aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/aarch64/tuning_models/neoversev2.h
blob: 40af5f47f4f62757e8e374abbb29cec5d1a8f7f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* Tuning model description for AArch64 architecture.
   Copyright (C) 2009-2024 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#ifndef GCC_AARCH64_H_NEOVERSEV2
#define GCC_AARCH64_H_NEOVERSEV2

#include "generic.h"

static const struct cpu_regmove_cost neoversev2_regmove_cost =
{
  1, /* GP2GP  */
  /* Spilling to int<->fp instead of memory is recommended so set
     realistic costs compared to memmov_cost.  */
  3, /* GP2FP  */
  2, /* FP2GP  */
  2 /* FP2FP  */
};

static const advsimd_vec_cost neoversev2_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  2, /* ld2_st2_permute_cost */
  2, /* ld3_st3_permute_cost  */
  3, /* ld4_st4_permute_cost  */
  2, /* permute_cost  */
  4, /* reduc_i8_cost  */
  4, /* reduc_i16_cost  */
  2, /* reduc_i32_cost  */
  2, /* reduc_i64_cost  */
  6, /* reduc_f16_cost  */
  4, /* reduc_f32_cost  */
  2, /* reduc_f64_cost  */
  2, /* store_elt_extra_cost  */
  /* This value is just inherited from the Cortex-A57 table.  */
  8, /* vec_to_scalar_cost  */
  /* This depends very much on what the scalar value is and
     where it comes from.  E.g. some constants take two dependent
     instructions or a load, while others might be moved from a GPR.
     4 seems to be a reasonable compromise in practice.  */
  4, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  /* Although stores have a latency of 2 and compete for the
     vector pipes, in practice it's better not to model that.  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const sve_vec_cost neoversev2_sve_vector_cost =
{
  {
    2, /* int_stmt_cost  */
    2, /* fp_stmt_cost  */
    2, /* ld2_st2_permute_cost  */
    3, /* ld3_st3_permute_cost  */
    3, /* ld4_st4_permute_cost  */
    2, /* permute_cost  */
    /* Theoretically, a reduction involving 15 scalar ADDs could
       complete in ~5 cycles and would have a cost of 15.  [SU]ADDV
       completes in 9 cycles, so give it a cost of 15 + 4.  */
    19, /* reduc_i8_cost  */
    /* Likewise for 7 scalar ADDs (~3 cycles) vs. 8: 7 + 5.  */
    12, /* reduc_i16_cost  */
    /* Likewise for 3 scalar ADDs (~2 cycles) vs. 6: 3 + 4.  */
    7, /* reduc_i32_cost  */
    /* Likewise for 1 scalar ADDs (~1 cycles) vs. 4: 1 + 3.  */
    4, /* reduc_i64_cost  */
    /* Theoretically, a reduction involving 7 scalar FADDs could
       complete in ~6 cycles and would have a cost of  14.  FADDV
       completes in 8 cycles, so give it a cost of 14 + 2.  */
    16, /* reduc_f16_cost  */
    /* Likewise for 3 scalar FADDs (~4 cycles) vs. 6: 6 + 2.  */
    8, /* reduc_f32_cost  */
    /* Likewise for 1 scalar FADD (~2 cycles) vs. 4: 2 + 2.  */
    4, /* reduc_f64_cost  */
    2, /* store_elt_extra_cost  */
    /* This value is just inherited from the Cortex-A57 table.  */
    8, /* vec_to_scalar_cost  */
    /* See the comment above the Advanced SIMD versions.  */
    4, /* scalar_to_vec_cost  */
    4, /* align_load_cost  */
    4, /* unalign_load_cost  */
    /* Although stores have a latency of 2 and compete for the
       vector pipes, in practice it's better not to model that.  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  3, /* clast_cost  */
  10, /* fadda_f16_cost  */
  6, /* fadda_f32_cost  */
  4, /* fadda_f64_cost  */
  /* A strided Advanced SIMD x64 load would take two parallel FP loads
     (8 cycles) plus an insertion (2 cycles).  Assume a 64-bit SVE gather
     is 1 cycle more.  The Advanced SIMD version is costed as 2 scalar loads
     (cost 8) and a vec_construct (cost 4).  Add a full vector operation
     (cost 2) to that, to avoid the difference being lost in rounding.

     There is no easy comparison between a strided Advanced SIMD x32 load
     and an SVE 32-bit gather, but cost an SVE 32-bit gather as 1 vector
     operation more than a 64-bit gather.  */
  14, /* gather_load_x32_cost  */
  12, /* gather_load_x64_cost  */
  42, /* gather_load_x32_init_cost  */
  24, /* gather_load_x64_init_cost  */
  3 /* scatter_store_elt_cost  */
};

static const aarch64_scalar_vec_issue_info neoversev2_scalar_issue_info =
{
  3, /* loads_stores_per_cycle  */
  2, /* stores_per_cycle  */
  6, /* general_ops_per_cycle  */
  0, /* fp_simd_load_general_ops  */
  1 /* fp_simd_store_general_ops  */
};

static const aarch64_advsimd_vec_issue_info neoversev2_advsimd_issue_info =
{
  {
    3, /* loads_stores_per_cycle  */
    2, /* stores_per_cycle  */
    4, /* general_ops_per_cycle  */
    0, /* fp_simd_load_general_ops  */
    1 /* fp_simd_store_general_ops  */
  },
  2, /* ld2_st2_general_ops  */
  2, /* ld3_st3_general_ops  */
  3 /* ld4_st4_general_ops  */
};

static const aarch64_sve_vec_issue_info neoversev2_sve_issue_info =
{
  {
    {
      3, /* loads_stores_per_cycle  */
      2, /* stores_per_cycle  */
      4, /* general_ops_per_cycle  */
      0, /* fp_simd_load_general_ops  */
      1 /* fp_simd_store_general_ops  */
    },
    2, /* ld2_st2_general_ops  */
    2, /* ld3_st3_general_ops  */
    3 /* ld4_st4_general_ops  */
  },
  2, /* pred_ops_per_cycle  */
  2, /* while_pred_ops  */
  2, /* int_cmp_pred_ops  */
  1, /* fp_cmp_pred_ops  */
  1, /* gather_scatter_pair_general_ops  */
  1 /* gather_scatter_pair_pred_ops  */
};

static const aarch64_vec_issue_info neoversev2_vec_issue_info =
{
  &neoversev2_scalar_issue_info,
  &neoversev2_advsimd_issue_info,
  &neoversev2_sve_issue_info
};

/* Neoversev2 costs for vector insn classes.  */
static const struct cpu_vector_cost neoversev2_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  2, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &neoversev2_advsimd_vector_cost, /* advsimd  */
  &neoversev2_sve_vector_cost, /* sve  */
  &neoversev2_vec_issue_info /* issue_info  */
};

/* Prefetch settings.  Disable software prefetch generation but set L1 cache
   line size.  */
static const cpu_prefetch_tune neoversev2_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const struct tune_params neoversev2_tunings =
{
  &cortexa76_extra_costs,
  &generic_armv9_a_addrcost_table,
  &neoversev2_regmove_cost,
  &neoversev2_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_128, /* sve_width  */
  { 4, /* load_int.  */
    2, /* store_int.  */
    6, /* load_fp.  */
    1, /* store_fp.  */
    6, /* load_pred.  */
    2 /* store_pred.  */
  }, /* memmov_cost.  */
  5, /* issue_rate  */
  (AARCH64_FUSE_BASE | AARCH64_FUSE_CMP_CSEL | AARCH64_FUSE_CMP_CSET), /* fusible_ops  */
  "32:16",	/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  3,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  4,	/* fma_reassoc_width.  */
  3,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_BASE
   | AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS
   | AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS
   | AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT
   | AARCH64_EXTRA_TUNE_AVOID_PRED_RMW
   | AARCH64_EXTRA_TUNE_FULLY_PIPELINED_FMA),	/* tune_flags.  */
  &neoversev2_prefetch_tune,
  AARCH64_LDP_STP_POLICY_ALWAYS,   /* ldp_policy_model.  */
  AARCH64_LDP_STP_POLICY_ALWAYS	   /* stp_policy_model.  */
};

#endif /* GCC_AARCH64_H_NEOVERSEV2.  */