this with insns that can use the condition
codes (and don't set them). */
if (GET_CODE (scanbody) == SET
|| GET_CODE (scanbody) == PARALLEL)
{
if (get_attr_cond (this_insn) != COND_CANUSE)
fail = TRUE;
}
/* We can't handle other insns like sequences. */
else
fail = TRUE;
break;
default:
break;
}
}
if (succeed)
{
if ((!seeking_return) && (state->state == 1 || reverse))
state->target_label = CODE_LABEL_NUMBER (label);
else if (seeking_return || state->state == 2)
{
while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
{
this_insn = next_nonnote_insn (this_insn);
gcc_assert (!this_insn ||
(GET_CODE (this_insn) != BARRIER
&& GET_CODE (this_insn) != CODE_LABEL));
}
if (!this_insn)
{
/* Oh dear! we ran off the end, give up. */
extract_insn_cached (insn);
state->state = 0;
state->target_insn = NULL;
return;
}
state->target_insn = this_insn;
}
else
gcc_unreachable ();
/* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
what it was. */
if (!reverse)
{
state->cond = XEXP (SET_SRC (body), 0);
state->cc = get_arc_condition_code (XEXP (SET_SRC (body), 0));
}
if (reverse || then_not_else)
state->cc = ARC_INVERSE_CONDITION_CODE (state->cc);
}
/* Restore recog_operand. Getting the attributes of other insns can
destroy this array, but final.cc assumes that it remains intact
across this call; since the insn has been recognized already we
call insn_extract direct. */
extract_insn_cached (insn);
}
}
/* Record that we are currently outputting label NUM with prefix PREFIX.
It it's the label we're looking for, reset the ccfsm machinery.
Called from ASM_OUTPUT_INTERNAL_LABEL. */
static void
arc_ccfsm_at_label (const char *prefix, int num, struct arc_ccfsm *state)
{
if (state->state == 3 && state->target_label == num
&& !strcmp (prefix, "L"))
{
state->state = 0;
state->target_insn = NULL;
}
}
/* We are considering a conditional branch with the condition COND.
Check if we want to conditionalize a delay slot insn, and if so modify
the ccfsm state accordingly.
REVERSE says branch will branch when the condition is false. */
void
arc_ccfsm_record_condition (rtx cond, bool reverse, rtx_insn *jump,
struct arc_ccfsm *state)
{
rtx_insn *seq_insn = NEXT_INSN (PREV_INSN (jump));
if (!state)
state = &arc_ccfsm_current;
gcc_assert (state->state == 0);
if (seq_insn != jump)
{
rtx insn = XVECEXP (PATTERN (seq_insn), 0, 1);
if (!as_a<rtx_insn *> (insn)->deleted ()
&& INSN_ANNULLED_BRANCH_P (jump)
&& (TARGET_AT_DBR_CONDEXEC || INSN_FROM_TARGET_P (insn)))
{
state->cond = cond;
state->cc = get_arc_condition_code (cond);
if (!reverse)
arc_ccfsm_current.cc
= ARC_INVERSE_CONDITION_CODE (state->cc);
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == COND_EXEC)
gcc_assert ((INSN_FROM_TARGET_P (insn)
? ARC_INVERSE_CONDITION_CODE (state->cc) : state->cc)
== get_arc_condition_code (XEXP (pat, 0)));
else
state->state = 5;
}
}
}
/* Update *STATE as we would when we emit INSN. */
static void
arc_ccfsm_post_advance (rtx_insn *insn, struct arc_ccfsm *state)
{
enum attr_type type;
if (LABEL_P (insn))
arc_ccfsm_at_label ("L", CODE_LABEL_NUMBER (insn), state);
else if (JUMP_P (insn)
&& GET_CODE (PATTERN (insn)) != ADDR_VEC
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
&& ((type = get_attr_type (insn)) == TYPE_BRANCH
|| ((type == TYPE_UNCOND_BRANCH
|| type == TYPE_RETURN)
&& ARC_CCFSM_BRANCH_DELETED_P (state))))
{
if (ARC_CCFSM_BRANCH_DELETED_P (state))
ARC_CCFSM_RECORD_BRANCH_DELETED (state);
else
{
rtx src = SET_SRC (PATTERN (insn));
arc_ccfsm_record_condition (XEXP (src, 0), XEXP (src, 1) == pc_rtx,
insn, state);
}
}
else if (arc_ccfsm_current.state == 5)
arc_ccfsm_current.state = 0;
}
/* Return true if the current insn, which is a conditional branch, is to be
deleted. */
bool
arc_ccfsm_branch_deleted_p (void)
{
return ARC_CCFSM_BRANCH_DELETED_P (&arc_ccfsm_current);
}
/* Record a branch isn't output because subsequent insns can be
conditionalized. */
void
arc_ccfsm_record_branch_deleted (void)
{
ARC_CCFSM_RECORD_BRANCH_DELETED (&arc_ccfsm_current);
}
/* During insn output, indicate if the current insn is predicated. */
bool
arc_ccfsm_cond_exec_p (void)
{
return (cfun->machine->prescan_initialized
&& ARC_CCFSM_COND_EXEC_P (&arc_ccfsm_current));
}
/* When deciding if an insn should be output short, we want to know something
about the following insns:
- if another insn follows which we know we can output as a short insn
before an alignment-sensitive point, we can output this insn short:
the decision about the eventual alignment can be postponed.
- if a to-be-aligned label comes next, we should output this insn such
as to get / preserve 4-byte alignment.
- if a likely branch without delay slot insn, or a call with an immediately
following short insn comes next, we should out output this insn such as to
get / preserve 2 mod 4 unalignment.
- do the same for a not completely unlikely branch with a short insn
following before any other branch / label.
- in order to decide if we are actually looking at a branch, we need to
call arc_ccfsm_advance.
- in order to decide if we are looking at a short insn, we should know
if it is conditionalized. To a first order of approximation this is
the case if the state from arc_ccfsm_advance from before this insn
indicates the insn is conditionalized. However, a further refinement
could be to not conditionalize an insn if the destination register(s)
is/are dead in the non-executed case. */
/* Return non-zero if INSN should be output as a short insn. UNALIGN is
zero if the current insn is aligned to a 4-byte-boundary, two otherwise.
If CHECK_ATTR is greater than 0, check the iscompact attribute first. */
static int
arc_verify_short (rtx_insn *insn, int, int check_attr)
{
enum attr_iscompact iscompact;
if (check_attr > 0)
{
iscompact = get_attr_iscompact (insn);
if (iscompact == ISCOMPACT_FALSE)
return 0;
}
return (get_attr_length (insn) & 2) != 0;
}
/* When outputting an instruction (alternative) that can potentially be short,
output the short suffix if the insn is in fact short, and update
cfun->machine->unalign accordingly. */
static void
output_short_suffix (FILE *file)
{
rtx_insn *insn = current_output_insn;
if (!insn)
return;
if (arc_verify_short (insn, cfun->machine->unalign, 1))
{
fprintf (file, "_s");
cfun->machine->unalign ^= 2;
}
/* Restore recog_operand. */
extract_insn_cached (insn);
}
/* Implement FINAL_PRESCAN_INSN. */
void
arc_final_prescan_insn (rtx_insn *insn, rtx *opvec ATTRIBUTE_UNUSED,
int noperands ATTRIBUTE_UNUSED)
{
if (TARGET_DUMPISIZE)
fprintf (asm_out_file, "\n; at %04x\n", INSN_ADDRESSES (INSN_UID (insn)));
if (!cfun->machine->prescan_initialized)
{
/* Clear lingering state from branch shortening. */
memset (&arc_ccfsm_current, 0, sizeof arc_ccfsm_current);
cfun->machine->prescan_initialized = 1;
}
arc_ccfsm_advance (insn, &arc_ccfsm_current);
}
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
All eliminations are permissible. If we need a frame
pointer, we must eliminate ARG_POINTER_REGNUM into
FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */
static bool
arc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
return ((to == HARD_FRAME_POINTER_REGNUM) || (to == STACK_POINTER_REGNUM));
}
/* Define the offset between two registers, one to be eliminated, and
the other its replacement, at the start of a routine. */
int
arc_initial_elimination_offset (int from, int to)
{
if (!cfun->machine->frame_info.initialized)
arc_compute_frame_size ();
if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
{
return (cfun->machine->frame_info.extra_size
+ cfun->machine->frame_info.reg_size);
}
if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
{
return (cfun->machine->frame_info.total_size
- cfun->machine->frame_info.pretend_size);
}
if ((from == FRAME_POINTER_REGNUM) && (to == STACK_POINTER_REGNUM))
{
return (cfun->machine->frame_info.total_size
- (cfun->machine->frame_info.pretend_size
+ cfun->machine->frame_info.extra_size
+ cfun->machine->frame_info.reg_size));
}
if ((from == FRAME_POINTER_REGNUM) && (to == HARD_FRAME_POINTER_REGNUM))
return 0;
gcc_unreachable ();
}
static bool
arc_frame_pointer_required (void)
{
return cfun->calls_alloca || crtl->calls_eh_return;
}
/* Return the destination address of a branch. */
static int
branch_dest (rtx branch)
{
rtx pat = PATTERN (branch);
rtx dest = (GET_CODE (pat) == PARALLEL
? SET_SRC (XVECEXP (pat, 0, 0)) : SET_SRC (pat));
int dest_uid;
if (GET_CODE (dest) == IF_THEN_ELSE)
dest = XEXP (dest, XEXP (dest, 1) == pc_rtx ? 2 : 1);
dest = XEXP (dest, 0);
dest_uid = INSN_UID (dest);
return INSN_ADDRESSES (dest_uid);
}
/* Implement TARGET_ENCODE_SECTION_INFO hook. */
static void
arc_encode_section_info (tree decl, rtx rtl, int first)
{
/* For sdata, SYMBOL_FLAG_LOCAL and SYMBOL_FLAG_FUNCTION.
This clears machine specific flags, so has to come first. */
default_encode_section_info (decl, rtl, first);
/* Check if it is a function, and whether it has the
[long/medium/short]_call attribute specified. */
if (TREE_CODE (decl) == FUNCTION_DECL)
{
rtx symbol = XEXP (rtl, 0);
int flags = SYMBOL_REF_FLAGS (symbol);
tree attr = (TREE_TYPE (decl) != error_mark_node
? TYPE_ATTRIBUTES (TREE_TYPE (decl)) : NULL_TREE);
tree long_call_attr = lookup_attribute ("long_call", attr);
tree medium_call_attr = lookup_attribute ("medium_call", attr);
tree short_call_attr = lookup_attribute ("short_call", attr);
if (long_call_attr != NULL_TREE)
flags |= SYMBOL_FLAG_LONG_CALL;
else if (medium_call_attr != NULL_TREE)
flags |= SYMBOL_FLAG_MEDIUM_CALL;
else if (short_call_attr != NULL_TREE)
flags |= SYMBOL_FLAG_SHORT_CALL;
SYMBOL_REF_FLAGS (symbol) = flags;
}
else if (TREE_CODE (decl) == VAR_DECL)
{
rtx symbol = XEXP (rtl, 0);
tree attr = (TREE_TYPE (decl) != error_mark_node
? DECL_ATTRIBUTES (decl) : NULL_TREE);
tree sec_attr = lookup_attribute ("section", attr);
if (sec_attr)
{
const char *sec_name
= TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (sec_attr)));
if (strcmp (sec_name, ".cmem") == 0
|| strcmp (sec_name, ".cmem_shared") == 0
|| strcmp (sec_name, ".cmem_private") == 0)
SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_CMEM;
}
}
}
/* This is how to output a definition of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
static void arc_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
{
if (cfun)
arc_ccfsm_at_label (prefix, labelno, &arc_ccfsm_current);
default_internal_label (stream, prefix, labelno);
}
/* Set the cpu type and print out other fancy things,
at the top of the file. */
static void arc_file_start (void)
{
default_file_start ();
fprintf (asm_out_file, "\t.cpu %s\n", arc_cpu_string);
/* Set some want to have build attributes. */
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_PCS_config, %d\n",
ATTRIBUTE_PCS);
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_ABI_rf16, %d\n",
TARGET_RF16 ? 1 : 0);
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_ABI_pic, %d\n",
flag_pic ? 2 : 0);
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_ABI_tls, %d\n",
(arc_tp_regno != -1) ? 1 : 0);
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_ABI_sda, %d\n",
TARGET_NO_SDATA_SET ? 0 : 2);
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_ABI_exceptions, %d\n",
TARGET_OPTFPE ? 1 : 0);
if (TARGET_V2)
asm_fprintf (asm_out_file, "\t.arc_attribute Tag_ARC_CPU_variation, %d\n",
(arc_tune < ARC_TUNE_CORE_3) ? 2 :
(arc_tune == ARC_TUNE_CORE_3 ? 3 : 4));
}
/* Implement `TARGET_ASM_FILE_END'. */
/* Outputs to the stdio stream FILE jli related text. */
void arc_file_end (void)
{
arc_jli_section *sec = arc_jli_sections;
while (sec != NULL)
{
fprintf (asm_out_file, "\n");
fprintf (asm_out_file, "# JLI entry for function ");
assemble_name (asm_out_file, sec->name);
fprintf (asm_out_file, "\n\t.section .jlitab, \"axG\", @progbits, "
".jlitab.");
assemble_name (asm_out_file, sec->name);
fprintf (asm_out_file,", comdat\n");
fprintf (asm_out_file, "\t.align\t4\n");
fprintf (asm_out_file, "__jli.");
assemble_name (asm_out_file, sec->name);
fprintf (asm_out_file, ":\n\t.weak __jli.");
assemble_name (asm_out_file, sec->name);
fprintf (asm_out_file, "\n\tb\t@");
assemble_name (asm_out_file, sec->name);
fprintf (asm_out_file, "\n");
sec = sec->next;
}
file_end_indicate_exec_stack ();
}
/* Cost functions. */
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
arc_rtx_costs (rtx x, machine_mode mode, int outer_code,
int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
int code = GET_CODE (x);
switch (code)
{
/* Small integers are as cheap as registers. */
case CONST_INT:
{
bool nolimm = false; /* Can we do without long immediate? */
nolimm = false;
if (UNSIGNED_INT6 (INTVAL (x)))
nolimm = true;
else
{
switch (outer_code)
{
case AND: /* bclr, bmsk, ext[bw] */
if (satisfies_constraint_Ccp (x) /* bclr */
|| satisfies_constraint_C1p (x) /* bmsk */)
nolimm = true;
break;
case IOR: /* bset */
if (satisfies_constraint_C0p (x)) /* bset */
nolimm = true;
break;
case XOR:
if (satisfies_constraint_C0p (x)) /* bxor */
nolimm = true;
break;
case SET:
if (UNSIGNED_INT8 (INTVAL (x)))
nolimm = true;
if (satisfies_constraint_Chi (x))
nolimm = true;
if (satisfies_constraint_Clo (x))
nolimm = true;
break;
case MULT:
if (TARGET_MUL64_SET)
if (SIGNED_INT12 (INTVAL (x)))
nolimm = true;
break;
default:
break;
}
}
if (nolimm)
{
*total = 0;
return true;
}
}
/* FALLTHRU */
/* 4 byte values can be fetched as immediate constants -
let's give that the cost of an extra insn. */
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = speed ? COSTS_N_INSNS (1) : COSTS_N_INSNS (4);
return true;
case CONST_DOUBLE:
{
rtx first, second;
if (TARGET_DPFP)
{
*total = COSTS_N_INSNS (1);
return true;
}
split_double (x, &first, &second);
*total = COSTS_N_INSNS (!SMALL_INT (INTVAL (first))
+ !SMALL_INT (INTVAL (second)));
return true;
}
/* Encourage synth_mult to find a synthetic multiply when reasonable.
If we need more than 12 insns to do a multiply, then go out-of-line,
since the call overhead will be < 10% of the cost of the multiply. */
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (TARGET_BARREL_SHIFTER)
{
if (CONSTANT_P (XEXP (x, 0)))
{
*total += rtx_cost (XEXP (x, 1), mode, (enum rtx_code) code,
0, speed);
return true;
}
*total = COSTS_N_INSNS (1);
}
else if (GET_CODE (XEXP (x, 1)) != CONST_INT)
*total = COSTS_N_INSNS (16);
else
{
*total = COSTS_N_INSNS (INTVAL (XEXP ((x), 1)));
/* ??? want_to_gcse_p can throw negative shift counts at us,
and then panics when it gets a negative cost as result.
Seen for gcc.c-torture/compile/20020710-1.c -Os . */
if (*total < 0)
*total = 0;
}
return false;
case DIV:
case UDIV:
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& (TARGET_FP_SP_SQRT || TARGET_FP_DP_SQRT))
*total = COSTS_N_INSNS(1);
else if (GET_MODE_CLASS (mode) == MODE_INT
&& TARGET_DIVREM)
*total = COSTS_N_INSNS(1);
else if (speed)
*total = COSTS_N_INSNS(30);
else
*total = COSTS_N_INSNS(1);
return false;
case MULT:
if ((TARGET_DPFP && GET_MODE (x) == DFmode))
*total = COSTS_N_INSNS (1);
else if (speed)
*total= arc_multcost;
/* We do not want synth_mult sequences when optimizing
for size. */
else if (TARGET_ANY_MPY)
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
return false;
case PLUS:
if (outer_code == MEM && CONST_INT_P (XEXP (x, 1))
&& RTX_OK_FOR_OFFSET_P (mode, XEXP (x, 1)))
{
*total = 0;
return true;
}
if ((GET_CODE (XEXP (x, 0)) == ASHIFT
&& _1_2_3_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
|| (GET_CODE (XEXP (x, 0)) == MULT
&& _2_4_8_operand (XEXP (XEXP (x, 0), 1), VOIDmode)))
{
if (CONSTANT_P (XEXP (x, 1)) && !speed)
*total += COSTS_N_INSNS (4);
*total += rtx_cost (XEXP (XEXP (x, 0), 0), mode, PLUS, 1, speed);
return true;
}
return false;
case MINUS:
if ((GET_CODE (XEXP (x, 1)) == ASHIFT
&& _1_2_3_operand (XEXP (XEXP (x, 1), 1), VOIDmode))
|| (GET_CODE (XEXP (x, 1)) == MULT
&& _2_4_8_operand (XEXP (XEXP (x, 1), 1), VOIDmode)))
{
if (CONSTANT_P (XEXP (x, 0)) && !speed)
*total += COSTS_N_INSNS (4);
*total += rtx_cost (XEXP (XEXP (x, 1), 0), mode, PLUS, 1, speed);
return true;
}
return false;
case COMPARE:
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
if (GET_CODE (op0) == ZERO_EXTRACT && op1 == const0_rtx
&& XEXP (op0, 1) == const1_rtx)
{
/* btst / bbit0 / bbit1:
Small integers and registers are free; everything else can
be put in a register. */
mode = GET_MODE (XEXP (op0, 0));
*total = (rtx_cost (XEXP (op0, 0), mode, SET, 1, speed)
+ rtx_cost (XEXP (op0, 2), mode, SET, 1, speed));
return true;
}
if (GET_CODE (op0) == AND && op1 == const0_rtx
&& satisfies_constraint_C1p (XEXP (op0, 1)))
{
/* bmsk.f */
*total = rtx_cost (XEXP (op0, 0), VOIDmode, SET, 1, speed);
return true;
}
/* add.f */
if (GET_CODE (op1) == NEG)
{
/* op0 might be constant, the inside of op1 is rather
unlikely to be so. So swapping the operands might lower
the cost. */
mode = GET_MODE (op0);
*total = (rtx_cost (op0, mode, PLUS, 1, speed)
+ rtx_cost (XEXP (op1, 0), mode, PLUS, 0, speed));
}
return false;
}
case EQ: case NE:
if (outer_code == IF_THEN_ELSE
&& GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT
&& XEXP (x, 1) == const0_rtx
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
{
/* btst / bbit0 / bbit1:
Small integers and registers are free; everything else can
be put in a register. */
rtx op0 = XEXP (x, 0);
mode = GET_MODE (XEXP (op0, 0));
*total = (rtx_cost (XEXP (op0, 0), mode, SET, 1, speed)
+ rtx_cost (XEXP (op0, 2), mode, SET, 1, speed));
return true;
}
/* Fall through. */
/* scc_insn expands into two insns. */
case GTU: case GEU: case LEU:
if (mode == SImode)
*total += COSTS_N_INSNS (1);
return false;
case LTU: /* might use adc. */
if (mode == SImode)
*total += COSTS_N_INSNS (1) - 1;
return false;
default:
return false;
}
}
/* Return true if ADDR is a valid pic address.
A valid pic address on arc should look like
const (unspec (SYMBOL_REF/LABEL) (ARC_UNSPEC_GOTOFF/ARC_UNSPEC_GOT)) */
bool
arc_legitimate_pic_addr_p (rtx addr)
{
if (GET_CODE (addr) != CONST)
return false;
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 1)) != CONST_INT)
return false;
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != UNSPEC
|| XVECLEN (addr, 0) != 1)
return false;
/* Must be one of @GOT, @GOTOFF, @GOTOFFPC, @tlsgd, tlsie. */
if (XINT (addr, 1) != ARC_UNSPEC_GOT
&& XINT (addr, 1) != ARC_UNSPEC_GOTOFF
&& XINT (addr, 1) != ARC_UNSPEC_GOTOFFPC
&& XINT (addr, 1) != UNSPEC_TLS_GD
&& XINT (addr, 1) != UNSPEC_TLS_IE)
return false;
if (GET_CODE (XVECEXP (addr, 0, 0)) != SYMBOL_REF
&& GET_CODE (XVECEXP (addr, 0, 0)) != LABEL_REF)
return false;
return true;
}
/* Return true if OP contains a symbol reference. */
static bool
symbolic_reference_mentioned_p (rtx op)
{
const char *fmt;
int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return true;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return true;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return true;
}
return false;
}
/* Return true if OP contains a SYMBOL_REF that is not wrapped in an unspec.
If SKIP_LOCAL is true, skip symbols that bind locally.
This is used further down in this file, and, without SKIP_LOCAL,
in the addsi3 / subsi3 expanders when generating PIC code. */
bool
arc_raw_symbolic_reference_mentioned_p (rtx op, bool skip_local)
{
const char *fmt;
int i;
if (GET_CODE(op) == UNSPEC)
return false;
if (GET_CODE (op) == SYMBOL_REF)
{
if (SYMBOL_REF_TLS_MODEL (op))
return true;
if (!flag_pic)
return false;
tree decl = SYMBOL_REF_DECL (op);
return !skip_local || !decl || !default_binds_local_p (decl);
}
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (arc_raw_symbolic_reference_mentioned_p (XVECEXP (op, i, j),
skip_local))
return true;
}
else if (fmt[i] == 'e'
&& arc_raw_symbolic_reference_mentioned_p (XEXP (op, i),
skip_local))
return true;
}
return false;
}
/* The __tls_get_attr symbol. */
static GTY(()) rtx arc_tls_symbol;
/* Emit a call to __tls_get_addr. TI is the argument to this function.
RET is an RTX for the return value location. The entire insn sequence
is returned. */
static rtx
arc_call_tls_get_addr (rtx ti)
{
rtx arg = gen_rtx_REG (Pmode, R0_REG);
rtx ret = gen_rtx_REG (Pmode, R0_REG);
rtx fn;
rtx_insn *insn;
if (!arc_tls_symbol)
arc_tls_symbol = init_one_libfunc ("__tls_get_addr");
emit_move_insn (arg, ti);
fn = gen_rtx_MEM (SImode, arc_tls_symbol);
insn = emit_call_insn (gen_call_value (ret, fn, const0_rtx));
RTL_CONST_CALL_P (insn) = 1;
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), ret);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), arg);
return ret;
}
#define DTPOFF_ZERO_SYM ".tdata"
/* Return a legitimized address for ADDR,
which is a SYMBOL_REF with tls_model MODEL. */
static rtx
arc_legitimize_tls_address (rtx addr, enum tls_model model)
{
rtx tmp;
if (!flag_pic && model == TLS_MODEL_LOCAL_DYNAMIC)
model = TLS_MODEL_LOCAL_EXEC;
/* The TP pointer needs to be set. */
gcc_assert (arc_tp_regno != -1);
switch (model)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
tmp = gen_reg_rtx (Pmode);
emit_move_insn (tmp, arc_unspec_offset (addr, UNSPEC_TLS_GD));
return arc_call_tls_get_addr (tmp);
case TLS_MODEL_LOCAL_DYNAMIC:
rtx base;
tree decl;
const char *base_name;
decl = SYMBOL_REF_DECL (addr);
base_name = DTPOFF_ZERO_SYM;
if (decl && bss_initializer_p (decl))
base_name = ".tbss";
base = gen_rtx_SYMBOL_REF (Pmode, base_name);
tmp = gen_reg_rtx (Pmode);
emit_move_insn (tmp, arc_unspec_offset (base, UNSPEC_TLS_GD));
base = arc_call_tls_get_addr (tmp);
return gen_rtx_PLUS (Pmode, force_reg (Pmode, base),
arc_unspec_offset (addr, UNSPEC_TLS_OFF));
case TLS_MODEL_INITIAL_EXEC:
addr = arc_unspec_offset (addr, UNSPEC_TLS_IE);
addr = copy_to_mode_reg (Pmode, gen_const_mem (Pmode, addr));
return gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, arc_tp_regno), addr);
case TLS_MODEL_LOCAL_EXEC:
addr = arc_unspec_offset (addr, UNSPEC_TLS_OFF);
return gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, arc_tp_regno), addr);
default:
gcc_unreachable ();
}
}
/* Return true if SYMBOL_REF X binds locally. */
static bool
arc_symbol_binds_local_p (const_rtx x)
{
return (SYMBOL_REF_DECL (x)
? targetm.binds_local_p (SYMBOL_REF_DECL (x))
: SYMBOL_REF_LOCAL_P (x));
}
/* Legitimize a pic address reference in ADDR. The return value is
the legitimated address. */
static rtx
arc_legitimize_pic_address (rtx addr)
{
if (!flag_pic)
return addr;
switch (GET_CODE (addr))
{
case UNSPEC:
/* Can be one or our GOT or GOTOFFPC unspecs. This situation
happens when an address is not a legitimate constant and we
need the resolve it via force_reg in
prepare_move_operands. */
switch (XINT (addr, 1))
{
case ARC_UNSPEC_GOT:
case ARC_UNSPEC_GOTOFFPC:
/* Recover the symbol ref. */
addr = XVECEXP (addr, 0, 0);
break;
default:
return addr;
}
/* Fall through. */
case SYMBOL_REF:
/* TLS symbols are handled in different place. */
if (SYMBOL_REF_TLS_MODEL (addr))
return addr;
/* This symbol must be referenced via a load from the Global
Offset Table (@GOTPC). */
if (!arc_symbol_binds_local_p (addr))
return gen_const_mem (Pmode, arc_unspec_offset (addr, ARC_UNSPEC_GOT));
/* Local symb: use @pcl to access it. */
/* Fall through. */
case LABEL_REF:
return arc_unspec_offset (addr, ARC_UNSPEC_GOTOFFPC);
default:
break;
}
return addr;
}
/* Output address constant X to FILE, taking PIC into account. */
static void
arc_output_pic_addr_const (FILE * file, rtx x, int code)
{
char buf[256];
restart:
switch (GET_CODE (x))
{
case PC:
if (flag_pic)
putc ('.', file);
else
gcc_unreachable ();
break;
case SYMBOL_REF:
output_addr_const (file, x);
/* Local functions do not get references through the PLT. */
if (code == 'P' && ! SYMBOL_REF_LOCAL_P (x))
fputs ("@plt", file);
break;
case LABEL_REF:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
assemble_name (file, buf);
break;
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (file, buf);
break;
case CONST_INT:
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case CONST:
arc_output_pic_addr_const (file, XEXP (x, 0), code);
break;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
{
/* We can use %d if the number is one word and positive. */
if (CONST_DOUBLE_HIGH (x))
fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
else if (CONST_DOUBLE_LOW (x) < 0)
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
else
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
}
else
/* We can't handle floating point constants;
PRINT_OPERAND must handle them. */
output_operand_lossage ("floating constant misused");
break;
case PLUS:
/* FIXME: Not needed here. */
/* Some assemblers need integer constants to appear last (eg masm). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
arc_output_pic_addr_const (file, XEXP (x, 1), code);
fprintf (file, "+");
arc_output_pic_addr_const (file, XEXP (x, 0), code);
}
else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
arc_output_pic_addr_const (file, XEXP (x, 0), code);
if (INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "+");
arc_output_pic_addr_const (file, XEXP (x, 1), code);
}
else
gcc_unreachable();
break;
case MINUS:
/* Avoid outputting things like x-x or x+5-x,
since some assemblers can't handle that. */
x = simplify_subtraction (x);
if (GET_CODE (x) != MINUS)
goto restart;
arc_output_pic_addr_const (file, XEXP (x, 0), code);
fprintf (file, "-");
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < 0)
{
fprintf (file, "(");
arc_output_pic_addr_const (file, XEXP (x, 1), code);
fprintf (file, ")");
}
else
arc_output_pic_addr_const (file, XEXP (x, 1), code);
break;
case ZERO_EXTEND:
case SIGN_EXTEND:
arc_output_pic_addr_const (file, XEXP (x, 0), code);
break;
case UNSPEC:
const char *suffix;
bool pcrel; pcrel = false;
rtx base; base = NULL;
gcc_assert (XVECLEN (x, 0) >= 1);
switch (XINT (x, 1))
{
case ARC_UNSPEC_GOT:
suffix = "@gotpc", pcrel = true;
break;
case ARC_UNSPEC_GOTOFF:
suffix = "@gotoff";
break;
case ARC_UNSPEC_GOTOFFPC:
suffix = "@pcl", pcrel = true;
break;
case ARC_UNSPEC_PLT:
suffix = "@plt";
break;
case UNSPEC_TLS_GD:
suffix = "@tlsgd", pcrel = true;
break;
case UNSPEC_TLS_IE:
suffix = "@tlsie", pcrel = true;
break;
case UNSPEC_TLS_OFF:
if (XVECLEN (x, 0) == 2)
base = XVECEXP (x, 0, 1);
if (SYMBOL_REF_TLS_MODEL (XVECEXP (x, 0, 0)) == TLS_MODEL_LOCAL_EXEC
|| (!flag_pic && !base))
suffix = "@tpoff";
else
suffix = "@dtpoff";
break;
default:
suffix = "@invalid";
output_operand_lossage ("invalid UNSPEC as operand: %d", XINT (x,1));
break;
}
if (pcrel)
fputs ("pcl,", file);
arc_output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
fputs (suffix, file);
if (base)
arc_output_pic_addr_const (file, base, code);
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
/* The function returning the number of words, at the beginning of an
argument, must be put in registers. The returned value must be
zero for arguments that are passed entirely in registers or that
are entirely pushed on the stack.
On some machines, certain arguments must be passed partially in
registers and partially in memory. On these machines, typically
the first N words of arguments are passed in registers, and the
rest on the stack. If a multi-word argument (a `double' or a
structure) crosses that boundary, its first few words must be
passed in registers and the rest must be pushed. This function
tells the compiler when this occurs, and how many of the words
should go in registers.
`FUNCTION_ARG' for these arguments should return the first register
to be used by the caller for this argument; likewise
`FUNCTION_INCOMING_ARG', for the called function.
The function is used to implement macro FUNCTION_ARG_PARTIAL_NREGS. */
/* If REGNO is the least arg reg available then what is the total number of arg
regs available. */
#define GPR_REST_ARG_REGS(REGNO) \
((REGNO) <= MAX_ARC_PARM_REGS ? MAX_ARC_PARM_REGS - (REGNO) : 0 )
/* Since arc parm regs are contiguous. */
#define ARC_NEXT_ARG_REG(REGNO) ( (REGNO) + 1 )
/* Implement TARGET_ARG_PARTIAL_BYTES. */
static int
arc_arg_partial_bytes (cumulative_args_t cum_v, const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int bytes = arg.promoted_size_in_bytes ();
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int arg_num = *cum;
int ret;
arg_num = ROUND_ADVANCE_CUM (arg_num, arg.mode, arg.type);
ret = GPR_REST_ARG_REGS (arg_num);
/* ICEd at function.cc:2361, and ret is copied to data->partial */
ret = (ret >= words ? 0 : ret * UNITS_PER_WORD);
return ret;
}
/* Implement TARGET_FUNCTION_ARG. On the ARC the first MAX_ARC_PARM_REGS
args are normally in registers and the rest are pushed. */
static rtx
arc_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int arg_num = *cum;
rtx ret;
const char *debstr ATTRIBUTE_UNUSED;
arg_num = ROUND_ADVANCE_CUM (arg_num, arg.mode, arg.type);
/* Return a marker for use in the call instruction. */
if (arg.end_marker_p ())
{
ret = const0_rtx;
debstr = "<0>";
}
else if (GPR_REST_ARG_REGS (arg_num) > 0)
{
ret = gen_rtx_REG (arg.mode, arg_num);
debstr = reg_names [arg_num];
}
else
{
ret = NULL_RTX;
debstr = "memory";
}
return ret;
}
/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
/* For the ARC: the cum set here is passed on to function_arg where we
look at its value and say which reg to use. Strategy: advance the
regnumber here till we run out of arg regs, then set *cum to last
reg. In function_arg, since *cum > last arg reg we would return 0
and thus the arg will end up on the stack. For straddling args of
course function_arg_partial_nregs will come into play. */
static void
arc_function_arg_advance (cumulative_args_t cum_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int bytes = arg.promoted_size_in_bytes ();
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int i;
if (words)
*cum = ROUND_ADVANCE_CUM (*cum, arg.mode, arg.type);
for (i = 0; i < words; i++)
*cum = ARC_NEXT_ARG_REG (*cum);
}
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FN_DECL_OR_TYPE is its
FUNCTION_DECL; otherwise, FN_DECL_OR_TYPE is its type. */
static rtx
arc_function_value (const_tree valtype,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
machine_mode mode = TYPE_MODE (valtype);
int unsignedp ATTRIBUTE_UNUSED;
unsignedp = TYPE_UNSIGNED (valtype);
if (INTEGRAL_TYPE_P (valtype) || TREE_CODE (valtype) == OFFSET_TYPE)
PROMOTE_MODE (mode, unsignedp, valtype);
return gen_rtx_REG (mode, 0);
}
/* Returns the return address that is used by builtin_return_address. */
rtx
arc_return_addr_rtx (int count, ATTRIBUTE_UNUSED rtx frame)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode , RETURN_ADDR_REGNUM);
}
/* Determine if a given RTX is a valid constant. We already know this
satisfies CONSTANT_P. */
bool
arc_legitimate_constant_p (machine_mode mode, rtx x)
{
switch (GET_CODE (x))
{
case CONST:
if (flag_pic)
{
if (arc_legitimate_pic_addr_p (x))
return true;
}
return arc_legitimate_constant_p (mode, XEXP (x, 0));
case SYMBOL_REF:
if (SYMBOL_REF_TLS_MODEL (x))
return false;
/* Fall through. */
case LABEL_REF:
if (flag_pic)
return false;
/* Fall through. */
case CONST_INT:
case CONST_DOUBLE:
return true;
case NEG:
return arc_legitimate_constant_p (mode, XEXP (x, 0));
case PLUS:
case MINUS:
{
bool t1 = arc_legitimate_constant_p (mode, XEXP (x, 0));
bool t2 = arc_legitimate_constant_p (mode, XEXP (x, 1));
return (t1 && t2);
}
case CONST_VECTOR:
switch (mode)
{
case E_V2HImode:
return TARGET_PLUS_DMPY;
case E_V2SImode:
case E_V4HImode:
return TARGET_PLUS_QMACW;
default:
return false;
}
case UNSPEC:
switch (XINT (x, 1))
{
case UNSPEC_TLS_GD:
case UNSPEC_TLS_OFF:
case UNSPEC_TLS_IE:
return true;
default:
/* Any other unspec ending here are pic related, hence the above
constant pic address checking returned false. */
return false;
}
/* Fall through. */
default:
fatal_insn ("unrecognized supposed constant", x);
}
gcc_unreachable ();
}
static bool
arc_legitimate_address_p (machine_mode mode, rtx x, bool strict)
{
if (RTX_OK_FOR_BASE_P (x, strict))
return true;
if (legitimate_offset_address_p (mode, x, TARGET_INDEXED_LOADS, strict))
return true;
if (legitimate_scaled_address_p (mode, x, strict))
return true;
if (legitimate_small_data_address_p (x, mode))
return true;
if (GET_CODE (x) == CONST_INT && LARGE_INT (INTVAL (x)))
return true;
/* When we compile for size avoid const (@sym + offset)
addresses. */
if (!flag_pic && optimize_size && !reload_completed
&& (GET_CODE (x) == CONST)
&& (GET_CODE (XEXP (x, 0)) == PLUS)
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
&& SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)) == 0
&& !SYMBOL_REF_FUNCTION_P (XEXP (XEXP (x, 0), 0)))
{
rtx addend = XEXP (XEXP (x, 0), 1);
gcc_assert (CONST_INT_P (addend));
HOST_WIDE_INT offset = INTVAL (addend);
/* Allow addresses having a large offset to pass. Anyhow they
will end in a limm. */
return !(offset > -1024 && offset < 1020);
}
if ((GET_MODE_SIZE (mode) != 16) && CONSTANT_P (x))
{
return arc_legitimate_constant_p (mode, x);
}
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == PRE_INC
|| GET_CODE (x) == POST_DEC || GET_CODE (x) == POST_INC)
&& RTX_OK_FOR_BASE_P (XEXP (x, 0), strict))
return true;
/* We're restricted here by the `st' insn. */
if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
&& GET_CODE (XEXP ((x), 1)) == PLUS
&& rtx_equal_p (XEXP ((x), 0), XEXP (XEXP (x, 1), 0))
&& legitimate_offset_address_p (QImode, XEXP (x, 1),
TARGET_AUTO_MODIFY_REG, strict))
return true;
return false;
}
/* Return true iff ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
static bool
arc_mode_dependent_address_p (const_rtx addr, addr_space_t)
{
/* SYMBOL_REF is not mode dependent: it is either a small data reference,
which is valid for loads and stores, or a limm offset, which is valid for
loads. Scaled indices are scaled by the access mode. */
if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP ((addr), 0)) == MULT)
return true;
return false;
}
/* Determine if it's legal to put X into the constant pool. */
static bool
arc_cannot_force_const_mem (machine_mode mode, rtx x)
{
return !arc_legitimate_constant_p (mode, x);
}
/* IDs for all the ARC builtins. */
enum arc_builtin_id
{
#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, MASK) \
ARC_BUILTIN_ ## NAME,
#include "builtins.def"
#undef DEF_BUILTIN
ARC_BUILTIN_COUNT
};
struct GTY(()) arc_builtin_description
{
enum insn_code icode;
int n_args;
tree fndecl;
};
static GTY(()) struct arc_builtin_description
arc_bdesc[ARC_BUILTIN_COUNT] =
{
#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, MASK) \
{ (enum insn_code) CODE_FOR_ ## ICODE, N_ARGS, NULL_TREE },
#include "builtins.def"
#undef DEF_BUILTIN
};
/* Transform UP into lowercase and write the result to LO.
You must provide enough space for LO. Return LO. */
static char*
arc_tolower (char *lo, const char *up)
{
char *lo0 = lo;
for (; *up; up++, lo++)
*lo = TOLOWER (*up);
*lo = '\0';
return lo0;
}
/* Implement `TARGET_BUILTIN_DECL'. */
static tree
arc_builtin_decl (unsigned id, bool initialize_p ATTRIBUTE_UNUSED)
{
if (id < ARC_BUILTIN_COUNT)
return arc_bdesc[id].fndecl;
return error_mark_node;
}
static void
arc_init_builtins (void)
{
tree V4HI_type_node;
tree V2SI_type_node;
tree V2HI_type_node;
/* Vector types based on HS SIMD elements. */
V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode);
V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode);
V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
tree pcvoid_type_node
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_CONST));
tree V8HI_type_node = build_vector_type_for_mode (intHI_type_node,
V8HImode);
tree void_ftype_void
= build_function_type_list (void_type_node, NULL_TREE);
tree int_ftype_int
= build_function_type_list (integer_type_node, integer_type_node,
NULL_TREE);
tree int_ftype_pcvoid_int
= build_function_type_list (integer_type_node, pcvoid_type_node,
integer_type_node, NULL_TREE);
tree void_ftype_usint_usint
= build_function_type_list (void_type_node, long_unsigned_type_node,
long_unsigned_type_node, NULL_TREE);
tree int_ftype_int_int
= build_function_type_list (integer_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree usint_ftype_usint
= build_function_type_list (long_unsigned_type_node,
long_unsigned_type_node, NULL_TREE);
tree void_ftype_usint
= build_function_type_list (void_type_node, long_unsigned_type_node,
NULL_TREE);
tree int_ftype_void
= build_function_type_list (integer_type_node, void_type_node,
NULL_TREE);
tree void_ftype_int
= build_function_type_list (void_type_node, integer_type_node,
NULL_TREE);
tree int_ftype_short
= build_function_type_list (integer_type_node, short_integer_type_node,
NULL_TREE);
/* Old ARC SIMD types. */
tree v8hi_ftype_v8hi_v8hi
= build_function_type_list (V8HI_type_node, V8HI_type_node,
V8HI_type_node, NULL_TREE);
tree v8hi_ftype_v8hi_int
= build_function_type_list (V8HI_type_node, V8HI_type_node,
integer_type_node, NULL_TREE);
tree v8hi_ftype_v8hi_int_int
= build_function_type_list (V8HI_type_node, V8HI_type_node,
integer_type_node, integer_type_node,
NULL_TREE);
tree void_ftype_v8hi_int_int
= build_function_type_list (void_type_node, V8HI_type_node,
integer_type_node, integer_type_node,
NULL_TREE);
tree void_ftype_v8hi_int_int_int
= build_function_type_list (void_type_node, V8HI_type_node,
integer_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree v8hi_ftype_int_int
= build_function_type_list (V8HI_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree void_ftype_int_int
= build_function_type_list (void_type_node, integer_type_node,
integer_type_node, NULL_TREE);
tree v8hi_ftype_v8hi
= build_function_type_list (V8HI_type_node, V8HI_type_node,
NULL_TREE);
/* ARCv2 SIMD types. */
tree long_ftype_v4hi_v4hi
= build_function_type_list (long_long_integer_type_node,
V4HI_type_node, V4HI_type_node, NULL_TREE);
tree int_ftype_v2hi_v2hi
= build_function_type_list (integer_type_node,
V2HI_type_node, V2HI_type_node, NULL_TREE);
tree v2si_ftype_v2hi_v2hi
= build_function_type_list (V2SI_type_node,
V2HI_type_node, V2HI_type_node, NULL_TREE);
tree v2hi_ftype_v2hi_v2hi
= build_function_type_list (V2HI_type_node,
V2HI_type_node, V2HI_type_node, NULL_TREE);
tree v2si_ftype_v2si_v2si
= build_function_type_list (V2SI_type_node,
V2SI_type_node, V2SI_type_node, NULL_TREE);
tree v4hi_ftype_v4hi_v4hi
= build_function_type_list (V4HI_type_node,
V4HI_type_node, V4HI_type_node, NULL_TREE);
tree long_ftype_v2si_v2hi
= build_function_type_list (long_long_integer_type_node,
V2SI_type_node, V2HI_type_node, NULL_TREE);
/* Add the builtins. */
#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, MASK) \
{ \
int id = ARC_BUILTIN_ ## NAME; \
const char *Name = "__builtin_arc_" #NAME; \
char *name = (char*) alloca (1 + strlen (Name)); \
\
gcc_assert (id < ARC_BUILTIN_COUNT); \
if (MASK) \
arc_bdesc[id].fndecl \
= add_builtin_function (arc_tolower(name, Name), TYPE, id, \
BUILT_IN_MD, NULL, NULL_TREE); \
}
#include "builtins.def"
#undef DEF_BUILTIN
}
/* Helper to expand __builtin_arc_aligned (void* val, int
alignval). */
static rtx
arc_expand_builtin_aligned (tree exp)
{
tree arg0 = CALL_EXPR_ARG (exp, 0);
tree arg1 = CALL_EXPR_ARG (exp, 1);
fold (arg1);
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
if (!CONST_INT_P (op1))
{
/* If we can't fold the alignment to a constant integer
whilst optimizing, this is probably a user error. */
if (optimize)
warning (0, "%<__builtin_arc_aligned%> with non-constant alignment");
}
else
{
HOST_WIDE_INT alignTest = INTVAL (op1);
/* Check alignTest is positive, and a power of two. */
if (alignTest <= 0 || alignTest != (alignTest & -alignTest))
{
error ("invalid alignment value for %<__builtin_arc_aligned%>");
return NULL_RTX;
}
if (CONST_INT_P (op0))
{
HOST_WIDE_INT pnt = INTVAL (op0);
if ((pnt & (alignTest - 1)) == 0)
return const1_rtx;
}
else
{
unsigned align = get_pointer_alignment (arg0);
unsigned numBits = alignTest * BITS_PER_UNIT;
if (align && align >= numBits)
return const1_rtx;
/* Another attempt to ascertain alignment. Check the type
we are pointing to. */
if (POINTER_TYPE_P (TREE_TYPE (arg0))
&& TYPE_ALIGN (TREE_TYPE (TREE_TYPE (arg0))) >= numBits)
return const1_rtx;
}
}
/* Default to false. */
return const0_rtx;
}
/* Helper arc_expand_builtin, generates a pattern for the given icode
and arguments. */
static rtx_insn *
apply_GEN_FCN (enum insn_code icode, rtx *arg)
{
switch (insn_data[icode].n_generator_args)
{
case 0:
return GEN_FCN (icode) ();
case 1:
return GEN_FCN (icode) (arg[0]);
case 2:
return GEN_FCN (icode) (arg[0], arg[1]);
case 3:
return GEN_FCN (icode) (arg[0], arg[1], arg[2]);
case 4:
return GEN_FCN (icode) (arg[0], arg[1], arg[2], arg[3]);
case 5:
return GEN_FCN (icode) (arg[0], arg[1], arg[2], arg[3], arg[4]);
default:
gcc_unreachable ();
}
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
static rtx
arc_expand_builtin (tree exp,
rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
unsigned int id = DECL_MD_FUNCTION_CODE (fndecl);
const struct arc_builtin_description *d = &arc_bdesc[id];
int i, j, n_args = call_expr_nargs (exp);
rtx pat = NULL_RTX;
rtx xop[5];
enum insn_code icode = d->icode;
machine_mode tmode = insn_data[icode].operand[0].mode;
int nonvoid;
tree arg0;
tree arg1;
tree arg2;
tree arg3;
rtx op0;
rtx op1;
rtx op2;
rtx op3;
rtx op4;
machine_mode mode0;
machine_mode mode1;
machine_mode mode2;
machine_mode mode3;
machine_mode mode4;
if (id >= ARC_BUILTIN_COUNT)
internal_error ("bad builtin fcode");
/* 1st part: Expand special builtins. */
switch (id)
{
case ARC_BUILTIN_NOP:
emit_insn (gen_nopv ());
return NULL_RTX;
case ARC_BUILTIN_RTIE:
case ARC_BUILTIN_SYNC:
case ARC_BUILTIN_BRK:
case ARC_BUILTIN_SWI:
case ARC_BUILTIN_UNIMP_S:
gcc_assert (icode != 0);
emit_insn (GEN_FCN (icode) (const1_rtx));
return NULL_RTX;
case ARC_BUILTIN_ALIGNED:
return arc_expand_builtin_aligned (exp);
case ARC_BUILTIN_CLRI:
target = gen_reg_rtx (SImode);
emit_insn (gen_clri (target, const1_rtx));
return target;
case ARC_BUILTIN_TRAP_S:
case ARC_BUILTIN_SLEEP:
arg0 = CALL_EXPR_ARG (exp, 0);
fold (arg0);
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
gcc_assert (icode != 0);
emit_insn (GEN_FCN (icode) (op0));
return NULL_RTX;
case ARC_BUILTIN_VDORUN:
case ARC_BUILTIN_VDIRUN:
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
op0 = expand_expr (arg0, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
target = gen_rtx_REG (SImode, (id == ARC_BUILTIN_VDIRUN) ? 131 : 139);
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
if (!insn_data[icode].operand[1].predicate (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (!insn_data[icode].operand[2].predicate (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
pat = GEN_FCN (icode) (target, op0, op1);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case ARC_BUILTIN_VDIWR:
case ARC_BUILTIN_VDOWR:
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
op0 = expand_expr (arg0, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
if (!CONST_INT_P (op0)
|| !(UNSIGNED_INT3 (INTVAL (op0))))
error ("operand 1 should be an unsigned 3-bit immediate");
mode1 = insn_data[icode].operand[1].mode;
if (icode == CODE_FOR_vdiwr_insn)
target = gen_rtx_REG (SImode,
ARC_FIRST_SIMD_DMA_CONFIG_IN_REG + INTVAL (op0));
else if (icode == CODE_FOR_vdowr_insn)
target = gen_rtx_REG (SImode,
ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG + INTVAL (op0));
else
gcc_unreachable ();
if (!insn_data[icode].operand[2].predicate (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
pat = GEN_FCN (icode) (target, op1);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case ARC_BUILTIN_VASRW:
case ARC_BUILTIN_VSR8:
case ARC_BUILTIN_VSR8AW:
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
op0 = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
target = gen_reg_rtx (V8HImode);
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
if (!insn_data[icode].operand[1].predicate (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if ((!insn_data[icode].operand[2].predicate (op1, mode1))
|| !(UNSIGNED_INT3 (INTVAL (op1))))
error ("operand 2 should be an unsigned 3-bit value (I0-I7)");
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return target;
case ARC_BUILTIN_VLD32WH:
case ARC_BUILTIN_VLD32WL:
case ARC_BUILTIN_VLD64:
case ARC_BUILTIN_VLD32:
rtx src_vreg;
icode = d->icode;
arg0 = CALL_EXPR_ARG (exp, 0); /* source vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* [I]0-7. */
arg2 = CALL_EXPR_ARG (exp, 2); /* u8. */
src_vreg = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
op0 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = expand_expr (arg2, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
/* target <- src vreg. */
emit_insn (gen_move_insn (target, src_vreg));
/* target <- vec_concat: target, mem (Ib, u8). */
mode0 = insn_data[icode].operand[3].mode;
mode1 = insn_data[icode].operand[1].mode;
if ((!insn_data[icode].operand[3].predicate (op0, mode0))
|| !(UNSIGNED_INT3 (INTVAL (op0))))
error ("operand 1 should be an unsigned 3-bit value (I0-I7)");
if ((!insn_data[icode].operand[1].predicate (op1, mode1))
|| !(UNSIGNED_INT8 (INTVAL (op1))))
error ("operand 2 should be an unsigned 8-bit value");
pat = GEN_FCN (icode) (target, op1, op2, op0);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return target;
case ARC_BUILTIN_VLD64W:
case ARC_BUILTIN_VLD128:
arg0 = CALL_EXPR_ARG (exp, 0); /* dest vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* [I]0-7. */
op0 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
op1 = expand_expr (arg0, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
/* target <- src vreg. */
target = gen_reg_rtx (V8HImode);
/* target <- vec_concat: target, mem (Ib, u8). */
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
mode2 = insn_data[icode].operand[3].mode;
if ((!insn_data[icode].operand[2].predicate (op1, mode1))
|| !(UNSIGNED_INT3 (INTVAL (op1))))
error ("operand 1 should be an unsigned 3-bit value (I0-I7)");
if ((!insn_data[icode].operand[3].predicate (op2, mode2))
|| !(UNSIGNED_INT8 (INTVAL (op2))))
error ("operand 2 should be an unsigned 8-bit value");
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return target;
case ARC_BUILTIN_VST128:
case ARC_BUILTIN_VST64:
arg0 = CALL_EXPR_ARG (exp, 0); /* src vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* [I]0-7. */
arg2 = CALL_EXPR_ARG (exp, 2); /* u8. */
op0 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
op1 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
op2 = expand_expr (arg2, NULL_RTX, SImode, EXPAND_NORMAL);
op3 = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
mode0 = insn_data[icode].operand[0].mode;
mode1 = insn_data[icode].operand[1].mode;
mode2 = insn_data[icode].operand[2].mode;
mode3 = insn_data[icode].operand[3].mode;
if ((!insn_data[icode].operand[1].predicate (op1, mode1))
|| !(UNSIGNED_INT3 (INTVAL (op1))))
error ("operand 2 should be an unsigned 3-bit value (I0-I7)");
if ((!insn_data[icode].operand[2].predicate (op2, mode2))
|| !(UNSIGNED_INT8 (INTVAL (op2))))
error ("operand 3 should be an unsigned 8-bit value");
if (!insn_data[icode].operand[3].predicate (op3, mode3))
op3 = copy_to_mode_reg (mode3, op3);
pat = GEN_FCN (icode) (op0, op1, op2, op3);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case ARC_BUILTIN_VST16_N:
case ARC_BUILTIN_VST32_N:
arg0 = CALL_EXPR_ARG (exp, 0); /* source vreg. */
arg1 = CALL_EXPR_ARG (exp, 1); /* u3. */
arg2 = CALL_EXPR_ARG (exp, 2); /* [I]0-7. */
arg3 = CALL_EXPR_ARG (exp, 3); /* u8. */
op0 = expand_expr (arg3, NULL_RTX, SImode, EXPAND_NORMAL);
op1 = gen_rtx_REG (V8HImode, ARC_FIRST_SIMD_VR_REG);
op2 = expand_expr (arg2, NULL_RTX, SImode, EXPAND_NORMAL);
op3 = expand_expr (arg0, NULL_RTX, V8HImode, EXPAND_NORMAL);
op4 = expand_expr (arg1, NULL_RTX, SImode, EXPAND_NORMAL);
mode0 = insn_data[icode].operand[0].mode;
mode2 = insn_data[icode].operand[2].mode;
mode3 = insn_data[icode].operand[3].mode;
mode4 = insn_data[icode].operand[4].mode;
/* Do some correctness checks for the operands. */
if ((!insn_data[icode].operand[0].predicate (op0, mode0))
|| !(UNSIGNED_INT8 (INTVAL (op0))))
error ("operand 4 should be an unsigned 8-bit value (0-255)");
if ((!insn_data[icode].operand[2].predicate (op2, mode2))
|| !(UNSIGNED_INT3 (INTVAL (op2))))
error ("operand 3 should be an unsigned 3-bit value (I0-I7)");
if (!insn_data[icode].operand[3].predicate (op3, mode3))
op3 = copy_to_mode_reg (mode3, op3);
if ((!insn_data[icode].operand[4].predicate (op4, mode4))
|| !(UNSIGNED_INT3 (INTVAL (op4))))
error ("operand 2 should be an unsigned 3-bit value (subreg 0-7)");
else if (icode == CODE_FOR_vst32_n_insn
&& ((INTVAL (op4) % 2) != 0))
error ("operand 2 should be an even 3-bit value (subreg 0,2,4,6)");
pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
if (!pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
default:
break;
}
/* 2nd part: Expand regular builtins. */
if (icode == 0)
internal_error ("bad builtin fcode");
nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
j = 0;
if (nonvoid)
{
if (target == NULL_RTX
|| GET_MODE (target) != tmode
|| !insn_data[icode].operand[0].predicate (target, tmode))
{
target = gen_reg_rtx (tmode);
}
xop[j++] = target;
}
gcc_assert (n_args <= 4);
for (i = 0; i < n_args; i++, j++)
{
tree arg = CALL_EXPR_ARG (exp, i);
machine_mode mode = insn_data[icode].operand[j].mode;
rtx op = expand_expr (arg, NULL_RTX, mode, EXPAND_NORMAL);
machine_mode opmode = GET_MODE (op);
char c = insn_data[icode].operand[j].constraint[0];
/* SIMD extension requires exact immediate operand match. */
if ((id > ARC_BUILTIN_SIMD_BEGIN)
&& (id < ARC_BUILTIN_SIMD_END)
&& (c != 'v')
&& (c != 'r'))
{
if (!CONST_INT_P (op))
error ("builtin requires an immediate for operand %d", j);
switch (c)
{
case 'L':
if (!satisfies_constraint_L (op))
error ("operand %d should be a 6 bit unsigned immediate", j);
break;
case 'P':
if (!satisfies_constraint_P (op))
error ("operand %d should be a 8 bit unsigned immediate", j);
break;
case 'K':
if (!satisfies_constraint_K (op))
error ("operand %d should be a 3 bit unsigned immediate", j);
break;
default:
error ("unknown builtin immediate operand type for operand %d",
j);
}
}
if (CONST_INT_P (op))
opmode = mode;
if ((opmode == SImode) && (mode == HImode))
{
opmode = HImode;
op = gen_lowpart (HImode, op);
}
/* In case the insn wants input operands in modes different from
the result, abort. */
gcc_assert (opmode == mode || opmode == VOIDmode);
if (!insn_data[icode].operand[i + nonvoid].predicate (op, mode))
op = copy_to_mode_reg (mode, op);
xop[j] = op;
}
pat = apply_GEN_FCN (icode, xop);
if (pat == NULL_RTX)
return NULL_RTX;
emit_insn (pat);
if (nonvoid)
return target;
else
return const0_rtx;
}
/* Returns true if the operands[opno] is a valid compile-time constant to be
used as register number in the code for builtins. Else it flags an error
and returns false. */
bool
check_if_valid_regno_const (rtx *operands, int opno)
{
switch (GET_CODE (operands[opno]))
{
case SYMBOL_REF :
case CONST :
case CONST_INT :
return true;
default:
error ("register number must be a compile-time constant. "
"Try giving higher optimization levels");
break;
}
return false;
}
/* Return true if it is ok to make a tail-call to DECL. */
static bool
arc_function_ok_for_sibcall (tree decl,
tree exp ATTRIBUTE_UNUSED)
{
tree attrs = NULL_TREE;
/* Never tailcall from an ISR routine - it needs a special exit sequence. */
if (ARC_INTERRUPT_P (arc_compute_function_type (cfun)))
return false;
if (decl)
{
attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
if (lookup_attribute ("jli_always", attrs))
return false;
if (lookup_attribute ("jli_fixed", attrs))
return false;
if (lookup_attribute ("secure_call", attrs))
return false;
}
/* Everything else is ok. */
return true;
}
/* Output code to add DELTA to the first argument, and then jump
to FUNCTION. Used for C++ multiple inheritance. */
static void
arc_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset,
tree function)
{
const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));
int mi_delta = delta;
const char *const mi_op = mi_delta < 0 ? "sub" : "add";
int shift = 0;
int this_regno
= aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? 1 : 0;
rtx fnaddr;
assemble_start_function (thunk, fnname);
if (mi_delta < 0)
mi_delta = - mi_delta;
/* Add DELTA. When possible use a plain add, otherwise load it into
a register first. */
while (mi_delta != 0)
{
if ((mi_delta & (3 << shift)) == 0)
shift += 2;
else
{
asm_fprintf (file, "\t%s\t%s, %s, %d\n",
mi_op, reg_names[this_regno], reg_names[this_regno],
mi_delta & (0xff << shift));
mi_delta &= ~(0xff << shift);
shift += 8;
}
}
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
if (vcall_offset != 0)
{
/* ld r12,[this] --> temp = *this
add r12,r12,vcall_offset --> temp = *(*this + vcall_offset)
ld r12,[r12]
add this,this,r12 --> this+ = *(*this + vcall_offset) */
asm_fprintf (file, "\tld\t%s, [%s]\n",
ARC_TEMP_SCRATCH_REG, reg_names[this_regno]);
asm_fprintf (file, "\tadd\t%s, %s, " HOST_WIDE_INT_PRINT_DEC "\n",
ARC_TEMP_SCRATCH_REG, ARC_TEMP_SCRATCH_REG, vcall_offset);
asm_fprintf (file, "\tld\t%s, [%s]\n",
ARC_TEMP_SCRATCH_REG, ARC_TEMP_SCRATCH_REG);
asm_fprintf (file, "\tadd\t%s, %s, %s\n", reg_names[this_regno],
reg_names[this_regno], ARC_TEMP_SCRATCH_REG);
}
fnaddr = XEXP (DECL_RTL (function), 0);
if (arc_is_longcall_p (fnaddr))
{
if (flag_pic)
{
asm_fprintf (file, "\tld\t%s, [pcl, @",
ARC_TEMP_SCRATCH_REG);
assemble_name (file, XSTR (fnaddr, 0));
fputs ("@gotpc]\n", file);
asm_fprintf (file, "\tj\t[%s]", ARC_TEMP_SCRATCH_REG);
}
else
{
fputs ("\tj\t@", file);
assemble_name (file, XSTR (fnaddr, 0));
}
}
else
{
fputs ("\tb\t@", file);
assemble_name (file, XSTR (fnaddr, 0));
if (flag_pic)
fputs ("@plt\n", file);
}
fputc ('\n', file);
assemble_end_function (thunk, fnname);
}
/* Return true if a 32 bit "long_call" should be generated for
this calling SYM_REF. We generate a long_call if the function:
a. has an __attribute__((long call))
or b. the -mlong-calls command line switch has been specified
However we do not generate a long call if the function has an
__attribute__ ((short_call)) or __attribute__ ((medium_call))
This function will be called by C fragments contained in the machine
description file. */
bool
arc_is_longcall_p (rtx sym_ref)
{
if (GET_CODE (sym_ref) != SYMBOL_REF)
return false;
return (SYMBOL_REF_LONG_CALL_P (sym_ref)
|| (TARGET_LONG_CALLS_SET
&& !SYMBOL_REF_SHORT_CALL_P (sym_ref)
&& !SYMBOL_REF_MEDIUM_CALL_P (sym_ref)));
}
/* Likewise for short calls. */
bool
arc_is_shortcall_p (rtx sym_ref)
{
if (GET_CODE (sym_ref) != SYMBOL_REF)
return false;
return (SYMBOL_REF_SHORT_CALL_P (sym_ref)
|| (!TARGET_LONG_CALLS_SET && !TARGET_MEDIUM_CALLS
&& !SYMBOL_REF_LONG_CALL_P (sym_ref)
&& !SYMBOL_REF_MEDIUM_CALL_P (sym_ref)));
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
arc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
if (AGGREGATE_TYPE_P (type) || TREE_ADDRESSABLE (type))
return true;
else
{
HOST_WIDE_INT size = int_size_in_bytes (type);
return (size == -1 || size > (TARGET_V2 ? 16 : 8));
}
}
static bool
arc_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
{
return (arg.type != 0
&& (TREE_CODE (TYPE_SIZE (arg.type)) != INTEGER_CST
|| TREE_ADDRESSABLE (arg.type)));
}
/* Implement TARGET_CAN_USE_DOLOOP_P. */
static bool
arc_can_use_doloop_p (const widest_int &,
const widest_int &iterations_max,
unsigned int loop_depth, bool entered_at_top)
{
/* Considering limitations in the hardware, only use doloop
for innermost loops which must be entered from the top. */
if (loop_depth > 1 || !entered_at_top)
return false;
/* Check for lp_count width boundary. */
if (arc_lpcwidth != 32
&& (wi::gtu_p (iterations_max, ((1 << arc_lpcwidth) - 1))
|| wi::eq_p (iterations_max, 0)))
return false;
return true;
}
/* NULL if INSN insn is valid within a low-overhead loop. Otherwise
return why doloop cannot be applied. */
static const char *
arc_invalid_within_doloop (const rtx_insn *insn)
{
if (CALL_P (insn))
return "Function call in the loop.";
/* FIXME! add here all the ZOL exceptions. */
return NULL;
}
/* Return the next active insn, skiping the inline assembly code. */
static rtx_insn *
arc_active_insn (rtx_insn *insn)
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0
|| (active_insn_p (insn)
&& NONDEBUG_INSN_P (insn)
&& !NOTE_P (insn)
&& GET_CODE (PATTERN (insn)) != UNSPEC_VOLATILE
&& GET_CODE (PATTERN (insn)) != PARALLEL))
break;
}
return insn;
}
/* Search for a sequence made out of two stores and a given number of
loads, insert a nop if required. */
static void
check_store_cacheline_hazard (void)
{
rtx_insn *insn, *succ0, *insn1;
bool found = false;
for (insn = get_insns (); insn; insn = arc_active_insn (insn))
{
succ0 = arc_active_insn (insn);
if (!succ0)
return;
if (!single_set (insn))
continue;
if ((get_attr_type (insn) != TYPE_STORE))
continue;
/* Found at least two consecutive stores. Goto the end of the
store sequence. */
for (insn1 = succ0; insn1; insn1 = arc_active_insn (insn1))
if (!single_set (insn1) || get_attr_type (insn1) != TYPE_STORE)
break;
/* Save were we are. */
succ0 = insn1;
/* Now, check the next two instructions for the following cases:
1. next instruction is a LD => insert 2 nops between store
sequence and load.
2. next-next instruction is a LD => inset 1 nop after the store
sequence. */
if (insn1 && single_set (insn1)
&& (get_attr_type (insn1) == TYPE_LOAD))
{
found = true;
emit_insn_before (gen_nopv (), insn1);
emit_insn_before (gen_nopv (), insn1);
}
else
{
if (insn1 && (get_attr_type (insn1) == TYPE_COMPARE))
{
/* REG_SAVE_NOTE is used by Haifa scheduler, we are in
reorg, so it is safe to reuse it for avoiding the
current compare insn to be part of a BRcc
optimization. */
add_reg_note (insn1, REG_SAVE_NOTE, GEN_INT (3));
}
insn1 = arc_active_insn (insn1);
if (insn1 && single_set (insn1)
&& (get_attr_type (insn1) == TYPE_LOAD))
{
found = true;
emit_insn_before (gen_nopv (), insn1);
}
}
if (found)
{
insn = insn1;
found = false;
}
else
insn = succ0;
}
}
/* Return true if a load instruction (CONSUMER) uses the same address as a
store instruction (PRODUCER). This function is used to avoid st/ld
address hazard in ARC700 cores. */
static bool
arc_store_addr_hazard_internal_p (rtx_insn* producer, rtx_insn* consumer)
{
rtx in_set, out_set;
rtx out_addr, in_addr;
if (!producer)
return false;
if (!consumer)
return false;
/* Peel the producer and the consumer for the address. */
out_set = single_set (producer);
if (out_set)
{
out_addr = SET_DEST (out_set);
if (!out_addr)
return false;
if (GET_CODE (out_addr) == ZERO_EXTEND
|| GET_CODE (out_addr) == SIGN_EXTEND)
out_addr = XEXP (out_addr, 0);
if (!MEM_P (out_addr))
return false;
in_set = single_set (consumer);
if (in_set)
{
in_addr = SET_SRC (in_set);
if (!in_addr)
return false;
if (GET_CODE (in_addr) == ZERO_EXTEND
|| GET_CODE (in_addr) == SIGN_EXTEND)
in_addr = XEXP (in_addr, 0);
if (!MEM_P (in_addr))
return false;
/* Get rid of the MEM and check if the addresses are
equivalent. */
in_addr = XEXP (in_addr, 0);
out_addr = XEXP (out_addr, 0);
return exp_equiv_p (in_addr, out_addr, 0, true);
}
}
return false;
}
/* Return TRUE is we have an store address hazard. */
bool
arc_store_addr_hazard_p (rtx_insn* producer, rtx_insn* consumer)
{
if (TARGET_ARC700 && (arc_tune != ARC_TUNE_ARC7XX))
return true;
return arc_store_addr_hazard_internal_p (producer, consumer);
}
/* Return length adjustment for INSN.
For ARC600:
A write to a core reg greater or equal to 32 must not be immediately
followed by a use. Anticipate the length requirement to insert a nop
between PRED and SUCC to prevent a hazard. */
static int
arc600_corereg_hazard (rtx_insn *pred, rtx_insn *succ)
{
if (!TARGET_ARC600)
return 0;
if (GET_CODE (PATTERN (pred)) == SEQUENCE)
pred = as_a <rtx_sequence *> (PATTERN (pred))->insn (1);
if (GET_CODE (PATTERN (succ)) == SEQUENCE)
succ = as_a <rtx_sequence *> (PATTERN (succ))->insn (0);
if (recog_memoized (pred) == CODE_FOR_mulsi_600
|| recog_memoized (pred) == CODE_FOR_umul_600
|| recog_memoized (pred) == CODE_FOR_mac_600
|| recog_memoized (pred) == CODE_FOR_mul64_600
|| recog_memoized (pred) == CODE_FOR_mac64_600
|| recog_memoized (pred) == CODE_FOR_umul64_600
|| recog_memoized (pred) == CODE_FOR_umac64_600)
return 0;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, PATTERN (pred), NONCONST)
{
const_rtx x = *iter;
switch (GET_CODE (x))
{
case SET: case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
break;
default:
/* This is also fine for PRE/POST_MODIFY, because they
contain a SET. */
continue;
}
rtx dest = XEXP (x, 0);
/* Check if this sets a an extension register. N.B. we use 61 for the
condition codes, which is definitely not an extension register. */
if (REG_P (dest) && REGNO (dest) >= 32 && REGNO (dest) < 61
/* Check if the same register is used by the PAT. */
&& (refers_to_regno_p
(REGNO (dest),
REGNO (dest) + (GET_MODE_SIZE (GET_MODE (dest)) + 3) / 4U,
PATTERN (succ), 0)))
return 4;
}
return 0;
}
/* For ARC600:
A write to a core reg greater or equal to 32 must not be immediately
followed by a use. Anticipate the length requirement to insert a nop
between PRED and SUCC to prevent a hazard. */
int
arc_hazard (rtx_insn *pred, rtx_insn *succ)
{
if (!pred || !INSN_P (pred) || !succ || !INSN_P (succ))
return 0;
if (TARGET_ARC600)
return arc600_corereg_hazard (pred, succ);
return 0;
}
/* When compiling for release 310a, insert a nop before any
conditional jump. */
static int
arc_check_release31a (rtx_insn *pred, rtx_insn *succ)
{
if (!pred || !INSN_P (pred) || !succ || !INSN_P (succ))
return 0;
if (!JUMP_P (pred) && !single_set (pred))
return 0;
if (!JUMP_P (succ) && !single_set (succ))
return 0;
if (TARGET_HS && (arc_tune == ARC_TUNE_ARCHS4X_REL31A))
switch (get_attr_type (pred))
{
case TYPE_STORE:
switch (get_attr_type (succ))
{
case TYPE_BRCC:
case TYPE_BRCC_NO_DELAY_SLOT:
case TYPE_LOOP_END:
return 1;
default:
break;
}
break;
case TYPE_BRCC:
case TYPE_BRCC_NO_DELAY_SLOT:
case TYPE_LOOP_END:
if (get_attr_type (succ) == TYPE_STORE)
return 1;
break;
default:
break;
}
return 0;
}
/* The same functionality as arc_hazard. It is called in machine
reorg before any other optimization. Hence, the NOP size is taken
into account when doing branch shortening. */
static void
workaround_arc_anomaly (void)
{
rtx_insn *insn, *succ0;
/* For any architecture: call arc_hazard here. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
succ0 = next_real_insn (insn);
if (arc_hazard (insn, succ0) || arc_check_release31a (insn, succ0))
emit_insn_before (gen_nopv (), succ0);
}
if (!TARGET_ARC700)
return;
/* Old A7 are suffering of a cache hazard, and we need to insert two
nops between any sequence of stores and a load. */
if (arc_tune != ARC_TUNE_ARC7XX)
check_store_cacheline_hazard ();
}
/* A callback for the hw-doloop pass. Called when a loop we have discovered
turns out not to be optimizable; we have to split the loop_end pattern into
a subtract and a test. */
static void
hwloop_fail (hwloop_info loop)
{
rtx test;
rtx insn = loop->loop_end;
if (TARGET_DBNZ
&& (loop->length && (loop->length <= ARC_MAX_LOOP_LENGTH))
&& REG_P (loop->iter_reg))
{
/* TARGET_V2 core3 has dbnz instructions. */
test = gen_dbnz (loop->iter_reg, loop->start_label);
insn = emit_jump_insn_before (test, loop->loop_end);
}
else if (REG_P (loop->iter_reg) && (REGNO (loop->iter_reg) == LP_COUNT))
{
/* We have the lp_count as loop iterator, try to use it. */
emit_insn_before (gen_loop_fail (), loop->loop_end);
test = gen_rtx_NE (VOIDmode, gen_rtx_REG (CC_ZNmode, CC_REG),
const0_rtx);
test = gen_rtx_IF_THEN_ELSE (VOIDmode, test,
gen_rtx_LABEL_REF (Pmode, loop->start_label),
pc_rtx);
insn = emit_jump_insn_before (gen_rtx_SET (pc_rtx, test),
loop->loop_end);
}
else
{
emit_insn_before (gen_addsi3 (loop->iter_reg,
loop->iter_reg,
constm1_rtx),
loop->loop_end);
test = gen_rtx_NE (VOIDmode, loop->iter_reg, const0_rtx);
insn = emit_jump_insn_before (gen_cbranchsi4 (test,
loop->iter_reg,
const0_rtx,
loop->start_label),
loop->loop_end);
}
JUMP_LABEL (insn) = loop->start_label;
LABEL_NUSES (loop->start_label)++;
delete_insn (loop->loop_end);
}
/* Return the next insn after INSN that is not a NOTE, but stop the
search before we enter another basic block. This routine does not
look inside SEQUENCEs. */
static rtx_insn *
next_nonnote_insn_bb (rtx_insn *insn)
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0 || !NOTE_P (insn))
break;
if (NOTE_INSN_BASIC_BLOCK_P (insn))
return NULL;
}
return insn;
}
/* Optimize LOOP. */
static bool
hwloop_optimize (hwloop_info loop)
{
int i;
edge entry_edge;
basic_block entry_bb, bb;
rtx iter_reg;
rtx_insn *insn, *seq, *entry_after, *last_insn, *end_label;
unsigned int length;
bool need_fix = false;
rtx lp_reg = gen_rtx_REG (SImode, LP_COUNT);
if (loop->depth > 1)
{
if (dump_file)
fprintf (dump_file, ";; loop %d is not innermost\n",
loop->loop_no);
return false;
}
if (!loop->incoming_dest)
{
if (dump_file)
fprintf (dump_file, ";; loop %d has more than one entry\n",
loop->loop_no);
return false;
}
if (loop->incoming_dest != loop->head)
{
if (dump_file)
fprintf (dump_file, ";; loop %d is not entered from head\n",
loop->loop_no);
return false;
}
if (loop->has_call || loop->has_asm)
{
if (dump_file)
fprintf (dump_file, ";; loop %d has invalid insn\n",
loop->loop_no);
return false;
}
/* Scan all the blocks to make sure they don't use iter_reg. */
if (loop->iter_reg_used || loop->iter_reg_used_outside)
{
if (dump_file)
fprintf (dump_file, ";; loop %d uses iterator\n",
loop->loop_no);
return false;
}
/* Check if start_label appears before doloop_end. */
length = 0;
for (insn = loop->start_label;
insn && insn != loop->loop_end;
insn = NEXT_INSN (insn))
{
length += NONDEBUG_INSN_P (insn) ? get_attr_length (insn) : 0;
if (JUMP_TABLES_IN_TEXT_SECTION
&& JUMP_TABLE_DATA_P (insn))
{
if (dump_file)
fprintf (dump_file, ";; loop %d has a jump table\n",
loop->loop_no);
return false;
}
}
if (!insn)
{
if (dump_file)
fprintf (dump_file, ";; loop %d start_label not before loop_end\n",
loop->loop_no);
return false;
}
loop->length = length;
if (loop->length > ARC_MAX_LOOP_LENGTH)
{
if (dump_file)
fprintf (dump_file, ";; loop %d too long\n", loop->loop_no);
return false;
}
else if (!loop->length)
{
if (dump_file)
fprintf (dump_file, ";; loop %d is empty\n", loop->loop_no);
return false;
}
/* Check if we use a register or not. */
if (!REG_P (loop->iter_reg))
{
if (dump_file)
fprintf (dump_file, ";; loop %d iterator is MEM\n",
loop->loop_no);
return false;
}
/* Check if we use a register or not. */
if (!REG_P (loop->iter_reg))
{
if (dump_file)
fprintf (dump_file, ";; loop %d iterator is MEM\n",
loop->loop_no);
return false;
}
/* Check if loop register is lpcount. */
if (REG_P (loop->iter_reg) && (REGNO (loop->iter_reg)) != LP_COUNT)
{
if (dump_file)
fprintf (dump_file, ";; loop %d doesn't use lp_count as loop"
" iterator\n",
loop->loop_no);
/* This loop doesn't use the lp_count, check though if we can
fix it. */
if (TEST_HARD_REG_BIT (loop->regs_set_in_loop, LP_COUNT)
/* In very unique cases we may have LP_COUNT alive. */
|| (loop->incoming_src
&& REGNO_REG_SET_P (df_get_live_out (loop->incoming_src),
LP_COUNT)))
{
if (dump_file)
fprintf (dump_file, ";; loop %d, lp_count is alive", loop->loop_no);
return false;
}
else
need_fix = true;
}
/* Check for control like instruction as the last instruction of a
ZOL. */
bb = loop->tail;
last_insn = PREV_INSN (loop->loop_end);
while (1)
{
for (; last_insn != BB_HEAD (bb);
last_insn = PREV_INSN (last_insn))
if (NONDEBUG_INSN_P (last_insn))
break;
if (last_insn != BB_HEAD (bb))
break;
if (single_pred_p (bb)
&& single_pred_edge (bb)->flags & EDGE_FALLTHRU
&& single_pred (bb) != ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
bb = single_pred (bb);
last_insn = BB_END (bb);
continue;
}
else
{
last_insn = NULL;
break;
}
}
if (!last_insn)
{
if (dump_file)
fprintf (dump_file, ";; loop %d has no last instruction\n",
loop->loop_no);
return false;
}
if ((TARGET_ARC600_FAMILY || TARGET_HS)
&& INSN_P (last_insn)
&& (JUMP_P (last_insn) || CALL_P (last_insn)
|| GET_CODE (PATTERN (last_insn)) == SEQUENCE
/* At this stage we can have (insn (clobber (mem:BLK
(reg)))) instructions, ignore them. */
|| (GET_CODE (PATTERN (last_insn)) != CLOBBER
&& (get_attr_type (last_insn) == TYPE_BRCC
|| get_attr_type (last_insn) == TYPE_BRCC_NO_DELAY_SLOT))))
{
if (loop->length + 2 > ARC_MAX_LOOP_LENGTH)
{
if (dump_file)
fprintf (dump_file, ";; loop %d too long\n", loop->loop_no);
return false;
}
if (dump_file)
fprintf (dump_file, ";; loop %d has a control like last insn; "
"add a nop\n",
loop->loop_no);
last_insn = emit_insn_after (gen_nopv (), last_insn);
}
if (LABEL_P (last_insn))
{
if (dump_file)
fprintf (dump_file, ";; loop %d has a label as last insn; "
"add a nop\n",
loop->loop_no);
last_insn = emit_insn_after (gen_nopv (), last_insn);
}
/* SAVE_NOTE is used by haifa scheduler. However, we are after it
and we can use it to indicate the last ZOL instruction cannot be
part of a delay slot. */
add_reg_note (last_insn, REG_SAVE_NOTE, GEN_INT (2));
loop->last_insn = last_insn;
/* Get the loop iteration register. */
iter_reg = loop->iter_reg;
gcc_assert (REG_P (iter_reg));
entry_edge = NULL;
FOR_EACH_VEC_SAFE_ELT (loop->incoming, i, entry_edge)
if (entry_edge->flags & EDGE_FALLTHRU)
break;
if (entry_edge == NULL)
{
if (dump_file)
fprintf (dump_file, ";; loop %d has no fallthru edge jumping "
"into the loop\n",
loop->loop_no);
return false;
}
/* The loop is good. */
end_label = gen_label_rtx ();
loop->end_label = end_label;
/* Place the zero_cost_loop_start instruction before the loop. */
entry_bb = entry_edge->src;
start_sequence ();
if (need_fix)
{
/* The loop uses a R-register, but the lp_count is free, thus
use lp_count. */
emit_insn (gen_rtx_SET (lp_reg, iter_reg));
SET_HARD_REG_BIT (loop->regs_set_in_loop, LP_COUNT);
iter_reg = lp_reg;
if (dump_file)
{
fprintf (dump_file, ";; fix loop %d to use lp_count\n",
loop->loop_no);
}
}
insn = emit_insn (gen_arc_lp (loop->start_label,
loop->end_label));
seq = get_insns ();
end_sequence ();
entry_after = BB_END (entry_bb);
if (!single_succ_p (entry_bb) || vec_safe_length (loop->incoming) > 1
|| !entry_after)
{
basic_block new_bb;
edge e;
edge_iterator ei;
emit_insn_before (seq, BB_HEAD (loop->head));
seq = emit_label_before (gen_label_rtx (), seq);
new_bb = create_basic_block (seq, insn, entry_bb);
FOR_EACH_EDGE (e, ei, loop->incoming)
{
if (!(e->flags & EDGE_FALLTHRU))
redirect_edge_and_branch_force (e, new_bb);
else
redirect_edge_succ (e, new_bb);
}
make_edge (new_bb, loop->head, 0);
}
else
{
#if 0
while (DEBUG_INSN_P (entry_after)
|| (NOTE_P (entry_after)
&& NOTE_KIND (entry_after) != NOTE_INSN_BASIC_BLOCK
/* Make sure we don't split a call and its corresponding
CALL_ARG_LOCATION note. */
&& NOTE_KIND (entry_after) != NOTE_INSN_CALL_ARG_LOCATION))
entry_after = NEXT_INSN (entry_after);
#endif
entry_after = next_nonnote_insn_bb (entry_after);
gcc_assert (entry_after);
emit_insn_before (seq, entry_after);
}
/* Insert the loop end label before the last instruction of the
loop. */
emit_label_after (end_label, loop->last_insn);
/* Make sure we mark the begining and end label as used. */
LABEL_NUSES (loop->end_label)++;
LABEL_NUSES (loop->start_label)++;
return true;
}
/* A callback for the hw-doloop pass. This function examines INSN; if
it is a loop_end pattern we recognize, return the reg rtx for the
loop counter. Otherwise, return NULL_RTX. */
static rtx
hwloop_pattern_reg (rtx_insn *insn)
{
rtx reg;
if (!JUMP_P (insn) || recog_memoized (insn) != CODE_FOR_loop_end)
return NULL_RTX;
reg = SET_DEST (XVECEXP (PATTERN (insn), 0, 1));
if (!REG_P (reg))
return NULL_RTX;
return reg;
}
static struct hw_doloop_hooks arc_doloop_hooks =
{
hwloop_pattern_reg,
hwloop_optimize,
hwloop_fail
};
/* Run from machine_dependent_reorg, this pass looks for doloop_end insns
and tries to rewrite the RTL of these loops so that proper Blackfin
hardware loops are generated. */
static void
arc_reorg_loops (void)
{
reorg_loops (true, &arc_doloop_hooks);
}
/* Scan all calls and add symbols to be emitted in the jli section if
needed. */
static void
jli_call_scan (void)
{
rtx_insn *insn;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (!CALL_P (insn))
continue;
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == COND_EXEC)
pat = COND_EXEC_CODE (pat);
pat = XVECEXP (pat, 0, 0);
if (GET_CODE (pat) == SET)
pat = SET_SRC (pat);
pat = XEXP (XEXP (pat, 0), 0);
if (GET_CODE (pat) == SYMBOL_REF
&& arc_is_jli_call_p (pat))
arc_add_jli_section (pat);
}
}
/* Add padding if necessary to avoid a mispredict. A return could
happen immediately after the function start. A call/return and
return/return must be 6 bytes apart to avoid mispredict. */
static void
pad_return (void)
{
rtx_insn *insn;
long offset;
if (!TARGET_PAD_RETURN)
return;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx_insn *prev0 = prev_active_insn (insn);
bool wantlong = false;
if (!INSN_P (insn) || GET_CODE (PATTERN (insn)) != SIMPLE_RETURN)
continue;
if (!prev0)
{
prev0 = emit_insn_before (gen_nopv (), insn);
/* REG_SAVE_NOTE is used by Haifa scheduler, we are in reorg
so it is safe to reuse it for forcing a particular length
for an instruction. */
add_reg_note (prev0, REG_SAVE_NOTE, GEN_INT (1));
emit_insn_before (gen_nopv (), insn);
continue;
}
offset = get_attr_length (prev0);
if (get_attr_length (prev0) == 2
&& get_attr_iscompact (prev0) != ISCOMPACT_TRUE)
{
/* Force long version of the insn. */
wantlong = true;
offset += 2;
}
rtx_insn *prev = prev_active_insn (prev0);
if (prev)
offset += get_attr_length (prev);
prev = prev_active_insn (prev);
if (prev)
offset += get_attr_length (prev);
switch (offset)
{
case 2:
prev = emit_insn_before (gen_nopv (), insn);
add_reg_note (prev, REG_SAVE_NOTE, GEN_INT (1));
break;
case 4:
emit_insn_before (gen_nopv (), insn);
break;
default:
continue;
}
if (wantlong)
add_reg_note (prev0, REG_SAVE_NOTE, GEN_INT (1));
/* Emit a blockage to avoid delay slot scheduling. */
emit_insn_before (gen_blockage (), insn);
}
}
static int arc_reorg_in_progress = 0;
/* ARC's machince specific reorg function. */
static void
arc_reorg (void)
{
rtx_insn *insn;
rtx pattern;
rtx pc_target;
long offset;
int changed;
cfun->machine->arc_reorg_started = 1;
arc_reorg_in_progress = 1;
compute_bb_for_insn ();
df_analyze ();
/* Doloop optimization. */
arc_reorg_loops ();
workaround_arc_anomaly ();
jli_call_scan ();
pad_return ();
/* FIXME: should anticipate ccfsm action, generate special patterns for
to-be-deleted branches that have no delay slot and have at least the
length of the size increase forced on other insns that are conditionalized.
This can also have an insn_list inside that enumerates insns which are
not actually conditionalized because the destinations are dead in the
not-execute case.
Could also tag branches that we want to be unaligned if they get no delay
slot, or even ones that we don't want to do delay slot sheduling for
because we can unalign them.
However, there are cases when conditional execution is only possible after
delay slot scheduling:
- If a delay slot is filled with a nocond/set insn from above, the previous
basic block can become elegible for conditional execution.
- If a delay slot is filled with a nocond insn from the fall-through path,
the branch with that delay slot can become eligble for conditional
execution (however, with the same sort of data flow analysis that dbr
does, we could have figured out before that we don't need to
conditionalize this insn.)
- If a delay slot insn is filled with an insn from the target, the
target label gets its uses decremented (even deleted if falling to zero),
thus possibly creating more condexec opportunities there.
Therefore, we should still be prepared to apply condexec optimization on
non-prepared branches if the size increase of conditionalized insns is no
more than the size saved from eliminating the branch. An invocation option
could also be used to reserve a bit of extra size for condbranches so that
this'll work more often (could also test in arc_reorg if the block is
'close enough' to be eligible for condexec to make this likely, and
estimate required size increase). */
/* Generate BRcc insns, by combining cmp and Bcc insns wherever possible. */
if (TARGET_NO_BRCC_SET)
return;
do
{
init_insn_lengths();
changed = 0;
if (optimize > 1 && !TARGET_NO_COND_EXEC)
{
arc_ifcvt ();
unsigned int flags = pass_data_arc_ifcvt.todo_flags_finish;
df_finish_pass ((flags & TODO_df_verify) != 0);
if (dump_file)
{
fprintf (dump_file, ";; After if conversion:\n\n");
print_rtl (dump_file, get_insns ());
}
}
/* Call shorten_branches to calculate the insn lengths. */
shorten_branches (get_insns());
cfun->machine->ccfsm_current_insn = NULL_RTX;
if (!INSN_ADDRESSES_SET_P())
fatal_error (input_location,
"insn addresses not set after shorten branches");
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx label;
enum attr_type insn_type;
/* If a non-jump insn (or a casesi jump table), continue. */
if (GET_CODE (insn) != JUMP_INSN ||
GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
continue;
/* If we already have a brcc, note if it is suitable for brcc_s.
Be a bit generous with the brcc_s range so that we can take
advantage of any code shortening from delay slot scheduling. */
if (recog_memoized (insn) == CODE_FOR_cbranchsi4_scratch)
{
rtx pat = PATTERN (insn);
rtx op = XEXP (SET_SRC (XVECEXP (pat, 0, 0)), 0);
rtx *ccp = &XEXP (XVECEXP (pat, 0, 1), 0);
offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
if ((offset >= -140 && offset < 140)
&& rtx_equal_p (XEXP (op, 1), const0_rtx)
&& compact_register_operand (XEXP (op, 0), VOIDmode)
&& equality_comparison_operator (op, VOIDmode))
PUT_MODE (*ccp, CC_Zmode);
else if (GET_MODE (*ccp) == CC_Zmode)
PUT_MODE (*ccp, CC_ZNmode);
continue;
}
if ((insn_type = get_attr_type (insn)) == TYPE_BRCC
|| insn_type == TYPE_BRCC_NO_DELAY_SLOT)
continue;
/* OK. so we have a jump insn. */
/* We need to check that it is a bcc. */
/* Bcc => set (pc) (if_then_else ) */
pattern = PATTERN (insn);
if (GET_CODE (pattern) != SET
|| GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE
|| ANY_RETURN_P (XEXP (SET_SRC (pattern), 1)))
continue;
/* Now check if the jump is beyond the s9 range. */
if (CROSSING_JUMP_P (insn))
continue;
offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
if(offset > 253 || offset < -254)
continue;
pc_target = SET_SRC (pattern);
/* Avoid FPU instructions. */
if ((GET_MODE (XEXP (XEXP (pc_target, 0), 0)) == CC_FPUmode)
|| (GET_MODE (XEXP (XEXP (pc_target, 0), 0)) == CC_FPUEmode)
|| (GET_MODE (XEXP (XEXP (pc_target, 0), 0)) == CC_FPU_UNEQmode))
continue;
/* Now go back and search for the set cc insn. */
label = XEXP (pc_target, 1);
{
rtx pat;
rtx_insn *scan, *link_insn = NULL;
for (scan = PREV_INSN (insn);
scan && GET_CODE (scan) != CODE_LABEL;
scan = PREV_INSN (scan))
{
if (! INSN_P (scan))
continue;
pat = PATTERN (scan);
if (GET_CODE (pat) == SET
&& cc_register (SET_DEST (pat), VOIDmode))
{
link_insn = scan;
break;
}
}
if (!link_insn)
continue;
else
{
/* Check if this is a data dependency. */
rtx op, cc_clob_rtx, op0, op1, brcc_insn, note;
rtx cmp0, cmp1;
/* Make sure we can use it for brcc insns. */
if (find_reg_note (link_insn, REG_SAVE_NOTE, GEN_INT (3)))
continue;
/* Ok this is the set cc. copy args here. */
op = XEXP (pc_target, 0);
op0 = cmp0 = XEXP (SET_SRC (pat), 0);
op1 = cmp1 = XEXP (SET_SRC (pat), 1);
if (GET_CODE (op0) == ZERO_EXTRACT
&& XEXP (op0, 1) == const1_rtx
&& (GET_CODE (op) == EQ
|| GET_CODE (op) == NE))
{
/* btst / b{eq,ne} -> bbit{0,1} */
op0 = XEXP (cmp0, 0);
op1 = XEXP (cmp0, 2);
}
else if (!register_operand (op0, VOIDmode)
|| !general_operand (op1, VOIDmode))
continue;
/* Be careful not to break what cmpsfpx_raw is
trying to create for checking equality of
single-precision floats. */
else if (TARGET_SPFP
&& GET_MODE (op0) == SFmode
&& GET_MODE (op1) == SFmode)
continue;
/* None of the two cmp operands should be set between the
cmp and the branch. */
if (reg_set_between_p (op0, link_insn, insn))
continue;
if (reg_set_between_p (op1, link_insn, insn))
continue;
/* Since the MODE check does not work, check that this is
CC reg's last set location before insn, and also no
instruction between the cmp and branch uses the
condition codes. */
if ((reg_set_between_p (SET_DEST (pat), link_insn, insn))
|| (reg_used_between_p (SET_DEST (pat), link_insn, insn)))
continue;
/* CC reg should be dead after insn. */
if (!find_regno_note (insn, REG_DEAD, CC_REG))
continue;
op = gen_rtx_fmt_ee (GET_CODE (op),
GET_MODE (op), cmp0, cmp1);
/* If we create a LIMM where there was none before,
we only benefit if we can avoid a scheduling bubble
for the ARC600. Otherwise, we'd only forgo chances
at short insn generation, and risk out-of-range
branches. */
if (!brcc_nolimm_operator (op, VOIDmode)
&& !long_immediate_operand (op1, VOIDmode)
&& (TARGET_ARC700
|| (TARGET_V2 && optimize_size)
|| next_active_insn (link_insn) != insn))
continue;
/* Emit bbit / brcc (or brcc_s if possible).
CC_Zmode indicates that brcc_s is possible. */
if (op0 != cmp0)
cc_clob_rtx = gen_rtx_REG (CC_ZNmode, CC_REG);
else if ((offset >= -140 && offset < 140)
&& rtx_equal_p (op1, const0_rtx)
&& compact_register_operand (op0, VOIDmode)
&& (GET_CODE (op) == EQ
|| GET_CODE (op) == NE))
cc_clob_rtx = gen_rtx_REG (CC_Zmode, CC_REG);
else
cc_clob_rtx = gen_rtx_REG (CCmode, CC_REG);
brcc_insn
= gen_rtx_IF_THEN_ELSE (VOIDmode, op, label, pc_rtx);
brcc_insn = gen_rtx_SET (pc_rtx, brcc_insn);
cc_clob_rtx = gen_rtx_CLOBBER (VOIDmode, cc_clob_rtx);
brcc_insn
= gen_rtx_PARALLEL
(VOIDmode, gen_rtvec (2, brcc_insn, cc_clob_rtx));
brcc_insn = emit_jump_insn_before (brcc_insn, insn);
JUMP_LABEL (brcc_insn) = JUMP_LABEL (insn);
note = find_reg_note (insn, REG_BR_PROB, 0);
if (note)
{
XEXP (note, 1) = REG_NOTES (brcc_insn);
REG_NOTES (brcc_insn) = note;
}
note = find_reg_note (link_insn, REG_DEAD, op0);
if (note)
{
remove_note (link_insn, note);
XEXP (note, 1) = REG_NOTES (brcc_insn);
REG_NOTES (brcc_insn) = note;
}
note = find_reg_note (link_insn, REG_DEAD, op1);
if (note)
{
XEXP (note, 1) = REG_NOTES (brcc_insn);
REG_NOTES (brcc_insn) = note;
}
changed = 1;
/* Delete the bcc insn. */
set_insn_deleted (insn);
/* Delete the cmp insn. */
set_insn_deleted (link_insn);
}
}
}
/* Clear out insn_addresses. */
INSN_ADDRESSES_FREE ();
} while (changed);
if (INSN_ADDRESSES_SET_P())
fatal_error (input_location, "insn addresses not freed");
arc_reorg_in_progress = 0;
}
/* Check if the operands are valid for BRcc.d generation
Valid Brcc.d patterns are
Brcc.d b, c, s9
Brcc.d b, u6, s9
For cc={GT, LE, GTU, LEU}, u6=63 cannot be allowed,
since they are encoded by the assembler as {GE, LT, HS, LS} 64, which
does not have a delay slot
Assumed precondition: Second operand is either a register or a u6 value. */
bool
valid_brcc_with_delay_p (rtx *operands)
{
if (optimize_size && GET_MODE (operands[4]) == CC_Zmode)
return false;
return brcc_nolimm_operator (operands[0], VOIDmode);
}
/* Implement TARGET_IN_SMALL_DATA_P. Return true if it would be safe to
access DECL using %gp_rel(...)($gp). */
static bool
arc_in_small_data_p (const_tree decl)
{
HOST_WIDE_INT size;
tree attr;
/* Only variables are going into small data area. */
if (TREE_CODE (decl) != VAR_DECL)
return false;
if (TARGET_NO_SDATA_SET)
return false;
/* Disable sdata references to weak variables. */
if (DECL_WEAK (decl))
return false;
/* Don't put constants into the small data section: we want them to
be in ROM rather than RAM. */
if (TREE_READONLY (decl))
return false;
/* To ensure -mvolatile-cache works ld.di does not have a
gp-relative variant. */
if (!TARGET_VOLATILE_CACHE_SET
&& TREE_THIS_VOLATILE (decl))
return false;
/* Likewise for uncached data. */
attr = TYPE_ATTRIBUTES (TREE_TYPE (decl));
if (lookup_attribute ("uncached", attr))
return false;
/* and for aux regs. */
attr = DECL_ATTRIBUTES (decl);
if (lookup_attribute ("aux", attr))
return false;
if (DECL_SECTION_NAME (decl) != 0)
{
const char *name = DECL_SECTION_NAME (decl);
if (strcmp (name, ".sdata") == 0
|| strcmp (name, ".sbss") == 0)
return true;
}
/* If it's not public, there's no need to put it in the small data
section. */
else if (TREE_PUBLIC (decl))
{
size = int_size_in_bytes (TREE_TYPE (decl));
return (size > 0 && size <= g_switch_value);
}
return false;
}
/* Return true if OP is an acceptable memory operand for ARCompact
16-bit gp-relative load instructions.
*/
/* volatile cache option still to be handled. */
bool
compact_sda_memory_operand (rtx op, machine_mode mode, bool short_p)
{
rtx addr;
int size;
int align = 0;
int mask = 0;
/* Eliminate non-memory operations. */
if (GET_CODE (op) != MEM)
return false;
if (mode == VOIDmode)
mode = GET_MODE (op);
size = GET_MODE_SIZE (mode);
/* dword operations really put out 2 instructions, so eliminate them. */
if (size > UNITS_PER_WORD)
return false;
/* Decode the address now. */
addr = XEXP (op, 0);
if (!legitimate_small_data_address_p (addr, mode))
return false;
if (!short_p || size == 1)
return true;
/* Now check for the alignment, the short loads using gp require the
addresses to be aligned. */
align = get_symbol_alignment (addr);
switch (mode)
{
case E_HImode:
mask = 1;
break;
default:
mask = 3;
break;
}
if (align && ((align & mask) == 0))
return true;
return false;
}
/* Return TRUE if PAT is accessing an aux-reg. */
static bool
arc_is_aux_reg_p (rtx pat)
{
tree attrs = NULL_TREE;
tree addr;
if (!MEM_P (pat))
return false;
/* Get the memory attributes. */
addr = MEM_EXPR (pat);
if (!addr)
return false;
/* Get the attributes. */
if (TREE_CODE (addr) == VAR_DECL)
attrs = DECL_ATTRIBUTES (addr);
else if (TREE_CODE (addr) == MEM_REF)
attrs = TYPE_ATTRIBUTES (TREE_TYPE (TREE_OPERAND (addr, 0)));
else
return false;
if (lookup_attribute ("aux", attrs))
return true;
return false;
}
/* Implement ASM_OUTPUT_ALIGNED_DECL_LOCAL. */
void
arc_asm_output_aligned_decl_local (FILE * stream, tree decl, const char * name,
unsigned HOST_WIDE_INT size,
unsigned HOST_WIDE_INT align,
unsigned HOST_WIDE_INT globalize_p)
{
int in_small_data = arc_in_small_data_p (decl);
rtx mem = decl == NULL_TREE ? NULL_RTX : DECL_RTL (decl);
/* Don't output aux-reg symbols. */
if (mem != NULL_RTX && MEM_P (mem)
&& SYMBOL_REF_P (XEXP (mem, 0))
&& arc_is_aux_reg_p (mem))
return;
if (in_small_data)
switch_to_section (get_named_section (NULL, ".sbss", 0));
/* named_section (0,".sbss",0); */
else
switch_to_section (bss_section);
if (globalize_p)
(*targetm.asm_out.globalize_label) (stream, name);
ASM_OUTPUT_ALIGN (stream, floor_log2 ((align) / BITS_PER_UNIT));
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
ASM_OUTPUT_LABEL (stream, name);
if (size != 0)
ASM_OUTPUT_SKIP (stream, size);
}
static bool
arc_preserve_reload_p (rtx in)
{
return (GET_CODE (in) == PLUS
&& RTX_OK_FOR_BASE_P (XEXP (in, 0), true)
&& CONST_INT_P (XEXP (in, 1))
&& !((INTVAL (XEXP (in, 1)) & 511)));
}
/* Implement TARGET_REGISTER_MOVE_COST. */
static int
arc_register_move_cost (machine_mode,
reg_class_t from_class, reg_class_t to_class)
{
/* Force an attempt to 'mov Dy,Dx' to spill. */
if ((TARGET_ARC700 || TARGET_EM) && TARGET_DPFP
&& from_class == DOUBLE_REGS && to_class == DOUBLE_REGS)
return 100;
return 2;
}
/* Emit code for an addsi3 instruction with OPERANDS.
COND_P indicates if this will use conditional execution.
Return the length of the instruction.
If OUTPUT_P is false, don't actually output the instruction, just return
its length. */
int
arc_output_addsi (rtx *operands, bool cond_p, bool output_p)
{
char format[35];
int match = operands_match_p (operands[0], operands[1]);
int match2 = operands_match_p (operands[0], operands[2]);
int intval = (REG_P (operands[2]) ? 1
: CONST_INT_P (operands[2]) ? INTVAL (operands[2]) : 0xbadc057);
int neg_intval = -intval;
int short_0 = satisfies_constraint_Rcq (operands[0]);
int short_p = (!cond_p && short_0 && satisfies_constraint_Rcq (operands[1]));
int ret = 0;
#define REG_H_P(OP) (REG_P (OP) && ((TARGET_V2 && REGNO (OP) <= 31 \
&& REGNO (OP) != 30) \
|| !TARGET_V2))
#define ADDSI_OUTPUT1(FORMAT) do {\
if (output_p) \
output_asm_insn (FORMAT, operands);\
return ret; \
} while (0)
#define ADDSI_OUTPUT(LIST) do {\
if (output_p) \
sprintf LIST;\
ADDSI_OUTPUT1 (format);\
return ret; \
} while (0)
/* First try to emit a 16 bit insn. */
ret = 2;
if (!cond_p
/* If we are actually about to output this insn, don't try a 16 bit
variant if we already decided that we don't want that
(I.e. we upsized this insn to align some following insn.)
E.g. add_s r0,sp,70 is 16 bit, but add r0,sp,70 requires a LIMM -
but add1 r0,sp,35 doesn't. */
&& (!output_p || (get_attr_length (current_output_insn) & 2)))
{
/* Generate add_s a,b,c; add_s b,b,u7; add_s c,b,u3; add_s b,b,h
patterns. */
if (short_p
&& ((REG_H_P (operands[2])
&& (match || satisfies_constraint_Rcq (operands[2])))
|| (CONST_INT_P (operands[2])
&& ((unsigned) intval <= (match ? 127 : 7)))))
ADDSI_OUTPUT1 ("add%? %0,%1,%2 ;1");
/* Generate add_s b,b,h patterns. */
if (short_0 && match2 && REG_H_P (operands[1]))
ADDSI_OUTPUT1 ("add%? %0,%2,%1 ;2");
/* Generate add_s b,sp,u7; add_s sp,sp,u7 patterns. */
if ((short_0 || REGNO (operands[0]) == STACK_POINTER_REGNUM)
&& REGNO (operands[1]) == STACK_POINTER_REGNUM && !(intval & ~124))
ADDSI_OUTPUT1 ("add%? %0,%1,%2 ;3");
if ((short_p && (unsigned) neg_intval <= (match ? 31 : 7))
|| (REGNO (operands[0]) == STACK_POINTER_REGNUM
&& match && !(neg_intval & ~124)))
ADDSI_OUTPUT1 ("sub%? %0,%1,%n2 ;4");
/* Generate add_s h,h,s3 patterns. */
if (REG_H_P (operands[0]) && match && TARGET_V2
&& CONST_INT_P (operands[2]) && ((intval>= -1) && (intval <= 6)))
ADDSI_OUTPUT1 ("add%? %0,%1,%2 ;5");
/* Generate add_s r0,b,u6; add_s r1,b,u6 patterns. */
if (TARGET_CODE_DENSITY && REG_P (operands[0]) && REG_P (operands[1])
&& ((REGNO (operands[0]) == 0) || (REGNO (operands[0]) == 1))
&& satisfies_constraint_Rcq (operands[1])
&& satisfies_constraint_L (operands[2]))
ADDSI_OUTPUT1 ("add%? %0,%1,%2 ;6");
}
/* Now try to emit a 32 bit insn without long immediate. */
ret = 4;
if (!match && match2 && REG_P (operands[1]))
ADDSI_OUTPUT1 ("add%? %0,%2,%1");
if (match || !cond_p)
{
int limit = (match && !cond_p) ? 0x7ff : 0x3f;
int range_factor = neg_intval & intval;
int shift;
if (intval == (HOST_WIDE_INT) (HOST_WIDE_INT_M1U << 31))
ADDSI_OUTPUT1 ("bxor%? %0,%1,31");
/* If we can use a straight add / sub instead of a {add,sub}[123] of
same size, do, so - the insn latency is lower. */
/* -0x800 is a 12-bit constant for add /add3 / sub / sub3, but
0x800 is not. */
if ((intval >= 0 && intval <= limit)
|| (intval == -0x800 && limit == 0x7ff))
ADDSI_OUTPUT1 ("add%? %0,%1,%2");
else if ((intval < 0 && neg_intval <= limit)
|| (intval == 0x800 && limit == 0x7ff))
ADDSI_OUTPUT1 ("sub%? %0,%1,%n2");
shift = range_factor >= 8 ? 3 : (range_factor >> 1);
gcc_assert (shift == 0 || shift == 1 || shift == 2 || shift == 3);
gcc_assert ((((1 << shift) - 1) & intval) == 0);
if (((intval < 0 && intval != -0x4000)
/* sub[123] is slower than add_s / sub, only use it if it
avoids a long immediate. */
&& neg_intval <= limit << shift)
|| (intval == 0x4000 && limit == 0x7ff))
ADDSI_OUTPUT ((format, "sub%d%%? %%0,%%1,%d",
shift, neg_intval >> shift));
else if ((intval >= 0 && intval <= limit << shift)
|| (intval == -0x4000 && limit == 0x7ff))
ADDSI_OUTPUT ((format, "add%d%%? %%0,%%1,%d", shift, intval >> shift));
}
/* Try to emit a 16 bit opcode with long immediate. */
ret = 6;
if (short_p && match)
ADDSI_OUTPUT1 ("add%? %0,%1,%2");
/* We have to use a 32 bit opcode, and with a long immediate. */
ret = 8;
ADDSI_OUTPUT1 (intval < 0 ? "sub%? %0,%1,%n2" : "add%? %0,%1,%2");
}
/* Emit code for an commutative_cond_exec instruction with OPERANDS.
Return the length of the instruction.
If OUTPUT_P is false, don't actually output the instruction, just return
its length. */
int
arc_output_commutative_cond_exec (rtx *operands, bool output_p)
{
enum rtx_code commutative_op = GET_CODE (operands[3]);
const char *pat = NULL;
/* Canonical rtl should not have a constant in the first operand position. */
gcc_assert (!CONSTANT_P (operands[1]));
switch (commutative_op)
{
case AND:
if (satisfies_constraint_C1p (operands[2]))
pat = "bmsk%? %0,%1,%Z2";
else if (satisfies_constraint_C2p (operands[2]))
{
operands[2] = GEN_INT ((~INTVAL (operands[2])));
pat = "bmskn%? %0,%1,%Z2";
}
else if (satisfies_constraint_Ccp (operands[2]))
pat = "bclr%? %0,%1,%M2";
else if (satisfies_constraint_CnL (operands[2]))
pat = "bic%? %0,%1,%n2-1";
break;
case IOR:
if (satisfies_constraint_C0p (operands[2]))
pat = "bset%? %0,%1,%z2";
break;
case XOR:
if (satisfies_constraint_C0p (operands[2]))
pat = "bxor%? %0,%1,%z2";
break;
case PLUS:
return arc_output_addsi (operands, true, output_p);
default: break;
}
if (output_p)
output_asm_insn (pat ? pat : "%O3.%d5 %0,%1,%2", operands);
if (pat || REG_P (operands[2]) || satisfies_constraint_L (operands[2]))
return 4;
return 8;
}
/* Helper function of arc_expand_cpymem. ADDR points to a chunk of memory.
Emit code and return an potentially modified address such that offsets
up to SIZE are can be added to yield a legitimate address.
if REUSE is set, ADDR is a register that may be modified. */
static rtx
force_offsettable (rtx addr, HOST_WIDE_INT size, bool reuse)
{
rtx base = addr;
rtx offs = const0_rtx;
if (GET_CODE (base) == PLUS)
{
offs = XEXP (base, 1);
base = XEXP (base, 0);
}
if (!REG_P (base)
|| (REGNO (base) != STACK_POINTER_REGNUM
&& REGNO_PTR_FRAME_P (REGNO (base)))
|| !CONST_INT_P (offs) || !SMALL_INT (INTVAL (offs))
|| !SMALL_INT (INTVAL (offs) + size))
{
if (reuse)
emit_insn (gen_add2_insn (addr, offs));
else
addr = copy_to_mode_reg (Pmode, addr);
}
return addr;
}
/* Like move_by_pieces, but take account of load latency, and actual
offset ranges. Return true on success. */
bool
arc_expand_cpymem (rtx *operands)
{
rtx dst = operands[0];
rtx src = operands[1];
rtx dst_addr, src_addr;
HOST_WIDE_INT size;
int align = INTVAL (operands[3]);
unsigned n_pieces;
int piece = align;
rtx store[2];
rtx tmpx[2];
int i;
if (!CONST_INT_P (operands[2]))
return false;
size = INTVAL (operands[2]);
/* move_by_pieces_ninsns is static, so we can't use it. */
if (align >= 4)
{
if (TARGET_LL64)
n_pieces = (size + 4) / 8U + ((size >> 1) & 1) + (size & 1);
else
n_pieces = (size + 2) / 4U + (size & 1);
}
else if (align == 2)
n_pieces = (size + 1) / 2U;
else
n_pieces = size;
if (n_pieces >= (unsigned int) (optimize_size ? 3 : 15))
return false;
/* Force 32 bit aligned and larger datum to use 64 bit transfers, if
possible. */
if (TARGET_LL64 && (piece >= 4) && (size >= 8))
piece = 8;
else if (piece > 4)
piece = 4;
dst_addr = force_offsettable (XEXP (operands[0], 0), size, 0);
src_addr = force_offsettable (XEXP (operands[1], 0), size, 0);
store[0] = store[1] = NULL_RTX;
tmpx[0] = tmpx[1] = NULL_RTX;
for (i = 0; size > 0; i ^= 1, size -= piece)
{
rtx tmp;
machine_mode mode;
while (piece > size)
piece >>= 1;
mode = smallest_int_mode_for_size (piece * BITS_PER_UNIT);
/* If we don't re-use temporaries, the scheduler gets carried away,
and the register pressure gets unnecessarily high. */
if (0 && tmpx[i] && GET_MODE (tmpx[i]) == mode)
tmp = tmpx[i];
else
tmpx[i] = tmp = gen_reg_rtx (mode);
dst_addr = force_offsettable (dst_addr, piece, 1);
src_addr = force_offsettable (src_addr, piece, 1);
if (store[i])
emit_insn (store[i]);
emit_move_insn (tmp, change_address (src, mode, src_addr));
store[i] = gen_move_insn (change_address (dst, mode, dst_addr), tmp);
dst_addr = plus_constant (Pmode, dst_addr, piece);
src_addr = plus_constant (Pmode, src_addr, piece);
}
if (store[i])
emit_insn (store[i]);
if (store[i^1])
emit_insn (store[i^1]);
return true;
}
static bool
arc_get_aux_arg (rtx pat, int *auxr)
{
tree attr, addr = MEM_EXPR (pat);
if (TREE_CODE (addr) != VAR_DECL)
return false;
attr = DECL_ATTRIBUTES (addr);
if (lookup_attribute ("aux", attr))
{
tree arg = TREE_VALUE (attr);
if (arg)
{
*auxr = TREE_INT_CST_LOW (TREE_VALUE (arg));
return true;
}
}
return false;
}
/* Prepare operands for move in MODE. Return true iff the move has
been emitted. */
bool
prepare_move_operands (rtx *operands, machine_mode mode)
{
if ((MEM_P (operands[0]) || MEM_P (operands[1]))
&& SCALAR_INT_MODE_P (mode))
{
/* First handle aux attribute. */
if (mode == SImode)
{
rtx tmp;
int auxr = 0;
if (MEM_P (operands[0]) && arc_is_aux_reg_p (operands[0]))
{
/* Save operation. */
if (arc_get_aux_arg (operands[0], &auxr))
{
tmp = gen_reg_rtx (SImode);
emit_move_insn (tmp, GEN_INT (auxr));
}
else
tmp = XEXP (operands[0], 0);
operands[1] = force_reg (SImode, operands[1]);
emit_insn (gen_rtx_UNSPEC_VOLATILE
(VOIDmode, gen_rtvec (2, operands[1], tmp),
VUNSPEC_ARC_SR));
return true;
}
if (MEM_P (operands[1]) && arc_is_aux_reg_p (operands[1]))
{
if (arc_get_aux_arg (operands[1], &auxr))
{
tmp = gen_reg_rtx (SImode);
emit_move_insn (tmp, GEN_INT (auxr));
}
else
{
tmp = XEXP (operands[1], 0);
gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
}
/* Load operation. */
gcc_assert (REG_P (operands[0]));
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_UNSPEC_VOLATILE
(SImode, gen_rtvec (1, tmp),
VUNSPEC_ARC_LR)));
return true;
}
}
/* Second, we check for the uncached. */
if (arc_is_uncached_mem_p (operands[0]))
{
if (!REG_P (operands[1]))
operands[1] = force_reg (mode, operands[1]);
emit_insn (gen_rtx_UNSPEC_VOLATILE
(VOIDmode, gen_rtvec (2, operands[0], operands[1]),
VUNSPEC_ARC_STDI));
return true;
}
if (arc_is_uncached_mem_p (operands[1]))
{
rtx tmp = operands[0];
if (MEM_P (operands[0]))
tmp = gen_reg_rtx (mode);
emit_insn (gen_rtx_SET
(tmp,
gen_rtx_UNSPEC_VOLATILE
(mode, gen_rtvec (1, operands[1]),
VUNSPEC_ARC_LDDI)));
if (MEM_P (operands[0]))
{
operands[1] = tmp;
return false;
}
return true;
}
}
if (GET_CODE (operands[1]) == SYMBOL_REF)
{
enum tls_model model = SYMBOL_REF_TLS_MODEL (operands[1]);
if (MEM_P (operands[0]))
operands[1] = force_reg (mode, operands[1]);
else if (model)
operands[1] = arc_legitimize_tls_address (operands[1], model);
}
operands[1] = arc_legitimize_pic_address (operands[1]);
/* Store instructions are limited, they only accept as address an
immediate, a register or a register plus a small immediate. */
if (MEM_P (operands[0])
&& !move_dest_operand (operands[0], mode))
{
rtx tmp0 = copy_to_mode_reg (Pmode, XEXP (operands[0], 0));
rtx tmp1 = change_address (operands[0], mode, tmp0);
MEM_COPY_ATTRIBUTES (tmp1, operands[0]);
operands[0] = tmp1;
}
/* Check if it is constant but it is not legitimized. */
if (CONSTANT_P (operands[1])
&& !arc_legitimate_constant_p (mode, operands[1]))
operands[1] = force_reg (mode, XEXP (operands[1], 0));
else if (MEM_P (operands[0])
&& ((CONSTANT_P (operands[1])
&& !satisfies_constraint_Cm3 (operands[1]))
|| MEM_P (operands[1])))
operands[1] = force_reg (mode, operands[1]);
return false;
}
/* Output a library call to a function called FNAME that has been arranged
to be local to any dso. */
const char *
arc_output_libcall (const char *fname)
{
unsigned len = strlen (fname);
static char buf[64];
gcc_assert (len < sizeof buf - 35);
if (TARGET_LONG_CALLS_SET
|| (TARGET_MEDIUM_CALLS && arc_ccfsm_cond_exec_p ()))
{
if (flag_pic)
sprintf (buf, "add r12,pcl,@%s@pcl\n\tjl%%!%%* [r12]", fname);
else
sprintf (buf, "jl%%! @%s", fname);
}
else
sprintf (buf, "bl%%!%%* @%s", fname);
return buf;
}
/* Return the SImode highpart of the DImode value IN. */
rtx
disi_highpart (rtx in)
{
return simplify_gen_subreg (SImode, in, DImode, TARGET_BIG_ENDIAN ? 0 : 4);
}
/* Given a rtx, check if it is an assembly instruction or not. */
static int
arc_asm_insn_p (rtx x)
{
int i, j;
if (x == 0)
return 0;
switch (GET_CODE (x))
{
case ASM_OPERANDS:
case ASM_INPUT:
return 1;
case SET:
return arc_asm_insn_p (SET_SRC (x));
case PARALLEL:
j = 0;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
j += arc_asm_insn_p (XVECEXP (x, 0, i));
if ( j > 0)
return 1;
break;
default:
break;
}
return 0;
}
/* Return length adjustment for INSN. */
int
arc_adjust_insn_length (rtx_insn *insn, int len, bool)
{
if (!INSN_P (insn))
return len;
/* We already handle sequences by ignoring the delay sequence flag. */
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
return len;
/* Check for return with but one preceding insn since function
start / call. */
if (TARGET_PAD_RETURN
&& JUMP_P (insn)
&& GET_CODE (PATTERN (insn)) != ADDR_VEC
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
&& get_attr_type (insn) == TYPE_RETURN)
{
rtx_insn *prev = prev_active_insn (insn);
if (!prev || !(prev = prev_active_insn (prev))
|| ((NONJUMP_INSN_P (prev)
&& GET_CODE (PATTERN (prev)) == SEQUENCE)
? CALL_ATTR (as_a <rtx_sequence *> (PATTERN (prev))->insn (0),
NON_SIBCALL)
: CALL_ATTR (prev, NON_SIBCALL)))
return len + 4;
}
if (TARGET_ARC600)
{
rtx_insn *succ = next_real_insn (insn);
/* One the ARC600, a write to an extension register must be separated
from a read. */
if (succ && INSN_P (succ))
len += arc600_corereg_hazard (insn, succ);
}
/* Restore extracted operands - otherwise splitters like the addsi3_mixed one
can go awry. */
extract_constrain_insn_cached (insn);
return len;
}
/* Return a copy of COND from *STATEP, inverted if that is indicated by the
CC field of *STATEP. */
static rtx
arc_get_ccfsm_cond (struct arc_ccfsm *statep, bool reverse)
{
rtx cond = statep->cond;
int raw_cc = get_arc_condition_code (cond);
if (reverse)
raw_cc = ARC_INVERSE_CONDITION_CODE (raw_cc);
if (statep->cc == raw_cc)
return copy_rtx (cond);
gcc_assert (ARC_INVERSE_CONDITION_CODE (raw_cc) == statep->cc);
machine_mode ccm = GET_MODE (XEXP (cond, 0));
enum rtx_code code = reverse_condition (GET_CODE (cond));
if (code == UNKNOWN || ccm == CC_FP_GTmode || ccm == CC_FP_GEmode)
code = reverse_condition_maybe_unordered (GET_CODE (cond));
return gen_rtx_fmt_ee (code, GET_MODE (cond),
copy_rtx (XEXP (cond, 0)), copy_rtx (XEXP (cond, 1)));
}
/* Return version of PAT conditionalized with COND, which is part of INSN.
ANNULLED indicates if INSN is an annulled delay-slot insn.
Register further changes if necessary. */
static rtx
conditionalize_nonjump (rtx pat, rtx cond, rtx insn, bool annulled)
{
/* For commutative operators, we generally prefer to have
the first source match the destination. */
if (GET_CODE (pat) == SET)
{
rtx src = SET_SRC (pat);
if (COMMUTATIVE_P (src))
{
rtx src0 = XEXP (src, 0);
rtx src1 = XEXP (src, 1);
rtx dst = SET_DEST (pat);
if (rtx_equal_p (src1, dst) && !rtx_equal_p (src0, dst)
/* Leave add_n alone - the canonical form is to
have the complex summand first. */
&& REG_P (src0))
pat = gen_rtx_SET (dst,
gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src),
src1, src0));
}
}
/* dwarf2out.cc:dwarf2out_frame_debug_expr doesn't know
what to do with COND_EXEC. */
if (RTX_FRAME_RELATED_P (insn))
{
/* If this is the delay slot insn of an anulled branch,
dwarf2out.cc:scan_trace understands the anulling semantics
without the COND_EXEC. */
gcc_assert (annulled);
rtx note = alloc_reg_note (REG_FRAME_RELATED_EXPR, pat,
REG_NOTES (insn));
validate_change (insn, ®_NOTES (insn), note, 1);
}
pat = gen_rtx_COND_EXEC (VOIDmode, cond, pat);
return pat;
}
/* Use the ccfsm machinery to do if conversion. */
static unsigned
arc_ifcvt (void)
{
struct arc_ccfsm *statep = &cfun->machine->ccfsm_current;
memset (statep, 0, sizeof *statep);
for (rtx_insn *insn = get_insns (); insn; insn = next_insn (insn))
{
arc_ccfsm_advance (insn, statep);
switch (statep->state)
{
case 0:
break;
case 1: case 2:
{
/* Deleted branch. */
arc_ccfsm_post_advance (insn, statep);
gcc_assert (!IN_RANGE (statep->state, 1, 2));
rtx_insn *seq = NEXT_INSN (PREV_INSN (insn));
if (GET_CODE (PATTERN (seq)) == SEQUENCE)
{
rtx slot = XVECEXP (PATTERN (seq), 0, 1);
rtx pat = PATTERN (slot);
if (INSN_ANNULLED_BRANCH_P (insn))
{
rtx cond
= arc_get_ccfsm_cond (statep, INSN_FROM_TARGET_P (slot));
pat = gen_rtx_COND_EXEC (VOIDmode, cond, pat);
}
if (!validate_change (seq, &PATTERN (seq), pat, 0))
gcc_unreachable ();
PUT_CODE (slot, NOTE);
NOTE_KIND (slot) = NOTE_INSN_DELETED;
}
else
{
set_insn_deleted (insn);
}
continue;
}
case 3:
if (LABEL_P (insn)
&& statep->target_label == CODE_LABEL_NUMBER (insn))
{
arc_ccfsm_post_advance (insn, statep);
if (--LABEL_NUSES (insn) == 0)
delete_insn (insn);
continue;
}
/* Fall through. */
case 4: case 5:
if (!NONDEBUG_INSN_P (insn))
break;
/* Conditionalized insn. */
rtx_insn *prev, *pprev;
rtx *patp, pat, cond;
bool annulled; annulled = false;
/* If this is a delay slot insn in a non-annulled branch,
don't conditionalize it. N.B., this should be fine for
conditional return too. However, don't do this for
unconditional branches, as these would be encountered when
processing an 'else' part. */
prev = PREV_INSN (insn);
pprev = PREV_INSN (prev);
if (pprev && NEXT_INSN (NEXT_INSN (pprev)) == NEXT_INSN (insn)
&& JUMP_P (prev) && get_attr_cond (prev) == COND_USE)
{
if (!INSN_ANNULLED_BRANCH_P (prev))
break;
annulled = true;
}
patp = &PATTERN (insn);
pat = *patp;
cond = arc_get_ccfsm_cond (statep, INSN_FROM_TARGET_P (insn));
if (NONJUMP_INSN_P (insn) || CALL_P (insn))
{
/* ??? don't conditionalize if all side effects are dead
in the not-execute case. */
pat = conditionalize_nonjump (pat, cond, insn, annulled);
}
else if (simplejump_p (insn))
{
patp = &SET_SRC (pat);
pat = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, *patp, pc_rtx);
}
else if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
{
pat = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, pat, pc_rtx);
pat = gen_rtx_SET (pc_rtx, pat);
}
else
gcc_unreachable ();
validate_change (insn, patp, pat, 1);
if (!apply_change_group ())
gcc_unreachable ();
if (JUMP_P (insn))
{
rtx_insn *next = next_nonnote_insn (insn);
if (GET_CODE (next) == BARRIER)
delete_insn (next);
if (statep->state == 3)
continue;
}
break;
default:
gcc_unreachable ();
}
arc_ccfsm_post_advance (insn, statep);
}
return 0;
}
/* Find annulled delay insns and convert them to use the appropriate predicate.
This allows branch shortening to size up these insns properly. */
static unsigned
arc_predicate_delay_insns (void)
{
for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx pat, jump, dlay, src, cond, *patp;
int reverse;
if (!NONJUMP_INSN_P (insn)
|| GET_CODE (pat = PATTERN (insn)) != SEQUENCE)
continue;
jump = XVECEXP (pat, 0, 0);
dlay = XVECEXP (pat, 0, 1);
if (!JUMP_P (jump) || !INSN_ANNULLED_BRANCH_P (jump))
continue;
/* If the branch insn does the annulling, leave the delay insn alone. */
if (!TARGET_AT_DBR_CONDEXEC && !INSN_FROM_TARGET_P (dlay))
continue;
/* ??? Could also leave DLAY un-conditionalized if its target is dead
on the other path. */
gcc_assert (GET_CODE (PATTERN (jump)) == SET);
gcc_assert (SET_DEST (PATTERN (jump)) == pc_rtx);
src = SET_SRC (PATTERN (jump));
gcc_assert (GET_CODE (src) == IF_THEN_ELSE);
cond = XEXP (src, 0);
if (XEXP (src, 2) == pc_rtx)
reverse = 0;
else if (XEXP (src, 1) == pc_rtx)
reverse = 1;
else
gcc_unreachable ();
if (reverse != !INSN_FROM_TARGET_P (dlay))
{
machine_mode ccm = GET_MODE (XEXP (cond, 0));
enum rtx_code code = reverse_condition (GET_CODE (cond));
if (code == UNKNOWN || ccm == CC_FP_GTmode || ccm == CC_FP_GEmode)
code = reverse_condition_maybe_unordered (GET_CODE (cond));
cond = gen_rtx_fmt_ee (code, GET_MODE (cond),
copy_rtx (XEXP (cond, 0)),
copy_rtx (XEXP (cond, 1)));
}
else
cond = copy_rtx (cond);
patp = &PATTERN (dlay);
pat = *patp;
pat = conditionalize_nonjump (pat, cond, dlay, true);
validate_change (dlay, patp, pat, 1);
if (!apply_change_group ())
gcc_unreachable ();
}
return 0;
}
/* For ARC600: If a write to a core reg >=32 appears in a delay slot
(other than of a forward brcc), it creates a hazard when there is a read
of the same register at the branch target. We can't know what is at the
branch target of calls, and for branches, we don't really know before the
end of delay slot scheduling, either. Not only can individual instruction
be hoisted out into a delay slot, a basic block can also be emptied this
way, and branch and/or fall through targets be redirected. Hence we don't
want such writes in a delay slot. */
/* Return nonzreo iff INSN writes to an extension core register. */
int
arc_write_ext_corereg (rtx insn)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
{
const_rtx x = *iter;
switch (GET_CODE (x))
{
case SET: case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
break;
default:
/* This is also fine for PRE/POST_MODIFY, because they
contain a SET. */
continue;
}
const_rtx dest = XEXP (x, 0);
if (REG_P (dest) && REGNO (dest) >= 32 && REGNO (dest) < 61)
return 1;
}
return 0;
}
/* This is like the hook, but returns NULL when it can't / won't generate
a legitimate address. */
static rtx
arc_legitimize_address_0 (rtx x, rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode)
{
rtx addr, inner;
addr = x;
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (GET_CODE (addr) == PLUS
&& CONST_INT_P (XEXP (addr, 1))
&& ((GET_CODE (XEXP (addr, 0)) == SYMBOL_REF
&& !SYMBOL_REF_FUNCTION_P (XEXP (addr, 0)))
|| (REG_P (XEXP (addr, 0))
&& (INTVAL (XEXP (addr, 1)) & 252))))
{
HOST_WIDE_INT offs, upper;
int size = GET_MODE_SIZE (mode);
offs = INTVAL (XEXP (addr, 1));
upper = (offs + 256 * size) & ~511 * size;
inner = plus_constant (Pmode, XEXP (addr, 0), upper);
#if 0 /* ??? this produces worse code for EEMBC idctrn01 */
if (GET_CODE (x) == CONST)
inner = gen_rtx_CONST (Pmode, inner);
#endif
addr = plus_constant (Pmode, force_reg (Pmode, inner), offs - upper);
x = addr;
}
else if (GET_CODE (addr) == SYMBOL_REF && !SYMBOL_REF_FUNCTION_P (addr))
x = force_reg (Pmode, x);
if (memory_address_p ((machine_mode) mode, x))
return x;
return NULL_RTX;
}
static rtx
arc_legitimize_address (rtx orig_x, rtx oldx, machine_mode mode)
{
rtx new_x = arc_legitimize_address_0 (orig_x, oldx, mode);
if (new_x)
return new_x;
return orig_x;
}
static rtx
arc_delegitimize_address_0 (rtx op)
{
switch (GET_CODE (op))
{
case CONST:
return arc_delegitimize_address_0 (XEXP (op, 0));
case UNSPEC:
switch (XINT (op, 1))
{
case ARC_UNSPEC_GOT:
case ARC_UNSPEC_GOTOFFPC:
return XVECEXP (op, 0, 0);
default:
break;
}
break;
case PLUS:
{
rtx t1 = arc_delegitimize_address_0 (XEXP (op, 0));
rtx t2 = XEXP (op, 1);
if (t1 && t2)
return gen_rtx_PLUS (GET_MODE (op), t1, t2);
break;
}
default:
break;
}
return NULL_RTX;
}
static rtx
arc_delegitimize_address (rtx orig_x)
{
rtx x = orig_x;
if (MEM_P (x))
x = XEXP (x, 0);
x = arc_delegitimize_address_0 (x);
if (!x)
return orig_x;
if (MEM_P (orig_x))
x = replace_equiv_address_nv (orig_x, x);
return x;
}
/* Return a REG rtx for acc1. N.B. the gcc-internal representation may
differ from the hardware register number in order to allow the generic
code to correctly split the concatenation of acc1 and acc2. */
rtx
gen_acc1 (void)
{
return gen_rtx_REG (SImode, TARGET_BIG_ENDIAN ? 56: 57);
}
/* Return a REG rtx for acc2. N.B. the gcc-internal representation may
differ from the hardware register number in order to allow the generic
code to correctly split the concatenation of acc1 and acc2. */
rtx
gen_acc2 (void)
{
return gen_rtx_REG (SImode, TARGET_BIG_ENDIAN ? 57: 56);
}
/* When estimating sizes during arc_reorg, when optimizing for speed, there
are three reasons why we need to consider branches to be length 6:
- annull-false delay slot insns are implemented using conditional execution,
thus preventing short insn formation where used.
- for ARC600: annul-true delay slot insns are implemented where possible
using conditional execution, preventing short insn formation where used.
- for ARC700: likely or somewhat likely taken branches are made long and
unaligned if possible to avoid branch penalty. */
bool
arc_branch_size_unknown_p (void)
{
return !optimize_size && arc_reorg_in_progress;
}
/* The usual; we set up our machine_function data. */
static struct machine_function *
arc_init_machine_status (void)
{
struct machine_function *machine;
machine = ggc_cleared_alloc<machine_function> ();
machine->fn_type = ARC_FUNCTION_UNKNOWN;
return machine;
}
/* Implements INIT_EXPANDERS. We just set up to call the above
function. */
void
arc_init_expanders (void)
{
init_machine_status = arc_init_machine_status;
}
/* Check if OP is a proper parallel of a millicode call pattern. OFFSET
indicates a number of elements to ignore - that allows to have a
sibcall pattern that starts with (return). LOAD_P is zero for store
multiple (for prologues), and one for load multiples (for epilogues),
and two for load multiples where no final clobber of blink is required.
We also skip the first load / store element since this is supposed to
be checked in the instruction pattern. */
int
arc_check_millicode (rtx op, int offset, int load_p)
{
int len = XVECLEN (op, 0) - offset;
int i;
if (load_p == 2)
{
if (len < 2 || len > 13)
return 0;
load_p = 1;
}
else
{
rtx elt = XVECEXP (op, 0, --len);
if (GET_CODE (elt) != CLOBBER
|| !REG_P (XEXP (elt, 0))
|| REGNO (XEXP (elt, 0)) != RETURN_ADDR_REGNUM
|| len < 3 || len > 13)
return 0;
}
for (i = 1; i < len; i++)
{
rtx elt = XVECEXP (op, 0, i + offset);
rtx reg, mem, addr;
if (GET_CODE (elt) != SET)
return 0;
mem = XEXP (elt, load_p);
reg = XEXP (elt, 1-load_p);
if (!REG_P (reg) || REGNO (reg) != 13U+i || !MEM_P (mem))
return 0;
addr = XEXP (mem, 0);
if (GET_CODE (addr) != PLUS
|| !rtx_equal_p (stack_pointer_rtx, XEXP (addr, 0))
|| !CONST_INT_P (XEXP (addr, 1)) || INTVAL (XEXP (addr, 1)) != i*4)
return 0;
}
return 1;
}
/* Accessor functions for cfun->machine->unalign. */
void
arc_clear_unalign (void)
{
if (cfun)
cfun->machine->unalign = 0;
}
void
arc_toggle_unalign (void)
{
cfun->machine->unalign ^= 2;
}
/* Operands 0..2 are the operands of a addsi which uses a 12 bit
constant in operand 2, but which would require a LIMM because of
operand mismatch.
operands 3 and 4 are new SET_SRCs for operands 0. */
void
split_addsi (rtx *operands)
{
int val = INTVAL (operands[2]);
/* Try for two short insns first. Lengths being equal, we prefer
expansions with shorter register lifetimes. */
if (val > 127 && val <= 255
&& satisfies_constraint_Rcq (operands[0]))
{
operands[3] = operands[2];
operands[4] = gen_rtx_PLUS (SImode, operands[0], operands[1]);
}
else
{
operands[3] = operands[1];
operands[4] = gen_rtx_PLUS (SImode, operands[0], operands[2]);
}
}
/* Operands 0..2 are the operands of a subsi which uses a 12 bit
constant in operand 1, but which would require a LIMM because of
operand mismatch.
operands 3 and 4 are new SET_SRCs for operands 0. */
void
split_subsi (rtx *operands)
{
int val = INTVAL (operands[1]);
/* Try for two short insns first. Lengths being equal, we prefer
expansions with shorter register lifetimes. */
if (satisfies_constraint_Rcq (operands[0])
&& satisfies_constraint_Rcq (operands[2]))
{
if (val >= -31 && val <= 127)
{
operands[3] = gen_rtx_NEG (SImode, operands[2]);
operands[4] = gen_rtx_PLUS (SImode, operands[0], operands[1]);
return;
}
else if (val >= 0 && val < 255)
{
operands[3] = operands[1];
operands[4] = gen_rtx_MINUS (SImode, operands[0], operands[2]);
return;
}
}
/* If the destination is not an ARCompact16 register, we might
still have a chance to make a short insn if the source is;
we need to start with a reg-reg move for this. */
operands[3] = operands[2];
operands[4] = gen_rtx_MINUS (SImode, operands[1], operands[0]);
}
/* Handle DOUBLE_REGS uses.
Operand 0: destination register
Operand 1: source register */
static bool
arc_process_double_reg_moves (rtx *operands)
{
enum usesDxState { none, srcDx, destDx, maxDx };
enum usesDxState state = none;
rtx dest = operands[0];
rtx src = operands[1];
if (refers_to_regno_p (40, 44, src, 0))
{
state = srcDx;
gcc_assert (REG_P (dest));
}
if (refers_to_regno_p (40, 44, dest, 0))
{
/* Via arc_register_move_cost, we should never see D,D moves. */
gcc_assert (REG_P (src));
gcc_assert (state == none);
state = destDx;
}
if (state == none)
return false;
if (state == srcDx)
{
/* Without the LR insn, we need to split this into a
sequence of insns which will use the DEXCLx and DADDHxy
insns to be able to read the Dx register in question. */
if (TARGET_DPFP_DISABLE_LRSR)
{
/* gen *movdf_insn_nolrsr */
rtx set = gen_rtx_SET (dest, src);
rtx use1 = gen_rtx_USE (VOIDmode, const1_rtx);
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, use1)));
}
else
{
/* When we have 'mov D, r' or 'mov D, D' then get the target
register pair for use with LR insn. */
rtx destHigh = simplify_gen_subreg (SImode, dest, DFmode,
TARGET_BIG_ENDIAN ? 0 : 4);
rtx destLow = simplify_gen_subreg (SImode, dest, DFmode,
TARGET_BIG_ENDIAN ? 4 : 0);
/* Produce the two LR insns to get the high and low parts. */
emit_insn (gen_rtx_SET (destHigh,
gen_rtx_UNSPEC_VOLATILE (Pmode,
gen_rtvec (1, src),
VUNSPEC_ARC_LR_HIGH)));
emit_insn (gen_rtx_SET (destLow,
gen_rtx_UNSPEC_VOLATILE (Pmode,
gen_rtvec (1, src),
VUNSPEC_ARC_LR)));
}
}
else if (state == destDx)
{
/* When we have 'mov r, D' or 'mov D, D' and we have access to the
LR insn get the target register pair. */
rtx srcHigh = simplify_gen_subreg (SImode, src, DFmode,
TARGET_BIG_ENDIAN ? 0 : 4);
rtx srcLow = simplify_gen_subreg (SImode, src, DFmode,
TARGET_BIG_ENDIAN ? 4 : 0);
emit_insn (gen_dexcl_2op (dest, srcHigh, srcLow));
}
else
gcc_unreachable ();
return true;
}
/* Check if we need to split a 64bit move. We do not need to split it if we can
use vadd2 or ldd/std instructions. */
bool
arc_split_move_p (rtx *operands)
{
machine_mode mode = GET_MODE (operands[0]);
if (TARGET_LL64
&& ((memory_operand (operands[0], mode)
&& (even_register_operand (operands[1], mode)
|| satisfies_constraint_Cm3 (operands[1])))
|| (memory_operand (operands[1], mode)
&& even_register_operand (operands[0], mode))))
return false;
if (TARGET_PLUS_QMACW
&& even_register_operand (operands[0], mode)
&& even_register_operand (operands[1], mode))
return false;
return true;
}
/* operands 0..1 are the operands of a 64 bit move instruction.
split it into two moves with operands 2/3 and 4/5. */
void
arc_split_move (rtx *operands)
{
machine_mode mode = GET_MODE (operands[0]);
int i;
int swap = 0;
rtx xop[4];
if (TARGET_DPFP)
{
if (arc_process_double_reg_moves (operands))
return;
}
if (TARGET_PLUS_QMACW
&& GET_CODE (operands[1]) == CONST_VECTOR)
{
HOST_WIDE_INT intval0, intval1;
if (GET_MODE (operands[1]) == V2SImode)
{
intval0 = INTVAL (XVECEXP (operands[1], 0, 0));
intval1 = INTVAL (XVECEXP (operands[1], 0, 1));
}
else
{
intval1 = INTVAL (XVECEXP (operands[1], 0, 3)) << 16;
intval1 |= INTVAL (XVECEXP (operands[1], 0, 2)) & 0xFFFF;
intval0 = INTVAL (XVECEXP (operands[1], 0, 1)) << 16;
intval0 |= INTVAL (XVECEXP (operands[1], 0, 0)) & 0xFFFF;
}
xop[0] = gen_rtx_REG (SImode, REGNO (operands[0]));
xop[3] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
xop[2] = GEN_INT (trunc_int_for_mode (intval0, SImode));
xop[1] = GEN_INT (trunc_int_for_mode (intval1, SImode));
emit_move_insn (xop[0], xop[2]);
emit_move_insn (xop[3], xop[1]);
return;
}
for (i = 0; i < 2; i++)
{
if (MEM_P (operands[i]) && auto_inc_p (XEXP (operands[i], 0)))
{
rtx addr = XEXP (operands[i], 0);
rtx r, o;
enum rtx_code code;
gcc_assert (!reg_overlap_mentioned_p (operands[0], addr));
switch (GET_CODE (addr))
{
case PRE_DEC: o = GEN_INT (-8); goto pre_modify;
case PRE_INC: o = GEN_INT (8); goto pre_modify;
case PRE_MODIFY: o = XEXP (XEXP (addr, 1), 1);
pre_modify:
code = PRE_MODIFY;
break;
case POST_DEC: o = GEN_INT (-8); goto post_modify;
case POST_INC: o = GEN_INT (8); goto post_modify;
case POST_MODIFY: o = XEXP (XEXP (addr, 1), 1);
post_modify:
code = POST_MODIFY;
swap = 2;
break;
default:
gcc_unreachable ();
}
r = XEXP (addr, 0);
xop[0+i] = adjust_automodify_address_nv
(operands[i], SImode,
gen_rtx_fmt_ee (code, Pmode, r,
gen_rtx_PLUS (Pmode, r, o)),
0);
xop[2+i] = adjust_automodify_address_nv
(operands[i], SImode, plus_constant (Pmode, r, 4), 4);
}
else
{
xop[0+i] = operand_subword (operands[i], 0, 0, mode);
xop[2+i] = operand_subword (operands[i], 1, 0, mode);
}
}
if (reg_overlap_mentioned_p (xop[0], xop[3]))
{
swap = 2;
gcc_assert (!reg_overlap_mentioned_p (xop[2], xop[1]));
}
emit_move_insn (xop[0 + swap], xop[1 + swap]);
emit_move_insn (xop[2 - swap], xop[3 - swap]);
}
/* Select between the instruction output templates s_tmpl (for short INSNs)
and l_tmpl (for long INSNs). */
const char *
arc_short_long (rtx_insn *insn, const char *s_tmpl, const char *l_tmpl)
{
int is_short = arc_verify_short (insn, cfun->machine->unalign, -1);
extract_constrain_insn_cached (insn);
return is_short ? s_tmpl : l_tmpl;
}
/* Searches X for any reference to REGNO, returning the rtx of the
reference found if any. Otherwise, returns NULL_RTX. */
rtx
arc_regno_use_in (unsigned int regno, rtx x)
{
const char *fmt;
int i, j;
rtx tem;
if (REG_P (x) && refers_to_regno_p (regno, x))
return x;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if ((tem = regno_use_in (regno, XEXP (x, i))))
return tem;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
return tem;
}
return NULL_RTX;
}
/* Code has a minimum p2 alignment of 1, which we must restore after
an ADDR_DIFF_VEC. */
int
arc_label_align (rtx_insn *label)
{
if (align_labels.levels[0].log < 1)
{
rtx_insn *next = next_nonnote_nondebug_insn (label);
if (INSN_P (next) && recog_memoized (next) >= 0)
return 1;
}
return align_labels.levels[0].log;
}
/* Return true if LABEL is in executable code. */
bool
arc_text_label (rtx_insn *label)
{
rtx_insn *next;
/* ??? We use deleted labels like they were still there, see
gcc.c-torture/compile/20000326-2.c . */
gcc_assert (GET_CODE (label) == CODE_LABEL
|| (GET_CODE (label) == NOTE
&& NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL));
next = next_nonnote_insn (label);
if (next)
return (!JUMP_TABLE_DATA_P (next)
|| GET_CODE (PATTERN (next)) != ADDR_VEC);
else if (!PREV_INSN (label))
/* ??? sometimes text labels get inserted very late, see
gcc.dg/torture/stackalign/comp-goto-1.c */
return true;
return false;
}
/* Without this, gcc.dg/tree-prof/bb-reorg.c fails to assemble
when compiling with -O2 -freorder-blocks-and-partition -fprofile-use
-D_PROFILE_USE; delay branch scheduling then follows a crossing jump
to redirect two breqs. */
static bool
arc_can_follow_jump (const rtx_insn *follower, const rtx_insn *followee)
{
/* ??? get_attr_type is declared to take an rtx. */
union { const rtx_insn *c; rtx_insn *r; } u;
u.c = follower;
if (CROSSING_JUMP_P (followee))
switch (get_attr_type (u.r))
{
case TYPE_BRANCH:
if (get_attr_length (u.r) != 2)
break;
/* Fall through. */
case TYPE_BRCC:
case TYPE_BRCC_NO_DELAY_SLOT:
return false;
default:
return true;
}
return true;
}
/* Implement EPILOGUE_USES.
Return true if REGNO should be added to the deemed uses of the epilogue.
We have to make sure all the register restore instructions are
known to be live in interrupt functions, plus the blink register if
it is clobbered by the isr. */
bool
arc_epilogue_uses (int regno)
{
unsigned int fn_type;
fn_type = arc_compute_function_type (cfun);
if (regno == arc_tp_regno)
return true;
if (regno == RETURN_ADDR_REGNUM)
return true;
if (regno == arc_return_address_register (fn_type))
return true;
if (epilogue_completed && ARC_INTERRUPT_P (fn_type))
{
/* An interrupt function restores more registers. */
if (df_regs_ever_live_p (regno) || call_used_or_fixed_reg_p (regno))
return true;
}
return false;
}
/* Helper for EH_USES macro. */
bool
arc_eh_uses (int regno)
{
if (regno == arc_tp_regno)
return true;
return false;
}
/* Return true if we use LRA instead of reload pass. */
bool
arc_lra_p (void)
{
return arc_lra_flag;
}
/* ??? Should we define TARGET_REGISTER_PRIORITY? We might perfer to use
Rcq registers, because some insn are shorter with them. OTOH we already
have separate alternatives for this purpose, and other insns don't
mind, so maybe we should rather prefer the other registers?
We need more data, and we can only get that if we allow people to
try all options. */
static int
arc_register_priority (int r)
{
switch (arc_lra_priority_tag)
{
case ARC_LRA_PRIORITY_NONE:
return 0;
case ARC_LRA_PRIORITY_NONCOMPACT:
return ((((r & 7) ^ 4) - 4) & 15) != r;
case ARC_LRA_PRIORITY_COMPACT:
return ((((r & 7) ^ 4) - 4) & 15) == r;
default:
gcc_unreachable ();
}
}
static reg_class_t
arc_spill_class (reg_class_t /* orig_class */, machine_mode)
{
return GENERAL_REGS;
}
bool
arc_legitimize_reload_address (rtx *p, machine_mode mode, int opnum,
int itype)
{
rtx x = *p;
enum reload_type type = (enum reload_type) itype;
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1))
&& (RTX_OK_FOR_BASE_P (XEXP (x, 0), true)
|| (REG_P (XEXP (x, 0))
&& reg_equiv_constant (REGNO (XEXP (x, 0))))))
{
int scale = GET_MODE_SIZE (mode);
int shift;
rtx index_rtx = XEXP (x, 1);
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;
rtx reg, sum, sum2;
if (scale > 4)
scale = 4;
if ((scale-1) & offset)
scale = 1;
shift = scale >> 1;
offset_base
= ((offset + (256 << shift))
& ((HOST_WIDE_INT)((unsigned HOST_WIDE_INT) -512 << shift)));
/* Sometimes the normal form does not suit DImode. We
could avoid that by using smaller ranges, but that
would give less optimized code when SImode is
prevalent. */
if (GET_MODE_SIZE (mode) + offset - offset_base <= (256 << shift))
{
int regno;
reg = XEXP (x, 0);
regno = REGNO (reg);
sum2 = sum = plus_constant (Pmode, reg, offset_base);
if (reg_equiv_constant (regno))
{
sum2 = plus_constant (Pmode, reg_equiv_constant (regno),
offset_base);
if (GET_CODE (sum2) == PLUS)
sum2 = gen_rtx_CONST (Pmode, sum2);
}
*p = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));
push_reload (sum2, NULL_RTX, &XEXP (*p, 0), NULL,
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum,
type);
return true;
}
}
/* We must re-recognize what we created before. */
else if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& REG_P (XEXP (XEXP (x, 0), 0))
&& CONST_INT_P (XEXP (x, 1)))
{
/* Because this address is so complex, we know it must have
been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,
it is already unshared, and needs no further unsharing. */
push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
return true;
}
return false;
}
/* Implement TARGET_USE_BY_PIECES_INFRASTRUCTURE_P. */
static bool
arc_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
unsigned int align,
enum by_pieces_operation op,
bool speed_p)
{
/* Let the cpymem expander handle small block moves. */
if (op == MOVE_BY_PIECES)
return false;
return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
}
/* Emit a (pre) memory barrier around an atomic sequence according to
MODEL. */
static void
arc_pre_atomic_barrier (enum memmodel model)
{
if (need_atomic_barrier_p (model, true))
emit_insn (gen_memory_barrier ());
}
/* Emit a (post) memory barrier around an atomic sequence according to
MODEL. */
static void
arc_post_atomic_barrier (enum memmodel model)
{
if (need_atomic_barrier_p (model, false))
emit_insn (gen_memory_barrier ());
}
/* Expand a compare and swap pattern. */
static void
emit_unlikely_jump (rtx insn)
{
rtx_insn *jump = emit_jump_insn (insn);
add_reg_br_prob_note (jump, profile_probability::very_unlikely ());
}
/* Expand code to perform a 8 or 16-bit compare and swap by doing
32-bit compare and swap on the word containing the byte or
half-word. The difference between a weak and a strong CAS is that
the weak version may simply fail. The strong version relies on two
loops, one checks if the SCOND op is succsfully or not, the other
checks if the 32 bit accessed location which contains the 8 or 16
bit datum is not changed by other thread. The first loop is
implemented by the atomic_compare_and_swapsi_1 pattern. The second
loops is implemented by this routine. */
static void
arc_expand_compare_and_swap_qh (rtx bool_result, rtx result, rtx mem,
rtx oldval, rtx newval, rtx weak,
rtx mod_s, rtx mod_f)
{
rtx addr1 = force_reg (Pmode, XEXP (mem, 0));
rtx addr = gen_reg_rtx (Pmode);
rtx off = gen_reg_rtx (SImode);
rtx oldv = gen_reg_rtx (SImode);
rtx newv = gen_reg_rtx (SImode);
rtx oldvalue = gen_reg_rtx (SImode);
rtx newvalue = gen_reg_rtx (SImode);
rtx res = gen_reg_rtx (SImode);
rtx resv = gen_reg_rtx (SImode);
rtx memsi, val, mask, end_label, loop_label, cc, x;
machine_mode mode;
bool is_weak = (weak != const0_rtx);
/* Truncate the address. */
emit_insn (gen_rtx_SET (addr,
gen_rtx_AND (Pmode, addr1, GEN_INT (-4))));
/* Compute the datum offset. */
emit_insn (gen_rtx_SET (off,
gen_rtx_AND (SImode, addr1, GEN_INT (3))));
if (TARGET_BIG_ENDIAN)
emit_insn (gen_rtx_SET (off,
gen_rtx_MINUS (SImode,
(GET_MODE (mem) == QImode) ?
GEN_INT (3) : GEN_INT (2), off)));
/* Normal read from truncated address. */
memsi = gen_rtx_MEM (SImode, addr);
set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
val = copy_to_reg (memsi);
/* Convert the offset in bits. */
emit_insn (gen_rtx_SET (off,
gen_rtx_ASHIFT (SImode, off, GEN_INT (3))));
/* Get the proper mask. */
if (GET_MODE (mem) == QImode)
mask = force_reg (SImode, GEN_INT (0xff));
else
mask = force_reg (SImode, GEN_INT (0xffff));
emit_insn (gen_rtx_SET (mask,
gen_rtx_ASHIFT (SImode, mask, off)));
/* Prepare the old and new values. */
emit_insn (gen_rtx_SET (val,
gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
val)));
oldval = gen_lowpart (SImode, oldval);
emit_insn (gen_rtx_SET (oldv,
gen_rtx_ASHIFT (SImode, oldval, off)));
newval = gen_lowpart_common (SImode, newval);
emit_insn (gen_rtx_SET (newv,
gen_rtx_ASHIFT (SImode, newval, off)));
emit_insn (gen_rtx_SET (oldv,
gen_rtx_AND (SImode, oldv, mask)));
emit_insn (gen_rtx_SET (newv,
gen_rtx_AND (SImode, newv, mask)));
if (!is_weak)
{
end_label = gen_label_rtx ();
loop_label = gen_label_rtx ();
emit_label (loop_label);
}
/* Make the old and new values. */
emit_insn (gen_rtx_SET (oldvalue,
gen_rtx_IOR (SImode, oldv, val)));
emit_insn (gen_rtx_SET (newvalue,
gen_rtx_IOR (SImode, newv, val)));
/* Try an 32bit atomic compare and swap. It clobbers the CC
register. */
emit_insn (gen_atomic_compare_and_swapsi_1 (res, memsi, oldvalue, newvalue,
weak, mod_s, mod_f));
/* Regardless of the weakness of the operation, a proper boolean
result needs to be provided. */
x = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_EQ (SImode, x, const0_rtx);
emit_insn (gen_rtx_SET (bool_result, x));
if (!is_weak)
{
/* Check the results: if the atomic op is successfully the goto
to end label. */
x = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_EQ (VOIDmode, x, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, end_label), pc_rtx);
emit_jump_insn (gen_rtx_SET (pc_rtx, x));
/* Wait for the right moment when the accessed 32-bit location
is stable. */
emit_insn (gen_rtx_SET (resv,
gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
res)));
mode = SELECT_CC_MODE (NE, resv, val);
cc = gen_rtx_REG (mode, CC_REG);
emit_insn (gen_rtx_SET (cc, gen_rtx_COMPARE (mode, resv, val)));
/* Set the new value of the 32 bit location, proper masked. */
emit_insn (gen_rtx_SET (val, resv));
/* Try again if location is unstable. Fall through if only
scond op failed. */
x = gen_rtx_NE (VOIDmode, cc, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, loop_label), pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
emit_label (end_label);
}
/* End: proper return the result for the given mode. */
emit_insn (gen_rtx_SET (res,
gen_rtx_AND (SImode, res, mask)));
emit_insn (gen_rtx_SET (res,
gen_rtx_LSHIFTRT (SImode, res, off)));
emit_move_insn (result, gen_lowpart (GET_MODE (result), res));
}
/* Helper function used by "atomic_compare_and_swap" expand
pattern. */
void
arc_expand_compare_and_swap (rtx operands[])
{
rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x;
machine_mode mode;
bval = operands[0];
rval = operands[1];
mem = operands[2];
oldval = operands[3];
newval = operands[4];
is_weak = operands[5];
mod_s = operands[6];
mod_f = operands[7];
mode = GET_MODE (mem);
if (reg_overlap_mentioned_p (rval, oldval))
oldval = copy_to_reg (oldval);
if (mode == SImode)
{
emit_insn (gen_atomic_compare_and_swapsi_1 (rval, mem, oldval, newval,
is_weak, mod_s, mod_f));
x = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_EQ (SImode, x, const0_rtx);
emit_insn (gen_rtx_SET (bval, x));
}
else
{
arc_expand_compare_and_swap_qh (bval, rval, mem, oldval, newval,
is_weak, mod_s, mod_f);
}
}
/* Helper function used by the "atomic_compare_and_swapsi_1"
pattern. */
void
arc_split_compare_and_swap (rtx operands[])
{
rtx rval, mem, oldval, newval;
machine_mode mode;
enum memmodel mod_s, mod_f;
bool is_weak;
rtx label1, label2, x, cond;
rval = operands[0];
mem = operands[1];
oldval = operands[2];
newval = operands[3];
is_weak = (operands[4] != const0_rtx);
mod_s = (enum memmodel) INTVAL (operands[5]);
mod_f = (enum memmodel) INTVAL (operands[6]);
mode = GET_MODE (mem);
/* ARC atomic ops work only with 32-bit aligned memories. */
gcc_assert (mode == SImode);
arc_pre_atomic_barrier (mod_s);
label1 = NULL_RTX;
if (!is_weak)
{
label1 = gen_label_rtx ();
emit_label (label1);
}
label2 = gen_label_rtx ();
/* Load exclusive. */
emit_insn (gen_arc_load_exclusivesi (rval, mem));
/* Check if it is oldval. */
mode = SELECT_CC_MODE (NE, rval, oldval);
cond = gen_rtx_REG (mode, CC_REG);
emit_insn (gen_rtx_SET (cond, gen_rtx_COMPARE (mode, rval, oldval)));
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
/* Exclusively store new item. Store clobbers CC reg. */
emit_insn (gen_arc_store_exclusivesi (mem, newval));
if (!is_weak)
{
/* Check the result of the store. */
cond = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
}
if (mod_f != MEMMODEL_RELAXED)
emit_label (label2);
arc_post_atomic_barrier (mod_s);
if (mod_f == MEMMODEL_RELAXED)
emit_label (label2);
}
/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
to perform. MEM is the memory on which to operate. VAL is the second
operand of the binary operator. BEFORE and AFTER are optional locations to
return the value of MEM either before of after the operation. MODEL_RTX
is a CONST_INT containing the memory model to use. */
void
arc_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
rtx orig_before, rtx orig_after, rtx model_rtx)
{
enum memmodel model = (enum memmodel) INTVAL (model_rtx);
machine_mode mode = GET_MODE (mem);
rtx label, x, cond;
rtx before = orig_before, after = orig_after;
/* ARC atomic ops work only with 32-bit aligned memories. */
gcc_assert (mode == SImode);
arc_pre_atomic_barrier (model);
label = gen_label_rtx ();
emit_label (label);
label = gen_rtx_LABEL_REF (VOIDmode, label);
if (before == NULL_RTX)
before = gen_reg_rtx (mode);
if (after == NULL_RTX)
after = gen_reg_rtx (mode);
/* Load exclusive. */
emit_insn (gen_arc_load_exclusivesi (before, mem));
switch (code)
{
case NOT:
x = gen_rtx_AND (mode, before, val);
emit_insn (gen_rtx_SET (after, x));
x = gen_rtx_NOT (mode, after);
emit_insn (gen_rtx_SET (after, x));
break;
case MINUS:
if (CONST_INT_P (val))
{
val = GEN_INT (-INTVAL (val));
code = PLUS;
}
/* FALLTHRU. */
default:
x = gen_rtx_fmt_ee (code, mode, before, val);
emit_insn (gen_rtx_SET (after, x));
break;
}
/* Exclusively store new item. Store clobbers CC reg. */
emit_insn (gen_arc_store_exclusivesi (mem, after));
/* Check the result of the store. */
cond = gen_rtx_REG (CC_Zmode, CC_REG);
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
label, pc_rtx);
emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
arc_post_atomic_barrier (model);
}
/* Implement TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P. */
static bool
arc_no_speculation_in_delay_slots_p ()
{
return true;
}
/* Return a parallel of registers to represent where to find the
register pieces if required, otherwise NULL_RTX. */
static rtx
arc_dwarf_register_span (rtx rtl)
{
machine_mode mode = GET_MODE (rtl);
unsigned regno;
rtx p;
if (GET_MODE_SIZE (mode) != 8)
return NULL_RTX;
p = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (2));
regno = REGNO (rtl);
XVECEXP (p, 0, 0) = gen_rtx_REG (SImode, regno);
XVECEXP (p, 0, 1) = gen_rtx_REG (SImode, regno + 1);
return p;
}
/* Return true if OP is an acceptable memory operand for ARCompact
16-bit load instructions of MODE.
AV2SHORT: TRUE if address needs to fit into the new ARCv2 short
non scaled instructions.
SCALED: TRUE if address can be scaled. */
bool
compact_memory_operand_p (rtx op, machine_mode mode,
bool av2short, bool scaled)
{
rtx addr, plus0, plus1;
int size, off;
/* Eliminate non-memory operations. */
if (GET_CODE (op) != MEM)
return 0;
/* .di instructions have no 16-bit form. */
if (MEM_VOLATILE_P (op) && !TARGET_VOLATILE_CACHE_SET)
return false;
/* likewise for uncached types. */
if (arc_is_uncached_mem_p (op))
return false;
if (mode == VOIDmode)
mode = GET_MODE (op);
size = GET_MODE_SIZE (mode);
/* dword operations really put out 2 instructions, so eliminate
them. */
if (size > UNITS_PER_WORD)
return false;
/* Decode the address now. */
addr = XEXP (op, 0);
switch (GET_CODE (addr))
{
case REG:
return (REGNO (addr) >= FIRST_PSEUDO_REGISTER
|| COMPACT_GP_REG_P (REGNO (addr))
|| (SP_REG_P (REGNO (addr)) && (size != 2)));
case PLUS:
plus0 = XEXP (addr, 0);
plus1 = XEXP (addr, 1);
if ((GET_CODE (plus0) == REG)
&& ((REGNO (plus0) >= FIRST_PSEUDO_REGISTER)
|| COMPACT_GP_REG_P (REGNO (plus0)))
&& ((GET_CODE (plus1) == REG)
&& ((REGNO (plus1) >= FIRST_PSEUDO_REGISTER)
|| COMPACT_GP_REG_P (REGNO (plus1)))))
{
return !av2short;
}
if ((GET_CODE (plus0) == REG)
&& ((REGNO (plus0) >= FIRST_PSEUDO_REGISTER)
|| (COMPACT_GP_REG_P (REGNO (plus0)) && !av2short)
|| (IN_RANGE (REGNO (plus0), 0, 31) && av2short))
&& (GET_CODE (plus1) == CONST_INT))
{
bool valid = false;
off = INTVAL (plus1);
/* Negative offset is not supported in 16-bit load/store insns. */
if (off < 0)
return 0;
/* Only u5 immediates allowed in code density instructions. */
if (av2short)
{
switch (size)
{
case 1:
return false;
case 2:
/* This is an ldh_s.x instruction, check the u6
immediate. */
if (COMPACT_GP_REG_P (REGNO (plus0)))
valid = true;
break;
case 4:
/* Only u5 immediates allowed in 32bit access code
density instructions. */
if (REGNO (plus0) <= 31)
return ((off < 32) && (off % 4 == 0));
break;
default:
return false;
}
}
else
if (COMPACT_GP_REG_P (REGNO (plus0)))
valid = true;
if (valid)
{
switch (size)
{
case 1:
return (off < 32);
case 2:
/* The 6-bit constant get shifted to fit the real
5-bits field. Check also for the alignment. */
return ((off < 64) && (off % 2 == 0));
case 4:
return ((off < 128) && (off % 4 == 0));
default:
return false;
}
}
}
if (REG_P (plus0) && CONST_INT_P (plus1)
&& ((REGNO (plus0) >= FIRST_PSEUDO_REGISTER)
|| SP_REG_P (REGNO (plus0)))
&& !av2short)
{
off = INTVAL (plus1);
return ((size != 2) && (off >= 0 && off < 128) && (off % 4 == 0));
}
if ((GET_CODE (plus0) == MULT)
&& (GET_CODE (XEXP (plus0, 0)) == REG)
&& ((REGNO (XEXP (plus0, 0)) >= FIRST_PSEUDO_REGISTER)
|| COMPACT_GP_REG_P (REGNO (XEXP (plus0, 0))))
&& (GET_CODE (plus1) == REG)
&& ((REGNO (plus1) >= FIRST_PSEUDO_REGISTER)
|| COMPACT_GP_REG_P (REGNO (plus1))))
return scaled;
default:
break ;
/* TODO: 'gp' and 'pcl' are to supported as base address operand
for 16-bit load instructions. */
}
return false;
}
/* Return nonzero if a jli call should be generated for a call from
the current function to DECL. */
bool
arc_is_jli_call_p (rtx pat)
{
tree attrs;
tree decl = SYMBOL_REF_DECL (pat);
/* If it is not a well defined public function then return false. */
if (!decl || !SYMBOL_REF_FUNCTION_P (pat) || !TREE_PUBLIC (decl))
return false;
attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
if (lookup_attribute ("jli_always", attrs))
return true;
if (lookup_attribute ("jli_fixed", attrs))
return true;
return TARGET_JLI_ALWAYS;
}
/* Handle and "jli" attribute; arguments as in struct
attribute_spec.handler. */
static tree
arc_handle_jli_attribute (tree *node ATTRIBUTE_UNUSED,
tree name, tree args, int,
bool *no_add_attrs)
{
if (!TARGET_V2)
{
warning (OPT_Wattributes,
"%qE attribute only valid for ARCv2 architecture",
name);
*no_add_attrs = true;
}
if (args == NULL_TREE)
{
warning (OPT_Wattributes,
"argument of %qE attribute is missing",
name);
*no_add_attrs = true;
}
else
{
if (TREE_CODE (TREE_VALUE (args)) == NON_LVALUE_EXPR)
TREE_VALUE (args) = TREE_OPERAND (TREE_VALUE (args), 0);
tree arg = TREE_VALUE (args);
if (TREE_CODE (arg) != INTEGER_CST)
{
warning (0, "%qE attribute allows only an integer constant argument",
name);
*no_add_attrs = true;
}
/* FIXME! add range check. TREE_INT_CST_LOW (arg) */
}
return NULL_TREE;
}
/* Handle and "scure" attribute; arguments as in struct
attribute_spec.handler. */
static tree
arc_handle_secure_attribute (tree *node ATTRIBUTE_UNUSED,
tree name, tree args, int,
bool *no_add_attrs)
{
if (!TARGET_EM)
{
warning (OPT_Wattributes,
"%qE attribute only valid for ARC EM architecture",
name);
*no_add_attrs = true;
}
if (args == NULL_TREE)
{
warning (OPT_Wattributes,
"argument of %qE attribute is missing",
name);
*no_add_attrs = true;
}
else
{
if (TREE_CODE (TREE_VALUE (args)) == NON_LVALUE_EXPR)
TREE_VALUE (args) = TREE_OPERAND (TREE_VALUE (args), 0);
tree arg = TREE_VALUE (args);
if (TREE_CODE (arg) != INTEGER_CST)
{
warning (0, "%qE attribute allows only an integer constant argument",
name);
*no_add_attrs = true;
}
}
return NULL_TREE;
}
/* Return nonzero if the symbol is a secure function. */
bool
arc_is_secure_call_p (rtx pat)
{
tree attrs;
tree decl = SYMBOL_REF_DECL (pat);
if (!decl)
return false;
attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
if (lookup_attribute ("secure_call", attrs))
return true;
return false;
}
/* Handle "uncached" qualifier. */
static tree
arc_handle_uncached_attribute (tree *node,
tree name, tree args,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (DECL_P (*node) && TREE_CODE (*node) != TYPE_DECL)
{
error ("%qE attribute only applies to types",
name);
*no_add_attrs = true;
}
else if (args)
{
warning (OPT_Wattributes, "argument of %qE attribute ignored", name);
}
return NULL_TREE;
}
/* Return TRUE if PAT is a memory addressing an uncached data. */
bool
arc_is_uncached_mem_p (rtx pat)
{
tree attrs = NULL_TREE;
tree addr;
if (!MEM_P (pat))
return false;
/* Get the memory attributes. */
addr = MEM_EXPR (pat);
if (!addr)
return false;
/* Get the attributes. */
if (TREE_CODE (addr) == MEM_REF
|| TREE_CODE (addr) == VAR_DECL)
{
attrs = TYPE_ATTRIBUTES (TREE_TYPE (addr));
if (lookup_attribute ("uncached", attrs))
return true;
}
if (TREE_CODE (addr) == MEM_REF)
{
attrs = TYPE_ATTRIBUTES (TREE_TYPE (TREE_OPERAND (addr, 0)));
if (lookup_attribute ("uncached", attrs))
return true;
attrs = TYPE_ATTRIBUTES (TREE_TYPE (TREE_OPERAND (addr, 1)));
if (lookup_attribute ("uncached", attrs))
return true;
}
/* Check the definitions of the structs. */
while (handled_component_p (addr))
{
if (TREE_CODE (addr) == COMPONENT_REF)
{
attrs = TYPE_ATTRIBUTES (TREE_TYPE (addr));
if (lookup_attribute ("uncached", attrs))
return true;
attrs = TYPE_ATTRIBUTES (TREE_TYPE (TREE_OPERAND (addr, 0)));
if (lookup_attribute ("uncached", attrs))
return true;
attrs = TYPE_ATTRIBUTES (TREE_TYPE (TREE_OPERAND (addr, 1)));
if (lookup_attribute ("uncached", attrs))
return true;
}
addr = TREE_OPERAND (addr, 0);
}
return false;
}
/* Handle aux attribute. The auxiliary registers are addressed using
special instructions lr and sr. The attribute 'aux' indicates if a
variable refers to the aux-regs and what is the register number
desired. */
static tree
arc_handle_aux_attribute (tree *node,
tree name, tree args, int,
bool *no_add_attrs)
{
/* Isn't it better to use address spaces for the aux-regs? */
if (DECL_P (*node))
{
if (TREE_CODE (*node) != VAR_DECL)
{
error ("%qE attribute only applies to variables", name);
*no_add_attrs = true;
}
else if (args)
{
if (TREE_CODE (TREE_VALUE (args)) == NON_LVALUE_EXPR)
TREE_VALUE (args) = TREE_OPERAND (TREE_VALUE (args), 0);
tree arg = TREE_VALUE (args);
if (TREE_CODE (arg) != INTEGER_CST)
{
warning (OPT_Wattributes, "%qE attribute allows only an integer "
"constant argument", name);
*no_add_attrs = true;
}
/* FIXME! add range check. TREE_INT_CST_LOW (arg) */
}
if (TREE_CODE (*node) == VAR_DECL)
{
tree fntype = TREE_TYPE (*node);
if (fntype && TREE_CODE (fntype) == POINTER_TYPE)
{
tree attrs = tree_cons (get_identifier ("aux"), NULL_TREE,
TYPE_ATTRIBUTES (fntype));
TYPE_ATTRIBUTES (fntype) = attrs;
}
}
}
return NULL_TREE;
}
/* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
anchors for small data: the GP register acts as an anchor in that
case. We also don't want to use them for PC-relative accesses,
where the PC acts as an anchor. Prohibit also TLS symbols to use
anchors. */
static bool
arc_use_anchors_for_symbol_p (const_rtx symbol)
{
if (SYMBOL_REF_TLS_MODEL (symbol))
return false;
if (flag_pic)
return false;
if (SYMBOL_REF_SMALL_P (symbol))
return false;
return default_use_anchors_for_symbol_p (symbol);
}
/* Return true if SUBST can't safely replace its equivalent during RA. */
static bool
arc_cannot_substitute_mem_equiv_p (rtx)
{
/* If SUBST is mem[base+index], the address may not fit ISA,
thus return true. */
return true;
}
/* Checks whether the operands are valid for use in an LDD/STD
instruction. Assumes that RT, and RT2 are REG. This is guaranteed
by the patterns. Assumes that the address in the base register RN
is word aligned. Pattern guarantees that both memory accesses use
the same base register, the offsets are constants within the range,
and the gap between the offsets is 4. If reload complete then
check that registers are legal. */
static bool
operands_ok_ldd_std (rtx rt, rtx rt2, HOST_WIDE_INT offset)
{
unsigned int t, t2;
if (!reload_completed)
return true;
if (!(SMALL_INT_RANGE (offset, (GET_MODE_SIZE (DImode) - 1) & (~0x03),
(offset & (GET_MODE_SIZE (DImode) - 1) & 3
? 0 : -(-GET_MODE_SIZE (DImode) | (~0x03)) >> 1))))
return false;
t = REGNO (rt);
t2 = REGNO (rt2);
if ((t2 == PCL_REG)
|| (t % 2 != 0) /* First destination register is not even. */
|| (t2 != t + 1))
return false;
return true;
}
/* Helper for gen_operands_ldd_std. Returns true iff the memory
operand MEM's address contains an immediate offset from the base
register and has no side effects, in which case it sets BASE and
OFFSET accordingly. */
static bool
mem_ok_for_ldd_std (rtx mem, rtx *base, rtx *offset)
{
rtx addr;
gcc_assert (base != NULL && offset != NULL);
/* TODO: Handle more general memory operand patterns, such as
PRE_DEC and PRE_INC. */
if (side_effects_p (mem))
return false;
/* Can't deal with subregs. */
if (GET_CODE (mem) == SUBREG)
return false;
gcc_assert (MEM_P (mem));
*offset = const0_rtx;
addr = XEXP (mem, 0);
/* If addr isn't valid for DImode, then we can't handle it. */
if (!arc_legitimate_address_p (DImode, addr,
reload_in_progress || reload_completed))
return false;
if (REG_P (addr))
{
*base = addr;
return true;
}
else if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS)
{
*base = XEXP (addr, 0);
*offset = XEXP (addr, 1);
return (REG_P (*base) && CONST_INT_P (*offset));
}
return false;
}
/* Called from peephole2 to replace two word-size accesses with a
single LDD/STD instruction. Returns true iff we can generate a new
instruction sequence. That is, both accesses use the same base
register and the gap between constant offsets is 4. OPERANDS are
the operands found by the peephole matcher; OPERANDS[0,1] are
register operands, and OPERANDS[2,3] are the corresponding memory
operands. LOAD indicates whether the access is load or store. */
bool
gen_operands_ldd_std (rtx *operands, bool load, bool commute)
{
int i, gap;
HOST_WIDE_INT offsets[2], offset;
int nops = 2;
rtx cur_base, cur_offset, tmp;
rtx base = NULL_RTX;
/* Check that the memory references are immediate offsets from the
same base register. Extract the base register, the destination
registers, and the corresponding memory offsets. */
for (i = 0; i < nops; i++)
{
if (!mem_ok_for_ldd_std (operands[nops+i], &cur_base, &cur_offset))
return false;
if (i == 0)
base = cur_base;
else if (REGNO (base) != REGNO (cur_base))
return false;
offsets[i] = INTVAL (cur_offset);
if (GET_CODE (operands[i]) == SUBREG)
{
tmp = SUBREG_REG (operands[i]);
gcc_assert (GET_MODE (operands[i]) == GET_MODE (tmp));
operands[i] = tmp;
}
}
/* Make sure there is no dependency between the individual loads. */
if (load && REGNO (operands[0]) == REGNO (base))
return false; /* RAW. */
if (load && REGNO (operands[0]) == REGNO (operands[1]))
return false; /* WAW. */
/* Make sure the instructions are ordered with lower memory access first. */
if (offsets[0] > offsets[1])
{
gap = offsets[0] - offsets[1];
offset = offsets[1];
/* Swap the instructions such that lower memory is accessed first. */
std::swap (operands[0], operands[1]);
std::swap (operands[2], operands[3]);
}
else
{
gap = offsets[1] - offsets[0];
offset = offsets[0];
}
/* Make sure accesses are to consecutive memory locations. */
if (gap != 4)
return false;
/* Make sure we generate legal instructions. */
if (operands_ok_ldd_std (operands[0], operands[1], offset))
return true;
if (load && commute)
{
/* Try reordering registers. */
std::swap (operands[0], operands[1]);
if (operands_ok_ldd_std (operands[0], operands[1], offset))
return true;
}
return false;
}
/* This order of allocation is used when we compile for size. It
allocates first the registers which are most probably to end up in
a short instruction. */
static const int size_alloc_order[] =
{
0, 1, 2, 3, 12, 13, 14, 15,
4, 5, 6, 7, 8, 9, 10, 11
};
/* Adjust register allocation order when compiling for size. */
void
arc_adjust_reg_alloc_order (void)
{
const int arc_default_alloc_order[] = REG_ALLOC_ORDER;
memcpy (reg_alloc_order, arc_default_alloc_order, sizeof (reg_alloc_order));
if (optimize_size)
memcpy (reg_alloc_order, size_alloc_order, sizeof (size_alloc_order));
}
/* Implement TARGET_MEMORY_MOVE_COST. */
static int
arc_memory_move_cost (machine_mode mode,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
if ((GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|| ((GET_MODE_SIZE (mode) <= UNITS_PER_WORD * 2) && TARGET_LL64))
return 6;
return (2 * GET_MODE_SIZE (mode));
}
/* Split an OR instruction into multiple BSET/OR instructions in a
attempt to avoid long immediate constants. The next strategies are
employed when destination is 'q' reg.
1. if there are up to three bits set in the mask, a succession of
three bset instruction will be emitted:
OR rA, rB, mask ->
BSET(_S) rA,rB,mask1/BSET_S rA,rA,mask2/BSET_S rA,rA,mask3
2. if the lower 6 bits of the mask is set and there is only one
bit set in the upper remaining bits then we will emit one bset and
one OR instruction:
OR rA, rB, mask -> OR rA,rB,mask1/BSET_S rA,mask2
3. otherwise an OR with limm will be emmitted. */
void
arc_split_ior (rtx *operands)
{
unsigned HOST_WIDE_INT mask, maskx;
rtx op1 = operands[1];
gcc_assert (CONST_INT_P (operands[2]));
mask = INTVAL (operands[2]) & 0xffffffff;
if (__builtin_popcount (mask) > 3 || (mask & 0x3f))
{
maskx = mask & 0x3f;
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_IOR (SImode, op1, GEN_INT (maskx))));
op1 = operands[0];
mask &= ~maskx;
}
switch (__builtin_popcount (mask))
{
case 3:
maskx = 1 << (__builtin_ffs (mask) - 1);
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_IOR (SImode, op1, GEN_INT (maskx))));
mask &= ~maskx;
op1 = operands[0];
/* FALLTHRU */
case 2:
maskx = 1 << (__builtin_ffs (mask) - 1);
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_IOR (SImode, op1, GEN_INT (maskx))));
mask &= ~maskx;
op1 = operands[0];
/* FALLTHRU */
case 1:
maskx = 1 << (__builtin_ffs (mask) - 1);
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_IOR (SImode, op1, GEN_INT (maskx))));
break;
case 0:
break;
default:
gcc_unreachable ();
}
}
/* Helper to check C0x constraint. */
bool
arc_check_ior_const (HOST_WIDE_INT ival)
{
unsigned int mask = (unsigned int) (ival & 0xffffffff);
if (UNSIGNED_INT6 (ival)
|| IS_POWEROF2_P (mask))
return false;
if (__builtin_popcount (mask) <= 3)
return true;
if (__builtin_popcount (mask & ~0x3f) <= 1)
return true;
return false;
}
/* Split a mov with long immediate instruction into smaller, size
friendly instructions. */
bool
arc_split_mov_const (rtx *operands)
{
unsigned HOST_WIDE_INT ival;
HOST_WIDE_INT shimm;
machine_mode mode = GET_MODE (operands[0]);
/* Manage a constant. */
gcc_assert (CONST_INT_P (operands[1]));
ival = INTVAL (operands[1]) & 0xffffffff;
/* 1. Check if we can just rotate limm by 8 but using ROR8. */
if (TARGET_BARREL_SHIFTER && TARGET_V2
&& ((ival & ~0x3f000000) == 0))
{
shimm = (ival >> 24) & 0x3f;
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_ROTATERT (mode, GEN_INT (shimm),
GEN_INT (8))));
return true;
}
/* 2. Check if we can just shift by 8 to fit into the u6 of LSL8. */
if (TARGET_BARREL_SHIFTER && TARGET_V2
&& ((ival & ~0x3f00) == 0))
{
shimm = (ival >> 8) & 0x3f;
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_ASHIFT (mode, GEN_INT (shimm),
GEN_INT (8))));
return true;
}
/* 3. Check if we can just shift by 16 to fit into the u6 of LSL16. */
if (TARGET_BARREL_SHIFTER && TARGET_V2
&& ((ival & ~0x3f0000) == 0))
{
shimm = (ival >> 16) & 0x3f;
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_ASHIFT (mode, GEN_INT (shimm),
GEN_INT (16))));
return true;
}
/* 4. Check if we can do something like mov_s h,u8 / asl_s ra,h,#nb. */
if (((ival >> (__builtin_ffs (ival) - 1)) & 0xffffff00) == 0
&& TARGET_BARREL_SHIFTER)
{
HOST_WIDE_INT shift = __builtin_ffs (ival);
shimm = (ival >> (shift - 1)) & 0xff;
emit_insn (gen_rtx_SET (operands[0], GEN_INT (shimm)));
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_ASHIFT (mode, operands[0],
GEN_INT (shift - 1))));
return true;
}
/* 5. Check if we can just rotate the limm, useful when no barrel
shifter is present. */
if ((ival & ~0x8000001f) == 0)
{
shimm = (ival * 2 + 1) & 0x3f;
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_ROTATERT (mode, GEN_INT (shimm),
const1_rtx)));
return true;
}
/* 6. Check if we can do something with bmask. */
if (IS_POWEROF2_P (ival + 1))
{
emit_insn (gen_rtx_SET (operands[0], constm1_rtx));
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_AND (mode, operands[0],
GEN_INT (ival))));
return true;
}
gcc_unreachable ();
}
/* Helper to check Cax constraint. */
bool
arc_check_mov_const (HOST_WIDE_INT ival)
{
ival = ival & 0xffffffff;
if (SIGNED_INT12 (ival))
return false;
if ((ival & ~0x8000001f) == 0)
return true;
if (IS_POWEROF2_P (ival + 1))
return true;
/* The next rules requires a barrel shifter. */
if (!TARGET_BARREL_SHIFTER)
return false;
if (((ival >> (__builtin_ffs (ival) - 1)) & 0xffffff00) == 0)
return true;
if ((ival & ~0x3f00) == 0)
return true;
if ((ival & ~0x3f0000) == 0)
return true;
if ((ival & ~0x3f000000) == 0)
return true;
return false;
}
/* Return nonzero if this function is known to have a null epilogue.
This allows the optimizer to omit jumps to jumps if no stack
was created. */
bool
arc_can_use_return_insn (void)
{
return (reload_completed && cfun->machine->frame_info.total_size == 0
&& !ARC_INTERRUPT_P (arc_compute_function_type (cfun)));
}
/* Helper for INSN_COST.
Per Segher Boessenkool: rtx_costs computes the cost for any rtx (an
insn, a set, a set source, any random piece of one). set_src_cost,
set_rtx_cost, etc. are helper functions that use that.
Those functions do not work for parallels. Also, costs are not
additive like this simplified model assumes. Also, more complex
backends tend to miss many cases in their rtx_costs function.
Many passes that want costs want to know the cost of a full insn. Like
combine. That's why I created insn_cost: it solves all of the above
problems. */
static int
arc_insn_cost (rtx_insn *insn, bool speed)
{
int cost;
if (recog_memoized (insn) < 0)
return 0;
/* If optimizing for size, we want the insn size. */
if (!speed)
return get_attr_length (insn);
/* Use cost if provided. */
cost = get_attr_cost (insn);
if (cost > 0)
return cost;
/* For speed make a simple cost model: memory access is more
expensive than any other instruction. */
enum attr_type type = get_attr_type (insn);
switch (type)
{
case TYPE_LOAD:
case TYPE_STORE:
cost = COSTS_N_INSNS (2);
break;
default:
cost = COSTS_N_INSNS (1);
break;
}
return cost;
}
#undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
#define TARGET_USE_ANCHORS_FOR_SYMBOL_P arc_use_anchors_for_symbol_p
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings
#undef TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P
#define TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P arc_cannot_substitute_mem_equiv_p
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE arc_asm_trampoline_template
#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST arc_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST arc_memory_move_cost
#undef TARGET_INSN_COST
#define TARGET_INSN_COST arc_insn_cost
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-arc.h"
|