aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/aarch64/aarch64.cc
blob: 5d1ab5aa42b2cda0a655d2bc69c4df19da457ab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
/* Machine description for AArch64 architecture.
   Copyright (C) 2009-2022 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#define INCLUDE_STRING
#define INCLUDE_ALGORITHM
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "insn-attr.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "output.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "reload.h"
#include "langhooks.h"
#include "opts.h"
#include "gimplify.h"
#include "dwarf2.h"
#include "gimple-iterator.h"
#include "tree-vectorizer.h"
#include "aarch64-cost-tables.h"
#include "dumpfile.h"
#include "builtins.h"
#include "rtl-iter.h"
#include "tm-constrs.h"
#include "sched-int.h"
#include "target-globals.h"
#include "common/common-target.h"
#include "cfgrtl.h"
#include "selftest.h"
#include "selftest-rtl.h"
#include "rtx-vector-builder.h"
#include "intl.h"
#include "expmed.h"
#include "function-abi.h"
#include "gimple-pretty-print.h"
#include "tree-ssa-loop-niter.h"
#include "fractional-cost.h"
#include "rtlanal.h"
#include "tree-dfa.h"
#include "asan.h"
#include "aarch64-feature-deps.h"

/* This file should be included last.  */
#include "target-def.h"

/* Defined for convenience.  */
#define POINTER_BYTES (POINTER_SIZE / BITS_PER_UNIT)

/* Information about a legitimate vector immediate operand.  */
struct simd_immediate_info
{
  enum insn_type { MOV, MVN, INDEX, PTRUE };
  enum modifier_type { LSL, MSL };

  simd_immediate_info () {}
  simd_immediate_info (scalar_float_mode, rtx);
  simd_immediate_info (scalar_int_mode, unsigned HOST_WIDE_INT,
		       insn_type = MOV, modifier_type = LSL,
		       unsigned int = 0);
  simd_immediate_info (scalar_mode, rtx, rtx);
  simd_immediate_info (scalar_int_mode, aarch64_svpattern);

  /* The mode of the elements.  */
  scalar_mode elt_mode;

  /* The instruction to use to move the immediate into a vector.  */
  insn_type insn;

  union
  {
    /* For MOV and MVN.  */
    struct
    {
      /* The value of each element.  */
      rtx value;

      /* The kind of shift modifier to use, and the number of bits to shift.
	 This is (LSL, 0) if no shift is needed.  */
      modifier_type modifier;
      unsigned int shift;
    } mov;

    /* For INDEX.  */
    struct
    {
      /* The value of the first element and the step to be added for each
	 subsequent element.  */
      rtx base, step;
    } index;

    /* For PTRUE.  */
    aarch64_svpattern pattern;
  } u;
};

/* Construct a floating-point immediate in which each element has mode
   ELT_MODE_IN and value VALUE_IN.  */
inline simd_immediate_info
::simd_immediate_info (scalar_float_mode elt_mode_in, rtx value_in)
  : elt_mode (elt_mode_in), insn (MOV)
{
  u.mov.value = value_in;
  u.mov.modifier = LSL;
  u.mov.shift = 0;
}

/* Construct an integer immediate in which each element has mode ELT_MODE_IN
   and value VALUE_IN.  The other parameters are as for the structure
   fields.  */
inline simd_immediate_info
::simd_immediate_info (scalar_int_mode elt_mode_in,
		       unsigned HOST_WIDE_INT value_in,
		       insn_type insn_in, modifier_type modifier_in,
		       unsigned int shift_in)
  : elt_mode (elt_mode_in), insn (insn_in)
{
  u.mov.value = gen_int_mode (value_in, elt_mode_in);
  u.mov.modifier = modifier_in;
  u.mov.shift = shift_in;
}

/* Construct an integer immediate in which each element has mode ELT_MODE_IN
   and where element I is equal to BASE_IN + I * STEP_IN.  */
inline simd_immediate_info
::simd_immediate_info (scalar_mode elt_mode_in, rtx base_in, rtx step_in)
  : elt_mode (elt_mode_in), insn (INDEX)
{
  u.index.base = base_in;
  u.index.step = step_in;
}

/* Construct a predicate that controls elements of mode ELT_MODE_IN
   and has PTRUE pattern PATTERN_IN.  */
inline simd_immediate_info
::simd_immediate_info (scalar_int_mode elt_mode_in,
		       aarch64_svpattern pattern_in)
  : elt_mode (elt_mode_in), insn (PTRUE)
{
  u.pattern = pattern_in;
}

namespace {

/* Describes types that map to Pure Scalable Types (PSTs) in the AAPCS64.  */
class pure_scalable_type_info
{
public:
  /* Represents the result of analyzing a type.  All values are nonzero,
     in the possibly forlorn hope that accidental conversions to bool
     trigger a warning.  */
  enum analysis_result
  {
    /* The type does not have an ABI identity; i.e. it doesn't contain
       at least one object whose type is a Fundamental Data Type.  */
    NO_ABI_IDENTITY = 1,

    /* The type is definitely a Pure Scalable Type.  */
    IS_PST,

    /* The type is definitely not a Pure Scalable Type.  */
    ISNT_PST,

    /* It doesn't matter for PCS purposes whether the type is a Pure
       Scalable Type or not, since the type will be handled the same
       way regardless.

       Specifically, this means that if the type is a Pure Scalable Type,
       there aren't enough argument registers to hold it, and so it will
       need to be passed or returned in memory.  If the type isn't a
       Pure Scalable Type, it's too big to be passed or returned in core
       or SIMD&FP registers, and so again will need to go in memory.  */
    DOESNT_MATTER
  };

  /* Aggregates of 17 bytes or more are normally passed and returned
     in memory, so aggregates of that size can safely be analyzed as
     DOESNT_MATTER.  We need to be able to collect enough pieces to
     represent a PST that is smaller than that.  Since predicates are
     2 bytes in size for -msve-vector-bits=128, that means we need to be
     able to store at least 8 pieces.

     We also need to be able to store enough pieces to represent
     a single vector in each vector argument register and a single
     predicate in each predicate argument register.  This means that
     we need at least 12 pieces.  */
  static const unsigned int MAX_PIECES = NUM_FP_ARG_REGS + NUM_PR_ARG_REGS;
  static_assert (MAX_PIECES >= 8, "Need to store at least 8 predicates");

  /* Describes one piece of a PST.  Each piece is one of:

     - a single Scalable Vector Type (SVT)
     - a single Scalable Predicate Type (SPT)
     - a PST containing 2, 3 or 4 SVTs, with no padding

     It either represents a single built-in type or a PST formed from
     multiple homogeneous built-in types.  */
  struct piece
  {
    rtx get_rtx (unsigned int, unsigned int) const;

    /* The number of vector and predicate registers that the piece
       occupies.  One of the two is always zero.  */
    unsigned int num_zr;
    unsigned int num_pr;

    /* The mode of the registers described above.  */
    machine_mode mode;

    /* If this piece is formed from multiple homogeneous built-in types,
       this is the mode of the built-in types, otherwise it is MODE.  */
    machine_mode orig_mode;

    /* The offset in bytes of the piece from the start of the type.  */
    poly_uint64_pod offset;
  };

  /* Divides types analyzed as IS_PST into individual pieces.  The pieces
     are in memory order.  */
  auto_vec<piece, MAX_PIECES> pieces;

  unsigned int num_zr () const;
  unsigned int num_pr () const;

  rtx get_rtx (machine_mode mode, unsigned int, unsigned int) const;

  analysis_result analyze (const_tree);
  bool analyze_registers (const_tree);

private:
  analysis_result analyze_array (const_tree);
  analysis_result analyze_record (const_tree);
  void add_piece (const piece &);
};
}

/* The current code model.  */
enum aarch64_code_model aarch64_cmodel;

/* The number of 64-bit elements in an SVE vector.  */
poly_uint16 aarch64_sve_vg;

#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS 1
#endif

static bool aarch64_composite_type_p (const_tree, machine_mode);
static bool aarch64_return_in_memory_1 (const_tree);
static bool aarch64_vfp_is_call_or_return_candidate (machine_mode,
						     const_tree,
						     machine_mode *, int *,
						     bool *, bool);
static void aarch64_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED;
static void aarch64_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED;
static void aarch64_override_options_after_change (void);
static bool aarch64_vector_mode_supported_p (machine_mode);
static int aarch64_address_cost (rtx, machine_mode, addr_space_t, bool);
static bool aarch64_builtin_support_vector_misalignment (machine_mode mode,
							 const_tree type,
							 int misalignment,
							 bool is_packed);
static machine_mode aarch64_simd_container_mode (scalar_mode, poly_int64);
static bool aarch64_print_address_internal (FILE*, machine_mode, rtx,
					    aarch64_addr_query_type);

/* The processor for which instructions should be scheduled.  */
enum aarch64_processor aarch64_tune = cortexa53;

/* Mask to specify which instruction scheduling options should be used.  */
uint64_t aarch64_tune_flags = 0;

/* Global flag for PC relative loads.  */
bool aarch64_pcrelative_literal_loads;

/* Global flag for whether frame pointer is enabled.  */
bool aarch64_use_frame_pointer;

#define BRANCH_PROTECT_STR_MAX 255
char *accepted_branch_protection_string = NULL;

static enum aarch64_parse_opt_result
aarch64_parse_branch_protection (const char*, char**);

/* Support for command line parsing of boolean flags in the tuning
   structures.  */
struct aarch64_flag_desc
{
  const char* name;
  unsigned int flag;
};

#define AARCH64_FUSION_PAIR(name, internal_name) \
  { name, AARCH64_FUSE_##internal_name },
static const struct aarch64_flag_desc aarch64_fusible_pairs[] =
{
  { "none", AARCH64_FUSE_NOTHING },
#include "aarch64-fusion-pairs.def"
  { "all", AARCH64_FUSE_ALL },
  { NULL, AARCH64_FUSE_NOTHING }
};

#define AARCH64_EXTRA_TUNING_OPTION(name, internal_name) \
  { name, AARCH64_EXTRA_TUNE_##internal_name },
static const struct aarch64_flag_desc aarch64_tuning_flags[] =
{
  { "none", AARCH64_EXTRA_TUNE_NONE },
#include "aarch64-tuning-flags.def"
  { "all", AARCH64_EXTRA_TUNE_ALL },
  { NULL, AARCH64_EXTRA_TUNE_NONE }
};

/* Tuning parameters.  */

static const struct cpu_addrcost_table generic_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* post_modify_ld3_st3  */
  0, /* post_modify_ld4_st4  */
  0, /* register_offset  */
  0, /* register_sextend  */
  0, /* register_zextend  */
  0 /* imm_offset  */
};

static const struct cpu_addrcost_table exynosm1_addrcost_table =
{
    {
      0, /* hi  */
      0, /* si  */
      0, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* post_modify_ld3_st3  */
  0, /* post_modify_ld4_st4  */
  1, /* register_offset  */
  1, /* register_sextend  */
  2, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table xgene1_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  1, /* pre_modify  */
  1, /* post_modify  */
  1, /* post_modify_ld3_st3  */
  1, /* post_modify_ld4_st4  */
  0, /* register_offset  */
  1, /* register_sextend  */
  1, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table thunderx2t99_addrcost_table =
{
    {
      1, /* hi  */
      1, /* si  */
      1, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* post_modify_ld3_st3  */
  0, /* post_modify_ld4_st4  */
  2, /* register_offset  */
  3, /* register_sextend  */
  3, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table thunderx3t110_addrcost_table =
{
    {
      1, /* hi  */
      1, /* si  */
      1, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* post_modify_ld3_st3  */
  0, /* post_modify_ld4_st4  */
  2, /* register_offset  */
  3, /* register_sextend  */
  3, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table tsv110_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* post_modify_ld3_st3  */
  0, /* post_modify_ld4_st4  */
  0, /* register_offset  */
  1, /* register_sextend  */
  1, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table qdf24xx_addrcost_table =
{
    {
      1, /* hi  */
      1, /* si  */
      1, /* di  */
      2, /* ti  */
    },
  1, /* pre_modify  */
  1, /* post_modify  */
  1, /* post_modify_ld3_st3  */
  1, /* post_modify_ld4_st4  */
  3, /* register_offset  */
  3, /* register_sextend  */
  3, /* register_zextend  */
  2, /* imm_offset  */
};

static const struct cpu_addrcost_table a64fx_addrcost_table =
{
    {
      1, /* hi  */
      1, /* si  */
      1, /* di  */
      2, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  0, /* post_modify_ld3_st3  */
  0, /* post_modify_ld4_st4  */
  2, /* register_offset  */
  3, /* register_sextend  */
  3, /* register_zextend  */
  0, /* imm_offset  */
};

static const struct cpu_addrcost_table neoversev1_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  3, /* post_modify_ld3_st3  */
  3, /* post_modify_ld4_st4  */
  0, /* register_offset  */
  0, /* register_sextend  */
  0, /* register_zextend  */
  0 /* imm_offset  */
};

static const struct cpu_addrcost_table neoversen2_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  2, /* post_modify_ld3_st3  */
  2, /* post_modify_ld4_st4  */
  0, /* register_offset  */
  0, /* register_sextend  */
  0, /* register_zextend  */
  0 /* imm_offset  */
};

static const struct cpu_addrcost_table neoversev2_addrcost_table =
{
    {
      1, /* hi  */
      0, /* si  */
      0, /* di  */
      1, /* ti  */
    },
  0, /* pre_modify  */
  0, /* post_modify  */
  2, /* post_modify_ld3_st3  */
  2, /* post_modify_ld4_st4  */
  0, /* register_offset  */
  0, /* register_sextend  */
  0, /* register_zextend  */
  0 /* imm_offset  */
};

static const struct cpu_regmove_cost generic_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost cortexa57_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost cortexa53_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  5, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost exynosm1_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost (actual, 4 and 9).  */
  9, /* GP2FP  */
  9, /* FP2GP  */
  1 /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx_regmove_cost =
{
  2, /* GP2GP  */
  2, /* GP2FP  */
  6, /* FP2GP  */
  4 /* FP2FP  */
};

static const struct cpu_regmove_cost xgene1_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  8, /* GP2FP  */
  8, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost qdf24xx_regmove_cost =
{
  2, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  6, /* GP2FP  */
  6, /* FP2GP  */
  4 /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx2t99_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  5, /* GP2FP  */
  6, /* FP2GP  */
  3, /* FP2FP  */
};

static const struct cpu_regmove_cost thunderx3t110_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of int<->fp moves for spilling.  */
  4, /* GP2FP  */
  5, /* FP2GP  */
  4  /* FP2FP  */
};

static const struct cpu_regmove_cost tsv110_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  2, /* GP2FP  */
  3, /* FP2GP  */
  2  /* FP2FP  */
};

static const struct cpu_regmove_cost a64fx_regmove_cost =
{
  1, /* GP2GP  */
  /* Avoid the use of slow int<->fp moves for spilling by setting
     their cost higher than memmov_cost.  */
  5, /* GP2FP  */
  7, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost neoversen2_regmove_cost =
{
  1, /* GP2GP  */
  /* Spilling to int<->fp instead of memory is recommended so set
     realistic costs compared to memmov_cost.  */
  3, /* GP2FP  */
  2, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost neoversev1_regmove_cost =
{
  1, /* GP2GP  */
  /* Spilling to int<->fp instead of memory is recommended so set
     realistic costs compared to memmov_cost.  */
  3, /* GP2FP  */
  2, /* FP2GP  */
  2 /* FP2FP  */
};

static const struct cpu_regmove_cost neoversev2_regmove_cost =
{
  1, /* GP2GP  */
  /* Spilling to int<->fp instead of memory is recommended so set
     realistic costs compared to memmov_cost.  */
  3, /* GP2FP  */
  2, /* FP2GP  */
  2 /* FP2FP  */
};

/* Generic costs for Advanced SIMD vector operations.   */
static const advsimd_vec_cost generic_advsimd_vector_cost =
{
  1, /* int_stmt_cost  */
  1, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  2, /* permute_cost  */
  2, /* reduc_i8_cost  */
  2, /* reduc_i16_cost  */
  2, /* reduc_i32_cost  */
  2, /* reduc_i64_cost  */
  2, /* reduc_f16_cost  */
  2, /* reduc_f32_cost  */
  2, /* reduc_f64_cost  */
  2, /* store_elt_extra_cost  */
  2, /* vec_to_scalar_cost  */
  1, /* scalar_to_vec_cost  */
  1, /* align_load_cost  */
  1, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

/* Generic costs for SVE vector operations.  */
static const sve_vec_cost generic_sve_vector_cost =
{
  {
    1, /* int_stmt_cost  */
    1, /* fp_stmt_cost  */
    0, /* ld2_st2_permute_cost  */
    0, /* ld3_st3_permute_cost  */
    0, /* ld4_st4_permute_cost  */
    2, /* permute_cost  */
    2, /* reduc_i8_cost  */
    2, /* reduc_i16_cost  */
    2, /* reduc_i32_cost  */
    2, /* reduc_i64_cost  */
    2, /* reduc_f16_cost  */
    2, /* reduc_f32_cost  */
    2, /* reduc_f64_cost  */
    2, /* store_elt_extra_cost  */
    2, /* vec_to_scalar_cost  */
    1, /* scalar_to_vec_cost  */
    1, /* align_load_cost  */
    1, /* unalign_load_cost  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  2, /* clast_cost  */
  2, /* fadda_f16_cost  */
  2, /* fadda_f32_cost  */
  2, /* fadda_f64_cost  */
  4, /* gather_load_x32_cost  */
  2, /* gather_load_x64_cost  */
  1 /* scatter_store_elt_cost  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost generic_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  1, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  3, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &generic_advsimd_vector_cost, /* advsimd  */
  &generic_sve_vector_cost, /* sve */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost a64fx_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  5, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  3, /* permute_cost  */
  13, /* reduc_i8_cost  */
  13, /* reduc_i16_cost  */
  13, /* reduc_i32_cost  */
  13, /* reduc_i64_cost  */
  13, /* reduc_f16_cost  */
  13, /* reduc_f32_cost  */
  13, /* reduc_f64_cost  */
  13, /* store_elt_extra_cost  */
  13, /* vec_to_scalar_cost  */
  4, /* scalar_to_vec_cost  */
  6, /* align_load_cost  */
  6, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const sve_vec_cost a64fx_sve_vector_cost =
{
  {
    2, /* int_stmt_cost  */
    5, /* fp_stmt_cost  */
    0, /* ld2_st2_permute_cost  */
    0, /* ld3_st3_permute_cost  */
    0, /* ld4_st4_permute_cost  */
    3, /* permute_cost  */
    13, /* reduc_i8_cost  */
    13, /* reduc_i16_cost  */
    13, /* reduc_i32_cost  */
    13, /* reduc_i64_cost  */
    13, /* reduc_f16_cost  */
    13, /* reduc_f32_cost  */
    13, /* reduc_f64_cost  */
    13, /* store_elt_extra_cost  */
    13, /* vec_to_scalar_cost  */
    4, /* scalar_to_vec_cost  */
    6, /* align_load_cost  */
    6, /* unalign_load_cost  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  13, /* clast_cost  */
  13, /* fadda_f16_cost  */
  13, /* fadda_f32_cost  */
  13, /* fadda_f64_cost  */
  64, /* gather_load_x32_cost  */
  32, /* gather_load_x64_cost  */
  1 /* scatter_store_elt_cost  */
};

static const struct cpu_vector_cost a64fx_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  5, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  3, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &a64fx_advsimd_vector_cost, /* advsimd  */
  &a64fx_sve_vector_cost, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost qdf24xx_advsimd_vector_cost =
{
  1, /* int_stmt_cost  */
  3, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  2, /* permute_cost  */
  1, /* reduc_i8_cost  */
  1, /* reduc_i16_cost  */
  1, /* reduc_i32_cost  */
  1, /* reduc_i64_cost  */
  1, /* reduc_f16_cost  */
  1, /* reduc_f32_cost  */
  1, /* reduc_f64_cost  */
  1, /* store_elt_extra_cost  */
  1, /* vec_to_scalar_cost  */
  1, /* scalar_to_vec_cost  */
  1, /* align_load_cost  */
  1, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

/* QDF24XX costs for vector insn classes.  */
static const struct cpu_vector_cost qdf24xx_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  1, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  3, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &qdf24xx_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};


static const advsimd_vec_cost thunderx_advsimd_vector_cost =
{
  4, /* int_stmt_cost  */
  1, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  4, /* permute_cost  */
  2, /* reduc_i8_cost  */
  2, /* reduc_i16_cost  */
  2, /* reduc_i32_cost  */
  2, /* reduc_i64_cost  */
  2, /* reduc_f16_cost  */
  2, /* reduc_f32_cost  */
  2, /* reduc_f64_cost  */
  2, /* store_elt_extra_cost  */
  2, /* vec_to_scalar_cost  */
  2, /* scalar_to_vec_cost  */
  3, /* align_load_cost  */
  5, /* unalign_load_cost  */
  5, /* unalign_store_cost  */
  1  /* store_cost  */
};

/* ThunderX costs for vector insn classes.  */
static const struct cpu_vector_cost thunderx_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  3, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  3, /* cond_taken_branch_cost  */
  3, /* cond_not_taken_branch_cost  */
  &thunderx_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost tsv110_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  2, /* permute_cost  */
  3, /* reduc_i8_cost  */
  3, /* reduc_i16_cost  */
  3, /* reduc_i32_cost  */
  3, /* reduc_i64_cost  */
  3, /* reduc_f16_cost  */
  3, /* reduc_f32_cost  */
  3, /* reduc_f64_cost  */
  3, /* store_elt_extra_cost  */
  3, /* vec_to_scalar_cost  */
  2, /* scalar_to_vec_cost  */
  5, /* align_load_cost  */
  5, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const struct cpu_vector_cost tsv110_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &tsv110_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost cortexa57_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  3, /* permute_cost  */
  8, /* reduc_i8_cost  */
  8, /* reduc_i16_cost  */
  8, /* reduc_i32_cost  */
  8, /* reduc_i64_cost  */
  8, /* reduc_f16_cost  */
  8, /* reduc_f32_cost  */
  8, /* reduc_f64_cost  */
  8, /* store_elt_extra_cost  */
  8, /* vec_to_scalar_cost  */
  8, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

/* Cortex-A57 costs for vector insn classes.  */
static const struct cpu_vector_cost cortexa57_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &cortexa57_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost exynosm1_advsimd_vector_cost =
{
  3, /* int_stmt_cost  */
  3, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  3, /* permute_cost  */
  3, /* reduc_i8_cost  */
  3, /* reduc_i16_cost  */
  3, /* reduc_i32_cost  */
  3, /* reduc_i64_cost  */
  3, /* reduc_f16_cost  */
  3, /* reduc_f32_cost  */
  3, /* reduc_f64_cost  */
  3, /* store_elt_extra_cost  */
  3, /* vec_to_scalar_cost  */
  3, /* scalar_to_vec_cost  */
  5, /* align_load_cost  */
  5, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const struct cpu_vector_cost exynosm1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &exynosm1_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost xgene1_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  2, /* permute_cost  */
  4, /* reduc_i8_cost  */
  4, /* reduc_i16_cost  */
  4, /* reduc_i32_cost  */
  4, /* reduc_i64_cost  */
  4, /* reduc_f16_cost  */
  4, /* reduc_f32_cost  */
  4, /* reduc_f64_cost  */
  4, /* store_elt_extra_cost  */
  4, /* vec_to_scalar_cost  */
  4, /* scalar_to_vec_cost  */
  10, /* align_load_cost  */
  10, /* unalign_load_cost  */
  2, /* unalign_store_cost  */
  2  /* store_cost  */
};

/* Generic costs for vector insn classes.  */
static const struct cpu_vector_cost xgene1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  5, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &xgene1_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost thunderx2t99_advsimd_vector_cost =
{
  4, /* int_stmt_cost  */
  5, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  10, /* permute_cost  */
  6, /* reduc_i8_cost  */
  6, /* reduc_i16_cost  */
  6, /* reduc_i32_cost  */
  6, /* reduc_i64_cost  */
  6, /* reduc_f16_cost  */
  6, /* reduc_f32_cost  */
  6, /* reduc_f64_cost  */
  6, /* store_elt_extra_cost  */
  6, /* vec_to_scalar_cost  */
  5, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

/* Costs for vector insn classes for Vulcan.  */
static const struct cpu_vector_cost thunderx2t99_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  6, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* cond_taken_branch_cost  */
  1,  /* cond_not_taken_branch_cost  */
  &thunderx2t99_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost thunderx3t110_advsimd_vector_cost =
{
  5, /* int_stmt_cost  */
  5, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  10, /* permute_cost  */
  5, /* reduc_i8_cost  */
  5, /* reduc_i16_cost  */
  5, /* reduc_i32_cost  */
  5, /* reduc_i64_cost  */
  5, /* reduc_f16_cost  */
  5, /* reduc_f32_cost  */
  5, /* reduc_f64_cost  */
  5, /* store_elt_extra_cost  */
  5, /* vec_to_scalar_cost  */
  5, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  4, /* unalign_store_cost  */
  4  /* store_cost  */
};

static const struct cpu_vector_cost thunderx3t110_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  5, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  2, /* cond_taken_branch_cost  */
  1,  /* cond_not_taken_branch_cost  */
  &thunderx3t110_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr /* issue_info  */
};

static const advsimd_vec_cost ampere1_advsimd_vector_cost =
{
  3, /* int_stmt_cost  */
  3, /* fp_stmt_cost  */
  0, /* ld2_st2_permute_cost  */
  0, /* ld3_st3_permute_cost  */
  0, /* ld4_st4_permute_cost  */
  2, /* permute_cost  */
  12, /* reduc_i8_cost  */
  9, /* reduc_i16_cost  */
  6, /* reduc_i32_cost  */
  5, /* reduc_i64_cost  */
  9, /* reduc_f16_cost  */
  6, /* reduc_f32_cost  */
  5, /* reduc_f64_cost  */
  8, /* store_elt_extra_cost  */
  6, /* vec_to_scalar_cost  */
  7, /* scalar_to_vec_cost  */
  5, /* align_load_cost  */
  5, /* unalign_load_cost  */
  2, /* unalign_store_cost  */
  2  /* store_cost  */
};

/* Ampere-1 costs for vector insn classes.  */
static const struct cpu_vector_cost ampere1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  1, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &ampere1_advsimd_vector_cost, /* advsimd  */
  nullptr, /* sve  */
  nullptr  /* issue_info  */
};

/* Generic costs for branch instructions.  */
static const struct cpu_branch_cost generic_branch_cost =
{
  1,  /* Predictable.  */
  3   /* Unpredictable.  */
};

/* Generic approximation modes.  */
static const cpu_approx_modes generic_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_NONE,	/* sqrt  */
  AARCH64_APPROX_NONE	/* recip_sqrt  */
};

/* Approximation modes for Exynos M1.  */
static const cpu_approx_modes exynosm1_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_ALL,	/* sqrt  */
  AARCH64_APPROX_ALL	/* recip_sqrt  */
};

/* Approximation modes for X-Gene 1.  */
static const cpu_approx_modes xgene1_approx_modes =
{
  AARCH64_APPROX_NONE,	/* division  */
  AARCH64_APPROX_NONE,	/* sqrt  */
  AARCH64_APPROX_ALL	/* recip_sqrt  */
};

/* Generic prefetch settings (which disable prefetch).  */
static const cpu_prefetch_tune generic_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  -1,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune exynosm1_prefetch_tune =
{
  0,			/* num_slots  */
  -1,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune qdf24xx_prefetch_tune =
{
  4,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  512,			/* l2_cache_size  */
  false,		/* prefetch_dynamic_strides */
  2048,			/* minimum_stride */
  3			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderxt88_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  128,			/* l1_cache_line_size  */
  16*1024,		/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  3			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  128,			/* l1_cache_line_size  */
  -1,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx2t99_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  256,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune thunderx3t110_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  256,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune tsv110_prefetch_tune =
{
  0,                    /* num_slots  */
  64,                   /* l1_cache_size  */
  64,                   /* l1_cache_line_size  */
  512,                  /* l2_cache_size  */
  true,                 /* prefetch_dynamic_strides */
  -1,                   /* minimum_stride */
  -1                    /* default_opt_level  */
};

static const cpu_prefetch_tune xgene1_prefetch_tune =
{
  8,			/* num_slots  */
  32,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  256,			/* l2_cache_size  */
  true,                 /* prefetch_dynamic_strides */
  -1,                   /* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune a64fx_prefetch_tune =
{
  8,			/* num_slots  */
  64,			/* l1_cache_size  */
  256,			/* l1_cache_line_size  */
  32768,		/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const cpu_prefetch_tune ampere1_prefetch_tune =
{
  0,			/* num_slots  */
  64,			/* l1_cache_size  */
  64,			/* l1_cache_line_size  */
  2048,			/* l2_cache_size  */
  true,			/* prefetch_dynamic_strides */
  -1,			/* minimum_stride */
  -1			/* default_opt_level  */
};

static const struct tune_params generic_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &generic_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  2, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "16:12",	/* function_align.  */
  "4",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  /* Enabling AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS significantly benefits
     Neoverse V1.  It does not have a noticeable effect on A64FX and should
     have at most a very minor effect on SVE2 cores.  */
  (AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa35_tunings =
{
  &cortexa53_extra_costs,
  &generic_addrcost_table,
  &cortexa53_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  1, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  "16",	/* function_align.  */
  "4",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa53_tunings =
{
  &cortexa53_extra_costs,
  &generic_addrcost_table,
  &cortexa53_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  2, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  "16",	/* function_align.  */
  "4",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa57_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops  */
  "16",	/* function_align.  */
  "4",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_RENAME_FMA_REGS),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa72_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops  */
  "16",	/* function_align.  */
  "4",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params cortexa73_tunings =
{
  &cortexa57_extra_costs,
  &generic_addrcost_table,
  &cortexa57_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  2, /* issue_rate.  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops  */
  "16",	/* function_align.  */
  "4",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &generic_prefetch_tune
};



static const struct tune_params exynosm1_tunings =
{
  &exynosm1_extra_costs,
  &exynosm1_addrcost_table,
  &exynosm1_regmove_cost,
  &exynosm1_vector_cost,
  &generic_branch_cost,
  &exynosm1_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  3,	/* issue_rate  */
  (AARCH64_FUSE_AES_AESMC), /* fusible_ops  */
  "4",	/* function_align.  */
  "4",	/* jump_align.  */
  "4",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  48,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE), /* tune_flags.  */
  &exynosm1_prefetch_tune
};

static const struct tune_params thunderxt88_tunings =
{
  &thunderx_extra_costs,
  &generic_addrcost_table,
  &thunderx_regmove_cost,
  &thunderx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 6, /* load_int.  */
    6, /* store_int.  */
    6, /* load_fp.  */
    6, /* store_fp.  */
    6, /* load_pred.  */
    6 /* store_pred.  */
  }, /* memmov_cost.  */
  2, /* issue_rate  */
  AARCH64_FUSE_ALU_BRANCH, /* fusible_ops  */
  "8",	/* function_align.  */
  "8",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW),	/* tune_flags.  */
  &thunderxt88_prefetch_tune
};

static const struct tune_params thunderx_tunings =
{
  &thunderx_extra_costs,
  &generic_addrcost_table,
  &thunderx_regmove_cost,
  &thunderx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 6, /* load_int.  */
    6, /* store_int.  */
    6, /* load_fp.  */
    6, /* store_fp.  */
    6, /* load_pred.  */
    6 /* store_pred.  */
  }, /* memmov_cost.  */
  2, /* issue_rate  */
  AARCH64_FUSE_ALU_BRANCH, /* fusible_ops  */
  "8",	/* function_align.  */
  "8",	/* jump_align.  */
  "8",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW
   | AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND),	/* tune_flags.  */
  &thunderx_prefetch_tune
};

static const struct tune_params tsv110_tunings =
{
  &tsv110_extra_costs,
  &tsv110_addrcost_table,
  &tsv110_regmove_cost,
  &tsv110_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  4,    /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_ALU_BRANCH
   | AARCH64_FUSE_ALU_CBZ), /* fusible_ops  */
  "16", /* function_align.  */
  "4",  /* jump_align.  */
  "8",  /* loop_align.  */
  2,    /* int_reassoc_width.  */
  4,    /* fp_reassoc_width.  */
  1,    /* vec_reassoc_width.  */
  2,    /* min_div_recip_mul_sf.  */
  2,    /* min_div_recip_mul_df.  */
  0,    /* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,     /* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),     /* tune_flags.  */
  &tsv110_prefetch_tune
};

static const struct tune_params xgene1_tunings =
{
  &xgene1_extra_costs,
  &xgene1_addrcost_table,
  &xgene1_regmove_cost,
  &xgene1_vector_cost,
  &generic_branch_cost,
  &xgene1_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 6, /* load_int.  */
    6, /* store_int.  */
    6, /* load_fp.  */
    6, /* store_fp.  */
    6, /* load_pred.  */
    6 /* store_pred.  */
  }, /* memmov_cost.  */
  4, /* issue_rate  */
  AARCH64_FUSE_NOTHING, /* fusible_ops  */
  "16",	/* function_align.  */
  "16",	/* jump_align.  */
  "16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  17,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS),	/* tune_flags.  */
  &xgene1_prefetch_tune
};

static const struct tune_params emag_tunings =
{
  &xgene1_extra_costs,
  &xgene1_addrcost_table,
  &xgene1_regmove_cost,
  &xgene1_vector_cost,
  &generic_branch_cost,
  &xgene1_approx_modes,
  SVE_NOT_IMPLEMENTED,
  { 6, /* load_int.  */
    6, /* store_int.  */
    6, /* load_fp.  */
    6, /* store_fp.  */
    6, /* load_pred.  */
    6 /* store_pred.  */
  }, /* memmov_cost.  */
  4, /* issue_rate  */
  AARCH64_FUSE_NOTHING, /* fusible_ops  */
  "16",	/* function_align.  */
  "16",	/* jump_align.  */
  "16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  17,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_OFF,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS),	/* tune_flags.  */
  &xgene1_prefetch_tune
};

static const struct tune_params qdf24xx_tunings =
{
  &qdf24xx_extra_costs,
  &qdf24xx_addrcost_table,
  &qdf24xx_regmove_cost,
  &qdf24xx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  4, /* issue_rate  */
  (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fuseable_ops  */
  "16",	/* function_align.  */
  "8",	/* jump_align.  */
  "16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  AARCH64_EXTRA_TUNE_RENAME_LOAD_REGS, /* tune_flags.  */
  &qdf24xx_prefetch_tune
};

/* Tuning structure for the Qualcomm Saphira core.  Default to falkor values
   for now.  */
static const struct tune_params saphira_tunings =
{
  &generic_extra_costs,
  &generic_addrcost_table,
  &generic_regmove_cost,
  &generic_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  4, /* issue_rate  */
  (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD
   | AARCH64_FUSE_MOVK_MOVK), /* fuseable_ops  */
  "16",	/* function_align.  */
  "8",	/* jump_align.  */
  "16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  1,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),		/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params thunderx2t99_tunings =
{
  &thunderx2t99_extra_costs,
  &thunderx2t99_addrcost_table,
  &thunderx2t99_regmove_cost,
  &thunderx2t99_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  4, /* issue_rate.  */
  (AARCH64_FUSE_ALU_BRANCH | AARCH64_FUSE_AES_AESMC
   | AARCH64_FUSE_ALU_CBZ), /* fusible_ops  */
  "16",	/* function_align.  */
  "8",	/* jump_align.  */
  "16",	/* loop_align.  */
  3,	/* int_reassoc_width.  */
  2,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &thunderx2t99_prefetch_tune
};

static const struct tune_params thunderx3t110_tunings =
{
  &thunderx3t110_extra_costs,
  &thunderx3t110_addrcost_table,
  &thunderx3t110_regmove_cost,
  &thunderx3t110_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  6, /* issue_rate.  */
  (AARCH64_FUSE_ALU_BRANCH | AARCH64_FUSE_AES_AESMC
   | AARCH64_FUSE_ALU_CBZ), /* fusible_ops  */
  "16",	/* function_align.  */
  "8",	/* jump_align.  */
  "16",	/* loop_align.  */
  3,	/* int_reassoc_width.  */
  2,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &thunderx3t110_prefetch_tune
};

static const struct tune_params neoversen1_tunings =
{
  &cortexa76_extra_costs,
  &generic_addrcost_table,
  &generic_regmove_cost,
  &cortexa57_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    2, /* store_int.  */
    5, /* load_fp.  */
    2, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "32:16",	/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params ampere1_tunings =
{
  &ampere1_extra_costs,
  &generic_addrcost_table,
  &generic_regmove_cost,
  &ampere1_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_NOT_IMPLEMENTED, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  4, /* issue_rate  */
  (AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_AES_AESMC |
   AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_MOVK_MOVK |
   AARCH64_FUSE_ALU_BRANCH /* adds, ands, bics, ccmp, ccmn */ |
   AARCH64_FUSE_CMP_BRANCH),
  /* fusible_ops  */
  "32",		/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),		/* tune_flags.  */
  &ampere1_prefetch_tune
};

static const advsimd_vec_cost neoversev1_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  4, /* ld2_st2_permute_cost */
  4, /* ld3_st3_permute_cost  */
  5, /* ld4_st4_permute_cost  */
  3, /* permute_cost  */
  4, /* reduc_i8_cost  */
  4, /* reduc_i16_cost  */
  2, /* reduc_i32_cost  */
  2, /* reduc_i64_cost  */
  6, /* reduc_f16_cost  */
  3, /* reduc_f32_cost  */
  2, /* reduc_f64_cost  */
  2, /* store_elt_extra_cost  */
  /* This value is just inherited from the Cortex-A57 table.  */
  8, /* vec_to_scalar_cost  */
  /* This depends very much on what the scalar value is and
     where it comes from.  E.g. some constants take two dependent
     instructions or a load, while others might be moved from a GPR.
     4 seems to be a reasonable compromise in practice.  */
  4, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  /* Although stores have a latency of 2 and compete for the
     vector pipes, in practice it's better not to model that.  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const sve_vec_cost neoversev1_sve_vector_cost =
{
  {
    2, /* int_stmt_cost  */
    2, /* fp_stmt_cost  */
    4, /* ld2_st2_permute_cost  */
    7, /* ld3_st3_permute_cost  */
    8, /* ld4_st4_permute_cost  */
    3, /* permute_cost  */
    /* Theoretically, a reduction involving 31 scalar ADDs could
       complete in ~9 cycles and would have a cost of 31.  [SU]ADDV
       completes in 14 cycles, so give it a cost of 31 + 5.  */
    36, /* reduc_i8_cost  */
    /* Likewise for 15 scalar ADDs (~5 cycles) vs. 12: 15 + 7.  */
    22, /* reduc_i16_cost  */
    /* Likewise for 7 scalar ADDs (~3 cycles) vs. 10: 7 + 7.  */
    14, /* reduc_i32_cost  */
    /* Likewise for 3 scalar ADDs (~2 cycles) vs. 10: 3 + 8.  */
    11, /* reduc_i64_cost  */
    /* Theoretically, a reduction involving 15 scalar FADDs could
       complete in ~9 cycles and would have a cost of 30.  FADDV
       completes in 13 cycles, so give it a cost of 30 + 4.  */
    34, /* reduc_f16_cost  */
    /* Likewise for 7 scalar FADDs (~6 cycles) vs. 11: 14 + 5.  */
    19, /* reduc_f32_cost  */
    /* Likewise for 3 scalar FADDs (~4 cycles) vs. 9: 6 + 5.  */
    11, /* reduc_f64_cost  */
    2, /* store_elt_extra_cost  */
    /* This value is just inherited from the Cortex-A57 table.  */
    8, /* vec_to_scalar_cost  */
    /* See the comment above the Advanced SIMD versions.  */
    4, /* scalar_to_vec_cost  */
    4, /* align_load_cost  */
    4, /* unalign_load_cost  */
    /* Although stores have a latency of 2 and compete for the
       vector pipes, in practice it's better not to model that.  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  3, /* clast_cost  */
  19, /* fadda_f16_cost  */
  11, /* fadda_f32_cost  */
  8, /* fadda_f64_cost  */
  32, /* gather_load_x32_cost  */
  16, /* gather_load_x64_cost  */
  3 /* scatter_store_elt_cost  */
};

static const aarch64_scalar_vec_issue_info neoversev1_scalar_issue_info =
{
  3, /* loads_stores_per_cycle  */
  2, /* stores_per_cycle  */
  4, /* general_ops_per_cycle  */
  0, /* fp_simd_load_general_ops  */
  1 /* fp_simd_store_general_ops  */
};

static const aarch64_advsimd_vec_issue_info neoversev1_advsimd_issue_info =
{
  {
    3, /* loads_stores_per_cycle  */
    2, /* stores_per_cycle  */
    4, /* general_ops_per_cycle  */
    0, /* fp_simd_load_general_ops  */
    1 /* fp_simd_store_general_ops  */
  },
  2, /* ld2_st2_general_ops  */
  2, /* ld3_st3_general_ops  */
  3 /* ld4_st4_general_ops  */
};

static const aarch64_sve_vec_issue_info neoversev1_sve_issue_info =
{
  {
    {
      2, /* loads_per_cycle  */
      2, /* stores_per_cycle  */
      2, /* general_ops_per_cycle  */
      0, /* fp_simd_load_general_ops  */
      1 /* fp_simd_store_general_ops  */
    },
    2, /* ld2_st2_general_ops  */
    2, /* ld3_st3_general_ops  */
    3 /* ld4_st4_general_ops  */
  },
  1, /* pred_ops_per_cycle  */
  2, /* while_pred_ops  */
  2, /* int_cmp_pred_ops  */
  1, /* fp_cmp_pred_ops  */
  1, /* gather_scatter_pair_general_ops  */
  1 /* gather_scatter_pair_pred_ops  */
};

static const aarch64_vec_issue_info neoversev1_vec_issue_info =
{
  &neoversev1_scalar_issue_info,
  &neoversev1_advsimd_issue_info,
  &neoversev1_sve_issue_info
};

/* Neoverse V1 costs for vector insn classes.  */
static const struct cpu_vector_cost neoversev1_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  2, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &neoversev1_advsimd_vector_cost, /* advsimd  */
  &neoversev1_sve_vector_cost, /* sve  */
  &neoversev1_vec_issue_info /* issue_info  */
};

static const struct tune_params neoversev1_tunings =
{
  &cortexa76_extra_costs,
  &neoversev1_addrcost_table,
  &neoversev1_regmove_cost,
  &neoversev1_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_256, /* sve_width  */
  { 4, /* load_int.  */
    2, /* store_int.  */
    6, /* load_fp.  */
    2, /* store_fp.  */
    6, /* load_pred.  */
    1 /* store_pred.  */
  }, /* memmov_cost.  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "32:16",	/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS
   | AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS
   | AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT
   | AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const sve_vec_cost neoverse512tvb_sve_vector_cost =
{
  {
    2, /* int_stmt_cost  */
    2, /* fp_stmt_cost  */
    4, /* ld2_st2_permute_cost  */
    5, /* ld3_st3_permute_cost  */
    5, /* ld4_st4_permute_cost  */
    3, /* permute_cost  */
    /* Theoretically, a reduction involving 15 scalar ADDs could
       complete in ~5 cycles and would have a cost of 15.  Assume that
       [SU]ADDV completes in 11 cycles and so give it a cost of 15 + 6.  */
    21, /* reduc_i8_cost  */
    /* Likewise for 7 scalar ADDs (~3 cycles) vs. 9: 7 + 6.  */
    13, /* reduc_i16_cost  */
    /* Likewise for 3 scalar ADDs (~2 cycles) vs. 8: 3 + 6.  */
    9, /* reduc_i32_cost  */
    /* Likewise for 1 scalar ADD (1 cycle) vs. 8: 1 + 7.  */
    8, /* reduc_i64_cost  */
    /* Theoretically, a reduction involving 7 scalar FADDs could
       complete in ~6 cycles and would have a cost of 14.  Assume that
       FADDV completes in 8 cycles and so give it a cost of 14 + 2.  */
    16, /* reduc_f16_cost  */
    /* Likewise for 3 scalar FADDs (~4 cycles) vs. 6: 6 + 2.  */
    8, /* reduc_f32_cost  */
    /* Likewise for 1 scalar FADD (2 cycles) vs. 4: 2 + 2.  */
    4, /* reduc_f64_cost  */
    2, /* store_elt_extra_cost  */
    /* This value is just inherited from the Cortex-A57 table.  */
    8, /* vec_to_scalar_cost  */
    /* This depends very much on what the scalar value is and
       where it comes from.  E.g. some constants take two dependent
       instructions or a load, while others might be moved from a GPR.
       4 seems to be a reasonable compromise in practice.  */
    4, /* scalar_to_vec_cost  */
    4, /* align_load_cost  */
    4, /* unalign_load_cost  */
    /* Although stores generally have a latency of 2 and compete for the
       vector pipes, in practice it's better not to model that.  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  3, /* clast_cost  */
  10, /* fadda_f16_cost  */
  6, /* fadda_f32_cost  */
  4, /* fadda_f64_cost  */
  /* A strided Advanced SIMD x64 load would take two parallel FP loads
     (6 cycles) plus an insertion (2 cycles).  Assume a 64-bit SVE gather
     is 1 cycle more.  The Advanced SIMD version is costed as 2 scalar loads
     (cost 8) and a vec_construct (cost 2).  Add a full vector operation
     (cost 2) to that, to avoid the difference being lost in rounding.

     There is no easy comparison between a strided Advanced SIMD x32 load
     and an SVE 32-bit gather, but cost an SVE 32-bit gather as 1 vector
     operation more than a 64-bit gather.  */
  14, /* gather_load_x32_cost  */
  12, /* gather_load_x64_cost  */
  3 /* scatter_store_elt_cost  */
};

static const aarch64_sve_vec_issue_info neoverse512tvb_sve_issue_info =
{
  {
    {
      3, /* loads_per_cycle  */
      2, /* stores_per_cycle  */
      4, /* general_ops_per_cycle  */
      0, /* fp_simd_load_general_ops  */
      1 /* fp_simd_store_general_ops  */
    },
    2, /* ld2_st2_general_ops  */
    2, /* ld3_st3_general_ops  */
    3 /* ld4_st4_general_ops  */
  },
  2, /* pred_ops_per_cycle  */
  2, /* while_pred_ops  */
  2, /* int_cmp_pred_ops  */
  1, /* fp_cmp_pred_ops  */
  1, /* gather_scatter_pair_general_ops  */
  1 /* gather_scatter_pair_pred_ops  */
};

static const aarch64_vec_issue_info neoverse512tvb_vec_issue_info =
{
  &neoversev1_scalar_issue_info,
  &neoversev1_advsimd_issue_info,
  &neoverse512tvb_sve_issue_info
};

static const struct cpu_vector_cost neoverse512tvb_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  2, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &neoversev1_advsimd_vector_cost, /* advsimd  */
  &neoverse512tvb_sve_vector_cost, /* sve  */
  &neoverse512tvb_vec_issue_info /* issue_info  */
};

static const struct tune_params neoverse512tvb_tunings =
{
  &cortexa76_extra_costs,
  &neoversev1_addrcost_table,
  &neoversev1_regmove_cost,
  &neoverse512tvb_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_128 | SVE_256, /* sve_width  */
  { 4, /* load_int.  */
    2, /* store_int.  */
    6, /* load_fp.  */
    2, /* store_fp.  */
    6, /* load_pred.  */
    1 /* store_pred.  */
  }, /* memmov_cost.  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "32:16",	/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS
   | AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS
   | AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const advsimd_vec_cost neoversen2_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  2, /* ld2_st2_permute_cost */
  2, /* ld3_st3_permute_cost  */
  3, /* ld4_st4_permute_cost  */
  3, /* permute_cost  */
  4, /* reduc_i8_cost  */
  4, /* reduc_i16_cost  */
  2, /* reduc_i32_cost  */
  2, /* reduc_i64_cost  */
  6, /* reduc_f16_cost  */
  4, /* reduc_f32_cost  */
  2, /* reduc_f64_cost  */
  2, /* store_elt_extra_cost  */
  /* This value is just inherited from the Cortex-A57 table.  */
  8, /* vec_to_scalar_cost  */
  /* This depends very much on what the scalar value is and
     where it comes from.  E.g. some constants take two dependent
     instructions or a load, while others might be moved from a GPR.
     4 seems to be a reasonable compromise in practice.  */
  4, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  /* Although stores have a latency of 2 and compete for the
     vector pipes, in practice it's better not to model that.  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const sve_vec_cost neoversen2_sve_vector_cost =
{
  {
    2, /* int_stmt_cost  */
    2, /* fp_stmt_cost  */
    3, /* ld2_st2_permute_cost  */
    4, /* ld3_st3_permute_cost  */
    4, /* ld4_st4_permute_cost  */
    3, /* permute_cost  */
    /* Theoretically, a reduction involving 15 scalar ADDs could
       complete in ~5 cycles and would have a cost of 15.  [SU]ADDV
       completes in 11 cycles, so give it a cost of 15 + 6.  */
    21, /* reduc_i8_cost  */
    /* Likewise for 7 scalar ADDs (~3 cycles) vs. 9: 7 + 6.  */
    13, /* reduc_i16_cost  */
    /* Likewise for 3 scalar ADDs (~2 cycles) vs. 8: 3 + 6.  */
    9, /* reduc_i32_cost  */
    /* Likewise for 1 scalar ADD (~1 cycles) vs. 2: 1 + 1.  */
    2, /* reduc_i64_cost  */
    /* Theoretically, a reduction involving 7 scalar FADDs could
       complete in ~8 cycles and would have a cost of 14.  FADDV
       completes in 6 cycles, so give it a cost of 14 - 2.  */
    12, /* reduc_f16_cost  */
    /* Likewise for 3 scalar FADDs (~4 cycles) vs. 4: 6 - 0.  */
    6, /* reduc_f32_cost  */
    /* Likewise for 1 scalar FADD (~2 cycles) vs. 2: 2 - 0.  */
    2, /* reduc_f64_cost  */
    2, /* store_elt_extra_cost  */
    /* This value is just inherited from the Cortex-A57 table.  */
    8, /* vec_to_scalar_cost  */
    /* See the comment above the Advanced SIMD versions.  */
    4, /* scalar_to_vec_cost  */
    4, /* align_load_cost  */
    4, /* unalign_load_cost  */
    /* Although stores have a latency of 2 and compete for the
       vector pipes, in practice it's better not to model that.  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  3, /* clast_cost  */
  10, /* fadda_f16_cost  */
  6, /* fadda_f32_cost  */
  4, /* fadda_f64_cost  */
  /* A strided Advanced SIMD x64 load would take two parallel FP loads
     (8 cycles) plus an insertion (2 cycles).  Assume a 64-bit SVE gather
     is 1 cycle more.  The Advanced SIMD version is costed as 2 scalar loads
     (cost 8) and a vec_construct (cost 2).  Add a full vector operation
     (cost 2) to that, to avoid the difference being lost in rounding.

     There is no easy comparison between a strided Advanced SIMD x32 load
     and an SVE 32-bit gather, but cost an SVE 32-bit gather as 1 vector
     operation more than a 64-bit gather.  */
  14, /* gather_load_x32_cost  */
  12, /* gather_load_x64_cost  */
  3 /* scatter_store_elt_cost  */
};

static const aarch64_scalar_vec_issue_info neoversen2_scalar_issue_info =
{
  3, /* loads_stores_per_cycle  */
  2, /* stores_per_cycle  */
  4, /* general_ops_per_cycle  */
  0, /* fp_simd_load_general_ops  */
  1 /* fp_simd_store_general_ops  */
};

static const aarch64_advsimd_vec_issue_info neoversen2_advsimd_issue_info =
{
  {
    3, /* loads_stores_per_cycle  */
    2, /* stores_per_cycle  */
    2, /* general_ops_per_cycle  */
    0, /* fp_simd_load_general_ops  */
    1 /* fp_simd_store_general_ops  */
  },
  2, /* ld2_st2_general_ops  */
  2, /* ld3_st3_general_ops  */
  3 /* ld4_st4_general_ops  */
};

static const aarch64_sve_vec_issue_info neoversen2_sve_issue_info =
{
  {
    {
      3, /* loads_per_cycle  */
      2, /* stores_per_cycle  */
      2, /* general_ops_per_cycle  */
      0, /* fp_simd_load_general_ops  */
      1 /* fp_simd_store_general_ops  */
    },
    2, /* ld2_st2_general_ops  */
    3, /* ld3_st3_general_ops  */
    3 /* ld4_st4_general_ops  */
  },
  2, /* pred_ops_per_cycle  */
  2, /* while_pred_ops  */
  2, /* int_cmp_pred_ops  */
  1, /* fp_cmp_pred_ops  */
  1, /* gather_scatter_pair_general_ops  */
  1 /* gather_scatter_pair_pred_ops  */
};

static const aarch64_vec_issue_info neoversen2_vec_issue_info =
{
  &neoversen2_scalar_issue_info,
  &neoversen2_advsimd_issue_info,
  &neoversen2_sve_issue_info
};

/* Neoverse N2 costs for vector insn classes.  */
static const struct cpu_vector_cost neoversen2_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  2, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &neoversen2_advsimd_vector_cost, /* advsimd  */
  &neoversen2_sve_vector_cost, /* sve  */
  &neoversen2_vec_issue_info /* issue_info  */
};

static const struct tune_params neoversen2_tunings =
{
  &cortexa76_extra_costs,
  &neoversen2_addrcost_table,
  &neoversen2_regmove_cost,
  &neoversen2_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_128, /* sve_width  */
  { 4, /* load_int.  */
    1, /* store_int.  */
    6, /* load_fp.  */
    2, /* store_fp.  */
    6, /* load_pred.  */
    1 /* store_pred.  */
  }, /* memmov_cost.  */
  3, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "32:16",	/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  2,	/* int_reassoc_width.  */
  4,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND
   | AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS
   | AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS
   | AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const advsimd_vec_cost neoversev2_advsimd_vector_cost =
{
  2, /* int_stmt_cost  */
  2, /* fp_stmt_cost  */
  2, /* ld2_st2_permute_cost */
  2, /* ld3_st3_permute_cost  */
  3, /* ld4_st4_permute_cost  */
  3, /* permute_cost  */
  4, /* reduc_i8_cost  */
  4, /* reduc_i16_cost  */
  2, /* reduc_i32_cost  */
  2, /* reduc_i64_cost  */
  6, /* reduc_f16_cost  */
  3, /* reduc_f32_cost  */
  2, /* reduc_f64_cost  */
  2, /* store_elt_extra_cost  */
  /* This value is just inherited from the Cortex-A57 table.  */
  8, /* vec_to_scalar_cost  */
  /* This depends very much on what the scalar value is and
     where it comes from.  E.g. some constants take two dependent
     instructions or a load, while others might be moved from a GPR.
     4 seems to be a reasonable compromise in practice.  */
  4, /* scalar_to_vec_cost  */
  4, /* align_load_cost  */
  4, /* unalign_load_cost  */
  /* Although stores have a latency of 2 and compete for the
     vector pipes, in practice it's better not to model that.  */
  1, /* unalign_store_cost  */
  1  /* store_cost  */
};

static const sve_vec_cost neoversev2_sve_vector_cost =
{
  {
    2, /* int_stmt_cost  */
    2, /* fp_stmt_cost  */
    3, /* ld2_st2_permute_cost  */
    3, /* ld3_st3_permute_cost  */
    4, /* ld4_st4_permute_cost  */
    3, /* permute_cost  */
    /* Theoretically, a reduction involving 15 scalar ADDs could
       complete in ~3 cycles and would have a cost of 15.  [SU]ADDV
       completes in 11 cycles, so give it a cost of 15 + 8.  */
    21, /* reduc_i8_cost  */
    /* Likewise for 7 scalar ADDs (~2 cycles) vs. 9: 7 + 7.  */
    14, /* reduc_i16_cost  */
    /* Likewise for 3 scalar ADDs (~2 cycles) vs. 8: 3 + 4.  */
    7, /* reduc_i32_cost  */
    /* Likewise for 1 scalar ADD (~1 cycles) vs. 2: 1 + 1.  */
    2, /* reduc_i64_cost  */
    /* Theoretically, a reduction involving 7 scalar FADDs could
       complete in ~6 cycles and would have a cost of 14.  FADDV
       completes in 8 cycles, so give it a cost of 14 + 2.  */
    16, /* reduc_f16_cost  */
    /* Likewise for 3 scalar FADDs (~4 cycles) vs. 6: 6 + 2.  */
    8, /* reduc_f32_cost  */
    /* Likewise for 1 scalar FADD (~2 cycles) vs. 4: 2 + 2.  */
    4, /* reduc_f64_cost  */
    2, /* store_elt_extra_cost  */
    /* This value is just inherited from the Cortex-A57 table.  */
    8, /* vec_to_scalar_cost  */
    /* See the comment above the Advanced SIMD versions.  */
    4, /* scalar_to_vec_cost  */
    4, /* align_load_cost  */
    4, /* unalign_load_cost  */
    /* Although stores have a latency of 2 and compete for the
       vector pipes, in practice it's better not to model that.  */
    1, /* unalign_store_cost  */
    1  /* store_cost  */
  },
  3, /* clast_cost  */
  10, /* fadda_f16_cost  */
  6, /* fadda_f32_cost  */
  4, /* fadda_f64_cost  */
  /* A strided Advanced SIMD x64 load would take two parallel FP loads
     (8 cycles) plus an insertion (2 cycles).  Assume a 64-bit SVE gather
     is 1 cycle more.  The Advanced SIMD version is costed as 2 scalar loads
     (cost 8) and a vec_construct (cost 2).  Add a full vector operation
     (cost 2) to that, to avoid the difference being lost in rounding.

     There is no easy comparison between a strided Advanced SIMD x32 load
     and an SVE 32-bit gather, but cost an SVE 32-bit gather as 1 vector
     operation more than a 64-bit gather.  */
  14, /* gather_load_x32_cost  */
  12, /* gather_load_x64_cost  */
  3 /* scatter_store_elt_cost  */
};

static const aarch64_scalar_vec_issue_info neoversev2_scalar_issue_info =
{
  3, /* loads_stores_per_cycle  */
  2, /* stores_per_cycle  */
  6, /* general_ops_per_cycle  */
  0, /* fp_simd_load_general_ops  */
  1 /* fp_simd_store_general_ops  */
};

static const aarch64_advsimd_vec_issue_info neoversev2_advsimd_issue_info =
{
  {
    3, /* loads_stores_per_cycle  */
    2, /* stores_per_cycle  */
    4, /* general_ops_per_cycle  */
    0, /* fp_simd_load_general_ops  */
    1 /* fp_simd_store_general_ops  */
  },
  2, /* ld2_st2_general_ops  */
  2, /* ld3_st3_general_ops  */
  3 /* ld4_st4_general_ops  */
};

static const aarch64_sve_vec_issue_info neoversev2_sve_issue_info =
{
  {
    {
      3, /* loads_per_cycle  */
      2, /* stores_per_cycle  */
      4, /* general_ops_per_cycle  */
      0, /* fp_simd_load_general_ops  */
      1 /* fp_simd_store_general_ops  */
    },
    2, /* ld2_st2_general_ops  */
    3, /* ld3_st3_general_ops  */
    3 /* ld4_st4_general_ops  */
  },
  2, /* pred_ops_per_cycle  */
  2, /* while_pred_ops  */
  2, /* int_cmp_pred_ops  */
  1, /* fp_cmp_pred_ops  */
  1, /* gather_scatter_pair_general_ops  */
  1 /* gather_scatter_pair_pred_ops  */
};

static const aarch64_vec_issue_info neoversev2_vec_issue_info =
{
  &neoversev2_scalar_issue_info,
  &neoversev2_advsimd_issue_info,
  &neoversev2_sve_issue_info
};

/* Demeter costs for vector insn classes.  */
static const struct cpu_vector_cost neoversev2_vector_cost =
{
  1, /* scalar_int_stmt_cost  */
  2, /* scalar_fp_stmt_cost  */
  4, /* scalar_load_cost  */
  1, /* scalar_store_cost  */
  1, /* cond_taken_branch_cost  */
  1, /* cond_not_taken_branch_cost  */
  &neoversev2_advsimd_vector_cost, /* advsimd  */
  &neoversev2_sve_vector_cost, /* sve  */
  &neoversev2_vec_issue_info /* issue_info  */
};

static const struct tune_params neoversev2_tunings =
{
  &cortexa76_extra_costs,
  &neoversev2_addrcost_table,
  &neoversev2_regmove_cost,
  &neoversev2_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_128, /* sve_width  */
  { 4, /* load_int.  */
    2, /* store_int.  */
    6, /* load_fp.  */
    1, /* store_fp.  */
    6, /* load_pred.  */
    2 /* store_pred.  */
  }, /* memmov_cost.  */
  5, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "32:16",	/* function_align.  */
  "4",		/* jump_align.  */
  "32:16",	/* loop_align.  */
  3,	/* int_reassoc_width.  */
  6,	/* fp_reassoc_width.  */
  3,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND
   | AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS
   | AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS
   | AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT),	/* tune_flags.  */
  &generic_prefetch_tune
};

static const struct tune_params a64fx_tunings =
{
  &a64fx_extra_costs,
  &a64fx_addrcost_table,
  &a64fx_regmove_cost,
  &a64fx_vector_cost,
  &generic_branch_cost,
  &generic_approx_modes,
  SVE_512, /* sve_width  */
  { 4, /* load_int.  */
    4, /* store_int.  */
    4, /* load_fp.  */
    4, /* store_fp.  */
    4, /* load_pred.  */
    4 /* store_pred.  */
  }, /* memmov_cost.  */
  7, /* issue_rate  */
  (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops  */
  "32",	/* function_align.  */
  "16",	/* jump_align.  */
  "32",	/* loop_align.  */
  4,	/* int_reassoc_width.  */
  2,	/* fp_reassoc_width.  */
  2,	/* vec_reassoc_width.  */
  2,	/* min_div_recip_mul_sf.  */
  2,	/* min_div_recip_mul_df.  */
  0,	/* max_case_values.  */
  tune_params::AUTOPREFETCHER_WEAK,	/* autoprefetcher_model.  */
  (AARCH64_EXTRA_TUNE_NONE),	/* tune_flags.  */
  &a64fx_prefetch_tune
};

/* Support for fine-grained override of the tuning structures.  */
struct aarch64_tuning_override_function
{
  const char* name;
  void (*parse_override)(const char*, struct tune_params*);
};

static void aarch64_parse_fuse_string (const char*, struct tune_params*);
static void aarch64_parse_tune_string (const char*, struct tune_params*);
static void aarch64_parse_sve_width_string (const char*, struct tune_params*);

static const struct aarch64_tuning_override_function
aarch64_tuning_override_functions[] =
{
  { "fuse", aarch64_parse_fuse_string },
  { "tune", aarch64_parse_tune_string },
  { "sve_width", aarch64_parse_sve_width_string },
  { NULL, NULL }
};

/* A processor implementing AArch64.  */
struct processor
{
  const char *name;
  aarch64_processor ident;
  aarch64_processor sched_core;
  aarch64_arch arch;
  aarch64_feature_flags flags;
  const tune_params *tune;
};

/* Architectures implementing AArch64.  */
static constexpr processor all_architectures[] =
{
#define AARCH64_ARCH(NAME, CORE, ARCH_IDENT, D, E) \
  {NAME, CORE, CORE, AARCH64_ARCH_##ARCH_IDENT, \
   feature_deps::ARCH_IDENT ().enable, NULL},
#include "aarch64-arches.def"
  {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, NULL}
};

/* Processor cores implementing AArch64.  */
static const struct processor all_cores[] =
{
#define AARCH64_CORE(NAME, IDENT, SCHED, ARCH, E, COSTS, G, H, I) \
  {NAME, IDENT, SCHED, AARCH64_ARCH_##ARCH, \
   feature_deps::cpu_##IDENT, &COSTS##_tunings},
#include "aarch64-cores.def"
  {"generic", generic, cortexa53, AARCH64_ARCH_V8A,
   feature_deps::V8A ().enable, &generic_tunings},
  {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, NULL}
};

/* The current tuning set.  */
struct tune_params aarch64_tune_params = generic_tunings;

/* Check whether an 'aarch64_vector_pcs' attribute is valid.  */

static tree
handle_aarch64_vector_pcs_attribute (tree *node, tree name, tree,
				     int, bool *no_add_attrs)
{
  /* Since we set fn_type_req to true, the caller should have checked
     this for us.  */
  gcc_assert (FUNC_OR_METHOD_TYPE_P (*node));
  switch ((arm_pcs) fntype_abi (*node).id ())
    {
    case ARM_PCS_AAPCS64:
    case ARM_PCS_SIMD:
      return NULL_TREE;

    case ARM_PCS_SVE:
      error ("the %qE attribute cannot be applied to an SVE function type",
	     name);
      *no_add_attrs = true;
      return NULL_TREE;

    case ARM_PCS_TLSDESC:
    case ARM_PCS_UNKNOWN:
      break;
    }
  gcc_unreachable ();
}

/* Table of machine attributes.  */
static const struct attribute_spec aarch64_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
       affects_type_identity, handler, exclude } */
  { "aarch64_vector_pcs", 0, 0, false, true,  true,  true,
			  handle_aarch64_vector_pcs_attribute, NULL },
  { "arm_sve_vector_bits", 1, 1, false, true,  false, true,
			  aarch64_sve::handle_arm_sve_vector_bits_attribute,
			  NULL },
  { "Advanced SIMD type", 1, 1, false, true,  false, true,  NULL, NULL },
  { "SVE type",		  3, 3, false, true,  false, true,  NULL, NULL },
  { "SVE sizeless type",  0, 0, false, true,  false, true,  NULL, NULL },
  { NULL,                 0, 0, false, false, false, false, NULL, NULL }
};

/* An ISA extension in the co-processor and main instruction set space.  */
struct aarch64_option_extension
{
  const char *const name;
  const unsigned long flags_on;
  const unsigned long flags_off;
};

typedef enum aarch64_cond_code
{
  AARCH64_EQ = 0, AARCH64_NE, AARCH64_CS, AARCH64_CC, AARCH64_MI, AARCH64_PL,
  AARCH64_VS, AARCH64_VC, AARCH64_HI, AARCH64_LS, AARCH64_GE, AARCH64_LT,
  AARCH64_GT, AARCH64_LE, AARCH64_AL, AARCH64_NV
}
aarch64_cc;

#define AARCH64_INVERSE_CONDITION_CODE(X) ((aarch64_cc) (((int) X) ^ 1))

struct aarch64_branch_protect_type
{
  /* The type's name that the user passes to the branch-protection option
    string.  */
  const char* name;
  /* Function to handle the protection type and set global variables.
    First argument is the string token corresponding with this type and the
    second argument is the next token in the option string.
    Return values:
    * AARCH64_PARSE_OK: Handling was sucessful.
    * AARCH64_INVALID_ARG: The type is invalid in this context and the caller
      should print an error.
    * AARCH64_INVALID_FEATURE: The type is invalid and the handler prints its
      own error.  */
  enum aarch64_parse_opt_result (*handler)(char*, char*);
  /* A list of types that can follow this type in the option string.  */
  const aarch64_branch_protect_type* subtypes;
  unsigned int num_subtypes;
};

static enum aarch64_parse_opt_result
aarch64_handle_no_branch_protection (char* str, char* rest)
{
  aarch64_ra_sign_scope = AARCH64_FUNCTION_NONE;
  aarch64_enable_bti = 0;
  if (rest)
    {
      error ("unexpected %<%s%> after %<%s%>", rest, str);
      return AARCH64_PARSE_INVALID_FEATURE;
    }
  return AARCH64_PARSE_OK;
}

static enum aarch64_parse_opt_result
aarch64_handle_standard_branch_protection (char* str, char* rest)
{
  aarch64_ra_sign_scope = AARCH64_FUNCTION_NON_LEAF;
  aarch64_ra_sign_key = AARCH64_KEY_A;
  aarch64_enable_bti = 1;
  if (rest)
    {
      error ("unexpected %<%s%> after %<%s%>", rest, str);
      return AARCH64_PARSE_INVALID_FEATURE;
    }
  return AARCH64_PARSE_OK;
}

static enum aarch64_parse_opt_result
aarch64_handle_pac_ret_protection (char* str ATTRIBUTE_UNUSED,
				    char* rest ATTRIBUTE_UNUSED)
{
  aarch64_ra_sign_scope = AARCH64_FUNCTION_NON_LEAF;
  aarch64_ra_sign_key = AARCH64_KEY_A;
  return AARCH64_PARSE_OK;
}

static enum aarch64_parse_opt_result
aarch64_handle_pac_ret_leaf (char* str ATTRIBUTE_UNUSED,
			      char* rest ATTRIBUTE_UNUSED)
{
  aarch64_ra_sign_scope = AARCH64_FUNCTION_ALL;
  return AARCH64_PARSE_OK;
}

static enum aarch64_parse_opt_result
aarch64_handle_pac_ret_b_key (char* str ATTRIBUTE_UNUSED,
			      char* rest ATTRIBUTE_UNUSED)
{
  aarch64_ra_sign_key = AARCH64_KEY_B;
  return AARCH64_PARSE_OK;
}

static enum aarch64_parse_opt_result
aarch64_handle_bti_protection (char* str ATTRIBUTE_UNUSED,
				    char* rest ATTRIBUTE_UNUSED)
{
  aarch64_enable_bti = 1;
  return AARCH64_PARSE_OK;
}

static const struct aarch64_branch_protect_type aarch64_pac_ret_subtypes[] = {
  { "leaf", aarch64_handle_pac_ret_leaf, NULL, 0 },
  { "b-key", aarch64_handle_pac_ret_b_key, NULL, 0 },
  { NULL, NULL, NULL, 0 }
};

static const struct aarch64_branch_protect_type aarch64_branch_protect_types[] = {
  { "none", aarch64_handle_no_branch_protection, NULL, 0 },
  { "standard", aarch64_handle_standard_branch_protection, NULL, 0 },
  { "pac-ret", aarch64_handle_pac_ret_protection, aarch64_pac_ret_subtypes,
    ARRAY_SIZE (aarch64_pac_ret_subtypes) },
  { "bti", aarch64_handle_bti_protection, NULL, 0 },
  { NULL, NULL, NULL, 0 }
};

/* The condition codes of the processor, and the inverse function.  */
static const char * const aarch64_condition_codes[] =
{
  "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
  "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
};

/* The preferred condition codes for SVE conditions.  */
static const char *const aarch64_sve_condition_codes[] =
{
  "none", "any", "nlast", "last", "first", "nfrst", "vs", "vc",
  "pmore", "plast", "tcont", "tstop", "gt", "le", "al", "nv"
};

/* Return the assembly token for svpattern value VALUE.  */

static const char *
svpattern_token (enum aarch64_svpattern pattern)
{
  switch (pattern)
    {
#define CASE(UPPER, LOWER, VALUE) case AARCH64_SV_##UPPER: return #LOWER;
    AARCH64_FOR_SVPATTERN (CASE)
#undef CASE
    case AARCH64_NUM_SVPATTERNS:
      break;
    }
  gcc_unreachable ();
}

/* Return the location of a piece that is known to be passed or returned
   in registers.  FIRST_ZR is the first unused vector argument register
   and FIRST_PR is the first unused predicate argument register.  */

rtx
pure_scalable_type_info::piece::get_rtx (unsigned int first_zr,
					 unsigned int first_pr) const
{
  gcc_assert (VECTOR_MODE_P (mode)
	      && first_zr + num_zr <= V0_REGNUM + NUM_FP_ARG_REGS
	      && first_pr + num_pr <= P0_REGNUM + NUM_PR_ARG_REGS);

  if (num_zr > 0 && num_pr == 0)
    return gen_rtx_REG (mode, first_zr);

  if (num_zr == 0 && num_pr == 1)
    return gen_rtx_REG (mode, first_pr);

  gcc_unreachable ();
}

/* Return the total number of vector registers required by the PST.  */

unsigned int
pure_scalable_type_info::num_zr () const
{
  unsigned int res = 0;
  for (unsigned int i = 0; i < pieces.length (); ++i)
    res += pieces[i].num_zr;
  return res;
}

/* Return the total number of predicate registers required by the PST.  */

unsigned int
pure_scalable_type_info::num_pr () const
{
  unsigned int res = 0;
  for (unsigned int i = 0; i < pieces.length (); ++i)
    res += pieces[i].num_pr;
  return res;
}

/* Return the location of a PST that is known to be passed or returned
   in registers.  FIRST_ZR is the first unused vector argument register
   and FIRST_PR is the first unused predicate argument register.  */

rtx
pure_scalable_type_info::get_rtx (machine_mode mode,
				  unsigned int first_zr,
				  unsigned int first_pr) const
{
  /* Try to return a single REG if possible.  This leads to better
     code generation; it isn't required for correctness.  */
  if (mode == pieces[0].mode)
    {
      gcc_assert (pieces.length () == 1);
      return pieces[0].get_rtx (first_zr, first_pr);
    }

  /* Build up a PARALLEL that contains the individual pieces.  */
  rtvec rtxes = rtvec_alloc (pieces.length ());
  for (unsigned int i = 0; i < pieces.length (); ++i)
    {
      rtx reg = pieces[i].get_rtx (first_zr, first_pr);
      rtx offset = gen_int_mode (pieces[i].offset, Pmode);
      RTVEC_ELT (rtxes, i) = gen_rtx_EXPR_LIST (VOIDmode, reg, offset);
      first_zr += pieces[i].num_zr;
      first_pr += pieces[i].num_pr;
    }
  return gen_rtx_PARALLEL (mode, rtxes);
}

/* Analyze whether TYPE is a Pure Scalable Type according to the rules
   in the AAPCS64.  */

pure_scalable_type_info::analysis_result
pure_scalable_type_info::analyze (const_tree type)
{
  /* Prevent accidental reuse.  */
  gcc_assert (pieces.is_empty ());

  /* No code will be generated for erroneous types, so we won't establish
     an ABI mapping.  */
  if (type == error_mark_node)
    return NO_ABI_IDENTITY;

  /* Zero-sized types disappear in the language->ABI mapping.  */
  if (TYPE_SIZE (type) && integer_zerop (TYPE_SIZE (type)))
    return NO_ABI_IDENTITY;

  /* Check for SVTs, SPTs, and built-in tuple types that map to PSTs.  */
  piece p = {};
  if (aarch64_sve::builtin_type_p (type, &p.num_zr, &p.num_pr))
    {
      machine_mode mode = TYPE_MODE_RAW (type);
      gcc_assert (VECTOR_MODE_P (mode)
		  && (!TARGET_SVE || aarch64_sve_mode_p (mode)));

      p.mode = p.orig_mode = mode;
      add_piece (p);
      return IS_PST;
    }

  /* Check for user-defined PSTs.  */
  if (TREE_CODE (type) == ARRAY_TYPE)
    return analyze_array (type);
  if (TREE_CODE (type) == RECORD_TYPE)
    return analyze_record (type);

  return ISNT_PST;
}

/* Analyze a type that is known not to be passed or returned in memory.
   Return true if it has an ABI identity and is a Pure Scalable Type.  */

bool
pure_scalable_type_info::analyze_registers (const_tree type)
{
  analysis_result result = analyze (type);
  gcc_assert (result != DOESNT_MATTER);
  return result == IS_PST;
}

/* Subroutine of analyze for handling ARRAY_TYPEs.  */

pure_scalable_type_info::analysis_result
pure_scalable_type_info::analyze_array (const_tree type)
{
  /* Analyze the element type.  */
  pure_scalable_type_info element_info;
  analysis_result result = element_info.analyze (TREE_TYPE (type));
  if (result != IS_PST)
    return result;

  /* An array of unknown, flexible or variable length will be passed and
     returned by reference whatever we do.  */
  tree nelts_minus_one = array_type_nelts (type);
  if (!tree_fits_uhwi_p (nelts_minus_one))
    return DOESNT_MATTER;

  /* Likewise if the array is constant-sized but too big to be interesting.
     The double checks against MAX_PIECES are to protect against overflow.  */
  unsigned HOST_WIDE_INT count = tree_to_uhwi (nelts_minus_one);
  if (count > MAX_PIECES)
    return DOESNT_MATTER;
  count += 1;
  if (count * element_info.pieces.length () > MAX_PIECES)
    return DOESNT_MATTER;

  /* The above checks should have weeded out elements of unknown size.  */
  poly_uint64 element_bytes;
  if (!poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (type)), &element_bytes))
    gcc_unreachable ();

  /* Build up the list of individual vectors and predicates.  */
  gcc_assert (!element_info.pieces.is_empty ());
  for (unsigned int i = 0; i < count; ++i)
    for (unsigned int j = 0; j < element_info.pieces.length (); ++j)
      {
	piece p = element_info.pieces[j];
	p.offset += i * element_bytes;
	add_piece (p);
      }
  return IS_PST;
}

/* Subroutine of analyze for handling RECORD_TYPEs.  */

pure_scalable_type_info::analysis_result
pure_scalable_type_info::analyze_record (const_tree type)
{
  for (tree field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    {
      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      /* Zero-sized fields disappear in the language->ABI mapping.  */
      if (DECL_SIZE (field) && integer_zerop (DECL_SIZE (field)))
	continue;

      /* All fields with an ABI identity must be PSTs for the record as
	 a whole to be a PST.  If any individual field is too big to be
	 interesting then the record is too.  */
      pure_scalable_type_info field_info;
      analysis_result subresult = field_info.analyze (TREE_TYPE (field));
      if (subresult == NO_ABI_IDENTITY)
	continue;
      if (subresult != IS_PST)
	return subresult;

      /* Since all previous fields are PSTs, we ought to be able to track
	 the field offset using poly_ints.  */
      tree bitpos = bit_position (field);
      gcc_assert (poly_int_tree_p (bitpos));

      /* For the same reason, it shouldn't be possible to create a PST field
	 whose offset isn't byte-aligned.  */
      poly_widest_int wide_bytepos = exact_div (wi::to_poly_widest (bitpos),
						BITS_PER_UNIT);

      /* Punt if the record is too big to be interesting.  */
      poly_uint64 bytepos;
      if (!wide_bytepos.to_uhwi (&bytepos)
	  || pieces.length () + field_info.pieces.length () > MAX_PIECES)
	return DOESNT_MATTER;

      /* Add the individual vectors and predicates in the field to the
	 record's list.  */
      gcc_assert (!field_info.pieces.is_empty ());
      for (unsigned int i = 0; i < field_info.pieces.length (); ++i)
	{
	  piece p = field_info.pieces[i];
	  p.offset += bytepos;
	  add_piece (p);
	}
    }
  /* Empty structures disappear in the language->ABI mapping.  */
  return pieces.is_empty () ? NO_ABI_IDENTITY : IS_PST;
}

/* Add P to the list of pieces in the type.  */

void
pure_scalable_type_info::add_piece (const piece &p)
{
  /* Try to fold the new piece into the previous one to form a
     single-mode PST.  For example, if we see three consecutive vectors
     of the same mode, we can represent them using the corresponding
     3-tuple mode.

     This is purely an optimization.  */
  if (!pieces.is_empty ())
    {
      piece &prev = pieces.last ();
      gcc_assert (VECTOR_MODE_P (p.mode) && VECTOR_MODE_P (prev.mode));
      unsigned int nelems1, nelems2;
      if (prev.orig_mode == p.orig_mode
	  && known_eq (prev.offset + GET_MODE_SIZE (prev.mode), p.offset)
	  && constant_multiple_p (GET_MODE_NUNITS (prev.mode),
				  GET_MODE_NUNITS (p.orig_mode), &nelems1)
	  && constant_multiple_p (GET_MODE_NUNITS (p.mode),
				  GET_MODE_NUNITS (p.orig_mode), &nelems2)
	  && targetm.array_mode (p.orig_mode,
				 nelems1 + nelems2).exists (&prev.mode))
	{
	  prev.num_zr += p.num_zr;
	  prev.num_pr += p.num_pr;
	  return;
	}
    }
  pieces.quick_push (p);
}

/* Return true if at least one possible value of type TYPE includes at
   least one object of Pure Scalable Type, in the sense of the AAPCS64.

   This is a relatively expensive test for some types, so it should
   generally be made as late as possible.  */

static bool
aarch64_some_values_include_pst_objects_p (const_tree type)
{
  if (TYPE_SIZE (type) && integer_zerop (TYPE_SIZE (type)))
    return false;

  if (aarch64_sve::builtin_type_p (type))
    return true;

  if (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == COMPLEX_TYPE)
    return aarch64_some_values_include_pst_objects_p (TREE_TYPE (type));

  if (RECORD_OR_UNION_TYPE_P (type))
    for (tree field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
      if (TREE_CODE (field) == FIELD_DECL
	  && aarch64_some_values_include_pst_objects_p (TREE_TYPE (field)))
	return true;

  return false;
}

/* Return the descriptor of the SIMD ABI.  */

static const predefined_function_abi &
aarch64_simd_abi (void)
{
  predefined_function_abi &simd_abi = function_abis[ARM_PCS_SIMD];
  if (!simd_abi.initialized_p ())
    {
      HARD_REG_SET full_reg_clobbers
	= default_function_abi.full_reg_clobbers ();
      for (int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	if (FP_SIMD_SAVED_REGNUM_P (regno))
	  CLEAR_HARD_REG_BIT (full_reg_clobbers, regno);
      simd_abi.initialize (ARM_PCS_SIMD, full_reg_clobbers);
    }
  return simd_abi;
}

/* Return the descriptor of the SVE PCS.  */

static const predefined_function_abi &
aarch64_sve_abi (void)
{
  predefined_function_abi &sve_abi = function_abis[ARM_PCS_SVE];
  if (!sve_abi.initialized_p ())
    {
      HARD_REG_SET full_reg_clobbers
	= default_function_abi.full_reg_clobbers ();
      for (int regno = V8_REGNUM; regno <= V23_REGNUM; ++regno)
	CLEAR_HARD_REG_BIT (full_reg_clobbers, regno);
      for (int regno = P4_REGNUM; regno <= P15_REGNUM; ++regno)
	CLEAR_HARD_REG_BIT (full_reg_clobbers, regno);
      sve_abi.initialize (ARM_PCS_SVE, full_reg_clobbers);
    }
  return sve_abi;
}

/* If X is an UNSPEC_SALT_ADDR expression, return the address that it
   wraps, otherwise return X itself.  */

static rtx
strip_salt (rtx x)
{
  rtx search = x;
  if (GET_CODE (search) == CONST)
    search = XEXP (search, 0);
  if (GET_CODE (search) == UNSPEC && XINT (search, 1) == UNSPEC_SALT_ADDR)
    x = XVECEXP (search, 0, 0);
  return x;
}

/* Like strip_offset, but also strip any UNSPEC_SALT_ADDR from the
   expression.  */

static rtx
strip_offset_and_salt (rtx addr, poly_int64 *offset)
{
  return strip_salt (strip_offset (addr, offset));
}

/* Generate code to enable conditional branches in functions over 1 MiB.  */
const char *
aarch64_gen_far_branch (rtx * operands, int pos_label, const char * dest,
			const char * branch_format)
{
    rtx_code_label * tmp_label = gen_label_rtx ();
    char label_buf[256];
    char buffer[128];
    ASM_GENERATE_INTERNAL_LABEL (label_buf, dest,
				 CODE_LABEL_NUMBER (tmp_label));
    const char *label_ptr = targetm.strip_name_encoding (label_buf);
    rtx dest_label = operands[pos_label];
    operands[pos_label] = tmp_label;

    snprintf (buffer, sizeof (buffer), "%s%s", branch_format, label_ptr);
    output_asm_insn (buffer, operands);

    snprintf (buffer, sizeof (buffer), "b\t%%l%d\n%s:", pos_label, label_ptr);
    operands[pos_label] = dest_label;
    output_asm_insn (buffer, operands);
    return "";
}

void
aarch64_err_no_fpadvsimd (machine_mode mode)
{
  if (TARGET_GENERAL_REGS_ONLY)
    if (FLOAT_MODE_P (mode))
      error ("%qs is incompatible with the use of floating-point types",
	     "-mgeneral-regs-only");
    else
      error ("%qs is incompatible with the use of vector types",
	     "-mgeneral-regs-only");
  else
    if (FLOAT_MODE_P (mode))
      error ("%qs feature modifier is incompatible with the use of"
	     " floating-point types", "+nofp");
    else
      error ("%qs feature modifier is incompatible with the use of"
	     " vector types", "+nofp");
}

/* Report when we try to do something that requires SVE when SVE is disabled.
   This is an error of last resort and isn't very high-quality.  It usually
   involves attempts to measure the vector length in some way.  */
static void
aarch64_report_sve_required (void)
{
  static bool reported_p = false;

  /* Avoid reporting a slew of messages for a single oversight.  */
  if (reported_p)
    return;

  error ("this operation requires the SVE ISA extension");
  inform (input_location, "you can enable SVE using the command-line"
	  " option %<-march%>, or by using the %<target%>"
	  " attribute or pragma");
  reported_p = true;
}

/* Return true if REGNO is P0-P15 or one of the special FFR-related
   registers.  */
inline bool
pr_or_ffr_regnum_p (unsigned int regno)
{
  return PR_REGNUM_P (regno) || regno == FFR_REGNUM || regno == FFRT_REGNUM;
}

/* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS.
   The register allocator chooses POINTER_AND_FP_REGS if FP_REGS and
   GENERAL_REGS have the same cost - even if POINTER_AND_FP_REGS has a much
   higher cost.  POINTER_AND_FP_REGS is also used if the cost of both FP_REGS
   and GENERAL_REGS is lower than the memory cost (in this case the best class
   is the lowest cost one).  Using POINTER_AND_FP_REGS irrespectively of its
   cost results in bad allocations with many redundant int<->FP moves which
   are expensive on various cores.
   To avoid this we don't allow POINTER_AND_FP_REGS as the allocno class, but
   force a decision between FP_REGS and GENERAL_REGS.  We use the allocno class
   if it isn't POINTER_AND_FP_REGS.  Similarly, use the best class if it isn't
   POINTER_AND_FP_REGS.  Otherwise set the allocno class depending on the mode.
   The result of this is that it is no longer inefficient to have a higher
   memory move cost than the register move cost.
*/

static reg_class_t
aarch64_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class,
					 reg_class_t best_class)
{
  machine_mode mode;

  if (!reg_class_subset_p (GENERAL_REGS, allocno_class)
      || !reg_class_subset_p (FP_REGS, allocno_class))
    return allocno_class;

  if (!reg_class_subset_p (GENERAL_REGS, best_class)
      || !reg_class_subset_p (FP_REGS, best_class))
    return best_class;

  mode = PSEUDO_REGNO_MODE (regno);
  return FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode) ? FP_REGS : GENERAL_REGS;
}

static unsigned int
aarch64_min_divisions_for_recip_mul (machine_mode mode)
{
  if (GET_MODE_UNIT_SIZE (mode) == 4)
    return aarch64_tune_params.min_div_recip_mul_sf;
  return aarch64_tune_params.min_div_recip_mul_df;
}

/* Return the reassociation width of treeop OPC with mode MODE.  */
static int
aarch64_reassociation_width (unsigned opc, machine_mode mode)
{
  if (VECTOR_MODE_P (mode))
    return aarch64_tune_params.vec_reassoc_width;
  if (INTEGRAL_MODE_P (mode))
    return aarch64_tune_params.int_reassoc_width;
  /* Avoid reassociating floating point addition so we emit more FMAs.  */
  if (FLOAT_MODE_P (mode) && opc != PLUS_EXPR)
    return aarch64_tune_params.fp_reassoc_width;
  return 1;
}

/* Provide a mapping from gcc register numbers to dwarf register numbers.  */
unsigned
aarch64_debugger_regno (unsigned regno)
{
   if (GP_REGNUM_P (regno))
     return AARCH64_DWARF_R0 + regno - R0_REGNUM;
   else if (regno == SP_REGNUM)
     return AARCH64_DWARF_SP;
   else if (FP_REGNUM_P (regno))
     return AARCH64_DWARF_V0 + regno - V0_REGNUM;
   else if (PR_REGNUM_P (regno))
     return AARCH64_DWARF_P0 + regno - P0_REGNUM;
   else if (regno == VG_REGNUM)
     return AARCH64_DWARF_VG;

   /* Return values >= DWARF_FRAME_REGISTERS indicate that there is no
      equivalent DWARF register.  */
   return DWARF_FRAME_REGISTERS;
}

/* If X is a CONST_DOUBLE, return its bit representation as a constant
   integer, otherwise return X unmodified.  */
static rtx
aarch64_bit_representation (rtx x)
{
  if (CONST_DOUBLE_P (x))
    x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
  return x;
}

/* Return an estimate for the number of quadwords in an SVE vector.  This is
   equivalent to the number of Advanced SIMD vectors in an SVE vector.  */
static unsigned int
aarch64_estimated_sve_vq ()
{
  return estimated_poly_value (BITS_PER_SVE_VECTOR) / 128;
}

/* Return true if MODE is an SVE predicate mode.  */
static bool
aarch64_sve_pred_mode_p (machine_mode mode)
{
  return (TARGET_SVE
	  && (mode == VNx16BImode
	      || mode == VNx8BImode
	      || mode == VNx4BImode
	      || mode == VNx2BImode));
}

/* Three mutually-exclusive flags describing a vector or predicate type.  */
const unsigned int VEC_ADVSIMD  = 1;
const unsigned int VEC_SVE_DATA = 2;
const unsigned int VEC_SVE_PRED = 4;
/* Can be used in combination with VEC_ADVSIMD or VEC_SVE_DATA to indicate
   a structure of 2, 3 or 4 vectors.  */
const unsigned int VEC_STRUCT   = 8;
/* Can be used in combination with VEC_SVE_DATA to indicate that the
   vector has fewer significant bytes than a full SVE vector.  */
const unsigned int VEC_PARTIAL  = 16;
/* Useful combinations of the above.  */
const unsigned int VEC_ANY_SVE  = VEC_SVE_DATA | VEC_SVE_PRED;
const unsigned int VEC_ANY_DATA = VEC_ADVSIMD | VEC_SVE_DATA;

/* Return a set of flags describing the vector properties of mode MODE.
   Ignore modes that are not supported by the current target.  */
static unsigned int
aarch64_classify_vector_mode (machine_mode mode)
{
  if (aarch64_sve_pred_mode_p (mode))
    return VEC_SVE_PRED;

  /* Make the decision based on the mode's enum value rather than its
     properties, so that we keep the correct classification regardless
     of -msve-vector-bits.  */
  switch (mode)
    {
    /* Partial SVE QI vectors.  */
    case E_VNx2QImode:
    case E_VNx4QImode:
    case E_VNx8QImode:
    /* Partial SVE HI vectors.  */
    case E_VNx2HImode:
    case E_VNx4HImode:
    /* Partial SVE SI vector.  */
    case E_VNx2SImode:
    /* Partial SVE HF vectors.  */
    case E_VNx2HFmode:
    case E_VNx4HFmode:
    /* Partial SVE BF vectors.  */
    case E_VNx2BFmode:
    case E_VNx4BFmode:
    /* Partial SVE SF vector.  */
    case E_VNx2SFmode:
      return TARGET_SVE ? VEC_SVE_DATA | VEC_PARTIAL : 0;

    case E_VNx16QImode:
    case E_VNx8HImode:
    case E_VNx4SImode:
    case E_VNx2DImode:
    case E_VNx8BFmode:
    case E_VNx8HFmode:
    case E_VNx4SFmode:
    case E_VNx2DFmode:
      return TARGET_SVE ? VEC_SVE_DATA : 0;

    /* x2 SVE vectors.  */
    case E_VNx32QImode:
    case E_VNx16HImode:
    case E_VNx8SImode:
    case E_VNx4DImode:
    case E_VNx16BFmode:
    case E_VNx16HFmode:
    case E_VNx8SFmode:
    case E_VNx4DFmode:
    /* x3 SVE vectors.  */
    case E_VNx48QImode:
    case E_VNx24HImode:
    case E_VNx12SImode:
    case E_VNx6DImode:
    case E_VNx24BFmode:
    case E_VNx24HFmode:
    case E_VNx12SFmode:
    case E_VNx6DFmode:
    /* x4 SVE vectors.  */
    case E_VNx64QImode:
    case E_VNx32HImode:
    case E_VNx16SImode:
    case E_VNx8DImode:
    case E_VNx32BFmode:
    case E_VNx32HFmode:
    case E_VNx16SFmode:
    case E_VNx8DFmode:
      return TARGET_SVE ? VEC_SVE_DATA | VEC_STRUCT : 0;

    case E_OImode:
    case E_CImode:
    case E_XImode:
      return TARGET_FLOAT ? VEC_ADVSIMD | VEC_STRUCT : 0;

    /* Structures of 64-bit Advanced SIMD vectors.  */
    case E_V2x8QImode:
    case E_V2x4HImode:
    case E_V2x2SImode:
    case E_V2x1DImode:
    case E_V2x4BFmode:
    case E_V2x4HFmode:
    case E_V2x2SFmode:
    case E_V2x1DFmode:
    case E_V3x8QImode:
    case E_V3x4HImode:
    case E_V3x2SImode:
    case E_V3x1DImode:
    case E_V3x4BFmode:
    case E_V3x4HFmode:
    case E_V3x2SFmode:
    case E_V3x1DFmode:
    case E_V4x8QImode:
    case E_V4x4HImode:
    case E_V4x2SImode:
    case E_V4x1DImode:
    case E_V4x4BFmode:
    case E_V4x4HFmode:
    case E_V4x2SFmode:
    case E_V4x1DFmode:
      return TARGET_FLOAT ? VEC_ADVSIMD | VEC_STRUCT | VEC_PARTIAL : 0;

    /* Structures of 128-bit Advanced SIMD vectors.  */
    case E_V2x16QImode:
    case E_V2x8HImode:
    case E_V2x4SImode:
    case E_V2x2DImode:
    case E_V2x8BFmode:
    case E_V2x8HFmode:
    case E_V2x4SFmode:
    case E_V2x2DFmode:
    case E_V3x16QImode:
    case E_V3x8HImode:
    case E_V3x4SImode:
    case E_V3x2DImode:
    case E_V3x8BFmode:
    case E_V3x8HFmode:
    case E_V3x4SFmode:
    case E_V3x2DFmode:
    case E_V4x16QImode:
    case E_V4x8HImode:
    case E_V4x4SImode:
    case E_V4x2DImode:
    case E_V4x8BFmode:
    case E_V4x8HFmode:
    case E_V4x4SFmode:
    case E_V4x2DFmode:
      return TARGET_FLOAT ? VEC_ADVSIMD | VEC_STRUCT : 0;

    /* 64-bit Advanced SIMD vectors.  */
    case E_V8QImode:
    case E_V4HImode:
    case E_V2SImode:
    case E_V1DImode:
    case E_V4HFmode:
    case E_V4BFmode:
    case E_V2SFmode:
    case E_V1DFmode:
    /* 128-bit Advanced SIMD vectors.  */
    case E_V16QImode:
    case E_V8HImode:
    case E_V4SImode:
    case E_V2DImode:
    case E_V8HFmode:
    case E_V8BFmode:
    case E_V4SFmode:
    case E_V2DFmode:
      return TARGET_FLOAT ? VEC_ADVSIMD : 0;

    default:
      return 0;
    }
}

/* Return true if MODE is any of the Advanced SIMD structure modes.  */
bool
aarch64_advsimd_struct_mode_p (machine_mode mode)
{
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  return (vec_flags & VEC_ADVSIMD) && (vec_flags & VEC_STRUCT);
}

/* Return true if MODE is an Advanced SIMD D-register structure mode.  */
static bool
aarch64_advsimd_partial_struct_mode_p (machine_mode mode)
{
  return (aarch64_classify_vector_mode (mode)
	  == (VEC_ADVSIMD | VEC_STRUCT | VEC_PARTIAL));
}

/* Return true if MODE is an Advanced SIMD Q-register structure mode.  */
static bool
aarch64_advsimd_full_struct_mode_p (machine_mode mode)
{
  return (aarch64_classify_vector_mode (mode) == (VEC_ADVSIMD | VEC_STRUCT));
}

/* Return true if MODE is any of the data vector modes, including
   structure modes.  */
static bool
aarch64_vector_data_mode_p (machine_mode mode)
{
  return aarch64_classify_vector_mode (mode) & VEC_ANY_DATA;
}

/* Return true if MODE is any form of SVE mode, including predicates,
   vectors and structures.  */
bool
aarch64_sve_mode_p (machine_mode mode)
{
  return aarch64_classify_vector_mode (mode) & VEC_ANY_SVE;
}

/* Return true if MODE is an SVE data vector mode; either a single vector
   or a structure of vectors.  */
static bool
aarch64_sve_data_mode_p (machine_mode mode)
{
  return aarch64_classify_vector_mode (mode) & VEC_SVE_DATA;
}

/* Return the number of defined bytes in one constituent vector of
   SVE mode MODE, which has vector flags VEC_FLAGS.  */
static poly_int64
aarch64_vl_bytes (machine_mode mode, unsigned int vec_flags)
{
  if (vec_flags & VEC_PARTIAL)
    /* A single partial vector.  */
    return GET_MODE_SIZE (mode);

  if (vec_flags & VEC_SVE_DATA)
    /* A single vector or a tuple.  */
    return BYTES_PER_SVE_VECTOR;

  /* A single predicate.  */
  gcc_assert (vec_flags & VEC_SVE_PRED);
  return BYTES_PER_SVE_PRED;
}

/* If MODE holds an array of vectors, return the number of vectors
   in the array, otherwise return 1.  */

static unsigned int
aarch64_ldn_stn_vectors (machine_mode mode)
{
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (vec_flags == (VEC_ADVSIMD | VEC_PARTIAL | VEC_STRUCT))
    return exact_div (GET_MODE_SIZE (mode), 8).to_constant ();
  if (vec_flags == (VEC_ADVSIMD | VEC_STRUCT))
    return exact_div (GET_MODE_SIZE (mode), 16).to_constant ();
  if (vec_flags == (VEC_SVE_DATA | VEC_STRUCT))
    return exact_div (GET_MODE_SIZE (mode),
		      BYTES_PER_SVE_VECTOR).to_constant ();
  return 1;
}

/* Given an Advanced SIMD vector mode MODE and a tuple size NELEMS, return the
   corresponding vector structure mode.  */
static opt_machine_mode
aarch64_advsimd_vector_array_mode (machine_mode mode,
				   unsigned HOST_WIDE_INT nelems)
{
  unsigned int flags = VEC_ADVSIMD | VEC_STRUCT;
  if (known_eq (GET_MODE_SIZE (mode), 8))
    flags |= VEC_PARTIAL;

  machine_mode struct_mode;
  FOR_EACH_MODE_IN_CLASS (struct_mode, GET_MODE_CLASS (mode))
    if (aarch64_classify_vector_mode (struct_mode) == flags
	&& GET_MODE_INNER (struct_mode) == GET_MODE_INNER (mode)
	&& known_eq (GET_MODE_NUNITS (struct_mode),
	     GET_MODE_NUNITS (mode) * nelems))
      return struct_mode;
  return opt_machine_mode ();
}

/* Return the SVE vector mode that has NUNITS elements of mode INNER_MODE.  */

opt_machine_mode
aarch64_sve_data_mode (scalar_mode inner_mode, poly_uint64 nunits)
{
  enum mode_class mclass = (is_a <scalar_float_mode> (inner_mode)
			    ? MODE_VECTOR_FLOAT : MODE_VECTOR_INT);
  machine_mode mode;
  FOR_EACH_MODE_IN_CLASS (mode, mclass)
    if (inner_mode == GET_MODE_INNER (mode)
	&& known_eq (nunits, GET_MODE_NUNITS (mode))
	&& aarch64_sve_data_mode_p (mode))
      return mode;
  return opt_machine_mode ();
}

/* Implement target hook TARGET_ARRAY_MODE.  */
static opt_machine_mode
aarch64_array_mode (machine_mode mode, unsigned HOST_WIDE_INT nelems)
{
  if (aarch64_classify_vector_mode (mode) == VEC_SVE_DATA
      && IN_RANGE (nelems, 2, 4))
    return aarch64_sve_data_mode (GET_MODE_INNER (mode),
				  GET_MODE_NUNITS (mode) * nelems);
  if (aarch64_classify_vector_mode (mode) == VEC_ADVSIMD
      && IN_RANGE (nelems, 2, 4))
    return aarch64_advsimd_vector_array_mode (mode, nelems);

  return opt_machine_mode ();
}

/* Implement target hook TARGET_ARRAY_MODE_SUPPORTED_P.  */
static bool
aarch64_array_mode_supported_p (machine_mode mode,
				unsigned HOST_WIDE_INT nelems)
{
  if (TARGET_SIMD
      && (AARCH64_VALID_SIMD_QREG_MODE (mode)
	  || AARCH64_VALID_SIMD_DREG_MODE (mode))
      && (nelems >= 2 && nelems <= 4))
    return true;

  return false;
}

/* MODE is some form of SVE vector mode.  For data modes, return the number
   of vector register bits that each element of MODE occupies, such as 64
   for both VNx2DImode and VNx2SImode (where each 32-bit value is stored
   in a 64-bit container).  For predicate modes, return the number of
   data bits controlled by each significant predicate bit.  */

static unsigned int
aarch64_sve_container_bits (machine_mode mode)
{
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  poly_uint64 vector_bits = (vec_flags & (VEC_PARTIAL | VEC_SVE_PRED)
			     ? BITS_PER_SVE_VECTOR
			     : GET_MODE_BITSIZE (mode));
  return vector_element_size (vector_bits, GET_MODE_NUNITS (mode));
}

/* Return the SVE predicate mode to use for elements that have
   ELEM_NBYTES bytes, if such a mode exists.  */

opt_machine_mode
aarch64_sve_pred_mode (unsigned int elem_nbytes)
{
  if (TARGET_SVE)
    {
      if (elem_nbytes == 1)
	return VNx16BImode;
      if (elem_nbytes == 2)
	return VNx8BImode;
      if (elem_nbytes == 4)
	return VNx4BImode;
      if (elem_nbytes == 8)
	return VNx2BImode;
    }
  return opt_machine_mode ();
}

/* Return the SVE predicate mode that should be used to control
   SVE mode MODE.  */

machine_mode
aarch64_sve_pred_mode (machine_mode mode)
{
  unsigned int bits = aarch64_sve_container_bits (mode);
  return aarch64_sve_pred_mode (bits / BITS_PER_UNIT).require ();
}

/* Implement TARGET_VECTORIZE_GET_MASK_MODE.  */

static opt_machine_mode
aarch64_get_mask_mode (machine_mode mode)
{
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (vec_flags & VEC_SVE_DATA)
    return aarch64_sve_pred_mode (mode);

  return default_get_mask_mode (mode);
}

/* Return the integer element mode associated with SVE mode MODE.  */

static scalar_int_mode
aarch64_sve_element_int_mode (machine_mode mode)
{
  poly_uint64 vector_bits = (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
			     ? BITS_PER_SVE_VECTOR
			     : GET_MODE_BITSIZE (mode));
  unsigned int elt_bits = vector_element_size (vector_bits,
					       GET_MODE_NUNITS (mode));
  return int_mode_for_size (elt_bits, 0).require ();
}

/* Return an integer element mode that contains exactly
   aarch64_sve_container_bits (MODE) bits.  This is wider than
   aarch64_sve_element_int_mode if MODE is a partial vector,
   otherwise it's the same.  */

static scalar_int_mode
aarch64_sve_container_int_mode (machine_mode mode)
{
  return int_mode_for_size (aarch64_sve_container_bits (mode), 0).require ();
}

/* Return the integer vector mode associated with SVE mode MODE.
   Unlike related_int_vector_mode, this can handle the case in which
   MODE is a predicate (and thus has a different total size).  */

machine_mode
aarch64_sve_int_mode (machine_mode mode)
{
  scalar_int_mode int_mode = aarch64_sve_element_int_mode (mode);
  return aarch64_sve_data_mode (int_mode, GET_MODE_NUNITS (mode)).require ();
}

/* Implement TARGET_VECTORIZE_RELATED_MODE.  */

static opt_machine_mode
aarch64_vectorize_related_mode (machine_mode vector_mode,
				scalar_mode element_mode,
				poly_uint64 nunits)
{
  unsigned int vec_flags = aarch64_classify_vector_mode (vector_mode);

  /* If we're operating on SVE vectors, try to return an SVE mode.  */
  poly_uint64 sve_nunits;
  if ((vec_flags & VEC_SVE_DATA)
      && multiple_p (BYTES_PER_SVE_VECTOR,
		     GET_MODE_SIZE (element_mode), &sve_nunits))
    {
      machine_mode sve_mode;
      if (maybe_ne (nunits, 0U))
	{
	  /* Try to find a full or partial SVE mode with exactly
	     NUNITS units.  */
	  if (multiple_p (sve_nunits, nunits)
	      && aarch64_sve_data_mode (element_mode,
					nunits).exists (&sve_mode))
	    return sve_mode;
	}
      else
	{
	  /* Take the preferred number of units from the number of bytes
	     that fit in VECTOR_MODE.  We always start by "autodetecting"
	     a full vector mode with preferred_simd_mode, so vectors
	     chosen here will also be full vector modes.  Then
	     autovectorize_vector_modes tries smaller starting modes
	     and thus smaller preferred numbers of units.  */
	  sve_nunits = ordered_min (sve_nunits, GET_MODE_SIZE (vector_mode));
	  if (aarch64_sve_data_mode (element_mode,
				     sve_nunits).exists (&sve_mode))
	    return sve_mode;
	}
    }

  /* Prefer to use 1 128-bit vector instead of 2 64-bit vectors.  */
  if (TARGET_SIMD
      && (vec_flags & VEC_ADVSIMD)
      && known_eq (nunits, 0U)
      && known_eq (GET_MODE_BITSIZE (vector_mode), 64U)
      && maybe_ge (GET_MODE_BITSIZE (element_mode)
		   * GET_MODE_NUNITS (vector_mode), 128U))
    {
      machine_mode res = aarch64_simd_container_mode (element_mode, 128);
      if (VECTOR_MODE_P (res))
	return res;
    }

  return default_vectorize_related_mode (vector_mode, element_mode, nunits);
}

/* Implement TARGET_PREFERRED_ELSE_VALUE.  For binary operations,
   prefer to use the first arithmetic operand as the else value if
   the else value doesn't matter, since that exactly matches the SVE
   destructive merging form.  For ternary operations we could either
   pick the first operand and use FMAD-like instructions or the last
   operand and use FMLA-like instructions; the latter seems more
   natural.  */

static tree
aarch64_preferred_else_value (unsigned, tree, unsigned int nops, tree *ops)
{
  return nops == 3 ? ops[2] : ops[0];
}

/* Implement TARGET_HARD_REGNO_NREGS.  */

static unsigned int
aarch64_hard_regno_nregs (unsigned regno, machine_mode mode)
{
  /* ??? Logically we should only need to provide a value when
     HARD_REGNO_MODE_OK says that the combination is valid,
     but at the moment we need to handle all modes.  Just ignore
     any runtime parts for registers that can't store them.  */
  HOST_WIDE_INT lowest_size = constant_lower_bound (GET_MODE_SIZE (mode));
  switch (aarch64_regno_regclass (regno))
    {
    case FP_REGS:
    case FP_LO_REGS:
    case FP_LO8_REGS:
      {
	unsigned int vec_flags = aarch64_classify_vector_mode (mode);
	if (vec_flags & VEC_SVE_DATA)
	  return exact_div (GET_MODE_SIZE (mode),
			    aarch64_vl_bytes (mode, vec_flags)).to_constant ();
	if (vec_flags == (VEC_ADVSIMD | VEC_STRUCT | VEC_PARTIAL))
	  return GET_MODE_SIZE (mode).to_constant () / 8;
	return CEIL (lowest_size, UNITS_PER_VREG);
      }
    case PR_REGS:
    case PR_LO_REGS:
    case PR_HI_REGS:
    case FFR_REGS:
    case PR_AND_FFR_REGS:
      return 1;
    default:
      return CEIL (lowest_size, UNITS_PER_WORD);
    }
  gcc_unreachable ();
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
aarch64_hard_regno_mode_ok (unsigned regno, machine_mode mode)
{
  if (mode == V8DImode)
    return IN_RANGE (regno, R0_REGNUM, R23_REGNUM)
           && multiple_p (regno - R0_REGNUM, 2);

  if (GET_MODE_CLASS (mode) == MODE_CC)
    return regno == CC_REGNUM;

  if (regno == VG_REGNUM)
    /* This must have the same size as _Unwind_Word.  */
    return mode == DImode;

  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (vec_flags & VEC_SVE_PRED)
    return pr_or_ffr_regnum_p (regno);

  if (pr_or_ffr_regnum_p (regno))
    return false;

  if (regno == SP_REGNUM)
    /* The purpose of comparing with ptr_mode is to support the
       global register variable associated with the stack pointer
       register via the syntax of asm ("wsp") in ILP32.  */
    return mode == Pmode || mode == ptr_mode;

  if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM)
    return mode == Pmode;

  if (GP_REGNUM_P (regno))
    {
      if (vec_flags & (VEC_ANY_SVE | VEC_STRUCT))
	return false;
      if (known_le (GET_MODE_SIZE (mode), 8))
	return true;
      if (known_le (GET_MODE_SIZE (mode), 16))
	return (regno & 1) == 0;
    }
  else if (FP_REGNUM_P (regno))
    {
      if (vec_flags & VEC_STRUCT)
	return end_hard_regno (mode, regno) - 1 <= V31_REGNUM;
      else
	return !VECTOR_MODE_P (mode) || vec_flags != 0;
    }

  return false;
}

/* Return true if a function with type FNTYPE returns its value in
   SVE vector or predicate registers.  */

static bool
aarch64_returns_value_in_sve_regs_p (const_tree fntype)
{
  tree return_type = TREE_TYPE (fntype);

  pure_scalable_type_info pst_info;
  switch (pst_info.analyze (return_type))
    {
    case pure_scalable_type_info::IS_PST:
      return (pst_info.num_zr () <= NUM_FP_ARG_REGS
	      && pst_info.num_pr () <= NUM_PR_ARG_REGS);

    case pure_scalable_type_info::DOESNT_MATTER:
      gcc_assert (aarch64_return_in_memory_1 (return_type));
      return false;

    case pure_scalable_type_info::NO_ABI_IDENTITY:
    case pure_scalable_type_info::ISNT_PST:
      return false;
    }
  gcc_unreachable ();
}

/* Return true if a function with type FNTYPE takes arguments in
   SVE vector or predicate registers.  */

static bool
aarch64_takes_arguments_in_sve_regs_p (const_tree fntype)
{
  CUMULATIVE_ARGS args_so_far_v;
  aarch64_init_cumulative_args (&args_so_far_v, NULL_TREE, NULL_RTX,
				NULL_TREE, 0, true);
  cumulative_args_t args_so_far = pack_cumulative_args (&args_so_far_v);

  for (tree chain = TYPE_ARG_TYPES (fntype);
       chain && chain != void_list_node;
       chain = TREE_CHAIN (chain))
    {
      tree arg_type = TREE_VALUE (chain);
      if (arg_type == error_mark_node)
	return false;

      function_arg_info arg (arg_type, /*named=*/true);
      apply_pass_by_reference_rules (&args_so_far_v, arg);
      pure_scalable_type_info pst_info;
      if (pst_info.analyze_registers (arg.type))
	{
	  unsigned int end_zr = args_so_far_v.aapcs_nvrn + pst_info.num_zr ();
	  unsigned int end_pr = args_so_far_v.aapcs_nprn + pst_info.num_pr ();
	  gcc_assert (end_zr <= NUM_FP_ARG_REGS && end_pr <= NUM_PR_ARG_REGS);
	  return true;
	}

      targetm.calls.function_arg_advance (args_so_far, arg);
    }
  return false;
}

/* Implement TARGET_FNTYPE_ABI.  */

static const predefined_function_abi &
aarch64_fntype_abi (const_tree fntype)
{
  if (lookup_attribute ("aarch64_vector_pcs", TYPE_ATTRIBUTES (fntype)))
    return aarch64_simd_abi ();

  if (aarch64_returns_value_in_sve_regs_p (fntype)
      || aarch64_takes_arguments_in_sve_regs_p (fntype))
    return aarch64_sve_abi ();

  return default_function_abi;
}

/* Implement TARGET_COMPATIBLE_VECTOR_TYPES_P.  */

static bool
aarch64_compatible_vector_types_p (const_tree type1, const_tree type2)
{
  return (aarch64_sve::builtin_type_p (type1)
	  == aarch64_sve::builtin_type_p (type2));
}

/* Return true if we should emit CFI for register REGNO.  */

static bool
aarch64_emit_cfi_for_reg_p (unsigned int regno)
{
  return (GP_REGNUM_P (regno)
	  || !default_function_abi.clobbers_full_reg_p (regno));
}

/* Return the mode we should use to save and restore register REGNO.  */

static machine_mode
aarch64_reg_save_mode (unsigned int regno)
{
  if (GP_REGNUM_P (regno))
    return DImode;

  if (FP_REGNUM_P (regno))
    switch (crtl->abi->id ())
      {
      case ARM_PCS_AAPCS64:
	/* Only the low 64 bits are saved by the base PCS.  */
	return DFmode;

      case ARM_PCS_SIMD:
	/* The vector PCS saves the low 128 bits (which is the full
	   register on non-SVE targets).  */
	return TFmode;

      case ARM_PCS_SVE:
	/* Use vectors of DImode for registers that need frame
	   information, so that the first 64 bytes of the save slot
	   are always the equivalent of what storing D<n> would give.  */
	if (aarch64_emit_cfi_for_reg_p (regno))
	  return VNx2DImode;

	/* Use vectors of bytes otherwise, so that the layout is
	   endian-agnostic, and so that we can use LDR and STR for
	   big-endian targets.  */
	return VNx16QImode;

      case ARM_PCS_TLSDESC:
      case ARM_PCS_UNKNOWN:
	break;
      }

  if (PR_REGNUM_P (regno))
    /* Save the full predicate register.  */
    return VNx16BImode;

  gcc_unreachable ();
}

/* Implement TARGET_INSN_CALLEE_ABI.  */

const predefined_function_abi &
aarch64_insn_callee_abi (const rtx_insn *insn)
{
  rtx pat = PATTERN (insn);
  gcc_assert (GET_CODE (pat) == PARALLEL);
  rtx unspec = XVECEXP (pat, 0, 1);
  gcc_assert (GET_CODE (unspec) == UNSPEC
	      && XINT (unspec, 1) == UNSPEC_CALLEE_ABI);
  return function_abis[INTVAL (XVECEXP (unspec, 0, 0))];
}

/* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED.  The callee only saves
   the lower 64 bits of a 128-bit register.  Tell the compiler the callee
   clobbers the top 64 bits when restoring the bottom 64 bits.  */

static bool
aarch64_hard_regno_call_part_clobbered (unsigned int abi_id,
					unsigned int regno,
					machine_mode mode)
{
  if (FP_REGNUM_P (regno) && abi_id != ARM_PCS_SVE)
    {
      poly_int64 per_register_size = GET_MODE_SIZE (mode);
      unsigned int nregs = hard_regno_nregs (regno, mode);
      if (nregs > 1)
	per_register_size = exact_div (per_register_size, nregs);
      if (abi_id == ARM_PCS_SIMD || abi_id == ARM_PCS_TLSDESC)
	return maybe_gt (per_register_size, 16);
      return maybe_gt (per_register_size, 8);
    }
  return false;
}

/* Implement REGMODE_NATURAL_SIZE.  */
poly_uint64
aarch64_regmode_natural_size (machine_mode mode)
{
  /* The natural size for SVE data modes is one SVE data vector,
     and similarly for predicates.  We can't independently modify
     anything smaller than that.  */
  /* ??? For now, only do this for variable-width SVE registers.
     Doing it for constant-sized registers breaks lower-subreg.cc.  */
  /* ??? And once that's fixed, we should probably have similar
     code for Advanced SIMD.  */
  if (!aarch64_sve_vg.is_constant ())
    {
      unsigned int vec_flags = aarch64_classify_vector_mode (mode);
      if (vec_flags & VEC_SVE_PRED)
	return BYTES_PER_SVE_PRED;
      if (vec_flags & VEC_SVE_DATA)
	return BYTES_PER_SVE_VECTOR;
    }
  return UNITS_PER_WORD;
}

/* Implement HARD_REGNO_CALLER_SAVE_MODE.  */
machine_mode
aarch64_hard_regno_caller_save_mode (unsigned regno, unsigned,
				     machine_mode mode)
{
  /* The predicate mode determines which bits are significant and
     which are "don't care".  Decreasing the number of lanes would
     lose data while increasing the number of lanes would make bits
     unnecessarily significant.  */
  if (PR_REGNUM_P (regno))
    return mode;
  if (known_ge (GET_MODE_SIZE (mode), 4))
    return mode;
  else
    return SImode;
}

/* Return true if I's bits are consecutive ones from the MSB.  */
bool
aarch64_high_bits_all_ones_p (HOST_WIDE_INT i)
{
  return exact_log2 (-i) != HOST_WIDE_INT_M1;
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  Make strings word-aligned so
   that strcpy from constants will be faster.  */

static HOST_WIDE_INT
aarch64_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if (TREE_CODE (exp) == STRING_CST && !optimize_size)
    return MAX (align, BITS_PER_WORD);
  return align;
}

/* Return true if calls to DECL should be treated as
   long-calls (ie called via a register).  */
static bool
aarch64_decl_is_long_call_p (const_tree decl ATTRIBUTE_UNUSED)
{
  return false;
}

/* Return true if calls to symbol-ref SYM should be treated as
   long-calls (ie called via a register).  */
bool
aarch64_is_long_call_p (rtx sym)
{
  return aarch64_decl_is_long_call_p (SYMBOL_REF_DECL (sym));
}

/* Return true if calls to symbol-ref SYM should not go through
   plt stubs.  */

bool
aarch64_is_noplt_call_p (rtx sym)
{
  const_tree decl = SYMBOL_REF_DECL (sym);

  if (flag_pic
      && decl
      && (!flag_plt
	  || lookup_attribute ("noplt", DECL_ATTRIBUTES (decl)))
      && !targetm.binds_local_p (decl))
    return true;

  return false;
}

/* Emit an insn that's a simple single-set.  Both the operands must be
   known to be valid.  */
inline static rtx_insn *
emit_set_insn (rtx x, rtx y)
{
  return emit_insn (gen_rtx_SET (x, y));
}

/* X and Y are two things to compare using CODE.  Emit the compare insn and
   return the rtx for register 0 in the proper mode.  */
rtx
aarch64_gen_compare_reg (RTX_CODE code, rtx x, rtx y)
{
  machine_mode cmp_mode = GET_MODE (x);
  machine_mode cc_mode;
  rtx cc_reg;

  if (cmp_mode == TImode)
    {
      gcc_assert (code == NE);

      cc_mode = CCmode;
      cc_reg = gen_rtx_REG (cc_mode, CC_REGNUM);

      rtx x_lo = operand_subword (x, 0, 0, TImode);
      rtx y_lo = operand_subword (y, 0, 0, TImode);
      emit_set_insn (cc_reg, gen_rtx_COMPARE (cc_mode, x_lo, y_lo));

      rtx x_hi = operand_subword (x, 1, 0, TImode);
      rtx y_hi = operand_subword (y, 1, 0, TImode);
      emit_insn (gen_ccmpccdi (cc_reg, cc_reg, x_hi, y_hi,
			       gen_rtx_EQ (cc_mode, cc_reg, const0_rtx),
			       GEN_INT (AARCH64_EQ)));
    }
  else
    {
      cc_mode = SELECT_CC_MODE (code, x, y);
      cc_reg = gen_rtx_REG (cc_mode, CC_REGNUM);
      emit_set_insn (cc_reg, gen_rtx_COMPARE (cc_mode, x, y));
    }
  return cc_reg;
}

/* Similarly, but maybe zero-extend Y if Y_MODE < SImode.  */

static rtx
aarch64_gen_compare_reg_maybe_ze (RTX_CODE code, rtx x, rtx y,
                                  machine_mode y_mode)
{
  if (y_mode == E_QImode || y_mode == E_HImode)
    {
      if (CONST_INT_P (y))
	{
	  y = GEN_INT (INTVAL (y) & GET_MODE_MASK (y_mode));
	  y_mode = SImode;
	}
      else
	{
	  rtx t, cc_reg;
	  machine_mode cc_mode;

	  t = gen_rtx_ZERO_EXTEND (SImode, y);
	  t = gen_rtx_COMPARE (CC_SWPmode, t, x);
	  cc_mode = CC_SWPmode;
	  cc_reg = gen_rtx_REG (cc_mode, CC_REGNUM);
	  emit_set_insn (cc_reg, t);
	  return cc_reg;
	}
    }

  if (!aarch64_plus_operand (y, y_mode))
    y = force_reg (y_mode, y);

  return aarch64_gen_compare_reg (code, x, y);
}

/* Consider the operation:

     OPERANDS[0] = CODE (OPERANDS[1], OPERANDS[2]) + OPERANDS[3]

   where:

   - CODE is [SU]MAX or [SU]MIN
   - OPERANDS[2] and OPERANDS[3] are constant integers
   - OPERANDS[3] is a positive or negative shifted 12-bit immediate
   - all operands have mode MODE

   Decide whether it is possible to implement the operation using:

     SUBS <tmp>, OPERANDS[1], -OPERANDS[3]
     or
     ADDS <tmp>, OPERANDS[1], OPERANDS[3]

   followed by:

     <insn> OPERANDS[0], <tmp>, [wx]zr, <cond>

   where <insn> is one of CSEL, CSINV or CSINC.  Return true if so.
   If GENERATE_P is true, also update OPERANDS as follows:

     OPERANDS[4] = -OPERANDS[3]
     OPERANDS[5] = the rtl condition representing <cond>
     OPERANDS[6] = <tmp>
     OPERANDS[7] = 0 for CSEL, -1 for CSINV or 1 for CSINC.  */
bool
aarch64_maxmin_plus_const (rtx_code code, rtx *operands, bool generate_p)
{
  signop sgn = (code == UMAX || code == UMIN ? UNSIGNED : SIGNED);
  rtx dst = operands[0];
  rtx maxmin_op = operands[2];
  rtx add_op = operands[3];
  machine_mode mode = GET_MODE (dst);

  /* max (x, y) - z == (x >= y + 1 ? x : y) - z
		    == (x >= y ? x : y) - z
		    == (x > y ? x : y) - z
		    == (x > y - 1 ? x : y) - z

     min (x, y) - z == (x <= y - 1 ? x : y) - z
		    == (x <= y ? x : y) - z
		    == (x < y ? x : y) - z
		    == (x < y + 1 ? x : y) - z

     Check whether z is in { y - 1, y, y + 1 } and pick the form(s) for
     which x is compared with z.  Set DIFF to y - z.  Thus the supported
     combinations are as follows, with DIFF being the value after the ":":

     max (x, y) - z == x >= y + 1 ? x - (y + 1) : -1   [z == y + 1]
		    == x >= y ? x - y : 0              [z == y]
		    == x > y ? x - y : 0               [z == y]
		    == x > y - 1 ? x - (y - 1) : 1     [z == y - 1]

     min (x, y) - z == x <= y - 1 ? x - (y - 1) : 1    [z == y - 1]
		    == x <= y ? x - y : 0              [z == y]
		    == x < y ? x - y : 0               [z == y]
		    == x < y + 1 ? x - (y + 1) : -1    [z == y + 1].  */
  auto maxmin_val = rtx_mode_t (maxmin_op, mode);
  auto add_val = rtx_mode_t (add_op, mode);
  auto sub_val = wi::neg (add_val);
  auto diff = wi::sub (maxmin_val, sub_val);
  if (!(diff == 0
	|| (diff == 1 && wi::gt_p (maxmin_val, sub_val, sgn))
	|| (diff == -1 && wi::lt_p (maxmin_val, sub_val, sgn))))
    return false;

  if (!generate_p)
    return true;

  rtx_code cmp;
  switch (code)
    {
    case SMAX:
      cmp = diff == 1 ? GT : GE;
      break;
    case UMAX:
      cmp = diff == 1 ? GTU : GEU;
      break;
    case SMIN:
      cmp = diff == -1 ? LT : LE;
      break;
    case UMIN:
      cmp = diff == -1 ? LTU : LEU;
      break;
    default:
      gcc_unreachable ();
    }
  rtx cc = gen_rtx_REG (CCmode, CC_REGNUM);

  operands[4] = immed_wide_int_const (sub_val, mode);
  operands[5] = gen_rtx_fmt_ee (cmp, VOIDmode, cc, const0_rtx);
  if (can_create_pseudo_p ())
    operands[6] = gen_reg_rtx (mode);
  else
    operands[6] = dst;
  operands[7] = immed_wide_int_const (diff, mode);

  return true;
}


/* Build the SYMBOL_REF for __tls_get_addr.  */

static GTY(()) rtx tls_get_addr_libfunc;

rtx
aarch64_tls_get_addr (void)
{
  if (!tls_get_addr_libfunc)
    tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
  return tls_get_addr_libfunc;
}

/* Return the TLS model to use for ADDR.  */

static enum tls_model
tls_symbolic_operand_type (rtx addr)
{
  enum tls_model tls_kind = TLS_MODEL_NONE;
  poly_int64 offset;
  addr = strip_offset_and_salt (addr, &offset);
  if (SYMBOL_REF_P (addr))
    tls_kind = SYMBOL_REF_TLS_MODEL (addr);

  return tls_kind;
}

/* We'll allow lo_sum's in addresses in our legitimate addresses
   so that combine would take care of combining addresses where
   necessary, but for generation purposes, we'll generate the address
   as :
   RTL                               Absolute
   tmp = hi (symbol_ref);            adrp  x1, foo
   dest = lo_sum (tmp, symbol_ref);  add dest, x1, :lo_12:foo
                                     nop

   PIC                               TLS
   adrp x1, :got:foo                 adrp tmp, :tlsgd:foo
   ldr  x1, [:got_lo12:foo]          add  dest, tmp, :tlsgd_lo12:foo
                                     bl   __tls_get_addr
                                     nop

   Load TLS symbol, depending on TLS mechanism and TLS access model.

   Global Dynamic - Traditional TLS:
   adrp tmp, :tlsgd:imm
   add  dest, tmp, #:tlsgd_lo12:imm
   bl   __tls_get_addr

   Global Dynamic - TLS Descriptors:
   adrp dest, :tlsdesc:imm
   ldr  tmp, [dest, #:tlsdesc_lo12:imm]
   add  dest, dest, #:tlsdesc_lo12:imm
   blr  tmp
   mrs  tp, tpidr_el0
   add  dest, dest, tp

   Initial Exec:
   mrs  tp, tpidr_el0
   adrp tmp, :gottprel:imm
   ldr  dest, [tmp, #:gottprel_lo12:imm]
   add  dest, dest, tp

   Local Exec:
   mrs  tp, tpidr_el0
   add  t0, tp, #:tprel_hi12:imm, lsl #12
   add  t0, t0, #:tprel_lo12_nc:imm
*/

static void
aarch64_load_symref_appropriately (rtx dest, rtx imm,
				   enum aarch64_symbol_type type)
{
  switch (type)
    {
    case SYMBOL_SMALL_ABSOLUTE:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode.  */
	rtx tmp_reg = dest;
	machine_mode mode = GET_MODE (dest);

	gcc_assert (mode == Pmode || mode == ptr_mode);

	if (can_create_pseudo_p ())
	  tmp_reg = gen_reg_rtx (mode);

	emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, copy_rtx (imm)));
	emit_insn (gen_add_losym (dest, tmp_reg, imm));
	return;
      }

    case SYMBOL_TINY_ABSOLUTE:
      emit_insn (gen_rtx_SET (dest, imm));
      return;

    case SYMBOL_SMALL_GOT_28K:
      {
	machine_mode mode = GET_MODE (dest);
	rtx gp_rtx = pic_offset_table_rtx;
	rtx insn;
	rtx mem;

	/* NOTE: pic_offset_table_rtx can be NULL_RTX, because we can reach
	   here before rtl expand.  Tree IVOPT will generate rtl pattern to
	   decide rtx costs, in which case pic_offset_table_rtx is not
	   initialized.  For that case no need to generate the first adrp
	   instruction as the final cost for global variable access is
	   one instruction.  */
	if (gp_rtx != NULL)
	  {
	    /* -fpic for -mcmodel=small allow 32K GOT table size (but we are
	       using the page base as GOT base, the first page may be wasted,
	       in the worst scenario, there is only 28K space for GOT).

	       The generate instruction sequence for accessing global variable
	       is:

		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym]

	       Only one instruction needed. But we must initialize
	       pic_offset_table_rtx properly.  We generate initialize insn for
	       every global access, and allow CSE to remove all redundant.

	       The final instruction sequences will look like the following
	       for multiply global variables access.

		 adrp pic_offset_table_rtx, _GLOBAL_OFFSET_TABLE_

		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym1]
		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym2]
		 ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym3]
		 ...  */

	    rtx s = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
	    crtl->uses_pic_offset_table = 1;
	    emit_move_insn (gp_rtx, gen_rtx_HIGH (Pmode, s));

	    if (mode != GET_MODE (gp_rtx))
             gp_rtx = gen_lowpart (mode, gp_rtx);

	  }

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      insn = gen_ldr_got_small_28k_di (dest, gp_rtx, imm);
	    else
	      insn = gen_ldr_got_small_28k_si (dest, gp_rtx, imm);

	    mem = XVECEXP (SET_SRC (insn), 0, 0);
	  }
	else
	  {
	    gcc_assert (mode == Pmode);

	    insn = gen_ldr_got_small_28k_sidi (dest, gp_rtx, imm);
	    mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0);
	  }

	/* The operand is expected to be MEM.  Whenever the related insn
	   pattern changed, above code which calculate mem should be
	   updated.  */
	gcc_assert (MEM_P (mem));
	MEM_READONLY_P (mem) = 1;
	MEM_NOTRAP_P (mem) = 1;
	emit_insn (insn);
	return;
      }

    case SYMBOL_SMALL_GOT_4G:
      emit_insn (gen_rtx_SET (dest, imm));
      return;

    case SYMBOL_SMALL_TLSGD:
      {
	rtx_insn *insns;
	/* The return type of __tls_get_addr is the C pointer type
	   so use ptr_mode.  */
	rtx result = gen_rtx_REG (ptr_mode, R0_REGNUM);
	rtx tmp_reg = dest;

	if (GET_MODE (dest) != ptr_mode)
	  tmp_reg = can_create_pseudo_p () ? gen_reg_rtx (ptr_mode) : result;

	start_sequence ();
	if (ptr_mode == SImode)
	  aarch64_emit_call_insn (gen_tlsgd_small_si (result, imm));
	else
	  aarch64_emit_call_insn (gen_tlsgd_small_di (result, imm));
	insns = get_insns ();
	end_sequence ();

	RTL_CONST_CALL_P (insns) = 1;
	emit_libcall_block (insns, tmp_reg, result, imm);
	/* Convert back to the mode of the dest adding a zero_extend
	   from SImode (ptr_mode) to DImode (Pmode). */
	if (dest != tmp_reg)
	  convert_move (dest, tmp_reg, true);
	return;
      }

    case SYMBOL_SMALL_TLSDESC:
      {
	machine_mode mode = GET_MODE (dest);
	rtx x0 = gen_rtx_REG (mode, R0_REGNUM);
	rtx tp;

	gcc_assert (mode == Pmode || mode == ptr_mode);

	/* In ILP32, the got entry is always of SImode size.  Unlike
	   small GOT, the dest is fixed at reg 0.  */
	if (TARGET_ILP32)
	  emit_insn (gen_tlsdesc_small_si (imm));
	else
	  emit_insn (gen_tlsdesc_small_di (imm));
	tp = aarch64_load_tp (NULL);

	if (mode != Pmode)
	  tp = gen_lowpart (mode, tp);

	emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, x0)));
	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_SMALL_TLSIE:
      {
	/* In ILP32, the mode of dest can be either SImode or DImode,
	   while the got entry is always of SImode size.  The mode of
	   dest depends on how dest is used: if dest is assigned to a
	   pointer (e.g. in the memory), it has SImode; it may have
	   DImode if dest is dereferenced to access the memeory.
	   This is why we have to handle three different tlsie_small
	   patterns here (two patterns for ILP32).  */
	machine_mode mode = GET_MODE (dest);
	rtx tmp_reg = gen_reg_rtx (mode);
	rtx tp = aarch64_load_tp (NULL);

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      emit_insn (gen_tlsie_small_di (tmp_reg, imm));
	    else
	      {
		emit_insn (gen_tlsie_small_si (tmp_reg, imm));
		tp = gen_lowpart (mode, tp);
	      }
	  }
	else
	  {
	    gcc_assert (mode == Pmode);
	    emit_insn (gen_tlsie_small_sidi (tmp_reg, imm));
	  }

	emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, tmp_reg)));
	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_TLSLE12:
    case SYMBOL_TLSLE24:
    case SYMBOL_TLSLE32:
    case SYMBOL_TLSLE48:
      {
	machine_mode mode = GET_MODE (dest);
	rtx tp = aarch64_load_tp (NULL);

	if (mode != Pmode)
	  tp = gen_lowpart (mode, tp);

	switch (type)
	  {
	  case SYMBOL_TLSLE12:
	    emit_insn ((mode == DImode ? gen_tlsle12_di : gen_tlsle12_si)
			(dest, tp, imm));
	    break;
	  case SYMBOL_TLSLE24:
	    emit_insn ((mode == DImode ? gen_tlsle24_di : gen_tlsle24_si)
			(dest, tp, imm));
	  break;
	  case SYMBOL_TLSLE32:
	    emit_insn ((mode == DImode ? gen_tlsle32_di : gen_tlsle32_si)
			(dest, imm));
	    emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3)
			(dest, dest, tp));
	  break;
	  case SYMBOL_TLSLE48:
	    emit_insn ((mode == DImode ? gen_tlsle48_di : gen_tlsle48_si)
			(dest, imm));
	    emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3)
			(dest, dest, tp));
	    break;
	  default:
	    gcc_unreachable ();
	  }

	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    case SYMBOL_TINY_GOT:
      {
	rtx insn;
	machine_mode mode = GET_MODE (dest);

	if (mode == ptr_mode)
	  insn = gen_ldr_got_tiny (mode, dest, imm);
	else
	  {
	    gcc_assert (mode == Pmode);
	    insn = gen_ldr_got_tiny_sidi (dest, imm);
	  }

	emit_insn (insn);
	return;
      }

    case SYMBOL_TINY_TLSIE:
      {
	machine_mode mode = GET_MODE (dest);
	rtx tp = aarch64_load_tp (NULL);

	if (mode == ptr_mode)
	  {
	    if (mode == DImode)
	      emit_insn (gen_tlsie_tiny_di (dest, imm, tp));
	    else
	      {
		tp = gen_lowpart (mode, tp);
		emit_insn (gen_tlsie_tiny_si (dest, imm, tp));
	      }
	  }
	else
	  {
	    gcc_assert (mode == Pmode);
	    emit_insn (gen_tlsie_tiny_sidi (dest, imm, tp));
	  }

	if (REG_P (dest))
	  set_unique_reg_note (get_last_insn (), REG_EQUIV, imm);
	return;
      }

    default:
      gcc_unreachable ();
    }
}

/* Emit a move from SRC to DEST.  Assume that the move expanders can
   handle all moves if !can_create_pseudo_p ().  The distinction is
   important because, unlike emit_move_insn, the move expanders know
   how to force Pmode objects into the constant pool even when the
   constant pool address is not itself legitimate.  */
static rtx
aarch64_emit_move (rtx dest, rtx src)
{
  return (can_create_pseudo_p ()
	  ? emit_move_insn (dest, src)
	  : emit_move_insn_1 (dest, src));
}

/* Apply UNOPTAB to OP and store the result in DEST.  */

static void
aarch64_emit_unop (rtx dest, optab unoptab, rtx op)
{
  rtx tmp = expand_unop (GET_MODE (dest), unoptab, op, dest, 0);
  if (dest != tmp)
    emit_move_insn (dest, tmp);
}

/* Apply BINOPTAB to OP0 and OP1 and store the result in DEST.  */

static void
aarch64_emit_binop (rtx dest, optab binoptab, rtx op0, rtx op1)
{
  rtx tmp = expand_binop (GET_MODE (dest), binoptab, op0, op1, dest, 0,
			  OPTAB_DIRECT);
  if (dest != tmp)
    emit_move_insn (dest, tmp);
}

/* Split a 128-bit move operation into two 64-bit move operations,
   taking care to handle partial overlap of register to register
   copies.  Special cases are needed when moving between GP regs and
   FP regs.  SRC can be a register, constant or memory; DST a register
   or memory.  If either operand is memory it must not have any side
   effects.  */
void
aarch64_split_128bit_move (rtx dst, rtx src)
{
  rtx dst_lo, dst_hi;
  rtx src_lo, src_hi;

  machine_mode mode = GET_MODE (dst);

  gcc_assert (mode == TImode || mode == TFmode || mode == TDmode);
  gcc_assert (!(side_effects_p (src) || side_effects_p (dst)));
  gcc_assert (mode == GET_MODE (src) || GET_MODE (src) == VOIDmode);

  if (REG_P (dst) && REG_P (src))
    {
      int src_regno = REGNO (src);
      int dst_regno = REGNO (dst);

      /* Handle FP <-> GP regs.  */
      if (FP_REGNUM_P (dst_regno) && GP_REGNUM_P (src_regno))
	{
	  src_lo = gen_lowpart (word_mode, src);
	  src_hi = gen_highpart (word_mode, src);

	  emit_insn (gen_aarch64_movlow_di (mode, dst, src_lo));
	  emit_insn (gen_aarch64_movhigh_di (mode, dst, src_hi));
	  return;
	}
      else if (GP_REGNUM_P (dst_regno) && FP_REGNUM_P (src_regno))
	{
	  dst_lo = gen_lowpart (word_mode, dst);
	  dst_hi = gen_highpart (word_mode, dst);

	  emit_insn (gen_aarch64_movdi_low (mode, dst_lo, src));
	  emit_insn (gen_aarch64_movdi_high (mode, dst_hi, src));
	  return;
	}
    }

  dst_lo = gen_lowpart (word_mode, dst);
  dst_hi = gen_highpart (word_mode, dst);
  src_lo = gen_lowpart (word_mode, src);
  src_hi = gen_highpart_mode (word_mode, mode, src);

  /* At most one pairing may overlap.  */
  if (reg_overlap_mentioned_p (dst_lo, src_hi))
    {
      aarch64_emit_move (dst_hi, src_hi);
      aarch64_emit_move (dst_lo, src_lo);
    }
  else
    {
      aarch64_emit_move (dst_lo, src_lo);
      aarch64_emit_move (dst_hi, src_hi);
    }
}

/* Return true if we should split a move from 128-bit value SRC
   to 128-bit register DEST.  */

bool
aarch64_split_128bit_move_p (rtx dst, rtx src)
{
  if (FP_REGNUM_P (REGNO (dst)))
    return REG_P (src) && !FP_REGNUM_P (REGNO (src));
  /* All moves to GPRs need to be split.  */
  return true;
}

/* Split a complex SIMD move.  */

void
aarch64_split_simd_move (rtx dst, rtx src)
{
  machine_mode src_mode = GET_MODE (src);
  machine_mode dst_mode = GET_MODE (dst);

  gcc_assert (VECTOR_MODE_P (dst_mode));

  if (REG_P (dst) && REG_P (src))
    {
      gcc_assert (VECTOR_MODE_P (src_mode));
      emit_insn (gen_aarch64_split_simd_mov (src_mode, dst, src));
    }
}

bool
aarch64_zero_extend_const_eq (machine_mode xmode, rtx x,
			      machine_mode ymode, rtx y)
{
  rtx r = simplify_const_unary_operation (ZERO_EXTEND, xmode, y, ymode);
  gcc_assert (r != NULL);
  return rtx_equal_p (x, r);
}

/* Return TARGET if it is nonnull and a register of mode MODE.
   Otherwise, return a fresh register of mode MODE if we can,
   or TARGET reinterpreted as MODE if we can't.  */

static rtx
aarch64_target_reg (rtx target, machine_mode mode)
{
  if (target && REG_P (target) && GET_MODE (target) == mode)
    return target;
  if (!can_create_pseudo_p ())
    {
      gcc_assert (target);
      return gen_lowpart (mode, target);
    }
  return gen_reg_rtx (mode);
}

/* Return a register that contains the constant in BUILDER, given that
   the constant is a legitimate move operand.  Use TARGET as the register
   if it is nonnull and convenient.  */

static rtx
aarch64_emit_set_immediate (rtx target, rtx_vector_builder &builder)
{
  rtx src = builder.build ();
  target = aarch64_target_reg (target, GET_MODE (src));
  emit_insn (gen_rtx_SET (target, src));
  return target;
}

static rtx
aarch64_force_temporary (machine_mode mode, rtx x, rtx value)
{
  if (can_create_pseudo_p ())
    return force_reg (mode, value);
  else
    {
      gcc_assert (x);
      aarch64_emit_move (x, value);
      return x;
    }
}

/* Return true if predicate value X is a constant in which every element
   is a CONST_INT.  When returning true, describe X in BUILDER as a VNx16BI
   value, i.e. as a predicate in which all bits are significant.  */

static bool
aarch64_get_sve_pred_bits (rtx_vector_builder &builder, rtx x)
{
  if (!CONST_VECTOR_P (x))
    return false;

  unsigned int factor = vector_element_size (GET_MODE_NUNITS (VNx16BImode),
					     GET_MODE_NUNITS (GET_MODE (x)));
  unsigned int npatterns = CONST_VECTOR_NPATTERNS (x) * factor;
  unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
  builder.new_vector (VNx16BImode, npatterns, nelts_per_pattern);

  unsigned int nelts = const_vector_encoded_nelts (x);
  for (unsigned int i = 0; i < nelts; ++i)
    {
      rtx elt = CONST_VECTOR_ENCODED_ELT (x, i);
      if (!CONST_INT_P (elt))
	return false;

      builder.quick_push (elt);
      for (unsigned int j = 1; j < factor; ++j)
	builder.quick_push (const0_rtx);
    }
  builder.finalize ();
  return true;
}

/* BUILDER contains a predicate constant of mode VNx16BI.  Return the
   widest predicate element size it can have (that is, the largest size
   for which each element would still be 0 or 1).  */

unsigned int
aarch64_widest_sve_pred_elt_size (rtx_vector_builder &builder)
{
  /* Start with the most optimistic assumption: that we only need
     one bit per pattern.  This is what we will use if only the first
     bit in each pattern is ever set.  */
  unsigned int mask = GET_MODE_SIZE (DImode);
  mask |= builder.npatterns ();

  /* Look for set bits.  */
  unsigned int nelts = builder.encoded_nelts ();
  for (unsigned int i = 1; i < nelts; ++i)
    if (INTVAL (builder.elt (i)) != 0)
      {
	if (i & 1)
	  return 1;
	mask |= i;
      }
  return mask & -mask;
}

/* If VNx16BImode rtx X is a canonical PTRUE for a predicate mode,
   return that predicate mode, otherwise return opt_machine_mode ().  */

opt_machine_mode
aarch64_ptrue_all_mode (rtx x)
{
  gcc_assert (GET_MODE (x) == VNx16BImode);
  if (!CONST_VECTOR_P (x)
      || !CONST_VECTOR_DUPLICATE_P (x)
      || !CONST_INT_P (CONST_VECTOR_ENCODED_ELT (x, 0))
      || INTVAL (CONST_VECTOR_ENCODED_ELT (x, 0)) == 0)
    return opt_machine_mode ();

  unsigned int nelts = const_vector_encoded_nelts (x);
  for (unsigned int i = 1; i < nelts; ++i)
    if (CONST_VECTOR_ENCODED_ELT (x, i) != const0_rtx)
      return opt_machine_mode ();

  return aarch64_sve_pred_mode (nelts);
}

/* BUILDER is a predicate constant of mode VNx16BI.  Consider the value
   that the constant would have with predicate element size ELT_SIZE
   (ignoring the upper bits in each element) and return:

   * -1 if all bits are set
   * N if the predicate has N leading set bits followed by all clear bits
   * 0 if the predicate does not have any of these forms.  */

int
aarch64_partial_ptrue_length (rtx_vector_builder &builder,
			      unsigned int elt_size)
{
  /* If nelts_per_pattern is 3, we have set bits followed by clear bits
     followed by set bits.  */
  if (builder.nelts_per_pattern () == 3)
    return 0;

  /* Skip over leading set bits.  */
  unsigned int nelts = builder.encoded_nelts ();
  unsigned int i = 0;
  for (; i < nelts; i += elt_size)
    if (INTVAL (builder.elt (i)) == 0)
      break;
  unsigned int vl = i / elt_size;

  /* Check for the all-true case.  */
  if (i == nelts)
    return -1;

  /* If nelts_per_pattern is 1, then either VL is zero, or we have a
     repeating pattern of set bits followed by clear bits.  */
  if (builder.nelts_per_pattern () != 2)
    return 0;

  /* We have a "foreground" value and a duplicated "background" value.
     If the background might repeat and the last set bit belongs to it,
     we might have set bits followed by clear bits followed by set bits.  */
  if (i > builder.npatterns () && maybe_ne (nelts, builder.full_nelts ()))
    return 0;

  /* Make sure that the rest are all clear.  */
  for (; i < nelts; i += elt_size)
    if (INTVAL (builder.elt (i)) != 0)
      return 0;

  return vl;
}

/* See if there is an svpattern that encodes an SVE predicate of mode
   PRED_MODE in which the first VL bits are set and the rest are clear.
   Return the pattern if so, otherwise return AARCH64_NUM_SVPATTERNS.
   A VL of -1 indicates an all-true vector.  */

aarch64_svpattern
aarch64_svpattern_for_vl (machine_mode pred_mode, int vl)
{
  if (vl < 0)
    return AARCH64_SV_ALL;

  if (maybe_gt (vl, GET_MODE_NUNITS (pred_mode)))
    return AARCH64_NUM_SVPATTERNS;

  if (vl >= 1 && vl <= 8)
    return aarch64_svpattern (AARCH64_SV_VL1 + (vl - 1));

  if (vl >= 16 && vl <= 256 && pow2p_hwi (vl))
    return aarch64_svpattern (AARCH64_SV_VL16 + (exact_log2 (vl) - 4));

  int max_vl;
  if (GET_MODE_NUNITS (pred_mode).is_constant (&max_vl))
    {
      if (vl == (max_vl / 3) * 3)
	return AARCH64_SV_MUL3;
      /* These would only trigger for non-power-of-2 lengths.  */
      if (vl == (max_vl & -4))
	return AARCH64_SV_MUL4;
      if (vl == (1 << floor_log2 (max_vl)))
	return AARCH64_SV_POW2;
      if (vl == max_vl)
	return AARCH64_SV_ALL;
    }
  return AARCH64_NUM_SVPATTERNS;
}

/* Return a VNx16BImode constant in which every sequence of ELT_SIZE
   bits has the lowest bit set and the upper bits clear.  This is the
   VNx16BImode equivalent of a PTRUE for controlling elements of
   ELT_SIZE bytes.  However, because the constant is VNx16BImode,
   all bits are significant, even the upper zeros.  */

rtx
aarch64_ptrue_all (unsigned int elt_size)
{
  rtx_vector_builder builder (VNx16BImode, elt_size, 1);
  builder.quick_push (const1_rtx);
  for (unsigned int i = 1; i < elt_size; ++i)
    builder.quick_push (const0_rtx);
  return builder.build ();
}

/* Return an all-true predicate register of mode MODE.  */

rtx
aarch64_ptrue_reg (machine_mode mode)
{
  gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL);
  rtx reg = force_reg (VNx16BImode, CONSTM1_RTX (VNx16BImode));
  return gen_lowpart (mode, reg);
}

/* Return an all-false predicate register of mode MODE.  */

rtx
aarch64_pfalse_reg (machine_mode mode)
{
  gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL);
  rtx reg = force_reg (VNx16BImode, CONST0_RTX (VNx16BImode));
  return gen_lowpart (mode, reg);
}

/* PRED1[0] is a PTEST predicate and PRED1[1] is an aarch64_sve_ptrue_flag
   for it.  PRED2[0] is the predicate for the instruction whose result
   is tested by the PTEST and PRED2[1] is again an aarch64_sve_ptrue_flag
   for it.  Return true if we can prove that the two predicates are
   equivalent for PTEST purposes; that is, if we can replace PRED2[0]
   with PRED1[0] without changing behavior.  */

bool
aarch64_sve_same_pred_for_ptest_p (rtx *pred1, rtx *pred2)
{
  machine_mode mode = GET_MODE (pred1[0]);
  gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
	      && mode == GET_MODE (pred2[0])
	      && aarch64_sve_ptrue_flag (pred1[1], SImode)
	      && aarch64_sve_ptrue_flag (pred2[1], SImode));

  bool ptrue1_p = (pred1[0] == CONSTM1_RTX (mode)
		   || INTVAL (pred1[1]) == SVE_KNOWN_PTRUE);
  bool ptrue2_p = (pred2[0] == CONSTM1_RTX (mode)
		   || INTVAL (pred2[1]) == SVE_KNOWN_PTRUE);
  return (ptrue1_p && ptrue2_p) || rtx_equal_p (pred1[0], pred2[0]);
}

/* Emit a comparison CMP between OP0 and OP1, both of which have mode
   DATA_MODE, and return the result in a predicate of mode PRED_MODE.
   Use TARGET as the target register if nonnull and convenient.  */

static rtx
aarch64_sve_emit_int_cmp (rtx target, machine_mode pred_mode, rtx_code cmp,
			  machine_mode data_mode, rtx op1, rtx op2)
{
  insn_code icode = code_for_aarch64_pred_cmp (cmp, data_mode);
  expand_operand ops[5];
  create_output_operand (&ops[0], target, pred_mode);
  create_input_operand (&ops[1], CONSTM1_RTX (pred_mode), pred_mode);
  create_integer_operand (&ops[2], SVE_KNOWN_PTRUE);
  create_input_operand (&ops[3], op1, data_mode);
  create_input_operand (&ops[4], op2, data_mode);
  expand_insn (icode, 5, ops);
  return ops[0].value;
}

/* Use a comparison to convert integer vector SRC into MODE, which is
   the corresponding SVE predicate mode.  Use TARGET for the result
   if it's nonnull and convenient.  */

rtx
aarch64_convert_sve_data_to_pred (rtx target, machine_mode mode, rtx src)
{
  machine_mode src_mode = GET_MODE (src);
  return aarch64_sve_emit_int_cmp (target, mode, NE, src_mode,
				   src, CONST0_RTX (src_mode));
}

/* Return the assembly token for svprfop value PRFOP.  */

static const char *
svprfop_token (enum aarch64_svprfop prfop)
{
  switch (prfop)
    {
#define CASE(UPPER, LOWER, VALUE) case AARCH64_SV_##UPPER: return #LOWER;
    AARCH64_FOR_SVPRFOP (CASE)
#undef CASE
    case AARCH64_NUM_SVPRFOPS:
      break;
    }
  gcc_unreachable ();
}

/* Return the assembly string for an SVE prefetch operation with
   mnemonic MNEMONIC, given that PRFOP_RTX is the prefetch operation
   and that SUFFIX is the format for the remaining operands.  */

char *
aarch64_output_sve_prefetch (const char *mnemonic, rtx prfop_rtx,
			     const char *suffix)
{
  static char buffer[128];
  aarch64_svprfop prfop = (aarch64_svprfop) INTVAL (prfop_rtx);
  unsigned int written = snprintf (buffer, sizeof (buffer), "%s\t%s, %s",
				   mnemonic, svprfop_token (prfop), suffix);
  gcc_assert (written < sizeof (buffer));
  return buffer;
}

/* Check whether we can calculate the number of elements in PATTERN
   at compile time, given that there are NELTS_PER_VQ elements per
   128-bit block.  Return the value if so, otherwise return -1.  */

HOST_WIDE_INT
aarch64_fold_sve_cnt_pat (aarch64_svpattern pattern, unsigned int nelts_per_vq)
{
  unsigned int vl, const_vg;
  if (pattern >= AARCH64_SV_VL1 && pattern <= AARCH64_SV_VL8)
    vl = 1 + (pattern - AARCH64_SV_VL1);
  else if (pattern >= AARCH64_SV_VL16 && pattern <= AARCH64_SV_VL256)
    vl = 16 << (pattern - AARCH64_SV_VL16);
  else if (aarch64_sve_vg.is_constant (&const_vg))
    {
      /* There are two vector granules per quadword.  */
      unsigned int nelts = (const_vg / 2) * nelts_per_vq;
      switch (pattern)
	{
	case AARCH64_SV_POW2: return 1 << floor_log2 (nelts);
	case AARCH64_SV_MUL4: return nelts & -4;
	case AARCH64_SV_MUL3: return (nelts / 3) * 3;
	case AARCH64_SV_ALL: return nelts;
	default: gcc_unreachable ();
	}
    }
  else
    return -1;

  /* There are two vector granules per quadword.  */
  poly_uint64 nelts_all = exact_div (aarch64_sve_vg, 2) * nelts_per_vq;
  if (known_le (vl, nelts_all))
    return vl;

  /* Requesting more elements than are available results in a PFALSE.  */
  if (known_gt (vl, nelts_all))
    return 0;

  return -1;
}

/* Return true if we can move VALUE into a register using a single
   CNT[BHWD] instruction.  */

static bool
aarch64_sve_cnt_immediate_p (poly_int64 value)
{
  HOST_WIDE_INT factor = value.coeffs[0];
  /* The coefficient must be [1, 16] * {2, 4, 8, 16}.  */
  return (value.coeffs[1] == factor
	  && IN_RANGE (factor, 2, 16 * 16)
	  && (factor & 1) == 0
	  && factor <= 16 * (factor & -factor));
}

/* Likewise for rtx X.  */

bool
aarch64_sve_cnt_immediate_p (rtx x)
{
  poly_int64 value;
  return poly_int_rtx_p (x, &value) && aarch64_sve_cnt_immediate_p (value);
}

/* Return the asm string for an instruction with a CNT-like vector size
   operand (a vector pattern followed by a multiplier in the range [1, 16]).
   PREFIX is the mnemonic without the size suffix and OPERANDS is the
   first part of the operands template (the part that comes before the
   vector size itself).  PATTERN is the pattern to use.  FACTOR is the
   number of quadwords.  NELTS_PER_VQ, if nonzero, is the number of elements
   in each quadword.  If it is zero, we can use any element size.  */

static char *
aarch64_output_sve_cnt_immediate (const char *prefix, const char *operands,
				  aarch64_svpattern pattern,
				  unsigned int factor,
				  unsigned int nelts_per_vq)
{
  static char buffer[sizeof ("sqincd\t%x0, %w0, vl256, mul #16")];

  if (nelts_per_vq == 0)
    /* There is some overlap in the ranges of the four CNT instructions.
       Here we always use the smallest possible element size, so that the
       multiplier is 1 whereever possible.  */
    nelts_per_vq = factor & -factor;
  int shift = std::min (exact_log2 (nelts_per_vq), 4);
  gcc_assert (IN_RANGE (shift, 1, 4));
  char suffix = "dwhb"[shift - 1];

  factor >>= shift;
  unsigned int written;
  if (pattern == AARCH64_SV_ALL && factor == 1)
    written = snprintf (buffer, sizeof (buffer), "%s%c\t%s",
			prefix, suffix, operands);
  else if (factor == 1)
    written = snprintf (buffer, sizeof (buffer), "%s%c\t%s, %s",
			prefix, suffix, operands, svpattern_token (pattern));
  else
    written = snprintf (buffer, sizeof (buffer), "%s%c\t%s, %s, mul #%d",
			prefix, suffix, operands, svpattern_token (pattern),
			factor);
  gcc_assert (written < sizeof (buffer));
  return buffer;
}

/* Return the asm string for an instruction with a CNT-like vector size
   operand (a vector pattern followed by a multiplier in the range [1, 16]).
   PREFIX is the mnemonic without the size suffix and OPERANDS is the
   first part of the operands template (the part that comes before the
   vector size itself).  X is the value of the vector size operand,
   as a polynomial integer rtx; we need to convert this into an "all"
   pattern with a multiplier.  */

char *
aarch64_output_sve_cnt_immediate (const char *prefix, const char *operands,
				  rtx x)
{
  poly_int64 value = rtx_to_poly_int64 (x);
  gcc_assert (aarch64_sve_cnt_immediate_p (value));
  return aarch64_output_sve_cnt_immediate (prefix, operands, AARCH64_SV_ALL,
					   value.coeffs[1], 0);
}

/* Return the asm string for an instruction with a CNT-like vector size
   operand (a vector pattern followed by a multiplier in the range [1, 16]).
   PREFIX is the mnemonic without the size suffix and OPERANDS is the
   first part of the operands template (the part that comes before the
   vector size itself).  CNT_PAT[0..2] are the operands of the
   UNSPEC_SVE_CNT_PAT; see aarch64_sve_cnt_pat for details.  */

char *
aarch64_output_sve_cnt_pat_immediate (const char *prefix,
				      const char *operands, rtx *cnt_pat)
{
  aarch64_svpattern pattern = (aarch64_svpattern) INTVAL (cnt_pat[0]);
  unsigned int nelts_per_vq = INTVAL (cnt_pat[1]);
  unsigned int factor = INTVAL (cnt_pat[2]) * nelts_per_vq;
  return aarch64_output_sve_cnt_immediate (prefix, operands, pattern,
					   factor, nelts_per_vq);
}

/* Return true if we can add X using a single SVE INC or DEC instruction.  */

bool
aarch64_sve_scalar_inc_dec_immediate_p (rtx x)
{
  poly_int64 value;
  return (poly_int_rtx_p (x, &value)
	  && (aarch64_sve_cnt_immediate_p (value)
	      || aarch64_sve_cnt_immediate_p (-value)));
}

/* Return the asm string for adding SVE INC/DEC immediate OFFSET to
   operand 0.  */

char *
aarch64_output_sve_scalar_inc_dec (rtx offset)
{
  poly_int64 offset_value = rtx_to_poly_int64 (offset);
  gcc_assert (offset_value.coeffs[0] == offset_value.coeffs[1]);
  if (offset_value.coeffs[1] > 0)
    return aarch64_output_sve_cnt_immediate ("inc", "%x0", AARCH64_SV_ALL,
					     offset_value.coeffs[1], 0);
  else
    return aarch64_output_sve_cnt_immediate ("dec", "%x0", AARCH64_SV_ALL,
					     -offset_value.coeffs[1], 0);
}

/* Return true if we can add VALUE to a register using a single ADDVL
   or ADDPL instruction.  */

static bool
aarch64_sve_addvl_addpl_immediate_p (poly_int64 value)
{
  HOST_WIDE_INT factor = value.coeffs[0];
  if (factor == 0 || value.coeffs[1] != factor)
    return false;
  /* FACTOR counts VG / 2, so a value of 2 is one predicate width
     and a value of 16 is one vector width.  */
  return (((factor & 15) == 0 && IN_RANGE (factor, -32 * 16, 31 * 16))
	  || ((factor & 1) == 0 && IN_RANGE (factor, -32 * 2, 31 * 2)));
}

/* Likewise for rtx X.  */

bool
aarch64_sve_addvl_addpl_immediate_p (rtx x)
{
  poly_int64 value;
  return (poly_int_rtx_p (x, &value)
	  && aarch64_sve_addvl_addpl_immediate_p (value));
}

/* Return the asm string for adding ADDVL or ADDPL immediate OFFSET
   to operand 1 and storing the result in operand 0.  */

char *
aarch64_output_sve_addvl_addpl (rtx offset)
{
  static char buffer[sizeof ("addpl\t%x0, %x1, #-") + 3 * sizeof (int)];
  poly_int64 offset_value = rtx_to_poly_int64 (offset);
  gcc_assert (aarch64_sve_addvl_addpl_immediate_p (offset_value));

  int factor = offset_value.coeffs[1];
  if ((factor & 15) == 0)
    snprintf (buffer, sizeof (buffer), "addvl\t%%x0, %%x1, #%d", factor / 16);
  else
    snprintf (buffer, sizeof (buffer), "addpl\t%%x0, %%x1, #%d", factor / 2);
  return buffer;
}

/* Return true if X is a valid immediate for an SVE vector INC or DEC
   instruction.  If it is, store the number of elements in each vector
   quadword in *NELTS_PER_VQ_OUT (if nonnull) and store the multiplication
   factor in *FACTOR_OUT (if nonnull).  */

bool
aarch64_sve_vector_inc_dec_immediate_p (rtx x, int *factor_out,
					unsigned int *nelts_per_vq_out)
{
  rtx elt;
  poly_int64 value;

  if (!const_vec_duplicate_p (x, &elt)
      || !poly_int_rtx_p (elt, &value))
    return false;

  unsigned int nelts_per_vq = 128 / GET_MODE_UNIT_BITSIZE (GET_MODE (x));
  if (nelts_per_vq != 8 && nelts_per_vq != 4 && nelts_per_vq != 2)
    /* There's no vector INCB.  */
    return false;

  HOST_WIDE_INT factor = value.coeffs[0];
  if (value.coeffs[1] != factor)
    return false;

  /* The coefficient must be [1, 16] * NELTS_PER_VQ.  */
  if ((factor % nelts_per_vq) != 0
      || !IN_RANGE (abs (factor), nelts_per_vq, 16 * nelts_per_vq))
    return false;

  if (factor_out)
    *factor_out = factor;
  if (nelts_per_vq_out)
    *nelts_per_vq_out = nelts_per_vq;
  return true;
}

/* Return true if X is a valid immediate for an SVE vector INC or DEC
   instruction.  */

bool
aarch64_sve_vector_inc_dec_immediate_p (rtx x)
{
  return aarch64_sve_vector_inc_dec_immediate_p (x, NULL, NULL);
}

/* Return the asm template for an SVE vector INC or DEC instruction.
   OPERANDS gives the operands before the vector count and X is the
   value of the vector count operand itself.  */

char *
aarch64_output_sve_vector_inc_dec (const char *operands, rtx x)
{
  int factor;
  unsigned int nelts_per_vq;
  if (!aarch64_sve_vector_inc_dec_immediate_p (x, &factor, &nelts_per_vq))
    gcc_unreachable ();
  if (factor < 0)
    return aarch64_output_sve_cnt_immediate ("dec", operands, AARCH64_SV_ALL,
					     -factor, nelts_per_vq);
  else
    return aarch64_output_sve_cnt_immediate ("inc", operands, AARCH64_SV_ALL,
					     factor, nelts_per_vq);
}

/* Multipliers for repeating bitmasks of width 32, 16, 8, 4, and 2.  */

static const unsigned HOST_WIDE_INT bitmask_imm_mul[] =
  {
    0x0000000100000001ull,
    0x0001000100010001ull,
    0x0101010101010101ull,
    0x1111111111111111ull,
    0x5555555555555555ull,
  };



/* Return true if 64-bit VAL is a valid bitmask immediate.  */
static bool
aarch64_bitmask_imm (unsigned HOST_WIDE_INT val)
{
  unsigned HOST_WIDE_INT tmp, mask, first_one, next_one;
  int bits;

  /* Check for a single sequence of one bits and return quickly if so.
     The special cases of all ones and all zeroes returns false.  */
  tmp = val + (val & -val);

  if (tmp == (tmp & -tmp))
    return (val + 1) > 1;

  /* Invert if the immediate doesn't start with a zero bit - this means we
     only need to search for sequences of one bits.  */
  if (val & 1)
    val = ~val;

  /* Find the first set bit and set tmp to val with the first sequence of one
     bits removed.  Return success if there is a single sequence of ones.  */
  first_one = val & -val;
  tmp = val & (val + first_one);

  if (tmp == 0)
    return true;

  /* Find the next set bit and compute the difference in bit position.  */
  next_one = tmp & -tmp;
  bits = clz_hwi (first_one) - clz_hwi (next_one);
  mask = val ^ tmp;

  /* Check the bit position difference is a power of 2, and that the first
     sequence of one bits fits within 'bits' bits.  */
  if ((mask >> bits) != 0 || bits != (bits & -bits))
    return false;

  /* Check the sequence of one bits is repeated 64/bits times.  */
  return val == mask * bitmask_imm_mul[__builtin_clz (bits) - 26];
}


/* Return true if VAL is a valid bitmask immediate for MODE.  */
bool
aarch64_bitmask_imm (HOST_WIDE_INT val_in, machine_mode mode)
{
  if (mode == DImode)
    return aarch64_bitmask_imm (val_in);

  unsigned HOST_WIDE_INT val = val_in;

  if (mode == SImode)
    return aarch64_bitmask_imm ((val & 0xffffffff) | (val << 32));

  /* Replicate small immediates to fit 64 bits.  */
  int size = GET_MODE_UNIT_PRECISION (mode);
  val &= (HOST_WIDE_INT_1U << size) - 1;
  val *= bitmask_imm_mul[__builtin_clz (size) - 26];

  return aarch64_bitmask_imm (val);
}


/* Return true if the immediate VAL can be a bitfield immediate
   by changing the given MASK bits in VAL to zeroes, ones or bits
   from the other half of VAL.  Return the new immediate in VAL2.  */
static inline bool
aarch64_check_bitmask (unsigned HOST_WIDE_INT val,
		       unsigned HOST_WIDE_INT &val2,
		       unsigned HOST_WIDE_INT mask)
{
  val2 = val & ~mask;
  if (val2 != val && aarch64_bitmask_imm (val2))
    return true;
  val2 = val | mask;
  if (val2 != val && aarch64_bitmask_imm (val2))
    return true;
  val = val & ~mask;
  val2 = val | (((val >> 32) | (val << 32)) & mask);
  if (val2 != val && aarch64_bitmask_imm (val2))
    return true;
  val2 = val | (((val >> 16) | (val << 48)) & mask);
  if (val2 != val && aarch64_bitmask_imm (val2))
    return true;
  return false;
}


/* Return true if val is an immediate that can be loaded into a
   register by a MOVZ instruction.  */
static bool
aarch64_movw_imm (HOST_WIDE_INT val, scalar_int_mode mode)
{
  if (GET_MODE_SIZE (mode) > 4)
    {
      if ((val & (((HOST_WIDE_INT) 0xffff) << 32)) == val
	   || (val & (((HOST_WIDE_INT) 0xffff) << 48)) == val)
	return 1;
    }
  else
    {
      /* Ignore sign extension.  */
      val &= (HOST_WIDE_INT) 0xffffffff;
    }
  return ((val & (((HOST_WIDE_INT) 0xffff) << 0)) == val
	  || (val & (((HOST_WIDE_INT) 0xffff) << 16)) == val);
}


/* Return true if VAL is an immediate that can be loaded into a
   register in a single instruction.  */
bool
aarch64_move_imm (HOST_WIDE_INT val, machine_mode mode)
{
  scalar_int_mode int_mode;
  if (!is_a <scalar_int_mode> (mode, &int_mode))
    return false;

  if (aarch64_movw_imm (val, int_mode) || aarch64_movw_imm (~val, int_mode))
    return 1;
  return aarch64_bitmask_imm (val, int_mode);
}


static int
aarch64_internal_mov_immediate (rtx dest, rtx imm, bool generate,
				scalar_int_mode mode)
{
  int i;
  unsigned HOST_WIDE_INT val, val2, mask;
  int one_match, zero_match;
  int num_insns;

  val = INTVAL (imm);

  if (aarch64_move_imm (val, mode))
    {
      if (generate)
	emit_insn (gen_rtx_SET (dest, imm));
      return 1;
    }

  /* Check to see if the low 32 bits are either 0xffffXXXX or 0xXXXXffff
     (with XXXX non-zero). In that case check to see if the move can be done in
     a smaller mode.  */
  val2 = val & 0xffffffff;
  if (mode == DImode
      && aarch64_move_imm (val2, SImode)
      && (((val >> 32) & 0xffff) == 0 || (val >> 48) == 0))
    {
      if (generate)
	emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));

      /* Check if we have to emit a second instruction by checking to see
	 if any of the upper 32 bits of the original DI mode value is set.  */
      if (val == val2)
	return 1;

      i = (val >> 48) ? 48 : 32;

      if (generate)
	 emit_insn (gen_insv_immdi (dest, GEN_INT (i),
				    GEN_INT ((val >> i) & 0xffff)));

      return 2;
    }

  if ((val >> 32) == 0 || mode == SImode)
    {
      if (generate)
	{
	  emit_insn (gen_rtx_SET (dest, GEN_INT (val & 0xffff)));
	  if (mode == SImode)
	    emit_insn (gen_insv_immsi (dest, GEN_INT (16),
				       GEN_INT ((val >> 16) & 0xffff)));
	  else
	    emit_insn (gen_insv_immdi (dest, GEN_INT (16),
				       GEN_INT ((val >> 16) & 0xffff)));
	}
      return 2;
    }

  /* Remaining cases are all for DImode.  */

  mask = 0xffff;
  zero_match = ((val & mask) == 0) + ((val & (mask << 16)) == 0) +
    ((val & (mask << 32)) == 0) + ((val & (mask << 48)) == 0);
  one_match = ((~val & mask) == 0) + ((~val & (mask << 16)) == 0) +
    ((~val & (mask << 32)) == 0) + ((~val & (mask << 48)) == 0);

  if (zero_match < 2 && one_match < 2)
    {
      /* Try emitting a bitmask immediate with a movk replacing 16 bits.
	 For a 64-bit bitmask try whether changing 16 bits to all ones or
	 zeroes creates a valid bitmask.  To check any repeated bitmask,
	 try using 16 bits from the other 32-bit half of val.  */

      for (i = 0; i < 64; i += 16)
	if (aarch64_check_bitmask (val, val2, mask << i))
	  {
	    if (generate)
	      {
		emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));
		emit_insn (gen_insv_immdi (dest, GEN_INT (i),
					   GEN_INT ((val >> i) & 0xffff)));
	      }
	    return 2;
	  }
    }

  /* Try a bitmask plus 2 movk to generate the immediate in 3 instructions.  */
  if (zero_match + one_match == 0)
    {
      for (i = 0; i < 48; i += 16)
	for (int j = i + 16; j < 64; j += 16)
	  if (aarch64_check_bitmask (val, val2, (mask << i) | (mask << j)))
	    {
	      if (generate)
		{
		  emit_insn (gen_rtx_SET (dest, GEN_INT (val2)));
		  emit_insn (gen_insv_immdi (dest, GEN_INT (i),
					     GEN_INT ((val >> i) & 0xffff)));
		  emit_insn (gen_insv_immdi (dest, GEN_INT (j),
					       GEN_INT ((val >> j) & 0xffff)));
		}
	      return 3;
	    }
    }

  /* Generate 2-4 instructions, skipping 16 bits of all zeroes or ones which
     are emitted by the initial mov.  If one_match > zero_match, skip set bits,
     otherwise skip zero bits.  */

  num_insns = 1;
  mask = 0xffff;
  val2 = one_match > zero_match ? ~val : val;
  i = (val2 & mask) != 0 ? 0 : (val2 & (mask << 16)) != 0 ? 16 : 32;

  if (generate)
    emit_insn (gen_rtx_SET (dest, GEN_INT (one_match > zero_match
					   ? (val | ~(mask << i))
					   : (val & (mask << i)))));
  for (i += 16; i < 64; i += 16)
    {
      if ((val2 & (mask << i)) == 0)
	continue;
      if (generate)
	emit_insn (gen_insv_immdi (dest, GEN_INT (i),
				   GEN_INT ((val >> i) & 0xffff)));
      num_insns ++;
    }

  return num_insns;
}

/* Return whether imm is a 128-bit immediate which is simple enough to
   expand inline.  */
bool
aarch64_mov128_immediate (rtx imm)
{
  if (CONST_INT_P (imm))
    return true;

  gcc_assert (CONST_WIDE_INT_NUNITS (imm) == 2);

  rtx lo = GEN_INT (CONST_WIDE_INT_ELT (imm, 0));
  rtx hi = GEN_INT (CONST_WIDE_INT_ELT (imm, 1));

  return aarch64_internal_mov_immediate (NULL_RTX, lo, false, DImode)
	 + aarch64_internal_mov_immediate (NULL_RTX, hi, false, DImode) <= 4;
}


/* Return true if val can be encoded as a 12-bit unsigned immediate with
   a left shift of 0 or 12 bits.  */
bool
aarch64_uimm12_shift (HOST_WIDE_INT val)
{
  return ((val & (((HOST_WIDE_INT) 0xfff) << 0)) == val
	  || (val & (((HOST_WIDE_INT) 0xfff) << 12)) == val
	  );
}

/* Returns the nearest value to VAL that will fit as a 12-bit unsigned immediate
   that can be created with a left shift of 0 or 12.  */
static HOST_WIDE_INT
aarch64_clamp_to_uimm12_shift (HOST_WIDE_INT val)
{
  /* Check to see if the value fits in 24 bits, as that is the maximum we can
     handle correctly.  */
  gcc_assert ((val & 0xffffff) == val);

  if (((val & 0xfff) << 0) == val)
    return val;

  return val & (0xfff << 12);
}


/* Test whether:

     X = (X & AND_VAL) | IOR_VAL;

   can be implemented using:

     MOVK X, #(IOR_VAL >> shift), LSL #shift

   Return the shift if so, otherwise return -1.  */
int
aarch64_movk_shift (const wide_int_ref &and_val,
		    const wide_int_ref &ior_val)
{
  unsigned int precision = and_val.get_precision ();
  unsigned HOST_WIDE_INT mask = 0xffff;
  for (unsigned int shift = 0; shift < precision; shift += 16)
    {
      if (and_val == ~mask && (ior_val & mask) == ior_val)
	return shift;
      mask <<= 16;
    }
  return -1;
}

/* Create mask of ones, covering the lowest to highest bits set in VAL_IN.
   Assumed precondition: VAL_IN Is not zero.  */

unsigned HOST_WIDE_INT
aarch64_and_split_imm1 (HOST_WIDE_INT val_in)
{
  int lowest_bit_set = ctz_hwi (val_in);
  int highest_bit_set = floor_log2 (val_in);
  gcc_assert (val_in != 0);

  return ((HOST_WIDE_INT_UC (2) << highest_bit_set) -
	  (HOST_WIDE_INT_1U << lowest_bit_set));
}

/* Create constant where bits outside of lowest bit set to highest bit set
   are set to 1.  */

unsigned HOST_WIDE_INT
aarch64_and_split_imm2 (HOST_WIDE_INT val_in)
{
  return val_in | ~aarch64_and_split_imm1 (val_in);
}

/* Return true if VAL_IN is a valid 'and' bitmask immediate.  */

bool
aarch64_and_bitmask_imm (unsigned HOST_WIDE_INT val_in, machine_mode mode)
{
  scalar_int_mode int_mode;
  if (!is_a <scalar_int_mode> (mode, &int_mode))
    return false;

  if (aarch64_bitmask_imm (val_in, int_mode))
    return false;

  if (aarch64_move_imm (val_in, int_mode))
    return false;

  unsigned HOST_WIDE_INT imm2 = aarch64_and_split_imm2 (val_in);

  return aarch64_bitmask_imm (imm2, int_mode);
}

/* Return the number of temporary registers that aarch64_add_offset_1
   would need to add OFFSET to a register.  */

static unsigned int
aarch64_add_offset_1_temporaries (HOST_WIDE_INT offset)
{
  return absu_hwi (offset) < 0x1000000 ? 0 : 1;
}

/* A subroutine of aarch64_add_offset.  Set DEST to SRC + OFFSET for
   a non-polynomial OFFSET.  MODE is the mode of the addition.
   FRAME_RELATED_P is true if the RTX_FRAME_RELATED flag should
   be set and CFA adjustments added to the generated instructions.

   TEMP1, if nonnull, is a register of mode MODE that can be used as a
   temporary if register allocation is already complete.  This temporary
   register may overlap DEST but must not overlap SRC.  If TEMP1 is known
   to hold abs (OFFSET), EMIT_MOVE_IMM can be set to false to avoid emitting
   the immediate again.

   Since this function may be used to adjust the stack pointer, we must
   ensure that it cannot cause transient stack deallocation (for example
   by first incrementing SP and then decrementing when adjusting by a
   large immediate).  */

static void
aarch64_add_offset_1 (scalar_int_mode mode, rtx dest,
		      rtx src, HOST_WIDE_INT offset, rtx temp1,
		      bool frame_related_p, bool emit_move_imm)
{
  gcc_assert (emit_move_imm || temp1 != NULL_RTX);
  gcc_assert (temp1 == NULL_RTX || !reg_overlap_mentioned_p (temp1, src));

  unsigned HOST_WIDE_INT moffset = absu_hwi (offset);
  rtx_insn *insn;

  if (!moffset)
    {
      if (!rtx_equal_p (dest, src))
	{
	  insn = emit_insn (gen_rtx_SET (dest, src));
	  RTX_FRAME_RELATED_P (insn) = frame_related_p;
	}
      return;
    }

  /* Single instruction adjustment.  */
  if (aarch64_uimm12_shift (moffset))
    {
      insn = emit_insn (gen_add3_insn (dest, src, GEN_INT (offset)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Emit 2 additions/subtractions if the adjustment is less than 24 bits
     and either:

     a) the offset cannot be loaded by a 16-bit move or
     b) there is no spare register into which we can move it.  */
  if (moffset < 0x1000000
      && ((!temp1 && !can_create_pseudo_p ())
	  || !aarch64_move_imm (moffset, mode)))
    {
      HOST_WIDE_INT low_off = moffset & 0xfff;

      low_off = offset < 0 ? -low_off : low_off;
      insn = emit_insn (gen_add3_insn (dest, src, GEN_INT (low_off)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      insn = emit_insn (gen_add2_insn (dest, GEN_INT (offset - low_off)));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Emit a move immediate if required and an addition/subtraction.  */
  if (emit_move_imm)
    {
      gcc_assert (temp1 != NULL_RTX || can_create_pseudo_p ());
      temp1 = aarch64_force_temporary (mode, temp1,
				       gen_int_mode (moffset, mode));
    }
  insn = emit_insn (offset < 0
		    ? gen_sub3_insn (dest, src, temp1)
		    : gen_add3_insn (dest, src, temp1));
  if (frame_related_p)
    {
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      rtx adj = plus_constant (mode, src, offset);
      add_reg_note (insn, REG_CFA_ADJUST_CFA, gen_rtx_SET (dest, adj));
    }
}

/* Return the number of temporary registers that aarch64_add_offset
   would need to move OFFSET into a register or add OFFSET to a register;
   ADD_P is true if we want the latter rather than the former.  */

static unsigned int
aarch64_offset_temporaries (bool add_p, poly_int64 offset)
{
  /* This follows the same structure as aarch64_add_offset.  */
  if (add_p && aarch64_sve_addvl_addpl_immediate_p (offset))
    return 0;

  unsigned int count = 0;
  HOST_WIDE_INT factor = offset.coeffs[1];
  HOST_WIDE_INT constant = offset.coeffs[0] - factor;
  poly_int64 poly_offset (factor, factor);
  if (add_p && aarch64_sve_addvl_addpl_immediate_p (poly_offset))
    /* Need one register for the ADDVL/ADDPL result.  */
    count += 1;
  else if (factor != 0)
    {
      factor = abs (factor);
      if (factor > 16 * (factor & -factor))
	/* Need one register for the CNT result and one for the multiplication
	   factor.  If necessary, the second temporary can be reused for the
	   constant part of the offset.  */
	return 2;
      /* Need one register for the CNT result (which might then
	 be shifted).  */
      count += 1;
    }
  return count + aarch64_add_offset_1_temporaries (constant);
}

/* If X can be represented as a poly_int64, return the number
   of temporaries that are required to add it to a register.
   Return -1 otherwise.  */

int
aarch64_add_offset_temporaries (rtx x)
{
  poly_int64 offset;
  if (!poly_int_rtx_p (x, &offset))
    return -1;
  return aarch64_offset_temporaries (true, offset);
}

/* Set DEST to SRC + OFFSET.  MODE is the mode of the addition.
   FRAME_RELATED_P is true if the RTX_FRAME_RELATED flag should
   be set and CFA adjustments added to the generated instructions.

   TEMP1, if nonnull, is a register of mode MODE that can be used as a
   temporary if register allocation is already complete.  This temporary
   register may overlap DEST if !FRAME_RELATED_P but must not overlap SRC.
   If TEMP1 is known to hold abs (OFFSET), EMIT_MOVE_IMM can be set to
   false to avoid emitting the immediate again.

   TEMP2, if nonnull, is a second temporary register that doesn't
   overlap either DEST or REG.

   Since this function may be used to adjust the stack pointer, we must
   ensure that it cannot cause transient stack deallocation (for example
   by first incrementing SP and then decrementing when adjusting by a
   large immediate).  */

static void
aarch64_add_offset (scalar_int_mode mode, rtx dest, rtx src,
		    poly_int64 offset, rtx temp1, rtx temp2,
		    bool frame_related_p, bool emit_move_imm = true)
{
  gcc_assert (emit_move_imm || temp1 != NULL_RTX);
  gcc_assert (temp1 == NULL_RTX || !reg_overlap_mentioned_p (temp1, src));
  gcc_assert (temp1 == NULL_RTX
	      || !frame_related_p
	      || !reg_overlap_mentioned_p (temp1, dest));
  gcc_assert (temp2 == NULL_RTX || !reg_overlap_mentioned_p (dest, temp2));

  /* Try using ADDVL or ADDPL to add the whole value.  */
  if (src != const0_rtx && aarch64_sve_addvl_addpl_immediate_p (offset))
    {
      rtx offset_rtx = gen_int_mode (offset, mode);
      rtx_insn *insn = emit_insn (gen_add3_insn (dest, src, offset_rtx));
      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      return;
    }

  /* Coefficient 1 is multiplied by the number of 128-bit blocks in an
     SVE vector register, over and above the minimum size of 128 bits.
     This is equivalent to half the value returned by CNTD with a
     vector shape of ALL.  */
  HOST_WIDE_INT factor = offset.coeffs[1];
  HOST_WIDE_INT constant = offset.coeffs[0] - factor;

  /* Try using ADDVL or ADDPL to add the VG-based part.  */
  poly_int64 poly_offset (factor, factor);
  if (src != const0_rtx
      && aarch64_sve_addvl_addpl_immediate_p (poly_offset))
    {
      rtx offset_rtx = gen_int_mode (poly_offset, mode);
      if (frame_related_p)
	{
	  rtx_insn *insn = emit_insn (gen_add3_insn (dest, src, offset_rtx));
	  RTX_FRAME_RELATED_P (insn) = true;
	  src = dest;
	}
      else
	{
	  rtx addr = gen_rtx_PLUS (mode, src, offset_rtx);
	  src = aarch64_force_temporary (mode, temp1, addr);
	  temp1 = temp2;
	  temp2 = NULL_RTX;
	}
    }
  /* Otherwise use a CNT-based sequence.  */
  else if (factor != 0)
    {
      /* Use a subtraction if we have a negative factor.  */
      rtx_code code = PLUS;
      if (factor < 0)
	{
	  factor = -factor;
	  code = MINUS;
	}

      /* Calculate CNTD * FACTOR / 2.  First try to fold the division
	 into the multiplication.  */
      rtx val;
      int shift = 0;
      if (factor & 1)
	/* Use a right shift by 1.  */
	shift = -1;
      else
	factor /= 2;
      HOST_WIDE_INT low_bit = factor & -factor;
      if (factor <= 16 * low_bit)
	{
	  if (factor > 16 * 8)
	    {
	      /* "CNTB Xn, ALL, MUL #FACTOR" is out of range, so calculate
		 the value with the minimum multiplier and shift it into
		 position.  */
	      int extra_shift = exact_log2 (low_bit);
	      shift += extra_shift;
	      factor >>= extra_shift;
	    }
	  val = gen_int_mode (poly_int64 (factor * 2, factor * 2), mode);
	}
      else
	{
	  /* Base the factor on LOW_BIT if we can calculate LOW_BIT
	     directly, since that should increase the chances of being
	     able to use a shift and add sequence.  If LOW_BIT itself
	     is out of range, just use CNTD.  */
	  if (low_bit <= 16 * 8)
	    factor /= low_bit;
	  else
	    low_bit = 1;

	  val = gen_int_mode (poly_int64 (low_bit * 2, low_bit * 2), mode);
	  val = aarch64_force_temporary (mode, temp1, val);

	  if (can_create_pseudo_p ())
	    {
	      rtx coeff1 = gen_int_mode (factor, mode);
	      val = expand_mult (mode, val, coeff1, NULL_RTX, true, true);
	    }
	  else
	    {
	      /* Go back to using a negative multiplication factor if we have
		 no register from which to subtract.  */
	      if (code == MINUS && src == const0_rtx)
		{
		  factor = -factor;
		  code = PLUS;
		}
	      rtx coeff1 = gen_int_mode (factor, mode);
	      coeff1 = aarch64_force_temporary (mode, temp2, coeff1);
	      val = gen_rtx_MULT (mode, val, coeff1);
	    }
	}

      if (shift > 0)
	{
	  /* Multiply by 1 << SHIFT.  */
	  val = aarch64_force_temporary (mode, temp1, val);
	  val = gen_rtx_ASHIFT (mode, val, GEN_INT (shift));
	}
      else if (shift == -1)
	{
	  /* Divide by 2.  */
	  val = aarch64_force_temporary (mode, temp1, val);
	  val = gen_rtx_ASHIFTRT (mode, val, const1_rtx);
	}

      /* Calculate SRC +/- CNTD * FACTOR / 2.  */
      if (src != const0_rtx)
	{
	  val = aarch64_force_temporary (mode, temp1, val);
	  val = gen_rtx_fmt_ee (code, mode, src, val);
	}
      else if (code == MINUS)
	{
	  val = aarch64_force_temporary (mode, temp1, val);
	  val = gen_rtx_NEG (mode, val);
	}

      if (constant == 0 || frame_related_p)
	{
	  rtx_insn *insn = emit_insn (gen_rtx_SET (dest, val));
	  if (frame_related_p)
	    {
	      RTX_FRAME_RELATED_P (insn) = true;
	      add_reg_note (insn, REG_CFA_ADJUST_CFA,
			    gen_rtx_SET (dest, plus_constant (Pmode, src,
							      poly_offset)));
	    }
	  src = dest;
	  if (constant == 0)
	    return;
	}
      else
	{
	  src = aarch64_force_temporary (mode, temp1, val);
	  temp1 = temp2;
	  temp2 = NULL_RTX;
	}

      emit_move_imm = true;
    }

  aarch64_add_offset_1 (mode, dest, src, constant, temp1,
			frame_related_p, emit_move_imm);
}

/* Like aarch64_add_offset, but the offset is given as an rtx rather
   than a poly_int64.  */

void
aarch64_split_add_offset (scalar_int_mode mode, rtx dest, rtx src,
			  rtx offset_rtx, rtx temp1, rtx temp2)
{
  aarch64_add_offset (mode, dest, src, rtx_to_poly_int64 (offset_rtx),
		      temp1, temp2, false);
}

/* Add DELTA to the stack pointer, marking the instructions frame-related.
   TEMP1 is available as a temporary if nonnull.  EMIT_MOVE_IMM is false
   if TEMP1 already contains abs (DELTA).  */

static inline void
aarch64_add_sp (rtx temp1, rtx temp2, poly_int64 delta, bool emit_move_imm)
{
  aarch64_add_offset (Pmode, stack_pointer_rtx, stack_pointer_rtx, delta,
		      temp1, temp2, true, emit_move_imm);
}

/* Subtract DELTA from the stack pointer, marking the instructions
   frame-related if FRAME_RELATED_P.  TEMP1 is available as a temporary
   if nonnull.  */

static inline void
aarch64_sub_sp (rtx temp1, rtx temp2, poly_int64 delta, bool frame_related_p,
		bool emit_move_imm = true)
{
  aarch64_add_offset (Pmode, stack_pointer_rtx, stack_pointer_rtx, -delta,
		      temp1, temp2, frame_related_p, emit_move_imm);
}

/* Set DEST to (vec_series BASE STEP).  */

static void
aarch64_expand_vec_series (rtx dest, rtx base, rtx step)
{
  machine_mode mode = GET_MODE (dest);
  scalar_mode inner = GET_MODE_INNER (mode);

  /* Each operand can be a register or an immediate in the range [-16, 15].  */
  if (!aarch64_sve_index_immediate_p (base))
    base = force_reg (inner, base);
  if (!aarch64_sve_index_immediate_p (step))
    step = force_reg (inner, step);

  emit_set_insn (dest, gen_rtx_VEC_SERIES (mode, base, step));
}

/* Duplicate 128-bit Advanced SIMD vector SRC so that it fills an SVE
   register of mode MODE.  Use TARGET for the result if it's nonnull
   and convenient.

   The two vector modes must have the same element mode.  The behavior
   is to duplicate architectural lane N of SRC into architectural lanes
   N + I * STEP of the result.  On big-endian targets, architectural
   lane 0 of an Advanced SIMD vector is the last element of the vector
   in memory layout, so for big-endian targets this operation has the
   effect of reversing SRC before duplicating it.  Callers need to
   account for this.  */

rtx
aarch64_expand_sve_dupq (rtx target, machine_mode mode, rtx src)
{
  machine_mode src_mode = GET_MODE (src);
  gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER (src_mode));
  insn_code icode = (BYTES_BIG_ENDIAN
		     ? code_for_aarch64_vec_duplicate_vq_be (mode)
		     : code_for_aarch64_vec_duplicate_vq_le (mode));

  unsigned int i = 0;
  expand_operand ops[3];
  create_output_operand (&ops[i++], target, mode);
  create_output_operand (&ops[i++], src, src_mode);
  if (BYTES_BIG_ENDIAN)
    {
      /* Create a PARALLEL describing the reversal of SRC.  */
      unsigned int nelts_per_vq = 128 / GET_MODE_UNIT_BITSIZE (mode);
      rtx sel = aarch64_gen_stepped_int_parallel (nelts_per_vq,
						  nelts_per_vq - 1, -1);
      create_fixed_operand (&ops[i++], sel);
    }
  expand_insn (icode, i, ops);
  return ops[0].value;
}

/* Try to force 128-bit vector value SRC into memory and use LD1RQ to fetch
   the memory image into DEST.  Return true on success.  */

static bool
aarch64_expand_sve_ld1rq (rtx dest, rtx src)
{
  src = force_const_mem (GET_MODE (src), src);
  if (!src)
    return false;

  /* Make sure that the address is legitimate.  */
  if (!aarch64_sve_ld1rq_operand_p (src))
    {
      rtx addr = force_reg (Pmode, XEXP (src, 0));
      src = replace_equiv_address (src, addr);
    }

  machine_mode mode = GET_MODE (dest);
  machine_mode pred_mode = aarch64_sve_pred_mode (mode);
  rtx ptrue = aarch64_ptrue_reg (pred_mode);
  emit_insn (gen_aarch64_sve_ld1rq (mode, dest, src, ptrue));
  return true;
}

/* SRC is an SVE CONST_VECTOR that contains N "foreground" values followed
   by N "background" values.  Try to move it into TARGET using:

      PTRUE PRED.<T>, VL<N>
      MOV TRUE.<T>, #<foreground>
      MOV FALSE.<T>, #<background>
      SEL TARGET.<T>, PRED.<T>, TRUE.<T>, FALSE.<T>

   The PTRUE is always a single instruction but the MOVs might need a
   longer sequence.  If the background value is zero (as it often is),
   the sequence can sometimes collapse to a PTRUE followed by a
   zero-predicated move.

   Return the target on success, otherwise return null.  */

static rtx
aarch64_expand_sve_const_vector_sel (rtx target, rtx src)
{
  gcc_assert (CONST_VECTOR_NELTS_PER_PATTERN (src) == 2);

  /* Make sure that the PTRUE is valid.  */
  machine_mode mode = GET_MODE (src);
  machine_mode pred_mode = aarch64_sve_pred_mode (mode);
  unsigned int npatterns = CONST_VECTOR_NPATTERNS (src);
  if (aarch64_svpattern_for_vl (pred_mode, npatterns)
      == AARCH64_NUM_SVPATTERNS)
    return NULL_RTX;

  rtx_vector_builder pred_builder (pred_mode, npatterns, 2);
  rtx_vector_builder true_builder (mode, npatterns, 1);
  rtx_vector_builder false_builder (mode, npatterns, 1);
  for (unsigned int i = 0; i < npatterns; ++i)
    {
      true_builder.quick_push (CONST_VECTOR_ENCODED_ELT (src, i));
      pred_builder.quick_push (CONST1_RTX (BImode));
    }
  for (unsigned int i = 0; i < npatterns; ++i)
    {
      false_builder.quick_push (CONST_VECTOR_ENCODED_ELT (src, i + npatterns));
      pred_builder.quick_push (CONST0_RTX (BImode));
    }
  expand_operand ops[4];
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], true_builder.build (), mode);
  create_input_operand (&ops[2], false_builder.build (), mode);
  create_input_operand (&ops[3], pred_builder.build (), pred_mode);
  expand_insn (code_for_vcond_mask (mode, mode), 4, ops);
  return target;
}

/* Return a register containing CONST_VECTOR SRC, given that SRC has an
   SVE data mode and isn't a legitimate constant.  Use TARGET for the
   result if convenient.

   The returned register can have whatever mode seems most natural
   given the contents of SRC.  */

static rtx
aarch64_expand_sve_const_vector (rtx target, rtx src)
{
  machine_mode mode = GET_MODE (src);
  unsigned int npatterns = CONST_VECTOR_NPATTERNS (src);
  unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (src);
  scalar_mode elt_mode = GET_MODE_INNER (mode);
  unsigned int elt_bits = GET_MODE_BITSIZE (elt_mode);
  unsigned int container_bits = aarch64_sve_container_bits (mode);
  unsigned int encoded_bits = npatterns * nelts_per_pattern * container_bits;

  if (nelts_per_pattern == 1
      && encoded_bits <= 128
      && container_bits != elt_bits)
    {
      /* We have a partial vector mode and a constant whose full-vector
	 equivalent would occupy a repeating 128-bit sequence.  Build that
	 full-vector equivalent instead, so that we have the option of
	 using LD1RQ and Advanced SIMD operations.  */
      unsigned int repeat = container_bits / elt_bits;
      machine_mode full_mode = aarch64_full_sve_mode (elt_mode).require ();
      rtx_vector_builder builder (full_mode, npatterns * repeat, 1);
      for (unsigned int i = 0; i < npatterns; ++i)
	for (unsigned int j = 0; j < repeat; ++j)
	  builder.quick_push (CONST_VECTOR_ENCODED_ELT (src, i));
      target = aarch64_target_reg (target, full_mode);
      return aarch64_expand_sve_const_vector (target, builder.build ());
    }

  if (nelts_per_pattern == 1 && encoded_bits == 128)
    {
      /* The constant is a duplicated quadword but can't be narrowed
	 beyond a quadword.  Get the memory image of the first quadword
	 as a 128-bit vector and try using LD1RQ to load it from memory.

	 The effect for both endiannesses is to load memory lane N into
	 architectural lanes N + I * STEP of the result.  On big-endian
	 targets, the layout of the 128-bit vector in an Advanced SIMD
	 register would be different from its layout in an SVE register,
	 but this 128-bit vector is a memory value only.  */
      machine_mode vq_mode = aarch64_vq_mode (elt_mode).require ();
      rtx vq_value = simplify_gen_subreg (vq_mode, src, mode, 0);
      if (vq_value && aarch64_expand_sve_ld1rq (target, vq_value))
	return target;
    }

  if (nelts_per_pattern == 1 && encoded_bits < 128)
    {
      /* The vector is a repeating sequence of 64 bits or fewer.
	 See if we can load them using an Advanced SIMD move and then
	 duplicate it to fill a vector.  This is better than using a GPR
	 move because it keeps everything in the same register file.  */
      machine_mode vq_mode = aarch64_vq_mode (elt_mode).require ();
      rtx_vector_builder builder (vq_mode, npatterns, 1);
      for (unsigned int i = 0; i < npatterns; ++i)
	{
	  /* We want memory lane N to go into architectural lane N,
	     so reverse for big-endian targets.  The DUP .Q pattern
	     has a compensating reverse built-in.  */
	  unsigned int srci = BYTES_BIG_ENDIAN ? npatterns - i - 1 : i;
	  builder.quick_push (CONST_VECTOR_ENCODED_ELT (src, srci));
	}
      rtx vq_src = builder.build ();
      if (aarch64_simd_valid_immediate (vq_src, NULL))
	{
	  vq_src = force_reg (vq_mode, vq_src);
	  return aarch64_expand_sve_dupq (target, mode, vq_src);
	}

      /* Get an integer representation of the repeating part of Advanced
	 SIMD vector VQ_SRC.  This preserves the endianness of VQ_SRC,
	 which for big-endian targets is lane-swapped wrt a normal
	 Advanced SIMD vector.  This means that for both endiannesses,
	 memory lane N of SVE vector SRC corresponds to architectural
	 lane N of a register holding VQ_SRC.  This in turn means that
	 memory lane 0 of SVE vector SRC is in the lsb of VQ_SRC (viewed
	 as a single 128-bit value) and thus that memory lane 0 of SRC is
	 in the lsb of the integer.  Duplicating the integer therefore
	 ensures that memory lane N of SRC goes into architectural lane
	 N + I * INDEX of the SVE register.  */
      scalar_mode int_mode = int_mode_for_size (encoded_bits, 0).require ();
      rtx elt_value = simplify_gen_subreg (int_mode, vq_src, vq_mode, 0);
      if (elt_value)
	{
	  /* Pretend that we had a vector of INT_MODE to start with.  */
	  elt_mode = int_mode;
	  mode = aarch64_full_sve_mode (int_mode).require ();

	  /* If the integer can be moved into a general register by a
	     single instruction, do that and duplicate the result.  */
	  if (CONST_INT_P (elt_value)
	      && aarch64_move_imm (INTVAL (elt_value), elt_mode))
	    {
	      elt_value = force_reg (elt_mode, elt_value);
	      return expand_vector_broadcast (mode, elt_value);
	    }
	}
      else if (npatterns == 1)
	/* We're duplicating a single value, but can't do better than
	   force it to memory and load from there.  This handles things
	   like symbolic constants.  */
	elt_value = CONST_VECTOR_ENCODED_ELT (src, 0);

      if (elt_value)
	{
	  /* Load the element from memory if we can, otherwise move it into
	     a register and use a DUP.  */
	  rtx op = force_const_mem (elt_mode, elt_value);
	  if (!op)
	    op = force_reg (elt_mode, elt_value);
	  return expand_vector_broadcast (mode, op);
	}
    }

  /* Try using INDEX.  */
  rtx base, step;
  if (const_vec_series_p (src, &base, &step))
    {
      aarch64_expand_vec_series (target, base, step);
      return target;
    }

  /* From here on, it's better to force the whole constant to memory
     if we can.  */
  if (GET_MODE_NUNITS (mode).is_constant ())
    return NULL_RTX;

  if (nelts_per_pattern == 2)
    if (rtx res = aarch64_expand_sve_const_vector_sel (target, src))
      return res;

  /* Expand each pattern individually.  */
  gcc_assert (npatterns > 1);
  rtx_vector_builder builder;
  auto_vec<rtx, 16> vectors (npatterns);
  for (unsigned int i = 0; i < npatterns; ++i)
    {
      builder.new_vector (mode, 1, nelts_per_pattern);
      for (unsigned int j = 0; j < nelts_per_pattern; ++j)
	builder.quick_push (CONST_VECTOR_ELT (src, i + j * npatterns));
      vectors.quick_push (force_reg (mode, builder.build ()));
    }

  /* Use permutes to interleave the separate vectors.  */
  while (npatterns > 1)
    {
      npatterns /= 2;
      for (unsigned int i = 0; i < npatterns; ++i)
	{
	  rtx tmp = (npatterns == 1 ? target : gen_reg_rtx (mode));
	  rtvec v = gen_rtvec (2, vectors[i], vectors[i + npatterns]);
	  emit_set_insn (tmp, gen_rtx_UNSPEC (mode, v, UNSPEC_ZIP1));
	  vectors[i] = tmp;
	}
    }
  gcc_assert (vectors[0] == target);
  return target;
}

/* Use WHILE to set a predicate register of mode MODE in which the first
   VL bits are set and the rest are clear.  Use TARGET for the register
   if it's nonnull and convenient.  */

static rtx
aarch64_sve_move_pred_via_while (rtx target, machine_mode mode,
				 unsigned int vl)
{
  rtx limit = force_reg (DImode, gen_int_mode (vl, DImode));
  target = aarch64_target_reg (target, mode);
  emit_insn (gen_while (UNSPEC_WHILELO, DImode, mode,
			target, const0_rtx, limit));
  return target;
}

static rtx
aarch64_expand_sve_const_pred_1 (rtx, rtx_vector_builder &, bool);

/* BUILDER is a constant predicate in which the index of every set bit
   is a multiple of ELT_SIZE (which is <= 8).  Try to load the constant
   by inverting every element at a multiple of ELT_SIZE and EORing the
   result with an ELT_SIZE PTRUE.

   Return a register that contains the constant on success, otherwise
   return null.  Use TARGET as the register if it is nonnull and
   convenient.  */

static rtx
aarch64_expand_sve_const_pred_eor (rtx target, rtx_vector_builder &builder,
				   unsigned int elt_size)
{
  /* Invert every element at a multiple of ELT_SIZE, keeping the
     other bits zero.  */
  rtx_vector_builder inv_builder (VNx16BImode, builder.npatterns (),
				  builder.nelts_per_pattern ());
  for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
    if ((i & (elt_size - 1)) == 0 && INTVAL (builder.elt (i)) == 0)
      inv_builder.quick_push (const1_rtx);
    else
      inv_builder.quick_push (const0_rtx);
  inv_builder.finalize ();

  /* See if we can load the constant cheaply.  */
  rtx inv = aarch64_expand_sve_const_pred_1 (NULL_RTX, inv_builder, false);
  if (!inv)
    return NULL_RTX;

  /* EOR the result with an ELT_SIZE PTRUE.  */
  rtx mask = aarch64_ptrue_all (elt_size);
  mask = force_reg (VNx16BImode, mask);
  inv = gen_lowpart (VNx16BImode, inv);
  target = aarch64_target_reg (target, VNx16BImode);
  emit_insn (gen_aarch64_pred_z (XOR, VNx16BImode, target, mask, inv, mask));
  return target;
}

/* BUILDER is a constant predicate in which the index of every set bit
   is a multiple of ELT_SIZE (which is <= 8).  Try to load the constant
   using a TRN1 of size PERMUTE_SIZE, which is >= ELT_SIZE.  Return the
   register on success, otherwise return null.  Use TARGET as the register
   if nonnull and convenient.  */

static rtx
aarch64_expand_sve_const_pred_trn (rtx target, rtx_vector_builder &builder,
				   unsigned int elt_size,
				   unsigned int permute_size)
{
  /* We're going to split the constant into two new constants A and B,
     with element I of BUILDER going into A if (I & PERMUTE_SIZE) == 0
     and into B otherwise.  E.g. for PERMUTE_SIZE == 4 && ELT_SIZE == 1:

     A: { 0, 1, 2, 3, _, _, _, _, 8, 9, 10, 11, _, _, _, _ }
     B: { 4, 5, 6, 7, _, _, _, _, 12, 13, 14, 15, _, _, _, _ }

     where _ indicates elements that will be discarded by the permute.

     First calculate the ELT_SIZEs for A and B.  */
  unsigned int a_elt_size = GET_MODE_SIZE (DImode);
  unsigned int b_elt_size = GET_MODE_SIZE (DImode);
  for (unsigned int i = 0; i < builder.encoded_nelts (); i += elt_size)
    if (INTVAL (builder.elt (i)) != 0)
      {
	if (i & permute_size)
	  b_elt_size |= i - permute_size;
	else
	  a_elt_size |= i;
      }
  a_elt_size &= -a_elt_size;
  b_elt_size &= -b_elt_size;

  /* Now construct the vectors themselves.  */
  rtx_vector_builder a_builder (VNx16BImode, builder.npatterns (),
				builder.nelts_per_pattern ());
  rtx_vector_builder b_builder (VNx16BImode, builder.npatterns (),
				builder.nelts_per_pattern ());
  unsigned int nelts = builder.encoded_nelts ();
  for (unsigned int i = 0; i < nelts; ++i)
    if (i & (elt_size - 1))
      {
	a_builder.quick_push (const0_rtx);
	b_builder.quick_push (const0_rtx);
      }
    else if ((i & permute_size) == 0)
      {
	/* The A and B elements are significant.  */
	a_builder.quick_push (builder.elt (i));
	b_builder.quick_push (builder.elt (i + permute_size));
      }
    else
      {
	/* The A and B elements are going to be discarded, so pick whatever
	   is likely to give a nice constant.  We are targeting element
	   sizes A_ELT_SIZE and B_ELT_SIZE for A and B respectively,
	   with the aim of each being a sequence of ones followed by
	   a sequence of zeros.  So:

	   * if X_ELT_SIZE <= PERMUTE_SIZE, the best approach is to
	     duplicate the last X_ELT_SIZE element, to extend the
	     current sequence of ones or zeros.

	   * if X_ELT_SIZE > PERMUTE_SIZE, the best approach is to add a
	     zero, so that the constant really does have X_ELT_SIZE and
	     not a smaller size.  */
	if (a_elt_size > permute_size)
	  a_builder.quick_push (const0_rtx);
	else
	  a_builder.quick_push (a_builder.elt (i - a_elt_size));
	if (b_elt_size > permute_size)
	  b_builder.quick_push (const0_rtx);
	else
	  b_builder.quick_push (b_builder.elt (i - b_elt_size));
      }
  a_builder.finalize ();
  b_builder.finalize ();

  /* Try loading A into a register.  */
  rtx_insn *last = get_last_insn ();
  rtx a = aarch64_expand_sve_const_pred_1 (NULL_RTX, a_builder, false);
  if (!a)
    return NULL_RTX;

  /* Try loading B into a register.  */
  rtx b = a;
  if (a_builder != b_builder)
    {
      b = aarch64_expand_sve_const_pred_1 (NULL_RTX, b_builder, false);
      if (!b)
	{
	  delete_insns_since (last);
	  return NULL_RTX;
	}
    }

  /* Emit the TRN1 itself.  We emit a TRN that operates on VNx16BI
     operands but permutes them as though they had mode MODE.  */
  machine_mode mode = aarch64_sve_pred_mode (permute_size).require ();
  target = aarch64_target_reg (target, GET_MODE (a));
  rtx type_reg = CONST0_RTX (mode);
  emit_insn (gen_aarch64_sve_trn1_conv (mode, target, a, b, type_reg));
  return target;
}

/* Subroutine of aarch64_expand_sve_const_pred.  Try to load the VNx16BI
   constant in BUILDER into an SVE predicate register.  Return the register
   on success, otherwise return null.  Use TARGET for the register if
   nonnull and convenient.

   ALLOW_RECURSE_P is true if we can use methods that would call this
   function recursively.  */

static rtx
aarch64_expand_sve_const_pred_1 (rtx target, rtx_vector_builder &builder,
				 bool allow_recurse_p)
{
  if (builder.encoded_nelts () == 1)
    /* A PFALSE or a PTRUE .B ALL.  */
    return aarch64_emit_set_immediate (target, builder);

  unsigned int elt_size = aarch64_widest_sve_pred_elt_size (builder);
  if (int vl = aarch64_partial_ptrue_length (builder, elt_size))
    {
      /* If we can load the constant using PTRUE, use it as-is.  */
      machine_mode mode = aarch64_sve_pred_mode (elt_size).require ();
      if (aarch64_svpattern_for_vl (mode, vl) != AARCH64_NUM_SVPATTERNS)
	return aarch64_emit_set_immediate (target, builder);

      /* Otherwise use WHILE to set the first VL bits.  */
      return aarch64_sve_move_pred_via_while (target, mode, vl);
    }

  if (!allow_recurse_p)
    return NULL_RTX;

  /* Try inverting the vector in element size ELT_SIZE and then EORing
     the result with an ELT_SIZE PTRUE.  */
  if (INTVAL (builder.elt (0)) == 0)
    if (rtx res = aarch64_expand_sve_const_pred_eor (target, builder,
						     elt_size))
      return res;

  /* Try using TRN1 to permute two simpler constants.  */
  for (unsigned int i = elt_size; i <= 8; i *= 2)
    if (rtx res = aarch64_expand_sve_const_pred_trn (target, builder,
						     elt_size, i))
      return res;

  return NULL_RTX;
}

/* Return an SVE predicate register that contains the VNx16BImode
   constant in BUILDER, without going through the move expanders.

   The returned register can have whatever mode seems most natural
   given the contents of BUILDER.  Use TARGET for the result if
   convenient.  */

static rtx
aarch64_expand_sve_const_pred (rtx target, rtx_vector_builder &builder)
{
  /* Try loading the constant using pure predicate operations.  */
  if (rtx res = aarch64_expand_sve_const_pred_1 (target, builder, true))
    return res;

  /* Try forcing the constant to memory.  */
  if (builder.full_nelts ().is_constant ())
    if (rtx mem = force_const_mem (VNx16BImode, builder.build ()))
      {
	target = aarch64_target_reg (target, VNx16BImode);
	emit_move_insn (target, mem);
	return target;
      }

  /* The last resort is to load the constant as an integer and then
     compare it against zero.  Use -1 for set bits in order to increase
     the changes of using SVE DUPM or an Advanced SIMD byte mask.  */
  rtx_vector_builder int_builder (VNx16QImode, builder.npatterns (),
				  builder.nelts_per_pattern ());
  for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
    int_builder.quick_push (INTVAL (builder.elt (i))
			    ? constm1_rtx : const0_rtx);
  return aarch64_convert_sve_data_to_pred (target, VNx16BImode,
					   int_builder.build ());
}

/* Set DEST to immediate IMM.  */

void
aarch64_expand_mov_immediate (rtx dest, rtx imm)
{
  machine_mode mode = GET_MODE (dest);

  /* Check on what type of symbol it is.  */
  scalar_int_mode int_mode;
  if ((SYMBOL_REF_P (imm)
       || LABEL_REF_P (imm)
       || GET_CODE (imm) == CONST
       || GET_CODE (imm) == CONST_POLY_INT)
      && is_a <scalar_int_mode> (mode, &int_mode))
    {
      rtx mem;
      poly_int64 offset;
      HOST_WIDE_INT const_offset;
      enum aarch64_symbol_type sty;

      /* If we have (const (plus symbol offset)), separate out the offset
	 before we start classifying the symbol.  */
      rtx base = strip_offset (imm, &offset);

      /* We must always add an offset involving VL separately, rather than
	 folding it into the relocation.  */
      if (!offset.is_constant (&const_offset))
	{
	  if (!TARGET_SVE)
	    {
	      aarch64_report_sve_required ();
	      return;
	    }
	  if (base == const0_rtx && aarch64_sve_cnt_immediate_p (offset))
	    emit_insn (gen_rtx_SET (dest, imm));
	  else
	    {
	      /* Do arithmetic on 32-bit values if the result is smaller
		 than that.  */
	      if (partial_subreg_p (int_mode, SImode))
		{
		  /* It is invalid to do symbol calculations in modes
		     narrower than SImode.  */
		  gcc_assert (base == const0_rtx);
		  dest = gen_lowpart (SImode, dest);
		  int_mode = SImode;
		}
	      if (base != const0_rtx)
		{
		  base = aarch64_force_temporary (int_mode, dest, base);
		  aarch64_add_offset (int_mode, dest, base, offset,
				      NULL_RTX, NULL_RTX, false);
		}
	      else
		aarch64_add_offset (int_mode, dest, base, offset,
				    dest, NULL_RTX, false);
	    }
	  return;
	}

      sty = aarch64_classify_symbol (base, const_offset);
      switch (sty)
	{
	case SYMBOL_FORCE_TO_MEM:
	  if (int_mode != ptr_mode)
	    imm = convert_memory_address (ptr_mode, imm);

	  if (const_offset != 0
	      && targetm.cannot_force_const_mem (ptr_mode, imm))
	    {
	      gcc_assert (can_create_pseudo_p ());
	      base = aarch64_force_temporary (int_mode, dest, base);
	      aarch64_add_offset (int_mode, dest, base, const_offset,
				  NULL_RTX, NULL_RTX, false);
	      return;
	    }

	  mem = force_const_mem (ptr_mode, imm);
	  gcc_assert (mem);

	  /* If we aren't generating PC relative literals, then
	     we need to expand the literal pool access carefully.
	     This is something that needs to be done in a number
	     of places, so could well live as a separate function.  */
	  if (!aarch64_pcrelative_literal_loads)
	    {
	      gcc_assert (can_create_pseudo_p ());
	      base = gen_reg_rtx (ptr_mode);
	      aarch64_expand_mov_immediate (base, XEXP (mem, 0));
	      if (ptr_mode != Pmode)
		base = convert_memory_address (Pmode, base);
	      mem = gen_rtx_MEM (ptr_mode, base);
	    }

	  if (int_mode != ptr_mode)
	    mem = gen_rtx_ZERO_EXTEND (int_mode, mem);

	  emit_insn (gen_rtx_SET (dest, mem));

	  return;

        case SYMBOL_SMALL_TLSGD:
        case SYMBOL_SMALL_TLSDESC:
	case SYMBOL_SMALL_TLSIE:
	case SYMBOL_SMALL_GOT_28K:
	case SYMBOL_SMALL_GOT_4G:
	case SYMBOL_TINY_GOT:
	case SYMBOL_TINY_TLSIE:
	  if (const_offset != 0)
	    {
	      gcc_assert(can_create_pseudo_p ());
	      base = aarch64_force_temporary (int_mode, dest, base);
	      aarch64_add_offset (int_mode, dest, base, const_offset,
				  NULL_RTX, NULL_RTX, false);
	      return;
	    }
	  /* FALLTHRU */

	case SYMBOL_SMALL_ABSOLUTE:
	case SYMBOL_TINY_ABSOLUTE:
	case SYMBOL_TLSLE12:
	case SYMBOL_TLSLE24:
	case SYMBOL_TLSLE32:
	case SYMBOL_TLSLE48:
	  aarch64_load_symref_appropriately (dest, imm, sty);
	  return;

	default:
	  gcc_unreachable ();
	}
    }

  if (!CONST_INT_P (imm))
    {
      if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
	{
	  /* Only the low bit of each .H, .S and .D element is defined,
	     so we can set the upper bits to whatever we like.  If the
	     predicate is all-true in MODE, prefer to set all the undefined
	     bits as well, so that we can share a single .B predicate for
	     all modes.  */
	  if (imm == CONSTM1_RTX (mode))
	    imm = CONSTM1_RTX (VNx16BImode);

	  /* All methods for constructing predicate modes wider than VNx16BI
	     will set the upper bits of each element to zero.  Expose this
	     by moving such constants as a VNx16BI, so that all bits are
	     significant and so that constants for different modes can be
	     shared.  The wider constant will still be available as a
	     REG_EQUAL note.  */
	  rtx_vector_builder builder;
	  if (aarch64_get_sve_pred_bits (builder, imm))
	    {
	      rtx res = aarch64_expand_sve_const_pred (dest, builder);
	      if (dest != res)
		emit_move_insn (dest, gen_lowpart (mode, res));
	      return;
	    }
	}

      if (GET_CODE (imm) == HIGH
	  || aarch64_simd_valid_immediate (imm, NULL))
	{
	  emit_insn (gen_rtx_SET (dest, imm));
	  return;
	}

      if (CONST_VECTOR_P (imm) && aarch64_sve_data_mode_p (mode))
	if (rtx res = aarch64_expand_sve_const_vector (dest, imm))
	  {
	    if (dest != res)
	      emit_insn (gen_aarch64_sve_reinterpret (mode, dest, res));
	    return;
	  }

      rtx mem = force_const_mem (mode, imm);
      gcc_assert (mem);
      emit_move_insn (dest, mem);
      return;
    }

  aarch64_internal_mov_immediate (dest, imm, true,
				  as_a <scalar_int_mode> (mode));
}

/* Return the MEM rtx that provides the canary value that should be used
   for stack-smashing protection.  MODE is the mode of the memory.
   For SSP_GLOBAL, DECL_RTL is the MEM rtx for the canary variable
   (__stack_chk_guard), otherwise it has no useful value.  SALT_TYPE
   indicates whether the caller is performing a SET or a TEST operation.  */

rtx
aarch64_stack_protect_canary_mem (machine_mode mode, rtx decl_rtl,
				  aarch64_salt_type salt_type)
{
  rtx addr;
  if (aarch64_stack_protector_guard == SSP_GLOBAL)
    {
      gcc_assert (MEM_P (decl_rtl));
      addr = XEXP (decl_rtl, 0);
      poly_int64 offset;
      rtx base = strip_offset_and_salt (addr, &offset);
      if (!SYMBOL_REF_P (base))
	return decl_rtl;

      rtvec v = gen_rtvec (2, base, GEN_INT (salt_type));
      addr = gen_rtx_UNSPEC (Pmode, v, UNSPEC_SALT_ADDR);
      addr = gen_rtx_CONST (Pmode, addr);
      addr = plus_constant (Pmode, addr, offset);
    }
  else
    {
      /* Calculate the address from the system register.  */
      rtx salt = GEN_INT (salt_type);
      addr = gen_reg_rtx (mode);
      if (mode == DImode)
	emit_insn (gen_reg_stack_protect_address_di (addr, salt));
      else
	{
	  emit_insn (gen_reg_stack_protect_address_si (addr, salt));
	  addr = convert_memory_address (Pmode, addr);
	}
      addr = plus_constant (Pmode, addr, aarch64_stack_protector_guard_offset);
    }
  return gen_rtx_MEM (mode, force_reg (Pmode, addr));
}

/* Emit an SVE predicated move from SRC to DEST.  PRED is a predicate
   that is known to contain PTRUE.  */

void
aarch64_emit_sve_pred_move (rtx dest, rtx pred, rtx src)
{
  expand_operand ops[3];
  machine_mode mode = GET_MODE (dest);
  create_output_operand (&ops[0], dest, mode);
  create_input_operand (&ops[1], pred, GET_MODE(pred));
  create_input_operand (&ops[2], src, mode);
  temporary_volatile_ok v (true);
  expand_insn (code_for_aarch64_pred_mov (mode), 3, ops);
}

/* Expand a pre-RA SVE data move from SRC to DEST in which at least one
   operand is in memory.  In this case we need to use the predicated LD1
   and ST1 instead of LDR and STR, both for correctness on big-endian
   targets and because LD1 and ST1 support a wider range of addressing modes.
   PRED_MODE is the mode of the predicate.

   See the comment at the head of aarch64-sve.md for details about the
   big-endian handling.  */

void
aarch64_expand_sve_mem_move (rtx dest, rtx src, machine_mode pred_mode)
{
  machine_mode mode = GET_MODE (dest);
  rtx ptrue = aarch64_ptrue_reg (pred_mode);
  if (!register_operand (src, mode)
      && !register_operand (dest, mode))
    {
      rtx tmp = gen_reg_rtx (mode);
      if (MEM_P (src))
	aarch64_emit_sve_pred_move (tmp, ptrue, src);
      else
	emit_move_insn (tmp, src);
      src = tmp;
    }
  aarch64_emit_sve_pred_move (dest, ptrue, src);
}

/* Called only on big-endian targets.  See whether an SVE vector move
   from SRC to DEST is effectively a REV[BHW] instruction, because at
   least one operand is a subreg of an SVE vector that has wider or
   narrower elements.  Return true and emit the instruction if so.

   For example:

     (set (reg:VNx8HI R1) (subreg:VNx8HI (reg:VNx16QI R2) 0))

   represents a VIEW_CONVERT between the following vectors, viewed
   in memory order:

     R2: { [0].high, [0].low,  [1].high, [1].low, ... }
     R1: { [0],      [1],      [2],      [3],     ... }

   The high part of lane X in R2 should therefore correspond to lane X*2
   of R1, but the register representations are:

         msb                                      lsb
     R2: ...... [1].high  [1].low   [0].high  [0].low
     R1: ...... [3]       [2]       [1]       [0]

   where the low part of lane X in R2 corresponds to lane X*2 in R1.
   We therefore need a reverse operation to swap the high and low values
   around.

   This is purely an optimization.  Without it we would spill the
   subreg operand to the stack in one mode and reload it in the
   other mode, which has the same effect as the REV.  */

bool
aarch64_maybe_expand_sve_subreg_move (rtx dest, rtx src)
{
  gcc_assert (BYTES_BIG_ENDIAN);

  /* Do not try to optimize subregs that LRA has created for matched
     reloads.  These subregs only exist as a temporary measure to make
     the RTL well-formed, but they are exempt from the usual
     TARGET_CAN_CHANGE_MODE_CLASS rules.

     For example, if we have:

       (set (reg:VNx8HI R1) (foo:VNx8HI (reg:VNx4SI R2)))

     and the constraints require R1 and R2 to be in the same register,
     LRA may need to create RTL such as:

       (set (subreg:VNx4SI (reg:VNx8HI TMP) 0) (reg:VNx4SI R2))
       (set (reg:VNx8HI TMP) (foo:VNx8HI (subreg:VNx4SI (reg:VNx8HI TMP) 0)))
       (set (reg:VNx8HI R1) (reg:VNx8HI TMP))

     which forces both the input and output of the original instruction
     to use the same hard register.  But for this to work, the normal
     rules have to be suppressed on the subreg input, otherwise LRA
     would need to reload that input too, meaning that the process
     would never terminate.  To compensate for this, the normal rules
     are also suppressed for the subreg output of the first move.
     Ignoring the special case and handling the first move normally
     would therefore generate wrong code: we would reverse the elements
     for the first subreg but not reverse them back for the second subreg.  */
  if (SUBREG_P (dest) && !LRA_SUBREG_P (dest))
    dest = SUBREG_REG (dest);
  if (SUBREG_P (src) && !LRA_SUBREG_P (src))
    src = SUBREG_REG (src);

  /* The optimization handles two single SVE REGs with different element
     sizes.  */
  if (!REG_P (dest)
      || !REG_P (src)
      || aarch64_classify_vector_mode (GET_MODE (dest)) != VEC_SVE_DATA
      || aarch64_classify_vector_mode (GET_MODE (src)) != VEC_SVE_DATA
      || (GET_MODE_UNIT_SIZE (GET_MODE (dest))
	  == GET_MODE_UNIT_SIZE (GET_MODE (src))))
    return false;

  /* Generate *aarch64_sve_mov<mode>_subreg_be.  */
  rtx ptrue = aarch64_ptrue_reg (VNx16BImode);
  rtx unspec = gen_rtx_UNSPEC (GET_MODE (dest), gen_rtvec (2, ptrue, src),
			       UNSPEC_REV_SUBREG);
  emit_insn (gen_rtx_SET (dest, unspec));
  return true;
}

/* Return a copy of X with mode MODE, without changing its other
   attributes.  Unlike gen_lowpart, this doesn't care whether the
   mode change is valid.  */

rtx
aarch64_replace_reg_mode (rtx x, machine_mode mode)
{
  if (GET_MODE (x) == mode)
    return x;

  x = shallow_copy_rtx (x);
  set_mode_and_regno (x, mode, REGNO (x));
  return x;
}

/* Return the SVE REV[BHW] unspec for reversing quantites of mode MODE
   stored in wider integer containers.  */

static unsigned int
aarch64_sve_rev_unspec (machine_mode mode)
{
  switch (GET_MODE_UNIT_SIZE (mode))
    {
    case 1: return UNSPEC_REVB;
    case 2: return UNSPEC_REVH;
    case 4: return UNSPEC_REVW;
    }
  gcc_unreachable ();
}

/* Split a *aarch64_sve_mov<mode>_subreg_be pattern with the given
   operands.  */

void
aarch64_split_sve_subreg_move (rtx dest, rtx ptrue, rtx src)
{
  /* Decide which REV operation we need.  The mode with wider elements
     determines the mode of the operands and the mode with the narrower
     elements determines the reverse width.  */
  machine_mode mode_with_wider_elts = aarch64_sve_int_mode (GET_MODE (dest));
  machine_mode mode_with_narrower_elts = aarch64_sve_int_mode (GET_MODE (src));
  if (GET_MODE_UNIT_SIZE (mode_with_wider_elts)
      < GET_MODE_UNIT_SIZE (mode_with_narrower_elts))
    std::swap (mode_with_wider_elts, mode_with_narrower_elts);

  unsigned int unspec = aarch64_sve_rev_unspec (mode_with_narrower_elts);
  machine_mode pred_mode = aarch64_sve_pred_mode (mode_with_wider_elts);

  /* Get the operands in the appropriate modes and emit the instruction.  */
  ptrue = gen_lowpart (pred_mode, ptrue);
  dest = aarch64_replace_reg_mode (dest, mode_with_wider_elts);
  src = aarch64_replace_reg_mode (src, mode_with_wider_elts);
  emit_insn (gen_aarch64_pred (unspec, mode_with_wider_elts,
			       dest, ptrue, src));
}

static bool
aarch64_function_ok_for_sibcall (tree, tree exp)
{
  if (crtl->abi->id () != expr_callee_abi (exp).id ())
    return false;

  return true;
}

/* Subroutine of aarch64_pass_by_reference for arguments that are not
   passed in SVE registers.  */

static bool
aarch64_pass_by_reference_1 (CUMULATIVE_ARGS *pcum,
			     const function_arg_info &arg)
{
  HOST_WIDE_INT size;
  machine_mode dummymode;
  int nregs;

  /* GET_MODE_SIZE (BLKmode) is useless since it is 0.  */
  if (arg.mode == BLKmode && arg.type)
    size = int_size_in_bytes (arg.type);
  else
    /* No frontends can create types with variable-sized modes, so we
       shouldn't be asked to pass or return them.  */
    size = GET_MODE_SIZE (arg.mode).to_constant ();

  /* Aggregates are passed by reference based on their size.  */
  if (arg.aggregate_type_p ())
    size = int_size_in_bytes (arg.type);

  /* Variable sized arguments are always returned by reference.  */
  if (size < 0)
    return true;

  /* Can this be a candidate to be passed in fp/simd register(s)?  */
  if (aarch64_vfp_is_call_or_return_candidate (arg.mode, arg.type,
					       &dummymode, &nregs, NULL,
					       !pcum || pcum->silent_p))
    return false;

  /* Arguments which are variable sized or larger than 2 registers are
     passed by reference unless they are a homogenous floating point
     aggregate.  */
  return size > 2 * UNITS_PER_WORD;
}

/* Implement TARGET_PASS_BY_REFERENCE.  */

static bool
aarch64_pass_by_reference (cumulative_args_t pcum_v,
			   const function_arg_info &arg)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);

  if (!arg.type)
    return aarch64_pass_by_reference_1 (pcum, arg);

  pure_scalable_type_info pst_info;
  switch (pst_info.analyze (arg.type))
    {
    case pure_scalable_type_info::IS_PST:
      if (pcum && !pcum->silent_p && !TARGET_SVE)
	/* We can't gracefully recover at this point, so make this a
	   fatal error.  */
	fatal_error (input_location, "arguments of type %qT require"
		     " the SVE ISA extension", arg.type);

      /* Variadic SVE types are passed by reference.  Normal non-variadic
	 arguments are too if we've run out of registers.  */
      return (!arg.named
	      || pcum->aapcs_nvrn + pst_info.num_zr () > NUM_FP_ARG_REGS
	      || pcum->aapcs_nprn + pst_info.num_pr () > NUM_PR_ARG_REGS);

    case pure_scalable_type_info::DOESNT_MATTER:
      gcc_assert (aarch64_pass_by_reference_1 (pcum, arg));
      return true;

    case pure_scalable_type_info::NO_ABI_IDENTITY:
    case pure_scalable_type_info::ISNT_PST:
      return aarch64_pass_by_reference_1 (pcum, arg);
    }
  gcc_unreachable ();
}

/* Return TRUE if VALTYPE is padded to its least significant bits.  */
static bool
aarch64_return_in_msb (const_tree valtype)
{
  machine_mode dummy_mode;
  int dummy_int;

  /* Never happens in little-endian mode.  */
  if (!BYTES_BIG_ENDIAN)
    return false;

  /* Only composite types smaller than or equal to 16 bytes can
     be potentially returned in registers.  */
  if (!aarch64_composite_type_p (valtype, TYPE_MODE (valtype))
      || int_size_in_bytes (valtype) <= 0
      || int_size_in_bytes (valtype) > 16)
    return false;

  /* But not a composite that is an HFA (Homogeneous Floating-point Aggregate)
     or an HVA (Homogeneous Short-Vector Aggregate); such a special composite
     is always passed/returned in the least significant bits of fp/simd
     register(s).  */
  if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (valtype), valtype,
					       &dummy_mode, &dummy_int, NULL,
					       false))
    return false;

  /* Likewise pure scalable types for SVE vector and predicate registers.  */
  pure_scalable_type_info pst_info;
  if (pst_info.analyze_registers (valtype))
    return false;

  return true;
}

/* Implement TARGET_FUNCTION_VALUE.
   Define how to find the value returned by a function.  */

static rtx
aarch64_function_value (const_tree type, const_tree func,
			bool outgoing ATTRIBUTE_UNUSED)
{
  machine_mode mode;
  int unsignedp;

  mode = TYPE_MODE (type);
  if (INTEGRAL_TYPE_P (type))
    mode = promote_function_mode (type, mode, &unsignedp, func, 1);

  pure_scalable_type_info pst_info;
  if (type && pst_info.analyze_registers (type))
    return pst_info.get_rtx (mode, V0_REGNUM, P0_REGNUM);

  /* Generic vectors that map to full SVE modes with -msve-vector-bits=N
     are returned in memory, not by value.  */
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  bool sve_p = (vec_flags & VEC_ANY_SVE);

  if (aarch64_return_in_msb (type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);

      if (size % UNITS_PER_WORD != 0)
	{
	  size += UNITS_PER_WORD - size % UNITS_PER_WORD;
	  mode = int_mode_for_size (size * BITS_PER_UNIT, 0).require ();
	}
    }

  int count;
  machine_mode ag_mode;
  if (aarch64_vfp_is_call_or_return_candidate (mode, type, &ag_mode, &count,
					       NULL, false))
    {
      gcc_assert (!sve_p);
      if (!aarch64_composite_type_p (type, mode))
	{
	  gcc_assert (count == 1 && mode == ag_mode);
	  return gen_rtx_REG (mode, V0_REGNUM);
	}
      else if (aarch64_advsimd_full_struct_mode_p (mode)
	       && known_eq (GET_MODE_SIZE (ag_mode), 16))
	return gen_rtx_REG (mode, V0_REGNUM);
      else if (aarch64_advsimd_partial_struct_mode_p (mode)
	       && known_eq (GET_MODE_SIZE (ag_mode), 8))
	return gen_rtx_REG (mode, V0_REGNUM);
      else
	{
	  int i;
	  rtx par;

	  par = gen_rtx_PARALLEL (mode, rtvec_alloc (count));
	  for (i = 0; i < count; i++)
	    {
	      rtx tmp = gen_rtx_REG (ag_mode, V0_REGNUM + i);
	      rtx offset = gen_int_mode (i * GET_MODE_SIZE (ag_mode), Pmode);
	      tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, offset);
	      XVECEXP (par, 0, i) = tmp;
	    }
	  return par;
	}
    }
  else
    {
      if (sve_p)
	{
	  /* Vector types can acquire a partial SVE mode using things like
	     __attribute__((vector_size(N))), and this is potentially useful.
	     However, the choice of mode doesn't affect the type's ABI
	     identity, so we should treat the types as though they had
	     the associated integer mode, just like they did before SVE
	     was introduced.

	     We know that the vector must be 128 bits or smaller,
	     otherwise we'd have returned it in memory instead.  */
	  gcc_assert (type
		      && (aarch64_some_values_include_pst_objects_p (type)
			  || (vec_flags & VEC_PARTIAL)));

	  scalar_int_mode int_mode = int_mode_for_mode (mode).require ();
	  rtx reg = gen_rtx_REG (int_mode, R0_REGNUM);
	  rtx pair = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
	  return gen_rtx_PARALLEL (mode, gen_rtvec (1, pair));
	}
      return gen_rtx_REG (mode, R0_REGNUM);
    }
}

/* Implements TARGET_FUNCTION_VALUE_REGNO_P.
   Return true if REGNO is the number of a hard register in which the values
   of called function may come back.  */

static bool
aarch64_function_value_regno_p (const unsigned int regno)
{
  /* Maximum of 16 bytes can be returned in the general registers.  Examples
     of 16-byte return values are: 128-bit integers and 16-byte small
     structures (excluding homogeneous floating-point aggregates).  */
  if (regno == R0_REGNUM || regno == R1_REGNUM)
    return true;

  /* Up to four fp/simd registers can return a function value, e.g. a
     homogeneous floating-point aggregate having four members.  */
  if (regno >= V0_REGNUM && regno < V0_REGNUM + HA_MAX_NUM_FLDS)
    return TARGET_FLOAT;

  return false;
}

/* Subroutine for aarch64_return_in_memory for types that are not returned
   in SVE registers.  */

static bool
aarch64_return_in_memory_1 (const_tree type)
{
  HOST_WIDE_INT size;
  machine_mode ag_mode;
  int count;

  if (!AGGREGATE_TYPE_P (type)
      && TREE_CODE (type) != COMPLEX_TYPE
      && TREE_CODE (type) != VECTOR_TYPE)
    /* Simple scalar types always returned in registers.  */
    return false;

  if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type,
					       &ag_mode, &count, NULL, false))
    return false;

  /* Types larger than 2 registers returned in memory.  */
  size = int_size_in_bytes (type);
  return (size < 0 || size > 2 * UNITS_PER_WORD);
}

/* Implement TARGET_RETURN_IN_MEMORY.

   If the type T of the result of a function is such that
     void func (T arg)
   would require that arg be passed as a value in a register (or set of
   registers) according to the parameter passing rules, then the result
   is returned in the same registers as would be used for such an
   argument.  */

static bool
aarch64_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
{
  pure_scalable_type_info pst_info;
  switch (pst_info.analyze (type))
    {
    case pure_scalable_type_info::IS_PST:
      return (pst_info.num_zr () > NUM_FP_ARG_REGS
	      || pst_info.num_pr () > NUM_PR_ARG_REGS);

    case pure_scalable_type_info::DOESNT_MATTER:
      gcc_assert (aarch64_return_in_memory_1 (type));
      return true;

    case pure_scalable_type_info::NO_ABI_IDENTITY:
    case pure_scalable_type_info::ISNT_PST:
      return aarch64_return_in_memory_1 (type);
    }
  gcc_unreachable ();
}

static bool
aarch64_vfp_is_call_candidate (cumulative_args_t pcum_v, machine_mode mode,
			       const_tree type, int *nregs)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  return aarch64_vfp_is_call_or_return_candidate (mode, type,
						  &pcum->aapcs_vfp_rmode,
						  nregs, NULL, pcum->silent_p);
}

/* Given MODE and TYPE of a function argument, return the alignment in
   bits.  The idea is to suppress any stronger alignment requested by
   the user and opt for the natural alignment (specified in AAPCS64 \S
   4.1).  ABI_BREAK is set to true if the alignment was incorrectly
   calculated in versions of GCC prior to GCC-9.  This is a helper
   function for local use only.  */

static unsigned int
aarch64_function_arg_alignment (machine_mode mode, const_tree type,
				unsigned int *abi_break)
{
  *abi_break = 0;
  if (!type)
    return GET_MODE_ALIGNMENT (mode);

  if (integer_zerop (TYPE_SIZE (type)))
    return 0;

  gcc_assert (TYPE_MODE (type) == mode);

  if (!AGGREGATE_TYPE_P (type))
    return TYPE_ALIGN (TYPE_MAIN_VARIANT (type));

  if (TREE_CODE (type) == ARRAY_TYPE)
    return TYPE_ALIGN (TREE_TYPE (type));

  unsigned int alignment = 0;
  unsigned int bitfield_alignment = 0;
  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	/* Note that we explicitly consider zero-sized fields here,
	   even though they don't map to AAPCS64 machine types.
	   For example, in:

	       struct __attribute__((aligned(8))) empty {};

	       struct s {
		 [[no_unique_address]] empty e;
		 int x;
	       };

	   "s" contains only one Fundamental Data Type (the int field)
	   but gains 8-byte alignment and size thanks to "e".  */
	alignment = std::max (alignment, DECL_ALIGN (field));
	if (DECL_BIT_FIELD_TYPE (field))
	  bitfield_alignment
	    = std::max (bitfield_alignment,
			TYPE_ALIGN (DECL_BIT_FIELD_TYPE (field)));
      }

  if (bitfield_alignment > alignment)
    {
      *abi_break = alignment;
      return bitfield_alignment;
    }

  return alignment;
}

/* Layout a function argument according to the AAPCS64 rules.  The rule
   numbers refer to the rule numbers in the AAPCS64.  ORIG_MODE is the
   mode that was originally given to us by the target hook, whereas the
   mode in ARG might be the result of replacing partial SVE modes with
   the equivalent integer mode.  */

static void
aarch64_layout_arg (cumulative_args_t pcum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  tree type = arg.type;
  machine_mode mode = arg.mode;
  int ncrn, nvrn, nregs;
  bool allocate_ncrn, allocate_nvrn;
  HOST_WIDE_INT size;
  unsigned int abi_break;

  /* We need to do this once per argument.  */
  if (pcum->aapcs_arg_processed)
    return;

  pcum->aapcs_arg_processed = true;

  pure_scalable_type_info pst_info;
  if (type && pst_info.analyze_registers (type))
    {
      /* The PCS says that it is invalid to pass an SVE value to an
	 unprototyped function.  There is no ABI-defined location we
	 can return in this case, so we have no real choice but to raise
	 an error immediately, even though this is only a query function.  */
      if (arg.named && pcum->pcs_variant != ARM_PCS_SVE)
	{
	  gcc_assert (!pcum->silent_p);
	  error ("SVE type %qT cannot be passed to an unprototyped function",
		 arg.type);
	  /* Avoid repeating the message, and avoid tripping the assert
	     below.  */
	  pcum->pcs_variant = ARM_PCS_SVE;
	}

      /* We would have converted the argument into pass-by-reference
	 form if it didn't fit in registers.  */
      pcum->aapcs_nextnvrn = pcum->aapcs_nvrn + pst_info.num_zr ();
      pcum->aapcs_nextnprn = pcum->aapcs_nprn + pst_info.num_pr ();
      gcc_assert (arg.named
		  && pcum->pcs_variant == ARM_PCS_SVE
		  && pcum->aapcs_nextnvrn <= NUM_FP_ARG_REGS
		  && pcum->aapcs_nextnprn <= NUM_PR_ARG_REGS);
      pcum->aapcs_reg = pst_info.get_rtx (mode, V0_REGNUM + pcum->aapcs_nvrn,
					  P0_REGNUM + pcum->aapcs_nprn);
      return;
    }

  /* Generic vectors that map to full SVE modes with -msve-vector-bits=N
     are passed by reference, not by value.  */
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  bool sve_p = (vec_flags & VEC_ANY_SVE);
  if (sve_p)
    /* Vector types can acquire a partial SVE mode using things like
       __attribute__((vector_size(N))), and this is potentially useful.
       However, the choice of mode doesn't affect the type's ABI
       identity, so we should treat the types as though they had
       the associated integer mode, just like they did before SVE
       was introduced.

       We know that the vector must be 128 bits or smaller,
       otherwise we'd have passed it in memory instead.  */
    gcc_assert (type
		&& (aarch64_some_values_include_pst_objects_p (type)
		    || (vec_flags & VEC_PARTIAL)));

  /* Size in bytes, rounded to the nearest multiple of 8 bytes.  */
  if (type)
    size = int_size_in_bytes (type);
  else
    /* No frontends can create types with variable-sized modes, so we
       shouldn't be asked to pass or return them.  */
    size = GET_MODE_SIZE (mode).to_constant ();
  size = ROUND_UP (size, UNITS_PER_WORD);

  allocate_ncrn = (type) ? !(FLOAT_TYPE_P (type)) : !FLOAT_MODE_P (mode);
  allocate_nvrn = aarch64_vfp_is_call_candidate (pcum_v,
						 mode,
						 type,
						 &nregs);
  gcc_assert (!sve_p || !allocate_nvrn);

  /* allocate_ncrn may be false-positive, but allocate_nvrn is quite reliable.
     The following code thus handles passing by SIMD/FP registers first.  */

  nvrn = pcum->aapcs_nvrn;

  /* C1 - C5 for floating point, homogenous floating point aggregates (HFA)
     and homogenous short-vector aggregates (HVA).  */
  if (allocate_nvrn)
    {
      if (!pcum->silent_p && !TARGET_FLOAT)
	aarch64_err_no_fpadvsimd (mode);

      if (nvrn + nregs <= NUM_FP_ARG_REGS)
	{
	  pcum->aapcs_nextnvrn = nvrn + nregs;
	  if (!aarch64_composite_type_p (type, mode))
	    {
	      gcc_assert (nregs == 1);
	      pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn);
	    }
	  else if (aarch64_advsimd_full_struct_mode_p (mode)
		   && known_eq (GET_MODE_SIZE (pcum->aapcs_vfp_rmode), 16))
	    pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn);
	  else if (aarch64_advsimd_partial_struct_mode_p (mode)
		   && known_eq (GET_MODE_SIZE (pcum->aapcs_vfp_rmode), 8))
	    pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn);
	  else
	    {
	      rtx par;
	      int i;
	      par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
	      for (i = 0; i < nregs; i++)
		{
		  rtx tmp = gen_rtx_REG (pcum->aapcs_vfp_rmode,
					 V0_REGNUM + nvrn + i);
		  rtx offset = gen_int_mode
		    (i * GET_MODE_SIZE (pcum->aapcs_vfp_rmode), Pmode);
		  tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, offset);
		  XVECEXP (par, 0, i) = tmp;
		}
	      pcum->aapcs_reg = par;
	    }
	  return;
	}
      else
	{
	  /* C.3 NSRN is set to 8.  */
	  pcum->aapcs_nextnvrn = NUM_FP_ARG_REGS;
	  goto on_stack;
	}
    }

  ncrn = pcum->aapcs_ncrn;
  nregs = size / UNITS_PER_WORD;

  /* C6 - C9.  though the sign and zero extension semantics are
     handled elsewhere.  This is the case where the argument fits
     entirely general registers.  */
  if (allocate_ncrn && (ncrn + nregs <= NUM_ARG_REGS))
    {
      gcc_assert (nregs == 0 || nregs == 1 || nregs == 2);

      /* C.8 if the argument has an alignment of 16 then the NGRN is
	 rounded up to the next even number.  */
      if (nregs == 2
	  && ncrn % 2
	  /* The == 16 * BITS_PER_UNIT instead of >= 16 * BITS_PER_UNIT
	     comparison is there because for > 16 * BITS_PER_UNIT
	     alignment nregs should be > 2 and therefore it should be
	     passed by reference rather than value.  */
	  && (aarch64_function_arg_alignment (mode, type, &abi_break)
	      == 16 * BITS_PER_UNIT))
	{
	  if (abi_break && warn_psabi && currently_expanding_gimple_stmt)
	    inform (input_location, "parameter passing for argument of type "
		    "%qT changed in GCC 9.1", type);
	  ++ncrn;
	  gcc_assert (ncrn + nregs <= NUM_ARG_REGS);
	}

      /* If an argument with an SVE mode needs to be shifted up to the
	 high part of the register, treat it as though it had an integer mode.
	 Using the normal (parallel [...]) would suppress the shifting.  */
      if (sve_p
	  && BYTES_BIG_ENDIAN
	  && maybe_ne (GET_MODE_SIZE (mode), nregs * UNITS_PER_WORD)
	  && aarch64_pad_reg_upward (mode, type, false))
	{
	  mode = int_mode_for_mode (mode).require ();
	  sve_p = false;
	}

      /* NREGS can be 0 when e.g. an empty structure is to be passed.
	 A reg is still generated for it, but the caller should be smart
	 enough not to use it.  */
      if (nregs == 0
	  || (nregs == 1 && !sve_p)
	  || GET_MODE_CLASS (mode) == MODE_INT)
	pcum->aapcs_reg = gen_rtx_REG (mode, R0_REGNUM + ncrn);
      else
	{
	  rtx par;
	  int i;

	  par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs));
	  for (i = 0; i < nregs; i++)
	    {
	      scalar_int_mode reg_mode = word_mode;
	      if (nregs == 1)
		reg_mode = int_mode_for_mode (mode).require ();
	      rtx tmp = gen_rtx_REG (reg_mode, R0_REGNUM + ncrn + i);
	      tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
				       GEN_INT (i * UNITS_PER_WORD));
	      XVECEXP (par, 0, i) = tmp;
	    }
	  pcum->aapcs_reg = par;
	}

      pcum->aapcs_nextncrn = ncrn + nregs;
      return;
    }

  /* C.11  */
  pcum->aapcs_nextncrn = NUM_ARG_REGS;

  /* The argument is passed on stack; record the needed number of words for
     this argument and align the total size if necessary.  */
on_stack:
  pcum->aapcs_stack_words = size / UNITS_PER_WORD;

  if (aarch64_function_arg_alignment (mode, type, &abi_break)
      == 16 * BITS_PER_UNIT)
    {
      int new_size = ROUND_UP (pcum->aapcs_stack_size, 16 / UNITS_PER_WORD);
      if (pcum->aapcs_stack_size != new_size)
	{
	  if (abi_break && warn_psabi && currently_expanding_gimple_stmt)
	    inform (input_location, "parameter passing for argument of type "
		    "%qT changed in GCC 9.1", type);
	  pcum->aapcs_stack_size = new_size;
	}
    }
  return;
}

/* Implement TARGET_FUNCTION_ARG.  */

static rtx
aarch64_function_arg (cumulative_args_t pcum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  gcc_assert (pcum->pcs_variant == ARM_PCS_AAPCS64
	      || pcum->pcs_variant == ARM_PCS_SIMD
	      || pcum->pcs_variant == ARM_PCS_SVE);

  if (arg.end_marker_p ())
    return gen_int_mode (pcum->pcs_variant, DImode);

  aarch64_layout_arg (pcum_v, arg);
  return pcum->aapcs_reg;
}

void
aarch64_init_cumulative_args (CUMULATIVE_ARGS *pcum,
			      const_tree fntype,
			      rtx libname ATTRIBUTE_UNUSED,
			      const_tree fndecl ATTRIBUTE_UNUSED,
			      unsigned n_named ATTRIBUTE_UNUSED,
			      bool silent_p)
{
  pcum->aapcs_ncrn = 0;
  pcum->aapcs_nvrn = 0;
  pcum->aapcs_nprn = 0;
  pcum->aapcs_nextncrn = 0;
  pcum->aapcs_nextnvrn = 0;
  pcum->aapcs_nextnprn = 0;
  if (fntype)
    pcum->pcs_variant = (arm_pcs) fntype_abi (fntype).id ();
  else
    pcum->pcs_variant = ARM_PCS_AAPCS64;
  pcum->aapcs_reg = NULL_RTX;
  pcum->aapcs_arg_processed = false;
  pcum->aapcs_stack_words = 0;
  pcum->aapcs_stack_size = 0;
  pcum->silent_p = silent_p;

  if (!silent_p
      && !TARGET_FLOAT
      && fntype && fntype != error_mark_node)
    {
      const_tree type = TREE_TYPE (fntype);
      machine_mode mode ATTRIBUTE_UNUSED; /* To pass pointer as argument.  */
      int nregs ATTRIBUTE_UNUSED; /* Likewise.  */
      if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type,
						   &mode, &nregs, NULL, false))
	aarch64_err_no_fpadvsimd (TYPE_MODE (type));
    }

  if (!silent_p
      && !TARGET_SVE
      && pcum->pcs_variant == ARM_PCS_SVE)
    {
      /* We can't gracefully recover at this point, so make this a
	 fatal error.  */
      if (fndecl)
	fatal_error (input_location, "%qE requires the SVE ISA extension",
		     fndecl);
      else
	fatal_error (input_location, "calls to functions of type %qT require"
		     " the SVE ISA extension", fntype);
    }
}

static void
aarch64_function_arg_advance (cumulative_args_t pcum_v,
			      const function_arg_info &arg)
{
  CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
  if (pcum->pcs_variant == ARM_PCS_AAPCS64
      || pcum->pcs_variant == ARM_PCS_SIMD
      || pcum->pcs_variant == ARM_PCS_SVE)
    {
      aarch64_layout_arg (pcum_v, arg);
      gcc_assert ((pcum->aapcs_reg != NULL_RTX)
		  != (pcum->aapcs_stack_words != 0));
      pcum->aapcs_arg_processed = false;
      pcum->aapcs_ncrn = pcum->aapcs_nextncrn;
      pcum->aapcs_nvrn = pcum->aapcs_nextnvrn;
      pcum->aapcs_nprn = pcum->aapcs_nextnprn;
      pcum->aapcs_stack_size += pcum->aapcs_stack_words;
      pcum->aapcs_stack_words = 0;
      pcum->aapcs_reg = NULL_RTX;
    }
}

bool
aarch64_function_arg_regno_p (unsigned regno)
{
  return ((GP_REGNUM_P (regno) && regno < R0_REGNUM + NUM_ARG_REGS)
	  || (FP_REGNUM_P (regno) && regno < V0_REGNUM + NUM_FP_ARG_REGS));
}

/* Implement FUNCTION_ARG_BOUNDARY.  Every parameter gets at least
   PARM_BOUNDARY bits of alignment, but will be given anything up
   to STACK_BOUNDARY bits if the type requires it.  This makes sure
   that both before and after the layout of each argument, the Next
   Stacked Argument Address (NSAA) will have a minimum alignment of
   8 bytes.  */

static unsigned int
aarch64_function_arg_boundary (machine_mode mode, const_tree type)
{
  unsigned int abi_break;
  unsigned int alignment = aarch64_function_arg_alignment (mode, type,
							   &abi_break);
  alignment = MIN (MAX (alignment, PARM_BOUNDARY), STACK_BOUNDARY);
  if (abi_break & warn_psabi)
    {
      abi_break = MIN (MAX (abi_break, PARM_BOUNDARY), STACK_BOUNDARY);
      if (alignment != abi_break)
	inform (input_location, "parameter passing for argument of type "
		"%qT changed in GCC 9.1", type);
    }

  return alignment;
}

/* Implement TARGET_GET_RAW_RESULT_MODE and TARGET_GET_RAW_ARG_MODE.  */

static fixed_size_mode
aarch64_get_reg_raw_mode (int regno)
{
  if (TARGET_SVE && FP_REGNUM_P (regno))
    /* Don't use the SVE part of the register for __builtin_apply and
       __builtin_return.  The SVE registers aren't used by the normal PCS,
       so using them there would be a waste of time.  The PCS extensions
       for SVE types are fundamentally incompatible with the
       __builtin_return/__builtin_apply interface.  */
    return as_a <fixed_size_mode> (V16QImode);
  return default_get_reg_raw_mode (regno);
}

/* Implement TARGET_FUNCTION_ARG_PADDING.

   Small aggregate types are placed in the lowest memory address.

   The related parameter passing rules are B.4, C.3, C.5 and C.14.  */

static pad_direction
aarch64_function_arg_padding (machine_mode mode, const_tree type)
{
  /* On little-endian targets, the least significant byte of every stack
     argument is passed at the lowest byte address of the stack slot.  */
  if (!BYTES_BIG_ENDIAN)
    return PAD_UPWARD;

  /* Otherwise, integral, floating-point and pointer types are padded downward:
     the least significant byte of a stack argument is passed at the highest
     byte address of the stack slot.  */
  if (type
      ? (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type)
	 || POINTER_TYPE_P (type))
      : (SCALAR_INT_MODE_P (mode) || SCALAR_FLOAT_MODE_P (mode)))
    return PAD_DOWNWARD;

  /* Everything else padded upward, i.e. data in first byte of stack slot.  */
  return PAD_UPWARD;
}

/* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).

   It specifies padding for the last (may also be the only)
   element of a block move between registers and memory.  If
   assuming the block is in the memory, padding upward means that
   the last element is padded after its highest significant byte,
   while in downward padding, the last element is padded at the
   its least significant byte side.

   Small aggregates and small complex types are always padded
   upwards.

   We don't need to worry about homogeneous floating-point or
   short-vector aggregates; their move is not affected by the
   padding direction determined here.  Regardless of endianness,
   each element of such an aggregate is put in the least
   significant bits of a fp/simd register.

   Return !BYTES_BIG_ENDIAN if the least significant byte of the
   register has useful data, and return the opposite if the most
   significant byte does.  */

bool
aarch64_pad_reg_upward (machine_mode mode, const_tree type,
		     bool first ATTRIBUTE_UNUSED)
{

  /* Aside from pure scalable types, small composite types are always
     padded upward.  */
  if (BYTES_BIG_ENDIAN && aarch64_composite_type_p (type, mode))
    {
      HOST_WIDE_INT size;
      if (type)
	size = int_size_in_bytes (type);
      else
	/* No frontends can create types with variable-sized modes, so we
	   shouldn't be asked to pass or return them.  */
	size = GET_MODE_SIZE (mode).to_constant ();
      if (size < 2 * UNITS_PER_WORD)
	{
	  pure_scalable_type_info pst_info;
	  if (pst_info.analyze_registers (type))
	    return false;
	  return true;
	}
    }

  /* Otherwise, use the default padding.  */
  return !BYTES_BIG_ENDIAN;
}

static scalar_int_mode
aarch64_libgcc_cmp_return_mode (void)
{
  return SImode;
}

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

/* We use the 12-bit shifted immediate arithmetic instructions so values
   must be multiple of (1 << 12), i.e. 4096.  */
#define ARITH_FACTOR 4096

#if (PROBE_INTERVAL % ARITH_FACTOR) != 0
#error Cannot use simple address calculation for stack probing
#endif

/* Emit code to probe a range of stack addresses from FIRST to FIRST+POLY_SIZE,
   inclusive.  These are offsets from the current stack pointer.  */

static void
aarch64_emit_probe_stack_range (HOST_WIDE_INT first, poly_int64 poly_size)
{
  HOST_WIDE_INT size;
  if (!poly_size.is_constant (&size))
    {
      sorry ("stack probes for SVE frames");
      return;
    }

  rtx reg1 = gen_rtx_REG (Pmode, PROBE_STACK_FIRST_REGNUM);

  /* See the same assertion on PROBE_INTERVAL above.  */
  gcc_assert ((first % ARITH_FACTOR) == 0);

  /* See if we have a constant small number of probes to generate.  If so,
     that's the easy case.  */
  if (size <= PROBE_INTERVAL)
    {
      const HOST_WIDE_INT base = ROUND_UP (size, ARITH_FACTOR);

      emit_set_insn (reg1,
		     plus_constant (Pmode,
				    stack_pointer_rtx, -(first + base)));
      emit_stack_probe (plus_constant (Pmode, reg1, base - size));
    }

  /* The run-time loop is made up of 8 insns in the generic case while the
     compile-time loop is made up of 4+2*(n-2) insns for n # of intervals.  */
  else if (size <= 4 * PROBE_INTERVAL)
    {
      HOST_WIDE_INT i, rem;

      emit_set_insn (reg1,
		     plus_constant (Pmode,
				    stack_pointer_rtx,
				    -(first + PROBE_INTERVAL)));
      emit_stack_probe (reg1);

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until
	 it exceeds SIZE.  If only two probes are needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
	{
	  emit_set_insn (reg1,
			 plus_constant (Pmode, reg1, -PROBE_INTERVAL));
	  emit_stack_probe (reg1);
	}

      rem = size - (i - PROBE_INTERVAL);
      if (rem > 256)
	{
	  const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR);

	  emit_set_insn (reg1, plus_constant (Pmode, reg1, -base));
	  emit_stack_probe (plus_constant (Pmode, reg1, base - rem));
	}
      else
	emit_stack_probe (plus_constant (Pmode, reg1, -rem));
    }

  /* Otherwise, do the same as above, but in a loop.  Note that we must be
     extra careful with variables wrapping around because we might be at
     the very top (or the very bottom) of the address space and we have
     to be able to handle this case properly; in particular, we use an
     equality test for the loop condition.  */
  else
    {
      rtx reg2 = gen_rtx_REG (Pmode, PROBE_STACK_SECOND_REGNUM);

      /* Step 1: round SIZE to the previous multiple of the interval.  */

      HOST_WIDE_INT rounded_size = size & -PROBE_INTERVAL;


      /* Step 2: compute initial and final value of the loop counter.  */

      /* TEST_ADDR = SP + FIRST.  */
      emit_set_insn (reg1,
		     plus_constant (Pmode, stack_pointer_rtx, -first));

      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      HOST_WIDE_INT adjustment = - (first + rounded_size);
      if (! aarch64_uimm12_shift (adjustment))
	{
	  aarch64_internal_mov_immediate (reg2, GEN_INT (adjustment),
					  true, Pmode);
	  emit_set_insn (reg2, gen_rtx_PLUS (Pmode, stack_pointer_rtx, reg2));
	}
      else
	emit_set_insn (reg2,
		       plus_constant (Pmode, stack_pointer_rtx, adjustment));

      /* Step 3: the loop

	 do
	   {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	   }
	 while (TEST_ADDR != LAST_ADDR)

	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	 until it is equal to ROUNDED_SIZE.  */

      emit_insn (gen_probe_stack_range (reg1, reg1, reg2));


      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      if (size != rounded_size)
	{
	  HOST_WIDE_INT rem = size - rounded_size;

	  if (rem > 256)
	    {
	      const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR);

	      emit_set_insn (reg2, plus_constant (Pmode, reg2, -base));
	      emit_stack_probe (plus_constant (Pmode, reg2, base - rem));
	    }
	  else
	    emit_stack_probe (plus_constant (Pmode, reg2, -rem));
	}
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Probe a range of stack addresses from REG1 to REG2 inclusive.  These are
   absolute addresses.  */

const char *
aarch64_output_probe_stack_range (rtx reg1, rtx reg2)
{
  static int labelno = 0;
  char loop_lab[32];
  rtx xops[2];

  ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);

  /* Loop.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);

  HOST_WIDE_INT stack_clash_probe_interval
    = 1 << param_stack_clash_protection_guard_size;

  /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
  xops[0] = reg1;
  HOST_WIDE_INT interval;
  if (flag_stack_clash_protection)
    interval = stack_clash_probe_interval;
  else
    interval = PROBE_INTERVAL;

  gcc_assert (aarch64_uimm12_shift (interval));
  xops[1] = GEN_INT (interval);

  output_asm_insn ("sub\t%0, %0, %1", xops);

  /* If doing stack clash protection then we probe up by the ABI specified
     amount.  We do this because we're dropping full pages at a time in the
     loop.  But if we're doing non-stack clash probing, probe at SP 0.  */
  if (flag_stack_clash_protection)
    xops[1] = GEN_INT (STACK_CLASH_CALLER_GUARD);
  else
    xops[1] = CONST0_RTX (GET_MODE (xops[1]));

  /* Probe at TEST_ADDR.  If we're inside the loop it is always safe to probe
     by this amount for each iteration.  */
  output_asm_insn ("str\txzr, [%0, %1]", xops);

  /* Test if TEST_ADDR == LAST_ADDR.  */
  xops[1] = reg2;
  output_asm_insn ("cmp\t%0, %1", xops);

  /* Branch.  */
  fputs ("\tb.ne\t", asm_out_file);
  assemble_name_raw (asm_out_file, loop_lab);
  fputc ('\n', asm_out_file);

  return "";
}

/* Emit the probe loop for doing stack clash probes and stack adjustments for
   SVE.  This emits probes from BASE to BASE - ADJUSTMENT based on a guard size
   of GUARD_SIZE.  When a probe is emitted it is done at most
   MIN_PROBE_THRESHOLD bytes from the current BASE at an interval of
   at most MIN_PROBE_THRESHOLD.  By the end of this function
   BASE = BASE - ADJUSTMENT.  */

const char *
aarch64_output_probe_sve_stack_clash (rtx base, rtx adjustment,
				      rtx min_probe_threshold, rtx guard_size)
{
  /* This function is not allowed to use any instruction generation function
     like gen_ and friends.  If you do you'll likely ICE during CFG validation,
     so instead emit the code you want using output_asm_insn.  */
  gcc_assert (flag_stack_clash_protection);
  gcc_assert (CONST_INT_P (min_probe_threshold) && CONST_INT_P (guard_size));
  gcc_assert (INTVAL (guard_size) > INTVAL (min_probe_threshold));

  /* The minimum required allocation before the residual requires probing.  */
  HOST_WIDE_INT residual_probe_guard = INTVAL (min_probe_threshold);

  /* Clamp the value down to the nearest value that can be used with a cmp.  */
  residual_probe_guard = aarch64_clamp_to_uimm12_shift (residual_probe_guard);
  rtx probe_offset_value_rtx = gen_int_mode (residual_probe_guard, Pmode);

  gcc_assert (INTVAL (min_probe_threshold) >= residual_probe_guard);
  gcc_assert (aarch64_uimm12_shift (residual_probe_guard));

  static int labelno = 0;
  char loop_start_lab[32];
  char loop_end_lab[32];
  rtx xops[2];

  ASM_GENERATE_INTERNAL_LABEL (loop_start_lab, "SVLPSPL", labelno);
  ASM_GENERATE_INTERNAL_LABEL (loop_end_lab, "SVLPEND", labelno++);

  /* Emit loop start label.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_start_lab);

  /* ADJUSTMENT < RESIDUAL_PROBE_GUARD.  */
  xops[0] = adjustment;
  xops[1] = probe_offset_value_rtx;
  output_asm_insn ("cmp\t%0, %1", xops);

  /* Branch to end if not enough adjustment to probe.  */
  fputs ("\tb.lt\t", asm_out_file);
  assemble_name_raw (asm_out_file, loop_end_lab);
  fputc ('\n', asm_out_file);

  /* BASE = BASE - RESIDUAL_PROBE_GUARD.  */
  xops[0] = base;
  xops[1] = probe_offset_value_rtx;
  output_asm_insn ("sub\t%0, %0, %1", xops);

  /* Probe at BASE.  */
  xops[1] = const0_rtx;
  output_asm_insn ("str\txzr, [%0, %1]", xops);

  /* ADJUSTMENT = ADJUSTMENT - RESIDUAL_PROBE_GUARD.  */
  xops[0] = adjustment;
  xops[1] = probe_offset_value_rtx;
  output_asm_insn ("sub\t%0, %0, %1", xops);

  /* Branch to start if still more bytes to allocate.  */
  fputs ("\tb\t", asm_out_file);
  assemble_name_raw (asm_out_file, loop_start_lab);
  fputc ('\n', asm_out_file);

  /* No probe leave.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_end_lab);

  /* BASE = BASE - ADJUSTMENT.  */
  xops[0] = base;
  xops[1] = adjustment;
  output_asm_insn ("sub\t%0, %0, %1", xops);
  return "";
}

/* Determine whether a frame chain needs to be generated.  */
static bool
aarch64_needs_frame_chain (void)
{
  /* Force a frame chain for EH returns so the return address is at FP+8.  */
  if (frame_pointer_needed || crtl->calls_eh_return)
    return true;

  /* A leaf function cannot have calls or write LR.  */
  bool is_leaf = crtl->is_leaf && !df_regs_ever_live_p (LR_REGNUM);

  /* Don't use a frame chain in leaf functions if leaf frame pointers
     are disabled.  */
  if (flag_omit_leaf_frame_pointer && is_leaf)
    return false;

  return aarch64_use_frame_pointer;
}

/* Mark the registers that need to be saved by the callee and calculate
   the size of the callee-saved registers area and frame record (both FP
   and LR may be omitted).  */
static void
aarch64_layout_frame (void)
{
  poly_int64 offset = 0;
  int regno, last_fp_reg = INVALID_REGNUM;
  machine_mode vector_save_mode = aarch64_reg_save_mode (V8_REGNUM);
  poly_int64 vector_save_size = GET_MODE_SIZE (vector_save_mode);
  bool frame_related_fp_reg_p = false;
  aarch64_frame &frame = cfun->machine->frame;

  frame.emit_frame_chain = aarch64_needs_frame_chain ();

  /* Adjust the outgoing arguments size if required.  Keep it in sync with what
     the mid-end is doing.  */
  crtl->outgoing_args_size = STACK_DYNAMIC_OFFSET (cfun);

#define SLOT_NOT_REQUIRED (-2)
#define SLOT_REQUIRED     (-1)

  frame.wb_push_candidate1 = INVALID_REGNUM;
  frame.wb_push_candidate2 = INVALID_REGNUM;
  frame.spare_pred_reg = INVALID_REGNUM;

  /* First mark all the registers that really need to be saved...  */
  for (regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    frame.reg_offset[regno] = SLOT_NOT_REQUIRED;

  /* ... that includes the eh data registers (if needed)...  */
  if (crtl->calls_eh_return)
    for (regno = 0; EH_RETURN_DATA_REGNO (regno) != INVALID_REGNUM; regno++)
      frame.reg_offset[EH_RETURN_DATA_REGNO (regno)] = SLOT_REQUIRED;

  /* ... and any callee saved register that dataflow says is live.  */
  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& !fixed_regs[regno]
	&& (regno == R30_REGNUM
	    || !crtl->abi->clobbers_full_reg_p (regno)))
      frame.reg_offset[regno] = SLOT_REQUIRED;

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& !fixed_regs[regno]
	&& !crtl->abi->clobbers_full_reg_p (regno))
      {
	frame.reg_offset[regno] = SLOT_REQUIRED;
	last_fp_reg = regno;
	if (aarch64_emit_cfi_for_reg_p (regno))
	  frame_related_fp_reg_p = true;
      }

  /* Big-endian SVE frames need a spare predicate register in order
     to save Z8-Z15.  Decide which register they should use.  Prefer
     an unused argument register if possible, so that we don't force P4
     to be saved unnecessarily.  */
  if (frame_related_fp_reg_p
      && crtl->abi->id () == ARM_PCS_SVE
      && BYTES_BIG_ENDIAN)
    {
      bitmap live1 = df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun));
      bitmap live2 = df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun));
      for (regno = P0_REGNUM; regno <= P7_REGNUM; regno++)
	if (!bitmap_bit_p (live1, regno) && !bitmap_bit_p (live2, regno))
	  break;
      gcc_assert (regno <= P7_REGNUM);
      frame.spare_pred_reg = regno;
      df_set_regs_ever_live (regno, true);
    }

  for (regno = P0_REGNUM; regno <= P15_REGNUM; regno++)
    if (df_regs_ever_live_p (regno)
	&& !fixed_regs[regno]
	&& !crtl->abi->clobbers_full_reg_p (regno))
      frame.reg_offset[regno] = SLOT_REQUIRED;

  /* With stack-clash, LR must be saved in non-leaf functions.  The saving of
     LR counts as an implicit probe which allows us to maintain the invariant
     described in the comment at expand_prologue.  */
  gcc_assert (crtl->is_leaf
	      || maybe_ne (frame.reg_offset[R30_REGNUM], SLOT_NOT_REQUIRED));

  /* Now assign stack slots for the registers.  Start with the predicate
     registers, since predicate LDR and STR have a relatively small
     offset range.  These saves happen below the hard frame pointer.  */
  for (regno = P0_REGNUM; regno <= P15_REGNUM; regno++)
    if (known_eq (frame.reg_offset[regno], SLOT_REQUIRED))
      {
	frame.reg_offset[regno] = offset;
	offset += BYTES_PER_SVE_PRED;
      }

  if (maybe_ne (offset, 0))
    {
      /* If we have any vector registers to save above the predicate registers,
	 the offset of the vector register save slots need to be a multiple
	 of the vector size.  This lets us use the immediate forms of LDR/STR
	 (or LD1/ST1 for big-endian).

	 A vector register is 8 times the size of a predicate register,
	 and we need to save a maximum of 12 predicate registers, so the
	 first vector register will be at either #1, MUL VL or #2, MUL VL.

	 If we don't have any vector registers to save, and we know how
	 big the predicate save area is, we can just round it up to the
	 next 16-byte boundary.  */
      if (last_fp_reg == (int) INVALID_REGNUM && offset.is_constant ())
	offset = aligned_upper_bound (offset, STACK_BOUNDARY / BITS_PER_UNIT);
      else
	{
	  if (known_le (offset, vector_save_size))
	    offset = vector_save_size;
	  else if (known_le (offset, vector_save_size * 2))
	    offset = vector_save_size * 2;
	  else
	    gcc_unreachable ();
	}
    }

  /* If we need to save any SVE vector registers, add them next.  */
  if (last_fp_reg != (int) INVALID_REGNUM && crtl->abi->id () == ARM_PCS_SVE)
    for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
      if (known_eq (frame.reg_offset[regno], SLOT_REQUIRED))
	{
	  frame.reg_offset[regno] = offset;
	  offset += vector_save_size;
	}

  /* OFFSET is now the offset of the hard frame pointer from the bottom
     of the callee save area.  */
  bool saves_below_hard_fp_p = maybe_ne (offset, 0);
  frame.below_hard_fp_saved_regs_size = offset;
  if (frame.emit_frame_chain)
    {
      /* FP and LR are placed in the linkage record.  */
      frame.reg_offset[R29_REGNUM] = offset;
      frame.wb_push_candidate1 = R29_REGNUM;
      frame.reg_offset[R30_REGNUM] = offset + UNITS_PER_WORD;
      frame.wb_push_candidate2 = R30_REGNUM;
      offset += 2 * UNITS_PER_WORD;
    }

  for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++)
    if (known_eq (frame.reg_offset[regno], SLOT_REQUIRED))
      {
	frame.reg_offset[regno] = offset;
	if (frame.wb_push_candidate1 == INVALID_REGNUM)
	  frame.wb_push_candidate1 = regno;
	else if (frame.wb_push_candidate2 == INVALID_REGNUM)
	  frame.wb_push_candidate2 = regno;
	offset += UNITS_PER_WORD;
      }

  poly_int64 max_int_offset = offset;
  offset = aligned_upper_bound (offset, STACK_BOUNDARY / BITS_PER_UNIT);
  bool has_align_gap = maybe_ne (offset, max_int_offset);

  for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++)
    if (known_eq (frame.reg_offset[regno], SLOT_REQUIRED))
      {
	/* If there is an alignment gap between integer and fp callee-saves,
	   allocate the last fp register to it if possible.  */
	if (regno == last_fp_reg
	    && has_align_gap
	    && known_eq (vector_save_size, 8)
	    && multiple_p (offset, 16))
	  {
	    frame.reg_offset[regno] = max_int_offset;
	    break;
	  }

	frame.reg_offset[regno] = offset;
	if (frame.wb_push_candidate1 == INVALID_REGNUM)
	  frame.wb_push_candidate1 = regno;
	else if (frame.wb_push_candidate2 == INVALID_REGNUM
		 && frame.wb_push_candidate1 >= V0_REGNUM)
	  frame.wb_push_candidate2 = regno;
	offset += vector_save_size;
      }

  offset = aligned_upper_bound (offset, STACK_BOUNDARY / BITS_PER_UNIT);

  frame.saved_regs_size = offset;

  poly_int64 varargs_and_saved_regs_size = offset + frame.saved_varargs_size;

  poly_int64 above_outgoing_args
    = aligned_upper_bound (varargs_and_saved_regs_size
			   + get_frame_size (),
			   STACK_BOUNDARY / BITS_PER_UNIT);

  frame.hard_fp_offset
    = above_outgoing_args - frame.below_hard_fp_saved_regs_size;

  /* Both these values are already aligned.  */
  gcc_assert (multiple_p (crtl->outgoing_args_size,
			  STACK_BOUNDARY / BITS_PER_UNIT));
  frame.frame_size = above_outgoing_args + crtl->outgoing_args_size;

  frame.locals_offset = frame.saved_varargs_size;

  frame.initial_adjust = 0;
  frame.final_adjust = 0;
  frame.callee_adjust = 0;
  frame.sve_callee_adjust = 0;
  frame.callee_offset = 0;

  frame.wb_pop_candidate1 = frame.wb_push_candidate1;
  frame.wb_pop_candidate2 = frame.wb_push_candidate2;

  /* Shadow call stack only deals with functions where the LR is pushed
     onto the stack and without specifying the "no_sanitize" attribute
     with the argument "shadow-call-stack".  */
  frame.is_scs_enabled
    = (!crtl->calls_eh_return
       && sanitize_flags_p (SANITIZE_SHADOW_CALL_STACK)
       && known_ge (cfun->machine->frame.reg_offset[LR_REGNUM], 0));

  /* When shadow call stack is enabled, the scs_pop in the epilogue will
     restore x30, and we don't need to pop x30 again in the traditional
     way.  Pop candidates record the registers that need to be popped
     eventually.  */
  if (frame.is_scs_enabled)
    {
      if (frame.wb_pop_candidate2 == R30_REGNUM)
	frame.wb_pop_candidate2 = INVALID_REGNUM;
      else if (frame.wb_pop_candidate1 == R30_REGNUM)
	frame.wb_pop_candidate1 = INVALID_REGNUM;
    }

  /* If candidate2 is INVALID_REGNUM, we need to adjust max_push_offset to
     256 to ensure that the offset meets the requirements of emit_move_insn.
     Similarly, if candidate1 is INVALID_REGNUM, we need to set
     max_push_offset to 0, because no registers are popped at this time,
     so callee_adjust cannot be adjusted.  */
  HOST_WIDE_INT max_push_offset = 0;
  if (frame.wb_pop_candidate2 != INVALID_REGNUM)
    max_push_offset = 512;
  else if (frame.wb_pop_candidate1 != INVALID_REGNUM)
    max_push_offset = 256;

  HOST_WIDE_INT const_size, const_outgoing_args_size, const_fp_offset;
  HOST_WIDE_INT const_saved_regs_size;
  if (frame.frame_size.is_constant (&const_size)
      && const_size < max_push_offset
      && known_eq (frame.hard_fp_offset, const_size))
    {
      /* Simple, small frame with no outgoing arguments:

	 stp reg1, reg2, [sp, -frame_size]!
	 stp reg3, reg4, [sp, 16]  */
      frame.callee_adjust = const_size;
    }
  else if (crtl->outgoing_args_size.is_constant (&const_outgoing_args_size)
	   && frame.saved_regs_size.is_constant (&const_saved_regs_size)
	   && const_outgoing_args_size + const_saved_regs_size < 512
	   /* We could handle this case even with outgoing args, provided
	      that the number of args left us with valid offsets for all
	      predicate and vector save slots.  It's such a rare case that
	      it hardly seems worth the effort though.  */
	   && (!saves_below_hard_fp_p || const_outgoing_args_size == 0)
	   && !(cfun->calls_alloca
		&& frame.hard_fp_offset.is_constant (&const_fp_offset)
		&& const_fp_offset < max_push_offset))
    {
      /* Frame with small outgoing arguments:

	 sub sp, sp, frame_size
	 stp reg1, reg2, [sp, outgoing_args_size]
	 stp reg3, reg4, [sp, outgoing_args_size + 16]  */
      frame.initial_adjust = frame.frame_size;
      frame.callee_offset = const_outgoing_args_size;
    }
  else if (saves_below_hard_fp_p
	   && known_eq (frame.saved_regs_size,
			frame.below_hard_fp_saved_regs_size))
    {
      /* Frame in which all saves are SVE saves:

	 sub sp, sp, hard_fp_offset + below_hard_fp_saved_regs_size
	 save SVE registers relative to SP
	 sub sp, sp, outgoing_args_size  */
      frame.initial_adjust = (frame.hard_fp_offset
			      + frame.below_hard_fp_saved_regs_size);
      frame.final_adjust = crtl->outgoing_args_size;
    }
  else if (frame.hard_fp_offset.is_constant (&const_fp_offset)
	   && const_fp_offset < max_push_offset)
    {
      /* Frame with large outgoing arguments or SVE saves, but with
	 a small local area:

	 stp reg1, reg2, [sp, -hard_fp_offset]!
	 stp reg3, reg4, [sp, 16]
	 [sub sp, sp, below_hard_fp_saved_regs_size]
	 [save SVE registers relative to SP]
	 sub sp, sp, outgoing_args_size  */
      frame.callee_adjust = const_fp_offset;
      frame.sve_callee_adjust = frame.below_hard_fp_saved_regs_size;
      frame.final_adjust = crtl->outgoing_args_size;
    }
  else
    {
      /* Frame with large local area and outgoing arguments or SVE saves,
	 using frame pointer:

	 sub sp, sp, hard_fp_offset
	 stp x29, x30, [sp, 0]
	 add x29, sp, 0
	 stp reg3, reg4, [sp, 16]
	 [sub sp, sp, below_hard_fp_saved_regs_size]
	 [save SVE registers relative to SP]
	 sub sp, sp, outgoing_args_size  */
      frame.initial_adjust = frame.hard_fp_offset;
      frame.sve_callee_adjust = frame.below_hard_fp_saved_regs_size;
      frame.final_adjust = crtl->outgoing_args_size;
    }

  /* Make sure the individual adjustments add up to the full frame size.  */
  gcc_assert (known_eq (frame.initial_adjust
			+ frame.callee_adjust
			+ frame.sve_callee_adjust
			+ frame.final_adjust, frame.frame_size));

  if (!frame.emit_frame_chain && frame.callee_adjust == 0)
    {
      /* We've decided not to associate any register saves with the initial
	 stack allocation.  */
      frame.wb_pop_candidate1 = frame.wb_push_candidate1 = INVALID_REGNUM;
      frame.wb_pop_candidate2 = frame.wb_push_candidate2 = INVALID_REGNUM;
    }

  frame.laid_out = true;
}

/* Return true if the register REGNO is saved on entry to
   the current function.  */

static bool
aarch64_register_saved_on_entry (int regno)
{
  return known_ge (cfun->machine->frame.reg_offset[regno], 0);
}

/* Return the next register up from REGNO up to LIMIT for the callee
   to save.  */

static unsigned
aarch64_next_callee_save (unsigned regno, unsigned limit)
{
  while (regno <= limit && !aarch64_register_saved_on_entry (regno))
    regno ++;
  return regno;
}

/* Push the register number REGNO of mode MODE to the stack with write-back
   adjusting the stack by ADJUSTMENT.  */

static void
aarch64_pushwb_single_reg (machine_mode mode, unsigned regno,
			   HOST_WIDE_INT adjustment)
 {
  rtx base_rtx = stack_pointer_rtx;
  rtx insn, reg, mem;

  reg = gen_rtx_REG (mode, regno);
  mem = gen_rtx_PRE_MODIFY (Pmode, base_rtx,
			    plus_constant (Pmode, base_rtx, -adjustment));
  mem = gen_frame_mem (mode, mem);

  insn = emit_move_insn (mem, reg);
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Generate and return an instruction to store the pair of registers
   REG and REG2 of mode MODE to location BASE with write-back adjusting
   the stack location BASE by ADJUSTMENT.  */

static rtx
aarch64_gen_storewb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2,
			  HOST_WIDE_INT adjustment)
{
  switch (mode)
    {
    case E_DImode:
      return gen_storewb_pairdi_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_WORD - adjustment));
    case E_DFmode:
      return gen_storewb_pairdf_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_WORD - adjustment));
    case E_TFmode:
      return gen_storewb_pairtf_di (base, base, reg, reg2,
				    GEN_INT (-adjustment),
				    GEN_INT (UNITS_PER_VREG - adjustment));
    default:
      gcc_unreachable ();
    }
}

/* Push registers numbered REGNO1 and REGNO2 to the stack, adjusting the
   stack pointer by ADJUSTMENT.  */

static void
aarch64_push_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment)
{
  rtx_insn *insn;
  machine_mode mode = aarch64_reg_save_mode (regno1);

  if (regno2 == INVALID_REGNUM)
    return aarch64_pushwb_single_reg (mode, regno1, adjustment);

  rtx reg1 = gen_rtx_REG (mode, regno1);
  rtx reg2 = gen_rtx_REG (mode, regno2);

  insn = emit_insn (aarch64_gen_storewb_pair (mode, stack_pointer_rtx, reg1,
					      reg2, adjustment));
  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 2)) = 1;
  RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
  RTX_FRAME_RELATED_P (insn) = 1;
}

/* Load the pair of register REG, REG2 of mode MODE from stack location BASE,
   adjusting it by ADJUSTMENT afterwards.  */

static rtx
aarch64_gen_loadwb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2,
			 HOST_WIDE_INT adjustment)
{
  switch (mode)
    {
    case E_DImode:
      return gen_loadwb_pairdi_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_WORD));
    case E_DFmode:
      return gen_loadwb_pairdf_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_WORD));
    case E_TFmode:
      return gen_loadwb_pairtf_di (base, base, reg, reg2, GEN_INT (adjustment),
				   GEN_INT (UNITS_PER_VREG));
    default:
      gcc_unreachable ();
    }
}

/* Pop the two registers numbered REGNO1, REGNO2 from the stack, adjusting it
   afterwards by ADJUSTMENT and writing the appropriate REG_CFA_RESTORE notes
   into CFI_OPS.  */

static void
aarch64_pop_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment,
		  rtx *cfi_ops)
{
  machine_mode mode = aarch64_reg_save_mode (regno1);
  rtx reg1 = gen_rtx_REG (mode, regno1);

  *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg1, *cfi_ops);

  if (regno2 == INVALID_REGNUM)
    {
      rtx mem = plus_constant (Pmode, stack_pointer_rtx, adjustment);
      mem = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx, mem);
      emit_move_insn (reg1, gen_frame_mem (mode, mem));
    }
  else
    {
      rtx reg2 = gen_rtx_REG (mode, regno2);
      *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops);
      emit_insn (aarch64_gen_loadwb_pair (mode, stack_pointer_rtx, reg1,
					  reg2, adjustment));
    }
}

/* Generate and return a store pair instruction of mode MODE to store
   register REG1 to MEM1 and register REG2 to MEM2.  */

static rtx
aarch64_gen_store_pair (machine_mode mode, rtx mem1, rtx reg1, rtx mem2,
			rtx reg2)
{
  switch (mode)
    {
    case E_DImode:
      return gen_store_pair_dw_didi (mem1, reg1, mem2, reg2);

    case E_DFmode:
      return gen_store_pair_dw_dfdf (mem1, reg1, mem2, reg2);

    case E_TFmode:
      return gen_store_pair_dw_tftf (mem1, reg1, mem2, reg2);

    case E_V4SImode:
      return gen_vec_store_pairv4siv4si (mem1, reg1, mem2, reg2);

    case E_V16QImode:
      return gen_vec_store_pairv16qiv16qi (mem1, reg1, mem2, reg2);

    default:
      gcc_unreachable ();
    }
}

/* Generate and regurn a load pair isntruction of mode MODE to load register
   REG1 from MEM1 and register REG2 from MEM2.  */

static rtx
aarch64_gen_load_pair (machine_mode mode, rtx reg1, rtx mem1, rtx reg2,
		       rtx mem2)
{
  switch (mode)
    {
    case E_DImode:
      return gen_load_pair_dw_didi (reg1, mem1, reg2, mem2);

    case E_DFmode:
      return gen_load_pair_dw_dfdf (reg1, mem1, reg2, mem2);

    case E_TFmode:
      return gen_load_pair_dw_tftf (reg1, mem1, reg2, mem2);

    case E_V4SImode:
      return gen_load_pairv4siv4si (reg1, mem1, reg2, mem2);

    default:
      gcc_unreachable ();
    }
}

/* Return TRUE if return address signing should be enabled for the current
   function, otherwise return FALSE.  */

bool
aarch64_return_address_signing_enabled (void)
{
  /* This function should only be called after frame laid out.   */
  gcc_assert (cfun->machine->frame.laid_out);

  /* Turn return address signing off in any function that uses
     __builtin_eh_return.  The address passed to __builtin_eh_return
     is not signed so either it has to be signed (with original sp)
     or the code path that uses it has to avoid authenticating it.
     Currently eh return introduces a return to anywhere gadget, no
     matter what we do here since it uses ret with user provided
     address. An ideal fix for that is to use indirect branch which
     can be protected with BTI j (to some extent).  */
  if (crtl->calls_eh_return)
    return false;

  /* If signing scope is AARCH64_FUNCTION_NON_LEAF, we only sign a leaf function
     if its LR is pushed onto stack.  */
  return (aarch64_ra_sign_scope == AARCH64_FUNCTION_ALL
	  || (aarch64_ra_sign_scope == AARCH64_FUNCTION_NON_LEAF
	      && known_ge (cfun->machine->frame.reg_offset[LR_REGNUM], 0)));
}

/* Return TRUE if Branch Target Identification Mechanism is enabled.  */
bool
aarch64_bti_enabled (void)
{
  return (aarch64_enable_bti == 1);
}

/* The caller is going to use ST1D or LD1D to save or restore an SVE
   register in mode MODE at BASE_RTX + OFFSET, where OFFSET is in
   the range [1, 16] * GET_MODE_SIZE (MODE).  Prepare for this by:

     (1) updating BASE_RTX + OFFSET so that it is a legitimate ST1D
	 or LD1D address

     (2) setting PRED to a valid predicate register for the ST1D or LD1D,
	 if the variable isn't already nonnull

   (1) is needed when OFFSET is in the range [8, 16] * GET_MODE_SIZE (MODE).
   Handle this case using a temporary base register that is suitable for
   all offsets in that range.  Use ANCHOR_REG as this base register if it
   is nonnull, otherwise create a new register and store it in ANCHOR_REG.  */

static inline void
aarch64_adjust_sve_callee_save_base (machine_mode mode, rtx &base_rtx,
				     rtx &anchor_reg, poly_int64 &offset,
				     rtx &ptrue)
{
  if (maybe_ge (offset, 8 * GET_MODE_SIZE (mode)))
    {
      /* This is the maximum valid offset of the anchor from the base.
	 Lower values would be valid too.  */
      poly_int64 anchor_offset = 16 * GET_MODE_SIZE (mode);
      if (!anchor_reg)
	{
	  anchor_reg = gen_rtx_REG (Pmode, STACK_CLASH_SVE_CFA_REGNUM);
	  emit_insn (gen_add3_insn (anchor_reg, base_rtx,
				    gen_int_mode (anchor_offset, Pmode)));
	}
      base_rtx = anchor_reg;
      offset -= anchor_offset;
    }
  if (!ptrue)
    {
      int pred_reg = cfun->machine->frame.spare_pred_reg;
      emit_move_insn (gen_rtx_REG (VNx16BImode, pred_reg),
		      CONSTM1_RTX (VNx16BImode));
      ptrue = gen_rtx_REG (VNx2BImode, pred_reg);
    }
}

/* Add a REG_CFA_EXPRESSION note to INSN to say that register REG
   is saved at BASE + OFFSET.  */

static void
aarch64_add_cfa_expression (rtx_insn *insn, rtx reg,
			    rtx base, poly_int64 offset)
{
  rtx mem = gen_frame_mem (GET_MODE (reg),
			   plus_constant (Pmode, base, offset));
  add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (mem, reg));
}

/* Emit code to save the callee-saved registers from register number START
   to LIMIT to the stack at the location starting at offset START_OFFSET,
   skipping any write-back candidates if SKIP_WB is true.  HARD_FP_VALID_P
   is true if the hard frame pointer has been set up.  */

static void
aarch64_save_callee_saves (poly_int64 start_offset,
			   unsigned start, unsigned limit, bool skip_wb,
			   bool hard_fp_valid_p)
{
  rtx_insn *insn;
  unsigned regno;
  unsigned regno2;
  rtx anchor_reg = NULL_RTX, ptrue = NULL_RTX;

  for (regno = aarch64_next_callee_save (start, limit);
       regno <= limit;
       regno = aarch64_next_callee_save (regno + 1, limit))
    {
      rtx reg, mem;
      poly_int64 offset;
      bool frame_related_p = aarch64_emit_cfi_for_reg_p (regno);

      if (skip_wb
	  && (regno == cfun->machine->frame.wb_push_candidate1
	      || regno == cfun->machine->frame.wb_push_candidate2))
	continue;

      if (cfun->machine->reg_is_wrapped_separately[regno])
	continue;

      machine_mode mode = aarch64_reg_save_mode (regno);
      reg = gen_rtx_REG (mode, regno);
      offset = start_offset + cfun->machine->frame.reg_offset[regno];
      rtx base_rtx = stack_pointer_rtx;
      poly_int64 sp_offset = offset;

      HOST_WIDE_INT const_offset;
      if (mode == VNx2DImode && BYTES_BIG_ENDIAN)
	aarch64_adjust_sve_callee_save_base (mode, base_rtx, anchor_reg,
					     offset, ptrue);
      else if (GP_REGNUM_P (regno)
	       && (!offset.is_constant (&const_offset) || const_offset >= 512))
	{
	  gcc_assert (known_eq (start_offset, 0));
	  poly_int64 fp_offset
	    = cfun->machine->frame.below_hard_fp_saved_regs_size;
	  if (hard_fp_valid_p)
	    base_rtx = hard_frame_pointer_rtx;
	  else
	    {
	      if (!anchor_reg)
		{
		  anchor_reg = gen_rtx_REG (Pmode, STACK_CLASH_SVE_CFA_REGNUM);
		  emit_insn (gen_add3_insn (anchor_reg, base_rtx,
					    gen_int_mode (fp_offset, Pmode)));
		}
	      base_rtx = anchor_reg;
	    }
	  offset -= fp_offset;
	}
      mem = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));
      bool need_cfa_note_p = (base_rtx != stack_pointer_rtx);

      if (!aarch64_sve_mode_p (mode)
	  && (regno2 = aarch64_next_callee_save (regno + 1, limit)) <= limit
	  && !cfun->machine->reg_is_wrapped_separately[regno2]
	  && known_eq (GET_MODE_SIZE (mode),
		       cfun->machine->frame.reg_offset[regno2]
		       - cfun->machine->frame.reg_offset[regno]))
	{
	  rtx reg2 = gen_rtx_REG (mode, regno2);
	  rtx mem2;

	  offset += GET_MODE_SIZE (mode);
	  mem2 = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));
	  insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2,
						    reg2));

	  /* The first part of a frame-related parallel insn is
	     always assumed to be relevant to the frame
	     calculations; subsequent parts, are only
	     frame-related if explicitly marked.  */
	  if (aarch64_emit_cfi_for_reg_p (regno2))
	    {
	      if (need_cfa_note_p)
		aarch64_add_cfa_expression (insn, reg2, stack_pointer_rtx,
					    sp_offset + GET_MODE_SIZE (mode));
	      else
		RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
	    }

	  regno = regno2;
	}
      else if (mode == VNx2DImode && BYTES_BIG_ENDIAN)
	{
	  insn = emit_insn (gen_aarch64_pred_mov (mode, mem, ptrue, reg));
	  need_cfa_note_p = true;
	}
      else if (aarch64_sve_mode_p (mode))
	insn = emit_insn (gen_rtx_SET (mem, reg));
      else
	insn = emit_move_insn (mem, reg);

      RTX_FRAME_RELATED_P (insn) = frame_related_p;
      if (frame_related_p && need_cfa_note_p)
	aarch64_add_cfa_expression (insn, reg, stack_pointer_rtx, sp_offset);
    }
}

/* Emit code to restore the callee registers from register number START
   up to and including LIMIT.  Restore from the stack offset START_OFFSET,
   skipping any write-back candidates if SKIP_WB is true.  Write the
   appropriate REG_CFA_RESTORE notes into CFI_OPS.  */

static void
aarch64_restore_callee_saves (poly_int64 start_offset, unsigned start,
			      unsigned limit, bool skip_wb, rtx *cfi_ops)
{
  unsigned regno;
  unsigned regno2;
  poly_int64 offset;
  rtx anchor_reg = NULL_RTX, ptrue = NULL_RTX;

  for (regno = aarch64_next_callee_save (start, limit);
       regno <= limit;
       regno = aarch64_next_callee_save (regno + 1, limit))
    {
      bool frame_related_p = aarch64_emit_cfi_for_reg_p (regno);
      if (cfun->machine->reg_is_wrapped_separately[regno])
	continue;

      rtx reg, mem;

      if (skip_wb
	  && (regno == cfun->machine->frame.wb_pop_candidate1
	      || regno == cfun->machine->frame.wb_pop_candidate2))
	continue;

      machine_mode mode = aarch64_reg_save_mode (regno);
      reg = gen_rtx_REG (mode, regno);
      offset = start_offset + cfun->machine->frame.reg_offset[regno];
      rtx base_rtx = stack_pointer_rtx;
      if (mode == VNx2DImode && BYTES_BIG_ENDIAN)
	aarch64_adjust_sve_callee_save_base (mode, base_rtx, anchor_reg,
					     offset, ptrue);
      mem = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));

      if (!aarch64_sve_mode_p (mode)
	  && (regno2 = aarch64_next_callee_save (regno + 1, limit)) <= limit
	  && !cfun->machine->reg_is_wrapped_separately[regno2]
	  && known_eq (GET_MODE_SIZE (mode),
		       cfun->machine->frame.reg_offset[regno2]
		       - cfun->machine->frame.reg_offset[regno]))
	{
	  rtx reg2 = gen_rtx_REG (mode, regno2);
	  rtx mem2;

	  offset += GET_MODE_SIZE (mode);
	  mem2 = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset));
	  emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2));

	  *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops);
	  regno = regno2;
	}
      else if (mode == VNx2DImode && BYTES_BIG_ENDIAN)
	emit_insn (gen_aarch64_pred_mov (mode, reg, ptrue, mem));
      else if (aarch64_sve_mode_p (mode))
	emit_insn (gen_rtx_SET (reg, mem));
      else
	emit_move_insn (reg, mem);
      if (frame_related_p)
	*cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg, *cfi_ops);
    }
}

/* Return true if OFFSET is a signed 4-bit value multiplied by the size
   of MODE.  */

static inline bool
offset_4bit_signed_scaled_p (machine_mode mode, poly_int64 offset)
{
  HOST_WIDE_INT multiple;
  return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple)
	  && IN_RANGE (multiple, -8, 7));
}

/* Return true if OFFSET is a signed 6-bit value multiplied by the size
   of MODE.  */

static inline bool
offset_6bit_signed_scaled_p (machine_mode mode, poly_int64 offset)
{
  HOST_WIDE_INT multiple;
  return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple)
	  && IN_RANGE (multiple, -32, 31));
}

/* Return true if OFFSET is an unsigned 6-bit value multiplied by the size
   of MODE.  */

static inline bool
offset_6bit_unsigned_scaled_p (machine_mode mode, poly_int64 offset)
{
  HOST_WIDE_INT multiple;
  return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple)
	  && IN_RANGE (multiple, 0, 63));
}

/* Return true if OFFSET is a signed 7-bit value multiplied by the size
   of MODE.  */

bool
aarch64_offset_7bit_signed_scaled_p (machine_mode mode, poly_int64 offset)
{
  HOST_WIDE_INT multiple;
  return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple)
	  && IN_RANGE (multiple, -64, 63));
}

/* Return true if OFFSET is a signed 9-bit value.  */

bool
aarch64_offset_9bit_signed_unscaled_p (machine_mode mode ATTRIBUTE_UNUSED,
				       poly_int64 offset)
{
  HOST_WIDE_INT const_offset;
  return (offset.is_constant (&const_offset)
	  && IN_RANGE (const_offset, -256, 255));
}

/* Return true if OFFSET is a signed 9-bit value multiplied by the size
   of MODE.  */

static inline bool
offset_9bit_signed_scaled_p (machine_mode mode, poly_int64 offset)
{
  HOST_WIDE_INT multiple;
  return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple)
	  && IN_RANGE (multiple, -256, 255));
}

/* Return true if OFFSET is an unsigned 12-bit value multiplied by the size
   of MODE.  */

static inline bool
offset_12bit_unsigned_scaled_p (machine_mode mode, poly_int64 offset)
{
  HOST_WIDE_INT multiple;
  return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple)
	  && IN_RANGE (multiple, 0, 4095));
}

/* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS.  */

static sbitmap
aarch64_get_separate_components (void)
{
  sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1);
  bitmap_clear (components);

  /* The registers we need saved to the frame.  */
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (aarch64_register_saved_on_entry (regno))
      {
	/* Punt on saves and restores that use ST1D and LD1D.  We could
	   try to be smarter, but it would involve making sure that the
	   spare predicate register itself is safe to use at the save
	   and restore points.  Also, when a frame pointer is being used,
	   the slots are often out of reach of ST1D and LD1D anyway.  */
	machine_mode mode = aarch64_reg_save_mode (regno);
	if (mode == VNx2DImode && BYTES_BIG_ENDIAN)
	  continue;

	poly_int64 offset = cfun->machine->frame.reg_offset[regno];

	/* If the register is saved in the first SVE save slot, we use
	   it as a stack probe for -fstack-clash-protection.  */
	if (flag_stack_clash_protection
	    && maybe_ne (cfun->machine->frame.below_hard_fp_saved_regs_size, 0)
	    && known_eq (offset, 0))
	  continue;

	/* Get the offset relative to the register we'll use.  */
	if (frame_pointer_needed)
	  offset -= cfun->machine->frame.below_hard_fp_saved_regs_size;
	else
	  offset += crtl->outgoing_args_size;

	/* Check that we can access the stack slot of the register with one
	   direct load with no adjustments needed.  */
	if (aarch64_sve_mode_p (mode)
	    ? offset_9bit_signed_scaled_p (mode, offset)
	    : offset_12bit_unsigned_scaled_p (mode, offset))
	  bitmap_set_bit (components, regno);
      }

  /* Don't mess with the hard frame pointer.  */
  if (frame_pointer_needed)
    bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);

  /* If the spare predicate register used by big-endian SVE code
     is call-preserved, it must be saved in the main prologue
     before any saves that use it.  */
  if (cfun->machine->frame.spare_pred_reg != INVALID_REGNUM)
    bitmap_clear_bit (components, cfun->machine->frame.spare_pred_reg);

  unsigned reg1 = cfun->machine->frame.wb_push_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_push_candidate2;
  /* If registers have been chosen to be stored/restored with
     writeback don't interfere with them to avoid having to output explicit
     stack adjustment instructions.  */
  if (reg2 != INVALID_REGNUM)
    bitmap_clear_bit (components, reg2);
  if (reg1 != INVALID_REGNUM)
    bitmap_clear_bit (components, reg1);

  bitmap_clear_bit (components, LR_REGNUM);
  bitmap_clear_bit (components, SP_REGNUM);

  return components;
}

/* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB.  */

static sbitmap
aarch64_components_for_bb (basic_block bb)
{
  bitmap in = DF_LIVE_IN (bb);
  bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
  bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;

  sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1);
  bitmap_clear (components);

  /* Clobbered registers don't generate values in any meaningful sense,
     since nothing after the clobber can rely on their value.  And we can't
     say that partially-clobbered registers are unconditionally killed,
     because whether they're killed or not depends on the mode of the
     value they're holding.  Thus partially call-clobbered registers
     appear in neither the kill set nor the gen set.

     Check manually for any calls that clobber more of a register than the
     current function can.  */
  function_abi_aggregator callee_abis;
  rtx_insn *insn;
  FOR_BB_INSNS (bb, insn)
    if (CALL_P (insn))
      callee_abis.note_callee_abi (insn_callee_abi (insn));
  HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);

  /* GPRs are used in a bb if they are in the IN, GEN, or KILL sets.  */
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (!fixed_regs[regno]
	&& !crtl->abi->clobbers_full_reg_p (regno)
	&& (TEST_HARD_REG_BIT (extra_caller_saves, regno)
	    || bitmap_bit_p (in, regno)
	    || bitmap_bit_p (gen, regno)
	    || bitmap_bit_p (kill, regno)))
      {
	bitmap_set_bit (components, regno);

	/* If there is a callee-save at an adjacent offset, add it too
	   to increase the use of LDP/STP.  */
	poly_int64 offset = cfun->machine->frame.reg_offset[regno];
	unsigned regno2 = multiple_p (offset, 16) ? regno + 1 : regno - 1;

	if (regno2 <= LAST_SAVED_REGNUM)
	  {
	    poly_int64 offset2 = cfun->machine->frame.reg_offset[regno2];
	    if (regno < regno2
		? known_eq (offset + 8, offset2)
		: multiple_p (offset2, 16) && known_eq (offset2 + 8, offset))
	      bitmap_set_bit (components, regno2);
	  }
      }

  return components;
}

/* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS.
   Nothing to do for aarch64.  */

static void
aarch64_disqualify_components (sbitmap, edge, sbitmap, bool)
{
}

/* Return the next set bit in BMP from START onwards.  Return the total number
   of bits in BMP if no set bit is found at or after START.  */

static unsigned int
aarch64_get_next_set_bit (sbitmap bmp, unsigned int start)
{
  unsigned int nbits = SBITMAP_SIZE (bmp);
  if (start == nbits)
    return start;

  gcc_assert (start < nbits);
  for (unsigned int i = start; i < nbits; i++)
    if (bitmap_bit_p (bmp, i))
      return i;

  return nbits;
}

/* Do the work for aarch64_emit_prologue_components and
   aarch64_emit_epilogue_components.  COMPONENTS is the bitmap of registers
   to save/restore, PROLOGUE_P indicates whether to emit the prologue sequence
   for these components or the epilogue sequence.  That is, it determines
   whether we should emit stores or loads and what kind of CFA notes to attach
   to the insns.  Otherwise the logic for the two sequences is very
   similar.  */

static void
aarch64_process_components (sbitmap components, bool prologue_p)
{
  rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
			     ? HARD_FRAME_POINTER_REGNUM
			     : STACK_POINTER_REGNUM);

  unsigned last_regno = SBITMAP_SIZE (components);
  unsigned regno = aarch64_get_next_set_bit (components, R0_REGNUM);
  rtx_insn *insn = NULL;

  while (regno != last_regno)
    {
      bool frame_related_p = aarch64_emit_cfi_for_reg_p (regno);
      machine_mode mode = aarch64_reg_save_mode (regno);
      
      rtx reg = gen_rtx_REG (mode, regno);
      poly_int64 offset = cfun->machine->frame.reg_offset[regno];
      if (frame_pointer_needed)
	offset -= cfun->machine->frame.below_hard_fp_saved_regs_size;
      else
	offset += crtl->outgoing_args_size;

      rtx addr = plus_constant (Pmode, ptr_reg, offset);
      rtx mem = gen_frame_mem (mode, addr);

      rtx set = prologue_p ? gen_rtx_SET (mem, reg) : gen_rtx_SET (reg, mem);
      unsigned regno2 = aarch64_get_next_set_bit (components, regno + 1);
      /* No more registers to handle after REGNO.
	 Emit a single save/restore and exit.  */
      if (regno2 == last_regno)
	{
	  insn = emit_insn (set);
	  if (frame_related_p)
	    {
	      RTX_FRAME_RELATED_P (insn) = 1;
	      if (prologue_p)
		add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set));
	      else
		add_reg_note (insn, REG_CFA_RESTORE, reg);
	    }
	  break;
	}

      poly_int64 offset2 = cfun->machine->frame.reg_offset[regno2];
      /* The next register is not of the same class or its offset is not
	 mergeable with the current one into a pair.  */
      if (aarch64_sve_mode_p (mode)
	  || !satisfies_constraint_Ump (mem)
	  || GP_REGNUM_P (regno) != GP_REGNUM_P (regno2)
	  || (crtl->abi->id () == ARM_PCS_SIMD && FP_REGNUM_P (regno))
	  || maybe_ne ((offset2 - cfun->machine->frame.reg_offset[regno]),
		       GET_MODE_SIZE (mode)))
	{
	  insn = emit_insn (set);
	  if (frame_related_p)
	    {
	      RTX_FRAME_RELATED_P (insn) = 1;
	      if (prologue_p)
		add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set));
	      else
		add_reg_note (insn, REG_CFA_RESTORE, reg);
	    }

	  regno = regno2;
	  continue;
	}

      bool frame_related2_p = aarch64_emit_cfi_for_reg_p (regno2);

      /* REGNO2 can be saved/restored in a pair with REGNO.  */
      rtx reg2 = gen_rtx_REG (mode, regno2);
      if (frame_pointer_needed)
	offset2 -= cfun->machine->frame.below_hard_fp_saved_regs_size;
      else
	offset2 += crtl->outgoing_args_size;
      rtx addr2 = plus_constant (Pmode, ptr_reg, offset2);
      rtx mem2 = gen_frame_mem (mode, addr2);
      rtx set2 = prologue_p ? gen_rtx_SET (mem2, reg2)
			     : gen_rtx_SET (reg2, mem2);

      if (prologue_p)
	insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2, reg2));
      else
	insn = emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2));

      if (frame_related_p || frame_related2_p)
	{
	  RTX_FRAME_RELATED_P (insn) = 1;
	  if (prologue_p)
	    {
	      if (frame_related_p)
		add_reg_note (insn, REG_CFA_OFFSET, set);
	      if (frame_related2_p)
		add_reg_note (insn, REG_CFA_OFFSET, set2);
	    }
	  else
	    {
	      if (frame_related_p)
		add_reg_note (insn, REG_CFA_RESTORE, reg);
	      if (frame_related2_p)
		add_reg_note (insn, REG_CFA_RESTORE, reg2);
	    }
	}

      regno = aarch64_get_next_set_bit (components, regno2 + 1);
    }
}

/* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS.  */

static void
aarch64_emit_prologue_components (sbitmap components)
{
  aarch64_process_components (components, true);
}

/* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS.  */

static void
aarch64_emit_epilogue_components (sbitmap components)
{
  aarch64_process_components (components, false);
}

/* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS.  */

static void
aarch64_set_handled_components (sbitmap components)
{
  for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++)
    if (bitmap_bit_p (components, regno))
      cfun->machine->reg_is_wrapped_separately[regno] = true;
}

/* On AArch64 we have an ABI defined safe buffer.  This constant is used to
   determining the probe offset for alloca.  */

static HOST_WIDE_INT
aarch64_stack_clash_protection_alloca_probe_range (void)
{
  return STACK_CLASH_CALLER_GUARD;
}


/* Allocate POLY_SIZE bytes of stack space using TEMP1 and TEMP2 as scratch
   registers.  If POLY_SIZE is not large enough to require a probe this function
   will only adjust the stack.  When allocating the stack space
   FRAME_RELATED_P is then used to indicate if the allocation is frame related.
   FINAL_ADJUSTMENT_P indicates whether we are allocating the outgoing
   arguments.  If we are then we ensure that any allocation larger than the ABI
   defined buffer needs a probe so that the invariant of having a 1KB buffer is
   maintained.

   We emit barriers after each stack adjustment to prevent optimizations from
   breaking the invariant that we never drop the stack more than a page.  This
   invariant is needed to make it easier to correctly handle asynchronous
   events, e.g. if we were to allow the stack to be dropped by more than a page
   and then have multiple probes up and we take a signal somewhere in between
   then the signal handler doesn't know the state of the stack and can make no
   assumptions about which pages have been probed.  */

static void
aarch64_allocate_and_probe_stack_space (rtx temp1, rtx temp2,
					poly_int64 poly_size,
					bool frame_related_p,
					bool final_adjustment_p)
{
  HOST_WIDE_INT guard_size
    = 1 << param_stack_clash_protection_guard_size;
  HOST_WIDE_INT guard_used_by_caller = STACK_CLASH_CALLER_GUARD;
  HOST_WIDE_INT min_probe_threshold
    = (final_adjustment_p
       ? guard_used_by_caller
       : guard_size - guard_used_by_caller);
  /* When doing the final adjustment for the outgoing arguments, take into
     account any unprobed space there is above the current SP.  There are
     two cases:

     - When saving SVE registers below the hard frame pointer, we force
       the lowest save to take place in the prologue before doing the final
       adjustment (i.e. we don't allow the save to be shrink-wrapped).
       This acts as a probe at SP, so there is no unprobed space.

     - When there are no SVE register saves, we use the store of the link
       register as a probe.  We can't assume that LR was saved at position 0
       though, so treat any space below it as unprobed.  */
  if (final_adjustment_p
      && known_eq (cfun->machine->frame.below_hard_fp_saved_regs_size, 0))
    {
      poly_int64 lr_offset = cfun->machine->frame.reg_offset[LR_REGNUM];
      if (known_ge (lr_offset, 0))
	min_probe_threshold -= lr_offset.to_constant ();
      else
	gcc_assert (!flag_stack_clash_protection || known_eq (poly_size, 0));
    }

  poly_int64 frame_size = cfun->machine->frame.frame_size;

  /* We should always have a positive probe threshold.  */
  gcc_assert (min_probe_threshold > 0);

  if (flag_stack_clash_protection && !final_adjustment_p)
    {
      poly_int64 initial_adjust = cfun->machine->frame.initial_adjust;
      poly_int64 sve_callee_adjust = cfun->machine->frame.sve_callee_adjust;
      poly_int64 final_adjust = cfun->machine->frame.final_adjust;

      if (known_eq (frame_size, 0))
	{
	  dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
	}
      else if (known_lt (initial_adjust + sve_callee_adjust,
			 guard_size - guard_used_by_caller)
	       && known_lt (final_adjust, guard_used_by_caller))
	{
	  dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
	}
    }

  /* If SIZE is not large enough to require probing, just adjust the stack and
     exit.  */
  if (known_lt (poly_size, min_probe_threshold)
      || !flag_stack_clash_protection)
    {
      aarch64_sub_sp (temp1, temp2, poly_size, frame_related_p);
      return;
    }

  HOST_WIDE_INT size;
  /* Handle the SVE non-constant case first.  */
  if (!poly_size.is_constant (&size))
    {
     if (dump_file)
      {
	fprintf (dump_file, "Stack clash SVE prologue: ");
	print_dec (poly_size, dump_file);
	fprintf (dump_file, " bytes, dynamic probing will be required.\n");
      }

      /* First calculate the amount of bytes we're actually spilling.  */
      aarch64_add_offset (Pmode, temp1, CONST0_RTX (Pmode),
			  poly_size, temp1, temp2, false, true);

      rtx_insn *insn = get_last_insn ();

      if (frame_related_p)
	{
	  /* This is done to provide unwinding information for the stack
	     adjustments we're about to do, however to prevent the optimizers
	     from removing the R11 move and leaving the CFA note (which would be
	     very wrong) we tie the old and new stack pointer together.
	     The tie will expand to nothing but the optimizers will not touch
	     the instruction.  */
	  rtx stack_ptr_copy = gen_rtx_REG (Pmode, STACK_CLASH_SVE_CFA_REGNUM);
	  emit_move_insn (stack_ptr_copy, stack_pointer_rtx);
	  emit_insn (gen_stack_tie (stack_ptr_copy, stack_pointer_rtx));

	  /* We want the CFA independent of the stack pointer for the
	     duration of the loop.  */
	  add_reg_note (insn, REG_CFA_DEF_CFA, stack_ptr_copy);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      rtx probe_const = gen_int_mode (min_probe_threshold, Pmode);
      rtx guard_const = gen_int_mode (guard_size, Pmode);

      insn = emit_insn (gen_probe_sve_stack_clash (Pmode, stack_pointer_rtx,
						   stack_pointer_rtx, temp1,
						   probe_const, guard_const));

      /* Now reset the CFA register if needed.  */
      if (frame_related_p)
	{
	  add_reg_note (insn, REG_CFA_DEF_CFA,
			gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				      gen_int_mode (poly_size, Pmode)));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      return;
    }

  if (dump_file)
    fprintf (dump_file,
	     "Stack clash AArch64 prologue: " HOST_WIDE_INT_PRINT_DEC
	     " bytes, probing will be required.\n", size);

  /* Round size to the nearest multiple of guard_size, and calculate the
     residual as the difference between the original size and the rounded
     size.  */
  HOST_WIDE_INT rounded_size = ROUND_DOWN (size, guard_size);
  HOST_WIDE_INT residual = size - rounded_size;

  /* We can handle a small number of allocations/probes inline.  Otherwise
     punt to a loop.  */
  if (rounded_size <= STACK_CLASH_MAX_UNROLL_PAGES * guard_size)
    {
      for (HOST_WIDE_INT i = 0; i < rounded_size; i += guard_size)
	{
	  aarch64_sub_sp (NULL, temp2, guard_size, true);
	  emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
					   guard_used_by_caller));
	  emit_insn (gen_blockage ());
	}
      dump_stack_clash_frame_info (PROBE_INLINE, size != rounded_size);
    }
  else
    {
      /* Compute the ending address.  */
      aarch64_add_offset (Pmode, temp1, stack_pointer_rtx, -rounded_size,
			  temp1, NULL, false, true);
      rtx_insn *insn = get_last_insn ();

      /* For the initial allocation, we don't have a frame pointer
	 set up, so we always need CFI notes.  If we're doing the
	 final allocation, then we may have a frame pointer, in which
	 case it is the CFA, otherwise we need CFI notes.

	 We can determine which allocation we are doing by looking at
	 the value of FRAME_RELATED_P since the final allocations are not
	 frame related.  */
      if (frame_related_p)
	{
	  /* We want the CFA independent of the stack pointer for the
	     duration of the loop.  */
	  add_reg_note (insn, REG_CFA_DEF_CFA,
			plus_constant (Pmode, temp1, rounded_size));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      /* This allocates and probes the stack.  Note that this re-uses some of
	 the existing Ada stack protection code.  However we are guaranteed not
	 to enter the non loop or residual branches of that code.

	 The non-loop part won't be entered because if our allocation amount
	 doesn't require a loop, the case above would handle it.

	 The residual amount won't be entered because TEMP1 is a mutliple of
	 the allocation size.  The residual will always be 0.  As such, the only
	 part we are actually using from that code is the loop setup.  The
	 actual probing is done in aarch64_output_probe_stack_range.  */
      insn = emit_insn (gen_probe_stack_range (stack_pointer_rtx,
					       stack_pointer_rtx, temp1));

      /* Now reset the CFA register if needed.  */
      if (frame_related_p)
	{
	  add_reg_note (insn, REG_CFA_DEF_CFA,
			plus_constant (Pmode, stack_pointer_rtx, rounded_size));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      emit_insn (gen_blockage ());
      dump_stack_clash_frame_info (PROBE_LOOP, size != rounded_size);
    }

  /* Handle any residuals.  Residuals of at least MIN_PROBE_THRESHOLD have to
     be probed.  This maintains the requirement that each page is probed at
     least once.  For initial probing we probe only if the allocation is
     more than GUARD_SIZE - buffer, and for the outgoing arguments we probe
     if the amount is larger than buffer.  GUARD_SIZE - buffer + buffer ==
     GUARD_SIZE.  This works that for any allocation that is large enough to
     trigger a probe here, we'll have at least one, and if they're not large
     enough for this code to emit anything for them, The page would have been
     probed by the saving of FP/LR either by this function or any callees.  If
     we don't have any callees then we won't have more stack adjustments and so
     are still safe.  */
  if (residual)
    {
      HOST_WIDE_INT residual_probe_offset = guard_used_by_caller;
      /* If we're doing final adjustments, and we've done any full page
	 allocations then any residual needs to be probed.  */
      if (final_adjustment_p && rounded_size != 0)
	min_probe_threshold = 0;
      /* If doing a small final adjustment, we always probe at offset 0.
	 This is done to avoid issues when LR is not at position 0 or when
	 the final adjustment is smaller than the probing offset.  */
      else if (final_adjustment_p && rounded_size == 0)
	residual_probe_offset = 0;

      aarch64_sub_sp (temp1, temp2, residual, frame_related_p);
      if (residual >= min_probe_threshold)
	{
	  if (dump_file)
	    fprintf (dump_file,
		     "Stack clash AArch64 prologue residuals: "
		     HOST_WIDE_INT_PRINT_DEC " bytes, probing will be required."
		     "\n", residual);

	    emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
					     residual_probe_offset));
	  emit_insn (gen_blockage ());
	}
    }
}

/* Return 1 if the register is used by the epilogue.  We need to say the
   return register is used, but only after epilogue generation is complete.
   Note that in the case of sibcalls, the values "used by the epilogue" are
   considered live at the start of the called function.

   For SIMD functions we need to return 1 for FP registers that are saved and
   restored by a function but are not zero in call_used_regs.  If we do not do 
   this optimizations may remove the restore of the register.  */

int
aarch64_epilogue_uses (int regno)
{
  if (epilogue_completed)
    {
      if (regno == LR_REGNUM)
	return 1;
    }
  return 0;
}

/* AArch64 stack frames generated by this compiler look like:

	+-------------------------------+
	|                               |
	|  incoming stack arguments     |
	|                               |
	+-------------------------------+
	|                               | <-- incoming stack pointer (aligned)
	|  callee-allocated save area   |
	|  for register varargs         |
	|                               |
	+-------------------------------+
	|  local variables              | <-- frame_pointer_rtx
	|                               |
	+-------------------------------+
	|  padding                      | \
	+-------------------------------+  |
	|  callee-saved registers       |  | frame.saved_regs_size
	+-------------------------------+  |
	|  LR'                          |  |
	+-------------------------------+  |
	|  FP'                          |  |
	+-------------------------------+  |<- hard_frame_pointer_rtx (aligned)
	|  SVE vector registers         |  | \
	+-------------------------------+  |  | below_hard_fp_saved_regs_size
	|  SVE predicate registers      | /  /
	+-------------------------------+
	|  dynamic allocation           |
	+-------------------------------+
	|  padding                      |
	+-------------------------------+
	|  outgoing stack arguments     | <-- arg_pointer
        |                               |
	+-------------------------------+
	|                               | <-- stack_pointer_rtx (aligned)

   Dynamic stack allocations via alloca() decrease stack_pointer_rtx
   but leave frame_pointer_rtx and hard_frame_pointer_rtx
   unchanged.

   By default for stack-clash we assume the guard is at least 64KB, but this
   value is configurable to either 4KB or 64KB.  We also force the guard size to
   be the same as the probing interval and both values are kept in sync.

   With those assumptions the callee can allocate up to 63KB (or 3KB depending
   on the guard size) of stack space without probing.

   When probing is needed, we emit a probe at the start of the prologue
   and every PARAM_STACK_CLASH_PROTECTION_GUARD_SIZE bytes thereafter.

   We have to track how much space has been allocated and the only stores
   to the stack we track as implicit probes are the FP/LR stores.

   For outgoing arguments we probe if the size is larger than 1KB, such that
   the ABI specified buffer is maintained for the next callee.

   The following registers are reserved during frame layout and should not be
   used for any other purpose:

   - r11: Used by stack clash protection when SVE is enabled, and also
	  as an anchor register when saving and restoring registers
   - r12(EP0) and r13(EP1): Used as temporaries for stack adjustment.
   - r14 and r15: Used for speculation tracking.
   - r16(IP0), r17(IP1): Used by indirect tailcalls.
   - r30(LR), r29(FP): Used by standard frame layout.

   These registers must be avoided in frame layout related code unless the
   explicit intention is to interact with one of the features listed above.  */

/* Generate the prologue instructions for entry into a function.
   Establish the stack frame by decreasing the stack pointer with a
   properly calculated size and, if necessary, create a frame record
   filled with the values of LR and previous frame pointer.  The
   current FP is also set up if it is in use.  */

void
aarch64_expand_prologue (void)
{
  poly_int64 frame_size = cfun->machine->frame.frame_size;
  poly_int64 initial_adjust = cfun->machine->frame.initial_adjust;
  HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust;
  poly_int64 final_adjust = cfun->machine->frame.final_adjust;
  poly_int64 callee_offset = cfun->machine->frame.callee_offset;
  poly_int64 sve_callee_adjust = cfun->machine->frame.sve_callee_adjust;
  poly_int64 below_hard_fp_saved_regs_size
    = cfun->machine->frame.below_hard_fp_saved_regs_size;
  unsigned reg1 = cfun->machine->frame.wb_push_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_push_candidate2;
  bool emit_frame_chain = cfun->machine->frame.emit_frame_chain;
  rtx_insn *insn;

  if (flag_stack_clash_protection && known_eq (callee_adjust, 0))
    {
      /* Fold the SVE allocation into the initial allocation.
	 We don't do this in aarch64_layout_arg to avoid pessimizing
	 the epilogue code.  */
      initial_adjust += sve_callee_adjust;
      sve_callee_adjust = 0;
    }

  /* Sign return address for functions.  */
  if (aarch64_return_address_signing_enabled ())
    {
      switch (aarch64_ra_sign_key)
	{
	  case AARCH64_KEY_A:
	    insn = emit_insn (gen_paciasp ());
	    break;
	  case AARCH64_KEY_B:
	    insn = emit_insn (gen_pacibsp ());
	    break;
	  default:
	    gcc_unreachable ();
	}
      add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Push return address to shadow call stack.  */
  if (cfun->machine->frame.is_scs_enabled)
    emit_insn (gen_scs_push ());

  if (flag_stack_usage_info)
    current_function_static_stack_size = constant_lower_bound (frame_size);

  if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
    {
      if (crtl->is_leaf && !cfun->calls_alloca)
	{
	  if (maybe_gt (frame_size, PROBE_INTERVAL)
	      && maybe_gt (frame_size, get_stack_check_protect ()))
	    aarch64_emit_probe_stack_range (get_stack_check_protect (),
					    (frame_size
					     - get_stack_check_protect ()));
	}
      else if (maybe_gt (frame_size, 0))
	aarch64_emit_probe_stack_range (get_stack_check_protect (), frame_size);
    }

  rtx tmp0_rtx = gen_rtx_REG (Pmode, EP0_REGNUM);
  rtx tmp1_rtx = gen_rtx_REG (Pmode, EP1_REGNUM);

  /* In theory we should never have both an initial adjustment
     and a callee save adjustment.  Verify that is the case since the
     code below does not handle it for -fstack-clash-protection.  */
  gcc_assert (known_eq (initial_adjust, 0) || callee_adjust == 0);

  /* Will only probe if the initial adjustment is larger than the guard
     less the amount of the guard reserved for use by the caller's
     outgoing args.  */
  aarch64_allocate_and_probe_stack_space (tmp0_rtx, tmp1_rtx, initial_adjust,
					  true, false);

  if (callee_adjust != 0)
    aarch64_push_regs (reg1, reg2, callee_adjust);

  /* The offset of the frame chain record (if any) from the current SP.  */
  poly_int64 chain_offset = (initial_adjust + callee_adjust
			     - cfun->machine->frame.hard_fp_offset);
  gcc_assert (known_ge (chain_offset, 0));

  /* The offset of the bottom of the save area from the current SP.  */
  poly_int64 saved_regs_offset = chain_offset - below_hard_fp_saved_regs_size;

  if (emit_frame_chain)
    {
      if (callee_adjust == 0)
	{
	  reg1 = R29_REGNUM;
	  reg2 = R30_REGNUM;
	  aarch64_save_callee_saves (saved_regs_offset, reg1, reg2,
				     false, false);
	}
      else
	gcc_assert (known_eq (chain_offset, 0));
      aarch64_add_offset (Pmode, hard_frame_pointer_rtx,
			  stack_pointer_rtx, chain_offset,
			  tmp1_rtx, tmp0_rtx, frame_pointer_needed);
      if (frame_pointer_needed && !frame_size.is_constant ())
	{
	  /* Variable-sized frames need to describe the save slot
	     address using DW_CFA_expression rather than DW_CFA_offset.
	     This means that, without taking further action, the
	     locations of the registers that we've already saved would
	     remain based on the stack pointer even after we redefine
	     the CFA based on the frame pointer.  We therefore need new
	     DW_CFA_expressions to re-express the save slots with addresses
	     based on the frame pointer.  */
	  rtx_insn *insn = get_last_insn ();
	  gcc_assert (RTX_FRAME_RELATED_P (insn));

	  /* Add an explicit CFA definition if this was previously
	     implicit.  */
	  if (!find_reg_note (insn, REG_CFA_ADJUST_CFA, NULL_RTX))
	    {
	      rtx src = plus_constant (Pmode, stack_pointer_rtx,
				       callee_offset);
	      add_reg_note (insn, REG_CFA_ADJUST_CFA,
			    gen_rtx_SET (hard_frame_pointer_rtx, src));
	    }

	  /* Change the save slot expressions for the registers that
	     we've already saved.  */
	  aarch64_add_cfa_expression (insn, regno_reg_rtx[reg2],
				      hard_frame_pointer_rtx, UNITS_PER_WORD);
	  aarch64_add_cfa_expression (insn, regno_reg_rtx[reg1],
				      hard_frame_pointer_rtx, 0);
	}
      emit_insn (gen_stack_tie (stack_pointer_rtx, hard_frame_pointer_rtx));
    }

  aarch64_save_callee_saves (saved_regs_offset, R0_REGNUM, R30_REGNUM,
			     callee_adjust != 0 || emit_frame_chain,
			     emit_frame_chain);
  if (maybe_ne (sve_callee_adjust, 0))
    {
      gcc_assert (!flag_stack_clash_protection
		  || known_eq (initial_adjust, 0));
      aarch64_allocate_and_probe_stack_space (tmp1_rtx, tmp0_rtx,
					      sve_callee_adjust,
					      !frame_pointer_needed, false);
      saved_regs_offset += sve_callee_adjust;
    }
  aarch64_save_callee_saves (saved_regs_offset, P0_REGNUM, P15_REGNUM,
			     false, emit_frame_chain);
  aarch64_save_callee_saves (saved_regs_offset, V0_REGNUM, V31_REGNUM,
			     callee_adjust != 0 || emit_frame_chain,
			     emit_frame_chain);

  /* We may need to probe the final adjustment if it is larger than the guard
     that is assumed by the called.  */
  aarch64_allocate_and_probe_stack_space (tmp1_rtx, tmp0_rtx, final_adjust,
					  !frame_pointer_needed, true);
}

/* Return TRUE if we can use a simple_return insn.

   This function checks whether the callee saved stack is empty, which
   means no restore actions are need. The pro_and_epilogue will use
   this to check whether shrink-wrapping opt is feasible.  */

bool
aarch64_use_return_insn_p (void)
{
  if (!reload_completed)
    return false;

  if (crtl->profile)
    return false;

  return known_eq (cfun->machine->frame.frame_size, 0);
}

/* Generate the epilogue instructions for returning from a function.
   This is almost exactly the reverse of the prolog sequence, except
   that we need to insert barriers to avoid scheduling loads that read
   from a deallocated stack, and we optimize the unwind records by
   emitting them all together if possible.  */
void
aarch64_expand_epilogue (bool for_sibcall)
{
  poly_int64 initial_adjust = cfun->machine->frame.initial_adjust;
  HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust;
  poly_int64 final_adjust = cfun->machine->frame.final_adjust;
  poly_int64 callee_offset = cfun->machine->frame.callee_offset;
  poly_int64 sve_callee_adjust = cfun->machine->frame.sve_callee_adjust;
  poly_int64 below_hard_fp_saved_regs_size
    = cfun->machine->frame.below_hard_fp_saved_regs_size;
  unsigned reg1 = cfun->machine->frame.wb_pop_candidate1;
  unsigned reg2 = cfun->machine->frame.wb_pop_candidate2;
  unsigned int last_gpr = (cfun->machine->frame.is_scs_enabled
			   ? R29_REGNUM : R30_REGNUM);
  rtx cfi_ops = NULL;
  rtx_insn *insn;
  /* A stack clash protection prologue may not have left EP0_REGNUM or
     EP1_REGNUM in a usable state.  The same is true for allocations
     with an SVE component, since we then need both temporary registers
     for each allocation.  For stack clash we are in a usable state if
     the adjustment is less than GUARD_SIZE - GUARD_USED_BY_CALLER.  */
  HOST_WIDE_INT guard_size
    = 1 << param_stack_clash_protection_guard_size;
  HOST_WIDE_INT guard_used_by_caller = STACK_CLASH_CALLER_GUARD;

  /* We can re-use the registers when:

     (a) the deallocation amount is the same as the corresponding
	 allocation amount (which is false if we combine the initial
	 and SVE callee save allocations in the prologue); and

     (b) the allocation amount doesn't need a probe (which is false
	 if the amount is guard_size - guard_used_by_caller or greater).

     In such situations the register should remain live with the correct
     value.  */
  bool can_inherit_p = (initial_adjust.is_constant ()
			&& final_adjust.is_constant ()
			&& (!flag_stack_clash_protection
			    || (known_lt (initial_adjust,
					  guard_size - guard_used_by_caller)
				&& known_eq (sve_callee_adjust, 0))));

  /* We need to add memory barrier to prevent read from deallocated stack.  */
  bool need_barrier_p
    = maybe_ne (get_frame_size ()
		+ cfun->machine->frame.saved_varargs_size, 0);

  /* Emit a barrier to prevent loads from a deallocated stack.  */
  if (maybe_gt (final_adjust, crtl->outgoing_args_size)
      || cfun->calls_alloca
      || crtl->calls_eh_return)
    {
      emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx));
      need_barrier_p = false;
    }

  /* Restore the stack pointer from the frame pointer if it may not
     be the same as the stack pointer.  */
  rtx tmp0_rtx = gen_rtx_REG (Pmode, EP0_REGNUM);
  rtx tmp1_rtx = gen_rtx_REG (Pmode, EP1_REGNUM);
  if (frame_pointer_needed
      && (maybe_ne (final_adjust, 0) || cfun->calls_alloca))
    /* If writeback is used when restoring callee-saves, the CFA
       is restored on the instruction doing the writeback.  */
    aarch64_add_offset (Pmode, stack_pointer_rtx,
			hard_frame_pointer_rtx,
			-callee_offset - below_hard_fp_saved_regs_size,
			tmp1_rtx, tmp0_rtx, callee_adjust == 0);
  else
     /* The case where we need to re-use the register here is very rare, so
	avoid the complicated condition and just always emit a move if the
	immediate doesn't fit.  */
     aarch64_add_sp (tmp1_rtx, tmp0_rtx, final_adjust, true);

  /* Restore the vector registers before the predicate registers,
     so that we can use P4 as a temporary for big-endian SVE frames.  */
  aarch64_restore_callee_saves (callee_offset, V0_REGNUM, V31_REGNUM,
				callee_adjust != 0, &cfi_ops);
  aarch64_restore_callee_saves (callee_offset, P0_REGNUM, P15_REGNUM,
				false, &cfi_ops);
  if (maybe_ne (sve_callee_adjust, 0))
    aarch64_add_sp (NULL_RTX, NULL_RTX, sve_callee_adjust, true);

  /* When shadow call stack is enabled, the scs_pop in the epilogue will
     restore x30, we don't need to restore x30 again in the traditional
     way.  */
  aarch64_restore_callee_saves (callee_offset - sve_callee_adjust,
				R0_REGNUM, last_gpr,
				callee_adjust != 0, &cfi_ops);

  if (need_barrier_p)
    emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx));

  if (callee_adjust != 0)
    aarch64_pop_regs (reg1, reg2, callee_adjust, &cfi_ops);

  /* If we have no register restore information, the CFA must have been
     defined in terms of the stack pointer since the end of the prologue.  */
  gcc_assert (cfi_ops || !frame_pointer_needed);

  if (cfi_ops && (callee_adjust != 0 || maybe_gt (initial_adjust, 65536)))
    {
      /* Emit delayed restores and set the CFA to be SP + initial_adjust.  */
      insn = get_last_insn ();
      rtx new_cfa = plus_constant (Pmode, stack_pointer_rtx, initial_adjust);
      REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA, new_cfa, cfi_ops);
      RTX_FRAME_RELATED_P (insn) = 1;
      cfi_ops = NULL;
    }

  /* Liveness of EP0_REGNUM can not be trusted across function calls either, so
     add restriction on emit_move optimization to leaf functions.  */
  aarch64_add_sp (tmp0_rtx, tmp1_rtx, initial_adjust,
		  (!can_inherit_p || !crtl->is_leaf
		   || df_regs_ever_live_p (EP0_REGNUM)));

  if (cfi_ops)
    {
      /* Emit delayed restores and reset the CFA to be SP.  */
      insn = get_last_insn ();
      cfi_ops = alloc_reg_note (REG_CFA_DEF_CFA, stack_pointer_rtx, cfi_ops);
      REG_NOTES (insn) = cfi_ops;
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Pop return address from shadow call stack.  */
  if (cfun->machine->frame.is_scs_enabled)
    {
      machine_mode mode = aarch64_reg_save_mode (R30_REGNUM);
      rtx reg = gen_rtx_REG (mode, R30_REGNUM);

      insn = emit_insn (gen_scs_pop ());
      add_reg_note (insn, REG_CFA_RESTORE, reg);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* We prefer to emit the combined return/authenticate instruction RETAA,
     however there are three cases in which we must instead emit an explicit
     authentication instruction.

	1) Sibcalls don't return in a normal way, so if we're about to call one
	   we must authenticate.

	2) The RETAA instruction is not available before ARMv8.3-A, so if we are
	   generating code for !TARGET_ARMV8_3 we can't use it and must
	   explicitly authenticate.
    */
  if (aarch64_return_address_signing_enabled ()
      && (for_sibcall || !TARGET_ARMV8_3))
    {
      switch (aarch64_ra_sign_key)
	{
	  case AARCH64_KEY_A:
	    insn = emit_insn (gen_autiasp ());
	    break;
	  case AARCH64_KEY_B:
	    insn = emit_insn (gen_autibsp ());
	    break;
	  default:
	    gcc_unreachable ();
	}
      add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Stack adjustment for exception handler.  */
  if (crtl->calls_eh_return && !for_sibcall)
    {
      /* We need to unwind the stack by the offset computed by
	 EH_RETURN_STACKADJ_RTX.  We have already reset the CFA
	 to be SP; letting the CFA move during this adjustment
	 is just as correct as retaining the CFA from the body
	 of the function.  Therefore, do nothing special.  */
      emit_insn (gen_add2_insn (stack_pointer_rtx, EH_RETURN_STACKADJ_RTX));
    }

  emit_use (gen_rtx_REG (DImode, LR_REGNUM));
  if (!for_sibcall)
    emit_jump_insn (ret_rtx);
}

/* Implement EH_RETURN_HANDLER_RTX.  EH returns need to either return
   normally or return to a previous frame after unwinding.

   An EH return uses a single shared return sequence.  The epilogue is
   exactly like a normal epilogue except that it has an extra input
   register (EH_RETURN_STACKADJ_RTX) which contains the stack adjustment
   that must be applied after the frame has been destroyed.  An extra label
   is inserted before the epilogue which initializes this register to zero,
   and this is the entry point for a normal return.

   An actual EH return updates the return address, initializes the stack
   adjustment and jumps directly into the epilogue (bypassing the zeroing
   of the adjustment).  Since the return address is typically saved on the
   stack when a function makes a call, the saved LR must be updated outside
   the epilogue.

   This poses problems as the store is generated well before the epilogue,
   so the offset of LR is not known yet.  Also optimizations will remove the
   store as it appears dead, even after the epilogue is generated (as the
   base or offset for loading LR is different in many cases).

   To avoid these problems this implementation forces the frame pointer
   in eh_return functions so that the location of LR is fixed and known early.
   It also marks the store volatile, so no optimization is permitted to
   remove the store.  */
rtx
aarch64_eh_return_handler_rtx (void)
{
  rtx tmp = gen_frame_mem (Pmode,
    plus_constant (Pmode, hard_frame_pointer_rtx, UNITS_PER_WORD));

  /* Mark the store volatile, so no optimization is permitted to remove it.  */
  MEM_VOLATILE_P (tmp) = true;
  return tmp;
}

/* Output code to add DELTA to the first argument, and then jump
   to FUNCTION.  Used for C++ multiple inheritance.  */
static void
aarch64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
			 HOST_WIDE_INT delta,
			 HOST_WIDE_INT vcall_offset,
			 tree function)
{
  /* The this pointer is always in x0.  Note that this differs from
     Arm where the this pointer maybe bumped to r1 if r0 is required
     to return a pointer to an aggregate.  On AArch64 a result value
     pointer will be in x8.  */
  int this_regno = R0_REGNUM;
  rtx this_rtx, temp0, temp1, addr, funexp;
  rtx_insn *insn;
  const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));

  if (aarch64_bti_enabled ())
    emit_insn (gen_bti_c());

  reload_completed = 1;
  emit_note (NOTE_INSN_PROLOGUE_END);

  this_rtx = gen_rtx_REG (Pmode, this_regno);
  temp0 = gen_rtx_REG (Pmode, EP0_REGNUM);
  temp1 = gen_rtx_REG (Pmode, EP1_REGNUM);

  if (vcall_offset == 0)
    aarch64_add_offset (Pmode, this_rtx, this_rtx, delta, temp1, temp0, false);
  else
    {
      gcc_assert ((vcall_offset & (POINTER_BYTES - 1)) == 0);

      addr = this_rtx;
      if (delta != 0)
	{
	  if (delta >= -256 && delta < 256)
	    addr = gen_rtx_PRE_MODIFY (Pmode, this_rtx,
				       plus_constant (Pmode, this_rtx, delta));
	  else
	    aarch64_add_offset (Pmode, this_rtx, this_rtx, delta,
				temp1, temp0, false);
	}

      if (Pmode == ptr_mode)
	aarch64_emit_move (temp0, gen_rtx_MEM (ptr_mode, addr));
      else
	aarch64_emit_move (temp0,
			   gen_rtx_ZERO_EXTEND (Pmode,
						gen_rtx_MEM (ptr_mode, addr)));

      if (vcall_offset >= -256 && vcall_offset < 4096 * POINTER_BYTES)
	  addr = plus_constant (Pmode, temp0, vcall_offset);
      else
	{
	  aarch64_internal_mov_immediate (temp1, GEN_INT (vcall_offset), true,
					  Pmode);
	  addr = gen_rtx_PLUS (Pmode, temp0, temp1);
	}

      if (Pmode == ptr_mode)
	aarch64_emit_move (temp1, gen_rtx_MEM (ptr_mode,addr));
      else
	aarch64_emit_move (temp1,
			   gen_rtx_SIGN_EXTEND (Pmode,
						gen_rtx_MEM (ptr_mode, addr)));

      emit_insn (gen_add2_insn (this_rtx, temp1));
    }

  /* Generate a tail call to the target function.  */
  if (!TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);
  funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
  rtx callee_abi = gen_int_mode (fndecl_abi (function).id (), DImode);
  insn = emit_call_insn (gen_sibcall (funexp, const0_rtx, callee_abi));
  SIBLING_CALL_P (insn) = 1;

  insn = get_insns ();
  shorten_branches (insn);

  assemble_start_function (thunk, fnname);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();
  assemble_end_function (thunk, fnname);

  /* Stop pretending to be a post-reload pass.  */
  reload_completed = 0;
}

static bool
aarch64_tls_referenced_p (rtx x)
{
  if (!TARGET_HAVE_TLS)
    return false;
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, ALL)
    {
      const_rtx x = *iter;
      if (SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0)
	return true;
      /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are
	 TLS offsets, not real symbol references.  */
      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
	iter.skip_subrtxes ();
    }
  return false;
}


static bool
aarch64_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  if (GET_CODE (x) == HIGH)
    return true;

  /* There's no way to calculate VL-based values using relocations.  */
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, ALL)
    if (GET_CODE (*iter) == CONST_POLY_INT)
      return true;

  poly_int64 offset;
  rtx base = strip_offset_and_salt (x, &offset);
  if (SYMBOL_REF_P (base) || LABEL_REF_P (base))
    {
      /* We checked for POLY_INT_CST offsets above.  */
      if (aarch64_classify_symbol (base, offset.to_constant ())
	  != SYMBOL_FORCE_TO_MEM)
	return true;
      else
	/* Avoid generating a 64-bit relocation in ILP32; leave
	   to aarch64_expand_mov_immediate to handle it properly.  */
	return mode != ptr_mode;
    }

  return aarch64_tls_referenced_p (x);
}

/* Implement TARGET_CASE_VALUES_THRESHOLD.
   The expansion for a table switch is quite expensive due to the number
   of instructions, the table lookup and hard to predict indirect jump.
   When optimizing for speed, and -O3 enabled, use the per-core tuning if 
   set, otherwise use tables for >= 11 cases as a tradeoff between size and
   performance.  When optimizing for size, use 8 for smallest codesize.  */

static unsigned int
aarch64_case_values_threshold (void)
{
  /* Use the specified limit for the number of cases before using jump
     tables at higher optimization levels.  */
  if (optimize > 2
      && aarch64_tune_params.max_case_values != 0)
    return aarch64_tune_params.max_case_values;
  else
    return optimize_size ? 8 : 11;
}

/* Return true if register REGNO is a valid index register.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

bool
aarch64_regno_ok_for_index_p (int regno, bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }
  return GP_REGNUM_P (regno);
}

/* Return true if register REGNO is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

bool
aarch64_regno_ok_for_base_p (int regno, bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;

      if (!reg_renumber)
	return false;

      regno = reg_renumber[regno];
    }

  /* The fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
  return (GP_REGNUM_P (regno)
	  || regno == SP_REGNUM
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return true if X is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
aarch64_base_register_rtx_p (rtx x, bool strict_p)
{
  if (!strict_p
      && SUBREG_P (x)
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (x))])
    x = SUBREG_REG (x);

  return (REG_P (x) && aarch64_regno_ok_for_base_p (REGNO (x), strict_p));
}

/* Return true if address offset is a valid index.  If it is, fill in INFO
   appropriately.  STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
aarch64_classify_index (struct aarch64_address_info *info, rtx x,
			machine_mode mode, bool strict_p)
{
  enum aarch64_address_type type;
  rtx index;
  int shift;

  /* (reg:P) */
  if ((REG_P (x) || SUBREG_P (x))
      && GET_MODE (x) == Pmode)
    {
      type = ADDRESS_REG_REG;
      index = x;
      shift = 0;
    }
  /* (sign_extend:DI (reg:SI)) */
  else if ((GET_CODE (x) == SIGN_EXTEND
	    || GET_CODE (x) == ZERO_EXTEND)
	   && GET_MODE (x) == DImode
	   && GET_MODE (XEXP (x, 0)) == SImode)
    {
      type = (GET_CODE (x) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (x, 0);
      shift = 0;
    }
  /* (mult:DI (sign_extend:DI (reg:SI)) (const_int scale)) */
  else if (GET_CODE (x) == MULT
	   && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	       || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	   && GET_MODE (XEXP (x, 0)) == DImode
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (x, 1)));
    }
  /* (ashift:DI (sign_extend:DI (reg:SI)) (const_int shift)) */
  else if (GET_CODE (x) == ASHIFT
	   && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	       || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
	   && GET_MODE (XEXP (x, 0)) == DImode
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
	? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (x, 1));
    }
  /* (and:DI (mult:DI (reg:DI) (const_int scale))
     (const_int 0xffffffff<<shift)) */
  else if (GET_CODE (x) == AND
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == MULT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)));
      if (INTVAL (XEXP (x, 1)) != (HOST_WIDE_INT)0xffffffff << shift)
	shift = -1;
    }
  /* (and:DI (ashift:DI (reg:DI) (const_int shift))
     (const_int 0xffffffff<<shift)) */
  else if (GET_CODE (x) == AND
	   && GET_MODE (x) == DImode
	   && GET_CODE (XEXP (x, 0)) == ASHIFT
	   && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode
	   && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_UXTW;
      index = XEXP (XEXP (x, 0), 0);
      shift = INTVAL (XEXP (XEXP (x, 0), 1));
      if (INTVAL (XEXP (x, 1)) != (HOST_WIDE_INT)0xffffffff << shift)
	shift = -1;
    }
  /* (mult:P (reg:P) (const_int scale)) */
  else if (GET_CODE (x) == MULT
	   && GET_MODE (x) == Pmode
	   && GET_MODE (XEXP (x, 0)) == Pmode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_REG;
      index = XEXP (x, 0);
      shift = exact_log2 (INTVAL (XEXP (x, 1)));
    }
  /* (ashift:P (reg:P) (const_int shift)) */
  else if (GET_CODE (x) == ASHIFT
	   && GET_MODE (x) == Pmode
	   && GET_MODE (XEXP (x, 0)) == Pmode
	   && CONST_INT_P (XEXP (x, 1)))
    {
      type = ADDRESS_REG_REG;
      index = XEXP (x, 0);
      shift = INTVAL (XEXP (x, 1));
    }
  else
    return false;

  if (!strict_p
      && SUBREG_P (index)
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (index))])
    index = SUBREG_REG (index);

  if (aarch64_sve_data_mode_p (mode))
    {
      if (type != ADDRESS_REG_REG
	  || (1 << shift) != GET_MODE_UNIT_SIZE (mode))
	return false;
    }
  else
    {
      if (shift != 0
	  && !(IN_RANGE (shift, 1, 3)
	       && known_eq (1 << shift, GET_MODE_SIZE (mode))))
	return false;
    }

  if (REG_P (index)
      && aarch64_regno_ok_for_index_p (REGNO (index), strict_p))
    {
      info->type = type;
      info->offset = index;
      info->shift = shift;
      return true;
    }

  return false;
}

/* Return true if MODE is one of the modes for which we
   support LDP/STP operations.  */

static bool
aarch64_mode_valid_for_sched_fusion_p (machine_mode mode)
{
  return mode == SImode || mode == DImode
	 || mode == SFmode || mode == DFmode
	 || mode == SDmode || mode == DDmode
	 || (aarch64_vector_mode_supported_p (mode)
	     && (known_eq (GET_MODE_SIZE (mode), 8)
		 || (known_eq (GET_MODE_SIZE (mode), 16)
		    && (aarch64_tune_params.extra_tuning_flags
			& AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS) == 0)));
}

/* Return true if REGNO is a virtual pointer register, or an eliminable
   "soft" frame register.  Like REGNO_PTR_FRAME_P except that we don't
   include stack_pointer or hard_frame_pointer.  */
static bool
virt_or_elim_regno_p (unsigned regno)
{
  return ((regno >= FIRST_VIRTUAL_REGISTER
	   && regno <= LAST_VIRTUAL_POINTER_REGISTER)
	  || regno == FRAME_POINTER_REGNUM
	  || regno == ARG_POINTER_REGNUM);
}

/* Return true if X is a valid address of type TYPE for machine mode MODE.
   If it is, fill in INFO appropriately.  STRICT_P is true if
   REG_OK_STRICT is in effect.  */

bool
aarch64_classify_address (struct aarch64_address_info *info,
			  rtx x, machine_mode mode, bool strict_p,
			  aarch64_addr_query_type type)
{
  enum rtx_code code = GET_CODE (x);
  rtx op0, op1;
  poly_int64 offset;

  HOST_WIDE_INT const_size;

  /* Whether a vector mode is partial doesn't affect address legitimacy.
     Partial vectors like VNx8QImode allow the same indexed addressing
     mode and MUL VL addressing mode as full vectors like VNx16QImode;
     in both cases, MUL VL counts multiples of GET_MODE_SIZE.  */
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  vec_flags &= ~VEC_PARTIAL;

  /* On BE, we use load/store pair for all large int mode load/stores.
     TI/TF/TDmode may also use a load/store pair.  */
  bool advsimd_struct_p = (vec_flags == (VEC_ADVSIMD | VEC_STRUCT));
  bool load_store_pair_p = (type == ADDR_QUERY_LDP_STP
			    || type == ADDR_QUERY_LDP_STP_N
			    || mode == TImode
			    || mode == TFmode
			    || mode == TDmode
			    || ((!TARGET_SIMD || BYTES_BIG_ENDIAN)
				&& advsimd_struct_p));
  /* If we are dealing with ADDR_QUERY_LDP_STP_N that means the incoming mode
     corresponds to the actual size of the memory being loaded/stored and the
     mode of the corresponding addressing mode is half of that.  */
  if (type == ADDR_QUERY_LDP_STP_N)
    {
      if (known_eq (GET_MODE_SIZE (mode), 16))
	mode = DFmode;
      else if (known_eq (GET_MODE_SIZE (mode), 8))
	mode = SFmode;
      else
	return false;
    }

  bool allow_reg_index_p = (!load_store_pair_p
			    && ((vec_flags == 0
				 && known_lt (GET_MODE_SIZE (mode), 16))
				|| vec_flags == VEC_ADVSIMD
				|| vec_flags & VEC_SVE_DATA));

  /* For SVE, only accept [Rn], [Rn, #offset, MUL VL] and [Rn, Rm, LSL #shift].
     The latter is not valid for SVE predicates, and that's rejected through
     allow_reg_index_p above.  */
  if ((vec_flags & (VEC_SVE_DATA | VEC_SVE_PRED)) != 0
      && (code != REG && code != PLUS))
    return false;

  /* On LE, for AdvSIMD, don't support anything other than POST_INC or
     REG addressing.  */
  if (advsimd_struct_p
      && TARGET_SIMD
      && !BYTES_BIG_ENDIAN
      && (code != POST_INC && code != REG))
    return false;

  gcc_checking_assert (GET_MODE (x) == VOIDmode
		       || SCALAR_INT_MODE_P (GET_MODE (x)));

  switch (code)
    {
    case REG:
    case SUBREG:
      info->type = ADDRESS_REG_IMM;
      info->base = x;
      info->offset = const0_rtx;
      info->const_offset = 0;
      return aarch64_base_register_rtx_p (x, strict_p);

    case PLUS:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (! strict_p
	  && REG_P (op0)
	  && virt_or_elim_regno_p (REGNO (op0))
	  && poly_int_rtx_p (op1, &offset))
	{
	  info->type = ADDRESS_REG_IMM;
	  info->base = op0;
	  info->offset = op1;
	  info->const_offset = offset;

	  return true;
	}

      if (maybe_ne (GET_MODE_SIZE (mode), 0)
	  && aarch64_base_register_rtx_p (op0, strict_p)
	  && poly_int_rtx_p (op1, &offset))
	{
	  info->type = ADDRESS_REG_IMM;
	  info->base = op0;
	  info->offset = op1;
	  info->const_offset = offset;

	  /* TImode, TFmode and TDmode values are allowed in both pairs of X
	     registers and individual Q registers.  The available
	     address modes are:
	     X,X: 7-bit signed scaled offset
	     Q:   9-bit signed offset
	     We conservatively require an offset representable in either mode.
	     When performing the check for pairs of X registers i.e.  LDP/STP
	     pass down DImode since that is the natural size of the LDP/STP
	     instruction memory accesses.  */
	  if (mode == TImode || mode == TFmode || mode == TDmode)
	    return (aarch64_offset_7bit_signed_scaled_p (DImode, offset)
		    && (aarch64_offset_9bit_signed_unscaled_p (mode, offset)
			|| offset_12bit_unsigned_scaled_p (mode, offset)));

	  if (mode == V8DImode)
	    return (aarch64_offset_7bit_signed_scaled_p (DImode, offset)
	            && aarch64_offset_7bit_signed_scaled_p (DImode, offset + 48));

	  /* A 7bit offset check because OImode will emit a ldp/stp
	     instruction (only !TARGET_SIMD or big endian will get here).
	     For ldp/stp instructions, the offset is scaled for the size of a
	     single element of the pair.  */
	  if (aarch64_advsimd_partial_struct_mode_p (mode)
	      && known_eq (GET_MODE_SIZE (mode), 16))
	    return aarch64_offset_7bit_signed_scaled_p (DImode, offset);
	  if (aarch64_advsimd_full_struct_mode_p (mode)
	      && known_eq (GET_MODE_SIZE (mode), 32))
	    return aarch64_offset_7bit_signed_scaled_p (TImode, offset);

	  /* Three 9/12 bit offsets checks because CImode will emit three
	     ldr/str instructions (only !TARGET_SIMD or big endian will
	     get here).  */
	  if (aarch64_advsimd_partial_struct_mode_p (mode)
	      && known_eq (GET_MODE_SIZE (mode), 24))
	    return (aarch64_offset_7bit_signed_scaled_p (DImode, offset)
		    && (aarch64_offset_9bit_signed_unscaled_p (DImode,
							       offset + 16)
			|| offset_12bit_unsigned_scaled_p (DImode,
							   offset + 16)));
	  if (aarch64_advsimd_full_struct_mode_p (mode)
	      && known_eq (GET_MODE_SIZE (mode), 48))
	    return (aarch64_offset_7bit_signed_scaled_p (TImode, offset)
		    && (aarch64_offset_9bit_signed_unscaled_p (TImode,
							       offset + 32)
			|| offset_12bit_unsigned_scaled_p (TImode,
							   offset + 32)));

	  /* Two 7bit offsets checks because XImode will emit two ldp/stp
	     instructions (only big endian will get here).  */
	  if (aarch64_advsimd_partial_struct_mode_p (mode)
	      && known_eq (GET_MODE_SIZE (mode), 32))
	    return (aarch64_offset_7bit_signed_scaled_p (DImode, offset)
		    && aarch64_offset_7bit_signed_scaled_p (DImode,
							    offset + 16));
	  if (aarch64_advsimd_full_struct_mode_p (mode)
	      && known_eq (GET_MODE_SIZE (mode), 64))
	    return (aarch64_offset_7bit_signed_scaled_p (TImode, offset)
		    && aarch64_offset_7bit_signed_scaled_p (TImode,
							    offset + 32));

	  /* Make "m" use the LD1 offset range for SVE data modes, so
	     that pre-RTL optimizers like ivopts will work to that
	     instead of the wider LDR/STR range.  */
	  if (vec_flags == VEC_SVE_DATA)
	    return (type == ADDR_QUERY_M
		    ? offset_4bit_signed_scaled_p (mode, offset)
		    : offset_9bit_signed_scaled_p (mode, offset));

	  if (vec_flags == (VEC_SVE_DATA | VEC_STRUCT))
	    {
	      poly_int64 end_offset = (offset
				       + GET_MODE_SIZE (mode)
				       - BYTES_PER_SVE_VECTOR);
	      return (type == ADDR_QUERY_M
		      ? offset_4bit_signed_scaled_p (mode, offset)
		      : (offset_9bit_signed_scaled_p (SVE_BYTE_MODE, offset)
			 && offset_9bit_signed_scaled_p (SVE_BYTE_MODE,
							 end_offset)));
	    }

	  if (vec_flags == VEC_SVE_PRED)
	    return offset_9bit_signed_scaled_p (mode, offset);

	  if (load_store_pair_p)
	    return ((known_eq (GET_MODE_SIZE (mode), 4)
		     || known_eq (GET_MODE_SIZE (mode), 8)
		     || known_eq (GET_MODE_SIZE (mode), 16))
		    && aarch64_offset_7bit_signed_scaled_p (mode, offset));
	  else
	    return (aarch64_offset_9bit_signed_unscaled_p (mode, offset)
		    || offset_12bit_unsigned_scaled_p (mode, offset));
	}

      if (allow_reg_index_p)
	{
	  /* Look for base + (scaled/extended) index register.  */
	  if (aarch64_base_register_rtx_p (op0, strict_p)
	      && aarch64_classify_index (info, op1, mode, strict_p))
	    {
	      info->base = op0;
	      return true;
	    }
	  if (aarch64_base_register_rtx_p (op1, strict_p)
	      && aarch64_classify_index (info, op0, mode, strict_p))
	    {
	      info->base = op1;
	      return true;
	    }
	}

      return false;

    case POST_INC:
    case POST_DEC:
    case PRE_INC:
    case PRE_DEC:
      info->type = ADDRESS_REG_WB;
      info->base = XEXP (x, 0);
      info->offset = NULL_RTX;
      return aarch64_base_register_rtx_p (info->base, strict_p);

    case POST_MODIFY:
    case PRE_MODIFY:
      info->type = ADDRESS_REG_WB;
      info->base = XEXP (x, 0);
      if (GET_CODE (XEXP (x, 1)) == PLUS
	  && poly_int_rtx_p (XEXP (XEXP (x, 1), 1), &offset)
	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), info->base)
	  && aarch64_base_register_rtx_p (info->base, strict_p))
	{
	  info->offset = XEXP (XEXP (x, 1), 1);
	  info->const_offset = offset;

	  /* TImode, TFmode and TDmode values are allowed in both pairs of X
	     registers and individual Q registers.  The available
	     address modes are:
	     X,X: 7-bit signed scaled offset
	     Q:   9-bit signed offset
	     We conservatively require an offset representable in either mode.
	   */
	  if (mode == TImode || mode == TFmode || mode == TDmode)
	    return (aarch64_offset_7bit_signed_scaled_p (mode, offset)
		    && aarch64_offset_9bit_signed_unscaled_p (mode, offset));

	  if (load_store_pair_p)
	    return ((known_eq (GET_MODE_SIZE (mode), 4)
		     || known_eq (GET_MODE_SIZE (mode), 8)
		     || known_eq (GET_MODE_SIZE (mode), 16))
		    && aarch64_offset_7bit_signed_scaled_p (mode, offset));
	  else
	    return aarch64_offset_9bit_signed_unscaled_p (mode, offset);
	}
      return false;

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      /* load literal: pc-relative constant pool entry.  Only supported
         for SI mode or larger.  */
      info->type = ADDRESS_SYMBOLIC;

      if (!load_store_pair_p
	  && GET_MODE_SIZE (mode).is_constant (&const_size)
	  && const_size >= 4)
	{
	  poly_int64 offset;
	  rtx sym = strip_offset_and_salt (x, &offset);
	  return ((LABEL_REF_P (sym)
		   || (SYMBOL_REF_P (sym)
		       && CONSTANT_POOL_ADDRESS_P (sym)
		       && aarch64_pcrelative_literal_loads)));
	}
      return false;

    case LO_SUM:
      info->type = ADDRESS_LO_SUM;
      info->base = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      if (allow_reg_index_p
	  && aarch64_base_register_rtx_p (info->base, strict_p))
	{
	  poly_int64 offset;
	  HOST_WIDE_INT const_offset;
	  rtx sym = strip_offset_and_salt (info->offset, &offset);
	  if (SYMBOL_REF_P (sym)
	      && offset.is_constant (&const_offset)
	      && (aarch64_classify_symbol (sym, const_offset)
		  == SYMBOL_SMALL_ABSOLUTE))
	    {
	      /* The symbol and offset must be aligned to the access size.  */
	      unsigned int align;

	      if (CONSTANT_POOL_ADDRESS_P (sym))
		align = GET_MODE_ALIGNMENT (get_pool_mode (sym));
	      else if (TREE_CONSTANT_POOL_ADDRESS_P (sym))
		{
		  tree exp = SYMBOL_REF_DECL (sym);
		  align = TYPE_ALIGN (TREE_TYPE (exp));
		  align = aarch64_constant_alignment (exp, align);
		}
	      else if (SYMBOL_REF_DECL (sym))
		align = DECL_ALIGN (SYMBOL_REF_DECL (sym));
	      else if (SYMBOL_REF_HAS_BLOCK_INFO_P (sym)
		       && SYMBOL_REF_BLOCK (sym) != NULL)
		align = SYMBOL_REF_BLOCK (sym)->alignment;
	      else
		align = BITS_PER_UNIT;

	      poly_int64 ref_size = GET_MODE_SIZE (mode);
	      if (known_eq (ref_size, 0))
		ref_size = GET_MODE_SIZE (DImode);

	      return (multiple_p (const_offset, ref_size)
		      && multiple_p (align / BITS_PER_UNIT, ref_size));
	    }
	}
      return false;

    default:
      return false;
    }
}

/* Return true if the address X is valid for a PRFM instruction.
   STRICT_P is true if we should do strict checking with
   aarch64_classify_address.  */

bool
aarch64_address_valid_for_prefetch_p (rtx x, bool strict_p)
{
  struct aarch64_address_info addr;

  /* PRFM accepts the same addresses as DImode...  */
  bool res = aarch64_classify_address (&addr, x, DImode, strict_p);
  if (!res)
    return false;

  /* ... except writeback forms.  */
  return addr.type != ADDRESS_REG_WB;
}

bool
aarch64_symbolic_address_p (rtx x)
{
  poly_int64 offset;
  x = strip_offset_and_salt (x, &offset);
  return SYMBOL_REF_P (x) || LABEL_REF_P (x);
}

/* Classify the base of symbolic expression X.  */

enum aarch64_symbol_type
aarch64_classify_symbolic_expression (rtx x)
{
  rtx offset;

  split_const (x, &x, &offset);
  return aarch64_classify_symbol (x, INTVAL (offset));
}


/* Return TRUE if X is a legitimate address for accessing memory in
   mode MODE.  */
static bool
aarch64_legitimate_address_hook_p (machine_mode mode, rtx x, bool strict_p)
{
  struct aarch64_address_info addr;

  return aarch64_classify_address (&addr, x, mode, strict_p);
}

/* Return TRUE if X is a legitimate address of type TYPE for accessing
   memory in mode MODE.  STRICT_P is true if REG_OK_STRICT is in effect.  */
bool
aarch64_legitimate_address_p (machine_mode mode, rtx x, bool strict_p,
			      aarch64_addr_query_type type)
{
  struct aarch64_address_info addr;

  return aarch64_classify_address (&addr, x, mode, strict_p, type);
}

/* Implement TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT.  */

static bool
aarch64_legitimize_address_displacement (rtx *offset1, rtx *offset2,
					 poly_int64 orig_offset,
					 machine_mode mode)
{
  HOST_WIDE_INT size;
  if (GET_MODE_SIZE (mode).is_constant (&size))
    {
      HOST_WIDE_INT const_offset, second_offset;

      /* A general SVE offset is A * VQ + B.  Remove the A component from
	 coefficient 0 in order to get the constant B.  */
      const_offset = orig_offset.coeffs[0] - orig_offset.coeffs[1];

      /* Split an out-of-range address displacement into a base and
	 offset.  Use 4KB range for 1- and 2-byte accesses and a 16KB
	 range otherwise to increase opportunities for sharing the base
	 address of different sizes.  Unaligned accesses use the signed
	 9-bit range, TImode/TFmode/TDmode use the intersection of signed
	 scaled 7-bit and signed 9-bit offset.  */
      if (mode == TImode || mode == TFmode || mode == TDmode)
	second_offset = ((const_offset + 0x100) & 0x1f8) - 0x100;
      else if ((const_offset & (size - 1)) != 0)
	second_offset = ((const_offset + 0x100) & 0x1ff) - 0x100;
      else
	second_offset = const_offset & (size < 4 ? 0xfff : 0x3ffc);

      if (second_offset == 0 || known_eq (orig_offset, second_offset))
	return false;

      /* Split the offset into second_offset and the rest.  */
      *offset1 = gen_int_mode (orig_offset - second_offset, Pmode);
      *offset2 = gen_int_mode (second_offset, Pmode);
      return true;
    }
  else
    {
      /* Get the mode we should use as the basis of the range.  For structure
	 modes this is the mode of one vector.  */
      unsigned int vec_flags = aarch64_classify_vector_mode (mode);
      machine_mode step_mode
	= (vec_flags & VEC_STRUCT) != 0 ? SVE_BYTE_MODE : mode;

      /* Get the "mul vl" multiplier we'd like to use.  */
      HOST_WIDE_INT factor = GET_MODE_SIZE (step_mode).coeffs[1];
      HOST_WIDE_INT vnum = orig_offset.coeffs[1] / factor;
      if (vec_flags & VEC_SVE_DATA)
	/* LDR supports a 9-bit range, but the move patterns for
	   structure modes require all vectors to be in range of the
	   same base.  The simplest way of accomodating that while still
	   promoting reuse of anchor points between different modes is
	   to use an 8-bit range unconditionally.  */
	vnum = ((vnum + 128) & 255) - 128;
      else
	/* Predicates are only handled singly, so we might as well use
	   the full range.  */
	vnum = ((vnum + 256) & 511) - 256;
      if (vnum == 0)
	return false;

      /* Convert the "mul vl" multiplier into a byte offset.  */
      poly_int64 second_offset = GET_MODE_SIZE (step_mode) * vnum;
      if (known_eq (second_offset, orig_offset))
	return false;

      /* Split the offset into second_offset and the rest.  */
      *offset1 = gen_int_mode (orig_offset - second_offset, Pmode);
      *offset2 = gen_int_mode (second_offset, Pmode);
      return true;
    }
}

/* Return the binary representation of floating point constant VALUE in INTVAL.
   If the value cannot be converted, return false without setting INTVAL.
   The conversion is done in the given MODE.  */
bool
aarch64_reinterpret_float_as_int (rtx value, unsigned HOST_WIDE_INT *intval)
{

  /* We make a general exception for 0.  */
  if (aarch64_float_const_zero_rtx_p (value))
    {
      *intval = 0;
      return true;
    }

  scalar_float_mode mode;
  if (!CONST_DOUBLE_P (value)
      || !is_a <scalar_float_mode> (GET_MODE (value), &mode)
      || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
      /* Only support up to DF mode.  */
      || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (DFmode))
    return false;

  unsigned HOST_WIDE_INT ival = 0;

  long res[2];
  real_to_target (res,
		  CONST_DOUBLE_REAL_VALUE (value),
		  REAL_MODE_FORMAT (mode));

  if (mode == DFmode || mode == DDmode)
    {
      int order = BYTES_BIG_ENDIAN ? 1 : 0;
      ival = zext_hwi (res[order], 32);
      ival |= (zext_hwi (res[1 - order], 32) << 32);
    }
  else
      ival = zext_hwi (res[0], 32);

  *intval = ival;
  return true;
}

/* Return TRUE if rtx X is an immediate constant that can be moved using a
   single MOV(+MOVK) followed by an FMOV.  */
bool
aarch64_float_const_rtx_p (rtx x)
{
  machine_mode mode = GET_MODE (x);
  if (mode == VOIDmode)
    return false;

  /* Determine whether it's cheaper to write float constants as
     mov/movk pairs over ldr/adrp pairs.  */
  unsigned HOST_WIDE_INT ival;

  if (CONST_DOUBLE_P (x)
      && SCALAR_FLOAT_MODE_P (mode)
      && aarch64_reinterpret_float_as_int (x, &ival))
    {
      scalar_int_mode imode = (mode == HFmode
			       ? SImode
			       : int_mode_for_mode (mode).require ());
      int num_instr = aarch64_internal_mov_immediate
			(NULL_RTX, gen_int_mode (ival, imode), false, imode);
      return num_instr < 3;
    }

  return false;
}

/* Return TRUE if rtx X is immediate constant 0.0 (but not in Decimal
   Floating Point).  */
bool
aarch64_float_const_zero_rtx_p (rtx x)
{
  /* 0.0 in Decimal Floating Point cannot be represented by #0 or
     zr as our callers expect, so no need to check the actual
     value if X is of Decimal Floating Point type.  */
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_DECIMAL_FLOAT)
    return false;

  if (REAL_VALUE_MINUS_ZERO (*CONST_DOUBLE_REAL_VALUE (x)))
    return !HONOR_SIGNED_ZEROS (GET_MODE (x));
  return real_equal (CONST_DOUBLE_REAL_VALUE (x), &dconst0);
}

/* Return TRUE if rtx X is immediate constant that fits in a single
   MOVI immediate operation.  */
bool
aarch64_can_const_movi_rtx_p (rtx x, machine_mode mode)
{
  if (!TARGET_SIMD)
     return false;

  machine_mode vmode;
  scalar_int_mode imode;
  unsigned HOST_WIDE_INT ival;

  if (CONST_DOUBLE_P (x)
      && SCALAR_FLOAT_MODE_P (mode))
    {
      if (!aarch64_reinterpret_float_as_int (x, &ival))
	return false;

      /* We make a general exception for 0.  */
      if (aarch64_float_const_zero_rtx_p (x))
	return true;

      imode = int_mode_for_mode (mode).require ();
    }
  else if (CONST_INT_P (x)
	   && is_a <scalar_int_mode> (mode, &imode))
    ival = INTVAL (x);
  else
    return false;

   /* use a 64 bit mode for everything except for DI/DF/DD mode, where we use
     a 128 bit vector mode.  */
  int width = GET_MODE_BITSIZE (imode) == 64 ? 128 : 64;

  vmode = aarch64_simd_container_mode (imode, width);
  rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, ival);

  return aarch64_simd_valid_immediate (v_op, NULL);
}


/* Return the fixed registers used for condition codes.  */

static bool
aarch64_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
  *p1 = CC_REGNUM;
  *p2 = INVALID_REGNUM;
  return true;
}

/* This function is used by the call expanders of the machine description.
   RESULT is the register in which the result is returned.  It's NULL for
   "call" and "sibcall".
   MEM is the location of the function call.
   CALLEE_ABI is a const_int that gives the arm_pcs of the callee.
   SIBCALL indicates whether this function call is normal call or sibling call.
   It will generate different pattern accordingly.  */

void
aarch64_expand_call (rtx result, rtx mem, rtx callee_abi, bool sibcall)
{
  rtx call, callee, tmp;
  rtvec vec;
  machine_mode mode;

  gcc_assert (MEM_P (mem));
  callee = XEXP (mem, 0);
  mode = GET_MODE (callee);
  gcc_assert (mode == Pmode);

  /* Decide if we should generate indirect calls by loading the
     address of the callee into a register before performing
     the branch-and-link.  */
  if (SYMBOL_REF_P (callee)
      ? (aarch64_is_long_call_p (callee)
	 || aarch64_is_noplt_call_p (callee))
      : !REG_P (callee))
    XEXP (mem, 0) = force_reg (mode, callee);

  call = gen_rtx_CALL (VOIDmode, mem, const0_rtx);

  if (result != NULL_RTX)
    call = gen_rtx_SET (result, call);

  if (sibcall)
    tmp = ret_rtx;
  else
    tmp = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNUM));

  gcc_assert (CONST_INT_P (callee_abi));
  callee_abi = gen_rtx_UNSPEC (DImode, gen_rtvec (1, callee_abi),
			       UNSPEC_CALLEE_ABI);

  vec = gen_rtvec (3, call, callee_abi, tmp);
  call = gen_rtx_PARALLEL (VOIDmode, vec);

  aarch64_emit_call_insn (call);
}

/* Emit call insn with PAT and do aarch64-specific handling.  */

void
aarch64_emit_call_insn (rtx pat)
{
  rtx insn = emit_call_insn (pat);

  rtx *fusage = &CALL_INSN_FUNCTION_USAGE (insn);
  clobber_reg (fusage, gen_rtx_REG (word_mode, IP0_REGNUM));
  clobber_reg (fusage, gen_rtx_REG (word_mode, IP1_REGNUM));
}

machine_mode
aarch64_select_cc_mode (RTX_CODE code, rtx x, rtx y)
{
  machine_mode mode_x = GET_MODE (x);
  rtx_code code_x = GET_CODE (x);

  /* All floating point compares return CCFP if it is an equality
     comparison, and CCFPE otherwise.  */
  if (GET_MODE_CLASS (mode_x) == MODE_FLOAT)
    {
      switch (code)
	{
	case EQ:
	case NE:
	case UNORDERED:
	case ORDERED:
	case UNLT:
	case UNLE:
	case UNGT:
	case UNGE:
	case UNEQ:
	  return CCFPmode;

	case LT:
	case LE:
	case GT:
	case GE:
	case LTGT:
	  return CCFPEmode;

	default:
	  gcc_unreachable ();
	}
    }

  /* Equality comparisons of short modes against zero can be performed
     using the TST instruction with the appropriate bitmask.  */
  if (y == const0_rtx && (REG_P (x) || SUBREG_P (x))
      && (code == EQ || code == NE)
      && (mode_x == HImode || mode_x == QImode))
    return CC_Zmode;

  /* Similarly, comparisons of zero_extends from shorter modes can
     be performed using an ANDS with an immediate mask.  */
  if (y == const0_rtx && code_x == ZERO_EXTEND
      && (mode_x == SImode || mode_x == DImode)
      && (GET_MODE (XEXP (x, 0)) == HImode || GET_MODE (XEXP (x, 0)) == QImode)
      && (code == EQ || code == NE))
    return CC_Zmode;

  /* Zero extracts support equality comparisons.  */
  if ((mode_x == SImode || mode_x == DImode)
      && y == const0_rtx
      && (code_x == ZERO_EXTRACT && CONST_INT_P (XEXP (x, 1))
	  && CONST_INT_P (XEXP (x, 2)))
      && (code == EQ || code == NE))
    return CC_Zmode;

  /* ANDS/BICS/TST support equality and all signed comparisons.  */
  if ((mode_x == SImode || mode_x == DImode)
      && y == const0_rtx
      && (code_x == AND)
      && (code == EQ || code == NE || code == LT || code == GE
	  || code == GT || code == LE))
    return CC_NZVmode;

  /* ADDS/SUBS correctly set N and Z flags.  */
  if ((mode_x == SImode || mode_x == DImode)
      && y == const0_rtx
      && (code == EQ || code == NE || code == LT || code == GE)
      && (code_x == PLUS || code_x == MINUS || code_x == NEG))
    return CC_NZmode;

  /* A compare with a shifted operand.  Because of canonicalization,
     the comparison will have to be swapped when we emit the assembly
     code.  */
  if ((mode_x == SImode || mode_x == DImode)
      && (REG_P (y) || SUBREG_P (y) || y == const0_rtx)
      && (code_x == ASHIFT || code_x == ASHIFTRT
	  || code_x == LSHIFTRT
	  || code_x == ZERO_EXTEND || code_x == SIGN_EXTEND))
    return CC_SWPmode;

  /* Similarly for a negated operand, but we can only do this for
     equalities.  */
  if ((mode_x == SImode || mode_x == DImode)
      && (REG_P (y) || SUBREG_P (y))
      && (code == EQ || code == NE)
      && code_x == NEG)
    return CC_Zmode;

  /* A test for unsigned overflow from an addition.  */
  if ((mode_x == DImode || mode_x == TImode)
      && (code == LTU || code == GEU)
      && code_x == PLUS
      && rtx_equal_p (XEXP (x, 0), y))
    return CC_Cmode;

  /* A test for unsigned overflow from an add with carry.  */
  if ((mode_x == DImode || mode_x == TImode)
      && (code == LTU || code == GEU)
      && code_x == PLUS
      && CONST_SCALAR_INT_P (y)
      && (rtx_mode_t (y, mode_x)
	  == (wi::shwi (1, mode_x)
	      << (GET_MODE_BITSIZE (mode_x).to_constant () / 2))))
    return CC_ADCmode;

  /* A test for signed overflow.  */
  if ((mode_x == DImode || mode_x == TImode)
      && code == NE
      && code_x == PLUS
      && GET_CODE (y) == SIGN_EXTEND)
    return CC_Vmode;

  /* For everything else, return CCmode.  */
  return CCmode;
}

static int
aarch64_get_condition_code_1 (machine_mode, enum rtx_code);

int
aarch64_get_condition_code (rtx x)
{
  machine_mode mode = GET_MODE (XEXP (x, 0));
  enum rtx_code comp_code = GET_CODE (x);

  if (GET_MODE_CLASS (mode) != MODE_CC)
    mode = SELECT_CC_MODE (comp_code, XEXP (x, 0), XEXP (x, 1));
  return aarch64_get_condition_code_1 (mode, comp_code);
}

static int
aarch64_get_condition_code_1 (machine_mode mode, enum rtx_code comp_code)
{
  switch (mode)
    {
    case E_CCFPmode:
    case E_CCFPEmode:
      switch (comp_code)
	{
	case GE: return AARCH64_GE;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LS;
	case LT: return AARCH64_MI;
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case ORDERED: return AARCH64_VC;
	case UNORDERED: return AARCH64_VS;
	case UNLT: return AARCH64_LT;
	case UNLE: return AARCH64_LE;
	case UNGT: return AARCH64_HI;
	case UNGE: return AARCH64_PL;
	default: return -1;
	}
      break;

    case E_CCmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_GE;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LE;
	case LT: return AARCH64_LT;
	case GEU: return AARCH64_CS;
	case GTU: return AARCH64_HI;
	case LEU: return AARCH64_LS;
	case LTU: return AARCH64_CC;
	default: return -1;
	}
      break;

    case E_CC_SWPmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_LE;
	case GT: return AARCH64_LT;
	case LE: return AARCH64_GE;
	case LT: return AARCH64_GT;
	case GEU: return AARCH64_LS;
	case GTU: return AARCH64_CC;
	case LEU: return AARCH64_CS;
	case LTU: return AARCH64_HI;
	default: return -1;
	}
      break;

    case E_CC_NZCmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE; /* = any */
	case EQ: return AARCH64_EQ; /* = none */
	case GE: return AARCH64_PL; /* = nfrst */
	case LT: return AARCH64_MI; /* = first */
	case GEU: return AARCH64_CS; /* = nlast */
	case GTU: return AARCH64_HI; /* = pmore */
	case LEU: return AARCH64_LS; /* = plast */
	case LTU: return AARCH64_CC; /* = last */
	default: return -1;
	}
      break;

    case E_CC_NZVmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_PL;
	case LT: return AARCH64_MI;
	case GT: return AARCH64_GT;
	case LE: return AARCH64_LE;
	default: return -1;
	}
      break;

    case E_CC_NZmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	case GE: return AARCH64_PL;
	case LT: return AARCH64_MI;
	default: return -1;
	}
      break;

    case E_CC_Zmode:
      switch (comp_code)
	{
	case NE: return AARCH64_NE;
	case EQ: return AARCH64_EQ;
	default: return -1;
	}
      break;

    case E_CC_Cmode:
      switch (comp_code)
	{
	case LTU: return AARCH64_CS;
	case GEU: return AARCH64_CC;
	default: return -1;
	}
      break;

    case E_CC_ADCmode:
      switch (comp_code)
	{
	case GEU: return AARCH64_CS;
	case LTU: return AARCH64_CC;
	default: return -1;
	}
      break;

    case E_CC_Vmode:
      switch (comp_code)
	{
	case NE: return AARCH64_VS;
	case EQ: return AARCH64_VC;
	default: return -1;
	}
      break;

    default:
      return -1;
    }

  return -1;
}

bool
aarch64_const_vec_all_same_in_range_p (rtx x,
				       HOST_WIDE_INT minval,
				       HOST_WIDE_INT maxval)
{
  rtx elt;
  return (const_vec_duplicate_p (x, &elt)
	  && CONST_INT_P (elt)
	  && IN_RANGE (INTVAL (elt), minval, maxval));
}

bool
aarch64_const_vec_all_same_int_p (rtx x, HOST_WIDE_INT val)
{
  return aarch64_const_vec_all_same_in_range_p (x, val, val);
}

/* Return true if VEC is a constant in which every element is in the range
   [MINVAL, MAXVAL].  The elements do not need to have the same value.  */

static bool
aarch64_const_vec_all_in_range_p (rtx vec,
				  HOST_WIDE_INT minval,
				  HOST_WIDE_INT maxval)
{
  if (!CONST_VECTOR_P (vec)
      || GET_MODE_CLASS (GET_MODE (vec)) != MODE_VECTOR_INT)
    return false;

  int nunits;
  if (!CONST_VECTOR_STEPPED_P (vec))
    nunits = const_vector_encoded_nelts (vec);
  else if (!CONST_VECTOR_NUNITS (vec).is_constant (&nunits))
    return false;

  for (int i = 0; i < nunits; i++)
    {
      rtx vec_elem = CONST_VECTOR_ELT (vec, i);
      if (!CONST_INT_P (vec_elem)
	  || !IN_RANGE (INTVAL (vec_elem), minval, maxval))
	return false;
    }
  return true;
}

/* N Z C V.  */
#define AARCH64_CC_V 1
#define AARCH64_CC_C (1 << 1)
#define AARCH64_CC_Z (1 << 2)
#define AARCH64_CC_N (1 << 3)

/* N Z C V flags for ccmp.  Indexed by AARCH64_COND_CODE.  */
static const int aarch64_nzcv_codes[] =
{
  0,		/* EQ, Z == 1.  */
  AARCH64_CC_Z,	/* NE, Z == 0.  */
  0,		/* CS, C == 1.  */
  AARCH64_CC_C,	/* CC, C == 0.  */
  0,		/* MI, N == 1.  */
  AARCH64_CC_N, /* PL, N == 0.  */
  0,		/* VS, V == 1.  */
  AARCH64_CC_V, /* VC, V == 0.  */
  0,		/* HI, C ==1 && Z == 0.  */
  AARCH64_CC_C,	/* LS, !(C == 1 && Z == 0).  */
  AARCH64_CC_V,	/* GE, N == V.  */
  0,		/* LT, N != V.  */
  AARCH64_CC_Z, /* GT, Z == 0 && N == V.  */
  0,		/* LE, !(Z == 0 && N == V).  */
  0,		/* AL, Any.  */
  0		/* NV, Any.  */
};

/* Print floating-point vector immediate operand X to F, negating it
   first if NEGATE is true.  Return true on success, false if it isn't
   a constant we can handle.  */

static bool
aarch64_print_vector_float_operand (FILE *f, rtx x, bool negate)
{
  rtx elt;

  if (!const_vec_duplicate_p (x, &elt))
    return false;

  REAL_VALUE_TYPE r = *CONST_DOUBLE_REAL_VALUE (elt);
  if (negate)
    r = real_value_negate (&r);

  /* Handle the SVE single-bit immediates specially, since they have a
     fixed form in the assembly syntax.  */
  if (real_equal (&r, &dconst0))
    asm_fprintf (f, "0.0");
  else if (real_equal (&r, &dconst2))
    asm_fprintf (f, "2.0");
  else if (real_equal (&r, &dconst1))
    asm_fprintf (f, "1.0");
  else if (real_equal (&r, &dconsthalf))
    asm_fprintf (f, "0.5");
  else
    {
      const int buf_size = 20;
      char float_buf[buf_size] = {'\0'};
      real_to_decimal_for_mode (float_buf, &r, buf_size, buf_size,
				1, GET_MODE (elt));
      asm_fprintf (f, "%s", float_buf);
    }

  return true;
}

/* Return the equivalent letter for size.  */
static char
sizetochar (int size)
{
  switch (size)
    {
    case 64: return 'd';
    case 32: return 's';
    case 16: return 'h';
    case 8 : return 'b';
    default: gcc_unreachable ();
    }
}

/* Print operand X to file F in a target specific manner according to CODE.
   The acceptable formatting commands given by CODE are:
     'c':		An integer or symbol address without a preceding #
			sign.
     'C':		Take the duplicated element in a vector constant
			and print it in hex.
     'D':		Take the duplicated element in a vector constant
			and print it as an unsigned integer, in decimal.
     'e':		Print the sign/zero-extend size as a character 8->b,
			16->h, 32->w.  Can also be used for masks:
			0xff->b, 0xffff->h, 0xffffffff->w.
     'I':		If the operand is a duplicated vector constant,
			replace it with the duplicated scalar.  If the
			operand is then a floating-point constant, replace
			it with the integer bit representation.  Print the
			transformed constant as a signed decimal number.
     'p':		Prints N such that 2^N == X (X must be power of 2 and
			const int).
     'P':		Print the number of non-zero bits in X (a const_int).
     'H':		Print the higher numbered register of a pair (TImode)
			of regs.
     'm':		Print a condition (eq, ne, etc).
     'M':		Same as 'm', but invert condition.
     'N':		Take the duplicated element in a vector constant
			and print the negative of it in decimal.
     'b/h/s/d/q':	Print a scalar FP/SIMD register name.
     'S/T/U/V':		Print a FP/SIMD register name for a register list.
			The register printed is the FP/SIMD register name
			of X + 0/1/2/3 for S/T/U/V.
     'R':		Print a scalar Integer/FP/SIMD register name + 1.
     'X':		Print bottom 16 bits of integer constant in hex.
     'w/x':		Print a general register name or the zero register
			(32-bit or 64-bit).
     '0':		Print a normal operand, if it's a general register,
			then we assume DImode.
     'k':		Print NZCV for conditional compare instructions.
     'A':		Output address constant representing the first
			argument of X, specifying a relocation offset
			if appropriate.
     'L':		Output constant address specified by X
			with a relocation offset if appropriate.
     'G':		Prints address of X, specifying a PC relative
			relocation mode if appropriate.
     'y':		Output address of LDP or STP - this is used for
			some LDP/STPs which don't use a PARALLEL in their
			pattern (so the mode needs to be adjusted).
     'z':		Output address of a typical LDP or STP.  */

static void
aarch64_print_operand (FILE *f, rtx x, int code)
{
  rtx elt;
  switch (code)
    {
    case 'c':
      if (CONST_INT_P (x))
	fprintf (f, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
      else
	{
	  poly_int64 offset;
	  rtx base = strip_offset_and_salt (x, &offset);
	  if (SYMBOL_REF_P (base))
	    output_addr_const (f, x);
	  else
	    output_operand_lossage ("unsupported operand for code '%c'", code);
	}
      break;

    case 'e':
      {
	x = unwrap_const_vec_duplicate (x);
	if (!CONST_INT_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	HOST_WIDE_INT val = INTVAL (x);
	if ((val & ~7) == 8 || val == 0xff)
	  fputc ('b', f);
	else if ((val & ~7) == 16 || val == 0xffff)
	  fputc ('h', f);
	else if ((val & ~7) == 32 || val == 0xffffffff)
	  fputc ('w', f);
	else
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }
      }
      break;

    case 'p':
      {
	int n;

	if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x))) < 0)
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	asm_fprintf (f, "%d", n);
      }
      break;

    case 'P':
      if (!CONST_INT_P (x))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}

      asm_fprintf (f, "%u", popcount_hwi (INTVAL (x)));
      break;

    case 'H':
      if (x == const0_rtx)
	{
	  asm_fprintf (f, "xzr");
	  break;
	}

      if (!REG_P (x) || !GP_REGNUM_P (REGNO (x) + 1))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}

      asm_fprintf (f, "%s", reg_names [REGNO (x) + 1]);
      break;

    case 'I':
      {
	x = aarch64_bit_representation (unwrap_const_vec_duplicate (x));
	if (CONST_INT_P (x))
	  asm_fprintf (f, "%wd", INTVAL (x));
	else
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }
	break;
      }

    case 'M':
    case 'm':
      {
        int cond_code;
	/* CONST_TRUE_RTX means al/nv (al is the default, don't print it).  */
	if (x == const_true_rtx)
	  {
	    if (code == 'M')
	      fputs ("nv", f);
	    return;
	  }

        if (!COMPARISON_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

        cond_code = aarch64_get_condition_code (x);
        gcc_assert (cond_code >= 0);
	if (code == 'M')
	  cond_code = AARCH64_INVERSE_CONDITION_CODE (cond_code);
	if (GET_MODE (XEXP (x, 0)) == CC_NZCmode)
	  fputs (aarch64_sve_condition_codes[cond_code], f);
	else
	  fputs (aarch64_condition_codes[cond_code], f);
      }
      break;

    case 'N':
      if (!const_vec_duplicate_p (x, &elt))
	{
	  output_operand_lossage ("invalid vector constant");
	  return;
	}

      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
	asm_fprintf (f, "%wd", (HOST_WIDE_INT) -UINTVAL (elt));
      else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT
	       && aarch64_print_vector_float_operand (f, x, true))
	;
      else
	{
	  output_operand_lossage ("invalid vector constant");
	  return;
	}
      break;

    case 'b':
    case 'h':
    case 's':
    case 'd':
    case 'q':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "%c%d", code, REGNO (x) - V0_REGNUM);
      break;

    case 'S':
    case 'T':
    case 'U':
    case 'V':
      if (!REG_P (x) || !FP_REGNUM_P (REGNO (x)))
	{
	  output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "%c%d",
		   aarch64_sve_data_mode_p (GET_MODE (x)) ? 'z' : 'v',
		   REGNO (x) - V0_REGNUM + (code - 'S'));
      break;

    case 'R':
      if (REG_P (x) && FP_REGNUM_P (REGNO (x))
	  && (aarch64_advsimd_partial_struct_mode_p (GET_MODE (x))))
	asm_fprintf (f, "d%d", REGNO (x) - V0_REGNUM + 1);
      else if (REG_P (x) && FP_REGNUM_P (REGNO (x)))
	asm_fprintf (f, "q%d", REGNO (x) - V0_REGNUM + 1);
      else if (REG_P (x) && GP_REGNUM_P (REGNO (x)))
	asm_fprintf (f, "x%d", REGNO (x) - R0_REGNUM + 1);
      else
	output_operand_lossage ("incompatible register operand for '%%%c'",
				code);
      break;

    case 'X':
      if (!CONST_INT_P (x))
	{
	  output_operand_lossage ("invalid operand for '%%%c'", code);
	  return;
	}
      asm_fprintf (f, "0x%wx", UINTVAL (x) & 0xffff);
      break;

    case 'C':
      {
	/* Print a replicated constant in hex.  */
	if (!const_vec_duplicate_p (x, &elt) || !CONST_INT_P (elt))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }
	scalar_mode inner_mode = GET_MODE_INNER (GET_MODE (x));
	asm_fprintf (f, "0x%wx", UINTVAL (elt) & GET_MODE_MASK (inner_mode));
      }
      break;

    case 'D':
      {
	/* Print a replicated constant in decimal, treating it as
	   unsigned.  */
	if (!const_vec_duplicate_p (x, &elt) || !CONST_INT_P (elt))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }
	scalar_mode inner_mode = GET_MODE_INNER (GET_MODE (x));
	asm_fprintf (f, "%wd", UINTVAL (elt) & GET_MODE_MASK (inner_mode));
      }
      break;

    case 'w':
    case 'x':
      if (x == const0_rtx
	  || (CONST_DOUBLE_P (x) && aarch64_float_const_zero_rtx_p (x)))
	{
	  asm_fprintf (f, "%czr", code);
	  break;
	}

      if (REG_P (x) && GP_REGNUM_P (REGNO (x)))
	{
	  asm_fprintf (f, "%c%d", code, REGNO (x) - R0_REGNUM);
	  break;
	}

      if (REG_P (x) && REGNO (x) == SP_REGNUM)
	{
	  asm_fprintf (f, "%ssp", code == 'w' ? "w" : "");
	  break;
	}

      /* Fall through */

    case 0:
      if (x == NULL)
	{
	  output_operand_lossage ("missing operand");
	  return;
	}

      switch (GET_CODE (x))
	{
	case REG:
	  if (aarch64_sve_data_mode_p (GET_MODE (x)))
	    {
	      if (REG_NREGS (x) == 1)
		asm_fprintf (f, "z%d", REGNO (x) - V0_REGNUM);
	      else
		{
		  char suffix
		    = sizetochar (GET_MODE_UNIT_BITSIZE (GET_MODE (x)));
		  asm_fprintf (f, "{z%d.%c - z%d.%c}",
			       REGNO (x) - V0_REGNUM, suffix,
			       END_REGNO (x) - V0_REGNUM - 1, suffix);
		}
	    }
	  else
	    asm_fprintf (f, "%s", reg_names [REGNO (x)]);
	  break;

	case MEM:
	  output_address (GET_MODE (x), XEXP (x, 0));
	  break;

	case LABEL_REF:
	case SYMBOL_REF:
	  output_addr_const (asm_out_file, x);
	  break;

	case CONST_INT:
	  asm_fprintf (f, "%wd", INTVAL (x));
	  break;

	case CONST:
	  if (!VECTOR_MODE_P (GET_MODE (x)))
	    {
	      output_addr_const (asm_out_file, x);
	      break;
	    }
	  /* fall through */

	case CONST_VECTOR:
	  if (!const_vec_duplicate_p (x, &elt))
	    {
	      output_operand_lossage ("invalid vector constant");
	      return;
	    }

	  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
	    asm_fprintf (f, "%wd", INTVAL (elt));
	  else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT
		   && aarch64_print_vector_float_operand (f, x, false))
	    ;
	  else
	    {
	      output_operand_lossage ("invalid vector constant");
	      return;
	    }
	  break;

	case CONST_DOUBLE:
	  /* Since we define TARGET_SUPPORTS_WIDE_INT we shouldn't ever
	     be getting CONST_DOUBLEs holding integers.  */
	  gcc_assert (GET_MODE (x) != VOIDmode);
	  if (aarch64_float_const_zero_rtx_p (x))
	    {
	      fputc ('0', f);
	      break;
	    }
	  else if (aarch64_float_const_representable_p (x))
	    {
#define buf_size 20
	      char float_buf[buf_size] = {'\0'};
	      real_to_decimal_for_mode (float_buf,
					CONST_DOUBLE_REAL_VALUE (x),
					buf_size, buf_size,
					1, GET_MODE (x));
	      asm_fprintf (asm_out_file, "%s", float_buf);
	      break;
#undef buf_size
	    }
	  output_operand_lossage ("invalid constant");
	  return;
	default:
	  output_operand_lossage ("invalid operand");
	  return;
	}
      break;

    case 'A':
      if (GET_CODE (x) == HIGH)
	x = XEXP (x, 0);

      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_SMALL_GOT_4G:
	  asm_fprintf (asm_out_file, ":got:");
	  break;

	case SYMBOL_SMALL_TLSGD:
	  asm_fprintf (asm_out_file, ":tlsgd:");
	  break;

	case SYMBOL_SMALL_TLSDESC:
	  asm_fprintf (asm_out_file, ":tlsdesc:");
	  break;

	case SYMBOL_SMALL_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel:");
	  break;

	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel:");
	  break;

	case SYMBOL_TINY_GOT:
	  gcc_unreachable ();
	  break;

	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'L':
      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_SMALL_GOT_4G:
	  asm_fprintf (asm_out_file, ":got_lo12:");
	  break;

	case SYMBOL_SMALL_TLSGD:
	  asm_fprintf (asm_out_file, ":tlsgd_lo12:");
	  break;

	case SYMBOL_SMALL_TLSDESC:
	  asm_fprintf (asm_out_file, ":tlsdesc_lo12:");
	  break;

	case SYMBOL_SMALL_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel_lo12:");
	  break;

	case SYMBOL_TLSLE12:
	  asm_fprintf (asm_out_file, ":tprel_lo12:");
	  break;

	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel_lo12_nc:");
	  break;

	case SYMBOL_TINY_GOT:
	  asm_fprintf (asm_out_file, ":got:");
	  break;

	case SYMBOL_TINY_TLSIE:
	  asm_fprintf (asm_out_file, ":gottprel:");
	  break;

	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'G':
      switch (aarch64_classify_symbolic_expression (x))
	{
	case SYMBOL_TLSLE24:
	  asm_fprintf (asm_out_file, ":tprel_hi12:");
	  break;
	default:
	  break;
	}
      output_addr_const (asm_out_file, x);
      break;

    case 'k':
      {
	HOST_WIDE_INT cond_code;

	if (!CONST_INT_P (x))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	cond_code = INTVAL (x);
	gcc_assert (cond_code >= 0 && cond_code <= AARCH64_NV);
	asm_fprintf (f, "%d", aarch64_nzcv_codes[cond_code]);
      }
      break;

    case 'y':
    case 'z':
      {
	machine_mode mode = GET_MODE (x);

	if (!MEM_P (x)
	    || (code == 'y'
		&& maybe_ne (GET_MODE_SIZE (mode), 8)
		&& maybe_ne (GET_MODE_SIZE (mode), 16)))
	  {
	    output_operand_lossage ("invalid operand for '%%%c'", code);
	    return;
	  }

	if (!aarch64_print_address_internal (f, mode, XEXP (x, 0),
					    code == 'y'
					    ? ADDR_QUERY_LDP_STP_N
					    : ADDR_QUERY_LDP_STP))
	  output_operand_lossage ("invalid operand prefix '%%%c'", code);
      }
      break;

    default:
      output_operand_lossage ("invalid operand prefix '%%%c'", code);
      return;
    }
}

/* Print address 'x' of a memory access with mode 'mode'.
   'op' is the context required by aarch64_classify_address.  It can either be
   MEM for a normal memory access or PARALLEL for LDP/STP.  */
static bool
aarch64_print_address_internal (FILE *f, machine_mode mode, rtx x,
				aarch64_addr_query_type type)
{
  struct aarch64_address_info addr;
  unsigned int size, vec_flags;

  /* Check all addresses are Pmode - including ILP32.  */
  if (GET_MODE (x) != Pmode
      && (!CONST_INT_P (x)
	  || trunc_int_for_mode (INTVAL (x), Pmode) != INTVAL (x)))
    {
      output_operand_lossage ("invalid address mode");
      return false;
    }

  if (aarch64_classify_address (&addr, x, mode, true, type))
    switch (addr.type)
      {
      case ADDRESS_REG_IMM:
	if (known_eq (addr.const_offset, 0))
	  {
	    asm_fprintf (f, "[%s]", reg_names[REGNO (addr.base)]);
	    return true;
	  }

	vec_flags = aarch64_classify_vector_mode (mode);
	if (vec_flags & VEC_ANY_SVE)
	  {
	    HOST_WIDE_INT vnum
	      = exact_div (addr.const_offset,
			   aarch64_vl_bytes (mode, vec_flags)).to_constant ();
	    asm_fprintf (f, "[%s, #%wd, mul vl]",
			 reg_names[REGNO (addr.base)], vnum);
	    return true;
	  }

	asm_fprintf (f, "[%s, %wd]", reg_names[REGNO (addr.base)],
		     INTVAL (addr.offset));
	return true;

      case ADDRESS_REG_REG:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, %s]", reg_names [REGNO (addr.base)],
		       reg_names [REGNO (addr.offset)]);
	else
	  asm_fprintf (f, "[%s, %s, lsl %u]", reg_names [REGNO (addr.base)],
		       reg_names [REGNO (addr.offset)], addr.shift);
	return true;

      case ADDRESS_REG_UXTW:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, w%d, uxtw]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM);
	else
	  asm_fprintf (f, "[%s, w%d, uxtw %u]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM, addr.shift);
	return true;

      case ADDRESS_REG_SXTW:
	if (addr.shift == 0)
	  asm_fprintf (f, "[%s, w%d, sxtw]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM);
	else
	  asm_fprintf (f, "[%s, w%d, sxtw %u]", reg_names [REGNO (addr.base)],
		       REGNO (addr.offset) - R0_REGNUM, addr.shift);
	return true;

      case ADDRESS_REG_WB:
	/* Writeback is only supported for fixed-width modes.  */
	size = GET_MODE_SIZE (mode).to_constant ();
	switch (GET_CODE (x))
	  {
	  case PRE_INC:
	    asm_fprintf (f, "[%s, %d]!", reg_names [REGNO (addr.base)], size);
	    return true;
	  case POST_INC:
	    asm_fprintf (f, "[%s], %d", reg_names [REGNO (addr.base)], size);
	    return true;
	  case PRE_DEC:
	    asm_fprintf (f, "[%s, -%d]!", reg_names [REGNO (addr.base)], size);
	    return true;
	  case POST_DEC:
	    asm_fprintf (f, "[%s], -%d", reg_names [REGNO (addr.base)], size);
	    return true;
	  case PRE_MODIFY:
	    asm_fprintf (f, "[%s, %wd]!", reg_names[REGNO (addr.base)],
			 INTVAL (addr.offset));
	    return true;
	  case POST_MODIFY:
	    asm_fprintf (f, "[%s], %wd", reg_names[REGNO (addr.base)],
			 INTVAL (addr.offset));
	    return true;
	  default:
	    break;
	  }
	break;

      case ADDRESS_LO_SUM:
	asm_fprintf (f, "[%s, #:lo12:", reg_names [REGNO (addr.base)]);
	output_addr_const (f, addr.offset);
	asm_fprintf (f, "]");
	return true;

      case ADDRESS_SYMBOLIC:
	output_addr_const (f, x);
	return true;
      }

  return false;
}

/* Print address 'x' of a memory access with mode 'mode'.  */
static void
aarch64_print_operand_address (FILE *f, machine_mode mode, rtx x)
{
  if (!aarch64_print_address_internal (f, mode, x, ADDR_QUERY_ANY))
    output_addr_const (f, x);
}

/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.  */

static bool
aarch64_output_addr_const_extra (FILE *file, rtx x)
{
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SALT_ADDR)
    {
      output_addr_const (file, XVECEXP (x, 0, 0));
      return true;
   }
  return false;
}

bool
aarch64_label_mentioned_p (rtx x)
{
  const char *fmt;
  int i;

  if (LABEL_REF_P (x))
    return true;

  /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the
     referencing instruction, but they are constant offsets, not
     symbols.  */
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
    return false;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (aarch64_label_mentioned_p (XVECEXP (x, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e' && aarch64_label_mentioned_p (XEXP (x, i)))
	return 1;
    }

  return 0;
}

/* Implement REGNO_REG_CLASS.  */

enum reg_class
aarch64_regno_regclass (unsigned regno)
{
  if (STUB_REGNUM_P (regno))
    return STUB_REGS;

  if (GP_REGNUM_P (regno))
    return GENERAL_REGS;

  if (regno == SP_REGNUM)
    return STACK_REG;

  if (regno == FRAME_POINTER_REGNUM
      || regno == ARG_POINTER_REGNUM)
    return POINTER_REGS;

  if (FP_REGNUM_P (regno))
    return (FP_LO8_REGNUM_P (regno) ? FP_LO8_REGS
	    : FP_LO_REGNUM_P (regno) ? FP_LO_REGS : FP_REGS);

  if (PR_REGNUM_P (regno))
    return PR_LO_REGNUM_P (regno) ? PR_LO_REGS : PR_HI_REGS;

  if (regno == FFR_REGNUM || regno == FFRT_REGNUM)
    return FFR_REGS;

  return NO_REGS;
}

/* OFFSET is an address offset for mode MODE, which has SIZE bytes.
   If OFFSET is out of range, return an offset of an anchor point
   that is in range.  Return 0 otherwise.  */

static HOST_WIDE_INT
aarch64_anchor_offset (HOST_WIDE_INT offset, HOST_WIDE_INT size,
		       machine_mode mode)
{
  /* Does it look like we'll need a 16-byte load/store-pair operation?  */
  if (size > 16)
    return (offset + 0x400) & ~0x7f0;

  /* For offsets that aren't a multiple of the access size, the limit is
     -256...255.  */
  if (offset & (size - 1))
    {
      /* BLKmode typically uses LDP of X-registers.  */
      if (mode == BLKmode)
	return (offset + 512) & ~0x3ff;
      return (offset + 0x100) & ~0x1ff;
    }

  /* Small negative offsets are supported.  */
  if (IN_RANGE (offset, -256, 0))
    return 0;

  if (mode == TImode || mode == TFmode || mode == TDmode)
    return (offset + 0x100) & ~0x1ff;

  /* Use 12-bit offset by access size.  */
  return offset & (~0xfff * size);
}

static rtx
aarch64_legitimize_address (rtx x, rtx /* orig_x  */, machine_mode mode)
{
  /* Try to split X+CONST into Y=X+(CONST & ~mask), Y+(CONST&mask),
     where mask is selected by alignment and size of the offset.
     We try to pick as large a range for the offset as possible to
     maximize the chance of a CSE.  However, for aligned addresses
     we limit the range to 4k so that structures with different sized
     elements are likely to use the same base.  We need to be careful
     not to split a CONST for some forms of address expression, otherwise
     it will generate sub-optimal code.  */

  if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
    {
      rtx base = XEXP (x, 0);
      rtx offset_rtx = XEXP (x, 1);
      HOST_WIDE_INT offset = INTVAL (offset_rtx);

      if (GET_CODE (base) == PLUS)
	{
	  rtx op0 = XEXP (base, 0);
	  rtx op1 = XEXP (base, 1);

	  /* Force any scaling into a temp for CSE.  */
	  op0 = force_reg (Pmode, op0);
	  op1 = force_reg (Pmode, op1);

	  /* Let the pointer register be in op0.  */
	  if (REG_POINTER (op1))
	    std::swap (op0, op1);

	  /* If the pointer is virtual or frame related, then we know that
	     virtual register instantiation or register elimination is going
	     to apply a second constant.  We want the two constants folded
	     together easily.  Therefore, emit as (OP0 + CONST) + OP1.  */
	  if (virt_or_elim_regno_p (REGNO (op0)))
	    {
	      base = expand_binop (Pmode, add_optab, op0, offset_rtx,
				   NULL_RTX, true, OPTAB_DIRECT);
	      return gen_rtx_PLUS (Pmode, base, op1);
	    }

	  /* Otherwise, in order to encourage CSE (and thence loop strength
	     reduce) scaled addresses, emit as (OP0 + OP1) + CONST.  */
	  base = expand_binop (Pmode, add_optab, op0, op1,
			       NULL_RTX, true, OPTAB_DIRECT);
	  x = gen_rtx_PLUS (Pmode, base, offset_rtx);
	}

      HOST_WIDE_INT size;
      if (GET_MODE_SIZE (mode).is_constant (&size))
	{
	  HOST_WIDE_INT base_offset = aarch64_anchor_offset (offset, size,
							     mode);
	  if (base_offset != 0)
	    {
	      base = plus_constant (Pmode, base, base_offset);
	      base = force_operand (base, NULL_RTX);
	      return plus_constant (Pmode, base, offset - base_offset);
	    }
	}
    }

  return x;
}

static reg_class_t
aarch64_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x,
			  reg_class_t rclass,
			  machine_mode mode,
			  secondary_reload_info *sri)
{
  /* Use aarch64_sve_reload_mem for SVE memory reloads that cannot use
     LDR and STR.  See the comment at the head of aarch64-sve.md for
     more details about the big-endian handling.  */
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (reg_class_subset_p (rclass, FP_REGS)
      && !((REG_P (x) && HARD_REGISTER_P (x))
	   || aarch64_simd_valid_immediate (x, NULL))
      && mode != VNx16QImode
      && (vec_flags & VEC_SVE_DATA)
      && ((vec_flags & VEC_PARTIAL) || BYTES_BIG_ENDIAN))
    {
      sri->icode = CODE_FOR_aarch64_sve_reload_mem;
      return NO_REGS;
    }

  /* If we have to disable direct literal pool loads and stores because the
     function is too big, then we need a scratch register.  */
  if (MEM_P (x) && SYMBOL_REF_P (x) && CONSTANT_POOL_ADDRESS_P (x)
      && (SCALAR_FLOAT_MODE_P (GET_MODE (x))
	  || targetm.vector_mode_supported_p (GET_MODE (x)))
      && !aarch64_pcrelative_literal_loads)
    {
      sri->icode = code_for_aarch64_reload_movcp (mode, DImode);
      return NO_REGS;
    }

  /* Without the TARGET_SIMD instructions we cannot move a Q register
     to a Q register directly.  We need a scratch.  */
  if (REG_P (x)
      && (mode == TFmode
	  || mode == TImode
	  || mode == TDmode
	  || (vec_flags == VEC_ADVSIMD && known_eq (GET_MODE_SIZE (mode), 16)))
      && mode == GET_MODE (x)
      && !TARGET_SIMD
      && FP_REGNUM_P (REGNO (x))
      && reg_class_subset_p (rclass, FP_REGS))
    {
      sri->icode = code_for_aarch64_reload_mov (mode);
      return NO_REGS;
    }

  /* A TFmode, TImode or TDmode memory access should be handled via an FP_REGS
     because AArch64 has richer addressing modes for LDR/STR instructions
     than LDP/STP instructions.  */
  if (TARGET_FLOAT && rclass == GENERAL_REGS
      && known_eq (GET_MODE_SIZE (mode), 16) && MEM_P (x))
    return FP_REGS;

  if (rclass == FP_REGS
      && (mode == TImode || mode == TFmode || mode == TDmode)
      && CONSTANT_P(x))
      return GENERAL_REGS;

  return NO_REGS;
}

/* Implement TARGET_SECONDARY_MEMORY_NEEDED.  */

static bool
aarch64_secondary_memory_needed (machine_mode mode, reg_class_t class1,
				 reg_class_t class2)
{
  if (!TARGET_SIMD
      && reg_classes_intersect_p (class1, FP_REGS)
      && reg_classes_intersect_p (class2, FP_REGS))
    {
      /* We can't do a 128-bit FPR-to-FPR move without TARGET_SIMD,
	 so we can't easily split a move involving tuples of 128-bit
	 vectors.  Force the copy through memory instead.

	 (Tuples of 64-bit vectors are fine.)  */
      unsigned int vec_flags = aarch64_classify_vector_mode (mode);
      if (vec_flags == (VEC_ADVSIMD | VEC_STRUCT))
	return true;
    }
  return false;
}

static bool
aarch64_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  gcc_assert (from == ARG_POINTER_REGNUM || from == FRAME_POINTER_REGNUM);

  /* If we need a frame pointer, ARG_POINTER_REGNUM and FRAME_POINTER_REGNUM
     can only eliminate to HARD_FRAME_POINTER_REGNUM.  */
  if (frame_pointer_needed)
    return to == HARD_FRAME_POINTER_REGNUM;
  return true;
}

poly_int64
aarch64_initial_elimination_offset (unsigned from, unsigned to)
{
  if (to == HARD_FRAME_POINTER_REGNUM)
    {
      if (from == ARG_POINTER_REGNUM)
	return cfun->machine->frame.hard_fp_offset;

      if (from == FRAME_POINTER_REGNUM)
	return cfun->machine->frame.hard_fp_offset
	       - cfun->machine->frame.locals_offset;
    }

  if (to == STACK_POINTER_REGNUM)
    {
      if (from == FRAME_POINTER_REGNUM)
	  return cfun->machine->frame.frame_size
		 - cfun->machine->frame.locals_offset;
    }

  return cfun->machine->frame.frame_size;
}


/* Get return address without mangling.  */

rtx
aarch64_return_addr_rtx (void)
{
  rtx val = get_hard_reg_initial_val (Pmode, LR_REGNUM);
  /* Note: aarch64_return_address_signing_enabled only
     works after cfun->machine->frame.laid_out is set,
     so here we don't know if the return address will
     be signed or not.  */
  rtx lr = gen_rtx_REG (Pmode, LR_REGNUM);
  emit_move_insn (lr, val);
  emit_insn (GEN_FCN (CODE_FOR_xpaclri) ());
  return lr;
}


/* Implement RETURN_ADDR_RTX.  We do not support moving back to a
   previous frame.  */

rtx
aarch64_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return const0_rtx;
  return aarch64_return_addr_rtx ();
}

static void
aarch64_asm_trampoline_template (FILE *f)
{
  /* Even if the current function doesn't have branch protection, some
     later function might, so since this template is only generated once
     we have to add a BTI just in case. */
  asm_fprintf (f, "\thint\t34 // bti c\n");

  if (TARGET_ILP32)
    {
      asm_fprintf (f, "\tldr\tw%d, .+20\n", IP1_REGNUM - R0_REGNUM);
      asm_fprintf (f, "\tldr\tw%d, .+20\n", STATIC_CHAIN_REGNUM - R0_REGNUM);
    }
  else
    {
      asm_fprintf (f, "\tldr\t%s, .+20\n", reg_names [IP1_REGNUM]);
      asm_fprintf (f, "\tldr\t%s, .+24\n", reg_names [STATIC_CHAIN_REGNUM]);
    }
  asm_fprintf (f, "\tbr\t%s\n", reg_names [IP1_REGNUM]);

  /* We always emit a speculation barrier.
     This is because the same trampoline template is used for every nested
     function.  Since nested functions are not particularly common or
     performant we don't worry too much about the extra instructions to copy
     around.
     This is not yet a problem, since we have not yet implemented function
     specific attributes to choose between hardening against straight line
     speculation or not, but such function specific attributes are likely to
     happen in the future.  */
  asm_fprintf (f, "\tdsb\tsy\n\tisb\n");

  assemble_aligned_integer (POINTER_BYTES, const0_rtx);
  assemble_aligned_integer (POINTER_BYTES, const0_rtx);
}

static void
aarch64_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr, mem, a_tramp;
  const int tramp_code_sz = 24;

  /* Don't need to copy the trailing D-words, we fill those in below.  */
  /* We create our own memory address in Pmode so that `emit_block_move` can
     use parts of the backend which expect Pmode addresses.  */
  rtx temp = convert_memory_address (Pmode, XEXP (m_tramp, 0));
  emit_block_move (gen_rtx_MEM (BLKmode, temp),
		   assemble_trampoline_template (),
		   GEN_INT (tramp_code_sz), BLOCK_OP_NORMAL);
  mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz);
  fnaddr = XEXP (DECL_RTL (fndecl), 0);
  if (GET_MODE (fnaddr) != ptr_mode)
    fnaddr = convert_memory_address (ptr_mode, fnaddr);
  emit_move_insn (mem, fnaddr);

  mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz + POINTER_BYTES);
  emit_move_insn (mem, chain_value);

  /* XXX We should really define a "clear_cache" pattern and use
     gen_clear_cache().  */
  a_tramp = XEXP (m_tramp, 0);
  maybe_emit_call_builtin___clear_cache (a_tramp,
					 plus_constant (ptr_mode,
							a_tramp,
							TRAMPOLINE_SIZE));
}

static unsigned char
aarch64_class_max_nregs (reg_class_t regclass, machine_mode mode)
{
  /* ??? Logically we should only need to provide a value when
     HARD_REGNO_MODE_OK says that at least one register in REGCLASS
     can hold MODE, but at the moment we need to handle all modes.
     Just ignore any runtime parts for registers that can't store them.  */
  HOST_WIDE_INT lowest_size = constant_lower_bound (GET_MODE_SIZE (mode));
  unsigned int nregs, vec_flags;
  switch (regclass)
    {
    case STUB_REGS:
    case TAILCALL_ADDR_REGS:
    case POINTER_REGS:
    case GENERAL_REGS:
    case ALL_REGS:
    case POINTER_AND_FP_REGS:
    case FP_REGS:
    case FP_LO_REGS:
    case FP_LO8_REGS:
      vec_flags = aarch64_classify_vector_mode (mode);
      if ((vec_flags & VEC_SVE_DATA)
	  && constant_multiple_p (GET_MODE_SIZE (mode),
				  aarch64_vl_bytes (mode, vec_flags), &nregs))
	return nregs;
      return (vec_flags & VEC_ADVSIMD
	      ? CEIL (lowest_size, UNITS_PER_VREG)
	      : CEIL (lowest_size, UNITS_PER_WORD));
    case STACK_REG:
    case PR_REGS:
    case PR_LO_REGS:
    case PR_HI_REGS:
    case FFR_REGS:
    case PR_AND_FFR_REGS:
      return 1;

    case NO_REGS:
      return 0;

    default:
      break;
    }
  gcc_unreachable ();
}

static reg_class_t
aarch64_preferred_reload_class (rtx x, reg_class_t regclass)
{
  if (regclass == POINTER_REGS)
    return GENERAL_REGS;

  if (regclass == STACK_REG)
    {
      if (REG_P(x)
	  && reg_class_subset_p (REGNO_REG_CLASS (REGNO (x)), POINTER_REGS))
	  return regclass;

      return NO_REGS;
    }

  /* Register eliminiation can result in a request for
     SP+constant->FP_REGS.  We cannot support such operations which
     use SP as source and an FP_REG as destination, so reject out
     right now.  */
  if (! reg_class_subset_p (regclass, GENERAL_REGS) && GET_CODE (x) == PLUS)
    {
      rtx lhs = XEXP (x, 0);

      /* Look through a possible SUBREG introduced by ILP32.  */
      if (SUBREG_P (lhs))
	lhs = SUBREG_REG (lhs);

      gcc_assert (REG_P (lhs));
      gcc_assert (reg_class_subset_p (REGNO_REG_CLASS (REGNO (lhs)),
				      POINTER_REGS));
      return NO_REGS;
    }

  return regclass;
}

void
aarch64_asm_output_labelref (FILE* f, const char *name)
{
  asm_fprintf (f, "%U%s", name);
}

static void
aarch64_elf_asm_constructor (rtx symbol, int priority)
{
  if (priority == DEFAULT_INIT_PRIORITY)
    default_ctor_section_asm_out_constructor (symbol, priority);
  else
    {
      section *s;
      /* While priority is known to be in range [0, 65535], so 18 bytes
         would be enough, the compiler might not know that.  To avoid
         -Wformat-truncation false positive, use a larger size.  */
      char buf[23];
      snprintf (buf, sizeof (buf), ".init_array.%.5u", priority);
      s = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL);
      switch_to_section (s);
      assemble_align (POINTER_SIZE);
      assemble_aligned_integer (POINTER_BYTES, symbol);
    }
}

static void
aarch64_elf_asm_destructor (rtx symbol, int priority)
{
  if (priority == DEFAULT_INIT_PRIORITY)
    default_dtor_section_asm_out_destructor (symbol, priority);
  else
    {
      section *s;
      /* While priority is known to be in range [0, 65535], so 18 bytes
         would be enough, the compiler might not know that.  To avoid
         -Wformat-truncation false positive, use a larger size.  */
      char buf[23];
      snprintf (buf, sizeof (buf), ".fini_array.%.5u", priority);
      s = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL);
      switch_to_section (s);
      assemble_align (POINTER_SIZE);
      assemble_aligned_integer (POINTER_BYTES, symbol);
    }
}

const char*
aarch64_output_casesi (rtx *operands)
{
  char buf[100];
  char label[100];
  rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
  int index;
  static const char *const patterns[4][2] =
  {
    {
      "ldrb\t%w3, [%0,%w1,uxtw]",
      "add\t%3, %4, %w3, sxtb #2"
    },
    {
      "ldrh\t%w3, [%0,%w1,uxtw #1]",
      "add\t%3, %4, %w3, sxth #2"
    },
    {
      "ldr\t%w3, [%0,%w1,uxtw #2]",
      "add\t%3, %4, %w3, sxtw #2"
    },
    /* We assume that DImode is only generated when not optimizing and
       that we don't really need 64-bit address offsets.  That would
       imply an object file with 8GB of code in a single function!  */
    {
      "ldr\t%w3, [%0,%w1,uxtw #2]",
      "add\t%3, %4, %w3, sxtw #2"
    }
  };

  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);

  scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (diff_vec));
  index = exact_log2 (GET_MODE_SIZE (mode));

  gcc_assert (index >= 0 && index <= 3);

  /* Need to implement table size reduction, by chaning the code below.  */
  output_asm_insn (patterns[index][0], operands);
  ASM_GENERATE_INTERNAL_LABEL (label, "Lrtx", CODE_LABEL_NUMBER (operands[2]));
  snprintf (buf, sizeof (buf),
	    "adr\t%%4, %s", targetm.strip_name_encoding (label));
  output_asm_insn (buf, operands);
  output_asm_insn (patterns[index][1], operands);
  output_asm_insn ("br\t%3", operands);
  output_asm_insn (aarch64_sls_barrier (aarch64_harden_sls_retbr_p ()),
		   operands);
  assemble_label (asm_out_file, label);
  return "";
}


/* Return size in bits of an arithmetic operand which is shifted/scaled and
   masked such that it is suitable for a UXTB, UXTH, or UXTW extend
   operator.  */

int
aarch64_uxt_size (int shift, HOST_WIDE_INT mask)
{
  if (shift >= 0 && shift <= 3)
    {
      int size;
      for (size = 8; size <= 32; size *= 2)
	{
	  HOST_WIDE_INT bits = ((HOST_WIDE_INT)1U << size) - 1;
	  if (mask == bits << shift)
	    return size;
	}
    }
  return 0;
}

/* Constant pools are per function only when PC relative
   literal loads are true or we are in the large memory
   model.  */

static inline bool
aarch64_can_use_per_function_literal_pools_p (void)
{
  return (aarch64_pcrelative_literal_loads
	  || aarch64_cmodel == AARCH64_CMODEL_LARGE);
}

static bool
aarch64_use_blocks_for_constant_p (machine_mode, const_rtx)
{
  /* We can't use blocks for constants when we're using a per-function
     constant pool.  */
  return !aarch64_can_use_per_function_literal_pools_p ();
}

/* Select appropriate section for constants depending
   on where we place literal pools.  */

static section *
aarch64_select_rtx_section (machine_mode mode,
			    rtx x,
			    unsigned HOST_WIDE_INT align)
{
  if (aarch64_can_use_per_function_literal_pools_p ())
    return function_section (current_function_decl);

  return default_elf_select_rtx_section (mode, x, align);
}

/* Implement ASM_OUTPUT_POOL_EPILOGUE.  */
void
aarch64_asm_output_pool_epilogue (FILE *f, const char *, tree,
				  HOST_WIDE_INT offset)
{
  /* When using per-function literal pools, we must ensure that any code
     section is aligned to the minimal instruction length, lest we get
     errors from the assembler re "unaligned instructions".  */
  if ((offset & 3) && aarch64_can_use_per_function_literal_pools_p ())
    ASM_OUTPUT_ALIGN (f, 2);
}

/* Costs.  */

/* Helper function for rtx cost calculation.  Strip a shift expression
   from X.  Returns the inner operand if successful, or the original
   expression on failure.  */
static rtx
aarch64_strip_shift (rtx x)
{
  rtx op = x;

  /* We accept both ROTATERT and ROTATE: since the RHS must be a constant
     we can convert both to ROR during final output.  */
  if ((GET_CODE (op) == ASHIFT
       || GET_CODE (op) == ASHIFTRT
       || GET_CODE (op) == LSHIFTRT
       || GET_CODE (op) == ROTATERT
       || GET_CODE (op) == ROTATE)
      && CONST_INT_P (XEXP (op, 1)))
    return XEXP (op, 0);

  if (GET_CODE (op) == MULT
      && CONST_INT_P (XEXP (op, 1))
      && ((unsigned) exact_log2 (INTVAL (XEXP (op, 1)))) < 64)
    return XEXP (op, 0);

  return x;
}

/* Helper function for rtx cost calculation.  Strip an extend
   expression from X.  Returns the inner operand if successful, or the
   original expression on failure.  We deal with a number of possible
   canonicalization variations here. If STRIP_SHIFT is true, then
   we can strip off a shift also.  */
static rtx
aarch64_strip_extend (rtx x, bool strip_shift)
{
  scalar_int_mode mode;
  rtx op = x;

  if (!is_a <scalar_int_mode> (GET_MODE (op), &mode))
    return op;

  if (GET_CODE (op) == AND
      && GET_CODE (XEXP (op, 0)) == MULT
      && CONST_INT_P (XEXP (XEXP (op, 0), 1))
      && CONST_INT_P (XEXP (op, 1))
      && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (XEXP (op, 0), 1))),
			   INTVAL (XEXP (op, 1))) != 0)
    return XEXP (XEXP (op, 0), 0);

  /* Now handle extended register, as this may also have an optional
     left shift by 1..4.  */
  if (strip_shift
      && GET_CODE (op) == ASHIFT
      && CONST_INT_P (XEXP (op, 1))
      && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op, 1))) <= 4)
    op = XEXP (op, 0);

  if (GET_CODE (op) == ZERO_EXTEND
      || GET_CODE (op) == SIGN_EXTEND)
    op = XEXP (op, 0);

  if (op != x)
    return op;

  return x;
}

/* Helper function for rtx cost calculation. Strip extension as well as any
   inner VEC_SELECT high-half from X. Returns the inner vector operand if
   successful, or the original expression on failure.  */
static rtx
aarch64_strip_extend_vec_half (rtx x)
{
  if (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
    {
      x = XEXP (x, 0);
      if (GET_CODE (x) == VEC_SELECT
	  && vec_series_highpart_p (GET_MODE (x), GET_MODE (XEXP (x, 0)),
				    XEXP (x, 1)))
	x = XEXP (x, 0);
    }
  return x;
}

/* Helper function for rtx cost calculation. Strip VEC_DUPLICATE as well as
   any subsequent extend and VEC_SELECT from X. Returns the inner scalar
   operand if successful, or the original expression on failure.  */
static rtx
aarch64_strip_duplicate_vec_elt (rtx x)
{
  if (GET_CODE (x) == VEC_DUPLICATE
      && is_a<scalar_mode> (GET_MODE (XEXP (x, 0))))
    {
      x = XEXP (x, 0);
      if (GET_CODE (x) == VEC_SELECT)
	x = XEXP (x, 0);
      else if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
	       && GET_CODE (XEXP (x, 0)) == VEC_SELECT)
	x = XEXP (XEXP (x, 0), 0);
    }
  return x;
}

/* Return true iff CODE is a shift supported in combination
   with arithmetic instructions.  */

static bool
aarch64_shift_p (enum rtx_code code)
{
  return code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT;
}


/* Return true iff X is a cheap shift without a sign extend. */

static bool
aarch64_cheap_mult_shift_p (rtx x)
{
  rtx op0, op1;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if (!(aarch64_tune_params.extra_tuning_flags
                      & AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND))
    return false;

  if (GET_CODE (op0) == SIGN_EXTEND)
    return false;

  if (GET_CODE (x) == ASHIFT && CONST_INT_P (op1)
      && UINTVAL (op1) <= 4)
    return true;

  if (GET_CODE (x) != MULT || !CONST_INT_P (op1))
    return false;

  HOST_WIDE_INT l2 = exact_log2 (INTVAL (op1));

  if (l2 > 0 && l2 <= 4)
    return true;

  return false;
}

/* Helper function for rtx cost calculation.  Calculate the cost of
   a MULT or ASHIFT, which may be part of a compound PLUS/MINUS rtx.
   Return the calculated cost of the expression, recursing manually in to
   operands where needed.  */

static int
aarch64_rtx_mult_cost (rtx x, enum rtx_code code, int outer, bool speed)
{
  rtx op0, op1;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;
  int cost = 0;
  bool compound_p = (outer == PLUS || outer == MINUS);
  machine_mode mode = GET_MODE (x);

  gcc_checking_assert (code == MULT);

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if (VECTOR_MODE_P (mode))
    {
      unsigned int vec_flags = aarch64_classify_vector_mode (mode);
      if (TARGET_SIMD && (vec_flags & VEC_ADVSIMD))
	{
	  /* The select-operand-high-half versions of the instruction have the
	     same cost as the three vector version - don't add the costs of the
	     extension or selection into the costs of the multiply.  */
	  op0 = aarch64_strip_extend_vec_half (op0);
	  op1 = aarch64_strip_extend_vec_half (op1);
	  /* The by-element versions of the instruction have the same costs as
	     the normal 3-vector version.  We make an assumption that the input
	     to the VEC_DUPLICATE is already on the FP & SIMD side.  This means
	     costing of a MUL by element pre RA is a bit optimistic.  */
	  op0 = aarch64_strip_duplicate_vec_elt (op0);
	  op1 = aarch64_strip_duplicate_vec_elt (op1);
	}
      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);
      if (speed)
	{
	  if (GET_CODE (x) == MULT)
	    cost += extra_cost->vect.mult;
	  /* This is to catch the SSRA costing currently flowing here.  */
	  else
	    cost += extra_cost->vect.alu;
	}
      return cost;
    }

  /* Integer multiply/fma.  */
  if (GET_MODE_CLASS (mode) == MODE_INT)
    {
      /* The multiply will be canonicalized as a shift, cost it as such.  */
      if (aarch64_shift_p (GET_CODE (x))
	  || (CONST_INT_P (op1)
	      && exact_log2 (INTVAL (op1)) > 0))
	{
	  bool is_extend = GET_CODE (op0) == ZERO_EXTEND
	                   || GET_CODE (op0) == SIGN_EXTEND;
	  if (speed)
	    {
	      if (compound_p)
	        {
		  /* If the shift is considered cheap,
		     then don't add any cost. */
		  if (aarch64_cheap_mult_shift_p (x))
		    ;
	          else if (REG_P (op1))
		    /* ARITH + shift-by-register.  */
		    cost += extra_cost->alu.arith_shift_reg;
		  else if (is_extend)
		    /* ARITH + extended register.  We don't have a cost field
		       for ARITH+EXTEND+SHIFT, so use extend_arith here.  */
		    cost += extra_cost->alu.extend_arith;
		  else
		    /* ARITH + shift-by-immediate.  */
		    cost += extra_cost->alu.arith_shift;
		}
	      else
		/* LSL (immediate).  */
	        cost += extra_cost->alu.shift;

	    }
	  /* Strip extends as we will have costed them in the case above.  */
	  if (is_extend)
	    op0 = aarch64_strip_extend (op0, true);

	  cost += rtx_cost (op0, VOIDmode, code, 0, speed);

	  return cost;
	}

      /* MNEG or [US]MNEGL.  Extract the NEG operand and indicate that it's a
	 compound and let the below cases handle it.  After all, MNEG is a
	 special-case alias of MSUB.  */
      if (GET_CODE (op0) == NEG)
	{
	  op0 = XEXP (op0, 0);
	  compound_p = true;
	}

      /* Integer multiplies or FMAs have zero/sign extending variants.  */
      if ((GET_CODE (op0) == ZERO_EXTEND
	   && GET_CODE (op1) == ZERO_EXTEND)
	  || (GET_CODE (op0) == SIGN_EXTEND
	      && GET_CODE (op1) == SIGN_EXTEND))
	{
	  cost += rtx_cost (XEXP (op0, 0), VOIDmode, MULT, 0, speed);
	  cost += rtx_cost (XEXP (op1, 0), VOIDmode, MULT, 1, speed);

	  if (speed)
	    {
	      if (compound_p)
		/* SMADDL/UMADDL/UMSUBL/SMSUBL.  */
		cost += extra_cost->mult[0].extend_add;
	      else
		/* MUL/SMULL/UMULL.  */
		cost += extra_cost->mult[0].extend;
	    }

	  return cost;
	}

      /* This is either an integer multiply or a MADD.  In both cases
	 we want to recurse and cost the operands.  */
      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);

      if (speed)
	{
	  if (compound_p)
	    /* MADD/MSUB.  */
	    cost += extra_cost->mult[mode == DImode].add;
	  else
	    /* MUL.  */
	    cost += extra_cost->mult[mode == DImode].simple;
	}

      return cost;
    }
  else
    {
      if (speed)
	{
	  /* Floating-point FMA/FMUL can also support negations of the
	     operands, unless the rounding mode is upward or downward in
	     which case FNMUL is different than FMUL with operand negation.  */
	  bool neg0 = GET_CODE (op0) == NEG;
	  bool neg1 = GET_CODE (op1) == NEG;
	  if (compound_p || !flag_rounding_math || (neg0 && neg1))
	    {
	      if (neg0)
		op0 = XEXP (op0, 0);
	      if (neg1)
		op1 = XEXP (op1, 0);
	    }

	  if (compound_p)
	    /* FMADD/FNMADD/FNMSUB/FMSUB.  */
	    cost += extra_cost->fp[mode == DFmode].fma;
	  else
	    /* FMUL/FNMUL.  */
	    cost += extra_cost->fp[mode == DFmode].mult;
	}

      cost += rtx_cost (op0, mode, MULT, 0, speed);
      cost += rtx_cost (op1, mode, MULT, 1, speed);
      return cost;
    }
}

static int
aarch64_address_cost (rtx x,
		      machine_mode mode,
		      addr_space_t as ATTRIBUTE_UNUSED,
		      bool speed)
{
  enum rtx_code c = GET_CODE (x);
  const struct cpu_addrcost_table *addr_cost = aarch64_tune_params.addr_cost;
  struct aarch64_address_info info;
  int cost = 0;
  info.shift = 0;

  if (!aarch64_classify_address (&info, x, mode, false))
    {
      if (GET_CODE (x) == CONST || SYMBOL_REF_P (x))
	{
	  /* This is a CONST or SYMBOL ref which will be split
	     in a different way depending on the code model in use.
	     Cost it through the generic infrastructure.  */
	  int cost_symbol_ref = rtx_cost (x, Pmode, MEM, 1, speed);
	  /* Divide through by the cost of one instruction to
	     bring it to the same units as the address costs.  */
	  cost_symbol_ref /= COSTS_N_INSNS (1);
	  /* The cost is then the cost of preparing the address,
	     followed by an immediate (possibly 0) offset.  */
	  return cost_symbol_ref + addr_cost->imm_offset;
	}
      else
	{
	  /* This is most likely a jump table from a case
	     statement.  */
	  return addr_cost->register_offset;
	}
    }

  switch (info.type)
    {
      case ADDRESS_LO_SUM:
      case ADDRESS_SYMBOLIC:
      case ADDRESS_REG_IMM:
	cost += addr_cost->imm_offset;
	break;

      case ADDRESS_REG_WB:
	if (c == PRE_INC || c == PRE_DEC || c == PRE_MODIFY)
	  cost += addr_cost->pre_modify;
	else if (c == POST_INC || c == POST_DEC || c == POST_MODIFY)
	  {
	    unsigned int nvectors = aarch64_ldn_stn_vectors (mode);
	    if (nvectors == 3)
	      cost += addr_cost->post_modify_ld3_st3;
	    else if (nvectors == 4)
	      cost += addr_cost->post_modify_ld4_st4;
	    else
	      cost += addr_cost->post_modify;
	  }
	else
	  gcc_unreachable ();

	break;

      case ADDRESS_REG_REG:
	cost += addr_cost->register_offset;
	break;

      case ADDRESS_REG_SXTW:
	cost += addr_cost->register_sextend;
	break;

      case ADDRESS_REG_UXTW:
	cost += addr_cost->register_zextend;
	break;

      default:
	gcc_unreachable ();
    }


  if (info.shift > 0)
    {
      /* For the sake of calculating the cost of the shifted register
	 component, we can treat same sized modes in the same way.  */
      if (known_eq (GET_MODE_BITSIZE (mode), 16))
	cost += addr_cost->addr_scale_costs.hi;
      else if (known_eq (GET_MODE_BITSIZE (mode), 32))
	cost += addr_cost->addr_scale_costs.si;
      else if (known_eq (GET_MODE_BITSIZE (mode), 64))
	cost += addr_cost->addr_scale_costs.di;
      else
	/* We can't tell, or this is a 128-bit vector.  */
	cost += addr_cost->addr_scale_costs.ti;
    }

  return cost;
}

/* Return the cost of a branch.  If SPEED_P is true then the compiler is
   optimizing for speed.  If PREDICTABLE_P is true then the branch is predicted
   to be taken.  */

int
aarch64_branch_cost (bool speed_p, bool predictable_p)
{
  /* When optimizing for speed, use the cost of unpredictable branches.  */
  const struct cpu_branch_cost *branch_costs =
    aarch64_tune_params.branch_costs;

  if (!speed_p || predictable_p)
    return branch_costs->predictable;
  else
    return branch_costs->unpredictable;
}

/* Return true if X is a zero or sign extract
   usable in an ADD or SUB (extended register) instruction.  */
static bool
aarch64_rtx_arith_op_extract_p (rtx x)
{
  /* The simple case <ARITH>, XD, XN, XM, [us]xt.
     No shift.  */
  if (GET_CODE (x) == SIGN_EXTEND
      || GET_CODE (x) == ZERO_EXTEND)
    return REG_P (XEXP (x, 0));

  return false;
}

static bool
aarch64_frint_unspec_p (unsigned int u)
{
  switch (u)
    {
      case UNSPEC_FRINTZ:
      case UNSPEC_FRINTP:
      case UNSPEC_FRINTM:
      case UNSPEC_FRINTA:
      case UNSPEC_FRINTN:
      case UNSPEC_FRINTX:
      case UNSPEC_FRINTI:
        return true;

      default:
        return false;
    }
}

/* Return true iff X is an rtx that will match an extr instruction
   i.e. as described in the *extr<mode>5_insn family of patterns.
   OP0 and OP1 will be set to the operands of the shifts involved
   on success and will be NULL_RTX otherwise.  */

static bool
aarch64_extr_rtx_p (rtx x, rtx *res_op0, rtx *res_op1)
{
  rtx op0, op1;
  scalar_int_mode mode;
  if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
    return false;

  *res_op0 = NULL_RTX;
  *res_op1 = NULL_RTX;

  if (GET_CODE (x) != IOR)
    return false;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  if ((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
      || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
    {
     /* Canonicalise locally to ashift in op0, lshiftrt in op1.  */
      if (GET_CODE (op1) == ASHIFT)
        std::swap (op0, op1);

      if (!CONST_INT_P (XEXP (op0, 1)) || !CONST_INT_P (XEXP (op1, 1)))
        return false;

      unsigned HOST_WIDE_INT shft_amnt_0 = UINTVAL (XEXP (op0, 1));
      unsigned HOST_WIDE_INT shft_amnt_1 = UINTVAL (XEXP (op1, 1));

      if (shft_amnt_0 < GET_MODE_BITSIZE (mode)
          && shft_amnt_0 + shft_amnt_1 == GET_MODE_BITSIZE (mode))
        {
          *res_op0 = XEXP (op0, 0);
          *res_op1 = XEXP (op1, 0);
          return true;
        }
    }

  return false;
}

/* Calculate the cost of calculating (if_then_else (OP0) (OP1) (OP2)),
   storing it in *COST.  Result is true if the total cost of the operation
   has now been calculated.  */
static bool
aarch64_if_then_else_costs (rtx op0, rtx op1, rtx op2, int *cost, bool speed)
{
  rtx inner;
  rtx comparator;
  enum rtx_code cmpcode;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;

  if (COMPARISON_P (op0))
    {
      inner = XEXP (op0, 0);
      comparator = XEXP (op0, 1);
      cmpcode = GET_CODE (op0);
    }
  else
    {
      inner = op0;
      comparator = const0_rtx;
      cmpcode = NE;
    }

  if (GET_CODE (op1) == PC || GET_CODE (op2) == PC)
    {
      /* Conditional branch.  */
      if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC)
	return true;
      else
	{
	  if (cmpcode == NE || cmpcode == EQ)
	    {
	      if (comparator == const0_rtx)
		{
		  /* TBZ/TBNZ/CBZ/CBNZ.  */
		  if (GET_CODE (inner) == ZERO_EXTRACT)
		    /* TBZ/TBNZ.  */
		    *cost += rtx_cost (XEXP (inner, 0), VOIDmode,
				       ZERO_EXTRACT, 0, speed);
		  else
		    /* CBZ/CBNZ.  */
		    *cost += rtx_cost (inner, VOIDmode, cmpcode, 0, speed);

		  return true;
		}
	      if (register_operand (inner, VOIDmode)
		  && aarch64_imm24 (comparator, VOIDmode))
		{
		  /* SUB and SUBS.  */
		  *cost += COSTS_N_INSNS (2);
		  if (speed)
		    *cost += extra_cost->alu.arith * 2;
		  return true;
		}
	    }
	  else if (cmpcode == LT || cmpcode == GE)
	    {
	      /* TBZ/TBNZ.  */
	      if (comparator == const0_rtx)
		return true;
	    }
	}
    }
  else if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC)
    {
      /* CCMP.  */
      if (GET_CODE (op1) == COMPARE)
	{
	  /* Increase cost of CCMP reg, 0, imm, CC to prefer CMP reg, 0.  */
	  if (XEXP (op1, 1) == const0_rtx)
	    *cost += 1;
	  if (speed)
	    {
	      machine_mode mode = GET_MODE (XEXP (op1, 0));

	      if (GET_MODE_CLASS (mode) == MODE_INT)
		*cost += extra_cost->alu.arith;
	      else
		*cost += extra_cost->fp[mode == DFmode].compare;
	    }
	  return true;
	}

      /* It's a conditional operation based on the status flags,
	 so it must be some flavor of CSEL.  */

      /* CSNEG, CSINV, and CSINC are handled for free as part of CSEL.  */
      if (GET_CODE (op1) == NEG
          || GET_CODE (op1) == NOT
          || (GET_CODE (op1) == PLUS && XEXP (op1, 1) == const1_rtx))
	op1 = XEXP (op1, 0);
      else if (GET_CODE (op1) == ZERO_EXTEND && GET_CODE (op2) == ZERO_EXTEND)
	{
	  /* CSEL with zero-extension (*cmovdi_insn_uxtw).  */
	  op1 = XEXP (op1, 0);
	  op2 = XEXP (op2, 0);
	}
      else if (GET_CODE (op1) == ZERO_EXTEND && op2 == const0_rtx)
	{
	  inner = XEXP (op1, 0);
	  if (GET_CODE (inner) == NEG || GET_CODE (inner) == NOT)
	    /* CSINV/NEG with zero extend + const 0 (*csinv3_uxtw_insn3).  */
	    op1 = XEXP (inner, 0);
	}

      *cost += rtx_cost (op1, VOIDmode, IF_THEN_ELSE, 1, speed);
      *cost += rtx_cost (op2, VOIDmode, IF_THEN_ELSE, 2, speed);
      return true;
    }

  /* We don't know what this is, cost all operands.  */
  return false;
}

/* Check whether X is a bitfield operation of the form shift + extend that
   maps down to a UBFIZ/SBFIZ/UBFX/SBFX instruction.  If so, return the
   operand to which the bitfield operation is applied.  Otherwise return
   NULL_RTX.  */

static rtx
aarch64_extend_bitfield_pattern_p (rtx x)
{
  rtx_code outer_code = GET_CODE (x);
  machine_mode outer_mode = GET_MODE (x);

  if (outer_code != ZERO_EXTEND && outer_code != SIGN_EXTEND
      && outer_mode != SImode && outer_mode != DImode)
    return NULL_RTX;

  rtx inner = XEXP (x, 0);
  rtx_code inner_code = GET_CODE (inner);
  machine_mode inner_mode = GET_MODE (inner);
  rtx op = NULL_RTX;

  switch (inner_code)
    {
      case ASHIFT:
	if (CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      case LSHIFTRT:
	if (outer_code == ZERO_EXTEND && CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      case ASHIFTRT:
	if (outer_code == SIGN_EXTEND && CONST_INT_P (XEXP (inner, 1))
	    && (inner_mode == QImode || inner_mode == HImode))
	  op = XEXP (inner, 0);
	break;
      default:
	break;
    }

  return op;
}

/* Return true if the mask and a shift amount from an RTX of the form
   (x << SHFT_AMNT) & MASK are valid to combine into a UBFIZ instruction of
   mode MODE.  See the *andim_ashift<mode>_bfiz pattern.  */

bool
aarch64_mask_and_shift_for_ubfiz_p (scalar_int_mode mode, rtx mask,
				    rtx shft_amnt)
{
  return CONST_INT_P (mask) && CONST_INT_P (shft_amnt)
	 && INTVAL (mask) > 0
	 && UINTVAL (shft_amnt) < GET_MODE_BITSIZE (mode)
	 && exact_log2 ((UINTVAL (mask) >> UINTVAL (shft_amnt)) + 1) >= 0
	 && (UINTVAL (mask)
	     & ((HOST_WIDE_INT_1U << UINTVAL (shft_amnt)) - 1)) == 0;
}

/* Return true if the masks and a shift amount from an RTX of the form
   ((x & MASK1) | ((y << SHIFT_AMNT) & MASK2)) are valid to combine into
   a BFI instruction of mode MODE.  See *arch64_bfi patterns.  */

bool
aarch64_masks_and_shift_for_bfi_p (scalar_int_mode mode,
				   unsigned HOST_WIDE_INT mask1,
				   unsigned HOST_WIDE_INT shft_amnt,
				   unsigned HOST_WIDE_INT mask2)
{
  unsigned HOST_WIDE_INT t;

  /* Verify that there is no overlap in what bits are set in the two masks.  */
  if (mask1 != ~mask2)
    return false;

  /* Verify that mask2 is not all zeros or ones.  */
  if (mask2 == 0 || mask2 == HOST_WIDE_INT_M1U)
    return false;

  /* The shift amount should always be less than the mode size.  */
  gcc_assert (shft_amnt < GET_MODE_BITSIZE (mode));

  /* Verify that the mask being shifted is contiguous and would be in the
     least significant bits after shifting by shft_amnt.  */
  t = mask2 + (HOST_WIDE_INT_1U << shft_amnt);
  return (t == (t & -t));
}

/* Calculate the cost of calculating X, storing it in *COST.  Result
   is true if the total cost of the operation has now been calculated.  */
static bool
aarch64_rtx_costs (rtx x, machine_mode mode, int outer ATTRIBUTE_UNUSED,
		   int param ATTRIBUTE_UNUSED, int *cost, bool speed)
{
  rtx op0, op1, op2;
  const struct cpu_cost_table *extra_cost
    = aarch64_tune_params.insn_extra_cost;
  rtx_code code = GET_CODE (x);
  scalar_int_mode int_mode;

  /* By default, assume that everything has equivalent cost to the
     cheapest instruction.  Any additional costs are applied as a delta
     above this default.  */
  *cost = COSTS_N_INSNS (1);

  switch (code)
    {
    case SET:
      /* The cost depends entirely on the operands to SET.  */
      *cost = 0;
      op0 = SET_DEST (x);
      op1 = SET_SRC (x);

      switch (GET_CODE (op0))
	{
	case MEM:
	  if (speed)
	    {
	      rtx address = XEXP (op0, 0);
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->ldst.storev;
	      else if (GET_MODE_CLASS (mode) == MODE_INT)
		*cost += extra_cost->ldst.store;
	      else if (mode == SFmode || mode == SDmode)
		*cost += extra_cost->ldst.storef;
	      else if (mode == DFmode || mode == DDmode)
		*cost += extra_cost->ldst.stored;

	      *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	    }

	  *cost += rtx_cost (op1, mode, SET, 1, speed);
	  return true;

	case SUBREG:
	  if (! REG_P (SUBREG_REG (op0)))
	    *cost += rtx_cost (SUBREG_REG (op0), VOIDmode, SET, 0, speed);

	  /* Fall through.  */
	case REG:
	  /* The cost is one per vector-register copied.  */
	  if (VECTOR_MODE_P (GET_MODE (op0)) && REG_P (op1))
	    {
	      int nregs = aarch64_hard_regno_nregs (V0_REGNUM, GET_MODE (op0));
	      *cost = COSTS_N_INSNS (nregs);
	    }
	  /* const0_rtx is in general free, but we will use an
	     instruction to set a register to 0.  */
	  else if (REG_P (op1) || op1 == const0_rtx)
	    {
	      /* The cost is 1 per register copied.  */
	      int nregs = aarch64_hard_regno_nregs (R0_REGNUM, GET_MODE (op0));
	      *cost = COSTS_N_INSNS (nregs);
	    }
          else
	    /* Cost is just the cost of the RHS of the set.  */
	    *cost += rtx_cost (op1, mode, SET, 1, speed);
	  return true;

	case ZERO_EXTRACT:
	case SIGN_EXTRACT:
	  /* Bit-field insertion.  Strip any redundant widening of
	     the RHS to meet the width of the target.  */
	  if (SUBREG_P (op1))
	    op1 = SUBREG_REG (op1);
	  if ((GET_CODE (op1) == ZERO_EXTEND
	       || GET_CODE (op1) == SIGN_EXTEND)
	      && CONST_INT_P (XEXP (op0, 1))
	      && is_a <scalar_int_mode> (GET_MODE (XEXP (op1, 0)), &int_mode)
	      && GET_MODE_BITSIZE (int_mode) >= INTVAL (XEXP (op0, 1)))
	    op1 = XEXP (op1, 0);

          if (CONST_INT_P (op1))
            {
              /* MOV immediate is assumed to always be cheap.  */
              *cost = COSTS_N_INSNS (1);
            }
          else
            {
              /* BFM.  */
	      if (speed)
		*cost += extra_cost->alu.bfi;
	      *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) code, 1, speed);
            }

	  return true;

	default:
	  /* We can't make sense of this, assume default cost.  */
          *cost = COSTS_N_INSNS (1);
	  return false;
	}
      return false;

    case CONST_INT:
      /* If an instruction can incorporate a constant within the
	 instruction, the instruction's expression avoids calling
	 rtx_cost() on the constant.  If rtx_cost() is called on a
	 constant, then it is usually because the constant must be
	 moved into a register by one or more instructions.

	 The exception is constant 0, which can be expressed
	 as XZR/WZR and is therefore free.  The exception to this is
	 if we have (set (reg) (const0_rtx)) in which case we must cost
	 the move.  However, we can catch that when we cost the SET, so
	 we don't need to consider that here.  */
      if (x == const0_rtx)
	*cost = 0;
      else
	{
	  /* To an approximation, building any other constant is
	     proportionally expensive to the number of instructions
	     required to build that constant.  This is true whether we
	     are compiling for SPEED or otherwise.  */
	  if (!is_a <scalar_int_mode> (mode, &int_mode))
	    int_mode = word_mode;
	  *cost = COSTS_N_INSNS (aarch64_internal_mov_immediate
				 (NULL_RTX, x, false, int_mode));
	}
      return true;

    case CONST_DOUBLE:

      /* First determine number of instructions to do the move
	  as an integer constant.  */
      if (!aarch64_float_const_representable_p (x)
	   && !aarch64_can_const_movi_rtx_p (x, mode)
	   && aarch64_float_const_rtx_p (x))
	{
	  unsigned HOST_WIDE_INT ival;
	  bool succeed = aarch64_reinterpret_float_as_int (x, &ival);
	  gcc_assert (succeed);

	  scalar_int_mode imode = (mode == HFmode
				   ? SImode
				   : int_mode_for_mode (mode).require ());
	  int ncost = aarch64_internal_mov_immediate
		(NULL_RTX, gen_int_mode (ival, imode), false, imode);
	  *cost += COSTS_N_INSNS (ncost);
	  return true;
	}

      if (speed)
	{
	  /* mov[df,sf]_aarch64.  */
	  if (aarch64_float_const_representable_p (x))
	    /* FMOV (scalar immediate).  */
	    *cost += extra_cost->fp[mode == DFmode || mode == DDmode].fpconst;
	  else if (!aarch64_float_const_zero_rtx_p (x))
	    {
	      /* This will be a load from memory.  */
	      if (mode == DFmode || mode == DDmode)
		*cost += extra_cost->ldst.loadd;
	      else
		*cost += extra_cost->ldst.loadf;
	    }
	  else
	    /* Otherwise this is +0.0.  We get this using MOVI d0, #0
	       or MOV v0.s[0], wzr - neither of which are modeled by the
	       cost tables.  Just use the default cost.  */
	    {
	    }
	}

      return true;

    case MEM:
      if (speed)
	{
	  /* For loads we want the base cost of a load, plus an
	     approximation for the additional cost of the addressing
	     mode.  */
	  rtx address = XEXP (x, 0);
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->ldst.loadv;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    *cost += extra_cost->ldst.load;
	  else if (mode == SFmode || mode == SDmode)
	    *cost += extra_cost->ldst.loadf;
	  else if (mode == DFmode || mode == DDmode)
	    *cost += extra_cost->ldst.loadd;

	  *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	}

      return true;

    case NEG:
      op0 = XEXP (x, 0);

      if (VECTOR_MODE_P (mode))
	{
	  if (speed)
	    {
	      /* FNEG.  */
	      *cost += extra_cost->vect.alu;
	    }
	  return false;
	}

      if (GET_MODE_CLASS (mode) == MODE_INT)
	{
          if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE
              || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE)
            {
              /* CSETM.  */
	      *cost += rtx_cost (XEXP (op0, 0), VOIDmode, NEG, 0, speed);
              return true;
            }

	  /* Cost this as SUB wzr, X.  */
          op0 = CONST0_RTX (mode);
          op1 = XEXP (x, 0);
          goto cost_minus;
        }

      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
        {
          /* Support (neg(fma...)) as a single instruction only if
             sign of zeros is unimportant.  This matches the decision
             making in aarch64.md.  */
          if (GET_CODE (op0) == FMA && !HONOR_SIGNED_ZEROS (GET_MODE (op0)))
            {
	      /* FNMADD.  */
	      *cost = rtx_cost (op0, mode, NEG, 0, speed);
              return true;
            }
	  if (GET_CODE (op0) == MULT)
	    {
	      /* FNMUL.  */
	      *cost = rtx_cost (op0, mode, NEG, 0, speed);
	      return true;
	    }
	  if (speed)
	    /* FNEG.  */
	    *cost += extra_cost->fp[mode == DFmode].neg;
          return false;
        }

      return false;

    case CLRSB:
    case CLZ:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.clz;
	}

      return false;

    case CTZ:
      *cost = COSTS_N_INSNS (2);

      if (speed)
	*cost += extra_cost->alu.clz + extra_cost->alu.rev;
      return false;

    case COMPARE:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (op1 == const0_rtx
	  && GET_CODE (op0) == AND)
	{
	  x = op0;
	  mode = GET_MODE (op0);
	  goto cost_logic;
	}

      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
        {
          /* TODO: A write to the CC flags possibly costs extra, this
	     needs encoding in the cost tables.  */

	  mode = GET_MODE (op0);
          /* ANDS.  */
          if (GET_CODE (op0) == AND)
            {
              x = op0;
              goto cost_logic;
            }

          if (GET_CODE (op0) == PLUS)
            {
	      /* ADDS (and CMN alias).  */
              x = op0;
              goto cost_plus;
            }

          if (GET_CODE (op0) == MINUS)
            {
	      /* SUBS.  */
              x = op0;
              goto cost_minus;
            }

	  if (GET_CODE (op0) == ZERO_EXTRACT && op1 == const0_rtx
	      && GET_MODE (x) == CC_NZmode && CONST_INT_P (XEXP (op0, 1))
	      && CONST_INT_P (XEXP (op0, 2)))
	    {
	      /* COMPARE of ZERO_EXTRACT form of TST-immediate.
		 Handle it here directly rather than going to cost_logic
		 since we know the immediate generated for the TST is valid
		 so we can avoid creating an intermediate rtx for it only
		 for costing purposes.  */
	      if (speed)
		*cost += extra_cost->alu.logical;

	      *cost += rtx_cost (XEXP (op0, 0), GET_MODE (op0),
				 ZERO_EXTRACT, 0, speed);
	      return true;
	    }

          if (GET_CODE (op1) == NEG)
            {
	      /* CMN.  */
	      if (speed)
		*cost += extra_cost->alu.arith;

	      *cost += rtx_cost (op0, mode, COMPARE, 0, speed);
	      *cost += rtx_cost (XEXP (op1, 0), mode, NEG, 1, speed);
              return true;
            }

          /* CMP.

	     Compare can freely swap the order of operands, and
             canonicalization puts the more complex operation first.
             But the integer MINUS logic expects the shift/extend
             operation in op1.  */
          if (! (REG_P (op0)
		 || (SUBREG_P (op0) && REG_P (SUBREG_REG (op0)))))
          {
            op0 = XEXP (x, 1);
            op1 = XEXP (x, 0);
          }
          goto cost_minus;
        }

      if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
        {
	  /* FCMP.  */
	  if (speed)
	    *cost += extra_cost->fp[mode == DFmode].compare;

          if (CONST_DOUBLE_P (op1) && aarch64_float_const_zero_rtx_p (op1))
            {
	      *cost += rtx_cost (op0, VOIDmode, COMPARE, 0, speed);
              /* FCMP supports constant 0.0 for no extra cost. */
              return true;
            }
          return false;
        }

      if (VECTOR_MODE_P (mode))
	{
	  /* Vector compare.  */
	  if (speed)
	    *cost += extra_cost->vect.alu;

	  if (aarch64_float_const_zero_rtx_p (op1))
	    {
	      /* Vector cm (eq|ge|gt|lt|le) supports constant 0.0 for no extra
		 cost.  */
	      return true;
	    }
	  return false;
	}
      return false;

    case MINUS:
      {
	op0 = XEXP (x, 0);
	op1 = XEXP (x, 1);

cost_minus:
	if (VECTOR_MODE_P (mode))
	  {
	    /* SUBL2 and SUBW2.  */
	    unsigned int vec_flags = aarch64_classify_vector_mode (mode);
	    if (TARGET_SIMD && (vec_flags & VEC_ADVSIMD))
	      {
		/* The select-operand-high-half versions of the sub instruction
		   have the same cost as the regular three vector version -
		   don't add the costs of the select into the costs of the sub.
		   */
		op0 = aarch64_strip_extend_vec_half (op0);
		op1 = aarch64_strip_extend_vec_half (op1);
	      }
	  }

	*cost += rtx_cost (op0, mode, MINUS, 0, speed);

	/* Detect valid immediates.  */
	if ((GET_MODE_CLASS (mode) == MODE_INT
	     || (GET_MODE_CLASS (mode) == MODE_CC
		 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT))
	    && CONST_INT_P (op1)
	    && aarch64_uimm12_shift (INTVAL (op1)))
	  {
	    if (speed)
	      /* SUB(S) (immediate).  */
	      *cost += extra_cost->alu.arith;
	    return true;
	  }

	/* Look for SUB (extended register).  */
	if (is_a <scalar_int_mode> (mode)
	    && aarch64_rtx_arith_op_extract_p (op1))
	  {
	    if (speed)
	      *cost += extra_cost->alu.extend_arith;

	    op1 = aarch64_strip_extend (op1, true);
	    *cost += rtx_cost (op1, VOIDmode,
			       (enum rtx_code) GET_CODE (op1), 0, speed);
	    return true;
	  }

	rtx new_op1 = aarch64_strip_extend (op1, false);

	/* Cost this as an FMA-alike operation.  */
	if ((GET_CODE (new_op1) == MULT
	     || aarch64_shift_p (GET_CODE (new_op1)))
	    && code != COMPARE)
	  {
	    *cost += aarch64_rtx_mult_cost (new_op1, MULT,
					    (enum rtx_code) code,
					    speed);
	    return true;
	  }

	*cost += rtx_cost (new_op1, VOIDmode, MINUS, 1, speed);

	if (speed)
	  {
	    if (VECTOR_MODE_P (mode))
	      {
		/* Vector SUB.  */
		*cost += extra_cost->vect.alu;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_INT)
	      {
		/* SUB(S).  */
		*cost += extra_cost->alu.arith;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	      {
		/* FSUB.  */
		*cost += extra_cost->fp[mode == DFmode].addsub;
	      }
	  }
	return true;
      }

    case PLUS:
      {
	rtx new_op0;

	op0 = XEXP (x, 0);
	op1 = XEXP (x, 1);

cost_plus:
	if (VECTOR_MODE_P (mode))
	  {
	    /* ADDL2 and ADDW2.  */
	    unsigned int vec_flags = aarch64_classify_vector_mode (mode);
	    if (TARGET_SIMD && (vec_flags & VEC_ADVSIMD))
	      {
		/* The select-operand-high-half versions of the add instruction
		   have the same cost as the regular three vector version -
		   don't add the costs of the select into the costs of the add.
		   */
		op0 = aarch64_strip_extend_vec_half (op0);
		op1 = aarch64_strip_extend_vec_half (op1);
	      }
	  }

	if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE
	    || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE)
	  {
	    /* CSINC.  */
	    *cost += rtx_cost (XEXP (op0, 0), mode, PLUS, 0, speed);
	    *cost += rtx_cost (op1, mode, PLUS, 1, speed);
	    return true;
	  }

	if (GET_MODE_CLASS (mode) == MODE_INT
	    && (aarch64_plus_immediate (op1, mode)
		|| aarch64_sve_addvl_addpl_immediate (op1, mode)))
	  {
	    *cost += rtx_cost (op0, mode, PLUS, 0, speed);

	    if (speed)
	      {
		/* ADD (immediate).  */
		*cost += extra_cost->alu.arith;

		/* Some tunings prefer to not use the VL-based scalar ops.
		   Increase the cost of the poly immediate to prevent their
		   formation.  */
		if (GET_CODE (op1) == CONST_POLY_INT
		    && (aarch64_tune_params.extra_tuning_flags
			& AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS))
		  *cost += COSTS_N_INSNS (1);
	      }
	    return true;
	  }

	*cost += rtx_cost (op1, mode, PLUS, 1, speed);

	/* Look for ADD (extended register).  */
	if (is_a <scalar_int_mode> (mode)
	    && aarch64_rtx_arith_op_extract_p (op0))
	  {
	    if (speed)
	      *cost += extra_cost->alu.extend_arith;

	    op0 = aarch64_strip_extend (op0, true);
	    *cost += rtx_cost (op0, VOIDmode,
			       (enum rtx_code) GET_CODE (op0), 0, speed);
	    return true;
	  }

	/* Strip any extend, leave shifts behind as we will
	   cost them through mult_cost.  */
	new_op0 = aarch64_strip_extend (op0, false);

	if (GET_CODE (new_op0) == MULT
	    || aarch64_shift_p (GET_CODE (new_op0)))
	  {
	    *cost += aarch64_rtx_mult_cost (new_op0, MULT, PLUS,
					    speed);
	    return true;
	  }

	*cost += rtx_cost (new_op0, VOIDmode, PLUS, 0, speed);

	if (speed)
	  {
	    if (VECTOR_MODE_P (mode))
	      {
		/* Vector ADD.  */
		*cost += extra_cost->vect.alu;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_INT)
	      {
		/* ADD.  */
		*cost += extra_cost->alu.arith;
	      }
	    else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	      {
		/* FADD.  */
		*cost += extra_cost->fp[mode == DFmode].addsub;
	      }
	  }
	return true;
      }

    case BSWAP:
      *cost = COSTS_N_INSNS (1);

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.rev;
	}
      return false;

    case IOR:
      if (aarch_rev16_p (x))
        {
          *cost = COSTS_N_INSNS (1);

	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->vect.alu;
	      else
		*cost += extra_cost->alu.rev;
	    }
	  return true;
        }

      if (aarch64_extr_rtx_p (x, &op0, &op1))
        {
	  *cost += rtx_cost (op0, mode, IOR, 0, speed);
	  *cost += rtx_cost (op1, mode, IOR, 1, speed);
          if (speed)
            *cost += extra_cost->alu.shift;

          return true;
        }
    /* Fall through.  */
    case XOR:
    case AND:
    cost_logic:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (VECTOR_MODE_P (mode))
	{
	  if (speed)
	    *cost += extra_cost->vect.alu;
	  return true;
	}

      if (code == AND
          && GET_CODE (op0) == MULT
          && CONST_INT_P (XEXP (op0, 1))
          && CONST_INT_P (op1)
          && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (op0, 1))),
                               INTVAL (op1)) != 0)
        {
          /* This is a UBFM/SBFM.  */
	  *cost += rtx_cost (XEXP (op0, 0), mode, ZERO_EXTRACT, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
          return true;
        }

      if (is_int_mode (mode, &int_mode))
	{
	  if (CONST_INT_P (op1))
	    {
	      /* We have a mask + shift version of a UBFIZ
		 i.e. the *andim_ashift<mode>_bfiz pattern.  */
	      if (GET_CODE (op0) == ASHIFT
		  && aarch64_mask_and_shift_for_ubfiz_p (int_mode, op1,
							 XEXP (op0, 1)))
		{
		  *cost += rtx_cost (XEXP (op0, 0), int_mode,
				     (enum rtx_code) code, 0, speed);
		  if (speed)
		    *cost += extra_cost->alu.bfx;

		  return true;
		}
	      else if (aarch64_bitmask_imm (INTVAL (op1), int_mode))
		{
		/* We possibly get the immediate for free, this is not
		   modelled.  */
		  *cost += rtx_cost (op0, int_mode,
				     (enum rtx_code) code, 0, speed);
		  if (speed)
		    *cost += extra_cost->alu.logical;

		  return true;
		}
	    }
	  else
	    {
	      rtx new_op0 = op0;

	      /* Handle ORN, EON, or BIC.  */
	      if (GET_CODE (op0) == NOT)
		op0 = XEXP (op0, 0);

	      new_op0 = aarch64_strip_shift (op0);

	      /* If we had a shift on op0 then this is a logical-shift-
		 by-register/immediate operation.  Otherwise, this is just
		 a logical operation.  */
	      if (speed)
		{
		  if (new_op0 != op0)
		    {
		      /* Shift by immediate.  */
		      if (CONST_INT_P (XEXP (op0, 1)))
			*cost += extra_cost->alu.log_shift;
		      else
			*cost += extra_cost->alu.log_shift_reg;
		    }
		  else
		    *cost += extra_cost->alu.logical;
		}

	      /* In both cases we want to cost both operands.  */
	      *cost += rtx_cost (new_op0, int_mode, (enum rtx_code) code,
				 0, speed);
	      *cost += rtx_cost (op1, int_mode, (enum rtx_code) code,
				 1, speed);

	      return true;
	    }
	}
      return false;

    case NOT:
      x = XEXP (x, 0);
      op0 = aarch64_strip_shift (x);

      if (VECTOR_MODE_P (mode))
	{
	  /* Vector NOT.  */
	  *cost += extra_cost->vect.alu;
	  return false;
	}

      /* MVN-shifted-reg.  */
      if (op0 != x)
        {
	  *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed);

          if (speed)
            *cost += extra_cost->alu.log_shift;

          return true;
        }
      /* EON can have two forms: (xor (not a) b) but also (not (xor a b)).
         Handle the second form here taking care that 'a' in the above can
         be a shift.  */
      else if (GET_CODE (op0) == XOR)
        {
          rtx newop0 = XEXP (op0, 0);
          rtx newop1 = XEXP (op0, 1);
          rtx op0_stripped = aarch64_strip_shift (newop0);

	  *cost += rtx_cost (newop1, mode, (enum rtx_code) code, 1, speed);
	  *cost += rtx_cost (op0_stripped, mode, XOR, 0, speed);

          if (speed)
            {
              if (op0_stripped != newop0)
                *cost += extra_cost->alu.log_shift;
              else
                *cost += extra_cost->alu.logical;
            }

          return true;
        }
      /* MVN.  */
      if (speed)
	*cost += extra_cost->alu.logical;

      return false;

    case ZERO_EXTEND:

      op0 = XEXP (x, 0);
      /* If a value is written in SI mode, then zero extended to DI
	 mode, the operation will in general be free as a write to
	 a 'w' register implicitly zeroes the upper bits of an 'x'
	 register.  However, if this is

	   (set (reg) (zero_extend (reg)))

	 we must cost the explicit register move.  */
      if (mode == DImode
	  && GET_MODE (op0) == SImode)
	{
	  int op_cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, 0, speed);

	/* If OP_COST is non-zero, then the cost of the zero extend
	   is effectively the cost of the inner operation.  Otherwise
	   we have a MOV instruction and we take the cost from the MOV
	   itself.  This is true independently of whether we are
	   optimizing for space or time.  */
	  if (op_cost)
	    *cost = op_cost;

	  return true;
	}
      else if (MEM_P (op0))
	{
	  /* All loads can zero extend to any size for free.  */
	  *cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, param, speed);
	  return true;
	}

      op0 = aarch64_extend_bitfield_pattern_p (x);
      if (op0)
	{
	  *cost += rtx_cost (op0, mode, ZERO_EXTEND, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
	  return true;
	}

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /* UMOV.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      /* We generate an AND instead of UXTB/UXTH.  */
	      *cost += extra_cost->alu.logical;
	    }
	}
      return false;

    case SIGN_EXTEND:
      if (MEM_P (XEXP (x, 0)))
	{
	  /* LDRSH.  */
	  if (speed)
	    {
	      rtx address = XEXP (XEXP (x, 0), 0);
	      *cost += extra_cost->ldst.load_sign_extend;

	      *cost +=
		COSTS_N_INSNS (aarch64_address_cost (address, mode,
						     0, speed));
	    }
	  return true;
	}

      op0 = aarch64_extend_bitfield_pattern_p (x);
      if (op0)
	{
	  *cost += rtx_cost (op0, mode, SIGN_EXTEND, 0, speed);
	  if (speed)
	    *cost += extra_cost->alu.bfx;
	  return true;
	}

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.extend;
	}
      return false;

    case ASHIFT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (CONST_INT_P (op1))
        {
	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		{
		  /* Vector shift (immediate).  */
		  *cost += extra_cost->vect.alu;
		}
	      else
		{
		  /* LSL (immediate), UBMF, UBFIZ and friends.  These are all
		     aliases.  */
		  *cost += extra_cost->alu.shift;
		}
	    }

          /* We can incorporate zero/sign extend for free.  */
          if (GET_CODE (op0) == ZERO_EXTEND
              || GET_CODE (op0) == SIGN_EXTEND)
            op0 = XEXP (op0, 0);

	  *cost += rtx_cost (op0, VOIDmode, ASHIFT, 0, speed);
          return true;
        }
      else
        {
	  if (VECTOR_MODE_P (mode))
	    {
	      if (speed)
		/* Vector shift (register).  */
		*cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      if (speed)
		/* LSLV.  */
		*cost += extra_cost->alu.shift_reg;

	      if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0))
		  && CONST_INT_P (XEXP (op1, 1))
		  && known_eq (INTVAL (XEXP (op1, 1)),
			       GET_MODE_BITSIZE (mode) - 1))
		{
		  *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed);
		  /* We already demanded XEXP (op1, 0) to be REG_P, so
		     don't recurse into it.  */
		  return true;
		}
	    }
	  return false;  /* All arguments need to be in registers.  */
        }

    case ROTATE:
    case ROTATERT:
    case LSHIFTRT:
    case ASHIFTRT:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);

      if (CONST_INT_P (op1))
	{
	  /* ASR (immediate) and friends.  */
	  if (speed)
	    {
	      if (VECTOR_MODE_P (mode))
		*cost += extra_cost->vect.alu;
	      else
		*cost += extra_cost->alu.shift;
	    }

	  *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed);
	  return true;
	}
      else
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      if (speed)
		/* Vector shift (register).  */
		*cost += extra_cost->vect.alu;
	    }
	  else
	    {
	      if (speed)
		/* ASR (register) and friends.  */
		*cost += extra_cost->alu.shift_reg;

	      if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0))
		  && CONST_INT_P (XEXP (op1, 1))
		  && known_eq (INTVAL (XEXP (op1, 1)),
			       GET_MODE_BITSIZE (mode) - 1))
		{
		  *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed);
		  /* We already demanded XEXP (op1, 0) to be REG_P, so
		     don't recurse into it.  */
		  return true;
		}
	    }
	  return false;  /* All arguments need to be in registers.  */
	}

    case SYMBOL_REF:

      if (aarch64_cmodel == AARCH64_CMODEL_LARGE
	  || aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC)
	{
	  /* LDR.  */
	  if (speed)
	    *cost += extra_cost->ldst.load;
	}
      else if (aarch64_cmodel == AARCH64_CMODEL_SMALL
	       || aarch64_cmodel == AARCH64_CMODEL_SMALL_PIC)
	{
	  /* ADRP, followed by ADD.  */
	  *cost += COSTS_N_INSNS (1);
	  if (speed)
	    *cost += 2 * extra_cost->alu.arith;
	}
      else if (aarch64_cmodel == AARCH64_CMODEL_TINY
	       || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
	{
	  /* ADR.  */
	  if (speed)
	    *cost += extra_cost->alu.arith;
	}

      if (flag_pic)
	{
	  /* One extra load instruction, after accessing the GOT.  */
	  *cost += COSTS_N_INSNS (1);
	  if (speed)
	    *cost += extra_cost->ldst.load;
	}
      return true;

    case HIGH:
    case LO_SUM:
      /* ADRP/ADD (immediate).  */
      if (speed)
	*cost += extra_cost->alu.arith;
      return true;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* UBFX/SBFX.  */
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->alu.bfx;
	}

      /* We can trust that the immediates used will be correct (there
	 are no by-register forms), so we need only cost op0.  */
      *cost += rtx_cost (XEXP (x, 0), VOIDmode, (enum rtx_code) code, 0, speed);
      return true;

    case MULT:
      *cost += aarch64_rtx_mult_cost (x, MULT, 0, speed);
      /* aarch64_rtx_mult_cost always handles recursion to its
	 operands.  */
      return true;

    case MOD:
    /* We can expand signed mod by power of 2 using a NEGS, two parallel
       ANDs and a CSNEG.  Assume here that CSNEG is the same as the cost of
       an unconditional negate.  This case should only ever be reached through
       the set_smod_pow2_cheap check in expmed.cc.  */
      if (CONST_INT_P (XEXP (x, 1))
	  && exact_log2 (INTVAL (XEXP (x, 1))) > 0
	  && (mode == SImode || mode == DImode))
	{
	  /* We expand to 4 instructions.  Reset the baseline.  */
	  *cost = COSTS_N_INSNS (4);

	  if (speed)
	    *cost += 2 * extra_cost->alu.logical
		     + 2 * extra_cost->alu.arith;

	  return true;
	}

    /* Fall-through.  */
    case UMOD:
      if (speed)
	{
	  /* Slighly prefer UMOD over SMOD.  */
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    *cost += (extra_cost->mult[mode == DImode].add
		      + extra_cost->mult[mode == DImode].idiv
		      + (code == MOD ? 1 : 0));
	}
      return false;  /* All arguments need to be in registers.  */

    case DIV:
    case UDIV:
    case SQRT:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else if (GET_MODE_CLASS (mode) == MODE_INT)
	    /* There is no integer SQRT, so only DIV and UDIV can get
	       here.  */
	    *cost += (extra_cost->mult[mode == DImode].idiv
		     /* Slighly prefer UDIV over SDIV.  */
		     + (code == DIV ? 1 : 0));
	  else
	    *cost += extra_cost->fp[mode == DFmode].div;
	}
      return false;  /* All arguments need to be in registers.  */

    case IF_THEN_ELSE:
      return aarch64_if_then_else_costs (XEXP (x, 0), XEXP (x, 1),
					 XEXP (x, 2), cost, speed);

    case EQ:
    case NE:
    case GT:
    case GTU:
    case LT:
    case LTU:
    case GE:
    case GEU:
    case LE:
    case LEU:

      return false; /* All arguments must be in registers.  */

    case FMA:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      op2 = XEXP (x, 2);

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->fp[mode == DFmode].fma;
	}

      /* FMSUB, FNMADD, and FNMSUB are free.  */
      if (GET_CODE (op0) == NEG)
        op0 = XEXP (op0, 0);

      if (GET_CODE (op2) == NEG)
        op2 = XEXP (op2, 0);

      /* aarch64_fnma4_elt_to_64v2df has the NEG as operand 1,
	 and the by-element operand as operand 0.  */
      if (GET_CODE (op1) == NEG)
        op1 = XEXP (op1, 0);

      /* Catch vector-by-element operations.  The by-element operand can
	 either be (vec_duplicate (vec_select (x))) or just
	 (vec_select (x)), depending on whether we are multiplying by
	 a vector or a scalar.

	 Canonicalization is not very good in these cases, FMA4 will put the
	 by-element operand as operand 0, FNMA4 will have it as operand 1.  */
      if (GET_CODE (op0) == VEC_DUPLICATE)
	op0 = XEXP (op0, 0);
      else if (GET_CODE (op1) == VEC_DUPLICATE)
	op1 = XEXP (op1, 0);

      if (GET_CODE (op0) == VEC_SELECT)
	op0 = XEXP (op0, 0);
      else if (GET_CODE (op1) == VEC_SELECT)
	op1 = XEXP (op1, 0);

      /* If the remaining parameters are not registers,
         get the cost to put them into registers.  */
      *cost += rtx_cost (op0, mode, FMA, 0, speed);
      *cost += rtx_cost (op1, mode, FMA, 1, speed);
      *cost += rtx_cost (op2, mode, FMA, 2, speed);
      return true;

    case FLOAT:
    case UNSIGNED_FLOAT:
      if (speed)
	*cost += extra_cost->fp[mode == DFmode].fromint;
      return false;

    case FLOAT_EXTEND:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /*Vector truncate.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    *cost += extra_cost->fp[mode == DFmode].widen;
	}
      return false;

    case FLOAT_TRUNCATE:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    {
	      /*Vector conversion.  */
	      *cost += extra_cost->vect.alu;
	    }
	  else
	    *cost += extra_cost->fp[mode == DFmode].narrow;
	}
      return false;

    case FIX:
    case UNSIGNED_FIX:
      x = XEXP (x, 0);
      /* Strip the rounding part.  They will all be implemented
         by the fcvt* family of instructions anyway.  */
      if (GET_CODE (x) == UNSPEC)
        {
          unsigned int uns_code = XINT (x, 1);

          if (uns_code == UNSPEC_FRINTA
              || uns_code == UNSPEC_FRINTM
              || uns_code == UNSPEC_FRINTN
              || uns_code == UNSPEC_FRINTP
              || uns_code == UNSPEC_FRINTZ)
            x = XVECEXP (x, 0, 0);
        }

      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    *cost += extra_cost->fp[GET_MODE (x) == DFmode].toint;
	}

      /* We can combine fmul by a power of 2 followed by a fcvt into a single
	 fixed-point fcvt.  */
      if (GET_CODE (x) == MULT
	  && ((VECTOR_MODE_P (mode)
	       && aarch64_vec_fpconst_pow_of_2 (XEXP (x, 1)) > 0)
	      || aarch64_fpconst_pow_of_2 (XEXP (x, 1)) > 0))
	{
	  *cost += rtx_cost (XEXP (x, 0), VOIDmode, (rtx_code) code,
			     0, speed);
	  return true;
	}

      *cost += rtx_cost (x, VOIDmode, (enum rtx_code) code, 0, speed);
      return true;

    case ABS:
      if (VECTOR_MODE_P (mode))
	{
	  /* ABS (vector).  */
	  if (speed)
	    *cost += extra_cost->vect.alu;
	}
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  op0 = XEXP (x, 0);

	  /* FABD, which is analogous to FADD.  */
	  if (GET_CODE (op0) == MINUS)
	    {
	      *cost += rtx_cost (XEXP (op0, 0), mode, MINUS, 0, speed);
	      *cost += rtx_cost (XEXP (op0, 1), mode, MINUS, 1, speed);
	      if (speed)
		*cost += extra_cost->fp[mode == DFmode].addsub;

	      return true;
	    }
	  /* Simple FABS is analogous to FNEG.  */
	  if (speed)
	    *cost += extra_cost->fp[mode == DFmode].neg;
	}
      else
	{
	  /* Integer ABS will either be split to
	     two arithmetic instructions, or will be an ABS
	     (scalar), which we don't model.  */
	  *cost = COSTS_N_INSNS (2);
	  if (speed)
	    *cost += 2 * extra_cost->alu.arith;
	}
      return false;

    case SMAX:
    case SMIN:
      if (speed)
	{
	  if (VECTOR_MODE_P (mode))
	    *cost += extra_cost->vect.alu;
	  else
	    {
	      /* FMAXNM/FMINNM/FMAX/FMIN.
	         TODO: This may not be accurate for all implementations, but
	         we do not model this in the cost tables.  */
	      *cost += extra_cost->fp[mode == DFmode].addsub;
	    }
	}
      return false;

    case UNSPEC:
      /* The floating point round to integer frint* instructions.  */
      if (aarch64_frint_unspec_p (XINT (x, 1)))
        {
          if (speed)
            *cost += extra_cost->fp[mode == DFmode].roundint;

          return false;
        }

      if (XINT (x, 1) == UNSPEC_RBIT)
        {
          if (speed)
            *cost += extra_cost->alu.rev;

          return false;
        }
      break;

    case TRUNCATE:

      /* Decompose <su>muldi3_highpart.  */
      if (/* (truncate:DI  */
	  mode == DImode
	  /*   (lshiftrt:TI  */
          && GET_MODE (XEXP (x, 0)) == TImode
          && GET_CODE (XEXP (x, 0)) == LSHIFTRT
	  /*      (mult:TI  */
          && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  /*        (ANY_EXTEND:TI (reg:DI))
	            (ANY_EXTEND:TI (reg:DI)))  */
          && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
               && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == ZERO_EXTEND)
              || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
                  && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND))
          && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0)) == DImode
          && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0)) == DImode
	  /*     (const_int 64)  */
          && CONST_INT_P (XEXP (XEXP (x, 0), 1))
          && UINTVAL (XEXP (XEXP (x, 0), 1)) == 64)
        {
          /* UMULH/SMULH.  */
	  if (speed)
	    *cost += extra_cost->mult[mode == DImode].extend;
	  *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
			     mode, MULT, 0, speed);
	  *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0),
			     mode, MULT, 1, speed);
          return true;
        }
	break;
    case CONST_VECTOR:
	{
	  /* Load using MOVI/MVNI.  */
	  if (aarch64_simd_valid_immediate (x, NULL))
	    *cost = extra_cost->vect.movi;
	  else /* Load using constant pool.  */
	    *cost = extra_cost->ldst.load;
	  break;
	}
    case VEC_CONCAT:
	/* depending on the operation, either DUP or INS.
	   For now, keep default costing.  */
	break;
    case VEC_DUPLICATE:
	/* Load using a DUP.  */
	*cost = extra_cost->vect.dup;
	return false;
    case VEC_SELECT:
	{
	  rtx op0 = XEXP (x, 0);
	  *cost = rtx_cost (op0, GET_MODE (op0), VEC_SELECT, 0, speed);

	  /* cost subreg of 0 as free, otherwise as DUP */
	  rtx op1 = XEXP (x, 1);
	  if (vec_series_lowpart_p (mode, GET_MODE (op1), op1))
	    ;
	  else if (vec_series_highpart_p (mode, GET_MODE (op1), op1))
	    *cost = extra_cost->vect.dup;
	  else
	    *cost = extra_cost->vect.extract;
	  return true;
	}
    default:
      break;
    }

  if (dump_file
      && flag_aarch64_verbose_cost)
    fprintf (dump_file,
      "\nFailed to cost RTX.  Assuming default cost.\n");

  return true;
}

/* Wrapper around aarch64_rtx_costs, dumps the partial, or total cost
   calculated for X.  This cost is stored in *COST.  Returns true
   if the total cost of X was calculated.  */
static bool
aarch64_rtx_costs_wrapper (rtx x, machine_mode mode, int outer,
		   int param, int *cost, bool speed)
{
  bool result = aarch64_rtx_costs (x, mode, outer, param, cost, speed);

  if (dump_file
      && flag_aarch64_verbose_cost)
    {
      print_rtl_single (dump_file, x);
      fprintf (dump_file, "\n%s cost: %d (%s)\n",
	       speed ? "Hot" : "Cold",
	       *cost, result ? "final" : "partial");
    }

  return result;
}

static int
aarch64_register_move_cost (machine_mode mode,
			    reg_class_t from_i, reg_class_t to_i)
{
  enum reg_class from = (enum reg_class) from_i;
  enum reg_class to = (enum reg_class) to_i;
  const struct cpu_regmove_cost *regmove_cost
    = aarch64_tune_params.regmove_cost;

  /* Caller save and pointer regs are equivalent to GENERAL_REGS.  */
  if (to == TAILCALL_ADDR_REGS || to == POINTER_REGS
      || to == STUB_REGS)
    to = GENERAL_REGS;

  if (from == TAILCALL_ADDR_REGS || from == POINTER_REGS
      || from == STUB_REGS)
    from = GENERAL_REGS;

  /* Make RDFFR very expensive.  In particular, if we know that the FFR
     contains a PTRUE (e.g. after a SETFFR), we must never use RDFFR
     as a way of obtaining a PTRUE.  */
  if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
      && hard_reg_set_subset_p (reg_class_contents[from_i],
				reg_class_contents[FFR_REGS]))
    return 80;

  /* Moving between GPR and stack cost is the same as GP2GP.  */
  if ((from == GENERAL_REGS && to == STACK_REG)
      || (to == GENERAL_REGS && from == STACK_REG))
    return regmove_cost->GP2GP;

  /* To/From the stack register, we move via the gprs.  */
  if (to == STACK_REG || from == STACK_REG)
    return aarch64_register_move_cost (mode, from, GENERAL_REGS)
            + aarch64_register_move_cost (mode, GENERAL_REGS, to);

  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (vec_flags != (VEC_ADVSIMD | VEC_STRUCT | VEC_PARTIAL)
      && known_eq (GET_MODE_SIZE (mode), 16))
    {
      /* 128-bit operations on general registers require 2 instructions.  */
      if (from == GENERAL_REGS && to == GENERAL_REGS)
	return regmove_cost->GP2GP * 2;
      else if (from == GENERAL_REGS)
	return regmove_cost->GP2FP * 2;
      else if (to == GENERAL_REGS)
	return regmove_cost->FP2GP * 2;

      /* When AdvSIMD instructions are disabled it is not possible to move
	 a 128-bit value directly between Q registers.  This is handled in
	 secondary reload.  A general register is used as a scratch to move
	 the upper DI value and the lower DI value is moved directly,
	 hence the cost is the sum of three moves. */
      if (! TARGET_SIMD)
	return regmove_cost->GP2FP + regmove_cost->FP2GP + regmove_cost->FP2FP;

      return regmove_cost->FP2FP;
    }

  if (from == GENERAL_REGS && to == GENERAL_REGS)
    return regmove_cost->GP2GP;
  else if (from == GENERAL_REGS)
    return regmove_cost->GP2FP;
  else if (to == GENERAL_REGS)
    return regmove_cost->FP2GP;

  if (!TARGET_SIMD && vec_flags == (VEC_ADVSIMD | VEC_STRUCT))
    {
      /* Needs a round-trip through memory, which can use LDP/STP for pairs.
	 The cost must be greater than 2 units to indicate that direct
	 moves aren't possible.  */
      auto per_vector = (aarch64_tune_params.memmov_cost.load_fp
			 + aarch64_tune_params.memmov_cost.store_fp);
      return MIN (CEIL (per_vector, 2), 4);
    }

  return regmove_cost->FP2FP;
}

/* Implements TARGET_MEMORY_MOVE_COST.  */
static int
aarch64_memory_move_cost (machine_mode mode, reg_class_t rclass_i, bool in)
{
  enum reg_class rclass = (enum reg_class) rclass_i;
  if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
      ? reg_classes_intersect_p (rclass, PR_REGS)
      : reg_class_subset_p (rclass, PR_REGS))
    return (in
	    ? aarch64_tune_params.memmov_cost.load_pred
	    : aarch64_tune_params.memmov_cost.store_pred);

  if (VECTOR_MODE_P (mode) || FLOAT_MODE_P (mode)
      ? reg_classes_intersect_p (rclass, FP_REGS)
      : reg_class_subset_p (rclass, FP_REGS))
    return (in
	    ? aarch64_tune_params.memmov_cost.load_fp
	    : aarch64_tune_params.memmov_cost.store_fp);

  return (in
	  ? aarch64_tune_params.memmov_cost.load_int
	  : aarch64_tune_params.memmov_cost.store_int);
}

/* Implement TARGET_INIT_BUILTINS.  */
static void
aarch64_init_builtins ()
{
  aarch64_general_init_builtins ();
  aarch64_sve::init_builtins ();
#ifdef SUBTARGET_INIT_BUILTINS
  SUBTARGET_INIT_BUILTINS;
#endif
}

/* Implement TARGET_FOLD_BUILTIN.  */
static tree
aarch64_fold_builtin (tree fndecl, int nargs, tree *args, bool)
{
  unsigned int code = DECL_MD_FUNCTION_CODE (fndecl);
  unsigned int subcode = code >> AARCH64_BUILTIN_SHIFT;
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  switch (code & AARCH64_BUILTIN_CLASS)
    {
    case AARCH64_BUILTIN_GENERAL:
      return aarch64_general_fold_builtin (subcode, type, nargs, args);

    case AARCH64_BUILTIN_SVE:
      return NULL_TREE;
    }
  gcc_unreachable ();
}

/* Implement TARGET_GIMPLE_FOLD_BUILTIN.  */
static bool
aarch64_gimple_fold_builtin (gimple_stmt_iterator *gsi)
{
  gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
  tree fndecl = gimple_call_fndecl (stmt);
  unsigned int code = DECL_MD_FUNCTION_CODE (fndecl);
  unsigned int subcode = code >> AARCH64_BUILTIN_SHIFT;
  gimple *new_stmt = NULL;
  switch (code & AARCH64_BUILTIN_CLASS)
    {
    case AARCH64_BUILTIN_GENERAL:
      new_stmt = aarch64_general_gimple_fold_builtin (subcode, stmt, gsi);
      break;

    case AARCH64_BUILTIN_SVE:
      new_stmt = aarch64_sve::gimple_fold_builtin (subcode, gsi, stmt);
      break;
    }

  if (!new_stmt)
    return false;

  gsi_replace (gsi, new_stmt, true);
  return true;
}

/* Implement TARGET_EXPAND_BUILTIN.  */
static rtx
aarch64_expand_builtin (tree exp, rtx target, rtx, machine_mode, int ignore)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int code = DECL_MD_FUNCTION_CODE (fndecl);
  unsigned int subcode = code >> AARCH64_BUILTIN_SHIFT;
  switch (code & AARCH64_BUILTIN_CLASS)
    {
    case AARCH64_BUILTIN_GENERAL:
      return aarch64_general_expand_builtin (subcode, exp, target, ignore);

    case AARCH64_BUILTIN_SVE:
      return aarch64_sve::expand_builtin (subcode, exp, target);
    }
  gcc_unreachable ();
}

/* Implement TARGET_BUILTIN_DECL.  */
static tree
aarch64_builtin_decl (unsigned int code, bool initialize_p)
{
  unsigned int subcode = code >> AARCH64_BUILTIN_SHIFT;
  switch (code & AARCH64_BUILTIN_CLASS)
    {
    case AARCH64_BUILTIN_GENERAL:
      return aarch64_general_builtin_decl (subcode, initialize_p);

    case AARCH64_BUILTIN_SVE:
      return aarch64_sve::builtin_decl (subcode, initialize_p);
    }
  gcc_unreachable ();
}

/* Return true if it is safe and beneficial to use the approximate rsqrt optabs
   to optimize 1.0/sqrt.  */

static bool
use_rsqrt_p (machine_mode mode)
{
  return (!flag_trapping_math
	  && flag_unsafe_math_optimizations
	  && ((aarch64_tune_params.approx_modes->recip_sqrt
	       & AARCH64_APPROX_MODE (mode))
	      || flag_mrecip_low_precision_sqrt));
}

/* Function to decide when to use the approximate reciprocal square root
   builtin.  */

static tree
aarch64_builtin_reciprocal (tree fndecl)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (fndecl));

  if (!use_rsqrt_p (mode))
    return NULL_TREE;
  unsigned int code = DECL_MD_FUNCTION_CODE (fndecl);
  unsigned int subcode = code >> AARCH64_BUILTIN_SHIFT;
  switch (code & AARCH64_BUILTIN_CLASS)
    {
    case AARCH64_BUILTIN_GENERAL:
      return aarch64_general_builtin_rsqrt (subcode);

    case AARCH64_BUILTIN_SVE:
      return NULL_TREE;
    }
  gcc_unreachable ();
}

/* Emit code to perform the floating-point operation:

     DST = SRC1 * SRC2

   where all three operands are already known to be registers.
   If the operation is an SVE one, PTRUE is a suitable all-true
   predicate.  */

static void
aarch64_emit_mult (rtx dst, rtx ptrue, rtx src1, rtx src2)
{
  if (ptrue)
    emit_insn (gen_aarch64_pred (UNSPEC_COND_FMUL, GET_MODE (dst),
				 dst, ptrue, src1, src2,
				 gen_int_mode (SVE_RELAXED_GP, SImode)));
  else
    emit_set_insn (dst, gen_rtx_MULT (GET_MODE (dst), src1, src2));
}

/* Emit instruction sequence to compute either the approximate square root
   or its approximate reciprocal, depending on the flag RECP, and return
   whether the sequence was emitted or not.  */

bool
aarch64_emit_approx_sqrt (rtx dst, rtx src, bool recp)
{
  machine_mode mode = GET_MODE (dst);

  if (GET_MODE_INNER (mode) == HFmode)
    {
      gcc_assert (!recp);
      return false;
    }

  if (!recp)
    {
      if (!(flag_mlow_precision_sqrt
	    || (aarch64_tune_params.approx_modes->sqrt
		& AARCH64_APPROX_MODE (mode))))
	return false;

      if (!flag_finite_math_only
	  || flag_trapping_math
	  || !flag_unsafe_math_optimizations
	  || optimize_function_for_size_p (cfun))
	return false;
    }
  else
    /* Caller assumes we cannot fail.  */
    gcc_assert (use_rsqrt_p (mode));

  rtx pg = NULL_RTX;
  if (aarch64_sve_mode_p (mode))
    pg = aarch64_ptrue_reg (aarch64_sve_pred_mode (mode));
  machine_mode mmsk = (VECTOR_MODE_P (mode)
		       ? related_int_vector_mode (mode).require ()
		       : int_mode_for_mode (mode).require ());
  rtx xmsk = NULL_RTX;
  if (!recp)
    {
      /* When calculating the approximate square root, compare the
	 argument with 0.0 and create a mask.  */
      rtx zero = CONST0_RTX (mode);
      if (pg)
	{
	  xmsk = gen_reg_rtx (GET_MODE (pg));
	  rtx hint = gen_int_mode (SVE_KNOWN_PTRUE, SImode);
	  emit_insn (gen_aarch64_pred_fcm (UNSPEC_COND_FCMNE, mode,
					   xmsk, pg, hint, src, zero));
	}
      else
	{
	  xmsk = gen_reg_rtx (mmsk);
	  emit_insn (gen_rtx_SET (xmsk,
				  gen_rtx_NEG (mmsk,
					       gen_rtx_EQ (mmsk, src, zero))));
	}
    }

  /* Estimate the approximate reciprocal square root.  */
  rtx xdst = gen_reg_rtx (mode);
  emit_insn (gen_aarch64_rsqrte (mode, xdst, src));

  /* Iterate over the series twice for SF and thrice for DF.  */
  int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;

  /* Optionally iterate over the series once less for faster performance
     while sacrificing the accuracy.  */
  if ((recp && flag_mrecip_low_precision_sqrt)
      || (!recp && flag_mlow_precision_sqrt))
    iterations--;

  /* Iterate over the series to calculate the approximate reciprocal square
     root.  */
  rtx x1 = gen_reg_rtx (mode);
  while (iterations--)
    {
      rtx x2 = gen_reg_rtx (mode);
      aarch64_emit_mult (x2, pg, xdst, xdst);

      emit_insn (gen_aarch64_rsqrts (mode, x1, src, x2));

      if (iterations > 0)
	aarch64_emit_mult (xdst, pg, xdst, x1);
    }

  if (!recp)
    {
      if (pg)
	/* Multiply nonzero source values by the corresponding intermediate
	   result elements, so that the final calculation is the approximate
	   square root rather than its reciprocal.  Select a zero result for
	   zero source values, to avoid the Inf * 0 -> NaN that we'd get
	   otherwise.  */
	emit_insn (gen_cond (UNSPEC_COND_FMUL, mode,
			     xdst, xmsk, xdst, src, CONST0_RTX (mode)));
      else
	{
	  /* Qualify the approximate reciprocal square root when the
	     argument is 0.0 by squashing the intermediary result to 0.0.  */
	  rtx xtmp = gen_reg_rtx (mmsk);
	  emit_set_insn (xtmp, gen_rtx_AND (mmsk, gen_rtx_NOT (mmsk, xmsk),
					    gen_rtx_SUBREG (mmsk, xdst, 0)));
	  emit_move_insn (xdst, gen_rtx_SUBREG (mode, xtmp, 0));

	  /* Calculate the approximate square root.  */
	  aarch64_emit_mult (xdst, pg, xdst, src);
	}
    }

  /* Finalize the approximation.  */
  aarch64_emit_mult (dst, pg, xdst, x1);

  return true;
}

/* Emit the instruction sequence to compute the approximation for the division
   of NUM by DEN in QUO and return whether the sequence was emitted or not.  */

bool
aarch64_emit_approx_div (rtx quo, rtx num, rtx den)
{
  machine_mode mode = GET_MODE (quo);

  if (GET_MODE_INNER (mode) == HFmode)
    return false;

  bool use_approx_division_p = (flag_mlow_precision_div
			        || (aarch64_tune_params.approx_modes->division
				    & AARCH64_APPROX_MODE (mode)));

  if (!flag_finite_math_only
      || flag_trapping_math
      || !flag_unsafe_math_optimizations
      || optimize_function_for_size_p (cfun)
      || !use_approx_division_p)
    return false;

  if (!TARGET_SIMD && VECTOR_MODE_P (mode))
    return false;

  rtx pg = NULL_RTX;
  if (aarch64_sve_mode_p (mode))
    pg = aarch64_ptrue_reg (aarch64_sve_pred_mode (mode));

  /* Estimate the approximate reciprocal.  */
  rtx xrcp = gen_reg_rtx (mode);
  emit_insn (gen_aarch64_frecpe (mode, xrcp, den));

  /* Iterate over the series twice for SF and thrice for DF.  */
  int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2;

  /* Optionally iterate over the series less for faster performance,
     while sacrificing the accuracy.  The default is 2 for DF and 1 for SF.  */
  if (flag_mlow_precision_div)
    iterations = (GET_MODE_INNER (mode) == DFmode
		  ? aarch64_double_recp_precision
		  : aarch64_float_recp_precision);

  /* Iterate over the series to calculate the approximate reciprocal.  */
  rtx xtmp = gen_reg_rtx (mode);
  while (iterations--)
    {
      emit_insn (gen_aarch64_frecps (mode, xtmp, xrcp, den));

      if (iterations > 0)
	aarch64_emit_mult (xrcp, pg, xrcp, xtmp);
    }

  if (num != CONST1_RTX (mode))
    {
      /* As the approximate reciprocal of DEN is already calculated, only
	 calculate the approximate division when NUM is not 1.0.  */
      rtx xnum = force_reg (mode, num);
      aarch64_emit_mult (xrcp, pg, xrcp, xnum);
    }

  /* Finalize the approximation.  */
  aarch64_emit_mult (quo, pg, xrcp, xtmp);
  return true;
}

/* Return the number of instructions that can be issued per cycle.  */
static int
aarch64_sched_issue_rate (void)
{
  return aarch64_tune_params.issue_rate;
}

/* Implement TARGET_SCHED_VARIABLE_ISSUE.  */
static int
aarch64_sched_variable_issue (FILE *, int, rtx_insn *insn, int more)
{
  if (DEBUG_INSN_P (insn))
    return more;

  rtx_code code = GET_CODE (PATTERN (insn));
  if (code == USE || code == CLOBBER)
    return more;

  if (get_attr_type (insn) == TYPE_NO_INSN)
    return more;

  return more - 1;
}

static int
aarch64_sched_first_cycle_multipass_dfa_lookahead (void)
{
  int issue_rate = aarch64_sched_issue_rate ();

  return issue_rate > 1 && !sched_fusion ? issue_rate : 0;
}


/* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD as
   autopref_multipass_dfa_lookahead_guard from haifa-sched.cc.  It only
   has an effect if PARAM_SCHED_AUTOPREF_QUEUE_DEPTH > 0.  */

static int
aarch64_first_cycle_multipass_dfa_lookahead_guard (rtx_insn *insn,
						    int ready_index)
{
  return autopref_multipass_dfa_lookahead_guard (insn, ready_index);
}


/* Vectorizer cost model target hooks.  */

/* Information about how the CPU would issue the scalar, Advanced SIMD
   or SVE version of a vector loop, using the scheme defined by the
   aarch64_base_vec_issue_info hierarchy of structures.  */
class aarch64_vec_op_count
{
public:
  aarch64_vec_op_count () = default;
  aarch64_vec_op_count (const aarch64_vec_issue_info *, unsigned int,
			unsigned int = 1);

  unsigned int vec_flags () const { return m_vec_flags; }
  unsigned int vf_factor () const { return m_vf_factor; }

  const aarch64_base_vec_issue_info *base_issue_info () const;
  const aarch64_simd_vec_issue_info *simd_issue_info () const;
  const aarch64_sve_vec_issue_info *sve_issue_info () const;

  fractional_cost rename_cycles_per_iter () const;
  fractional_cost min_nonpred_cycles_per_iter () const;
  fractional_cost min_pred_cycles_per_iter () const;
  fractional_cost min_cycles_per_iter () const;

  void dump () const;

  /* The number of individual "general" operations.  See the comments
     in aarch64_base_vec_issue_info for details.  */
  unsigned int general_ops = 0;

  /* The number of load and store operations, under the same scheme
     as above.  */
  unsigned int loads = 0;
  unsigned int stores = 0;

  /* The minimum number of cycles needed to execute all loop-carried
     operations, which in the vector code become associated with
     reductions.  */
  unsigned int reduction_latency = 0;

  /* The number of individual predicate operations.  See the comments
     in aarch64_sve_vec_issue_info for details.  */
  unsigned int pred_ops = 0;

private:
  /* The issue information for the core.  */
  const aarch64_vec_issue_info *m_issue_info = nullptr;

  /* - If M_VEC_FLAGS is zero then this structure describes scalar code
     - If M_VEC_FLAGS & VEC_ADVSIMD is nonzero then this structure describes
       Advanced SIMD code.
     - If M_VEC_FLAGS & VEC_ANY_SVE is nonzero then this structure describes
       SVE code.  */
  unsigned int m_vec_flags = 0;

  /* Assume that, when the code is executing on the core described
     by M_ISSUE_INFO, one iteration of the loop will handle M_VF_FACTOR
     times more data than the vectorizer anticipates.

     This is only ever different from 1 for SVE.  It allows us to consider
     what would happen on a 256-bit SVE target even when the -mtune
     parameters say that the “likely” SVE length is 128 bits.  */
  unsigned int m_vf_factor = 1;
};

aarch64_vec_op_count::
aarch64_vec_op_count (const aarch64_vec_issue_info *issue_info,
		      unsigned int vec_flags, unsigned int vf_factor)
  : m_issue_info (issue_info),
    m_vec_flags (vec_flags),
    m_vf_factor (vf_factor)
{
}

/* Return the base issue information (i.e. the parts that make sense
   for both scalar and vector code).  Return null if we have no issue
   information.  */
const aarch64_base_vec_issue_info *
aarch64_vec_op_count::base_issue_info () const
{
  if (auto *ret = simd_issue_info ())
    return ret;
  return m_issue_info->scalar;
}

/* If the structure describes vector code and we have associated issue
   information, return that issue information, otherwise return null.  */
const aarch64_simd_vec_issue_info *
aarch64_vec_op_count::simd_issue_info () const
{
  if (auto *ret = sve_issue_info ())
    return ret;
  if (m_vec_flags)
    return m_issue_info->advsimd;
  return nullptr;
}

/* If the structure describes SVE code and we have associated issue
   information, return that issue information, otherwise return null.  */
const aarch64_sve_vec_issue_info *
aarch64_vec_op_count::sve_issue_info () const
{
  if (m_vec_flags & VEC_ANY_SVE)
    return m_issue_info->sve;
  return nullptr;
}

/* Estimate the minimum number of cycles per iteration needed to rename
   the instructions.

   ??? For now this is done inline rather than via cost tables, since it
   isn't clear how it should be parameterized for the general case.  */
fractional_cost
aarch64_vec_op_count::rename_cycles_per_iter () const
{
  if (sve_issue_info () == &neoverse512tvb_sve_issue_info
      || sve_issue_info () == &neoversen2_sve_issue_info
      || sve_issue_info () == &neoversev2_sve_issue_info)
    /* + 1 for an addition.  We've already counted a general op for each
       store, so we don't need to account for stores separately.  The branch
       reads no registers and so does not need to be counted either.

       ??? This value is very much on the pessimistic side, but seems to work
       pretty well in practice.  */
    return { general_ops + loads + pred_ops + 1, 5 };

  return 0;
}

/* Like min_cycles_per_iter, but excluding predicate operations.  */
fractional_cost
aarch64_vec_op_count::min_nonpred_cycles_per_iter () const
{
  auto *issue_info = base_issue_info ();

  fractional_cost cycles = MAX (reduction_latency, 1);
  cycles = std::max (cycles, { stores, issue_info->stores_per_cycle });
  cycles = std::max (cycles, { loads + stores,
			       issue_info->loads_stores_per_cycle });
  cycles = std::max (cycles, { general_ops,
			       issue_info->general_ops_per_cycle });
  cycles = std::max (cycles, rename_cycles_per_iter ());
  return cycles;
}

/* Like min_cycles_per_iter, but including only the predicate operations.  */
fractional_cost
aarch64_vec_op_count::min_pred_cycles_per_iter () const
{
  if (auto *issue_info = sve_issue_info ())
    return { pred_ops, issue_info->pred_ops_per_cycle };
  return 0;
}

/* Estimate the minimum number of cycles needed to issue the operations.
   This is a very simplistic model!  */
fractional_cost
aarch64_vec_op_count::min_cycles_per_iter () const
{
  return std::max (min_nonpred_cycles_per_iter (),
		   min_pred_cycles_per_iter ());
}

/* Dump information about the structure.  */
void
aarch64_vec_op_count::dump () const
{
  dump_printf_loc (MSG_NOTE, vect_location,
		   "  load operations = %d\n", loads);
  dump_printf_loc (MSG_NOTE, vect_location,
		   "  store operations = %d\n", stores);
  dump_printf_loc (MSG_NOTE, vect_location,
		   "  general operations = %d\n", general_ops);
  if (sve_issue_info ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "  predicate operations = %d\n", pred_ops);
  dump_printf_loc (MSG_NOTE, vect_location,
		   "  reduction latency = %d\n", reduction_latency);
  if (auto rcpi = rename_cycles_per_iter ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "  estimated cycles per iteration to rename = %f\n",
		     rcpi.as_double ());
  if (auto pred_cpi = min_pred_cycles_per_iter ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
		       "  estimated min cycles per iteration"
		       " without predication = %f\n",
		       min_nonpred_cycles_per_iter ().as_double ());
      dump_printf_loc (MSG_NOTE, vect_location,
		       "  estimated min cycles per iteration"
		       " for predication = %f\n", pred_cpi.as_double ());
    }
  if (auto cpi = min_cycles_per_iter ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "  estimated min cycles per iteration = %f\n",
		     cpi.as_double ());
}

/* Information about vector code that we're in the process of costing.  */
class aarch64_vector_costs : public vector_costs
{
public:
  aarch64_vector_costs (vec_info *, bool);

  unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
			      stmt_vec_info stmt_info, slp_tree, tree vectype,
			      int misalign,
			      vect_cost_model_location where) override;
  void finish_cost (const vector_costs *) override;
  bool better_main_loop_than_p (const vector_costs *other) const override;

private:
  void record_potential_advsimd_unrolling (loop_vec_info);
  void analyze_loop_vinfo (loop_vec_info);
  void count_ops (unsigned int, vect_cost_for_stmt, stmt_vec_info,
		  aarch64_vec_op_count *);
  fractional_cost adjust_body_cost_sve (const aarch64_vec_op_count *,
					fractional_cost, unsigned int,
					unsigned int *, bool *);
  unsigned int adjust_body_cost (loop_vec_info, const aarch64_vector_costs *,
				 unsigned int);
  bool prefer_unrolled_loop () const;
  unsigned int determine_suggested_unroll_factor ();

  /* True if we have performed one-time initialization based on the
     vec_info.  */
  bool m_analyzed_vinfo = false;

  /* This loop uses an average operation that is not supported by SVE, but is
     supported by Advanced SIMD and SVE2.  */
  bool m_has_avg = false;

  /* - If M_VEC_FLAGS is zero then we're costing the original scalar code.
     - If M_VEC_FLAGS & VEC_ADVSIMD is nonzero then we're costing Advanced
       SIMD code.
     - If M_VEC_FLAGS & VEC_ANY_SVE is nonzero then we're costing SVE code.  */
  unsigned int m_vec_flags = 0;

  /* At the moment, we do not model LDP and STP in the vector and scalar costs.
     This means that code such as:

	a[0] = x;
	a[1] = x;

     will be costed as two scalar instructions and two vector instructions
     (a scalar_to_vec and an unaligned_store).  For SLP, the vector form
     wins if the costs are equal, because of the fact that the vector costs
     include constant initializations whereas the scalar costs don't.
     We would therefore tend to vectorize the code above, even though
     the scalar version can use a single STP.

     We should eventually fix this and model LDP and STP in the main costs;
     see the comment in aarch64_sve_adjust_stmt_cost for some of the problems.
     Until then, we look specifically for code that does nothing more than
     STP-like operations.  We cost them on that basis in addition to the
     normal latency-based costs.

     If the scalar or vector code could be a sequence of STPs +
     initialization, this variable counts the cost of the sequence,
     with 2 units per instruction.  The variable is ~0U for other
     kinds of code.  */
  unsigned int m_stp_sequence_cost = 0;

  /* On some CPUs, SVE and Advanced SIMD provide the same theoretical vector
     throughput, such as 4x128 Advanced SIMD vs. 2x256 SVE.  In those
     situations, we try to predict whether an Advanced SIMD implementation
     of the loop could be completely unrolled and become straight-line code.
     If so, it is generally better to use the Advanced SIMD version rather
     than length-agnostic SVE, since the SVE loop would execute an unknown
     number of times and so could not be completely unrolled in the same way.

     If we're applying this heuristic, M_UNROLLED_ADVSIMD_NITERS is the
     number of Advanced SIMD loop iterations that would be unrolled and
     M_UNROLLED_ADVSIMD_STMTS estimates the total number of statements
     in the unrolled loop.  Both values are zero if we're not applying
     the heuristic.  */
  unsigned HOST_WIDE_INT m_unrolled_advsimd_niters = 0;
  unsigned HOST_WIDE_INT m_unrolled_advsimd_stmts = 0;

  /* If we're vectorizing a loop that executes a constant number of times,
     this variable gives the number of times that the vector loop would
     iterate, otherwise it is zero.  */
  uint64_t m_num_vector_iterations = 0;

  /* Used only when vectorizing loops.  Estimates the number and kind of
     operations that would be needed by one iteration of the scalar
     or vector loop.  There is one entry for each tuning option of
     interest.  */
  auto_vec<aarch64_vec_op_count, 2> m_ops;
};

aarch64_vector_costs::aarch64_vector_costs (vec_info *vinfo,
					    bool costing_for_scalar)
  : vector_costs (vinfo, costing_for_scalar),
    m_vec_flags (costing_for_scalar ? 0
		 : aarch64_classify_vector_mode (vinfo->vector_mode))
{
  if (auto *issue_info = aarch64_tune_params.vec_costs->issue_info)
    {
      m_ops.quick_push ({ issue_info, m_vec_flags });
      if (aarch64_tune_params.vec_costs == &neoverse512tvb_vector_cost)
	{
	  unsigned int vf_factor = (m_vec_flags & VEC_ANY_SVE) ? 2 : 1;
	  m_ops.quick_push ({ &neoversev1_vec_issue_info, m_vec_flags,
			      vf_factor });
	}
    }
}

/* Implement TARGET_VECTORIZE_CREATE_COSTS.  */
vector_costs *
aarch64_vectorize_create_costs (vec_info *vinfo, bool costing_for_scalar)
{
  return new aarch64_vector_costs (vinfo, costing_for_scalar);
}

/* Return true if the current CPU should use the new costs defined
   in GCC 11.  This should be removed for GCC 12 and above, with the
   costs applying to all CPUs instead.  */
static bool
aarch64_use_new_vector_costs_p ()
{
  return (aarch64_tune_params.extra_tuning_flags
	  & AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS);
}

/* Return the appropriate SIMD costs for vectors of type VECTYPE.  */
static const simd_vec_cost *
aarch64_simd_vec_costs (tree vectype)
{
  const cpu_vector_cost *costs = aarch64_tune_params.vec_costs;
  if (vectype != NULL
      && aarch64_sve_mode_p (TYPE_MODE (vectype))
      && costs->sve != NULL)
    return costs->sve;
  return costs->advsimd;
}

/* Return the appropriate SIMD costs for vectors with VEC_* flags FLAGS.  */
static const simd_vec_cost *
aarch64_simd_vec_costs_for_flags (unsigned int flags)
{
  const cpu_vector_cost *costs = aarch64_tune_params.vec_costs;
  if ((flags & VEC_ANY_SVE) && costs->sve)
    return costs->sve;
  return costs->advsimd;
}

/* If STMT_INFO is a memory reference, return the scalar memory type,
   otherwise return null.  */
static tree
aarch64_dr_type (stmt_vec_info stmt_info)
{
  if (auto dr = STMT_VINFO_DATA_REF (stmt_info))
    return TREE_TYPE (DR_REF (dr));
  return NULL_TREE;
}

/* Decide whether to use the unrolling heuristic described above
   m_unrolled_advsimd_niters, updating that field if so.  LOOP_VINFO
   describes the loop that we're vectorizing.  */
void
aarch64_vector_costs::
record_potential_advsimd_unrolling (loop_vec_info loop_vinfo)
{
  /* The heuristic only makes sense on targets that have the same
     vector throughput for SVE and Advanced SIMD.  */
  if (!(aarch64_tune_params.extra_tuning_flags
	& AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT))
    return;

  /* We only want to apply the heuristic if LOOP_VINFO is being
     vectorized for SVE.  */
  if (!(m_vec_flags & VEC_ANY_SVE))
    return;

  /* Check whether it is possible in principle to use Advanced SIMD
     instead.  */
  if (aarch64_autovec_preference == 2)
    return;

  /* We don't want to apply the heuristic to outer loops, since it's
     harder to track two levels of unrolling.  */
  if (LOOP_VINFO_LOOP (loop_vinfo)->inner)
    return;

  /* Only handle cases in which the number of Advanced SIMD iterations
     would be known at compile time but the number of SVE iterations
     would not.  */
  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      || aarch64_sve_vg.is_constant ())
    return;

  /* Guess how many times the Advanced SIMD loop would iterate and make
     sure that it is within the complete unrolling limit.  Even if the
     number of iterations is small enough, the number of statements might
     not be, which is why we need to estimate the number of statements too.  */
  unsigned int estimated_vq = aarch64_estimated_sve_vq ();
  unsigned int advsimd_vf = CEIL (vect_vf_for_cost (loop_vinfo), estimated_vq);
  unsigned HOST_WIDE_INT unrolled_advsimd_niters
    = LOOP_VINFO_INT_NITERS (loop_vinfo) / advsimd_vf;
  if (unrolled_advsimd_niters > (unsigned int) param_max_completely_peel_times)
    return;

  /* Record that we're applying the heuristic and should try to estimate
     the number of statements in the Advanced SIMD loop.  */
  m_unrolled_advsimd_niters = unrolled_advsimd_niters;
}

/* Do one-time initialization of the aarch64_vector_costs given that we're
   costing the loop vectorization described by LOOP_VINFO.  */
void
aarch64_vector_costs::analyze_loop_vinfo (loop_vec_info loop_vinfo)
{
  /* Record the number of times that the vector loop would execute,
     if known.  */
  class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  auto scalar_niters = max_stmt_executions_int (loop);
  if (scalar_niters >= 0)
    {
      unsigned int vf = vect_vf_for_cost (loop_vinfo);
      if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
	m_num_vector_iterations = scalar_niters / vf;
      else
	m_num_vector_iterations = CEIL (scalar_niters, vf);
    }

  /* Detect whether we're vectorizing for SVE and should apply the unrolling
     heuristic described above m_unrolled_advsimd_niters.  */
  record_potential_advsimd_unrolling (loop_vinfo);

  /* Record the issue information for any SVE WHILE instructions that the
     loop needs.  */
  if (!m_ops.is_empty () && !LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
    {
      unsigned int num_masks = 0;
      rgroup_controls *rgm;
      unsigned int num_vectors_m1;
      FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), num_vectors_m1, rgm)
	if (rgm->type)
	  num_masks += num_vectors_m1 + 1;
      for (auto &ops : m_ops)
	if (auto *issue = ops.sve_issue_info ())
	  ops.pred_ops += num_masks * issue->while_pred_ops;
    }
}

/* Implement targetm.vectorize.builtin_vectorization_cost.  */
static int
aarch64_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
				    tree vectype,
				    int misalign ATTRIBUTE_UNUSED)
{
  unsigned elements;
  const cpu_vector_cost *costs = aarch64_tune_params.vec_costs;
  bool fp = false;

  if (vectype != NULL)
    fp = FLOAT_TYPE_P (vectype);

  const simd_vec_cost *simd_costs = aarch64_simd_vec_costs (vectype);

  switch (type_of_cost)
    {
      case scalar_stmt:
	return fp ? costs->scalar_fp_stmt_cost : costs->scalar_int_stmt_cost;

      case scalar_load:
	return costs->scalar_load_cost;

      case scalar_store:
	return costs->scalar_store_cost;

      case vector_stmt:
	return fp ? simd_costs->fp_stmt_cost
		  : simd_costs->int_stmt_cost;

      case vector_load:
	return simd_costs->align_load_cost;

      case vector_store:
	return simd_costs->store_cost;

      case vec_to_scalar:
	return simd_costs->vec_to_scalar_cost;

      case scalar_to_vec:
	return simd_costs->scalar_to_vec_cost;

      case unaligned_load:
      case vector_gather_load:
	return simd_costs->unalign_load_cost;

      case unaligned_store:
      case vector_scatter_store:
	return simd_costs->unalign_store_cost;

      case cond_branch_taken:
	return costs->cond_taken_branch_cost;

      case cond_branch_not_taken:
	return costs->cond_not_taken_branch_cost;

      case vec_perm:
	return simd_costs->permute_cost;

      case vec_promote_demote:
	return fp ? simd_costs->fp_stmt_cost
		  : simd_costs->int_stmt_cost;

      case vec_construct:
	elements = estimated_poly_value (TYPE_VECTOR_SUBPARTS (vectype));
	return elements / 2 + 1;

      default:
	gcc_unreachable ();
    }
}

/* Return true if an access of kind KIND for STMT_INFO represents one
   vector of an LD[234] or ST[234] operation.  Return the total number of
   vectors (2, 3 or 4) if so, otherwise return a value outside that range.  */
static int
aarch64_ld234_st234_vectors (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
{
  if ((kind == vector_load
       || kind == unaligned_load
       || kind == vector_store
       || kind == unaligned_store)
      && STMT_VINFO_DATA_REF (stmt_info))
    {
      stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
      if (stmt_info
	  && STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_LOAD_STORE_LANES)
	return DR_GROUP_SIZE (stmt_info);
    }
  return 0;
}

/* Return true if creating multiple copies of STMT_INFO for Advanced SIMD
   vectors would produce a series of LDP or STP operations.  KIND is the
   kind of statement that STMT_INFO represents.  */
static bool
aarch64_advsimd_ldp_stp_p (enum vect_cost_for_stmt kind,
			   stmt_vec_info stmt_info)
{
  switch (kind)
    {
    case vector_load:
    case vector_store:
    case unaligned_load:
    case unaligned_store:
      break;

    default:
      return false;
    }

  if (aarch64_tune_params.extra_tuning_flags
      & AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS)
    return false;

  return is_gimple_assign (stmt_info->stmt);
}

/* Return true if STMT_INFO is the second part of a two-statement multiply-add
   or multiply-subtract sequence that might be suitable for fusing into a
   single instruction.  If VEC_FLAGS is zero, analyze the operation as
   a scalar one, otherwise analyze it as an operation on vectors with those
   VEC_* flags.  */
static bool
aarch64_multiply_add_p (vec_info *vinfo, stmt_vec_info stmt_info,
			unsigned int vec_flags)
{
  gassign *assign = dyn_cast<gassign *> (stmt_info->stmt);
  if (!assign)
    return false;
  tree_code code = gimple_assign_rhs_code (assign);
  if (code != PLUS_EXPR && code != MINUS_EXPR)
    return false;

  if (CONSTANT_CLASS_P (gimple_assign_rhs1 (assign))
      || CONSTANT_CLASS_P (gimple_assign_rhs2 (assign)))
    return false;

  for (int i = 1; i < 3; ++i)
    {
      tree rhs = gimple_op (assign, i);
      /* ??? Should we try to check for a single use as well?  */
      if (TREE_CODE (rhs) != SSA_NAME)
	continue;

      stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
      if (!def_stmt_info
	  || STMT_VINFO_DEF_TYPE (def_stmt_info) != vect_internal_def)
	continue;
      gassign *rhs_assign = dyn_cast<gassign *> (def_stmt_info->stmt);
      if (!rhs_assign || gimple_assign_rhs_code (rhs_assign) != MULT_EXPR)
	continue;

      if (vec_flags & VEC_ADVSIMD)
	{
	  /* Scalar and SVE code can tie the result to any FMLA input (or none,
	     although that requires a MOVPRFX for SVE).  However, Advanced SIMD
	     only supports MLA forms, so will require a move if the result
	     cannot be tied to the accumulator.  The most important case in
	     which this is true is when the accumulator input is invariant.  */
	  rhs = gimple_op (assign, 3 - i);
	  if (TREE_CODE (rhs) != SSA_NAME)
	    return false;
	  def_stmt_info = vinfo->lookup_def (rhs);
	  if (!def_stmt_info
	      || STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_external_def)
	    return false;
	}

      return true;
    }
  return false;
}

/* We are considering implementing STMT_INFO using SVE.  If STMT_INFO is an
   in-loop reduction that SVE supports directly, return its latency in cycles,
   otherwise return zero.  SVE_COSTS specifies the latencies of the relevant
   instructions.  */
static unsigned int
aarch64_sve_in_loop_reduction_latency (vec_info *vinfo,
				       stmt_vec_info stmt_info,
				       const sve_vec_cost *sve_costs)
{
  switch (vect_reduc_type (vinfo, stmt_info))
    {
    case EXTRACT_LAST_REDUCTION:
      return sve_costs->clast_cost;

    case FOLD_LEFT_REDUCTION:
      switch (TYPE_MODE (TREE_TYPE (gimple_get_lhs (stmt_info->stmt))))
	{
	case E_HFmode:
	case E_BFmode:
	  return sve_costs->fadda_f16_cost;

	case E_SFmode:
	  return sve_costs->fadda_f32_cost;

	case E_DFmode:
	  return sve_costs->fadda_f64_cost;

	default:
	  break;
	}
      break;
    }

  return 0;
}

/* STMT_INFO describes a loop-carried operation in the original scalar code
   that we are considering implementing as a reduction.  Return one of the
   following values, depending on VEC_FLAGS:

   - If VEC_FLAGS is zero, return the loop carry latency of the original
     scalar operation.

   - If VEC_FLAGS & VEC_ADVSIMD, return the loop carry latency of the
     Advanced SIMD implementation.

   - If VEC_FLAGS & VEC_ANY_SVE, return the loop carry latency of the
     SVE implementation.  */
static unsigned int
aarch64_in_loop_reduction_latency (vec_info *vinfo, stmt_vec_info stmt_info,
				   unsigned int vec_flags)
{
  const cpu_vector_cost *vec_costs = aarch64_tune_params.vec_costs;
  const sve_vec_cost *sve_costs = nullptr;
  if (vec_flags & VEC_ANY_SVE)
    sve_costs = aarch64_tune_params.vec_costs->sve;

  /* If the caller is asking for the SVE latency, check for forms of reduction
     that only SVE can handle directly.  */
  if (sve_costs)
    {
      unsigned int latency
	= aarch64_sve_in_loop_reduction_latency (vinfo, stmt_info, sve_costs);
      if (latency)
	return latency;
    }

  /* Handle scalar costs.  */
  bool is_float = FLOAT_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt_info->stmt)));
  if (vec_flags == 0)
    {
      if (is_float)
	return vec_costs->scalar_fp_stmt_cost;
      return vec_costs->scalar_int_stmt_cost;
    }

  /* Otherwise, the loop body just contains normal integer or FP operations,
     with a vector reduction outside the loop.  */
  const simd_vec_cost *simd_costs
    = aarch64_simd_vec_costs_for_flags (vec_flags);
  if (is_float)
    return simd_costs->fp_stmt_cost;
  return simd_costs->int_stmt_cost;
}

/* STMT_COST is the cost calculated by aarch64_builtin_vectorization_cost
   for STMT_INFO, which has cost kind KIND.  If this is a scalar operation,
   try to subdivide the target-independent categorization provided by KIND
   to get a more accurate cost.  */
static fractional_cost
aarch64_detect_scalar_stmt_subtype (vec_info *vinfo, vect_cost_for_stmt kind,
				    stmt_vec_info stmt_info,
				    fractional_cost stmt_cost)
{
  /* Detect an extension of a loaded value.  In general, we'll be able to fuse
     the extension with the load.  */
  if (kind == scalar_stmt && vect_is_extending_load (vinfo, stmt_info))
    return 0;

  return stmt_cost;
}

/* STMT_COST is the cost calculated by aarch64_builtin_vectorization_cost
   for the vectorized form of STMT_INFO, which has cost kind KIND and which
   when vectorized would operate on vector type VECTYPE.  Try to subdivide
   the target-independent categorization provided by KIND to get a more
   accurate cost.  WHERE specifies where the cost associated with KIND
   occurs.  */
static fractional_cost
aarch64_detect_vector_stmt_subtype (vec_info *vinfo, vect_cost_for_stmt kind,
				    stmt_vec_info stmt_info, tree vectype,
				    enum vect_cost_model_location where,
				    fractional_cost stmt_cost)
{
  const simd_vec_cost *simd_costs = aarch64_simd_vec_costs (vectype);
  const sve_vec_cost *sve_costs = nullptr;
  if (aarch64_sve_mode_p (TYPE_MODE (vectype)))
    sve_costs = aarch64_tune_params.vec_costs->sve;

  /* It's generally better to avoid costing inductions, since the induction
     will usually be hidden by other operations.  This is particularly true
     for things like COND_REDUCTIONS.  */
  if (is_a<gphi *> (stmt_info->stmt))
    return 0;

  /* Detect cases in which vec_to_scalar is describing the extraction of a
     vector element in preparation for a scalar store.  The store itself is
     costed separately.  */
  if (vect_is_store_elt_extraction (kind, stmt_info))
    return simd_costs->store_elt_extra_cost;

  /* Detect SVE gather loads, which are costed as a single scalar_load
     for each element.  We therefore need to divide the full-instruction
     cost by the number of elements in the vector.  */
  if (kind == scalar_load
      && sve_costs
      && STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_GATHER_SCATTER)
    {
      unsigned int nunits = vect_nunits_for_cost (vectype);
      if (GET_MODE_UNIT_BITSIZE (TYPE_MODE (vectype)) == 64)
	return { sve_costs->gather_load_x64_cost, nunits };
      return { sve_costs->gather_load_x32_cost, nunits };
    }

  /* Detect cases in which a scalar_store is really storing one element
     in a scatter operation.  */
  if (kind == scalar_store
      && sve_costs
      && STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_GATHER_SCATTER)
    return sve_costs->scatter_store_elt_cost;

  /* Detect cases in which vec_to_scalar represents an in-loop reduction.  */
  if (kind == vec_to_scalar
      && where == vect_body
      && sve_costs)
    {
      unsigned int latency
	= aarch64_sve_in_loop_reduction_latency (vinfo, stmt_info, sve_costs);
      if (latency)
	return latency;
    }

  /* Detect cases in which vec_to_scalar represents a single reduction
     instruction like FADDP or MAXV.  */
  if (kind == vec_to_scalar
      && where == vect_epilogue
      && vect_is_reduction (stmt_info))
    switch (GET_MODE_INNER (TYPE_MODE (vectype)))
      {
      case E_QImode:
	return simd_costs->reduc_i8_cost;

      case E_HImode:
	return simd_costs->reduc_i16_cost;

      case E_SImode:
	return simd_costs->reduc_i32_cost;

      case E_DImode:
	return simd_costs->reduc_i64_cost;

      case E_HFmode:
      case E_BFmode:
	return simd_costs->reduc_f16_cost;

      case E_SFmode:
	return simd_costs->reduc_f32_cost;

      case E_DFmode:
	return simd_costs->reduc_f64_cost;

      default:
	break;
      }

  /* Otherwise stick with the original categorization.  */
  return stmt_cost;
}

/* STMT_COST is the cost calculated by aarch64_builtin_vectorization_cost
   for STMT_INFO, which has cost kind KIND and which when vectorized would
   operate on vector type VECTYPE.  Adjust the cost as necessary for SVE
   targets.  */
static fractional_cost
aarch64_sve_adjust_stmt_cost (class vec_info *vinfo, vect_cost_for_stmt kind,
			      stmt_vec_info stmt_info, tree vectype,
			      fractional_cost stmt_cost)
{
  /* Unlike vec_promote_demote, vector_stmt conversions do not change the
     vector register size or number of units.  Integer promotions of this
     type therefore map to SXT[BHW] or UXT[BHW].

     Most loads have extending forms that can do the sign or zero extension
     on the fly.  Optimistically assume that a load followed by an extension
     will fold to this form during combine, and that the extension therefore
     comes for free.  */
  if (kind == vector_stmt && vect_is_extending_load (vinfo, stmt_info))
    stmt_cost = 0;

  /* For similar reasons, vector_stmt integer truncations are a no-op,
     because we can just ignore the unused upper bits of the source.  */
  if (kind == vector_stmt && vect_is_integer_truncation (stmt_info))
    stmt_cost = 0;

  /* Advanced SIMD can load and store pairs of registers using LDP and STP,
     but there are no equivalent instructions for SVE.  This means that
     (all other things being equal) 128-bit SVE needs twice as many load
     and store instructions as Advanced SIMD in order to process vector pairs.

     Also, scalar code can often use LDP and STP to access pairs of values,
     so it is too simplistic to say that one SVE load or store replaces
     VF scalar loads and stores.

     Ideally we would account for this in the scalar and Advanced SIMD
     costs by making suitable load/store pairs as cheap as a single
     load/store.  However, that would be a very invasive change and in
     practice it tends to stress other parts of the cost model too much.
     E.g. stores of scalar constants currently count just a store,
     whereas stores of vector constants count a store and a vec_init.
     This is an artificial distinction for AArch64, where stores of
     nonzero scalar constants need the same kind of register invariant
     as vector stores.

     An alternative would be to double the cost of any SVE loads and stores
     that could be paired in Advanced SIMD (and possibly also paired in
     scalar code).  But this tends to stress other parts of the cost model
     in the same way.  It also means that we can fall back to Advanced SIMD
     even if full-loop predication would have been useful.

     Here we go for a more conservative version: double the costs of SVE
     loads and stores if one iteration of the scalar loop processes enough
     elements for it to use a whole number of Advanced SIMD LDP or STP
     instructions.  This makes it very likely that the VF would be 1 for
     Advanced SIMD, and so no epilogue should be needed.  */
  if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
    {
      stmt_vec_info first = DR_GROUP_FIRST_ELEMENT (stmt_info);
      unsigned int count = DR_GROUP_SIZE (first) - DR_GROUP_GAP (first);
      unsigned int elt_bits = GET_MODE_UNIT_BITSIZE (TYPE_MODE (vectype));
      if (multiple_p (count * elt_bits, 256)
	  && aarch64_advsimd_ldp_stp_p (kind, stmt_info))
	stmt_cost *= 2;
    }

  return stmt_cost;
}

/* STMT_COST is the cost calculated for STMT_INFO, which has cost kind KIND
   and which when vectorized would operate on vector type VECTYPE.  Add the
   cost of any embedded operations.  */
static fractional_cost
aarch64_adjust_stmt_cost (vect_cost_for_stmt kind, stmt_vec_info stmt_info,
			  tree vectype, fractional_cost stmt_cost)
{
  if (vectype)
    {
      const simd_vec_cost *simd_costs = aarch64_simd_vec_costs (vectype);

      /* Detect cases in which a vector load or store represents an
	 LD[234] or ST[234] instruction.  */
      switch (aarch64_ld234_st234_vectors (kind, stmt_info))
	{
	case 2:
	  stmt_cost += simd_costs->ld2_st2_permute_cost;
	  break;

	case 3:
	  stmt_cost += simd_costs->ld3_st3_permute_cost;
	  break;

	case 4:
	  stmt_cost += simd_costs->ld4_st4_permute_cost;
	  break;
	}

      if (kind == vector_stmt || kind == vec_to_scalar)
	if (tree cmp_type = vect_embedded_comparison_type (stmt_info))
	  {
	    if (FLOAT_TYPE_P (cmp_type))
	      stmt_cost += simd_costs->fp_stmt_cost;
	    else
	      stmt_cost += simd_costs->int_stmt_cost;
	  }
    }

  if (kind == scalar_stmt)
    if (tree cmp_type = vect_embedded_comparison_type (stmt_info))
      {
	if (FLOAT_TYPE_P (cmp_type))
	  stmt_cost += aarch64_tune_params.vec_costs->scalar_fp_stmt_cost;
	else
	  stmt_cost += aarch64_tune_params.vec_costs->scalar_int_stmt_cost;
      }

  return stmt_cost;
}

/* COUNT, KIND and STMT_INFO are the same as for vector_costs::add_stmt_cost
   and they describe an operation in the body of a vector loop.  Record issue
   information relating to the vector operation in OPS.  */
void
aarch64_vector_costs::count_ops (unsigned int count, vect_cost_for_stmt kind,
				 stmt_vec_info stmt_info,
				 aarch64_vec_op_count *ops)
{
  const aarch64_base_vec_issue_info *base_issue = ops->base_issue_info ();
  if (!base_issue)
    return;
  const aarch64_simd_vec_issue_info *simd_issue = ops->simd_issue_info ();
  const aarch64_sve_vec_issue_info *sve_issue = ops->sve_issue_info ();

  /* Calculate the minimum cycles per iteration imposed by a reduction
     operation.  */
  if ((kind == scalar_stmt || kind == vector_stmt || kind == vec_to_scalar)
      && vect_is_reduction (stmt_info))
    {
      unsigned int base
	= aarch64_in_loop_reduction_latency (m_vinfo, stmt_info, m_vec_flags);

      /* ??? Ideally we'd do COUNT reductions in parallel, but unfortunately
	 that's not yet the case.  */
      ops->reduction_latency = MAX (ops->reduction_latency, base * count);
    }

  /* Assume that multiply-adds will become a single operation.  */
  if (stmt_info && aarch64_multiply_add_p (m_vinfo, stmt_info, m_vec_flags))
    return;

  /* Count the basic operation cost associated with KIND.  */
  switch (kind)
    {
    case cond_branch_taken:
    case cond_branch_not_taken:
    case vector_gather_load:
    case vector_scatter_store:
      /* We currently don't expect these to be used in a loop body.  */
      break;

    case vec_perm:
    case vec_promote_demote:
    case vec_construct:
    case vec_to_scalar:
    case scalar_to_vec:
    case vector_stmt:
    case scalar_stmt:
      ops->general_ops += count;
      break;

    case scalar_load:
    case vector_load:
    case unaligned_load:
      ops->loads += count;
      if (m_vec_flags || FLOAT_TYPE_P (aarch64_dr_type (stmt_info)))
	ops->general_ops += base_issue->fp_simd_load_general_ops * count;
      break;

    case vector_store:
    case unaligned_store:
    case scalar_store:
      ops->stores += count;
      if (m_vec_flags || FLOAT_TYPE_P (aarch64_dr_type (stmt_info)))
	ops->general_ops += base_issue->fp_simd_store_general_ops * count;
      break;
    }

  /* Add any embedded comparison operations.  */
  if ((kind == scalar_stmt || kind == vector_stmt || kind == vec_to_scalar)
      && vect_embedded_comparison_type (stmt_info))
    ops->general_ops += count;

  /* COND_REDUCTIONS need two sets of VEC_COND_EXPRs, whereas so far we
     have only accounted for one.  */
  if ((kind == vector_stmt || kind == vec_to_scalar)
      && vect_reduc_type (m_vinfo, stmt_info) == COND_REDUCTION)
    ops->general_ops += count;

  /* Count the predicate operations needed by an SVE comparison.  */
  if (sve_issue && (kind == vector_stmt || kind == vec_to_scalar))
    if (tree type = vect_comparison_type (stmt_info))
      {
	unsigned int base = (FLOAT_TYPE_P (type)
			     ? sve_issue->fp_cmp_pred_ops
			     : sve_issue->int_cmp_pred_ops);
	ops->pred_ops += base * count;
      }

  /* Add any extra overhead associated with LD[234] and ST[234] operations.  */
  if (simd_issue)
    switch (aarch64_ld234_st234_vectors (kind, stmt_info))
      {
      case 2:
	ops->general_ops += simd_issue->ld2_st2_general_ops * count;
	break;

      case 3:
	ops->general_ops += simd_issue->ld3_st3_general_ops * count;
	break;

      case 4:
	ops->general_ops += simd_issue->ld4_st4_general_ops * count;
	break;
      }

  /* Add any overhead associated with gather loads and scatter stores.  */
  if (sve_issue
      && (kind == scalar_load || kind == scalar_store)
      && STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_GATHER_SCATTER)
    {
      unsigned int pairs = CEIL (count, 2);
      ops->pred_ops += sve_issue->gather_scatter_pair_pred_ops * pairs;
      ops->general_ops += sve_issue->gather_scatter_pair_general_ops * pairs;
    }
}

/* Return true if STMT_INFO contains a memory access and if the constant
   component of the memory address is aligned to SIZE bytes.  */
static bool
aarch64_aligned_constant_offset_p (stmt_vec_info stmt_info,
				   poly_uint64 size)
{
  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  if (auto first_stmt = DR_GROUP_FIRST_ELEMENT (stmt_info))
    stmt_info = first_stmt;
  tree constant_offset = DR_INIT (STMT_VINFO_DATA_REF (stmt_info));
  /* Needed for gathers & scatters, for example.  */
  if (!constant_offset)
    return false;

  return multiple_p (wi::to_poly_offset (constant_offset), size);
}

/* Check if a scalar or vector stmt could be part of a region of code
   that does nothing more than store values to memory, in the scalar
   case using STP.  Return the cost of the stmt if so, counting 2 for
   one instruction.  Return ~0U otherwise.

   The arguments are a subset of those passed to add_stmt_cost.  */
unsigned int
aarch64_stp_sequence_cost (unsigned int count, vect_cost_for_stmt kind,
			   stmt_vec_info stmt_info, tree vectype)
{
  /* Code that stores vector constants uses a vector_load to create
     the constant.  We don't apply the heuristic to that case for two
     main reasons:

     - At the moment, STPs are only formed via peephole2, and the
       constant scalar moves would often come between STRs and so
       prevent STP formation.

     - The scalar code also has to load the constant somehow, and that
       isn't costed.  */
  switch (kind)
    {
    case scalar_to_vec:
      /* Count 2 insns for a GPR->SIMD dup and 1 insn for a FPR->SIMD dup.  */
      return (FLOAT_TYPE_P (vectype) ? 2 : 4) * count;

    case vec_construct:
      if (FLOAT_TYPE_P (vectype))
	/* Count 1 insn for the maximum number of FP->SIMD INS
	   instructions.  */
	return (vect_nunits_for_cost (vectype) - 1) * 2 * count;

      /* Count 2 insns for a GPR->SIMD move and 2 insns for the
	 maximum number of GPR->SIMD INS instructions.  */
      return vect_nunits_for_cost (vectype) * 4 * count;

    case vector_store:
    case unaligned_store:
      /* Count 1 insn per vector if we can't form STP Q pairs.  */
      if (aarch64_sve_mode_p (TYPE_MODE (vectype)))
	return count * 2;
      if (aarch64_tune_params.extra_tuning_flags
	  & AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS)
	return count * 2;

      if (stmt_info)
	{
	  /* Assume we won't be able to use STP if the constant offset
	     component of the address is misaligned.  ??? This could be
	     removed if we formed STP pairs earlier, rather than relying
	     on peephole2.  */
	  auto size = GET_MODE_SIZE (TYPE_MODE (vectype));
	  if (!aarch64_aligned_constant_offset_p (stmt_info, size))
	    return count * 2;
	}
      return CEIL (count, 2) * 2;

    case scalar_store:
      if (stmt_info && STMT_VINFO_DATA_REF (stmt_info))
	{
	  /* Check for a mode in which STP pairs can be formed.  */
	  auto size = GET_MODE_SIZE (TYPE_MODE (aarch64_dr_type (stmt_info)));
	  if (maybe_ne (size, 4) && maybe_ne (size, 8))
	    return ~0U;

	  /* Assume we won't be able to use STP if the constant offset
	     component of the address is misaligned.  ??? This could be
	     removed if we formed STP pairs earlier, rather than relying
	     on peephole2.  */
	  if (!aarch64_aligned_constant_offset_p (stmt_info, size))
	    return ~0U;
	}
      return count;

    default:
      return ~0U;
    }
}

unsigned
aarch64_vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind,
				     stmt_vec_info stmt_info, slp_tree,
				     tree vectype, int misalign,
				     vect_cost_model_location where)
{
  fractional_cost stmt_cost
    = aarch64_builtin_vectorization_cost (kind, vectype, misalign);

  bool in_inner_loop_p = (where == vect_body
			  && stmt_info
			  && stmt_in_inner_loop_p (m_vinfo, stmt_info));

  /* Do one-time initialization based on the vinfo.  */
  loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (m_vinfo);
  if (!m_analyzed_vinfo && aarch64_use_new_vector_costs_p ())
    {
      if (loop_vinfo)
	analyze_loop_vinfo (loop_vinfo);

      m_analyzed_vinfo = true;
    }

  /* Apply the heuristic described above m_stp_sequence_cost.  */
  if (m_stp_sequence_cost != ~0U)
    {
      uint64_t cost = aarch64_stp_sequence_cost (count, kind,
						 stmt_info, vectype);
      m_stp_sequence_cost = MIN (m_stp_sequence_cost + cost, ~0U);
    }

  /* Try to get a more accurate cost by looking at STMT_INFO instead
     of just looking at KIND.  */
  if (stmt_info && aarch64_use_new_vector_costs_p ())
    {
      /* If we scalarize a strided store, the vectorizer costs one
	 vec_to_scalar for each element.  However, we can store the first
	 element using an FP store without a separate extract step.  */
      if (vect_is_store_elt_extraction (kind, stmt_info))
	count -= 1;

      stmt_cost = aarch64_detect_scalar_stmt_subtype (m_vinfo, kind,
						      stmt_info, stmt_cost);

      if (vectype && m_vec_flags)
	stmt_cost = aarch64_detect_vector_stmt_subtype (m_vinfo, kind,
							stmt_info, vectype,
							where, stmt_cost);
    }

  /* Do any SVE-specific adjustments to the cost.  */
  if (stmt_info && vectype && aarch64_sve_mode_p (TYPE_MODE (vectype)))
    stmt_cost = aarch64_sve_adjust_stmt_cost (m_vinfo, kind, stmt_info,
					      vectype, stmt_cost);

  if (stmt_info && aarch64_use_new_vector_costs_p ())
    {
      /* Account for any extra "embedded" costs that apply additively
	 to the base cost calculated above.  */
      stmt_cost = aarch64_adjust_stmt_cost (kind, stmt_info, vectype,
					    stmt_cost);

      /* If we're recording a nonzero vector loop body cost for the
	 innermost loop, also estimate the operations that would need
	 to be issued by all relevant implementations of the loop.  */
      if (loop_vinfo
	  && (m_costing_for_scalar || where == vect_body)
	  && (!LOOP_VINFO_LOOP (loop_vinfo)->inner || in_inner_loop_p)
	  && stmt_cost != 0)
	for (auto &ops : m_ops)
	  count_ops (count, kind, stmt_info, &ops);

      /* If we're applying the SVE vs. Advanced SIMD unrolling heuristic,
	 estimate the number of statements in the unrolled Advanced SIMD
	 loop.  For simplicitly, we assume that one iteration of the
	 Advanced SIMD loop would need the same number of statements
	 as one iteration of the SVE loop.  */
      if (where == vect_body && m_unrolled_advsimd_niters)
	m_unrolled_advsimd_stmts += count * m_unrolled_advsimd_niters;

      /* Detect the use of an averaging operation.  */
      gimple *stmt = stmt_info->stmt;
      if (is_gimple_call (stmt)
	  && gimple_call_internal_p (stmt))
	{
	  switch (gimple_call_internal_fn (stmt))
	    {
	    case IFN_AVG_FLOOR:
	    case IFN_AVG_CEIL:
	      m_has_avg = true;
	    default:
	      break;
	    }
	}
    }
  return record_stmt_cost (stmt_info, where, (count * stmt_cost).ceil ());
}

/* Return true if (a) we're applying the Advanced SIMD vs. SVE unrolling
   heuristic described above m_unrolled_advsimd_niters and (b) the heuristic
   says that we should prefer the Advanced SIMD loop.  */
bool
aarch64_vector_costs::prefer_unrolled_loop () const
{
  if (!m_unrolled_advsimd_stmts)
    return false;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "Number of insns in"
		     " unrolled Advanced SIMD loop = "
		     HOST_WIDE_INT_PRINT_UNSIGNED "\n",
		     m_unrolled_advsimd_stmts);

  /* The balance here is tricky.  On the one hand, we can't be sure whether
     the code is vectorizable with Advanced SIMD or not.  However, even if
     it isn't vectorizable with Advanced SIMD, there's a possibility that
     the scalar code could also be unrolled.  Some of the code might then
     benefit from SLP, or from using LDP and STP.  We therefore apply
     the heuristic regardless of can_use_advsimd_p.  */
  return (m_unrolled_advsimd_stmts
	  && (m_unrolled_advsimd_stmts
	      <= (unsigned int) param_max_completely_peeled_insns));
}

/* Subroutine of adjust_body_cost for handling SVE.  Use ISSUE_INFO to work out
   how fast the SVE code can be issued and compare it to the equivalent value
   for scalar code (SCALAR_CYCLES_PER_ITER).  If COULD_USE_ADVSIMD is true,
   also compare it to the issue rate of Advanced SIMD code
   (ADVSIMD_CYCLES_PER_ITER).

   ORIG_BODY_COST is the cost originally passed to adjust_body_cost and
   *BODY_COST is the current value of the adjusted cost.  *SHOULD_DISPARAGE
   is true if we think the loop body is too expensive.  */

fractional_cost
aarch64_vector_costs::
adjust_body_cost_sve (const aarch64_vec_op_count *ops,
		      fractional_cost scalar_cycles_per_iter,
		      unsigned int orig_body_cost, unsigned int *body_cost,
		      bool *should_disparage)
{
  if (dump_enabled_p ())
    ops->dump ();

  fractional_cost sve_pred_cycles_per_iter = ops->min_pred_cycles_per_iter ();
  fractional_cost sve_cycles_per_iter = ops->min_cycles_per_iter ();

  /* If the scalar version of the loop could issue at least as
     quickly as the predicate parts of the SVE loop, make the SVE loop
     prohibitively expensive.  In this case vectorization is adding an
     overhead that the original scalar code didn't have.

     This is mostly intended to detect cases in which WHILELOs dominate
     for very tight loops, which is something that normal latency-based
     costs would not model.  Adding this kind of cliffedge would be
     too drastic for scalar_cycles_per_iter vs. sve_cycles_per_iter;
     code in the caller handles that case in a more conservative way.  */
  fractional_cost sve_estimate = sve_pred_cycles_per_iter + 1;
  if (scalar_cycles_per_iter < sve_estimate)
    {
      unsigned int min_cost
	= orig_body_cost * estimated_poly_value (BYTES_PER_SVE_VECTOR);
      if (*body_cost < min_cost)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Increasing body cost to %d because the"
			     " scalar code could issue within the limit"
			     " imposed by predicate operations\n",
			     min_cost);
	  *body_cost = min_cost;
	  *should_disparage = true;
	}
    }

  return sve_cycles_per_iter;
}

unsigned int
aarch64_vector_costs::determine_suggested_unroll_factor ()
{
  bool sve = m_vec_flags & VEC_ANY_SVE;
  /* If we are trying to unroll an Advanced SIMD main loop that contains
     an averaging operation that we do not support with SVE and we might use a
     predicated epilogue, we need to be conservative and block unrolling as
     this might lead to a less optimal loop for the first and only epilogue
     using the original loop's vectorization factor.
     TODO: Remove this constraint when we add support for multiple epilogue
     vectorization.  */
  if (!sve && !TARGET_SVE2 && m_has_avg)
    return 1;

  unsigned int max_unroll_factor = 1;
  for (auto vec_ops : m_ops)
    {
      aarch64_simd_vec_issue_info const *vec_issue
	= vec_ops.simd_issue_info ();
      if (!vec_issue)
	return 1;
      /* Limit unroll factor to a value adjustable by the user, the default
	 value is 4. */
      unsigned int unroll_factor = aarch64_vect_unroll_limit;
      unsigned int factor
       = vec_ops.reduction_latency > 1 ? vec_ops.reduction_latency : 1;
      unsigned int temp;

      /* Sanity check, this should never happen.  */
      if ((vec_ops.stores + vec_ops.loads + vec_ops.general_ops) == 0)
	return 1;

      /* Check stores.  */
      if (vec_ops.stores > 0)
	{
	  temp = CEIL (factor * vec_issue->stores_per_cycle,
		       vec_ops.stores);
	  unroll_factor = MIN (unroll_factor, temp);
	}

      /* Check loads + stores.  */
      if (vec_ops.loads > 0)
	{
	  temp = CEIL (factor * vec_issue->loads_stores_per_cycle,
		       vec_ops.loads + vec_ops.stores);
	  unroll_factor = MIN (unroll_factor, temp);
	}

      /* Check general ops.  */
      if (vec_ops.general_ops > 0)
	{
	  temp = CEIL (factor * vec_issue->general_ops_per_cycle,
		       vec_ops.general_ops);
	  unroll_factor = MIN (unroll_factor, temp);
	 }
      max_unroll_factor = MAX (max_unroll_factor, unroll_factor);
    }

  /* Make sure unroll factor is power of 2.  */
  return 1 << ceil_log2 (max_unroll_factor);
}

/* BODY_COST is the cost of a vector loop body.  Adjust the cost as necessary
   and return the new cost.  */
unsigned int
aarch64_vector_costs::
adjust_body_cost (loop_vec_info loop_vinfo,
		  const aarch64_vector_costs *scalar_costs,
		  unsigned int body_cost)
{
  if (scalar_costs->m_ops.is_empty () || m_ops.is_empty ())
    return body_cost;

  const auto &scalar_ops = scalar_costs->m_ops[0];
  const auto &vector_ops = m_ops[0];
  unsigned int estimated_vf = vect_vf_for_cost (loop_vinfo);
  unsigned int orig_body_cost = body_cost;
  bool should_disparage = false;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "Original vector body cost = %d\n", body_cost);

  fractional_cost scalar_cycles_per_iter
    = scalar_ops.min_cycles_per_iter () * estimated_vf;

  fractional_cost vector_cycles_per_iter = vector_ops.min_cycles_per_iter ();

  if (dump_enabled_p ())
    {
      if (IN_RANGE (m_num_vector_iterations, 0, 65536))
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Vector loop iterates at most %wd times\n",
			 m_num_vector_iterations);
      dump_printf_loc (MSG_NOTE, vect_location, "Scalar issue estimate:\n");
      scalar_ops.dump ();
      dump_printf_loc (MSG_NOTE, vect_location,
		       "  estimated cycles per vector iteration"
		       " (for VF %d) = %f\n",
		       estimated_vf, scalar_cycles_per_iter.as_double ());
    }

  if (vector_ops.sve_issue_info ())
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "SVE issue estimate:\n");
      vector_cycles_per_iter
	= adjust_body_cost_sve (&vector_ops, scalar_cycles_per_iter,
				orig_body_cost, &body_cost, &should_disparage);

      if (aarch64_tune_params.vec_costs == &neoverse512tvb_vector_cost)
	{
	  /* Also take Neoverse V1 tuning into account, doubling the
	     scalar and Advanced SIMD estimates to account for the
	     doubling in SVE vector length.  */
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Neoverse V1 estimate:\n");
	  auto vf_factor = m_ops[1].vf_factor ();
	  adjust_body_cost_sve (&m_ops[1], scalar_cycles_per_iter * vf_factor,
				orig_body_cost, &body_cost, &should_disparage);
	}
    }
  else
    {
      if (dump_enabled_p ())
	{
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "Vector issue estimate:\n");
	  vector_ops.dump ();
	}
    }

  /* Decide whether to stick to latency-based costs or whether to try to
     take issue rates into account.  */
  unsigned int threshold = aarch64_loop_vect_issue_rate_niters;
  if (m_vec_flags & VEC_ANY_SVE)
    threshold = CEIL (threshold, aarch64_estimated_sve_vq ());

  if (m_num_vector_iterations >= 1
      && m_num_vector_iterations < threshold)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Low iteration count, so using pure latency"
			 " costs\n");
    }
  /* Increase the cost of the vector code if it looks like the scalar code
     could issue more quickly.  These values are only rough estimates,
     so minor differences should only result in minor changes.  */
  else if (scalar_cycles_per_iter < vector_cycles_per_iter)
    {
      body_cost = fractional_cost::scale (body_cost, vector_cycles_per_iter,
					  scalar_cycles_per_iter);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Increasing body cost to %d because scalar code"
			 " would issue more quickly\n", body_cost);
    }
  /* In general, it's expected that the proposed vector code would be able
     to issue more quickly than the original scalar code.  This should
     already be reflected to some extent in the latency-based costs.

     However, the latency-based costs effectively assume that the scalar
     code and the vector code execute serially, which tends to underplay
     one important case: if the real (non-serialized) execution time of
     a scalar iteration is dominated by loop-carried dependencies,
     and if the vector code is able to reduce both the length of
     the loop-carried dependencies *and* the number of cycles needed
     to issue the code in general, we can be more confident that the
     vector code is an improvement, even if adding the other (non-loop-carried)
     latencies tends to hide this saving.  We therefore reduce the cost of the
     vector loop body in proportion to the saving.  */
  else if (scalar_ops.reduction_latency > vector_ops.reduction_latency
	   && scalar_ops.reduction_latency == scalar_cycles_per_iter
	   && scalar_cycles_per_iter > vector_cycles_per_iter
	   && !should_disparage)
    {
      body_cost = fractional_cost::scale (body_cost, vector_cycles_per_iter,
					  scalar_cycles_per_iter);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Decreasing body cost to %d account for smaller"
			 " reduction latency\n", body_cost);
    }

  return body_cost;
}

void
aarch64_vector_costs::finish_cost (const vector_costs *uncast_scalar_costs)
{
  auto *scalar_costs
    = static_cast<const aarch64_vector_costs *> (uncast_scalar_costs);
  loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (m_vinfo);
  if (loop_vinfo
      && m_vec_flags
      && aarch64_use_new_vector_costs_p ())
    {
      m_costs[vect_body] = adjust_body_cost (loop_vinfo, scalar_costs,
					     m_costs[vect_body]);
      m_suggested_unroll_factor = determine_suggested_unroll_factor ();
    }

  /* Apply the heuristic described above m_stp_sequence_cost.  Prefer
     the scalar code in the event of a tie, since there is more chance
     of scalar code being optimized with surrounding operations.  */
  if (!loop_vinfo
      && scalar_costs
      && m_stp_sequence_cost != ~0U
      && m_stp_sequence_cost >= scalar_costs->m_stp_sequence_cost)
    m_costs[vect_body] = 2 * scalar_costs->total_cost ();

  vector_costs::finish_cost (scalar_costs);
}

bool
aarch64_vector_costs::
better_main_loop_than_p (const vector_costs *uncast_other) const
{
  auto other = static_cast<const aarch64_vector_costs *> (uncast_other);

  auto this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
  auto other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "Comparing two main loops (%s at VF %d vs %s at VF %d)\n",
		     GET_MODE_NAME (this_loop_vinfo->vector_mode),
		     vect_vf_for_cost (this_loop_vinfo),
		     GET_MODE_NAME (other_loop_vinfo->vector_mode),
		     vect_vf_for_cost (other_loop_vinfo));

  /* Apply the unrolling heuristic described above
     m_unrolled_advsimd_niters.  */
  if (bool (m_unrolled_advsimd_stmts)
      != bool (other->m_unrolled_advsimd_stmts))
    {
      bool this_prefer_unrolled = this->prefer_unrolled_loop ();
      bool other_prefer_unrolled = other->prefer_unrolled_loop ();
      if (this_prefer_unrolled != other_prefer_unrolled)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Preferring Advanced SIMD loop because"
			     " it can be unrolled\n");
	  return other_prefer_unrolled;
	}
    }

  for (unsigned int i = 0; i < m_ops.length (); ++i)
    {
      if (dump_enabled_p ())
	{
	  if (i)
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Reconsidering with subtuning %d\n", i);
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "Issue info for %s loop:\n",
			   GET_MODE_NAME (this_loop_vinfo->vector_mode));
	  this->m_ops[i].dump ();
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "Issue info for %s loop:\n",
			   GET_MODE_NAME (other_loop_vinfo->vector_mode));
	  other->m_ops[i].dump ();
	}

      auto this_estimated_vf = (vect_vf_for_cost (this_loop_vinfo)
				* this->m_ops[i].vf_factor ());
      auto other_estimated_vf = (vect_vf_for_cost (other_loop_vinfo)
				 * other->m_ops[i].vf_factor ());

      /* If it appears that one loop could process the same amount of data
	 in fewer cycles, prefer that loop over the other one.  */
      fractional_cost this_cost
	= this->m_ops[i].min_cycles_per_iter () * other_estimated_vf;
      fractional_cost other_cost
	= other->m_ops[i].min_cycles_per_iter () * this_estimated_vf;
      if (dump_enabled_p ())
	{
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "Weighted cycles per iteration of %s loop ~= %f\n",
			   GET_MODE_NAME (this_loop_vinfo->vector_mode),
			   this_cost.as_double ());
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "Weighted cycles per iteration of %s loop ~= %f\n",
			   GET_MODE_NAME (other_loop_vinfo->vector_mode),
			   other_cost.as_double ());
	}
      if (this_cost != other_cost)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Preferring loop with lower cycles"
			     " per iteration\n");
	  return this_cost < other_cost;
	}

      /* If the issue rate of SVE code is limited by predicate operations
	 (i.e. if sve_pred_cycles_per_iter > sve_nonpred_cycles_per_iter),
	 and if Advanced SIMD code could issue within the limit imposed
	 by the predicate operations, the predicate operations are adding an
	 overhead that the original code didn't have and so we should prefer
	 the Advanced SIMD version.  */
      auto better_pred_limit_p = [](const aarch64_vec_op_count &a,
				    const aarch64_vec_op_count &b) -> bool
	{
	  if (a.pred_ops == 0
	      && (b.min_pred_cycles_per_iter ()
		  > b.min_nonpred_cycles_per_iter ()))
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location,
				 "Preferring Advanced SIMD loop since"
				 " SVE loop is predicate-limited\n");
	      return true;
	    }
	  return false;
	};
      if (better_pred_limit_p (this->m_ops[i], other->m_ops[i]))
	return true;
      if (better_pred_limit_p (other->m_ops[i], this->m_ops[i]))
	return false;
    }

  return vector_costs::better_main_loop_than_p (other);
}

static void initialize_aarch64_code_model (struct gcc_options *);

/* Parse the TO_PARSE string and put the architecture struct that it
   selects into RES and the architectural features into ISA_FLAGS.
   Return an aarch64_parse_opt_result describing the parse result.
   If there is an error parsing, RES and ISA_FLAGS are left unchanged.
   When the TO_PARSE string contains an invalid extension,
   a copy of the string is created and stored to INVALID_EXTENSION.  */

static enum aarch64_parse_opt_result
aarch64_parse_arch (const char *to_parse, const struct processor **res,
		    aarch64_feature_flags *isa_flags,
		    std::string *invalid_extension)
{
  const char *ext;
  const struct processor *arch;
  size_t len;

  ext = strchr (to_parse, '+');

  if (ext != NULL)
    len = ext - to_parse;
  else
    len = strlen (to_parse);

  if (len == 0)
    return AARCH64_PARSE_MISSING_ARG;


  /* Loop through the list of supported ARCHes to find a match.  */
  for (arch = all_architectures; arch->name != NULL; arch++)
    {
      if (strlen (arch->name) == len
	  && strncmp (arch->name, to_parse, len) == 0)
	{
	  auto isa_temp = arch->flags;

	  if (ext != NULL)
	    {
	      /* TO_PARSE string contains at least one extension.  */
	      enum aarch64_parse_opt_result ext_res
		= aarch64_parse_extension (ext, &isa_temp, invalid_extension);

	      if (ext_res != AARCH64_PARSE_OK)
		return ext_res;
	    }
	  /* Extension parsing was successful.  Confirm the result
	     arch and ISA flags.  */
	  *res = arch;
	  *isa_flags = isa_temp;
	  return AARCH64_PARSE_OK;
	}
    }

  /* ARCH name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse the TO_PARSE string and put the result tuning in RES and the
   architecture flags in ISA_FLAGS.  Return an aarch64_parse_opt_result
   describing the parse result.  If there is an error parsing, RES and
   ISA_FLAGS are left unchanged.
   When the TO_PARSE string contains an invalid extension,
   a copy of the string is created and stored to INVALID_EXTENSION.  */

static enum aarch64_parse_opt_result
aarch64_parse_cpu (const char *to_parse, const struct processor **res,
		   aarch64_feature_flags *isa_flags,
		   std::string *invalid_extension)
{
  const char *ext;
  const struct processor *cpu;
  size_t len;

  ext = strchr (to_parse, '+');

  if (ext != NULL)
    len = ext - to_parse;
  else
    len = strlen (to_parse);

  if (len == 0)
    return AARCH64_PARSE_MISSING_ARG;


  /* Loop through the list of supported CPUs to find a match.  */
  for (cpu = all_cores; cpu->name != NULL; cpu++)
    {
      if (strlen (cpu->name) == len && strncmp (cpu->name, to_parse, len) == 0)
	{
	  auto isa_temp = cpu->flags;

	  if (ext != NULL)
	    {
	      /* TO_PARSE string contains at least one extension.  */
	      enum aarch64_parse_opt_result ext_res
		= aarch64_parse_extension (ext, &isa_temp, invalid_extension);

	      if (ext_res != AARCH64_PARSE_OK)
		return ext_res;
	    }
	  /* Extension parsing was successfull.  Confirm the result
	     cpu and ISA flags.  */
	  *res = cpu;
	  *isa_flags = isa_temp;
	  return AARCH64_PARSE_OK;
	}
    }

  /* CPU name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse the TO_PARSE string and put the cpu it selects into RES.
   Return an aarch64_parse_opt_result describing the parse result.
   If the parsing fails the RES does not change.  */

static enum aarch64_parse_opt_result
aarch64_parse_tune (const char *to_parse, const struct processor **res)
{
  const struct processor *cpu;

  /* Loop through the list of supported CPUs to find a match.  */
  for (cpu = all_cores; cpu->name != NULL; cpu++)
    {
      if (strcmp (cpu->name, to_parse) == 0)
	{
	  *res = cpu;
	  return AARCH64_PARSE_OK;
	}
    }

  /* CPU name not found in list.  */
  return AARCH64_PARSE_INVALID_ARG;
}

/* Parse TOKEN, which has length LENGTH to see if it is an option
   described in FLAG.  If it is, return the index bit for that fusion type.
   If not, error (printing OPTION_NAME) and return zero.  */

static unsigned int
aarch64_parse_one_option_token (const char *token,
				size_t length,
				const struct aarch64_flag_desc *flag,
				const char *option_name)
{
  for (; flag->name != NULL; flag++)
    {
      if (length == strlen (flag->name)
	  && !strncmp (flag->name, token, length))
	return flag->flag;
    }

  error ("unknown flag passed in %<-moverride=%s%> (%s)", option_name, token);
  return 0;
}

/* Parse OPTION which is a comma-separated list of flags to enable.
   FLAGS gives the list of flags we understand, INITIAL_STATE gives any
   default state we inherit from the CPU tuning structures.  OPTION_NAME
   gives the top-level option we are parsing in the -moverride string,
   for use in error messages.  */

static unsigned int
aarch64_parse_boolean_options (const char *option,
			       const struct aarch64_flag_desc *flags,
			       unsigned int initial_state,
			       const char *option_name)
{
  const char separator = '.';
  const char* specs = option;
  const char* ntoken = option;
  unsigned int found_flags = initial_state;

  while ((ntoken = strchr (specs, separator)))
    {
      size_t token_length = ntoken - specs;
      unsigned token_ops = aarch64_parse_one_option_token (specs,
							   token_length,
							   flags,
							   option_name);
      /* If we find "none" (or, for simplicity's sake, an error) anywhere
	 in the token stream, reset the supported operations.  So:

	   adrp+add.cmp+branch.none.adrp+add

	   would have the result of turning on only adrp+add fusion.  */
      if (!token_ops)
	found_flags = 0;

      found_flags |= token_ops;
      specs = ++ntoken;
    }

  /* We ended with a comma, print something.  */
  if (!(*specs))
    {
      error ("%qs string ill-formed", option_name);
      return 0;
    }

  /* We still have one more token to parse.  */
  size_t token_length = strlen (specs);
  unsigned token_ops = aarch64_parse_one_option_token (specs,
						       token_length,
						       flags,
						       option_name);
   if (!token_ops)
     found_flags = 0;

  found_flags |= token_ops;
  return found_flags;
}

/* Support for overriding instruction fusion.  */

static void
aarch64_parse_fuse_string (const char *fuse_string,
			    struct tune_params *tune)
{
  tune->fusible_ops = aarch64_parse_boolean_options (fuse_string,
						     aarch64_fusible_pairs,
						     tune->fusible_ops,
						     "fuse=");
}

/* Support for overriding other tuning flags.  */

static void
aarch64_parse_tune_string (const char *tune_string,
			    struct tune_params *tune)
{
  tune->extra_tuning_flags
    = aarch64_parse_boolean_options (tune_string,
				     aarch64_tuning_flags,
				     tune->extra_tuning_flags,
				     "tune=");
}

/* Parse the sve_width tuning moverride string in TUNE_STRING.
   Accept the valid SVE vector widths allowed by
   aarch64_sve_vector_bits_enum and use it to override sve_width
   in TUNE.  */

static void
aarch64_parse_sve_width_string (const char *tune_string,
				struct tune_params *tune)
{
  int width = -1;

  int n = sscanf (tune_string, "%d", &width);
  if (n == EOF)
    {
      error ("invalid format for %<sve_width%>");
      return;
    }
  switch (width)
    {
    case SVE_128:
    case SVE_256:
    case SVE_512:
    case SVE_1024:
    case SVE_2048:
      break;
    default:
      error ("invalid %<sve_width%> value: %d", width);
    }
  tune->sve_width = (enum aarch64_sve_vector_bits_enum) width;
}

/* Parse TOKEN, which has length LENGTH to see if it is a tuning option
   we understand.  If it is, extract the option string and handoff to
   the appropriate function.  */

void
aarch64_parse_one_override_token (const char* token,
				  size_t length,
				  struct tune_params *tune)
{
  const struct aarch64_tuning_override_function *fn
    = aarch64_tuning_override_functions;

  const char *option_part = strchr (token, '=');
  if (!option_part)
    {
      error ("tuning string missing in option (%s)", token);
      return;
    }

  /* Get the length of the option name.  */
  length = option_part - token;
  /* Skip the '=' to get to the option string.  */
  option_part++;

  for (; fn->name != NULL; fn++)
    {
      if (!strncmp (fn->name, token, length))
	{
	  fn->parse_override (option_part, tune);
	  return;
	}
    }

  error ("unknown tuning option (%s)",token);
  return;
}

/* A checking mechanism for the implementation of the tls size.  */

static void
initialize_aarch64_tls_size (struct gcc_options *opts)
{
  if (aarch64_tls_size == 0)
    aarch64_tls_size = 24;

  switch (opts->x_aarch64_cmodel_var)
    {
    case AARCH64_CMODEL_TINY:
      /* Both the default and maximum TLS size allowed under tiny is 1M which
	 needs two instructions to address, so we clamp the size to 24.  */
      if (aarch64_tls_size > 24)
	aarch64_tls_size = 24;
      break;
    case AARCH64_CMODEL_SMALL:
      /* The maximum TLS size allowed under small is 4G.  */
      if (aarch64_tls_size > 32)
	aarch64_tls_size = 32;
      break;
    case AARCH64_CMODEL_LARGE:
      /* The maximum TLS size allowed under large is 16E.
	 FIXME: 16E should be 64bit, we only support 48bit offset now.  */
      if (aarch64_tls_size > 48)
	aarch64_tls_size = 48;
      break;
    default:
      gcc_unreachable ();
    }

  return;
}

/* Return the CPU corresponding to the enum CPU.  */

static const struct processor *
aarch64_get_tune_cpu (enum aarch64_processor cpu)
{
  gcc_assert (cpu != aarch64_none);

  return &all_cores[cpu];
}

/* Return the architecture corresponding to the enum ARCH.  */

static const struct processor *
aarch64_get_arch (enum aarch64_arch arch)
{
  gcc_assert (arch != aarch64_no_arch);

  return &all_architectures[arch];
}

/* Parse STRING looking for options in the format:
     string	:: option:string
     option	:: name=substring
     name	:: {a-z}
     substring	:: defined by option.  */

static void
aarch64_parse_override_string (const char* input_string,
			       struct tune_params* tune)
{
  const char separator = ':';
  size_t string_length = strlen (input_string) + 1;
  char *string_root = (char *) xmalloc (sizeof (*string_root) * string_length);
  char *string = string_root;
  strncpy (string, input_string, string_length);
  string[string_length - 1] = '\0';

  char* ntoken = string;

  while ((ntoken = strchr (string, separator)))
    {
      size_t token_length = ntoken - string;
      /* Make this substring look like a string.  */
      *ntoken = '\0';
      aarch64_parse_one_override_token (string, token_length, tune);
      string = ++ntoken;
    }

  /* One last option to parse.  */
  aarch64_parse_one_override_token (string, strlen (string), tune);
  free (string_root);
}

/* Adjust CURRENT_TUNE (a generic tuning struct) with settings that
   are best for a generic target with the currently-enabled architecture
   extensions.  */
static void
aarch64_adjust_generic_arch_tuning (struct tune_params &current_tune)
{
  /* Neoverse V1 is the only core that is known to benefit from
     AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS.  There is therefore no
     point enabling it for SVE2 and above.  */
  if (TARGET_SVE2)
    current_tune.extra_tuning_flags
      &= ~AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS;
}

static void
aarch64_override_options_after_change_1 (struct gcc_options *opts)
{
  if (accepted_branch_protection_string)
    {
      opts->x_aarch64_branch_protection_string
	= xstrdup (accepted_branch_protection_string);
    }

  /* PR 70044: We have to be careful about being called multiple times for the
     same function.  This means all changes should be repeatable.  */

  /* Set aarch64_use_frame_pointer based on -fno-omit-frame-pointer.
     Disable the frame pointer flag so the mid-end will not use a frame
     pointer in leaf functions in order to support -fomit-leaf-frame-pointer.
     Set x_flag_omit_frame_pointer to the special value 2 to differentiate
     between -fomit-frame-pointer (1) and -fno-omit-frame-pointer (2).  */
  aarch64_use_frame_pointer = opts->x_flag_omit_frame_pointer != 1;
  if (opts->x_flag_omit_frame_pointer == 0)
    opts->x_flag_omit_frame_pointer = 2;

  /* If not optimizing for size, set the default
     alignment to what the target wants.  */
  if (!opts->x_optimize_size)
    {
      if (opts->x_flag_align_loops && !opts->x_str_align_loops)
	opts->x_str_align_loops = aarch64_tune_params.loop_align;
      if (opts->x_flag_align_jumps && !opts->x_str_align_jumps)
	opts->x_str_align_jumps = aarch64_tune_params.jump_align;
      if (opts->x_flag_align_functions && !opts->x_str_align_functions)
	opts->x_str_align_functions = aarch64_tune_params.function_align;
    }

  /* We default to no pc-relative literal loads.  */

  aarch64_pcrelative_literal_loads = false;

  /* If -mpc-relative-literal-loads is set on the command line, this
     implies that the user asked for PC relative literal loads.  */
  if (opts->x_pcrelative_literal_loads == 1)
    aarch64_pcrelative_literal_loads = true;

  /* In the tiny memory model it makes no sense to disallow PC relative
     literal pool loads.  */
  if (aarch64_cmodel == AARCH64_CMODEL_TINY
      || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC)
    aarch64_pcrelative_literal_loads = true;

  /* When enabling the lower precision Newton series for the square root, also
     enable it for the reciprocal square root, since the latter is an
     intermediary step for the former.  */
  if (flag_mlow_precision_sqrt)
    flag_mrecip_low_precision_sqrt = true;
}

/* 'Unpack' up the internal tuning structs and update the options
    in OPTS.  The caller must have set up selected_tune and selected_arch
    as all the other target-specific codegen decisions are
    derived from them.  */

void
aarch64_override_options_internal (struct gcc_options *opts)
{
  const struct processor *tune = aarch64_get_tune_cpu (opts->x_selected_tune);
  aarch64_tune_flags = tune->flags;
  aarch64_tune = tune->sched_core;
  /* Make a copy of the tuning parameters attached to the core, which
     we may later overwrite.  */
  aarch64_tune_params = *(tune->tune);
  if (tune->tune == &generic_tunings)
    aarch64_adjust_generic_arch_tuning (aarch64_tune_params);

  if (opts->x_aarch64_override_tune_string)
    aarch64_parse_override_string (opts->x_aarch64_override_tune_string,
				   &aarch64_tune_params);

  /* This target defaults to strict volatile bitfields.  */
  if (opts->x_flag_strict_volatile_bitfields < 0 && abi_version_at_least (2))
    opts->x_flag_strict_volatile_bitfields = 1;

  if (aarch64_stack_protector_guard == SSP_GLOBAL
      && opts->x_aarch64_stack_protector_guard_offset_str)
    {
      error ("incompatible options %<-mstack-protector-guard=global%> and "
	     "%<-mstack-protector-guard-offset=%s%>",
	     aarch64_stack_protector_guard_offset_str);
    }

  if (aarch64_stack_protector_guard == SSP_SYSREG
      && !(opts->x_aarch64_stack_protector_guard_offset_str
	   && opts->x_aarch64_stack_protector_guard_reg_str))
    {
      error ("both %<-mstack-protector-guard-offset%> and "
	     "%<-mstack-protector-guard-reg%> must be used "
	     "with %<-mstack-protector-guard=sysreg%>");
    }

  if (opts->x_aarch64_stack_protector_guard_reg_str)
    {
      if (strlen (opts->x_aarch64_stack_protector_guard_reg_str) > 100)
	  error ("specify a system register with a small string length");
    }

  if (opts->x_aarch64_stack_protector_guard_offset_str)
    {
      char *end;
      const char *str = aarch64_stack_protector_guard_offset_str;
      errno = 0;
      long offs = strtol (aarch64_stack_protector_guard_offset_str, &end, 0);
      if (!*str || *end || errno)
	error ("%qs is not a valid offset in %qs", str,
	       "-mstack-protector-guard-offset=");
      aarch64_stack_protector_guard_offset = offs;
    }

  if ((flag_sanitize & SANITIZE_SHADOW_CALL_STACK)
      && !fixed_regs[R18_REGNUM])
    error ("%<-fsanitize=shadow-call-stack%> requires %<-ffixed-x18%>");

  initialize_aarch64_code_model (opts);
  initialize_aarch64_tls_size (opts);

  int queue_depth = 0;
  switch (aarch64_tune_params.autoprefetcher_model)
    {
      case tune_params::AUTOPREFETCHER_OFF:
	queue_depth = -1;
	break;
      case tune_params::AUTOPREFETCHER_WEAK:
	queue_depth = 0;
	break;
      case tune_params::AUTOPREFETCHER_STRONG:
	queue_depth = max_insn_queue_index + 1;
	break;
      default:
	gcc_unreachable ();
    }

  /* We don't mind passing in global_options_set here as we don't use
     the *options_set structs anyway.  */
  SET_OPTION_IF_UNSET (opts, &global_options_set,
		       param_sched_autopref_queue_depth, queue_depth);

  /* If using Advanced SIMD only for autovectorization disable SVE vector costs
     comparison.  */
  if (aarch64_autovec_preference == 1)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 aarch64_sve_compare_costs, 0);

  /* Set up parameters to be used in prefetching algorithm.  Do not
     override the defaults unless we are tuning for a core we have
     researched values for.  */
  if (aarch64_tune_params.prefetch->num_slots > 0)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 param_simultaneous_prefetches,
			 aarch64_tune_params.prefetch->num_slots);
  if (aarch64_tune_params.prefetch->l1_cache_size >= 0)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 param_l1_cache_size,
			 aarch64_tune_params.prefetch->l1_cache_size);
  if (aarch64_tune_params.prefetch->l1_cache_line_size >= 0)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 param_l1_cache_line_size,
			 aarch64_tune_params.prefetch->l1_cache_line_size);

  if (aarch64_tune_params.prefetch->l1_cache_line_size >= 0)
    {
      SET_OPTION_IF_UNSET (opts, &global_options_set,
			   param_destruct_interfere_size,
			   aarch64_tune_params.prefetch->l1_cache_line_size);
      SET_OPTION_IF_UNSET (opts, &global_options_set,
			   param_construct_interfere_size,
			   aarch64_tune_params.prefetch->l1_cache_line_size);
    }
  else
    {
      /* For a generic AArch64 target, cover the current range of cache line
	 sizes.  */
      SET_OPTION_IF_UNSET (opts, &global_options_set,
			   param_destruct_interfere_size,
			   256);
      SET_OPTION_IF_UNSET (opts, &global_options_set,
			   param_construct_interfere_size,
			   64);
    }

  if (aarch64_tune_params.prefetch->l2_cache_size >= 0)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 param_l2_cache_size,
			 aarch64_tune_params.prefetch->l2_cache_size);
  if (!aarch64_tune_params.prefetch->prefetch_dynamic_strides)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 param_prefetch_dynamic_strides, 0);
  if (aarch64_tune_params.prefetch->minimum_stride >= 0)
    SET_OPTION_IF_UNSET (opts, &global_options_set,
			 param_prefetch_minimum_stride,
			 aarch64_tune_params.prefetch->minimum_stride);

  /* Use the alternative scheduling-pressure algorithm by default.  */
  SET_OPTION_IF_UNSET (opts, &global_options_set,
		       param_sched_pressure_algorithm,
		       SCHED_PRESSURE_MODEL);

  /* Validate the guard size.  */
  int guard_size = param_stack_clash_protection_guard_size;

  if (guard_size != 12 && guard_size != 16)
    error ("only values 12 (4 KB) and 16 (64 KB) are supported for guard "
	   "size.  Given value %d (%llu KB) is out of range",
	   guard_size, (1ULL << guard_size) / 1024ULL);

  /* Enforce that interval is the same size as size so the mid-end does the
     right thing.  */
  SET_OPTION_IF_UNSET (opts, &global_options_set,
		       param_stack_clash_protection_probe_interval,
		       guard_size);

  /* The maybe_set calls won't update the value if the user has explicitly set
     one.  Which means we need to validate that probing interval and guard size
     are equal.  */
  int probe_interval
    = param_stack_clash_protection_probe_interval;
  if (guard_size != probe_interval)
    error ("stack clash guard size %<%d%> must be equal to probing interval "
	   "%<%d%>", guard_size, probe_interval);

  /* Enable sw prefetching at specified optimization level for
     CPUS that have prefetch.  Lower optimization level threshold by 1
     when profiling is enabled.  */
  if (opts->x_flag_prefetch_loop_arrays < 0
      && !opts->x_optimize_size
      && aarch64_tune_params.prefetch->default_opt_level >= 0
      && opts->x_optimize >= aarch64_tune_params.prefetch->default_opt_level)
    opts->x_flag_prefetch_loop_arrays = 1;

  aarch64_override_options_after_change_1 (opts);
}

/* Print a hint with a suggestion for a core or architecture name that
   most closely resembles what the user passed in STR.  ARCH is true if
   the user is asking for an architecture name.  ARCH is false if the user
   is asking for a core name.  */

static void
aarch64_print_hint_for_core_or_arch (const char *str, bool arch)
{
  auto_vec<const char *> candidates;
  const struct processor *entry = arch ? all_architectures : all_cores;
  for (; entry->name != NULL; entry++)
    candidates.safe_push (entry->name);

#ifdef HAVE_LOCAL_CPU_DETECT
  /* Add also "native" as possible value.  */
  if (arch)
    candidates.safe_push ("native");
#endif

  char *s;
  const char *hint = candidates_list_and_hint (str, s, candidates);
  if (hint)
    inform (input_location, "valid arguments are: %s;"
			     " did you mean %qs?", s, hint);
  else
    inform (input_location, "valid arguments are: %s", s);

  XDELETEVEC (s);
}

/* Print a hint with a suggestion for a core name that most closely resembles
   what the user passed in STR.  */

inline static void
aarch64_print_hint_for_core (const char *str)
{
  aarch64_print_hint_for_core_or_arch (str, false);
}

/* Print a hint with a suggestion for an architecture name that most closely
   resembles what the user passed in STR.  */

inline static void
aarch64_print_hint_for_arch (const char *str)
{
  aarch64_print_hint_for_core_or_arch (str, true);
}


/* Print a hint with a suggestion for an extension name
   that most closely resembles what the user passed in STR.  */

void
aarch64_print_hint_for_extensions (const std::string &str)
{
  auto_vec<const char *> candidates;
  aarch64_get_all_extension_candidates (&candidates);
  char *s;
  const char *hint = candidates_list_and_hint (str.c_str (), s, candidates);
  if (hint)
    inform (input_location, "valid arguments are: %s;"
			     " did you mean %qs?", s, hint);
  else
    inform (input_location, "valid arguments are: %s", s);

  XDELETEVEC (s);
}

/* Validate a command-line -mcpu option.  Parse the cpu and extensions (if any)
   specified in STR and throw errors if appropriate.  Put the results if
   they are valid in RES and ISA_FLAGS.  Return whether the option is
   valid.  */

static bool
aarch64_validate_mcpu (const char *str, const struct processor **res,
		       aarch64_feature_flags *isa_flags)
{
  std::string invalid_extension;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_cpu (str, res, isa_flags, &invalid_extension);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in %<-mcpu=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for %<-mcpu%>", str);
	aarch64_print_hint_for_core (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs in %<-mcpu=%s%>",
	       invalid_extension.c_str (), str);
	aarch64_print_hint_for_extensions (invalid_extension);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Straight line speculation indicators.  */
enum aarch64_sls_hardening_type
{
  SLS_NONE = 0,
  SLS_RETBR = 1,
  SLS_BLR = 2,
  SLS_ALL = 3,
};
static enum aarch64_sls_hardening_type aarch64_sls_hardening;

/* Return whether we should mitigatate Straight Line Speculation for the RET
   and BR instructions.  */
bool
aarch64_harden_sls_retbr_p (void)
{
  return aarch64_sls_hardening & SLS_RETBR;
}

/* Return whether we should mitigatate Straight Line Speculation for the BLR
   instruction.  */
bool
aarch64_harden_sls_blr_p (void)
{
  return aarch64_sls_hardening & SLS_BLR;
}

/* As of yet we only allow setting these options globally, in the future we may
   allow setting them per function.  */
static void
aarch64_validate_sls_mitigation (const char *const_str)
{
  char *token_save = NULL;
  char *str = NULL;

  if (strcmp (const_str, "none") == 0)
    {
      aarch64_sls_hardening = SLS_NONE;
      return;
    }
  if (strcmp (const_str, "all") == 0)
    {
      aarch64_sls_hardening = SLS_ALL;
      return;
    }

  char *str_root = xstrdup (const_str);
  str = strtok_r (str_root, ",", &token_save);
  if (!str)
    error ("invalid argument given to %<-mharden-sls=%>");

  int temp = SLS_NONE;
  while (str)
    {
      if (strcmp (str, "blr") == 0)
	temp |= SLS_BLR;
      else if (strcmp (str, "retbr") == 0)
	temp |= SLS_RETBR;
      else if (strcmp (str, "none") == 0 || strcmp (str, "all") == 0)
	{
	  error ("%qs must be by itself for %<-mharden-sls=%>", str);
	  break;
	}
      else
	{
	  error ("invalid argument %<%s%> for %<-mharden-sls=%>", str);
	  break;
	}
      str = strtok_r (NULL, ",", &token_save);
    }
  aarch64_sls_hardening = (aarch64_sls_hardening_type) temp;
  free (str_root);
}

/* Parses CONST_STR for branch protection features specified in
   aarch64_branch_protect_types, and set any global variables required.  Returns
   the parsing result and assigns LAST_STR to the last processed token from
   CONST_STR so that it can be used for error reporting.  */

static enum
aarch64_parse_opt_result aarch64_parse_branch_protection (const char *const_str,
							  char** last_str)
{
  char *str_root = xstrdup (const_str);
  char* token_save = NULL;
  char *str = strtok_r (str_root, "+", &token_save);
  enum aarch64_parse_opt_result res = AARCH64_PARSE_OK;
  if (!str)
    res = AARCH64_PARSE_MISSING_ARG;
  else
    {
      char *next_str = strtok_r (NULL, "+", &token_save);
      /* Reset the branch protection features to their defaults.  */
      aarch64_handle_no_branch_protection (NULL, NULL);

      while (str && res == AARCH64_PARSE_OK)
	{
	  const aarch64_branch_protect_type* type = aarch64_branch_protect_types;
	  bool found = false;
	  /* Search for this type.  */
	  while (type && type->name && !found && res == AARCH64_PARSE_OK)
	    {
	      if (strcmp (str, type->name) == 0)
		{
		  found = true;
		  res = type->handler (str, next_str);
		  str = next_str;
		  next_str = strtok_r (NULL, "+", &token_save);
		}
	      else
		type++;
	    }
	  if (found && res == AARCH64_PARSE_OK)
	    {
	      bool found_subtype = true;
	      /* Loop through each token until we find one that isn't a
		 subtype.  */
	      while (found_subtype)
		{
		  found_subtype = false;
		  const aarch64_branch_protect_type *subtype = type->subtypes;
		  /* Search for the subtype.  */
		  while (str && subtype && subtype->name && !found_subtype
			  && res == AARCH64_PARSE_OK)
		    {
		      if (strcmp (str, subtype->name) == 0)
			{
			  found_subtype = true;
			  res = subtype->handler (str, next_str);
			  str = next_str;
			  next_str = strtok_r (NULL, "+", &token_save);
			}
		      else
			subtype++;
		    }
		}
	    }
	  else if (!found)
	    res = AARCH64_PARSE_INVALID_ARG;
	}
    }
  /* Copy the last processed token into the argument to pass it back.
    Used by option and attribute validation to print the offending token.  */
  if (last_str)
    {
      if (str) strcpy (*last_str, str);
      else *last_str = NULL;
    }
  if (res == AARCH64_PARSE_OK)
    {
      /* If needed, alloc the accepted string then copy in const_str.
	Used by override_option_after_change_1.  */
      if (!accepted_branch_protection_string)
	accepted_branch_protection_string = (char *) xmalloc (
						      BRANCH_PROTECT_STR_MAX
							+ 1);
      strncpy (accepted_branch_protection_string, const_str,
		BRANCH_PROTECT_STR_MAX + 1);
      /* Forcibly null-terminate.  */
      accepted_branch_protection_string[BRANCH_PROTECT_STR_MAX] = '\0';
    }
  return res;
}

static bool
aarch64_validate_mbranch_protection (const char *const_str)
{
  char *str = (char *) xmalloc (strlen (const_str));
  enum aarch64_parse_opt_result res =
    aarch64_parse_branch_protection (const_str, &str);
  if (res == AARCH64_PARSE_INVALID_ARG)
    error ("invalid argument %<%s%> for %<-mbranch-protection=%>", str);
  else if (res == AARCH64_PARSE_MISSING_ARG)
    error ("missing argument for %<-mbranch-protection=%>");
  free (str);
  return res == AARCH64_PARSE_OK;
}

/* Validate a command-line -march option.  Parse the arch and extensions
   (if any) specified in STR and throw errors if appropriate.  Put the
   results, if they are valid, in RES and ISA_FLAGS.  Return whether the
   option is valid.  */

static bool
aarch64_validate_march (const char *str, const struct processor **res,
			aarch64_feature_flags *isa_flags)
{
  std::string invalid_extension;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_arch (str, res, isa_flags, &invalid_extension);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing arch name in %<-march=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for %<-march%>", str);
	aarch64_print_hint_for_arch (str);
	/* A common user error is confusing -march and -mcpu.
	   If the -march string matches a known CPU suggest -mcpu.  */
	parse_res = aarch64_parse_cpu (str, res, isa_flags, &invalid_extension);
	if (parse_res == AARCH64_PARSE_OK)
	  inform (input_location, "did you mean %<-mcpu=%s%>?", str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs in %<-march=%s%>",
	       invalid_extension.c_str (), str);
	aarch64_print_hint_for_extensions (invalid_extension);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Validate a command-line -mtune option.  Parse the cpu
   specified in STR and throw errors if appropriate.  Put the
   result, if it is valid, in RES.  Return whether the option is
   valid.  */

static bool
aarch64_validate_mtune (const char *str, const struct processor **res)
{
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_tune (str, res);

  if (parse_res == AARCH64_PARSE_OK)
    return true;

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing cpu name in %<-mtune=%s%>", str);
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("unknown value %qs for %<-mtune%>", str);
	aarch64_print_hint_for_core (str);
	break;
      default:
	gcc_unreachable ();
    }
  return false;
}

/* Return the VG value associated with -msve-vector-bits= value VALUE.  */

static poly_uint16
aarch64_convert_sve_vector_bits (aarch64_sve_vector_bits_enum value)
{
  /* 128-bit SVE and Advanced SIMD modes use different register layouts
     on big-endian targets, so we would need to forbid subregs that convert
     from one to the other.  By default a reinterpret sequence would then
     involve a store to memory in one mode and a load back in the other.
     Even if we optimize that sequence using reverse instructions,
     it would still be a significant potential overhead.

     For now, it seems better to generate length-agnostic code for that
     case instead.  */
  if (value == SVE_SCALABLE
      || (value == SVE_128 && BYTES_BIG_ENDIAN))
    return poly_uint16 (2, 2);
  else
    return (int) value / 64;
}

/* Set the global aarch64_asm_isa_flags to FLAGS and update
   aarch64_isa_flags accordingly.  */

void
aarch64_set_asm_isa_flags (aarch64_feature_flags flags)
{
  aarch64_set_asm_isa_flags (&global_options, flags);
}

/* Implement TARGET_OPTION_OVERRIDE.  This is called once in the beginning
   and is used to parse the -m{cpu,tune,arch} strings and setup the initial
   tuning structs.  In particular it must set selected_tune and
   aarch64_asm_isa_flags that define the available ISA features and tuning
   decisions.  It must also set selected_arch as this will be used to
   output the .arch asm tags for each function.  */

static void
aarch64_override_options (void)
{
  aarch64_feature_flags cpu_isa = 0;
  aarch64_feature_flags arch_isa = 0;
  aarch64_set_asm_isa_flags (0);

  const struct processor *cpu = NULL;
  const struct processor *arch = NULL;
  const struct processor *tune = NULL;

  if (aarch64_harden_sls_string)
    aarch64_validate_sls_mitigation (aarch64_harden_sls_string);

  if (aarch64_branch_protection_string)
    aarch64_validate_mbranch_protection (aarch64_branch_protection_string);

  /* -mcpu=CPU is shorthand for -march=ARCH_FOR_CPU, -mtune=CPU.
     If either of -march or -mtune is given, they override their
     respective component of -mcpu.  */
  if (aarch64_cpu_string)
    aarch64_validate_mcpu (aarch64_cpu_string, &cpu, &cpu_isa);

  if (aarch64_arch_string)
    aarch64_validate_march (aarch64_arch_string, &arch, &arch_isa);

  if (aarch64_tune_string)
    aarch64_validate_mtune (aarch64_tune_string, &tune);

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif

  if (cpu && arch)
    {
      /* If both -mcpu and -march are specified, warn if they are not
	 architecturally compatible and prefer the -march ISA flags.  */
      if (arch->arch != cpu->arch)
	{
	  warning (0, "switch %<-mcpu=%s%> conflicts with %<-march=%s%> switch",
		       aarch64_cpu_string,
		       aarch64_arch_string);
	}

      selected_arch = arch->arch;
      aarch64_set_asm_isa_flags (arch_isa);
    }
  else if (cpu)
    {
      selected_arch = cpu->arch;
      aarch64_set_asm_isa_flags (cpu_isa);
    }
  else if (arch)
    {
      cpu = &all_cores[arch->ident];
      selected_arch = arch->arch;
      aarch64_set_asm_isa_flags (arch_isa);
    }
  else
    {
      /* No -mcpu or -march specified, so use the default CPU.  */
      cpu = &all_cores[TARGET_CPU_DEFAULT];
      selected_arch = cpu->arch;
      aarch64_set_asm_isa_flags (cpu->flags);
    }

  selected_tune = tune ? tune->ident : cpu->ident;

  if (aarch64_enable_bti == 2)
    {
#ifdef TARGET_ENABLE_BTI
      aarch64_enable_bti = 1;
#else
      aarch64_enable_bti = 0;
#endif
    }

  /* Return address signing is currently not supported for ILP32 targets.  For
     LP64 targets use the configured option in the absence of a command-line
     option for -mbranch-protection.  */
  if (!TARGET_ILP32 && accepted_branch_protection_string == NULL)
    {
#ifdef TARGET_ENABLE_PAC_RET
      aarch64_ra_sign_scope = AARCH64_FUNCTION_NON_LEAF;
#else
      aarch64_ra_sign_scope = AARCH64_FUNCTION_NONE;
#endif
    }

#ifndef HAVE_AS_MABI_OPTION
  /* The compiler may have been configured with 2.23.* binutils, which does
     not have support for ILP32.  */
  if (TARGET_ILP32)
    error ("assembler does not support %<-mabi=ilp32%>");
#endif

  /* Convert -msve-vector-bits to a VG count.  */
  aarch64_sve_vg = aarch64_convert_sve_vector_bits (aarch64_sve_vector_bits);

  if (aarch64_ra_sign_scope != AARCH64_FUNCTION_NONE && TARGET_ILP32)
    sorry ("return address signing is only supported for %<-mabi=lp64%>");

  /* The pass to insert speculation tracking runs before
     shrink-wrapping and the latter does not know how to update the
     tracking status.  So disable it in this case.  */
  if (aarch64_track_speculation)
    flag_shrink_wrap = 0;

  aarch64_override_options_internal (&global_options);

  /* Save these options as the default ones in case we push and pop them later
     while processing functions with potential target attributes.  */
  target_option_default_node = target_option_current_node
    = build_target_option_node (&global_options, &global_options_set);
}

/* Implement targetm.override_options_after_change.  */

static void
aarch64_override_options_after_change (void)
{
  aarch64_override_options_after_change_1 (&global_options);
}

/* Implement the TARGET_OFFLOAD_OPTIONS hook.  */
static char *
aarch64_offload_options (void)
{
  if (TARGET_ILP32)
    return xstrdup ("-foffload-abi=ilp32");
  else
    return xstrdup ("-foffload-abi=lp64");
}

static struct machine_function *
aarch64_init_machine_status (void)
{
  struct machine_function *machine;
  machine = ggc_cleared_alloc<machine_function> ();
  return machine;
}

void
aarch64_init_expanders (void)
{
  init_machine_status = aarch64_init_machine_status;
}

/* A checking mechanism for the implementation of the various code models.  */
static void
initialize_aarch64_code_model (struct gcc_options *opts)
{
  aarch64_cmodel = opts->x_aarch64_cmodel_var;
  switch (opts->x_aarch64_cmodel_var)
    {
    case AARCH64_CMODEL_TINY:
      if (opts->x_flag_pic)
	aarch64_cmodel = AARCH64_CMODEL_TINY_PIC;
      break;
    case AARCH64_CMODEL_SMALL:
      if (opts->x_flag_pic)
	{
#ifdef HAVE_AS_SMALL_PIC_RELOCS
	  aarch64_cmodel = (flag_pic == 2
			    ? AARCH64_CMODEL_SMALL_PIC
			    : AARCH64_CMODEL_SMALL_SPIC);
#else
	  aarch64_cmodel = AARCH64_CMODEL_SMALL_PIC;
#endif
	}
      break;
    case AARCH64_CMODEL_LARGE:
      if (opts->x_flag_pic)
	sorry ("code model %qs with %<-f%s%>", "large",
	       opts->x_flag_pic > 1 ? "PIC" : "pic");
      if (opts->x_aarch64_abi == AARCH64_ABI_ILP32)
	sorry ("code model %qs not supported in ilp32 mode", "large");
      break;
    case AARCH64_CMODEL_TINY_PIC:
    case AARCH64_CMODEL_SMALL_PIC:
    case AARCH64_CMODEL_SMALL_SPIC:
      gcc_unreachable ();
    }
}

/* Implements TARGET_OPTION_RESTORE.  Restore the backend codegen decisions
   using the information saved in PTR.  */

static void
aarch64_option_restore (struct gcc_options *opts,
			struct gcc_options * /* opts_set */,
			struct cl_target_option * /* ptr */)
{
  aarch64_override_options_internal (opts);
}

/* Implement TARGET_OPTION_PRINT.  */

static void
aarch64_option_print (FILE *file, int indent, struct cl_target_option *ptr)
{
  const struct processor *cpu
    = aarch64_get_tune_cpu (ptr->x_selected_tune);
  const struct processor *arch = aarch64_get_arch (ptr->x_selected_arch);
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (ptr->x_aarch64_asm_isa_flags,
						  arch->flags);

  fprintf (file, "%*sselected tune = %s\n", indent, "", cpu->name);
  fprintf (file, "%*sselected arch = %s%s\n", indent, "",
	   arch->name, extension.c_str ());
}

static GTY(()) tree aarch64_previous_fndecl;

void
aarch64_reset_previous_fndecl (void)
{
  aarch64_previous_fndecl = NULL;
}

/* Restore or save the TREE_TARGET_GLOBALS from or to NEW_TREE.
   Used by aarch64_set_current_function and aarch64_pragma_target_parse to
   make sure optab availability predicates are recomputed when necessary.  */

void
aarch64_save_restore_target_globals (tree new_tree)
{
  if (TREE_TARGET_GLOBALS (new_tree))
    restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
  else if (new_tree == target_option_default_node)
    restore_target_globals (&default_target_globals);
  else
    TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
}

/* Implement TARGET_SET_CURRENT_FUNCTION.  Unpack the codegen decisions
   like tuning and ISA features from the DECL_FUNCTION_SPECIFIC_TARGET
   of the function, if such exists.  This function may be called multiple
   times on a single function so use aarch64_previous_fndecl to avoid
   setting up identical state.  */

static void
aarch64_set_current_function (tree fndecl)
{
  if (!fndecl || fndecl == aarch64_previous_fndecl)
    return;

  tree old_tree = (aarch64_previous_fndecl
		   ? DECL_FUNCTION_SPECIFIC_TARGET (aarch64_previous_fndecl)
		   : NULL_TREE);

  tree new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  /* If current function has no attributes but the previous one did,
     use the default node.  */
  if (!new_tree && old_tree)
    new_tree = target_option_default_node;

  /* If nothing to do, return.  #pragma GCC reset or #pragma GCC pop to
     the default have been handled by aarch64_save_restore_target_globals from
     aarch64_pragma_target_parse.  */
  if (old_tree == new_tree)
    return;

  aarch64_previous_fndecl = fndecl;

  /* First set the target options.  */
  cl_target_option_restore (&global_options, &global_options_set,
			    TREE_TARGET_OPTION (new_tree));

  aarch64_save_restore_target_globals (new_tree);
}

/* Enum describing the various ways we can handle attributes.
   In many cases we can reuse the generic option handling machinery.  */

enum aarch64_attr_opt_type
{
  aarch64_attr_mask,	/* Attribute should set a bit in target_flags.  */
  aarch64_attr_bool,	/* Attribute sets or unsets a boolean variable.  */
  aarch64_attr_enum,	/* Attribute sets an enum variable.  */
  aarch64_attr_custom	/* Attribute requires a custom handling function.  */
};

/* All the information needed to handle a target attribute.
   NAME is the name of the attribute.
   ATTR_TYPE specifies the type of behavior of the attribute as described
   in the definition of enum aarch64_attr_opt_type.
   ALLOW_NEG is true if the attribute supports a "no-" form.
   HANDLER is the function that takes the attribute string as an argument
   It is needed only when the ATTR_TYPE is aarch64_attr_custom.
   OPT_NUM is the enum specifying the option that the attribute modifies.
   This is needed for attributes that mirror the behavior of a command-line
   option, that is it has ATTR_TYPE aarch64_attr_mask, aarch64_attr_bool or
   aarch64_attr_enum.  */

struct aarch64_attribute_info
{
  const char *name;
  enum aarch64_attr_opt_type attr_type;
  bool allow_neg;
  bool (*handler) (const char *);
  enum opt_code opt_num;
};

/* Handle the ARCH_STR argument to the arch= target attribute.  */

static bool
aarch64_handle_attr_arch (const char *str)
{
  const struct processor *tmp_arch = NULL;
  std::string invalid_extension;
  aarch64_feature_flags tmp_flags;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_arch (str, &tmp_arch, &tmp_flags, &invalid_extension);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_arch);
      selected_arch = tmp_arch->arch;
      aarch64_set_asm_isa_flags (tmp_flags);
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing name in %<target(\"arch=\")%> pragma or attribute");
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("invalid name %qs in %<target(\"arch=\")%> pragma or attribute", str);
	aarch64_print_hint_for_arch (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %s of value %qs in "
	       "%<target()%> pragma or attribute", invalid_extension.c_str (), str);
	aarch64_print_hint_for_extensions (invalid_extension);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Handle the argument CPU_STR to the cpu= target attribute.  */

static bool
aarch64_handle_attr_cpu (const char *str)
{
  const struct processor *tmp_cpu = NULL;
  std::string invalid_extension;
  aarch64_feature_flags tmp_flags;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_cpu (str, &tmp_cpu, &tmp_flags, &invalid_extension);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_cpu);
      selected_tune = tmp_cpu->ident;
      selected_arch = tmp_cpu->arch;
      aarch64_set_asm_isa_flags (tmp_flags);
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing name in %<target(\"cpu=\")%> pragma or attribute");
	break;
      case AARCH64_PARSE_INVALID_ARG:
	error ("invalid name %qs in %<target(\"cpu=\")%> pragma or attribute", str);
	aarch64_print_hint_for_core (str);
	break;
      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs of value %qs in "
	       "%<target()%> pragma or attribute", invalid_extension.c_str (), str);
	aarch64_print_hint_for_extensions (invalid_extension);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Handle the argument STR to the branch-protection= attribute.  */

 static bool
 aarch64_handle_attr_branch_protection (const char* str)
 {
  char *err_str = (char *) xmalloc (strlen (str) + 1);
  enum aarch64_parse_opt_result res = aarch64_parse_branch_protection (str,
								      &err_str);
  bool success = false;
  switch (res)
    {
     case AARCH64_PARSE_MISSING_ARG:
       error ("missing argument to %<target(\"branch-protection=\")%> pragma or"
	      " attribute");
       break;
     case AARCH64_PARSE_INVALID_ARG:
       error ("invalid protection type %qs in %<target(\"branch-protection"
	      "=\")%> pragma or attribute", err_str);
       break;
     case AARCH64_PARSE_OK:
       success = true;
      /* Fall through.  */
     case AARCH64_PARSE_INVALID_FEATURE:
       break;
     default:
       gcc_unreachable ();
    }
  free (err_str);
  return success;
 }

/* Handle the argument STR to the tune= target attribute.  */

static bool
aarch64_handle_attr_tune (const char *str)
{
  const struct processor *tmp_tune = NULL;
  enum aarch64_parse_opt_result parse_res
    = aarch64_parse_tune (str, &tmp_tune);

  if (parse_res == AARCH64_PARSE_OK)
    {
      gcc_assert (tmp_tune);
      selected_tune = tmp_tune->ident;
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_INVALID_ARG:
	error ("invalid name %qs in %<target(\"tune=\")%> pragma or attribute", str);
	aarch64_print_hint_for_core (str);
	break;
      default:
	gcc_unreachable ();
    }

  return false;
}

/* Parse an architecture extensions target attribute string specified in STR.
   For example "+fp+nosimd".  Show any errors if needed.  Return TRUE
   if successful.  Update aarch64_isa_flags to reflect the ISA features
   modified.  */

static bool
aarch64_handle_attr_isa_flags (char *str)
{
  enum aarch64_parse_opt_result parse_res;
  auto isa_flags = aarch64_asm_isa_flags;

  /* We allow "+nothing" in the beginning to clear out all architectural
     features if the user wants to handpick specific features.  */
  if (strncmp ("+nothing", str, 8) == 0)
    {
      isa_flags = 0;
      str += 8;
    }

  std::string invalid_extension;
  parse_res = aarch64_parse_extension (str, &isa_flags, &invalid_extension);

  if (parse_res == AARCH64_PARSE_OK)
    {
      aarch64_set_asm_isa_flags (isa_flags);
      return true;
    }

  switch (parse_res)
    {
      case AARCH64_PARSE_MISSING_ARG:
	error ("missing value in %<target()%> pragma or attribute");
	break;

      case AARCH64_PARSE_INVALID_FEATURE:
	error ("invalid feature modifier %qs of value %qs in "
	       "%<target()%> pragma or attribute", invalid_extension.c_str (), str);
	break;

      default:
	gcc_unreachable ();
    }

 return false;
}

/* The target attributes that we support.  On top of these we also support just
   ISA extensions, like  __attribute__ ((target ("+crc"))), but that case is
   handled explicitly in aarch64_process_one_target_attr.  */

static const struct aarch64_attribute_info aarch64_attributes[] =
{
  { "general-regs-only", aarch64_attr_mask, false, NULL,
     OPT_mgeneral_regs_only },
  { "fix-cortex-a53-835769", aarch64_attr_bool, true, NULL,
     OPT_mfix_cortex_a53_835769 },
  { "fix-cortex-a53-843419", aarch64_attr_bool, true, NULL,
     OPT_mfix_cortex_a53_843419 },
  { "cmodel", aarch64_attr_enum, false, NULL, OPT_mcmodel_ },
  { "strict-align", aarch64_attr_mask, true, NULL, OPT_mstrict_align },
  { "omit-leaf-frame-pointer", aarch64_attr_bool, true, NULL,
     OPT_momit_leaf_frame_pointer },
  { "tls-dialect", aarch64_attr_enum, false, NULL, OPT_mtls_dialect_ },
  { "arch", aarch64_attr_custom, false, aarch64_handle_attr_arch,
     OPT_march_ },
  { "cpu", aarch64_attr_custom, false, aarch64_handle_attr_cpu, OPT_mcpu_ },
  { "tune", aarch64_attr_custom, false, aarch64_handle_attr_tune,
     OPT_mtune_ },
  { "branch-protection", aarch64_attr_custom, false,
     aarch64_handle_attr_branch_protection, OPT_mbranch_protection_ },
  { "sign-return-address", aarch64_attr_enum, false, NULL,
     OPT_msign_return_address_ },
  { "outline-atomics", aarch64_attr_bool, true, NULL,
     OPT_moutline_atomics},
  { NULL, aarch64_attr_custom, false, NULL, OPT____ }
};

/* Parse ARG_STR which contains the definition of one target attribute.
   Show appropriate errors if any or return true if the attribute is valid.  */

static bool
aarch64_process_one_target_attr (char *arg_str)
{
  bool invert = false;

  size_t len = strlen (arg_str);

  if (len == 0)
    {
      error ("malformed %<target()%> pragma or attribute");
      return false;
    }

  char *str_to_check = (char *) alloca (len + 1);
  strcpy (str_to_check, arg_str);

  /* We have something like __attribute__ ((target ("+fp+nosimd"))).
     It is easier to detect and handle it explicitly here rather than going
     through the machinery for the rest of the target attributes in this
     function.  */
  if (*str_to_check == '+')
    return aarch64_handle_attr_isa_flags (str_to_check);

  if (len > 3 && startswith (str_to_check, "no-"))
    {
      invert = true;
      str_to_check += 3;
    }
  char *arg = strchr (str_to_check, '=');

  /* If we found opt=foo then terminate STR_TO_CHECK at the '='
     and point ARG to "foo".  */
  if (arg)
    {
      *arg = '\0';
      arg++;
    }
  const struct aarch64_attribute_info *p_attr;
  bool found = false;
  for (p_attr = aarch64_attributes; p_attr->name; p_attr++)
    {
      /* If the names don't match up, or the user has given an argument
	 to an attribute that doesn't accept one, or didn't give an argument
	 to an attribute that expects one, fail to match.  */
      if (strcmp (str_to_check, p_attr->name) != 0)
	continue;

      found = true;
      bool attr_need_arg_p = p_attr->attr_type == aarch64_attr_custom
			      || p_attr->attr_type == aarch64_attr_enum;

      if (attr_need_arg_p ^ (arg != NULL))
	{
	  error ("pragma or attribute %<target(\"%s\")%> does not accept an argument", str_to_check);
	  return false;
	}

      /* If the name matches but the attribute does not allow "no-" versions
	 then we can't match.  */
      if (invert && !p_attr->allow_neg)
	{
	  error ("pragma or attribute %<target(\"%s\")%> does not allow a negated form", str_to_check);
	  return false;
	}

      switch (p_attr->attr_type)
	{
	/* Has a custom handler registered.
	   For example, cpu=, arch=, tune=.  */
	  case aarch64_attr_custom:
	    gcc_assert (p_attr->handler);
	    if (!p_attr->handler (arg))
	      return false;
	    break;

	  /* Either set or unset a boolean option.  */
	  case aarch64_attr_bool:
	    {
	      struct cl_decoded_option decoded;

	      generate_option (p_attr->opt_num, NULL, !invert,
			       CL_TARGET, &decoded);
	      aarch64_handle_option (&global_options, &global_options_set,
				      &decoded, input_location);
	      break;
	    }
	  /* Set or unset a bit in the target_flags.  aarch64_handle_option
	     should know what mask to apply given the option number.  */
	  case aarch64_attr_mask:
	    {
	      struct cl_decoded_option decoded;
	      /* We only need to specify the option number.
		 aarch64_handle_option will know which mask to apply.  */
	      decoded.opt_index = p_attr->opt_num;
	      decoded.value = !invert;
	      aarch64_handle_option (&global_options, &global_options_set,
				      &decoded, input_location);
	      break;
	    }
	  /* Use the option setting machinery to set an option to an enum.  */
	  case aarch64_attr_enum:
	    {
	      gcc_assert (arg);
	      bool valid;
	      int value;
	      valid = opt_enum_arg_to_value (p_attr->opt_num, arg,
					      &value, CL_TARGET);
	      if (valid)
		{
		  set_option (&global_options, NULL, p_attr->opt_num, value,
			      NULL, DK_UNSPECIFIED, input_location,
			      global_dc);
		}
	      else
		{
		  error ("pragma or attribute %<target(\"%s=%s\")%> is not valid", str_to_check, arg);
		}
	      break;
	    }
	  default:
	    gcc_unreachable ();
	}
    }

  /* If we reached here we either have found an attribute and validated
     it or didn't match any.  If we matched an attribute but its arguments
     were malformed we will have returned false already.  */
  return found;
}

/* Count how many times the character C appears in
   NULL-terminated string STR.  */

static unsigned int
num_occurences_in_str (char c, char *str)
{
  unsigned int res = 0;
  while (*str != '\0')
    {
      if (*str == c)
	res++;

      str++;
    }

  return res;
}

/* Parse the tree in ARGS that contains the target attribute information
   and update the global target options space.  */

bool
aarch64_process_target_attr (tree args)
{
  if (TREE_CODE (args) == TREE_LIST)
    {
      do
	{
	  tree head = TREE_VALUE (args);
	  if (head)
	    {
	      if (!aarch64_process_target_attr (head))
		return false;
	    }
	  args = TREE_CHAIN (args);
	} while (args);

      return true;
    }

  if (TREE_CODE (args) != STRING_CST)
    {
      error ("attribute %<target%> argument not a string");
      return false;
    }

  size_t len = strlen (TREE_STRING_POINTER (args));
  char *str_to_check = (char *) alloca (len + 1);
  strcpy (str_to_check, TREE_STRING_POINTER (args));

  if (len == 0)
    {
      error ("malformed %<target()%> pragma or attribute");
      return false;
    }

  /* Used to catch empty spaces between commas i.e.
     attribute ((target ("attr1,,attr2"))).  */
  unsigned int num_commas = num_occurences_in_str (',', str_to_check);

  /* Handle multiple target attributes separated by ','.  */
  char *token = strtok_r (str_to_check, ",", &str_to_check);

  unsigned int num_attrs = 0;
  while (token)
    {
      num_attrs++;
      if (!aarch64_process_one_target_attr (token))
	{
	  /* Check if token is possibly an arch extension without
	     leading '+'.  */
	  aarch64_feature_flags isa_temp = 0;
	  auto with_plus = std::string ("+") + token;
	  enum aarch64_parse_opt_result ext_res
	    = aarch64_parse_extension (with_plus.c_str (), &isa_temp, nullptr);

	  if (ext_res == AARCH64_PARSE_OK)
	    error ("arch extension %<%s%> should be prefixed by %<+%>",
		   token);
	  else
	    error ("pragma or attribute %<target(\"%s\")%> is not valid", token);
	  return false;
	}

      token = strtok_r (NULL, ",", &str_to_check);
    }

  if (num_attrs != num_commas + 1)
    {
      error ("malformed %<target(\"%s\")%> pragma or attribute", TREE_STRING_POINTER (args));
      return false;
    }

  return true;
}

/* Implement TARGET_OPTION_VALID_ATTRIBUTE_P.  This is used to
   process attribute ((target ("..."))).  */

static bool
aarch64_option_valid_attribute_p (tree fndecl, tree, tree args, int)
{
  struct cl_target_option cur_target;
  bool ret;
  tree old_optimize;
  tree new_target, new_optimize;
  tree existing_target = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  /* If what we're processing is the current pragma string then the
     target option node is already stored in target_option_current_node
     by aarch64_pragma_target_parse in aarch64-c.cc.  Use that to avoid
     having to re-parse the string.  This is especially useful to keep
     arm_neon.h compile times down since that header contains a lot
     of intrinsics enclosed in pragmas.  */
  if (!existing_target && args == current_target_pragma)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = target_option_current_node;
      return true;
    }
  tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  old_optimize
    = build_optimization_node (&global_options, &global_options_set);
  func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  /* If the function changed the optimization levels as well as setting
     target options, start with the optimizations specified.  */
  if (func_optimize && func_optimize != old_optimize)
    cl_optimization_restore (&global_options, &global_options_set,
			     TREE_OPTIMIZATION (func_optimize));

  /* Save the current target options to restore at the end.  */
  cl_target_option_save (&cur_target, &global_options, &global_options_set);

  /* If fndecl already has some target attributes applied to it, unpack
     them so that we add this attribute on top of them, rather than
     overwriting them.  */
  if (existing_target)
    {
      struct cl_target_option *existing_options
	= TREE_TARGET_OPTION (existing_target);

      if (existing_options)
	cl_target_option_restore (&global_options, &global_options_set,
				  existing_options);
    }
  else
    cl_target_option_restore (&global_options, &global_options_set,
			      TREE_TARGET_OPTION (target_option_current_node));

  ret = aarch64_process_target_attr (args);

  /* Set up any additional state.  */
  if (ret)
    {
      aarch64_override_options_internal (&global_options);
      new_target = build_target_option_node (&global_options,
					     &global_options_set);
    }
  else
    new_target = NULL;

  new_optimize = build_optimization_node (&global_options,
					  &global_options_set);

  if (fndecl && ret)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;

      if (old_optimize != new_optimize)
	DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
    }

  cl_target_option_restore (&global_options, &global_options_set, &cur_target);

  if (old_optimize != new_optimize)
    cl_optimization_restore (&global_options, &global_options_set,
			     TREE_OPTIMIZATION (old_optimize));
  return ret;
}

/* Helper for aarch64_can_inline_p.  In the case where CALLER and CALLEE are
   tri-bool options (yes, no, don't care) and the default value is
   DEF, determine whether to reject inlining.  */

static bool
aarch64_tribools_ok_for_inlining_p (int caller, int callee,
				     int dont_care, int def)
{
  /* If the callee doesn't care, always allow inlining.  */
  if (callee == dont_care)
    return true;

  /* If the caller doesn't care, always allow inlining.  */
  if (caller == dont_care)
    return true;

  /* Otherwise, allow inlining if either the callee and caller values
     agree, or if the callee is using the default value.  */
  return (callee == caller || callee == def);
}

/* Implement TARGET_CAN_INLINE_P.  Decide whether it is valid
   to inline CALLEE into CALLER based on target-specific info.
   Make sure that the caller and callee have compatible architectural
   features.  Then go through the other possible target attributes
   and see if they can block inlining.  Try not to reject always_inline
   callees unless they are incompatible architecturally.  */

static bool
aarch64_can_inline_p (tree caller, tree callee)
{
  tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);

  struct cl_target_option *caller_opts
	= TREE_TARGET_OPTION (caller_tree ? caller_tree
					   : target_option_default_node);

  struct cl_target_option *callee_opts
	= TREE_TARGET_OPTION (callee_tree ? callee_tree
					   : target_option_default_node);

  /* Callee's ISA flags should be a subset of the caller's.  */
  if ((caller_opts->x_aarch64_asm_isa_flags
       & callee_opts->x_aarch64_asm_isa_flags)
      != callee_opts->x_aarch64_asm_isa_flags)
    return false;
  if ((caller_opts->x_aarch64_isa_flags & callee_opts->x_aarch64_isa_flags)
      != callee_opts->x_aarch64_isa_flags)
    return false;

  /* Allow non-strict aligned functions inlining into strict
     aligned ones.  */
  if ((TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags)
       != TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags))
      && !(!TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags)
	   && TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags)))
    return false;

  bool always_inline = lookup_attribute ("always_inline",
					  DECL_ATTRIBUTES (callee));

  /* If the architectural features match up and the callee is always_inline
     then the other attributes don't matter.  */
  if (always_inline)
    return true;

  if (caller_opts->x_aarch64_cmodel_var
      != callee_opts->x_aarch64_cmodel_var)
    return false;

  if (caller_opts->x_aarch64_tls_dialect
      != callee_opts->x_aarch64_tls_dialect)
    return false;

  /* Honour explicit requests to workaround errata.  */
  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_aarch64_fix_a53_err835769,
	  callee_opts->x_aarch64_fix_a53_err835769,
	  2, TARGET_FIX_ERR_A53_835769_DEFAULT))
    return false;

  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_aarch64_fix_a53_err843419,
	  callee_opts->x_aarch64_fix_a53_err843419,
	  2, TARGET_FIX_ERR_A53_843419))
    return false;

  /* If the user explicitly specified -momit-leaf-frame-pointer for the
     caller and calle and they don't match up, reject inlining.  */
  if (!aarch64_tribools_ok_for_inlining_p (
	  caller_opts->x_flag_omit_leaf_frame_pointer,
	  callee_opts->x_flag_omit_leaf_frame_pointer,
	  2, 1))
    return false;

  /* If the callee has specific tuning overrides, respect them.  */
  if (callee_opts->x_aarch64_override_tune_string != NULL
      && caller_opts->x_aarch64_override_tune_string == NULL)
    return false;

  /* If the user specified tuning override strings for the
     caller and callee and they don't match up, reject inlining.
     We just do a string compare here, we don't analyze the meaning
     of the string, as it would be too costly for little gain.  */
  if (callee_opts->x_aarch64_override_tune_string
      && caller_opts->x_aarch64_override_tune_string
      && (strcmp (callee_opts->x_aarch64_override_tune_string,
		  caller_opts->x_aarch64_override_tune_string) != 0))
    return false;

  return true;
}

/* Return the ID of the TLDESC ABI, initializing the descriptor if hasn't
   been already.  */

unsigned int
aarch64_tlsdesc_abi_id ()
{
  predefined_function_abi &tlsdesc_abi = function_abis[ARM_PCS_TLSDESC];
  if (!tlsdesc_abi.initialized_p ())
    {
      HARD_REG_SET full_reg_clobbers;
      CLEAR_HARD_REG_SET (full_reg_clobbers);
      SET_HARD_REG_BIT (full_reg_clobbers, R0_REGNUM);
      SET_HARD_REG_BIT (full_reg_clobbers, CC_REGNUM);
      for (int regno = P0_REGNUM; regno <= P15_REGNUM; ++regno)
	SET_HARD_REG_BIT (full_reg_clobbers, regno);
      tlsdesc_abi.initialize (ARM_PCS_TLSDESC, full_reg_clobbers);
    }
  return tlsdesc_abi.id ();
}

/* Return true if SYMBOL_REF X binds locally.  */

static bool
aarch64_symbol_binds_local_p (const_rtx x)
{
  return (SYMBOL_REF_DECL (x)
	  ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
	  : SYMBOL_REF_LOCAL_P (x));
}

/* Return true if SYMBOL_REF X is thread local */
static bool
aarch64_tls_symbol_p (rtx x)
{
  if (! TARGET_HAVE_TLS)
    return false;

  x = strip_salt (x);
  if (!SYMBOL_REF_P (x))
    return false;

  return SYMBOL_REF_TLS_MODEL (x) != 0;
}

/* Classify a TLS symbol into one of the TLS kinds.  */
enum aarch64_symbol_type
aarch64_classify_tls_symbol (rtx x)
{
  enum tls_model tls_kind = tls_symbolic_operand_type (x);

  switch (tls_kind)
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
    case TLS_MODEL_LOCAL_DYNAMIC:
      return TARGET_TLS_DESC ? SYMBOL_SMALL_TLSDESC : SYMBOL_SMALL_TLSGD;

    case TLS_MODEL_INITIAL_EXEC:
      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_TINY:
	case AARCH64_CMODEL_TINY_PIC:
	  return SYMBOL_TINY_TLSIE;
	default:
	  return SYMBOL_SMALL_TLSIE;
	}

    case TLS_MODEL_LOCAL_EXEC:
      if (aarch64_tls_size == 12)
	return SYMBOL_TLSLE12;
      else if (aarch64_tls_size == 24)
	return SYMBOL_TLSLE24;
      else if (aarch64_tls_size == 32)
	return SYMBOL_TLSLE32;
      else if (aarch64_tls_size == 48)
	return SYMBOL_TLSLE48;
      else
	gcc_unreachable ();

    case TLS_MODEL_EMULATED:
    case TLS_MODEL_NONE:
      return SYMBOL_FORCE_TO_MEM;

    default:
      gcc_unreachable ();
    }
}

/* Return the correct method for accessing X + OFFSET, where X is either
   a SYMBOL_REF or LABEL_REF.  */

enum aarch64_symbol_type
aarch64_classify_symbol (rtx x, HOST_WIDE_INT offset)
{
  x = strip_salt (x);

  if (LABEL_REF_P (x))
    {
      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_LARGE:
	  return SYMBOL_FORCE_TO_MEM;

	case AARCH64_CMODEL_TINY_PIC:
	case AARCH64_CMODEL_TINY:
	  return SYMBOL_TINY_ABSOLUTE;

	case AARCH64_CMODEL_SMALL_SPIC:
	case AARCH64_CMODEL_SMALL_PIC:
	case AARCH64_CMODEL_SMALL:
	  return SYMBOL_SMALL_ABSOLUTE;

	default:
	  gcc_unreachable ();
	}
    }

  if (SYMBOL_REF_P (x))
    {
      if (aarch64_tls_symbol_p (x))
	return aarch64_classify_tls_symbol (x);

      switch (aarch64_cmodel)
	{
	case AARCH64_CMODEL_TINY_PIC:
	case AARCH64_CMODEL_TINY:
	  /* With -fPIC non-local symbols use the GOT.  For orthogonality
	     always use the GOT for extern weak symbols.  */
	  if ((flag_pic || SYMBOL_REF_WEAK (x))
	      && !aarch64_symbol_binds_local_p (x))
	    return SYMBOL_TINY_GOT;

	  /* When we retrieve symbol + offset address, we have to make sure
	     the offset does not cause overflow of the final address.  But
	     we have no way of knowing the address of symbol at compile time
	     so we can't accurately say if the distance between the PC and
	     symbol + offset is outside the addressible range of +/-1MB in the
	     TINY code model.  So we limit the maximum offset to +/-64KB and
	     assume the offset to the symbol is not larger than +/-(1MB - 64KB).
	     If offset_within_block_p is true we allow larger offsets.  */
	  if (!(IN_RANGE (offset, -0x10000, 0x10000)
		|| offset_within_block_p (x, offset)))
	    return SYMBOL_FORCE_TO_MEM;

	  return SYMBOL_TINY_ABSOLUTE;


	case AARCH64_CMODEL_SMALL_SPIC:
	case AARCH64_CMODEL_SMALL_PIC:
	case AARCH64_CMODEL_SMALL:
	  if ((flag_pic || SYMBOL_REF_WEAK (x))
	      && !aarch64_symbol_binds_local_p (x))
	    return aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC
		    ? SYMBOL_SMALL_GOT_28K : SYMBOL_SMALL_GOT_4G;

	  /* Same reasoning as the tiny code model, but the offset cap here is
	     1MB, allowing +/-3.9GB for the offset to the symbol.  */
	  if (!(IN_RANGE (offset, -0x100000, 0x100000)
		|| offset_within_block_p (x, offset)))
	    return SYMBOL_FORCE_TO_MEM;

	  return SYMBOL_SMALL_ABSOLUTE;

	case AARCH64_CMODEL_LARGE:
	  /* This is alright even in PIC code as the constant
	     pool reference is always PC relative and within
	     the same translation unit.  */
	  if (!aarch64_pcrelative_literal_loads && CONSTANT_POOL_ADDRESS_P (x))
	    return SYMBOL_SMALL_ABSOLUTE;
	  else
	    return SYMBOL_FORCE_TO_MEM;

	default:
	  gcc_unreachable ();
	}
    }

  /* By default push everything into the constant pool.  */
  return SYMBOL_FORCE_TO_MEM;
}

bool
aarch64_constant_address_p (rtx x)
{
  return (CONSTANT_P (x) && memory_address_p (DImode, x));
}

bool
aarch64_legitimate_pic_operand_p (rtx x)
{
  poly_int64 offset;
  x = strip_offset_and_salt (x, &offset);
  if (SYMBOL_REF_P (x))
    return false;

  return true;
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P hook.  Return true for constants
   that should be rematerialized rather than spilled.  */

static bool
aarch64_legitimate_constant_p (machine_mode mode, rtx x)
{
  /* Support CSE and rematerialization of common constants.  */
  if (CONST_INT_P (x)
      || CONST_DOUBLE_P (x))
    return true;

  /* Only accept variable-length vector constants if they can be
     handled directly.

     ??? It would be possible (but complex) to handle rematerialization
     of other constants via secondary reloads.  */
  if (!GET_MODE_SIZE (mode).is_constant ())
    return aarch64_simd_valid_immediate (x, NULL);

  /* Otherwise, accept any CONST_VECTOR that, if all else fails, can at
     least be forced to memory and loaded from there.  */
  if (CONST_VECTOR_P (x))
    return !targetm.cannot_force_const_mem (mode, x);

  /* Do not allow vector struct mode constants for Advanced SIMD.
     We could support 0 and -1 easily, but they need support in
     aarch64-simd.md.  */
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (vec_flags == (VEC_ADVSIMD | VEC_STRUCT))
    return false;

  if (GET_CODE (x) == HIGH)
    x = XEXP (x, 0);

  /* Accept polynomial constants that can be calculated by using the
     destination of a move as the sole temporary.  Constants that
     require a second temporary cannot be rematerialized (they can't be
     forced to memory and also aren't legitimate constants).  */
  poly_int64 offset;
  if (poly_int_rtx_p (x, &offset))
    return aarch64_offset_temporaries (false, offset) <= 1;

  /* If an offset is being added to something else, we need to allow the
     base to be moved into the destination register, meaning that there
     are no free temporaries for the offset.  */
  x = strip_offset_and_salt (x, &offset);
  if (!offset.is_constant () && aarch64_offset_temporaries (true, offset) > 0)
    return false;

  /* Do not allow const (plus (anchor_symbol, const_int)).  */
  if (maybe_ne (offset, 0) && SYMBOL_REF_P (x) && SYMBOL_REF_ANCHOR_P (x))
    return false;

  /* Treat symbols as constants.  Avoid TLS symbols as they are complex,
     so spilling them is better than rematerialization.  */
  if (SYMBOL_REF_P (x) && !SYMBOL_REF_TLS_MODEL (x))
    return true;

  /* Label references are always constant.  */
  if (LABEL_REF_P (x))
    return true;

  return false;
}

rtx
aarch64_load_tp (rtx target)
{
  if (!target
      || GET_MODE (target) != Pmode
      || !register_operand (target, Pmode))
    target = gen_reg_rtx (Pmode);

  /* Can return in any reg.  */
  emit_insn (gen_aarch64_load_tp_hard (target));
  return target;
}

/* On AAPCS systems, this is the "struct __va_list".  */
static GTY(()) tree va_list_type;

/* Implement TARGET_BUILD_BUILTIN_VA_LIST.
   Return the type to use as __builtin_va_list.

   AAPCS64 \S 7.1.4 requires that va_list be a typedef for a type defined as:

   struct __va_list
   {
     void *__stack;
     void *__gr_top;
     void *__vr_top;
     int   __gr_offs;
     int   __vr_offs;
   };  */

static tree
aarch64_build_builtin_va_list (void)
{
  tree va_list_name;
  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;

  /* Create the type.  */
  va_list_type = lang_hooks.types.make_type (RECORD_TYPE);
  /* Give it the required name.  */
  va_list_name = build_decl (BUILTINS_LOCATION,
			     TYPE_DECL,
			     get_identifier ("__va_list"),
			     va_list_type);
  DECL_ARTIFICIAL (va_list_name) = 1;
  TYPE_NAME (va_list_type) = va_list_name;
  TYPE_STUB_DECL (va_list_type) = va_list_name;

  /* Create the fields.  */
  f_stack = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__stack"),
			ptr_type_node);
  f_grtop = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__gr_top"),
			ptr_type_node);
  f_vrtop = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__vr_top"),
			ptr_type_node);
  f_groff = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__gr_offs"),
			integer_type_node);
  f_vroff = build_decl (BUILTINS_LOCATION,
			FIELD_DECL, get_identifier ("__vr_offs"),
			integer_type_node);

  /* Tell tree-stdarg pass about our internal offset fields.
     NOTE: va_list_gpr/fpr_counter_field are only used for tree comparision
     purpose to identify whether the code is updating va_list internal
     offset fields through irregular way.  */
  va_list_gpr_counter_field = f_groff;
  va_list_fpr_counter_field = f_vroff;

  DECL_ARTIFICIAL (f_stack) = 1;
  DECL_ARTIFICIAL (f_grtop) = 1;
  DECL_ARTIFICIAL (f_vrtop) = 1;
  DECL_ARTIFICIAL (f_groff) = 1;
  DECL_ARTIFICIAL (f_vroff) = 1;

  DECL_FIELD_CONTEXT (f_stack) = va_list_type;
  DECL_FIELD_CONTEXT (f_grtop) = va_list_type;
  DECL_FIELD_CONTEXT (f_vrtop) = va_list_type;
  DECL_FIELD_CONTEXT (f_groff) = va_list_type;
  DECL_FIELD_CONTEXT (f_vroff) = va_list_type;

  TYPE_FIELDS (va_list_type) = f_stack;
  DECL_CHAIN (f_stack) = f_grtop;
  DECL_CHAIN (f_grtop) = f_vrtop;
  DECL_CHAIN (f_vrtop) = f_groff;
  DECL_CHAIN (f_groff) = f_vroff;

  /* Compute its layout.  */
  layout_type (va_list_type);

  return va_list_type;
}

/* Implement TARGET_EXPAND_BUILTIN_VA_START.  */
static void
aarch64_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
  const CUMULATIVE_ARGS *cum;
  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;
  tree stack, grtop, vrtop, groff, vroff;
  tree t;
  int gr_save_area_size = cfun->va_list_gpr_size;
  int vr_save_area_size = cfun->va_list_fpr_size;
  int vr_offset;

  cum = &crtl->args.info;
  if (cfun->va_list_gpr_size)
    gr_save_area_size = MIN ((NUM_ARG_REGS - cum->aapcs_ncrn) * UNITS_PER_WORD,
			     cfun->va_list_gpr_size);
  if (cfun->va_list_fpr_size)
    vr_save_area_size = MIN ((NUM_FP_ARG_REGS - cum->aapcs_nvrn)
			     * UNITS_PER_VREG, cfun->va_list_fpr_size);

  if (!TARGET_FLOAT)
    {
      gcc_assert (cum->aapcs_nvrn == 0);
      vr_save_area_size = 0;
    }

  f_stack = TYPE_FIELDS (va_list_type_node);
  f_grtop = DECL_CHAIN (f_stack);
  f_vrtop = DECL_CHAIN (f_grtop);
  f_groff = DECL_CHAIN (f_vrtop);
  f_vroff = DECL_CHAIN (f_groff);

  stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), valist, f_stack,
		  NULL_TREE);
  grtop = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), valist, f_grtop,
		  NULL_TREE);
  vrtop = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), valist, f_vrtop,
		  NULL_TREE);
  groff = build3 (COMPONENT_REF, TREE_TYPE (f_groff), valist, f_groff,
		  NULL_TREE);
  vroff = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), valist, f_vroff,
		  NULL_TREE);

  /* Emit code to initialize STACK, which points to the next varargs stack
     argument.  CUM->AAPCS_STACK_SIZE gives the number of stack words used
     by named arguments.  STACK is 8-byte aligned.  */
  t = make_tree (TREE_TYPE (stack), virtual_incoming_args_rtx);
  if (cum->aapcs_stack_size > 0)
    t = fold_build_pointer_plus_hwi (t, cum->aapcs_stack_size * UNITS_PER_WORD);
  t = build2 (MODIFY_EXPR, TREE_TYPE (stack), stack, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize GRTOP, the top of the GR save area.
     virtual_incoming_args_rtx should have been 16 byte aligned.  */
  t = make_tree (TREE_TYPE (grtop), virtual_incoming_args_rtx);
  t = build2 (MODIFY_EXPR, TREE_TYPE (grtop), grtop, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize VRTOP, the top of the VR save area.
     This address is gr_save_area_bytes below GRTOP, rounded
     down to the next 16-byte boundary.  */
  t = make_tree (TREE_TYPE (vrtop), virtual_incoming_args_rtx);
  vr_offset = ROUND_UP (gr_save_area_size,
			STACK_BOUNDARY / BITS_PER_UNIT);

  if (vr_offset)
    t = fold_build_pointer_plus_hwi (t, -vr_offset);
  t = build2 (MODIFY_EXPR, TREE_TYPE (vrtop), vrtop, t);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Emit code to initialize GROFF, the offset from GRTOP of the
     next GPR argument.  */
  t = build2 (MODIFY_EXPR, TREE_TYPE (groff), groff,
	      build_int_cst (TREE_TYPE (groff), -gr_save_area_size));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Likewise emit code to initialize VROFF, the offset from FTOP
     of the next VR argument.  */
  t = build2 (MODIFY_EXPR, TREE_TYPE (vroff), vroff,
	      build_int_cst (TREE_TYPE (vroff), -vr_save_area_size));
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR.  */

static tree
aarch64_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			      gimple_seq *post_p ATTRIBUTE_UNUSED)
{
  tree addr;
  bool indirect_p;
  bool is_ha;		/* is HFA or HVA.  */
  bool dw_align;	/* double-word align.  */
  machine_mode ag_mode = VOIDmode;
  int nregs;
  machine_mode mode;

  tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff;
  tree stack, f_top, f_off, off, arg, roundup, on_stack;
  HOST_WIDE_INT size, rsize, adjust, align;
  tree t, u, cond1, cond2;

  indirect_p = pass_va_arg_by_reference (type);
  if (indirect_p)
    type = build_pointer_type (type);

  mode = TYPE_MODE (type);

  f_stack = TYPE_FIELDS (va_list_type_node);
  f_grtop = DECL_CHAIN (f_stack);
  f_vrtop = DECL_CHAIN (f_grtop);
  f_groff = DECL_CHAIN (f_vrtop);
  f_vroff = DECL_CHAIN (f_groff);

  stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), unshare_expr (valist),
		  f_stack, NULL_TREE);
  size = int_size_in_bytes (type);

  unsigned int abi_break;
  align
    = aarch64_function_arg_alignment (mode, type, &abi_break) / BITS_PER_UNIT;

  dw_align = false;
  adjust = 0;
  if (aarch64_vfp_is_call_or_return_candidate (mode, type, &ag_mode, &nregs,
					       &is_ha, false))
    {
      /* No frontends can create types with variable-sized modes, so we
	 shouldn't be asked to pass or return them.  */
      unsigned int ag_size = GET_MODE_SIZE (ag_mode).to_constant ();

      /* TYPE passed in fp/simd registers.  */
      if (!TARGET_FLOAT)
	aarch64_err_no_fpadvsimd (mode);

      f_top = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop),
		      unshare_expr (valist), f_vrtop, NULL_TREE);
      f_off = build3 (COMPONENT_REF, TREE_TYPE (f_vroff),
		      unshare_expr (valist), f_vroff, NULL_TREE);

      rsize = nregs * UNITS_PER_VREG;

      if (is_ha)
	{
	  if (BYTES_BIG_ENDIAN && ag_size < UNITS_PER_VREG)
	    adjust = UNITS_PER_VREG - ag_size;
	}
      else if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
	       && size < UNITS_PER_VREG)
	{
	  adjust = UNITS_PER_VREG - size;
	}
    }
  else
    {
      /* TYPE passed in general registers.  */
      f_top = build3 (COMPONENT_REF, TREE_TYPE (f_grtop),
		      unshare_expr (valist), f_grtop, NULL_TREE);
      f_off = build3 (COMPONENT_REF, TREE_TYPE (f_groff),
		      unshare_expr (valist), f_groff, NULL_TREE);
      rsize = ROUND_UP (size, UNITS_PER_WORD);
      nregs = rsize / UNITS_PER_WORD;

      if (align > 8)
	{
	  if (abi_break && warn_psabi)
	    inform (input_location, "parameter passing for argument of type "
		    "%qT changed in GCC 9.1", type);
	  dw_align = true;
	}

      if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
	  && size < UNITS_PER_WORD)
	{
	  adjust = UNITS_PER_WORD  - size;
	}
    }

  /* Get a local temporary for the field value.  */
  off = get_initialized_tmp_var (f_off, pre_p, NULL);

  /* Emit code to branch if off >= 0.  */
  t = build2 (GE_EXPR, boolean_type_node, off,
	      build_int_cst (TREE_TYPE (off), 0));
  cond1 = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);

  if (dw_align)
    {
      /* Emit: offs = (offs + 15) & -16.  */
      t = build2 (PLUS_EXPR, TREE_TYPE (off), off,
		  build_int_cst (TREE_TYPE (off), 15));
      t = build2 (BIT_AND_EXPR, TREE_TYPE (off), t,
		  build_int_cst (TREE_TYPE (off), -16));
      roundup = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t);
    }
  else
    roundup = NULL;

  /* Update ap.__[g|v]r_offs  */
  t = build2 (PLUS_EXPR, TREE_TYPE (off), off,
	      build_int_cst (TREE_TYPE (off), rsize));
  t = build2 (MODIFY_EXPR, TREE_TYPE (f_off), unshare_expr (f_off), t);

  /* String up.  */
  if (roundup)
    t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t);

  /* [cond2] if (ap.__[g|v]r_offs > 0)  */
  u = build2 (GT_EXPR, boolean_type_node, unshare_expr (f_off),
	      build_int_cst (TREE_TYPE (f_off), 0));
  cond2 = build3 (COND_EXPR, ptr_type_node, u, NULL_TREE, NULL_TREE);

  /* String up: make sure the assignment happens before the use.  */
  t = build2 (COMPOUND_EXPR, TREE_TYPE (cond2), t, cond2);
  COND_EXPR_ELSE (cond1) = t;

  /* Prepare the trees handling the argument that is passed on the stack;
     the top level node will store in ON_STACK.  */
  arg = get_initialized_tmp_var (stack, pre_p, NULL);
  if (align > 8)
    {
      /* if (alignof(type) > 8) (arg = arg + 15) & -16;  */
      t = fold_build_pointer_plus_hwi (arg, 15);
      t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
		  build_int_cst (TREE_TYPE (t), -16));
      roundup = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, t);
    }
  else
    roundup = NULL;
  /* Advance ap.__stack  */
  t = fold_build_pointer_plus_hwi (arg, size + 7);
  t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
	      build_int_cst (TREE_TYPE (t), -8));
  t = build2 (MODIFY_EXPR, TREE_TYPE (stack), unshare_expr (stack), t);
  /* String up roundup and advance.  */
  if (roundup)
    t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t);
  /* String up with arg */
  on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), t, arg);
  /* Big-endianness related address adjustment.  */
  if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD
      && size < UNITS_PER_WORD)
  {
    t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (arg), arg,
		size_int (UNITS_PER_WORD - size));
    on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), on_stack, t);
  }

  COND_EXPR_THEN (cond1) = unshare_expr (on_stack);
  COND_EXPR_THEN (cond2) = unshare_expr (on_stack);

  /* Adjustment to OFFSET in the case of BIG_ENDIAN.  */
  t = off;
  if (adjust)
    t = build2 (PREINCREMENT_EXPR, TREE_TYPE (off), off,
		build_int_cst (TREE_TYPE (off), adjust));

  t = fold_convert (sizetype, t);
  t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (f_top), f_top, t);

  if (is_ha)
    {
      /* type ha; // treat as "struct {ftype field[n];}"
         ... [computing offs]
         for (i = 0; i <nregs; ++i, offs += 16)
	   ha.field[i] = *((ftype *)(ap.__vr_top + offs));
	 return ha;  */
      int i;
      tree tmp_ha, field_t, field_ptr_t;

      /* Declare a local variable.  */
      tmp_ha = create_tmp_var_raw (type, "ha");
      gimple_add_tmp_var (tmp_ha);

      /* Establish the base type.  */
      switch (ag_mode)
	{
	case E_SFmode:
	  field_t = float_type_node;
	  field_ptr_t = float_ptr_type_node;
	  break;
	case E_DFmode:
	  field_t = double_type_node;
	  field_ptr_t = double_ptr_type_node;
	  break;
	case E_TFmode:
	  field_t = long_double_type_node;
	  field_ptr_t = long_double_ptr_type_node;
	  break;
	case E_SDmode:
	  field_t = dfloat32_type_node;
	  field_ptr_t = build_pointer_type (dfloat32_type_node);
	  break;
	case E_DDmode:
	  field_t = dfloat64_type_node;
	  field_ptr_t = build_pointer_type (dfloat64_type_node);
	  break;
	case E_TDmode:
	  field_t = dfloat128_type_node;
	  field_ptr_t = build_pointer_type (dfloat128_type_node);
	  break;
	case E_HFmode:
	  field_t = aarch64_fp16_type_node;
	  field_ptr_t = aarch64_fp16_ptr_type_node;
	  break;
	case E_BFmode:
	  field_t = aarch64_bf16_type_node;
	  field_ptr_t = aarch64_bf16_ptr_type_node;
	  break;
	case E_V2SImode:
	case E_V4SImode:
	    {
	      tree innertype = make_signed_type (GET_MODE_PRECISION (SImode));
	      field_t = build_vector_type_for_mode (innertype, ag_mode);
	      field_ptr_t = build_pointer_type (field_t);
	    }
	  break;
	default:
	  gcc_assert (0);
	}

      /* *(field_ptr_t)&ha = *((field_ptr_t)vr_saved_area  */
      TREE_ADDRESSABLE (tmp_ha) = 1;
      tmp_ha = build1 (ADDR_EXPR, field_ptr_t, tmp_ha);
      addr = t;
      t = fold_convert (field_ptr_t, addr);
      t = build2 (MODIFY_EXPR, field_t,
		  build1 (INDIRECT_REF, field_t, tmp_ha),
		  build1 (INDIRECT_REF, field_t, t));

      /* ha.field[i] = *((field_ptr_t)vr_saved_area + i)  */
      for (i = 1; i < nregs; ++i)
	{
	  addr = fold_build_pointer_plus_hwi (addr, UNITS_PER_VREG);
	  u = fold_convert (field_ptr_t, addr);
	  u = build2 (MODIFY_EXPR, field_t,
		      build2 (MEM_REF, field_t, tmp_ha,
			      build_int_cst (field_ptr_t,
					     (i *
					      int_size_in_bytes (field_t)))),
		      build1 (INDIRECT_REF, field_t, u));
	  t = build2 (COMPOUND_EXPR, TREE_TYPE (t), t, u);
	}

      u = fold_convert (TREE_TYPE (f_top), tmp_ha);
      t = build2 (COMPOUND_EXPR, TREE_TYPE (f_top), t, u);
    }

  COND_EXPR_ELSE (cond2) = t;
  addr = fold_convert (build_pointer_type (type), cond1);
  addr = build_va_arg_indirect_ref (addr);

  if (indirect_p)
    addr = build_va_arg_indirect_ref (addr);

  return addr;
}

/* Implement TARGET_SETUP_INCOMING_VARARGS.  */

static void
aarch64_setup_incoming_varargs (cumulative_args_t cum_v,
				const function_arg_info &arg,
				int *pretend_size ATTRIBUTE_UNUSED, int no_rtl)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  CUMULATIVE_ARGS local_cum;
  int gr_saved = cfun->va_list_gpr_size;
  int vr_saved = cfun->va_list_fpr_size;

  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */
  local_cum = *cum;
  aarch64_function_arg_advance (pack_cumulative_args(&local_cum), arg);

  /* Found out how many registers we need to save.
     Honor tree-stdvar analysis results.  */
  if (cfun->va_list_gpr_size)
    gr_saved = MIN (NUM_ARG_REGS - local_cum.aapcs_ncrn,
		    cfun->va_list_gpr_size / UNITS_PER_WORD);
  if (cfun->va_list_fpr_size)
    vr_saved = MIN (NUM_FP_ARG_REGS - local_cum.aapcs_nvrn,
		    cfun->va_list_fpr_size / UNITS_PER_VREG);

  if (!TARGET_FLOAT)
    {
      gcc_assert (local_cum.aapcs_nvrn == 0);
      vr_saved = 0;
    }

  if (!no_rtl)
    {
      if (gr_saved > 0)
	{
	  rtx ptr, mem;

	  /* virtual_incoming_args_rtx should have been 16-byte aligned.  */
	  ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
			       - gr_saved * UNITS_PER_WORD);
	  mem = gen_frame_mem (BLKmode, ptr);
	  set_mem_alias_set (mem, get_varargs_alias_set ());

	  move_block_from_reg (local_cum.aapcs_ncrn + R0_REGNUM,
			       mem, gr_saved);
	}
      if (vr_saved > 0)
	{
	  /* We can't use move_block_from_reg, because it will use
	     the wrong mode, storing D regs only.  */
	  machine_mode mode = TImode;
	  int off, i, vr_start;

	  /* Set OFF to the offset from virtual_incoming_args_rtx of
	     the first vector register.  The VR save area lies below
	     the GR one, and is aligned to 16 bytes.  */
	  off = -ROUND_UP (gr_saved * UNITS_PER_WORD,
			   STACK_BOUNDARY / BITS_PER_UNIT);
	  off -= vr_saved * UNITS_PER_VREG;

	  vr_start = V0_REGNUM + local_cum.aapcs_nvrn;
	  for (i = 0; i < vr_saved; ++i)
	    {
	      rtx ptr, mem;

	      ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off);
	      mem = gen_frame_mem (mode, ptr);
	      set_mem_alias_set (mem, get_varargs_alias_set ());
	      aarch64_emit_move (mem, gen_rtx_REG (mode, vr_start + i));
	      off += UNITS_PER_VREG;
	    }
	}
    }

  /* We don't save the size into *PRETEND_SIZE because we want to avoid
     any complication of having crtl->args.pretend_args_size changed.  */
  cfun->machine->frame.saved_varargs_size
    = (ROUND_UP (gr_saved * UNITS_PER_WORD,
		 STACK_BOUNDARY / BITS_PER_UNIT)
       + vr_saved * UNITS_PER_VREG);
}

static void
aarch64_conditional_register_usage (void)
{
  int i;
  if (!TARGET_FLOAT)
    {
      for (i = V0_REGNUM; i <= V31_REGNUM; i++)
	{
	  fixed_regs[i] = 1;
	  call_used_regs[i] = 1;
	  CLEAR_HARD_REG_BIT (operand_reg_set, i);
	}
    }
  if (!TARGET_SVE)
    for (i = P0_REGNUM; i <= P15_REGNUM; i++)
      {
	fixed_regs[i] = 1;
	call_used_regs[i] = 1;
      }

  /* Only allow the FFR and FFRT to be accessed via special patterns.  */
  CLEAR_HARD_REG_BIT (operand_reg_set, FFR_REGNUM);
  CLEAR_HARD_REG_BIT (operand_reg_set, FFRT_REGNUM);

  /* When tracking speculation, we need a couple of call-clobbered registers
     to track the speculation state.  It would be nice to just use
     IP0 and IP1, but currently there are numerous places that just
     assume these registers are free for other uses (eg pointer
     authentication).  */
  if (aarch64_track_speculation)
    {
      fixed_regs[SPECULATION_TRACKER_REGNUM] = 1;
      call_used_regs[SPECULATION_TRACKER_REGNUM] = 1;
      fixed_regs[SPECULATION_SCRATCH_REGNUM] = 1;
      call_used_regs[SPECULATION_SCRATCH_REGNUM] = 1;
    }
}

/* Implement TARGET_MEMBER_TYPE_FORCES_BLK.  */

bool
aarch64_member_type_forces_blk (const_tree field_or_array, machine_mode mode)
{
  /* For records we're passed a FIELD_DECL, for arrays we're passed
     an ARRAY_TYPE.  In both cases we're interested in the TREE_TYPE.  */
  const_tree type = TREE_TYPE (field_or_array);

  /* Assign BLKmode to anything that contains multiple SVE predicates.
     For structures, the "multiple" case is indicated by MODE being
     VOIDmode.  */
  unsigned int num_zr, num_pr;
  if (aarch64_sve::builtin_type_p (type, &num_zr, &num_pr) && num_pr != 0)
    {
      if (TREE_CODE (field_or_array) == ARRAY_TYPE)
	return !simple_cst_equal (TYPE_SIZE (field_or_array),
				  TYPE_SIZE (type));
      return mode == VOIDmode;
    }

  return default_member_type_forces_blk (field_or_array, mode);
}

/* Bitmasks that indicate whether earlier versions of GCC would have
   taken a different path through the ABI logic.  This should result in
   a -Wpsabi warning if the earlier path led to a different ABI decision.

   WARN_PSABI_EMPTY_CXX17_BASE
      Indicates that the type includes an artificial empty C++17 base field
      that, prior to GCC 10.1, would prevent the type from being treated as
      a HFA or HVA.  See PR94383 for details.

   WARN_PSABI_NO_UNIQUE_ADDRESS
      Indicates that the type includes an empty [[no_unique_address]] field
      that, prior to GCC 10.1, would prevent the type from being treated as
      a HFA or HVA.  */
const unsigned int WARN_PSABI_EMPTY_CXX17_BASE = 1U << 0;
const unsigned int WARN_PSABI_NO_UNIQUE_ADDRESS = 1U << 1;
const unsigned int WARN_PSABI_ZERO_WIDTH_BITFIELD = 1U << 2;

/* Walk down the type tree of TYPE counting consecutive base elements.
   If *MODEP is VOIDmode, then set it to the first valid floating point
   type.  If a non-floating point type is found, or if a floating point
   type that doesn't match a non-VOIDmode *MODEP is found, then return -1,
   otherwise return the count in the sub-tree.

   The WARN_PSABI_FLAGS argument allows the caller to check whether this
   function has changed its behavior relative to earlier versions of GCC.
   Normally the argument should be nonnull and point to a zero-initialized
   variable.  The function then records whether the ABI decision might
   be affected by a known fix to the ABI logic, setting the associated
   WARN_PSABI_* bits if so.

   When the argument is instead a null pointer, the function tries to
   simulate the behavior of GCC before all such ABI fixes were made.
   This is useful to check whether the function returns something
   different after the ABI fixes.  */
static int
aapcs_vfp_sub_candidate (const_tree type, machine_mode *modep,
			 unsigned int *warn_psabi_flags)
{
  machine_mode mode;
  HOST_WIDE_INT size;

  if (aarch64_sve::builtin_type_p (type))
    return -1;

  switch (TREE_CODE (type))
    {
    case REAL_TYPE:
      mode = TYPE_MODE (type);
      if (mode != DFmode && mode != SFmode
	  && mode != TFmode && mode != HFmode
	  && mode != SDmode && mode != DDmode && mode != TDmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 1;

      break;

    case COMPLEX_TYPE:
      mode = TYPE_MODE (TREE_TYPE (type));
      if (mode != DFmode && mode != SFmode
	  && mode != TFmode && mode != HFmode)
	return -1;

      if (*modep == VOIDmode)
	*modep = mode;

      if (*modep == mode)
	return 2;

      break;

    case VECTOR_TYPE:
      /* Use V2SImode and V4SImode as representatives of all 64-bit
	 and 128-bit vector types.  */
      size = int_size_in_bytes (type);
      switch (size)
	{
	case 8:
	  mode = V2SImode;
	  break;
	case 16:
	  mode = V4SImode;
	  break;
	default:
	  return -1;
	}

      if (*modep == VOIDmode)
	*modep = mode;

      /* Vector modes are considered to be opaque: two vectors are
	 equivalent for the purposes of being homogeneous aggregates
	 if they are the same size.  */
      if (*modep == mode)
	return 1;

      break;

    case ARRAY_TYPE:
      {
	int count;
	tree index = TYPE_DOMAIN (type);

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep,
					 warn_psabi_flags);
	if (count == -1
	    || !index
	    || !TYPE_MAX_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
	    || !TYPE_MIN_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
	    || count < 0)
	  return -1;

	count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
		      - tree_to_uhwi (TYPE_MIN_VALUE (index)));

	/* There must be no padding.  */
	if (maybe_ne (wi::to_poly_wide (TYPE_SIZE (type)),
		      count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    case RECORD_TYPE:
      {
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    if (DECL_FIELD_ABI_IGNORED (field))
	      {
		/* See whether this is something that earlier versions of
		   GCC failed to ignore.  */
		unsigned int flag;
		if (lookup_attribute ("no_unique_address",
				      DECL_ATTRIBUTES (field)))
		  flag = WARN_PSABI_NO_UNIQUE_ADDRESS;
		else if (cxx17_empty_base_field_p (field))
		  flag = WARN_PSABI_EMPTY_CXX17_BASE;
		else
		  /* No compatibility problem.  */
		  continue;

		/* Simulate the old behavior when WARN_PSABI_FLAGS is null.  */
		if (warn_psabi_flags)
		  {
		    *warn_psabi_flags |= flag;
		    continue;
		  }
	      }
	    /* A zero-width bitfield may affect layout in some
	       circumstances, but adds no members.  The determination
	       of whether or not a type is an HFA is performed after
	       layout is complete, so if the type still looks like an
	       HFA afterwards, it is still classed as one.  This is
	       potentially an ABI break for the hard-float ABI.  */
	    else if (DECL_BIT_FIELD (field)
		     && integer_zerop (DECL_SIZE (field)))
	      {
		/* Prior to GCC-12 these fields were striped early,
		   hiding them from the back-end entirely and
		   resulting in the correct behaviour for argument
		   passing.  Simulate that old behaviour without
		   generating a warning.  */
		if (DECL_FIELD_CXX_ZERO_WIDTH_BIT_FIELD (field))
		  continue;
		if (warn_psabi_flags)
		  {
		    *warn_psabi_flags |= WARN_PSABI_ZERO_WIDTH_BITFIELD;
		    continue;
		  }
	      }

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep,
						 warn_psabi_flags);
	    if (sub_count < 0)
	      return -1;
	    count += sub_count;
	  }

	/* There must be no padding.  */
	if (maybe_ne (wi::to_poly_wide (TYPE_SIZE (type)),
		      count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	/* These aren't very interesting except in a degenerate case.  */
	int count = 0;
	int sub_count;
	tree field;

	/* Can't handle incomplete types nor sizes that are not
	   fixed.  */
	if (!COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
	  return -1;

	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  {
	    if (TREE_CODE (field) != FIELD_DECL)
	      continue;

	    sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep,
						 warn_psabi_flags);
	    if (sub_count < 0)
	      return -1;
	    count = count > sub_count ? count : sub_count;
	  }

	/* There must be no padding.  */
	if (maybe_ne (wi::to_poly_wide (TYPE_SIZE (type)),
		      count * GET_MODE_BITSIZE (*modep)))
	  return -1;

	return count;
      }

    default:
      break;
    }

  return -1;
}

/* Return TRUE if the type, as described by TYPE and MODE, is a short vector
   type as described in AAPCS64 \S 4.1.2.

   See the comment above aarch64_composite_type_p for the notes on MODE.  */

static bool
aarch64_short_vector_p (const_tree type,
			machine_mode mode)
{
  poly_int64 size = -1;

  if (type && TREE_CODE (type) == VECTOR_TYPE)
    {
      if (aarch64_sve::builtin_type_p (type))
	return false;
      size = int_size_in_bytes (type);
    }
  else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	   || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
    {
      /* The containing "else if" is too loose: it means that we look at TYPE
	 if the type is a vector type (good), but that we otherwise ignore TYPE
	 and look only at the mode.  This is wrong because the type describes
	 the language-level information whereas the mode is purely an internal
	 GCC concept.  We can therefore reach here for types that are not
	 vectors in the AAPCS64 sense.

	 We can't "fix" that for the traditional Advanced SIMD vector modes
	 without breaking backwards compatibility.  However, there's no such
	 baggage for the structure modes, which were introduced in GCC 12.  */
      if (aarch64_advsimd_struct_mode_p (mode))
	return false;

      /* For similar reasons, rely only on the type, not the mode, when
	 processing SVE types.  */
      if (type && aarch64_some_values_include_pst_objects_p (type))
	/* Leave later code to report an error if SVE is disabled.  */
	gcc_assert (!TARGET_SVE || aarch64_sve_mode_p (mode));
      else
	size = GET_MODE_SIZE (mode);
    }
  if (known_eq (size, 8) || known_eq (size, 16))
    {
      /* 64-bit and 128-bit vectors should only acquire an SVE mode if
	 they are being treated as scalable AAPCS64 types.  */
      gcc_assert (!aarch64_sve_mode_p (mode)
		  && !aarch64_advsimd_struct_mode_p (mode));
      return true;
    }
  return false;
}

/* Return TRUE if the type, as described by TYPE and MODE, is a composite
   type as described in AAPCS64 \S 4.3.  This includes aggregate, union and
   array types.  The C99 floating-point complex types are also considered
   as composite types, according to AAPCS64 \S 7.1.1.  The complex integer
   types, which are GCC extensions and out of the scope of AAPCS64, are
   treated as composite types here as well.

   Note that MODE itself is not sufficient in determining whether a type
   is such a composite type or not.  This is because
   stor-layout.cc:compute_record_mode may have already changed the MODE
   (BLKmode) of a RECORD_TYPE TYPE to some other mode.  For example, a
   structure with only one field may have its MODE set to the mode of the
   field.  Also an integer mode whose size matches the size of the
   RECORD_TYPE type may be used to substitute the original mode
   (i.e. BLKmode) in certain circumstances.  In other words, MODE cannot be
   solely relied on.  */

static bool
aarch64_composite_type_p (const_tree type,
			  machine_mode mode)
{
  if (aarch64_short_vector_p (type, mode))
    return false;

  if (type && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE))
    return true;

  if (mode == BLKmode
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
    return true;

  return false;
}

/* Return TRUE if an argument, whose type is described by TYPE and MODE,
   shall be passed or returned in simd/fp register(s) (providing these
   parameter passing registers are available).

   Upon successful return, *COUNT returns the number of needed registers,
   *BASE_MODE returns the mode of the individual register and when IS_HA
   is not NULL, *IS_HA indicates whether or not the argument is a homogeneous
   floating-point aggregate or a homogeneous short-vector aggregate.

   SILENT_P is true if the function should refrain from reporting any
   diagnostics.  This should only be used if the caller is certain that
   any ABI decisions would eventually come through this function with
   SILENT_P set to false.  */

static bool
aarch64_vfp_is_call_or_return_candidate (machine_mode mode,
					 const_tree type,
					 machine_mode *base_mode,
					 int *count,
					 bool *is_ha,
					 bool silent_p)
{
  if (is_ha != NULL) *is_ha = false;

  machine_mode new_mode = VOIDmode;
  bool composite_p = aarch64_composite_type_p (type, mode);

  if ((!composite_p
       && (GET_MODE_CLASS (mode) == MODE_FLOAT
	   || GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT))
      || aarch64_short_vector_p (type, mode))
    {
      *count = 1;
      new_mode = mode;
    }
  else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
      if (is_ha != NULL) *is_ha = true;
      *count = 2;
      new_mode = GET_MODE_INNER (mode);
    }
  else if (type && composite_p)
    {
      unsigned int warn_psabi_flags = 0;
      int ag_count = aapcs_vfp_sub_candidate (type, &new_mode,
					      &warn_psabi_flags);
      if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
	{
	  static unsigned last_reported_type_uid;
	  unsigned uid = TYPE_UID (TYPE_MAIN_VARIANT (type));
	  int alt;
	  if (!silent_p
	      && warn_psabi
	      && warn_psabi_flags
	      && uid != last_reported_type_uid
	      && ((alt = aapcs_vfp_sub_candidate (type, &new_mode, NULL))
		  != ag_count))
	    {
	      const char *url10
		= CHANGES_ROOT_URL "gcc-10/changes.html#empty_base";
	      const char *url12
		= CHANGES_ROOT_URL "gcc-12/changes.html#zero_width_bitfields";
	      gcc_assert (alt == -1);
	      last_reported_type_uid = uid;
	      /* Use TYPE_MAIN_VARIANT to strip any redundant const
		 qualification.  */
	      if (warn_psabi_flags & WARN_PSABI_NO_UNIQUE_ADDRESS)
		inform (input_location, "parameter passing for argument of "
			"type %qT with %<[[no_unique_address]]%> members "
			"changed %{in GCC 10.1%}",
			TYPE_MAIN_VARIANT (type), url10);
	      else if (warn_psabi_flags & WARN_PSABI_EMPTY_CXX17_BASE)
		inform (input_location, "parameter passing for argument of "
			"type %qT when C++17 is enabled changed to match "
			"C++14 %{in GCC 10.1%}",
			TYPE_MAIN_VARIANT (type), url10);
	      else if (warn_psabi_flags & WARN_PSABI_ZERO_WIDTH_BITFIELD)
		inform (input_location, "parameter passing for argument of "
			"type %qT changed %{in GCC 12.1%}",
			TYPE_MAIN_VARIANT (type), url12);
	    }

	  if (is_ha != NULL) *is_ha = true;
	  *count = ag_count;
	}
      else
	return false;
    }
  else
    return false;

  gcc_assert (!aarch64_sve_mode_p (new_mode));
  *base_mode = new_mode;
  return true;
}

/* Implement TARGET_STRUCT_VALUE_RTX.  */

static rtx
aarch64_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
			  int incoming ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (Pmode, AARCH64_STRUCT_VALUE_REGNUM);
}

/* Implements target hook vector_mode_supported_p.  */
static bool
aarch64_vector_mode_supported_p (machine_mode mode)
{
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  return vec_flags != 0 && (vec_flags & VEC_STRUCT) == 0;
}

/* Return the full-width SVE vector mode for element mode MODE, if one
   exists.  */
opt_machine_mode
aarch64_full_sve_mode (scalar_mode mode)
{
  switch (mode)
    {
    case E_DFmode:
      return VNx2DFmode;
    case E_SFmode:
      return VNx4SFmode;
    case E_HFmode:
      return VNx8HFmode;
    case E_BFmode:
      return VNx8BFmode;
    case E_DImode:
      return VNx2DImode;
    case E_SImode:
      return VNx4SImode;
    case E_HImode:
      return VNx8HImode;
    case E_QImode:
      return VNx16QImode;
    default:
      return opt_machine_mode ();
    }
}

/* Return the 128-bit Advanced SIMD vector mode for element mode MODE,
   if it exists.  */
opt_machine_mode
aarch64_vq_mode (scalar_mode mode)
{
  switch (mode)
    {
    case E_DFmode:
      return V2DFmode;
    case E_SFmode:
      return V4SFmode;
    case E_HFmode:
      return V8HFmode;
    case E_BFmode:
      return V8BFmode;
    case E_SImode:
      return V4SImode;
    case E_HImode:
      return V8HImode;
    case E_QImode:
      return V16QImode;
    case E_DImode:
      return V2DImode;
    default:
      return opt_machine_mode ();
    }
}

/* Return appropriate SIMD container
   for MODE within a vector of WIDTH bits.  */
static machine_mode
aarch64_simd_container_mode (scalar_mode mode, poly_int64 width)
{
  if (TARGET_SVE
      && maybe_ne (width, 128)
      && known_eq (width, BITS_PER_SVE_VECTOR))
    return aarch64_full_sve_mode (mode).else_mode (word_mode);

  gcc_assert (known_eq (width, 64) || known_eq (width, 128));
  if (TARGET_SIMD)
    {
      if (known_eq (width, 128))
	return aarch64_vq_mode (mode).else_mode (word_mode);
      else
	switch (mode)
	  {
	  case E_SFmode:
	    return V2SFmode;
	  case E_HFmode:
	    return V4HFmode;
	  case E_BFmode:
	    return V4BFmode;
	  case E_SImode:
	    return V2SImode;
	  case E_HImode:
	    return V4HImode;
	  case E_QImode:
	    return V8QImode;
	  default:
	    break;
	  }
    }
  return word_mode;
}

/* Compare an SVE mode SVE_M and an Advanced SIMD mode ASIMD_M
   and return whether the SVE mode should be preferred over the
   Advanced SIMD one in aarch64_autovectorize_vector_modes.  */
static bool
aarch64_cmp_autovec_modes (machine_mode sve_m, machine_mode asimd_m)
{
  /* Take into account the aarch64-autovec-preference param if non-zero.  */
  bool only_asimd_p = aarch64_autovec_preference == 1;
  bool only_sve_p = aarch64_autovec_preference == 2;

  if (only_asimd_p)
    return false;
  if (only_sve_p)
    return true;

  /* The preference in case of a tie in costs.  */
  bool prefer_asimd = aarch64_autovec_preference == 3;
  bool prefer_sve = aarch64_autovec_preference == 4;

  poly_int64 nunits_sve = GET_MODE_NUNITS (sve_m);
  poly_int64 nunits_asimd = GET_MODE_NUNITS (asimd_m);
  /* If the CPU information does not have an SVE width registered use the
     generic poly_int comparison that prefers SVE.  If a preference is
     explicitly requested avoid this path.  */
  if (aarch64_tune_params.sve_width == SVE_SCALABLE
      && !prefer_asimd
      && !prefer_sve)
    return maybe_gt (nunits_sve, nunits_asimd);

  /* Otherwise estimate the runtime width of the modes involved.  */
  HOST_WIDE_INT est_sve = estimated_poly_value (nunits_sve);
  HOST_WIDE_INT est_asimd = estimated_poly_value (nunits_asimd);

  /* Preferring SVE means picking it first unless the Advanced SIMD mode
     is clearly wider.  */
  if (prefer_sve)
    return est_sve >= est_asimd;
  /* Conversely, preferring Advanced SIMD means picking SVE only if SVE
     is clearly wider.  */
  if (prefer_asimd)
    return est_sve > est_asimd;

  /* In the default case prefer Advanced SIMD over SVE in case of a tie.  */
  return est_sve > est_asimd;
}

/* Return 128-bit container as the preferred SIMD mode for MODE.  */
static machine_mode
aarch64_preferred_simd_mode (scalar_mode mode)
{
  /* Take into account explicit auto-vectorization ISA preferences through
     aarch64_cmp_autovec_modes.  */
  if (TARGET_SVE && aarch64_cmp_autovec_modes (VNx16QImode, V16QImode))
    return aarch64_full_sve_mode (mode).else_mode (word_mode);
  if (TARGET_SIMD)
    return aarch64_vq_mode (mode).else_mode (word_mode);
  return word_mode;
}

/* Return a list of possible vector sizes for the vectorizer
   to iterate over.  */
static unsigned int
aarch64_autovectorize_vector_modes (vector_modes *modes, bool)
{
  static const machine_mode sve_modes[] = {
    /* Try using full vectors for all element types.  */
    VNx16QImode,

    /* Try using 16-bit containers for 8-bit elements and full vectors
       for wider elements.  */
    VNx8QImode,

    /* Try using 32-bit containers for 8-bit and 16-bit elements and
       full vectors for wider elements.  */
    VNx4QImode,

    /* Try using 64-bit containers for all element types.  */
    VNx2QImode
  };

  static const machine_mode advsimd_modes[] = {
    /* Try using 128-bit vectors for all element types.  */
    V16QImode,

    /* Try using 64-bit vectors for 8-bit elements and 128-bit vectors
       for wider elements.  */
    V8QImode,

    /* Try using 64-bit vectors for 16-bit elements and 128-bit vectors
       for wider elements.

       TODO: We could support a limited form of V4QImode too, so that
       we use 32-bit vectors for 8-bit elements.  */
    V4HImode,

    /* Try using 64-bit vectors for 32-bit elements and 128-bit vectors
       for 64-bit elements.

       TODO: We could similarly support limited forms of V2QImode and V2HImode
       for this case.  */
    V2SImode
  };

  /* Try using N-byte SVE modes only after trying N-byte Advanced SIMD mode.
     This is because:

     - If we can't use N-byte Advanced SIMD vectors then the placement
       doesn't matter; we'll just continue as though the Advanced SIMD
       entry didn't exist.

     - If an SVE main loop with N bytes ends up being cheaper than an
       Advanced SIMD main loop with N bytes then by default we'll replace
       the Advanced SIMD version with the SVE one.

     - If an Advanced SIMD main loop with N bytes ends up being cheaper
       than an SVE main loop with N bytes then by default we'll try to
       use the SVE loop to vectorize the epilogue instead.  */

  bool only_asimd_p = aarch64_autovec_preference == 1;
  bool only_sve_p = aarch64_autovec_preference == 2;

  unsigned int sve_i = (TARGET_SVE && !only_asimd_p) ? 0 : ARRAY_SIZE (sve_modes);
  unsigned int advsimd_i = 0;

  while (!only_sve_p && advsimd_i < ARRAY_SIZE (advsimd_modes))
    {
      if (sve_i < ARRAY_SIZE (sve_modes)
	  && aarch64_cmp_autovec_modes (sve_modes[sve_i],
					advsimd_modes[advsimd_i]))
	modes->safe_push (sve_modes[sve_i++]);
      else
	modes->safe_push (advsimd_modes[advsimd_i++]);
    }
  while (sve_i < ARRAY_SIZE (sve_modes))
   modes->safe_push (sve_modes[sve_i++]);

  unsigned int flags = 0;
  /* Consider enabling VECT_COMPARE_COSTS for SVE, both so that we
     can compare SVE against Advanced SIMD and so that we can compare
     multiple SVE vectorization approaches against each other.  There's
     not really any point doing this for Advanced SIMD only, since the
     first mode that works should always be the best.  */
  if (TARGET_SVE && aarch64_sve_compare_costs)
    flags |= VECT_COMPARE_COSTS;
  return flags;
}

/* Implement TARGET_MANGLE_TYPE.  */

static const char *
aarch64_mangle_type (const_tree type)
{
  /* The AArch64 ABI documents say that "__va_list" has to be
     mangled as if it is in the "std" namespace.  */
  if (lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type))
    return "St9__va_list";

  /* Half-precision floating point types.  */
  if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16)
    {
      if (TYPE_MAIN_VARIANT (type) == float16_type_node)
	return NULL;
      if (TYPE_MODE (type) == BFmode)
	return "u6__bf16";
      else
	return "Dh";
    }

  /* Mangle AArch64-specific internal types.  TYPE_NAME is non-NULL_TREE for
     builtin types.  */
  if (TYPE_NAME (type) != NULL)
    {
      const char *res;
      if ((res = aarch64_general_mangle_builtin_type (type))
	  || (res = aarch64_sve::mangle_builtin_type (type)))
	return res;
    }

  /* Use the default mangling.  */
  return NULL;
}

/* Implement TARGET_VERIFY_TYPE_CONTEXT.  */

static bool
aarch64_verify_type_context (location_t loc, type_context_kind context,
			     const_tree type, bool silent_p)
{
  return aarch64_sve::verify_type_context (loc, context, type, silent_p);
}

/* Find the first rtx_insn before insn that will generate an assembly
   instruction.  */

static rtx_insn *
aarch64_prev_real_insn (rtx_insn *insn)
{
  if (!insn)
    return NULL;

  do
    {
      insn = prev_real_insn (insn);
    }
  while (insn && recog_memoized (insn) < 0);

  return insn;
}

static bool
is_madd_op (enum attr_type t1)
{
  unsigned int i;
  /* A number of these may be AArch32 only.  */
  enum attr_type mlatypes[] = {
    TYPE_MLA, TYPE_MLAS, TYPE_SMLAD, TYPE_SMLADX, TYPE_SMLAL, TYPE_SMLALD,
    TYPE_SMLALS, TYPE_SMLALXY, TYPE_SMLAWX, TYPE_SMLAWY, TYPE_SMLAXY,
    TYPE_SMMLA, TYPE_UMLAL, TYPE_UMLALS,TYPE_SMLSD, TYPE_SMLSDX, TYPE_SMLSLD
  };

  for (i = 0; i < ARRAY_SIZE (mlatypes); i++)
    {
      if (t1 == mlatypes[i])
	return true;
    }

  return false;
}

/* Check if there is a register dependency between a load and the insn
   for which we hold recog_data.  */

static bool
dep_between_memop_and_curr (rtx memop)
{
  rtx load_reg;
  int opno;

  gcc_assert (GET_CODE (memop) == SET);

  if (!REG_P (SET_DEST (memop)))
    return false;

  load_reg = SET_DEST (memop);
  for (opno = 1; opno < recog_data.n_operands; opno++)
    {
      rtx operand = recog_data.operand[opno];
      if (REG_P (operand)
          && reg_overlap_mentioned_p (load_reg, operand))
        return true;

    }
  return false;
}


/* When working around the Cortex-A53 erratum 835769,
   given rtx_insn INSN, return true if it is a 64-bit multiply-accumulate
   instruction and has a preceding memory instruction such that a NOP
   should be inserted between them.  */

bool
aarch64_madd_needs_nop (rtx_insn* insn)
{
  enum attr_type attr_type;
  rtx_insn *prev;
  rtx body;

  if (!TARGET_FIX_ERR_A53_835769)
    return false;

  if (!INSN_P (insn) || recog_memoized (insn) < 0)
    return false;

  attr_type = get_attr_type (insn);
  if (!is_madd_op (attr_type))
    return false;

  prev = aarch64_prev_real_insn (insn);
  /* aarch64_prev_real_insn can call recog_memoized on insns other than INSN.
     Restore recog state to INSN to avoid state corruption.  */
  extract_constrain_insn_cached (insn);

  if (!prev || !contains_mem_rtx_p (PATTERN (prev)))
    return false;

  body = single_set (prev);

  /* If the previous insn is a memory op and there is no dependency between
     it and the DImode madd, emit a NOP between them.  If body is NULL then we
     have a complex memory operation, probably a load/store pair.
     Be conservative for now and emit a NOP.  */
  if (GET_MODE (recog_data.operand[0]) == DImode
      && (!body || !dep_between_memop_and_curr (body)))
    return true;

  return false;

}


/* Implement FINAL_PRESCAN_INSN.  */

void
aarch64_final_prescan_insn (rtx_insn *insn)
{
  if (aarch64_madd_needs_nop (insn))
    fprintf (asm_out_file, "\tnop // between mem op and mult-accumulate\n");
}


/* Return true if BASE_OR_STEP is a valid immediate operand for an SVE INDEX
   instruction.  */

bool
aarch64_sve_index_immediate_p (rtx base_or_step)
{
  return (CONST_INT_P (base_or_step)
	  && IN_RANGE (INTVAL (base_or_step), -16, 15));
}

/* Return true if X is a valid immediate for the SVE ADD and SUB instructions
   when applied to mode MODE.  Negate X first if NEGATE_P is true.  */

bool
aarch64_sve_arith_immediate_p (machine_mode mode, rtx x, bool negate_p)
{
  rtx elt = unwrap_const_vec_duplicate (x);
  if (!CONST_INT_P (elt))
    return false;

  HOST_WIDE_INT val = INTVAL (elt);
  if (negate_p)
    val = -val;
  val &= GET_MODE_MASK (GET_MODE_INNER (mode));

  if (val & 0xff)
    return IN_RANGE (val, 0, 0xff);
  return IN_RANGE (val, 0, 0xff00);
}

/* Return true if X is a valid immediate for the SVE SQADD and SQSUB
   instructions when applied to mode MODE.  Negate X first if NEGATE_P
   is true.  */

bool
aarch64_sve_sqadd_sqsub_immediate_p (machine_mode mode, rtx x, bool negate_p)
{
  if (!aarch64_sve_arith_immediate_p (mode, x, negate_p))
    return false;

  /* After the optional negation, the immediate must be nonnegative.
     E.g. a saturating add of -127 must be done via SQSUB Zn.B, Zn.B, #127
     instead of SQADD Zn.B, Zn.B, #129.  */
  rtx elt = unwrap_const_vec_duplicate (x);
  return negate_p == (INTVAL (elt) < 0);
}

/* Return true if X is a valid immediate operand for an SVE logical
   instruction such as AND.  */

bool
aarch64_sve_bitmask_immediate_p (rtx x)
{
  rtx elt;

  return (const_vec_duplicate_p (x, &elt)
	  && CONST_INT_P (elt)
	  && aarch64_bitmask_imm (INTVAL (elt),
				  GET_MODE_INNER (GET_MODE (x))));
}

/* Return true if X is a valid immediate for the SVE DUP and CPY
   instructions.  */

bool
aarch64_sve_dup_immediate_p (rtx x)
{
  x = aarch64_bit_representation (unwrap_const_vec_duplicate (x));
  if (!CONST_INT_P (x))
    return false;

  HOST_WIDE_INT val = INTVAL (x);
  if (val & 0xff)
    return IN_RANGE (val, -0x80, 0x7f);
  return IN_RANGE (val, -0x8000, 0x7f00);
}

/* Return true if X is a valid immediate operand for an SVE CMP instruction.
   SIGNED_P says whether the operand is signed rather than unsigned.  */

bool
aarch64_sve_cmp_immediate_p (rtx x, bool signed_p)
{
  x = unwrap_const_vec_duplicate (x);
  return (CONST_INT_P (x)
	  && (signed_p
	      ? IN_RANGE (INTVAL (x), -16, 15)
	      : IN_RANGE (INTVAL (x), 0, 127)));
}

/* Return true if X is a valid immediate operand for an SVE FADD or FSUB
   instruction.  Negate X first if NEGATE_P is true.  */

bool
aarch64_sve_float_arith_immediate_p (rtx x, bool negate_p)
{
  rtx elt;
  REAL_VALUE_TYPE r;

  if (!const_vec_duplicate_p (x, &elt)
      || !CONST_DOUBLE_P (elt))
    return false;

  r = *CONST_DOUBLE_REAL_VALUE (elt);

  if (negate_p)
    r = real_value_negate (&r);

  if (real_equal (&r, &dconst1))
    return true;
  if (real_equal (&r, &dconsthalf))
    return true;
  return false;
}

/* Return true if X is a valid immediate operand for an SVE FMUL
   instruction.  */

bool
aarch64_sve_float_mul_immediate_p (rtx x)
{
  rtx elt;

  return (const_vec_duplicate_p (x, &elt)
	  && CONST_DOUBLE_P (elt)
	  && (real_equal (CONST_DOUBLE_REAL_VALUE (elt), &dconsthalf)
	      || real_equal (CONST_DOUBLE_REAL_VALUE (elt), &dconst2)));
}

/* Return true if replicating VAL32 is a valid 2-byte or 4-byte immediate
   for the Advanced SIMD operation described by WHICH and INSN.  If INFO
   is nonnull, use it to describe valid immediates.  */
static bool
aarch64_advsimd_valid_immediate_hs (unsigned int val32,
				    simd_immediate_info *info,
				    enum simd_immediate_check which,
				    simd_immediate_info::insn_type insn)
{
  /* Try a 4-byte immediate with LSL.  */
  for (unsigned int shift = 0; shift < 32; shift += 8)
    if ((val32 & (0xff << shift)) == val32)
      {
	if (info)
	  *info = simd_immediate_info (SImode, val32 >> shift, insn,
				       simd_immediate_info::LSL, shift);
	return true;
      }

  /* Try a 2-byte immediate with LSL.  */
  unsigned int imm16 = val32 & 0xffff;
  if (imm16 == (val32 >> 16))
    for (unsigned int shift = 0; shift < 16; shift += 8)
      if ((imm16 & (0xff << shift)) == imm16)
	{
	  if (info)
	    *info = simd_immediate_info (HImode, imm16 >> shift, insn,
					 simd_immediate_info::LSL, shift);
	  return true;
	}

  /* Try a 4-byte immediate with MSL, except for cases that MVN
     can handle.  */
  if (which == AARCH64_CHECK_MOV)
    for (unsigned int shift = 8; shift < 24; shift += 8)
      {
	unsigned int low = (1 << shift) - 1;
	if (((val32 & (0xff << shift)) | low) == val32)
	  {
	    if (info)
	      *info = simd_immediate_info (SImode, val32 >> shift, insn,
					   simd_immediate_info::MSL, shift);
	    return true;
	  }
      }

  return false;
}

/* Return true if replicating VAL64 is a valid immediate for the
   Advanced SIMD operation described by WHICH.  If INFO is nonnull,
   use it to describe valid immediates.  */
static bool
aarch64_advsimd_valid_immediate (unsigned HOST_WIDE_INT val64,
				 simd_immediate_info *info,
				 enum simd_immediate_check which)
{
  unsigned int val32 = val64 & 0xffffffff;
  unsigned int val16 = val64 & 0xffff;
  unsigned int val8 = val64 & 0xff;

  if (val32 == (val64 >> 32))
    {
      if ((which & AARCH64_CHECK_ORR) != 0
	  && aarch64_advsimd_valid_immediate_hs (val32, info, which,
						 simd_immediate_info::MOV))
	return true;

      if ((which & AARCH64_CHECK_BIC) != 0
	  && aarch64_advsimd_valid_immediate_hs (~val32, info, which,
						 simd_immediate_info::MVN))
	return true;

      /* Try using a replicated byte.  */
      if (which == AARCH64_CHECK_MOV
	  && val16 == (val32 >> 16)
	  && val8 == (val16 >> 8))
	{
	  if (info)
	    *info = simd_immediate_info (QImode, val8);
	  return true;
	}
    }

  /* Try using a bit-to-bytemask.  */
  if (which == AARCH64_CHECK_MOV)
    {
      unsigned int i;
      for (i = 0; i < 64; i += 8)
	{
	  unsigned char byte = (val64 >> i) & 0xff;
	  if (byte != 0 && byte != 0xff)
	    break;
	}
      if (i == 64)
	{
	  if (info)
	    *info = simd_immediate_info (DImode, val64);
	  return true;
	}
    }
  return false;
}

/* Return true if replicating VAL64 gives a valid immediate for an SVE MOV
   instruction.  If INFO is nonnull, use it to describe valid immediates.  */

static bool
aarch64_sve_valid_immediate (unsigned HOST_WIDE_INT val64,
			     simd_immediate_info *info)
{
  scalar_int_mode mode = DImode;
  unsigned int val32 = val64 & 0xffffffff;
  if (val32 == (val64 >> 32))
    {
      mode = SImode;
      unsigned int val16 = val32 & 0xffff;
      if (val16 == (val32 >> 16))
	{
	  mode = HImode;
	  unsigned int val8 = val16 & 0xff;
	  if (val8 == (val16 >> 8))
	    mode = QImode;
	}
    }
  HOST_WIDE_INT val = trunc_int_for_mode (val64, mode);
  if (IN_RANGE (val, -0x80, 0x7f))
    {
      /* DUP with no shift.  */
      if (info)
	*info = simd_immediate_info (mode, val);
      return true;
    }
  if ((val & 0xff) == 0 && IN_RANGE (val, -0x8000, 0x7f00))
    {
      /* DUP with LSL #8.  */
      if (info)
	*info = simd_immediate_info (mode, val);
      return true;
    }
  if (aarch64_bitmask_imm (val64, mode))
    {
      /* DUPM.  */
      if (info)
	*info = simd_immediate_info (mode, val);
      return true;
    }
  return false;
}

/* Return true if X is an UNSPEC_PTRUE constant of the form:

       (const (unspec [PATTERN ZERO] UNSPEC_PTRUE))

   where PATTERN is the svpattern as a CONST_INT and where ZERO
   is a zero constant of the required PTRUE mode (which can have
   fewer elements than X's mode, if zero bits are significant).

   If so, and if INFO is nonnull, describe the immediate in INFO.  */
bool
aarch64_sve_ptrue_svpattern_p (rtx x, struct simd_immediate_info *info)
{
  if (GET_CODE (x) != CONST)
    return false;

  x = XEXP (x, 0);
  if (GET_CODE (x) != UNSPEC || XINT (x, 1) != UNSPEC_PTRUE)
    return false;

  if (info)
    {
      aarch64_svpattern pattern
	= (aarch64_svpattern) INTVAL (XVECEXP (x, 0, 0));
      machine_mode pred_mode = GET_MODE (XVECEXP (x, 0, 1));
      scalar_int_mode int_mode = aarch64_sve_element_int_mode (pred_mode);
      *info = simd_immediate_info (int_mode, pattern);
    }
  return true;
}

/* Return true if X is a valid SVE predicate.  If INFO is nonnull, use
   it to describe valid immediates.  */

static bool
aarch64_sve_pred_valid_immediate (rtx x, simd_immediate_info *info)
{
  if (aarch64_sve_ptrue_svpattern_p (x, info))
    return true;

  if (x == CONST0_RTX (GET_MODE (x)))
    {
      if (info)
	*info = simd_immediate_info (DImode, 0);
      return true;
    }

  /* Analyze the value as a VNx16BImode.  This should be relatively
     efficient, since rtx_vector_builder has enough built-in capacity
     to store all VLA predicate constants without needing the heap.  */
  rtx_vector_builder builder;
  if (!aarch64_get_sve_pred_bits (builder, x))
    return false;

  unsigned int elt_size = aarch64_widest_sve_pred_elt_size (builder);
  if (int vl = aarch64_partial_ptrue_length (builder, elt_size))
    {
      machine_mode mode = aarch64_sve_pred_mode (elt_size).require ();
      aarch64_svpattern pattern = aarch64_svpattern_for_vl (mode, vl);
      if (pattern != AARCH64_NUM_SVPATTERNS)
	{
	  if (info)
	    {
	      scalar_int_mode int_mode = aarch64_sve_element_int_mode (mode);
	      *info = simd_immediate_info (int_mode, pattern);
	    }
	  return true;
	}
    }
  return false;
}

/* Return true if OP is a valid SIMD immediate for the operation
   described by WHICH.  If INFO is nonnull, use it to describe valid
   immediates.  */
bool
aarch64_simd_valid_immediate (rtx op, simd_immediate_info *info,
			      enum simd_immediate_check which)
{
  machine_mode mode = GET_MODE (op);
  unsigned int vec_flags = aarch64_classify_vector_mode (mode);
  if (vec_flags == 0 || vec_flags == (VEC_ADVSIMD | VEC_STRUCT))
    return false;

  if ((vec_flags & VEC_ADVSIMD) && !TARGET_SIMD)
    return false;

  if (vec_flags & VEC_SVE_PRED)
    return aarch64_sve_pred_valid_immediate (op, info);

  scalar_mode elt_mode = GET_MODE_INNER (mode);
  rtx base, step;
  unsigned int n_elts;
  if (CONST_VECTOR_P (op)
      && CONST_VECTOR_DUPLICATE_P (op))
    n_elts = CONST_VECTOR_NPATTERNS (op);
  else if ((vec_flags & VEC_SVE_DATA)
	   && const_vec_series_p (op, &base, &step))
    {
      gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
      if (!aarch64_sve_index_immediate_p (base)
	  || !aarch64_sve_index_immediate_p (step))
	return false;

      if (info)
	{
	  /* Get the corresponding container mode.  E.g. an INDEX on V2SI
	     should yield two integer values per 128-bit block, meaning
	     that we need to treat it in the same way as V2DI and then
	     ignore the upper 32 bits of each element.  */
	  elt_mode = aarch64_sve_container_int_mode (mode);
	  *info = simd_immediate_info (elt_mode, base, step);
	}
      return true;
    }
  else if (CONST_VECTOR_P (op)
	   && CONST_VECTOR_NUNITS (op).is_constant (&n_elts))
    /* N_ELTS set above.  */;
  else
    return false;

  scalar_float_mode elt_float_mode;
  if (n_elts == 1
      && is_a <scalar_float_mode> (elt_mode, &elt_float_mode))
    {
      rtx elt = CONST_VECTOR_ENCODED_ELT (op, 0);
      if (aarch64_float_const_zero_rtx_p (elt)
	  || aarch64_float_const_representable_p (elt))
	{
	  if (info)
	    *info = simd_immediate_info (elt_float_mode, elt);
	  return true;
	}
    }

  /* If all elements in an SVE vector have the same value, we have a free
     choice between using the element mode and using the container mode.
     Using the element mode means that unused parts of the vector are
     duplicates of the used elements, while using the container mode means
     that the unused parts are an extension of the used elements.  Using the
     element mode is better for (say) VNx4HI 0x101, since 0x01010101 is valid
     for its container mode VNx4SI while 0x00000101 isn't.

     If not all elements in an SVE vector have the same value, we need the
     transition from one element to the next to occur at container boundaries.
     E.g. a fixed-length VNx4HI containing { 1, 2, 3, 4 } should be treated
     in the same way as a VNx4SI containing { 1, 2, 3, 4 }.  */
  scalar_int_mode elt_int_mode;
  if ((vec_flags & VEC_SVE_DATA) && n_elts > 1)
    elt_int_mode = aarch64_sve_container_int_mode (mode);
  else
    elt_int_mode = int_mode_for_mode (elt_mode).require ();

  unsigned int elt_size = GET_MODE_SIZE (elt_int_mode);
  if (elt_size > 8)
    return false;

  /* Expand the vector constant out into a byte vector, with the least
     significant byte of the register first.  */
  auto_vec<unsigned char, 16> bytes;
  bytes.reserve (n_elts * elt_size);
  for (unsigned int i = 0; i < n_elts; i++)
    {
      /* The vector is provided in gcc endian-neutral fashion.
	 For aarch64_be Advanced SIMD, it must be laid out in the vector
	 register in reverse order.  */
      bool swap_p = ((vec_flags & VEC_ADVSIMD) != 0 && BYTES_BIG_ENDIAN);
      rtx elt = CONST_VECTOR_ELT (op, swap_p ? (n_elts - 1 - i) : i);

      if (elt_mode != elt_int_mode)
	elt = gen_lowpart (elt_int_mode, elt);

      if (!CONST_INT_P (elt))
	return false;

      unsigned HOST_WIDE_INT elt_val = INTVAL (elt);
      for (unsigned int byte = 0; byte < elt_size; byte++)
	{
	  bytes.quick_push (elt_val & 0xff);
	  elt_val >>= BITS_PER_UNIT;
	}
    }

  /* The immediate must repeat every eight bytes.  */
  unsigned int nbytes = bytes.length ();
  for (unsigned i = 8; i < nbytes; ++i)
    if (bytes[i] != bytes[i - 8])
      return false;

  /* Get the repeating 8-byte value as an integer.  No endian correction
     is needed here because bytes is already in lsb-first order.  */
  unsigned HOST_WIDE_INT val64 = 0;
  for (unsigned int i = 0; i < 8; i++)
    val64 |= ((unsigned HOST_WIDE_INT) bytes[i % nbytes]
	      << (i * BITS_PER_UNIT));

  if (vec_flags & VEC_SVE_DATA)
    return aarch64_sve_valid_immediate (val64, info);
  else
    return aarch64_advsimd_valid_immediate (val64, info, which);
}

/* Check whether X is a VEC_SERIES-like constant that starts at 0 and
   has a step in the range of INDEX.  Return the index expression if so,
   otherwise return null.  */
rtx
aarch64_check_zero_based_sve_index_immediate (rtx x)
{
  rtx base, step;
  if (const_vec_series_p (x, &base, &step)
      && base == const0_rtx
      && aarch64_sve_index_immediate_p (step))
    return step;
  return NULL_RTX;
}

/* Check of immediate shift constants are within range.  */
bool
aarch64_simd_shift_imm_p (rtx x, machine_mode mode, bool left)
{
  x = unwrap_const_vec_duplicate (x);
  if (!CONST_INT_P (x))
    return false;
  int bit_width = GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT;
  if (left)
    return IN_RANGE (INTVAL (x), 0, bit_width - 1);
  else
    return IN_RANGE (INTVAL (x), 1, bit_width);
}

/* Return the bitmask CONST_INT to select the bits required by a zero extract
   operation of width WIDTH at bit position POS.  */

rtx
aarch64_mask_from_zextract_ops (rtx width, rtx pos)
{
  gcc_assert (CONST_INT_P (width));
  gcc_assert (CONST_INT_P (pos));

  unsigned HOST_WIDE_INT mask
    = ((unsigned HOST_WIDE_INT) 1 << UINTVAL (width)) - 1;
  return GEN_INT (mask << UINTVAL (pos));
}

bool
aarch64_mov_operand_p (rtx x, machine_mode mode)
{
  if (GET_CODE (x) == HIGH
      && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
    return true;

  if (CONST_INT_P (x))
    return true;

  if (VECTOR_MODE_P (GET_MODE (x)))
    {
      /* Require predicate constants to be VNx16BI before RA, so that we
	 force everything to have a canonical form.  */
      if (!lra_in_progress
	  && !reload_completed
	  && GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_BOOL
	  && GET_MODE (x) != VNx16BImode)
	return false;

      return aarch64_simd_valid_immediate (x, NULL);
    }

  /* Remove UNSPEC_SALT_ADDR before checking symbol reference.  */
  x = strip_salt (x);

  /* GOT accesses are valid moves.  */
  if (SYMBOL_REF_P (x)
      && aarch64_classify_symbolic_expression (x) == SYMBOL_SMALL_GOT_4G)
    return true;

  if (SYMBOL_REF_P (x) && mode == DImode && CONSTANT_ADDRESS_P (x))
    return true;

  if (TARGET_SVE && aarch64_sve_cnt_immediate_p (x))
    return true;

  return aarch64_classify_symbolic_expression (x)
    == SYMBOL_TINY_ABSOLUTE;
}

/* Create a 0 constant that is based on V4SI to allow CSE to optimally share
   the constant creation.  */

rtx
aarch64_gen_shareable_zero (machine_mode mode)
{
  machine_mode zmode = V4SImode;
  rtx tmp = gen_reg_rtx (zmode);
  emit_move_insn (tmp, CONST0_RTX (zmode));
  return lowpart_subreg (mode, tmp, zmode);
}

/* Return a const_int vector of VAL.  */
rtx
aarch64_simd_gen_const_vector_dup (machine_mode mode, HOST_WIDE_INT val)
{
  rtx c = gen_int_mode (val, GET_MODE_INNER (mode));
  return gen_const_vec_duplicate (mode, c);
}

/* Check OP is a legal scalar immediate for the MOVI instruction.  */

bool
aarch64_simd_scalar_immediate_valid_for_move (rtx op, scalar_int_mode mode)
{
  machine_mode vmode;

  vmode = aarch64_simd_container_mode (mode, 64);
  rtx op_v = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (op));
  return aarch64_simd_valid_immediate (op_v, NULL);
}

/* Construct and return a PARALLEL RTX vector with elements numbering the
   lanes of either the high (HIGH == TRUE) or low (HIGH == FALSE) half of
   the vector - from the perspective of the architecture.  This does not
   line up with GCC's perspective on lane numbers, so we end up with
   different masks depending on our target endian-ness.  The diagram
   below may help.  We must draw the distinction when building masks
   which select one half of the vector.  An instruction selecting
   architectural low-lanes for a big-endian target, must be described using
   a mask selecting GCC high-lanes.

                 Big-Endian             Little-Endian

GCC             0   1   2   3           3   2   1   0
              | x | x | x | x |       | x | x | x | x |
Architecture    3   2   1   0           3   2   1   0

Low Mask:         { 2, 3 }                { 0, 1 }
High Mask:        { 0, 1 }                { 2, 3 }

   MODE Is the mode of the vector and NUNITS is the number of units in it.  */

rtx
aarch64_simd_vect_par_cnst_half (machine_mode mode, int nunits, bool high)
{
  rtvec v = rtvec_alloc (nunits / 2);
  int high_base = nunits / 2;
  int low_base = 0;
  int base;
  rtx t1;
  int i;

  if (BYTES_BIG_ENDIAN)
    base = high ? low_base : high_base;
  else
    base = high ? high_base : low_base;

  for (i = 0; i < nunits / 2; i++)
    RTVEC_ELT (v, i) = GEN_INT (base + i);

  t1 = gen_rtx_PARALLEL (mode, v);
  return t1;
}

/* Check OP for validity as a PARALLEL RTX vector with elements
   numbering the lanes of either the high (HIGH == TRUE) or low lanes,
   from the perspective of the architecture.  See the diagram above
   aarch64_simd_vect_par_cnst_half for more details.  */

bool
aarch64_simd_check_vect_par_cnst_half (rtx op, machine_mode mode,
				       bool high)
{
  int nelts;
  if (!VECTOR_MODE_P (mode) || !GET_MODE_NUNITS (mode).is_constant (&nelts))
    return false;

  rtx ideal = aarch64_simd_vect_par_cnst_half (mode, nelts, high);
  HOST_WIDE_INT count_op = XVECLEN (op, 0);
  HOST_WIDE_INT count_ideal = XVECLEN (ideal, 0);
  int i = 0;

  if (count_op != count_ideal)
    return false;

  for (i = 0; i < count_ideal; i++)
    {
      rtx elt_op = XVECEXP (op, 0, i);
      rtx elt_ideal = XVECEXP (ideal, 0, i);

      if (!CONST_INT_P (elt_op)
	  || INTVAL (elt_ideal) != INTVAL (elt_op))
	return false;
    }
  return true;
}

/* Return a PARALLEL containing NELTS elements, with element I equal
   to BASE + I * STEP.  */

rtx
aarch64_gen_stepped_int_parallel (unsigned int nelts, int base, int step)
{
  rtvec vec = rtvec_alloc (nelts);
  for (unsigned int i = 0; i < nelts; ++i)
    RTVEC_ELT (vec, i) = gen_int_mode (base + i * step, DImode);
  return gen_rtx_PARALLEL (VOIDmode, vec);
}

/* Return true if OP is a PARALLEL of CONST_INTs that form a linear
   series with step STEP.  */

bool
aarch64_stepped_int_parallel_p (rtx op, int step)
{
  if (GET_CODE (op) != PARALLEL || !CONST_INT_P (XVECEXP (op, 0, 0)))
    return false;

  unsigned HOST_WIDE_INT base = UINTVAL (XVECEXP (op, 0, 0));
  for (int i = 1; i < XVECLEN (op, 0); ++i)
    if (!CONST_INT_P (XVECEXP (op, 0, i))
	|| UINTVAL (XVECEXP (op, 0, i)) != base + i * step)
      return false;

  return true;
}

/* Bounds-check lanes.  Ensure OPERAND lies between LOW (inclusive) and
   HIGH (exclusive).  */
void
aarch64_simd_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high,
			  const_tree exp)
{
  HOST_WIDE_INT lane;
  gcc_assert (CONST_INT_P (operand));
  lane = INTVAL (operand);

  if (lane < low || lane >= high)
  {
    if (exp)
      error_at (EXPR_LOCATION (exp), "lane %wd out of range %wd - %wd",
		lane, low, high - 1);
    else
      error ("lane %wd out of range %wd - %wd", lane, low, high - 1);
  }
}

/* Peform endian correction on lane number N, which indexes a vector
   of mode MODE, and return the result as an SImode rtx.  */

rtx
aarch64_endian_lane_rtx (machine_mode mode, unsigned int n)
{
  return gen_int_mode (ENDIAN_LANE_N (GET_MODE_NUNITS (mode), n), SImode);
}

/* Return TRUE if OP is a valid vector addressing mode.  */

bool
aarch64_simd_mem_operand_p (rtx op)
{
  return MEM_P (op) && (GET_CODE (XEXP (op, 0)) == POST_INC
			|| REG_P (XEXP (op, 0)));
}

/* Return true if OP is a valid MEM operand for an SVE LD1R instruction.  */

bool
aarch64_sve_ld1r_operand_p (rtx op)
{
  struct aarch64_address_info addr;
  scalar_mode mode;

  return (MEM_P (op)
	  && is_a <scalar_mode> (GET_MODE (op), &mode)
	  && aarch64_classify_address (&addr, XEXP (op, 0), mode, false)
	  && addr.type == ADDRESS_REG_IMM
	  && offset_6bit_unsigned_scaled_p (mode, addr.const_offset));
}

/* Return true if OP is a valid MEM operand for an SVE LD1R{Q,O} instruction
   where the size of the read data is specified by `mode` and the size of the
   vector elements are specified by `elem_mode`.   */
bool
aarch64_sve_ld1rq_ld1ro_operand_p (rtx op, machine_mode mode,
				   scalar_mode elem_mode)
{
  struct aarch64_address_info addr;
  if (!MEM_P (op)
      || !aarch64_classify_address (&addr, XEXP (op, 0), elem_mode, false))
    return false;

  if (addr.type == ADDRESS_REG_IMM)
    return offset_4bit_signed_scaled_p (mode, addr.const_offset);

  if (addr.type == ADDRESS_REG_REG)
    return (1U << addr.shift) == GET_MODE_SIZE (elem_mode);

  return false;
}

/* Return true if OP is a valid MEM operand for an SVE LD1RQ instruction.  */
bool
aarch64_sve_ld1rq_operand_p (rtx op)
{
  return aarch64_sve_ld1rq_ld1ro_operand_p (op, TImode,
					    GET_MODE_INNER (GET_MODE (op)));
}

/* Return true if OP is a valid MEM operand for an SVE LD1RO instruction for
   accessing a vector where the element size is specified by `elem_mode`.  */
bool
aarch64_sve_ld1ro_operand_p (rtx op, scalar_mode elem_mode)
{
  return aarch64_sve_ld1rq_ld1ro_operand_p (op, OImode, elem_mode);
}

/* Return true if OP is a valid MEM operand for an SVE LDFF1 instruction.  */
bool
aarch64_sve_ldff1_operand_p (rtx op)
{
  if (!MEM_P (op))
    return false;

  struct aarch64_address_info addr;
  if (!aarch64_classify_address (&addr, XEXP (op, 0), GET_MODE (op), false))
    return false;

  if (addr.type == ADDRESS_REG_IMM)
    return known_eq (addr.const_offset, 0);

  return addr.type == ADDRESS_REG_REG;
}

/* Return true if OP is a valid MEM operand for an SVE LDNF1 instruction.  */
bool
aarch64_sve_ldnf1_operand_p (rtx op)
{
  struct aarch64_address_info addr;

  return (MEM_P (op)
	  && aarch64_classify_address (&addr, XEXP (op, 0),
				       GET_MODE (op), false)
	  && addr.type == ADDRESS_REG_IMM);
}

/* Return true if OP is a valid MEM operand for an SVE LDR instruction.
   The conditions for STR are the same.  */
bool
aarch64_sve_ldr_operand_p (rtx op)
{
  struct aarch64_address_info addr;

  return (MEM_P (op)
	  && aarch64_classify_address (&addr, XEXP (op, 0), GET_MODE (op),
				       false, ADDR_QUERY_ANY)
	  && addr.type == ADDRESS_REG_IMM);
}

/* Return true if OP is a valid address for an SVE PRF[BHWD] instruction,
   addressing memory of mode MODE.  */
bool
aarch64_sve_prefetch_operand_p (rtx op, machine_mode mode)
{
  struct aarch64_address_info addr;
  if (!aarch64_classify_address (&addr, op, mode, false, ADDR_QUERY_ANY))
    return false;

  if (addr.type == ADDRESS_REG_IMM)
    return offset_6bit_signed_scaled_p (mode, addr.const_offset);

  return addr.type == ADDRESS_REG_REG;
}

/* Return true if OP is a valid MEM operand for an SVE_STRUCT mode.
   We need to be able to access the individual pieces, so the range
   is different from LD[234] and ST[234].  */
bool
aarch64_sve_struct_memory_operand_p (rtx op)
{
  if (!MEM_P (op))
    return false;

  machine_mode mode = GET_MODE (op);
  struct aarch64_address_info addr;
  if (!aarch64_classify_address (&addr, XEXP (op, 0), SVE_BYTE_MODE, false,
				 ADDR_QUERY_ANY)
      || addr.type != ADDRESS_REG_IMM)
    return false;

  poly_int64 first = addr.const_offset;
  poly_int64 last = first + GET_MODE_SIZE (mode) - BYTES_PER_SVE_VECTOR;
  return (offset_4bit_signed_scaled_p (SVE_BYTE_MODE, first)
	  && offset_4bit_signed_scaled_p (SVE_BYTE_MODE, last));
}

/* Emit a register copy from operand to operand, taking care not to
   early-clobber source registers in the process.

   COUNT is the number of components into which the copy needs to be
   decomposed.  */
void
aarch64_simd_emit_reg_reg_move (rtx *operands, machine_mode mode,
				unsigned int count)
{
  unsigned int i;
  int rdest = REGNO (operands[0]);
  int rsrc = REGNO (operands[1]);

  if (!reg_overlap_mentioned_p (operands[0], operands[1])
      || rdest < rsrc)
    for (i = 0; i < count; i++)
      emit_move_insn (gen_rtx_REG (mode, rdest + i),
		      gen_rtx_REG (mode, rsrc + i));
  else
    for (i = 0; i < count; i++)
      emit_move_insn (gen_rtx_REG (mode, rdest + count - i - 1),
		      gen_rtx_REG (mode, rsrc + count - i - 1));
}

/* Compute and return the length of aarch64_simd_reglist<mode>, where <mode> is
   one of VSTRUCT modes: OI, CI, or XI.  */
int
aarch64_simd_attr_length_rglist (machine_mode mode)
{
  /* This is only used (and only meaningful) for Advanced SIMD, not SVE.  */
  return (GET_MODE_SIZE (mode).to_constant () / UNITS_PER_VREG) * 4;
}

/* Implement target hook TARGET_VECTOR_ALIGNMENT.  The AAPCS64 sets the maximum
   alignment of a vector to 128 bits.  SVE predicates have an alignment of
   16 bits.  */
static HOST_WIDE_INT
aarch64_simd_vector_alignment (const_tree type)
{
  /* ??? Checking the mode isn't ideal, but VECTOR_BOOLEAN_TYPE_P can
     be set for non-predicate vectors of booleans.  Modes are the most
     direct way we have of identifying real SVE predicate types.  */
  if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_VECTOR_BOOL)
    return 16;
  widest_int min_size
    = constant_lower_bound (wi::to_poly_widest (TYPE_SIZE (type)));
  return wi::umin (min_size, 128).to_uhwi ();
}

/* Implement target hook TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT.  */
static poly_uint64
aarch64_vectorize_preferred_vector_alignment (const_tree type)
{
  if (aarch64_sve_data_mode_p (TYPE_MODE (type)))
    {
      /* If the length of the vector is a fixed power of 2, try to align
	 to that length, otherwise don't try to align at all.  */
      HOST_WIDE_INT result;
      if (!GET_MODE_BITSIZE (TYPE_MODE (type)).is_constant (&result)
	  || !pow2p_hwi (result))
	result = TYPE_ALIGN (TREE_TYPE (type));
      return result;
    }
  return TYPE_ALIGN (type);
}

/* Implement target hook TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE.  */
static bool
aarch64_simd_vector_alignment_reachable (const_tree type, bool is_packed)
{
  if (is_packed)
    return false;

  /* For fixed-length vectors, check that the vectorizer will aim for
     full-vector alignment.  This isn't true for generic GCC vectors
     that are wider than the ABI maximum of 128 bits.  */
  poly_uint64 preferred_alignment =
    aarch64_vectorize_preferred_vector_alignment (type);
  if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
      && maybe_ne (wi::to_widest (TYPE_SIZE (type)),
		   preferred_alignment))
    return false;

  /* Vectors whose size is <= BIGGEST_ALIGNMENT are naturally aligned.  */
  return true;
}

/* Return true if the vector misalignment factor is supported by the
   target.  */
static bool
aarch64_builtin_support_vector_misalignment (machine_mode mode,
					     const_tree type, int misalignment,
					     bool is_packed)
{
  if (TARGET_SIMD && STRICT_ALIGNMENT)
    {
      /* Return if movmisalign pattern is not supported for this mode.  */
      if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
        return false;

      /* Misalignment factor is unknown at compile time.  */
      if (misalignment == -1)
	return false;
    }
  return default_builtin_support_vector_misalignment (mode, type, misalignment,
						      is_packed);
}

/* If VALS is a vector constant that can be loaded into a register
   using DUP, generate instructions to do so and return an RTX to
   assign to the register.  Otherwise return NULL_RTX.  */
static rtx
aarch64_simd_dup_constant (rtx vals)
{
  machine_mode mode = GET_MODE (vals);
  machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx x;

  if (!const_vec_duplicate_p (vals, &x))
    return NULL_RTX;

  /* We can load this constant by using DUP and a constant in a
     single ARM register.  This will be cheaper than a vector
     load.  */
  x = copy_to_mode_reg (inner_mode, x);
  return gen_vec_duplicate (mode, x);
}


/* Generate code to load VALS, which is a PARALLEL containing only
   constants (for vec_init) or CONST_VECTOR, efficiently into a
   register.  Returns an RTX to copy into the register, or NULL_RTX
   for a PARALLEL that cannot be converted into a CONST_VECTOR.  */
static rtx
aarch64_simd_make_constant (rtx vals)
{
  machine_mode mode = GET_MODE (vals);
  rtx const_dup;
  rtx const_vec = NULL_RTX;
  int n_const = 0;
  int i;

  if (CONST_VECTOR_P (vals))
    const_vec = vals;
  else if (GET_CODE (vals) == PARALLEL)
    {
      /* A CONST_VECTOR must contain only CONST_INTs and
	 CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF).
	 Only store valid constants in a CONST_VECTOR.  */
      int n_elts = XVECLEN (vals, 0);
      for (i = 0; i < n_elts; ++i)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    n_const++;
	}
      if (n_const == n_elts)
	const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
    }
  else
    gcc_unreachable ();

  if (const_vec != NULL_RTX
      && aarch64_simd_valid_immediate (const_vec, NULL))
    /* Load using MOVI/MVNI.  */
    return const_vec;
  else if ((const_dup = aarch64_simd_dup_constant (vals)) != NULL_RTX)
    /* Loaded using DUP.  */
    return const_dup;
  else if (const_vec != NULL_RTX)
    /* Load from constant pool. We cannot take advantage of single-cycle
       LD1 because we need a PC-relative addressing mode.  */
    return const_vec;
  else
    /* A PARALLEL containing something not valid inside CONST_VECTOR.
       We cannot construct an initializer.  */
    return NULL_RTX;
}

/* Expand a vector initialisation sequence, such that TARGET is
   initialised to contain VALS.  */

void
aarch64_expand_vector_init (rtx target, rtx vals)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode inner_mode = GET_MODE_INNER (mode);
  /* The number of vector elements.  */
  int n_elts = XVECLEN (vals, 0);
  /* The number of vector elements which are not constant.  */
  int n_var = 0;
  rtx any_const = NULL_RTX;
  /* The first element of vals.  */
  rtx v0 = XVECEXP (vals, 0, 0);
  bool all_same = true;

  /* This is a special vec_init<M><N> where N is not an element mode but a
     vector mode with half the elements of M.  We expect to find two entries
     of mode N in VALS and we must put their concatentation into TARGET.  */
  if (XVECLEN (vals, 0) == 2 && VECTOR_MODE_P (GET_MODE (XVECEXP (vals, 0, 0))))
    {
      machine_mode narrow_mode = GET_MODE (XVECEXP (vals, 0, 0));
      gcc_assert (GET_MODE_INNER (narrow_mode) == inner_mode
		  && known_eq (GET_MODE_SIZE (mode),
			       2 * GET_MODE_SIZE (narrow_mode)));
      emit_insn (gen_aarch64_vec_concat (narrow_mode, target,
					 XVECEXP (vals, 0, 0),
					 XVECEXP (vals, 0, 1)));
     return;
   }

  /* Count the number of variable elements to initialise.  */
  for (int i = 0; i < n_elts; ++i)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (!(CONST_INT_P (x) || CONST_DOUBLE_P (x)))
	++n_var;
      else
	any_const = x;

      all_same &= rtx_equal_p (x, v0);
    }

  /* No variable elements, hand off to aarch64_simd_make_constant which knows
     how best to handle this.  */
  if (n_var == 0)
    {
      rtx constant = aarch64_simd_make_constant (vals);
      if (constant != NULL_RTX)
	{
	  emit_move_insn (target, constant);
	  return;
	}
    }

  /* Splat a single non-constant element if we can.  */
  if (all_same)
    {
      rtx x = copy_to_mode_reg (inner_mode, v0);
      aarch64_emit_move (target, gen_vec_duplicate (mode, x));
      return;
    }

  enum insn_code icode = optab_handler (vec_set_optab, mode);
  gcc_assert (icode != CODE_FOR_nothing);

  /* If there are only variable elements, try to optimize
     the insertion using dup for the most common element
     followed by insertions.  */

  /* The algorithm will fill matches[*][0] with the earliest matching element,
     and matches[X][1] with the count of duplicate elements (if X is the
     earliest element which has duplicates).  */

  if (n_var == n_elts && n_elts <= 16)
    {
      int matches[16][2] = {0};
      for (int i = 0; i < n_elts; i++)
	{
	  for (int j = 0; j <= i; j++)
	    {
	      if (rtx_equal_p (XVECEXP (vals, 0, i), XVECEXP (vals, 0, j)))
		{
		  matches[i][0] = j;
		  matches[j][1]++;
		  break;
		}
	    }
	}
      int maxelement = 0;
      int maxv = 0;
      for (int i = 0; i < n_elts; i++)
	if (matches[i][1] > maxv)
	  {
	    maxelement = i;
	    maxv = matches[i][1];
	  }

      /* Create a duplicate of the most common element, unless all elements
	 are equally useless to us, in which case just immediately set the
	 vector register using the first element.  */

      if (maxv == 1)
	{
	  /* For vectors of two 64-bit elements, we can do even better.  */
	  if (n_elts == 2
	      && (inner_mode == E_DImode
		  || inner_mode == E_DFmode))

	    {
	      rtx x0 = XVECEXP (vals, 0, 0);
	      rtx x1 = XVECEXP (vals, 0, 1);
	      /* Combine can pick up this case, but handling it directly
		 here leaves clearer RTL.

		 This is load_pair_lanes<mode>, and also gives us a clean-up
		 for store_pair_lanes<mode>.  */
	      if (memory_operand (x0, inner_mode)
		  && memory_operand (x1, inner_mode)
		  && aarch64_mergeable_load_pair_p (mode, x0, x1))
		{
		  rtx t;
		  if (inner_mode == DFmode)
		    t = gen_load_pair_lanesdf (target, x0, x1);
		  else
		    t = gen_load_pair_lanesdi (target, x0, x1);
		  emit_insn (t);
		  return;
		}
	    }
	  /* The subreg-move sequence below will move into lane zero of the
	     vector register.  For big-endian we want that position to hold
	     the last element of VALS.  */
	  maxelement = BYTES_BIG_ENDIAN ? n_elts - 1 : 0;
	  rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, maxelement));
	  aarch64_emit_move (target, lowpart_subreg (mode, x, inner_mode));
	}
      else
	{
	  rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, maxelement));
	  aarch64_emit_move (target, gen_vec_duplicate (mode, x));
	}

      /* Insert the rest.  */
      for (int i = 0; i < n_elts; i++)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (matches[i][0] == maxelement)
	    continue;
	  x = copy_to_mode_reg (inner_mode, x);
	  emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i)));
	}
      return;
    }

  /* Initialise a vector which is part-variable.  We want to first try
     to build those lanes which are constant in the most efficient way we
     can.  */
  if (n_var != n_elts)
    {
      rtx copy = copy_rtx (vals);

      /* Load constant part of vector.  We really don't care what goes into the
	 parts we will overwrite, but we're more likely to be able to load the
	 constant efficiently if it has fewer, larger, repeating parts
	 (see aarch64_simd_valid_immediate).  */
      for (int i = 0; i < n_elts; i++)
	{
	  rtx x = XVECEXP (vals, 0, i);
	  if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	    continue;
	  rtx subst = any_const;
	  for (int bit = n_elts / 2; bit > 0; bit /= 2)
	    {
	      /* Look in the copied vector, as more elements are const.  */
	      rtx test = XVECEXP (copy, 0, i ^ bit);
	      if (CONST_INT_P (test) || CONST_DOUBLE_P (test))
		{
		  subst = test;
		  break;
		}
	    }
	  XVECEXP (copy, 0, i) = subst;
	}
      aarch64_expand_vector_init (target, copy);
    }

  /* Insert the variable lanes directly.  */
  for (int i = 0; i < n_elts; i++)
    {
      rtx x = XVECEXP (vals, 0, i);
      if (CONST_INT_P (x) || CONST_DOUBLE_P (x))
	continue;
      x = copy_to_mode_reg (inner_mode, x);
      emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i)));
    }
}

/* Emit RTL corresponding to:
   insr TARGET, ELEM.  */

static void
emit_insr (rtx target, rtx elem)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode elem_mode = GET_MODE_INNER (mode);
  elem = force_reg (elem_mode, elem);

  insn_code icode = optab_handler (vec_shl_insert_optab, mode);
  gcc_assert (icode != CODE_FOR_nothing);
  emit_insn (GEN_FCN (icode) (target, target, elem));
}

/* Subroutine of aarch64_sve_expand_vector_init for handling
   trailing constants.
   This function works as follows:
   (a) Create a new vector consisting of trailing constants.
   (b) Initialize TARGET with the constant vector using emit_move_insn.
   (c) Insert remaining elements in TARGET using insr.
   NELTS is the total number of elements in original vector while
   while NELTS_REQD is the number of elements that are actually
   significant.

   ??? The heuristic used is to do above only if number of constants
   is at least half the total number of elements.  May need fine tuning.  */

static bool
aarch64_sve_expand_vector_init_handle_trailing_constants
 (rtx target, const rtx_vector_builder &builder, int nelts, int nelts_reqd)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode elem_mode = GET_MODE_INNER (mode);
  int n_trailing_constants = 0;

  for (int i = nelts_reqd - 1;
       i >= 0 && valid_for_const_vector_p (elem_mode, builder.elt (i));
       i--)
    n_trailing_constants++;

  if (n_trailing_constants >= nelts_reqd / 2)
    {
      /* Try to use the natural pattern of BUILDER to extend the trailing
	 constant elements to a full vector.  Replace any variables in the
	 extra elements with zeros.

	 ??? It would be better if the builders supported "don't care"
	     elements, with the builder filling in whichever elements
	     give the most compact encoding.  */
      rtx_vector_builder v (mode, nelts, 1);
      for (int i = 0; i < nelts; i++)
	{
	  rtx x = builder.elt (i + nelts_reqd - n_trailing_constants);
	  if (!valid_for_const_vector_p (elem_mode, x))
	    x = CONST0_RTX (elem_mode);
	  v.quick_push (x);
	}
      rtx const_vec = v.build ();
      emit_move_insn (target, const_vec);

      for (int i = nelts_reqd - n_trailing_constants - 1; i >= 0; i--)
	emit_insr (target, builder.elt (i));

      return true;
    }

  return false;
}

/* Subroutine of aarch64_sve_expand_vector_init.
   Works as follows:
   (a) Initialize TARGET by broadcasting element NELTS_REQD - 1 of BUILDER.
   (b) Skip trailing elements from BUILDER, which are the same as
       element NELTS_REQD - 1.
   (c) Insert earlier elements in reverse order in TARGET using insr.  */

static void
aarch64_sve_expand_vector_init_insert_elems (rtx target,
					     const rtx_vector_builder &builder,
					     int nelts_reqd)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode elem_mode = GET_MODE_INNER (mode);

  struct expand_operand ops[2];
  enum insn_code icode = optab_handler (vec_duplicate_optab, mode);
  gcc_assert (icode != CODE_FOR_nothing);

  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], builder.elt (nelts_reqd - 1), elem_mode);
  expand_insn (icode, 2, ops);

  int ndups = builder.count_dups (nelts_reqd - 1, -1, -1);
  for (int i = nelts_reqd - ndups - 1; i >= 0; i--)
    emit_insr (target, builder.elt (i));
}

/* Subroutine of aarch64_sve_expand_vector_init to handle case
   when all trailing elements of builder are same.
   This works as follows:
   (a) Use expand_insn interface to broadcast last vector element in TARGET.
   (b) Insert remaining elements in TARGET using insr.

   ??? The heuristic used is to do above if number of same trailing elements
   is at least 3/4 of total number of elements, loosely based on
   heuristic from mostly_zeros_p.  May need fine-tuning.  */

static bool
aarch64_sve_expand_vector_init_handle_trailing_same_elem
 (rtx target, const rtx_vector_builder &builder, int nelts_reqd)
{
  int ndups = builder.count_dups (nelts_reqd - 1, -1, -1);
  if (ndups >= (3 * nelts_reqd) / 4)
    {
      aarch64_sve_expand_vector_init_insert_elems (target, builder,
						   nelts_reqd - ndups + 1);
      return true;
    }

  return false;
}

/* Initialize register TARGET from BUILDER. NELTS is the constant number
   of elements in BUILDER.

   The function tries to initialize TARGET from BUILDER if it fits one
   of the special cases outlined below.

   Failing that, the function divides BUILDER into two sub-vectors:
   v_even = even elements of BUILDER;
   v_odd = odd elements of BUILDER;

   and recursively calls itself with v_even and v_odd.

   if (recursive call succeeded for v_even or v_odd)
     TARGET = zip (v_even, v_odd)

   The function returns true if it managed to build TARGET from BUILDER
   with one of the special cases, false otherwise.

   Example: {a, 1, b, 2, c, 3, d, 4}

   The vector gets divided into:
   v_even = {a, b, c, d}
   v_odd = {1, 2, 3, 4}

   aarch64_sve_expand_vector_init(v_odd) hits case 1 and
   initialize tmp2 from constant vector v_odd using emit_move_insn.

   aarch64_sve_expand_vector_init(v_even) fails since v_even contains
   4 elements, so we construct tmp1 from v_even using insr:
   tmp1 = dup(d)
   insr tmp1, c
   insr tmp1, b
   insr tmp1, a

   And finally:
   TARGET = zip (tmp1, tmp2)
   which sets TARGET to {a, 1, b, 2, c, 3, d, 4}.  */

static bool
aarch64_sve_expand_vector_init (rtx target, const rtx_vector_builder &builder,
				int nelts, int nelts_reqd)
{
  machine_mode mode = GET_MODE (target);

  /* Case 1: Vector contains trailing constants.  */

  if (aarch64_sve_expand_vector_init_handle_trailing_constants
       (target, builder, nelts, nelts_reqd))
    return true;

  /* Case 2: Vector contains leading constants.  */

  rtx_vector_builder rev_builder (mode, nelts_reqd, 1);
  for (int i = 0; i < nelts_reqd; i++)
    rev_builder.quick_push (builder.elt (nelts_reqd - i - 1));
  rev_builder.finalize ();

  if (aarch64_sve_expand_vector_init_handle_trailing_constants
       (target, rev_builder, nelts, nelts_reqd))
    {
      emit_insn (gen_aarch64_sve_rev (mode, target, target));
      return true;
    }

  /* Case 3: Vector contains trailing same element.  */

  if (aarch64_sve_expand_vector_init_handle_trailing_same_elem
       (target, builder, nelts_reqd))
    return true;

  /* Case 4: Vector contains leading same element.  */

  if (aarch64_sve_expand_vector_init_handle_trailing_same_elem
       (target, rev_builder, nelts_reqd) && nelts_reqd == nelts)
    {
      emit_insn (gen_aarch64_sve_rev (mode, target, target));
      return true;
    }

  /* Avoid recursing below 4-elements.
     ??? The threshold 4 may need fine-tuning.  */

  if (nelts_reqd <= 4)
    return false;

  rtx_vector_builder v_even (mode, nelts, 1);
  rtx_vector_builder v_odd (mode, nelts, 1);

  for (int i = 0; i < nelts * 2; i += 2)
    {
      v_even.quick_push (builder.elt (i));
      v_odd.quick_push (builder.elt (i + 1));
    }

  v_even.finalize ();
  v_odd.finalize ();

  rtx tmp1 = gen_reg_rtx (mode);
  bool did_even_p = aarch64_sve_expand_vector_init (tmp1, v_even,
						    nelts, nelts_reqd / 2);

  rtx tmp2 = gen_reg_rtx (mode);
  bool did_odd_p = aarch64_sve_expand_vector_init (tmp2, v_odd,
						   nelts, nelts_reqd / 2);

  if (!did_even_p && !did_odd_p)
    return false;

  /* Initialize v_even and v_odd using INSR if it didn't match any of the
     special cases and zip v_even, v_odd.  */

  if (!did_even_p)
    aarch64_sve_expand_vector_init_insert_elems (tmp1, v_even, nelts_reqd / 2);

  if (!did_odd_p)
    aarch64_sve_expand_vector_init_insert_elems (tmp2, v_odd, nelts_reqd / 2);

  rtvec v = gen_rtvec (2, tmp1, tmp2);
  emit_set_insn (target, gen_rtx_UNSPEC (mode, v, UNSPEC_ZIP1));
  return true;
}

/* Initialize register TARGET from the elements in PARALLEL rtx VALS.  */

void
aarch64_sve_expand_vector_init (rtx target, rtx vals)
{
  machine_mode mode = GET_MODE (target);
  int nelts = XVECLEN (vals, 0);

  rtx_vector_builder v (mode, nelts, 1);
  for (int i = 0; i < nelts; i++)
    v.quick_push (XVECEXP (vals, 0, i));
  v.finalize ();

  /* If neither sub-vectors of v could be initialized specially,
     then use INSR to insert all elements from v into TARGET.
     ??? This might not be optimal for vectors with large
     initializers like 16-element or above.
     For nelts < 4, it probably isn't useful to handle specially.  */

  if (nelts < 4
      || !aarch64_sve_expand_vector_init (target, v, nelts, nelts))
    aarch64_sve_expand_vector_init_insert_elems (target, v, nelts);
}

/* Check whether VALUE is a vector constant in which every element
   is either a power of 2 or a negated power of 2.  If so, return
   a constant vector of log2s, and flip CODE between PLUS and MINUS
   if VALUE contains negated powers of 2.  Return NULL_RTX otherwise.  */

static rtx
aarch64_convert_mult_to_shift (rtx value, rtx_code &code)
{
  if (!CONST_VECTOR_P (value))
    return NULL_RTX;

  rtx_vector_builder builder;
  if (!builder.new_unary_operation (GET_MODE (value), value, false))
    return NULL_RTX;

  scalar_mode int_mode = GET_MODE_INNER (GET_MODE (value));
  /* 1 if the result of the multiplication must be negated,
     0 if it mustn't, or -1 if we don't yet care.  */
  int negate = -1;
  unsigned int encoded_nelts = const_vector_encoded_nelts (value);
  for (unsigned int i = 0; i < encoded_nelts; ++i)
    {
      rtx elt = CONST_VECTOR_ENCODED_ELT (value, i);
      if (!CONST_SCALAR_INT_P (elt))
	return NULL_RTX;
      rtx_mode_t val (elt, int_mode);
      wide_int pow2 = wi::neg (val);
      if (val != pow2)
	{
	  /* It matters whether we negate or not.  Make that choice,
	     and make sure that it's consistent with previous elements.  */
	  if (negate == !wi::neg_p (val))
	    return NULL_RTX;
	  negate = wi::neg_p (val);
	  if (!negate)
	    pow2 = val;
	}
      /* POW2 is now the value that we want to be a power of 2.  */
      int shift = wi::exact_log2 (pow2);
      if (shift < 0)
	return NULL_RTX;
      builder.quick_push (gen_int_mode (shift, int_mode));
    }
  if (negate == -1)
    /* PLUS and MINUS are equivalent; canonicalize on PLUS.  */
    code = PLUS;
  else if (negate == 1)
    code = code == PLUS ? MINUS : PLUS;
  return builder.build ();
}

/* Prepare for an integer SVE multiply-add or multiply-subtract pattern;
   CODE is PLUS for the former and MINUS for the latter.  OPERANDS is the
   operands array, in the same order as for fma_optab.  Return true if
   the function emitted all the necessary instructions, false if the caller
   should generate the pattern normally with the new OPERANDS array.  */

bool
aarch64_prepare_sve_int_fma (rtx *operands, rtx_code code)
{
  machine_mode mode = GET_MODE (operands[0]);
  if (rtx shifts = aarch64_convert_mult_to_shift (operands[2], code))
    {
      rtx product = expand_binop (mode, vashl_optab, operands[1], shifts,
				  NULL_RTX, true, OPTAB_DIRECT);
      force_expand_binop (mode, code == PLUS ? add_optab : sub_optab,
			  operands[3], product, operands[0], true,
			  OPTAB_DIRECT);
      return true;
    }
  operands[2] = force_reg (mode, operands[2]);
  return false;
}

/* Likewise, but for a conditional pattern.  */

bool
aarch64_prepare_sve_cond_int_fma (rtx *operands, rtx_code code)
{
  machine_mode mode = GET_MODE (operands[0]);
  if (rtx shifts = aarch64_convert_mult_to_shift (operands[3], code))
    {
      rtx product = expand_binop (mode, vashl_optab, operands[2], shifts,
				  NULL_RTX, true, OPTAB_DIRECT);
      emit_insn (gen_cond (code, mode, operands[0], operands[1],
			   operands[4], product, operands[5]));
      return true;
    }
  operands[3] = force_reg (mode, operands[3]);
  return false;
}

static unsigned HOST_WIDE_INT
aarch64_shift_truncation_mask (machine_mode mode)
{
  if (!SHIFT_COUNT_TRUNCATED || aarch64_vector_data_mode_p (mode))
    return 0;
  return GET_MODE_UNIT_BITSIZE (mode) - 1;
}

/* Select a format to encode pointers in exception handling data.  */
int
aarch64_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global)
{
   int type;
   switch (aarch64_cmodel)
     {
     case AARCH64_CMODEL_TINY:
     case AARCH64_CMODEL_TINY_PIC:
     case AARCH64_CMODEL_SMALL:
     case AARCH64_CMODEL_SMALL_PIC:
     case AARCH64_CMODEL_SMALL_SPIC:
       /* text+got+data < 4Gb.  4-byte signed relocs are sufficient
	  for everything.  */
       type = DW_EH_PE_sdata4;
       break;
     default:
       /* No assumptions here.  8-byte relocs required.  */
       type = DW_EH_PE_sdata8;
       break;
     }
   return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type;
}

/* Output .variant_pcs for aarch64_vector_pcs function symbols.  */

static void
aarch64_asm_output_variant_pcs (FILE *stream, const tree decl, const char* name)
{
  if (TREE_CODE (decl) == FUNCTION_DECL)
    {
      arm_pcs pcs = (arm_pcs) fndecl_abi (decl).id ();
      if (pcs == ARM_PCS_SIMD || pcs == ARM_PCS_SVE)
	{
	  fprintf (stream, "\t.variant_pcs\t");
	  assemble_name (stream, name);
	  fprintf (stream, "\n");
	}
    }
}

/* The last .arch and .tune assembly strings that we printed.  */
static std::string aarch64_last_printed_arch_string;
static std::string aarch64_last_printed_tune_string;

/* Implement ASM_DECLARE_FUNCTION_NAME.  Output the ISA features used
   by the function fndecl.  */

void
aarch64_declare_function_name (FILE *stream, const char* name,
				tree fndecl)
{
  tree target_parts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);

  struct cl_target_option *targ_options;
  if (target_parts)
    targ_options = TREE_TARGET_OPTION (target_parts);
  else
    targ_options = TREE_TARGET_OPTION (target_option_current_node);
  gcc_assert (targ_options);

  const struct processor *this_arch
    = aarch64_get_arch (targ_options->x_selected_arch);

  auto isa_flags = targ_options->x_aarch64_asm_isa_flags;
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (isa_flags,
						  this_arch->flags);
  /* Only update the assembler .arch string if it is distinct from the last
     such string we printed.  */
  std::string to_print = this_arch->name + extension;
  if (to_print != aarch64_last_printed_arch_string)
    {
      asm_fprintf (asm_out_file, "\t.arch %s\n", to_print.c_str ());
      aarch64_last_printed_arch_string = to_print;
    }

  /* Print the cpu name we're tuning for in the comments, might be
     useful to readers of the generated asm.  Do it only when it changes
     from function to function and verbose assembly is requested.  */
  const struct processor *this_tune
    = aarch64_get_tune_cpu (targ_options->x_selected_tune);

  if (flag_debug_asm && aarch64_last_printed_tune_string != this_tune->name)
    {
      asm_fprintf (asm_out_file, "\t" ASM_COMMENT_START ".tune %s\n",
		   this_tune->name);
      aarch64_last_printed_tune_string = this_tune->name;
    }

  aarch64_asm_output_variant_pcs (stream, fndecl, name);

  /* Don't forget the type directive for ELF.  */
  ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
  ASM_OUTPUT_LABEL (stream, name);

  cfun->machine->label_is_assembled = true;
}

/* Implement PRINT_PATCHABLE_FUNCTION_ENTRY.  Check if the patch area is after
   the function label and emit a BTI if necessary.  */

void
aarch64_print_patchable_function_entry (FILE *file,
					unsigned HOST_WIDE_INT patch_area_size,
					bool record_p)
{
  if (cfun->machine->label_is_assembled
      && aarch64_bti_enabled ()
      && !cgraph_node::get (cfun->decl)->only_called_directly_p ())
    {
      /* Remove the BTI that follows the patch area and insert a new BTI
	 before the patch area right after the function label.  */
      rtx_insn *insn = next_real_nondebug_insn (get_insns ());
      if (insn
	  && INSN_P (insn)
	  && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
	  && XINT (PATTERN (insn), 1) == UNSPECV_BTI_C)
	delete_insn (insn);
      asm_fprintf (file, "\thint\t34 // bti c\n");
    }

  default_print_patchable_function_entry (file, patch_area_size, record_p);
}

/* Implement ASM_OUTPUT_DEF_FROM_DECLS.  Output .variant_pcs for aliases.  */

void
aarch64_asm_output_alias (FILE *stream, const tree decl, const tree target)
{
  const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
  const char *value = IDENTIFIER_POINTER (target);
  aarch64_asm_output_variant_pcs (stream, decl, name);
  ASM_OUTPUT_DEF (stream, name, value);
}

/* Implement ASM_OUTPUT_EXTERNAL.  Output .variant_pcs for undefined
   function symbol references.  */

void
aarch64_asm_output_external (FILE *stream, tree decl, const char* name)
{
  default_elf_asm_output_external (stream, decl, name);
  aarch64_asm_output_variant_pcs (stream, decl, name);
}

/* Triggered after a .cfi_startproc directive is emitted into the assembly file.
   Used to output the .cfi_b_key_frame directive when signing the current
   function with the B key.  */

void
aarch64_post_cfi_startproc (FILE *f, tree ignored ATTRIBUTE_UNUSED)
{
  if (cfun->machine->frame.laid_out && aarch64_return_address_signing_enabled ()
      && aarch64_ra_sign_key == AARCH64_KEY_B)
	asm_fprintf (f, "\t.cfi_b_key_frame\n");
}

/* Implements TARGET_ASM_FILE_START.  Output the assembly header.  */

static void
aarch64_start_file (void)
{
  struct cl_target_option *default_options
    = TREE_TARGET_OPTION (target_option_default_node);

  const struct processor *default_arch
    = aarch64_get_arch (default_options->x_selected_arch);
  auto default_isa_flags = default_options->x_aarch64_asm_isa_flags;
  std::string extension
    = aarch64_get_extension_string_for_isa_flags (default_isa_flags,
						  default_arch->flags);

   aarch64_last_printed_arch_string = default_arch->name + extension;
   aarch64_last_printed_tune_string = "";
   asm_fprintf (asm_out_file, "\t.arch %s\n",
		aarch64_last_printed_arch_string.c_str ());

   default_file_start ();
}

/* Emit load exclusive.  */

static void
aarch64_emit_load_exclusive (machine_mode mode, rtx rval,
			     rtx mem, rtx model_rtx)
{
  if (mode == TImode)
    emit_insn (gen_aarch64_load_exclusive_pair (gen_lowpart (DImode, rval),
						gen_highpart (DImode, rval),
						mem, model_rtx));
  else
    emit_insn (gen_aarch64_load_exclusive (mode, rval, mem, model_rtx));
}

/* Emit store exclusive.  */

static void
aarch64_emit_store_exclusive (machine_mode mode, rtx bval,
			      rtx mem, rtx rval, rtx model_rtx)
{
  if (mode == TImode)
    emit_insn (gen_aarch64_store_exclusive_pair
	       (bval, mem, operand_subword (rval, 0, 0, TImode),
		operand_subword (rval, 1, 0, TImode), model_rtx));
  else
    emit_insn (gen_aarch64_store_exclusive (mode, bval, mem, rval, model_rtx));
}

/* Mark the previous jump instruction as unlikely.  */

static void
aarch64_emit_unlikely_jump (rtx insn)
{
  rtx_insn *jump = emit_jump_insn (insn);
  add_reg_br_prob_note (jump, profile_probability::very_unlikely ());
}

/* We store the names of the various atomic helpers in a 5x5 array.
   Return the libcall function given MODE, MODEL and NAMES.  */

rtx
aarch64_atomic_ool_func(machine_mode mode, rtx model_rtx,
			const atomic_ool_names *names)
{
  memmodel model = memmodel_from_int (INTVAL (model_rtx));
  int mode_idx, model_idx;

  switch (mode)
    {
    case E_QImode:
      mode_idx = 0;
      break;
    case E_HImode:
      mode_idx = 1;
      break;
    case E_SImode:
      mode_idx = 2;
      break;
    case E_DImode:
      mode_idx = 3;
      break;
    case E_TImode:
      mode_idx = 4;
      break;
    default:
      gcc_unreachable ();
    }

  switch (model)
    {
    case MEMMODEL_RELAXED:
      model_idx = 0;
      break;
    case MEMMODEL_CONSUME:
    case MEMMODEL_ACQUIRE:
      model_idx = 1;
      break;
    case MEMMODEL_RELEASE:
      model_idx = 2;
      break;
    case MEMMODEL_ACQ_REL:
    case MEMMODEL_SEQ_CST:
      model_idx = 3;
      break;
    case MEMMODEL_SYNC_ACQUIRE:
    case MEMMODEL_SYNC_RELEASE:
    case MEMMODEL_SYNC_SEQ_CST:
      model_idx = 4;
      break;
    default:
      gcc_unreachable ();
    }

  return init_one_libfunc_visibility (names->str[mode_idx][model_idx],
				      VISIBILITY_HIDDEN);
}

#define DEF0(B, N) \
  { "__aarch64_" #B #N "_relax", \
    "__aarch64_" #B #N "_acq", \
    "__aarch64_" #B #N "_rel", \
    "__aarch64_" #B #N "_acq_rel", \
    "__aarch64_" #B #N "_sync" }

#define DEF4(B)  DEF0(B, 1), DEF0(B, 2), DEF0(B, 4), DEF0(B, 8), \
		 { NULL, NULL, NULL, NULL }
#define DEF5(B)  DEF0(B, 1), DEF0(B, 2), DEF0(B, 4), DEF0(B, 8), DEF0(B, 16)

static const atomic_ool_names aarch64_ool_cas_names = { { DEF5(cas) } };
const atomic_ool_names aarch64_ool_swp_names = { { DEF4(swp) } };
const atomic_ool_names aarch64_ool_ldadd_names = { { DEF4(ldadd) } };
const atomic_ool_names aarch64_ool_ldset_names = { { DEF4(ldset) } };
const atomic_ool_names aarch64_ool_ldclr_names = { { DEF4(ldclr) } };
const atomic_ool_names aarch64_ool_ldeor_names = { { DEF4(ldeor) } };

#undef DEF0
#undef DEF4
#undef DEF5

/* Expand a compare and swap pattern.  */

void
aarch64_expand_compare_and_swap (rtx operands[])
{
  rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x, cc_reg;
  machine_mode mode, r_mode;

  bval = operands[0];
  rval = operands[1];
  mem = operands[2];
  oldval = operands[3];
  newval = operands[4];
  is_weak = operands[5];
  mod_s = operands[6];
  mod_f = operands[7];
  mode = GET_MODE (mem);

  /* Normally the succ memory model must be stronger than fail, but in the
     unlikely event of fail being ACQUIRE and succ being RELEASE we need to
     promote succ to ACQ_REL so that we don't lose the acquire semantics.  */
  if (is_mm_acquire (memmodel_from_int (INTVAL (mod_f)))
      && is_mm_release (memmodel_from_int (INTVAL (mod_s))))
    mod_s = GEN_INT (MEMMODEL_ACQ_REL);

  r_mode = mode;
  if (mode == QImode || mode == HImode)
    {
      r_mode = SImode;
      rval = gen_reg_rtx (r_mode);
    }

  if (TARGET_LSE)
    {
      /* The CAS insn requires oldval and rval overlap, but we need to
	 have a copy of oldval saved across the operation to tell if
	 the operation is successful.  */
      if (reg_overlap_mentioned_p (rval, oldval))
        rval = copy_to_mode_reg (r_mode, oldval);
      else
	emit_move_insn (rval, gen_lowpart (r_mode, oldval));

      emit_insn (gen_aarch64_compare_and_swap_lse (mode, rval, mem,
						   newval, mod_s));
      cc_reg = aarch64_gen_compare_reg_maybe_ze (NE, rval, oldval, mode);
    }
  else if (TARGET_OUTLINE_ATOMICS)
    {
      /* Oldval must satisfy compare afterward.  */
      if (!aarch64_plus_operand (oldval, mode))
	oldval = force_reg (mode, oldval);
      rtx func = aarch64_atomic_ool_func (mode, mod_s, &aarch64_ool_cas_names);
      rval = emit_library_call_value (func, NULL_RTX, LCT_NORMAL, r_mode,
				      oldval, mode, newval, mode,
				      XEXP (mem, 0), Pmode);
      cc_reg = aarch64_gen_compare_reg_maybe_ze (NE, rval, oldval, mode);
    }
  else
    {
      /* The oldval predicate varies by mode.  Test it and force to reg.  */
      insn_code code = code_for_aarch64_compare_and_swap (mode);
      if (!insn_data[code].operand[2].predicate (oldval, mode))
	oldval = force_reg (mode, oldval);

      emit_insn (GEN_FCN (code) (rval, mem, oldval, newval,
				 is_weak, mod_s, mod_f));
      cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
    }

  if (r_mode != mode)
    rval = gen_lowpart (mode, rval);
  emit_move_insn (operands[1], rval);

  x = gen_rtx_EQ (SImode, cc_reg, const0_rtx);
  emit_insn (gen_rtx_SET (bval, x));
}

/* Emit a barrier, that is appropriate for memory model MODEL, at the end of a
   sequence implementing an atomic operation.  */

static void
aarch64_emit_post_barrier (enum memmodel model)
{
  const enum memmodel base_model = memmodel_base (model);

  if (is_mm_sync (model)
      && (base_model == MEMMODEL_ACQUIRE
	  || base_model == MEMMODEL_ACQ_REL
	  || base_model == MEMMODEL_SEQ_CST))
    {
      emit_insn (gen_mem_thread_fence (GEN_INT (MEMMODEL_SEQ_CST)));
    }
}

/* Split a compare and swap pattern.  */

void
aarch64_split_compare_and_swap (rtx operands[])
{
  /* Split after prolog/epilog to avoid interactions with shrinkwrapping.  */
  gcc_assert (epilogue_completed);

  rtx rval, mem, oldval, newval, scratch, x, model_rtx;
  machine_mode mode;
  bool is_weak;
  rtx_code_label *label1, *label2;
  enum memmodel model;

  rval = operands[0];
  mem = operands[1];
  oldval = operands[2];
  newval = operands[3];
  is_weak = (operands[4] != const0_rtx);
  model_rtx = operands[5];
  scratch = operands[7];
  mode = GET_MODE (mem);
  model = memmodel_from_int (INTVAL (model_rtx));

  /* When OLDVAL is zero and we want the strong version we can emit a tighter
    loop:
    .label1:
	LD[A]XR	rval, [mem]
	CBNZ	rval, .label2
	ST[L]XR	scratch, newval, [mem]
	CBNZ	scratch, .label1
    .label2:
	CMP	rval, 0.  */
  bool strong_zero_p = (!is_weak && !aarch64_track_speculation &&
			oldval == const0_rtx && mode != TImode);

  label1 = NULL;
  if (!is_weak)
    {
      label1 = gen_label_rtx ();
      emit_label (label1);
    }
  label2 = gen_label_rtx ();

  /* The initial load can be relaxed for a __sync operation since a final
     barrier will be emitted to stop code hoisting.  */
  if (is_mm_sync (model))
    aarch64_emit_load_exclusive (mode, rval, mem, GEN_INT (MEMMODEL_RELAXED));
  else
    aarch64_emit_load_exclusive (mode, rval, mem, model_rtx);

  if (strong_zero_p)
    x = gen_rtx_NE (VOIDmode, rval, const0_rtx);
  else
    {
      rtx cc_reg = aarch64_gen_compare_reg_maybe_ze (NE, rval, oldval, mode);
      x = gen_rtx_NE (VOIDmode, cc_reg, const0_rtx);
    }
  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
			    gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
  aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));

  aarch64_emit_store_exclusive (mode, scratch, mem, newval, model_rtx);

  if (!is_weak)
    {
      if (aarch64_track_speculation)
	{
	  /* Emit an explicit compare instruction, so that we can correctly
	     track the condition codes.  */
	  rtx cc_reg = aarch64_gen_compare_reg (NE, scratch, const0_rtx);
	  x = gen_rtx_NE (GET_MODE (cc_reg), cc_reg, const0_rtx);
	}
      else
	x = gen_rtx_NE (VOIDmode, scratch, const0_rtx);

      x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
				gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
      aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
    }
  else
    aarch64_gen_compare_reg (NE, scratch, const0_rtx);

  emit_label (label2);

  /* If we used a CBNZ in the exchange loop emit an explicit compare with RVAL
     to set the condition flags.  If this is not used it will be removed by
     later passes.  */
  if (strong_zero_p)
    aarch64_gen_compare_reg (NE, rval, const0_rtx);

  /* Emit any final barrier needed for a __sync operation.  */
  if (is_mm_sync (model))
    aarch64_emit_post_barrier (model);
}

/* Split an atomic operation.  */

void
aarch64_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem,
			 rtx value, rtx model_rtx, rtx cond)
{
  /* Split after prolog/epilog to avoid interactions with shrinkwrapping.  */
  gcc_assert (epilogue_completed);

  machine_mode mode = GET_MODE (mem);
  machine_mode wmode = (mode == DImode ? DImode : SImode);
  const enum memmodel model = memmodel_from_int (INTVAL (model_rtx));
  const bool is_sync = is_mm_sync (model);
  rtx_code_label *label;
  rtx x;

  /* Split the atomic operation into a sequence.  */
  label = gen_label_rtx ();
  emit_label (label);

  if (new_out)
    new_out = gen_lowpart (wmode, new_out);
  if (old_out)
    old_out = gen_lowpart (wmode, old_out);
  else
    old_out = new_out;
  value = simplify_gen_subreg (wmode, value, mode, 0);

  /* The initial load can be relaxed for a __sync operation since a final
     barrier will be emitted to stop code hoisting.  */
 if (is_sync)
    aarch64_emit_load_exclusive (mode, old_out, mem,
				 GEN_INT (MEMMODEL_RELAXED));
  else
    aarch64_emit_load_exclusive (mode, old_out, mem, model_rtx);

  switch (code)
    {
    case SET:
      new_out = value;
      break;

    case NOT:
      x = gen_rtx_AND (wmode, old_out, value);
      emit_insn (gen_rtx_SET (new_out, x));
      x = gen_rtx_NOT (wmode, new_out);
      emit_insn (gen_rtx_SET (new_out, x));
      break;

    case MINUS:
      if (CONST_INT_P (value))
	{
	  value = GEN_INT (-UINTVAL (value));
	  code = PLUS;
	}
      /* Fall through.  */

    default:
      x = gen_rtx_fmt_ee (code, wmode, old_out, value);
      emit_insn (gen_rtx_SET (new_out, x));
      break;
    }

  aarch64_emit_store_exclusive (mode, cond, mem,
				gen_lowpart (mode, new_out), model_rtx);

  if (aarch64_track_speculation)
    {
      /* Emit an explicit compare instruction, so that we can correctly
	 track the condition codes.  */
      rtx cc_reg = aarch64_gen_compare_reg (NE, cond, const0_rtx);
      x = gen_rtx_NE (GET_MODE (cc_reg), cc_reg, const0_rtx);
    }
  else
    x = gen_rtx_NE (VOIDmode, cond, const0_rtx);

  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
			    gen_rtx_LABEL_REF (Pmode, label), pc_rtx);
  aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));

  /* Emit any final barrier needed for a __sync operation.  */
  if (is_sync)
    aarch64_emit_post_barrier (model);
}

static void
aarch64_init_libfuncs (void)
{
   /* Half-precision float operations.  The compiler handles all operations
     with NULL libfuncs by converting to SFmode.  */

  /* Conversions.  */
  set_conv_libfunc (trunc_optab, HFmode, SFmode, "__gnu_f2h_ieee");
  set_conv_libfunc (sext_optab, SFmode, HFmode, "__gnu_h2f_ieee");

  /* Arithmetic.  */
  set_optab_libfunc (add_optab, HFmode, NULL);
  set_optab_libfunc (sdiv_optab, HFmode, NULL);
  set_optab_libfunc (smul_optab, HFmode, NULL);
  set_optab_libfunc (neg_optab, HFmode, NULL);
  set_optab_libfunc (sub_optab, HFmode, NULL);

  /* Comparisons.  */
  set_optab_libfunc (eq_optab, HFmode, NULL);
  set_optab_libfunc (ne_optab, HFmode, NULL);
  set_optab_libfunc (lt_optab, HFmode, NULL);
  set_optab_libfunc (le_optab, HFmode, NULL);
  set_optab_libfunc (ge_optab, HFmode, NULL);
  set_optab_libfunc (gt_optab, HFmode, NULL);
  set_optab_libfunc (unord_optab, HFmode, NULL);
}

/* Target hook for c_mode_for_suffix.  */
static machine_mode
aarch64_c_mode_for_suffix (char suffix)
{
  if (suffix == 'q')
    return TFmode;

  return VOIDmode;
}

/* We can only represent floating point constants which will fit in
   "quarter-precision" values.  These values are characterised by
   a sign bit, a 4-bit mantissa and a 3-bit exponent.  And are given
   by:

   (-1)^s * (n/16) * 2^r

   Where:
     's' is the sign bit.
     'n' is an integer in the range 16 <= n <= 31.
     'r' is an integer in the range -3 <= r <= 4.  */

/* Return true iff X can be represented by a quarter-precision
   floating point immediate operand X.  Note, we cannot represent 0.0.  */
bool
aarch64_float_const_representable_p (rtx x)
{
  /* This represents our current view of how many bits
     make up the mantissa.  */
  int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1;
  int exponent;
  unsigned HOST_WIDE_INT mantissa, mask;
  REAL_VALUE_TYPE r, m;
  bool fail;

  x = unwrap_const_vec_duplicate (x);
  if (!CONST_DOUBLE_P (x))
    return false;

  if (GET_MODE (x) == VOIDmode
      || (GET_MODE (x) == HFmode && !TARGET_FP_F16INST))
    return false;

  r = *CONST_DOUBLE_REAL_VALUE (x);

  /* We cannot represent infinities, NaNs or +/-zero.  We won't
     know if we have +zero until we analyse the mantissa, but we
     can reject the other invalid values.  */
  if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r)
      || REAL_VALUE_MINUS_ZERO (r))
    return false;

  /* Extract exponent.  */
  r = real_value_abs (&r);
  exponent = REAL_EXP (&r);

  /* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the
     highest (sign) bit, with a fixed binary point at bit point_pos.
     m1 holds the low part of the mantissa, m2 the high part.
     WARNING: If we ever have a representation using more than 2 * H_W_I - 1
     bits for the mantissa, this can fail (low bits will be lost).  */
  real_ldexp (&m, &r, point_pos - exponent);
  wide_int w = real_to_integer (&m, &fail, HOST_BITS_PER_WIDE_INT * 2);

  /* If the low part of the mantissa has bits set we cannot represent
     the value.  */
  if (w.ulow () != 0)
    return false;
  /* We have rejected the lower HOST_WIDE_INT, so update our
     understanding of how many bits lie in the mantissa and
     look only at the high HOST_WIDE_INT.  */
  mantissa = w.elt (1);
  point_pos -= HOST_BITS_PER_WIDE_INT;

  /* We can only represent values with a mantissa of the form 1.xxxx.  */
  mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1;
  if ((mantissa & mask) != 0)
    return false;

  /* Having filtered unrepresentable values, we may now remove all
     but the highest 5 bits.  */
  mantissa >>= point_pos - 5;

  /* We cannot represent the value 0.0, so reject it.  This is handled
     elsewhere.  */
  if (mantissa == 0)
    return false;

  /* Then, as bit 4 is always set, we can mask it off, leaving
     the mantissa in the range [0, 15].  */
  mantissa &= ~(1 << 4);
  gcc_assert (mantissa <= 15);

  /* GCC internally does not use IEEE754-like encoding (where normalized
     significands are in the range [1, 2).  GCC uses [0.5, 1) (see real.cc).
     Our mantissa values are shifted 4 places to the left relative to
     normalized IEEE754 so we must modify the exponent returned by REAL_EXP
     by 5 places to correct for GCC's representation.  */
  exponent = 5 - exponent;

  return (exponent >= 0 && exponent <= 7);
}

/* Returns the string with the instruction for AdvSIMD MOVI, MVNI, ORR or BIC
   immediate with a CONST_VECTOR of MODE and WIDTH.  WHICH selects whether to
   output MOVI/MVNI, ORR or BIC immediate.  */
char*
aarch64_output_simd_mov_immediate (rtx const_vector, unsigned width,
				   enum simd_immediate_check which)
{
  bool is_valid;
  static char templ[40];
  const char *mnemonic;
  const char *shift_op;
  unsigned int lane_count = 0;
  char element_char;

  struct simd_immediate_info info;

  /* This will return true to show const_vector is legal for use as either
     a AdvSIMD MOVI instruction (or, implicitly, MVNI), ORR or BIC immediate.
     It will also update INFO to show how the immediate should be generated.
     WHICH selects whether to check for MOVI/MVNI, ORR or BIC.  */
  is_valid = aarch64_simd_valid_immediate (const_vector, &info, which);
  gcc_assert (is_valid);

  element_char = sizetochar (GET_MODE_BITSIZE (info.elt_mode));
  lane_count = width / GET_MODE_BITSIZE (info.elt_mode);

  if (GET_MODE_CLASS (info.elt_mode) == MODE_FLOAT)
    {
      gcc_assert (info.insn == simd_immediate_info::MOV
		  && info.u.mov.shift == 0);
      /* For FP zero change it to a CONST_INT 0 and use the integer SIMD
	 move immediate path.  */
      if (aarch64_float_const_zero_rtx_p (info.u.mov.value))
        info.u.mov.value = GEN_INT (0);
      else
	{
	  const unsigned int buf_size = 20;
	  char float_buf[buf_size] = {'\0'};
	  real_to_decimal_for_mode (float_buf,
				    CONST_DOUBLE_REAL_VALUE (info.u.mov.value),
				    buf_size, buf_size, 1, info.elt_mode);

	  if (lane_count == 1)
	    snprintf (templ, sizeof (templ), "fmov\t%%d0, %s", float_buf);
	  else
	    snprintf (templ, sizeof (templ), "fmov\t%%0.%d%c, %s",
		      lane_count, element_char, float_buf);
	  return templ;
	}
    }

  gcc_assert (CONST_INT_P (info.u.mov.value));

  if (which == AARCH64_CHECK_MOV)
    {
      mnemonic = info.insn == simd_immediate_info::MVN ? "mvni" : "movi";
      shift_op = (info.u.mov.modifier == simd_immediate_info::MSL
		  ? "msl" : "lsl");
      if (lane_count == 1)
	snprintf (templ, sizeof (templ), "%s\t%%d0, " HOST_WIDE_INT_PRINT_HEX,
		  mnemonic, UINTVAL (info.u.mov.value));
      else if (info.u.mov.shift)
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, "
		  HOST_WIDE_INT_PRINT_HEX ", %s %d", mnemonic, lane_count,
		  element_char, UINTVAL (info.u.mov.value), shift_op,
		  info.u.mov.shift);
      else
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, "
		  HOST_WIDE_INT_PRINT_HEX, mnemonic, lane_count,
		  element_char, UINTVAL (info.u.mov.value));
    }
  else
    {
      /* For AARCH64_CHECK_BIC and AARCH64_CHECK_ORR.  */
      mnemonic = info.insn == simd_immediate_info::MVN ? "bic" : "orr";
      if (info.u.mov.shift)
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, #"
		  HOST_WIDE_INT_PRINT_DEC ", %s #%d", mnemonic, lane_count,
		  element_char, UINTVAL (info.u.mov.value), "lsl",
		  info.u.mov.shift);
      else
	snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, #"
		  HOST_WIDE_INT_PRINT_DEC, mnemonic, lane_count,
		  element_char, UINTVAL (info.u.mov.value));
    }
  return templ;
}

char*
aarch64_output_scalar_simd_mov_immediate (rtx immediate, scalar_int_mode mode)
{

  /* If a floating point number was passed and we desire to use it in an
     integer mode do the conversion to integer.  */
  if (CONST_DOUBLE_P (immediate) && GET_MODE_CLASS (mode) == MODE_INT)
    {
      unsigned HOST_WIDE_INT ival;
      if (!aarch64_reinterpret_float_as_int (immediate, &ival))
	  gcc_unreachable ();
      immediate = gen_int_mode (ival, mode);
    }

  machine_mode vmode;
  /* use a 64 bit mode for everything except for DI/DF/DD mode, where we use
     a 128 bit vector mode.  */
  int width = GET_MODE_BITSIZE (mode) == 64 ? 128 : 64;

  vmode = aarch64_simd_container_mode (mode, width);
  rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (immediate));
  return aarch64_output_simd_mov_immediate (v_op, width);
}

/* Return the output string to use for moving immediate CONST_VECTOR
   into an SVE register.  */

char *
aarch64_output_sve_mov_immediate (rtx const_vector)
{
  static char templ[40];
  struct simd_immediate_info info;
  char element_char;

  bool is_valid = aarch64_simd_valid_immediate (const_vector, &info);
  gcc_assert (is_valid);

  element_char = sizetochar (GET_MODE_BITSIZE (info.elt_mode));

  machine_mode vec_mode = GET_MODE (const_vector);
  if (aarch64_sve_pred_mode_p (vec_mode))
    {
      static char buf[sizeof ("ptrue\t%0.N, vlNNNNN")];
      if (info.insn == simd_immediate_info::MOV)
	{
	  gcc_assert (info.u.mov.value == const0_rtx);
	  snprintf (buf, sizeof (buf), "pfalse\t%%0.b");
	}
      else
	{
	  gcc_assert (info.insn == simd_immediate_info::PTRUE);
	  unsigned int total_bytes;
	  if (info.u.pattern == AARCH64_SV_ALL
	      && BYTES_PER_SVE_VECTOR.is_constant (&total_bytes))
	    snprintf (buf, sizeof (buf), "ptrue\t%%0.%c, vl%d", element_char,
		      total_bytes / GET_MODE_SIZE (info.elt_mode));
	  else
	    snprintf (buf, sizeof (buf), "ptrue\t%%0.%c, %s", element_char,
		      svpattern_token (info.u.pattern));
	}
      return buf;
    }

  if (info.insn == simd_immediate_info::INDEX)
    {
      snprintf (templ, sizeof (templ), "index\t%%0.%c, #"
		HOST_WIDE_INT_PRINT_DEC ", #" HOST_WIDE_INT_PRINT_DEC,
		element_char, INTVAL (info.u.index.base),
		INTVAL (info.u.index.step));
      return templ;
    }

  if (GET_MODE_CLASS (info.elt_mode) == MODE_FLOAT)
    {
      if (aarch64_float_const_zero_rtx_p (info.u.mov.value))
	info.u.mov.value = GEN_INT (0);
      else
	{
	  const int buf_size = 20;
	  char float_buf[buf_size] = {};
	  real_to_decimal_for_mode (float_buf,
				    CONST_DOUBLE_REAL_VALUE (info.u.mov.value),
				    buf_size, buf_size, 1, info.elt_mode);

	  snprintf (templ, sizeof (templ), "fmov\t%%0.%c, #%s",
		    element_char, float_buf);
	  return templ;
	}
    }

  snprintf (templ, sizeof (templ), "mov\t%%0.%c, #" HOST_WIDE_INT_PRINT_DEC,
	    element_char, INTVAL (info.u.mov.value));
  return templ;
}

/* Return the asm template for a PTRUES.  CONST_UNSPEC is the
   aarch64_sve_ptrue_svpattern_immediate that describes the predicate
   pattern.  */

char *
aarch64_output_sve_ptrues (rtx const_unspec)
{
  static char templ[40];

  struct simd_immediate_info info;
  bool is_valid = aarch64_simd_valid_immediate (const_unspec, &info);
  gcc_assert (is_valid && info.insn == simd_immediate_info::PTRUE);

  char element_char = sizetochar (GET_MODE_BITSIZE (info.elt_mode));
  snprintf (templ, sizeof (templ), "ptrues\t%%0.%c, %s", element_char,
	    svpattern_token (info.u.pattern));
  return templ;
}

/* Split operands into moves from op[1] + op[2] into op[0].  */

void
aarch64_split_combinev16qi (rtx operands[3])
{
  unsigned int dest = REGNO (operands[0]);
  unsigned int src1 = REGNO (operands[1]);
  unsigned int src2 = REGNO (operands[2]);
  machine_mode halfmode = GET_MODE (operands[1]);
  unsigned int halfregs = REG_NREGS (operands[1]);
  rtx destlo, desthi;

  gcc_assert (halfmode == V16QImode);

  if (src1 == dest && src2 == dest + halfregs)
    {
      /* No-op move.  Can't split to nothing; emit something.  */
      emit_note (NOTE_INSN_DELETED);
      return;
    }

  /* Preserve register attributes for variable tracking.  */
  destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0);
  desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs,
			       GET_MODE_SIZE (halfmode));

  /* Special case of reversed high/low parts.  */
  if (reg_overlap_mentioned_p (operands[2], destlo)
      && reg_overlap_mentioned_p (operands[1], desthi))
    {
      emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2]));
      emit_insn (gen_xorv16qi3 (operands[2], operands[1], operands[2]));
      emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2]));
    }
  else if (!reg_overlap_mentioned_p (operands[2], destlo))
    {
      /* Try to avoid unnecessary moves if part of the result
	 is in the right place already.  */
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
    }
  else
    {
      if (src2 != dest + halfregs)
	emit_move_insn (desthi, operands[2]);
      if (src1 != dest)
	emit_move_insn (destlo, operands[1]);
    }
}

/* vec_perm support.  */

struct expand_vec_perm_d
{
  rtx target, op0, op1;
  vec_perm_indices perm;
  machine_mode vmode;
  machine_mode op_mode;
  unsigned int vec_flags;
  unsigned int op_vec_flags;
  bool one_vector_p;
  bool testing_p;
};

static bool aarch64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d);

/* Generate a variable permutation.  */

static void
aarch64_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode vmode = GET_MODE (target);
  bool one_vector_p = rtx_equal_p (op0, op1);

  gcc_checking_assert (vmode == V8QImode || vmode == V16QImode);
  gcc_checking_assert (GET_MODE (op0) == vmode);
  gcc_checking_assert (GET_MODE (op1) == vmode);
  gcc_checking_assert (GET_MODE (sel) == vmode);
  gcc_checking_assert (TARGET_SIMD);

  if (one_vector_p)
    {
      if (vmode == V8QImode)
	{
	  /* Expand the argument to a V16QI mode by duplicating it.  */
	  rtx pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_aarch64_combinev8qi (pair, op0, op0));
	  emit_insn (gen_aarch64_qtbl1v8qi (target, pair, sel));
	}
      else
	{
	  emit_insn (gen_aarch64_qtbl1v16qi (target, op0, sel));
	}
    }
  else
    {
      rtx pair;

      if (vmode == V8QImode)
	{
	  pair = gen_reg_rtx (V16QImode);
	  emit_insn (gen_aarch64_combinev8qi (pair, op0, op1));
	  emit_insn (gen_aarch64_qtbl1v8qi (target, pair, sel));
	}
      else
	{
	  pair = gen_reg_rtx (V2x16QImode);
	  emit_insn (gen_aarch64_combinev16qi (pair, op0, op1));
	  emit_insn (gen_aarch64_qtbl2v16qi (target, pair, sel));
	}
    }
}

/* Expand a vec_perm with the operands given by TARGET, OP0, OP1 and SEL.
   NELT is the number of elements in the vector.  */

void
aarch64_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel,
			 unsigned int nelt)
{
  machine_mode vmode = GET_MODE (target);
  bool one_vector_p = rtx_equal_p (op0, op1);
  rtx mask;

  /* The TBL instruction does not use a modulo index, so we must take care
     of that ourselves.  */
  mask = aarch64_simd_gen_const_vector_dup (vmode,
      one_vector_p ? nelt - 1 : 2 * nelt - 1);
  sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN);

  /* For big-endian, we also need to reverse the index within the vector
     (but not which vector).  */
  if (BYTES_BIG_ENDIAN)
    {
      /* If one_vector_p, mask is a vector of (nelt - 1)'s already.  */
      if (!one_vector_p)
        mask = aarch64_simd_gen_const_vector_dup (vmode, nelt - 1);
      sel = expand_simple_binop (vmode, XOR, sel, mask,
				 NULL, 0, OPTAB_LIB_WIDEN);
    }
  aarch64_expand_vec_perm_1 (target, op0, op1, sel);
}

/* Generate (set TARGET (unspec [OP0 OP1] CODE)).  */

static void
emit_unspec2 (rtx target, int code, rtx op0, rtx op1)
{
  emit_insn (gen_rtx_SET (target,
			  gen_rtx_UNSPEC (GET_MODE (target),
					  gen_rtvec (2, op0, op1), code)));
}

/* Expand an SVE vec_perm with the given operands.  */

void
aarch64_expand_sve_vec_perm (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode data_mode = GET_MODE (target);
  machine_mode sel_mode = GET_MODE (sel);
  /* Enforced by the pattern condition.  */
  int nunits = GET_MODE_NUNITS (sel_mode).to_constant ();

  /* Note: vec_perm indices are supposed to wrap when they go beyond the
     size of the two value vectors, i.e. the upper bits of the indices
     are effectively ignored.  SVE TBL instead produces 0 for any
     out-of-range indices, so we need to modulo all the vec_perm indices
     to ensure they are all in range.  */
  rtx sel_reg = force_reg (sel_mode, sel);

  /* Check if the sel only references the first values vector.  */
  if (CONST_VECTOR_P (sel)
      && aarch64_const_vec_all_in_range_p (sel, 0, nunits - 1))
    {
      emit_unspec2 (target, UNSPEC_TBL, op0, sel_reg);
      return;
    }

  /* Check if the two values vectors are the same.  */
  if (rtx_equal_p (op0, op1))
    {
      rtx max_sel = aarch64_simd_gen_const_vector_dup (sel_mode, nunits - 1);
      rtx sel_mod = expand_simple_binop (sel_mode, AND, sel_reg, max_sel,
					 NULL, 0, OPTAB_DIRECT);
      emit_unspec2 (target, UNSPEC_TBL, op0, sel_mod);
      return;
    }

  /* Run TBL on for each value vector and combine the results.  */

  rtx res0 = gen_reg_rtx (data_mode);
  rtx res1 = gen_reg_rtx (data_mode);
  rtx neg_num_elems = aarch64_simd_gen_const_vector_dup (sel_mode, -nunits);
  if (!CONST_VECTOR_P (sel)
      || !aarch64_const_vec_all_in_range_p (sel, 0, 2 * nunits - 1))
    {
      rtx max_sel = aarch64_simd_gen_const_vector_dup (sel_mode,
						       2 * nunits - 1);
      sel_reg = expand_simple_binop (sel_mode, AND, sel_reg, max_sel,
				     NULL, 0, OPTAB_DIRECT);
    }
  emit_unspec2 (res0, UNSPEC_TBL, op0, sel_reg);
  rtx sel_sub = expand_simple_binop (sel_mode, PLUS, sel_reg, neg_num_elems,
				     NULL, 0, OPTAB_DIRECT);
  emit_unspec2 (res1, UNSPEC_TBL, op1, sel_sub);
  if (GET_MODE_CLASS (data_mode) == MODE_VECTOR_INT)
    emit_insn (gen_rtx_SET (target, gen_rtx_IOR (data_mode, res0, res1)));
  else
    emit_unspec2 (target, UNSPEC_IORF, res0, res1);
}

/* Recognize patterns suitable for the TRN instructions.  */
static bool
aarch64_evpc_trn (struct expand_vec_perm_d *d)
{
  HOST_WIDE_INT odd;
  poly_uint64 nelt = d->perm.length ();
  rtx out, in0, in1;
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  if (!d->perm[0].is_constant (&odd)
      || (odd != 0 && odd != 1)
      || !d->perm.series_p (0, 2, odd, 2)
      || !d->perm.series_p (1, 2, nelt + odd, 2))
    return false;

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  /* We don't need a big-endian lane correction for SVE; see the comment
     at the head of aarch64-sve.md for details.  */
  if (BYTES_BIG_ENDIAN && d->vec_flags == VEC_ADVSIMD)
    {
      std::swap (in0, in1);
      odd = !odd;
    }
  out = d->target;

  emit_set_insn (out, gen_rtx_UNSPEC (vmode, gen_rtvec (2, in0, in1),
				      odd ? UNSPEC_TRN2 : UNSPEC_TRN1));
  return true;
}

/* Try to re-encode the PERM constant so it combines odd and even elements.
   This rewrites constants such as {0, 1, 4, 5}/V4SF to {0, 2}/V2DI.
   We retry with this new constant with the full suite of patterns.  */
static bool
aarch64_evpc_reencode (struct expand_vec_perm_d *d)
{
  expand_vec_perm_d newd;
  unsigned HOST_WIDE_INT nelt;

  if (d->vec_flags != VEC_ADVSIMD)
    return false;

  /* Get the new mode.  Always twice the size of the inner
     and half the elements.  */
  poly_uint64 vec_bits = GET_MODE_BITSIZE (d->vmode);
  unsigned int new_elt_bits = GET_MODE_UNIT_BITSIZE (d->vmode) * 2;
  auto new_elt_mode = int_mode_for_size (new_elt_bits, false).require ();
  machine_mode new_mode = aarch64_simd_container_mode (new_elt_mode, vec_bits);

  if (new_mode == word_mode)
    return false;

  /* to_constant is safe since this routine is specific to Advanced SIMD
     vectors.  */
  nelt = d->perm.length ().to_constant ();

  vec_perm_builder newpermconst;
  newpermconst.new_vector (nelt / 2, nelt / 2, 1);

  /* Convert the perm constant if we can.  Require even, odd as the pairs.  */
  for (unsigned int i = 0; i < nelt; i += 2)
    {
      poly_int64 elt0 = d->perm[i];
      poly_int64 elt1 = d->perm[i + 1];
      poly_int64 newelt;
      if (!multiple_p (elt0, 2, &newelt) || maybe_ne (elt0 + 1, elt1))
	return false;
      newpermconst.quick_push (newelt.to_constant ());
    }
  newpermconst.finalize ();

  newd.vmode = new_mode;
  newd.vec_flags = VEC_ADVSIMD;
  newd.op_mode = newd.vmode;
  newd.op_vec_flags = newd.vec_flags;
  newd.target = d->target ? gen_lowpart (new_mode, d->target) : NULL;
  newd.op0 = d->op0 ? gen_lowpart (new_mode, d->op0) : NULL;
  newd.op1 = d->op1 ? gen_lowpart (new_mode, d->op1) : NULL;
  newd.testing_p = d->testing_p;
  newd.one_vector_p = d->one_vector_p;

  newd.perm.new_vector (newpermconst, newd.one_vector_p ? 1 : 2, nelt / 2);
  return aarch64_expand_vec_perm_const_1 (&newd);
}

/* Recognize patterns suitable for the UZP instructions.  */
static bool
aarch64_evpc_uzp (struct expand_vec_perm_d *d)
{
  HOST_WIDE_INT odd;
  rtx out, in0, in1;
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  if (!d->perm[0].is_constant (&odd)
      || (odd != 0 && odd != 1)
      || !d->perm.series_p (0, 1, odd, 2))
    return false;

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  /* We don't need a big-endian lane correction for SVE; see the comment
     at the head of aarch64-sve.md for details.  */
  if (BYTES_BIG_ENDIAN && d->vec_flags == VEC_ADVSIMD)
    {
      std::swap (in0, in1);
      odd = !odd;
    }
  out = d->target;

  emit_set_insn (out, gen_rtx_UNSPEC (vmode, gen_rtvec (2, in0, in1),
				      odd ? UNSPEC_UZP2 : UNSPEC_UZP1));
  return true;
}

/* Recognize patterns suitable for the ZIP instructions.  */
static bool
aarch64_evpc_zip (struct expand_vec_perm_d *d)
{
  unsigned int high;
  poly_uint64 nelt = d->perm.length ();
  rtx out, in0, in1;
  machine_mode vmode = d->vmode;

  if (GET_MODE_UNIT_SIZE (vmode) > 8)
    return false;

  /* Note that these are little-endian tests.
     We correct for big-endian later.  */
  poly_uint64 first = d->perm[0];
  if ((maybe_ne (first, 0U) && maybe_ne (first * 2, nelt))
      || !d->perm.series_p (0, 2, first, 1)
      || !d->perm.series_p (1, 2, first + nelt, 1))
    return false;
  high = maybe_ne (first, 0U);

  /* Success!  */
  if (d->testing_p)
    return true;

  in0 = d->op0;
  in1 = d->op1;
  /* We don't need a big-endian lane correction for SVE; see the comment
     at the head of aarch64-sve.md for details.  */
  if (BYTES_BIG_ENDIAN && d->vec_flags == VEC_ADVSIMD)
    {
      std::swap (in0, in1);
      high = !high;
    }
  out = d->target;

  emit_set_insn (out, gen_rtx_UNSPEC (vmode, gen_rtvec (2, in0, in1),
				      high ? UNSPEC_ZIP2 : UNSPEC_ZIP1));
  return true;
}

/* Recognize patterns for the EXT insn.  */

static bool
aarch64_evpc_ext (struct expand_vec_perm_d *d)
{
  HOST_WIDE_INT location;
  rtx offset;

  /* The first element always refers to the first vector.
     Check if the extracted indices are increasing by one.  */
  if (d->vec_flags == VEC_SVE_PRED
      || !d->perm[0].is_constant (&location)
      || !d->perm.series_p (0, 1, location, 1))
    return false;

  /* Success! */
  if (d->testing_p)
    return true;

  /* The case where (location == 0) is a no-op for both big- and little-endian,
     and is removed by the mid-end at optimization levels -O1 and higher.

     We don't need a big-endian lane correction for SVE; see the comment
     at the head of aarch64-sve.md for details.  */
  if (BYTES_BIG_ENDIAN && location != 0 && d->vec_flags == VEC_ADVSIMD)
    {
      /* After setup, we want the high elements of the first vector (stored
         at the LSB end of the register), and the low elements of the second
         vector (stored at the MSB end of the register). So swap.  */
      std::swap (d->op0, d->op1);
      /* location != 0 (above), so safe to assume (nelt - location) < nelt.
	 to_constant () is safe since this is restricted to Advanced SIMD
	 vectors.  */
      location = d->perm.length ().to_constant () - location;
    }

  offset = GEN_INT (location);
  emit_set_insn (d->target,
		 gen_rtx_UNSPEC (d->vmode,
				 gen_rtvec (3, d->op0, d->op1, offset),
				 UNSPEC_EXT));
  return true;
}

/* Recognize patterns for the REV{64,32,16} insns, which reverse elements
   within each 64-bit, 32-bit or 16-bit granule.  */

static bool
aarch64_evpc_rev_local (struct expand_vec_perm_d *d)
{
  HOST_WIDE_INT diff;
  unsigned int i, size, unspec;
  machine_mode pred_mode;

  if (d->vec_flags == VEC_SVE_PRED
      || !d->one_vector_p
      || !d->perm[0].is_constant (&diff)
      || !diff)
    return false;

  if (d->vec_flags & VEC_SVE_DATA)
    size = (diff + 1) * aarch64_sve_container_bits (d->vmode);
  else
    size = (diff + 1) * GET_MODE_UNIT_BITSIZE (d->vmode);
  if (size == 64)
    {
      unspec = UNSPEC_REV64;
      pred_mode = VNx2BImode;
    }
  else if (size == 32)
    {
      unspec = UNSPEC_REV32;
      pred_mode = VNx4BImode;
    }
  else if (size == 16)
    {
      unspec = UNSPEC_REV16;
      pred_mode = VNx8BImode;
    }
  else
    return false;

  unsigned int step = diff + 1;
  for (i = 0; i < step; ++i)
    if (!d->perm.series_p (i, step, diff - i, step))
      return false;

  /* Success! */
  if (d->testing_p)
    return true;

  if (d->vec_flags & VEC_SVE_DATA)
    {
      rtx pred = aarch64_ptrue_reg (pred_mode);
      emit_insn (gen_aarch64_sve_revbhw (d->vmode, pred_mode,
					 d->target, pred, d->op0));
      return true;
    }
  rtx src = gen_rtx_UNSPEC (d->vmode, gen_rtvec (1, d->op0), unspec);
  emit_set_insn (d->target, src);
  return true;
}

/* Recognize patterns for the REV insn, which reverses elements within
   a full vector.  */

static bool
aarch64_evpc_rev_global (struct expand_vec_perm_d *d)
{
  poly_uint64 nelt = d->perm.length ();

  if (!d->one_vector_p || d->vec_flags == VEC_ADVSIMD)
    return false;

  if (!d->perm.series_p (0, 1, nelt - 1, -1))
    return false;

  /* Success! */
  if (d->testing_p)
    return true;

  rtx src = gen_rtx_UNSPEC (d->vmode, gen_rtvec (1, d->op0), UNSPEC_REV);
  emit_set_insn (d->target, src);
  return true;
}

static bool
aarch64_evpc_dup (struct expand_vec_perm_d *d)
{
  rtx out = d->target;
  rtx in0;
  HOST_WIDE_INT elt;
  machine_mode vmode = d->vmode;
  rtx lane;

  if (d->vec_flags == VEC_SVE_PRED
      || d->perm.encoding ().encoded_nelts () != 1
      || !d->perm[0].is_constant (&elt))
    return false;

  if ((d->vec_flags & VEC_SVE_DATA)
      && elt * (aarch64_sve_container_bits (vmode) / 8) >= 64)
    return false;

  /* Success! */
  if (d->testing_p)
    return true;

  /* The generic preparation in aarch64_expand_vec_perm_const_1
     swaps the operand order and the permute indices if it finds
     d->perm[0] to be in the second operand.  Thus, we can always
     use d->op0 and need not do any extra arithmetic to get the
     correct lane number.  */
  in0 = d->op0;
  lane = GEN_INT (elt); /* The pattern corrects for big-endian.  */

  rtx parallel = gen_rtx_PARALLEL (vmode, gen_rtvec (1, lane));
  rtx select = gen_rtx_VEC_SELECT (GET_MODE_INNER (vmode), in0, parallel);
  emit_set_insn (out, gen_rtx_VEC_DUPLICATE (vmode, select));
  return true;
}

static bool
aarch64_evpc_tbl (struct expand_vec_perm_d *d)
{
  rtx rperm[MAX_COMPILE_TIME_VEC_BYTES], sel;
  machine_mode vmode = d->vmode;

  /* Make sure that the indices are constant.  */
  unsigned int encoded_nelts = d->perm.encoding ().encoded_nelts ();
  for (unsigned int i = 0; i < encoded_nelts; ++i)
    if (!d->perm[i].is_constant ())
      return false;

  if (d->testing_p)
    return true;

  /* Generic code will try constant permutation twice.  Once with the
     original mode and again with the elements lowered to QImode.
     So wait and don't do the selector expansion ourselves.  */
  if (vmode != V8QImode && vmode != V16QImode)
    return false;

  /* to_constant is safe since this routine is specific to Advanced SIMD
     vectors.  */
  unsigned int nelt = d->perm.length ().to_constant ();
  for (unsigned int i = 0; i < nelt; ++i)
    /* If big-endian and two vectors we end up with a weird mixed-endian
       mode on NEON.  Reverse the index within each word but not the word
       itself.  to_constant is safe because we checked is_constant above.  */
    rperm[i] = GEN_INT (BYTES_BIG_ENDIAN
			? d->perm[i].to_constant () ^ (nelt - 1)
			: d->perm[i].to_constant ());

  sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm));
  sel = force_reg (vmode, sel);

  aarch64_expand_vec_perm_1 (d->target, d->op0, d->op1, sel);
  return true;
}

/* Try to implement D using an SVE TBL instruction.  */

static bool
aarch64_evpc_sve_tbl (struct expand_vec_perm_d *d)
{
  unsigned HOST_WIDE_INT nelt;

  /* Permuting two variable-length vectors could overflow the
     index range.  */
  if (!d->one_vector_p && !d->perm.length ().is_constant (&nelt))
    return false;

  if (d->testing_p)
    return true;

  machine_mode sel_mode = related_int_vector_mode (d->vmode).require ();
  rtx sel = vec_perm_indices_to_rtx (sel_mode, d->perm);
  if (d->one_vector_p)
    emit_unspec2 (d->target, UNSPEC_TBL, d->op0, force_reg (sel_mode, sel));
  else
    aarch64_expand_sve_vec_perm (d->target, d->op0, d->op1, sel);
  return true;
}

/* Try to implement D using SVE dup instruction.  */

static bool
aarch64_evpc_sve_dup (struct expand_vec_perm_d *d)
{
  if (BYTES_BIG_ENDIAN
      || !d->one_vector_p
      || d->vec_flags != VEC_SVE_DATA
      || d->op_vec_flags != VEC_ADVSIMD
      || d->perm.encoding ().nelts_per_pattern () != 1
      || !known_eq (d->perm.encoding ().npatterns (),
		    GET_MODE_NUNITS (d->op_mode))
      || !known_eq (GET_MODE_BITSIZE (d->op_mode), 128))
    return false;

  int npatterns = d->perm.encoding ().npatterns ();
  for (int i = 0; i < npatterns; i++)
    if (!known_eq (d->perm[i], i))
      return false;

  if (d->testing_p)
    return true;

  aarch64_expand_sve_dupq (d->target, GET_MODE (d->target), d->op0);
  return true;
}

/* Try to implement D using SVE SEL instruction.  */

static bool
aarch64_evpc_sel (struct expand_vec_perm_d *d)
{
  machine_mode vmode = d->vmode;
  int unit_size = GET_MODE_UNIT_SIZE (vmode);

  if (d->vec_flags != VEC_SVE_DATA
      || unit_size > 8)
    return false;

  int n_patterns = d->perm.encoding ().npatterns ();
  poly_int64 vec_len = d->perm.length ();

  for (int i = 0; i < n_patterns; ++i)
    if (!known_eq (d->perm[i], i)
	&& !known_eq (d->perm[i], vec_len + i))
      return false;

  for (int i = n_patterns; i < n_patterns * 2; i++)
    if (!d->perm.series_p (i, n_patterns, i, n_patterns)
	&& !d->perm.series_p (i, n_patterns, vec_len + i, n_patterns))
      return false;

  if (d->testing_p)
    return true;

  machine_mode pred_mode = aarch64_sve_pred_mode (vmode);

  /* Build a predicate that is true when op0 elements should be used.  */
  rtx_vector_builder builder (pred_mode, n_patterns, 2);
  for (int i = 0; i < n_patterns * 2; i++)
    {
      rtx elem = known_eq (d->perm[i], i) ? CONST1_RTX (BImode)
					  : CONST0_RTX (BImode);
      builder.quick_push (elem);
    }

  rtx const_vec = builder.build ();
  rtx pred = force_reg (pred_mode, const_vec);
  /* TARGET = PRED ? OP0 : OP1.  */
  emit_insn (gen_vcond_mask (vmode, vmode, d->target, d->op0, d->op1, pred));
  return true;
}

/* Recognize patterns suitable for the INS instructions.  */
static bool
aarch64_evpc_ins (struct expand_vec_perm_d *d)
{
  machine_mode mode = d->vmode;
  unsigned HOST_WIDE_INT nelt;

  if (d->vec_flags != VEC_ADVSIMD)
    return false;

  /* to_constant is safe since this routine is specific to Advanced SIMD
     vectors.  */
  nelt = d->perm.length ().to_constant ();
  rtx insv = d->op0;

  HOST_WIDE_INT idx = -1;

  for (unsigned HOST_WIDE_INT i = 0; i < nelt; i++)
    {
      HOST_WIDE_INT elt;
      if (!d->perm[i].is_constant (&elt))
	return false;
      if (elt == (HOST_WIDE_INT) i)
	continue;
      if (idx != -1)
	{
	  idx = -1;
	  break;
	}
      idx = i;
    }

  if (idx == -1)
    {
      insv = d->op1;
      for (unsigned HOST_WIDE_INT i = 0; i < nelt; i++)
	{
	  if (d->perm[i].to_constant () == (HOST_WIDE_INT) (i + nelt))
	    continue;
	  if (idx != -1)
	    return false;
	  idx = i;
	}

      if (idx == -1)
	return false;
    }

  if (d->testing_p)
    return true;

  gcc_assert (idx != -1);

  unsigned extractindex = d->perm[idx].to_constant ();
  rtx extractv = d->op0;
  if (extractindex >= nelt)
    {
      extractv = d->op1;
      extractindex -= nelt;
    }
  gcc_assert (extractindex < nelt);

  insn_code icode = code_for_aarch64_simd_vec_copy_lane (mode);
  expand_operand ops[5];
  create_output_operand (&ops[0], d->target, mode);
  create_input_operand (&ops[1], insv, mode);
  create_integer_operand (&ops[2], 1 << idx);
  create_input_operand (&ops[3], extractv, mode);
  create_integer_operand (&ops[4], extractindex);
  expand_insn (icode, 5, ops);

  return true;
}

static bool
aarch64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
{
  gcc_assert (d->op_mode != E_VOIDmode);

  /* The pattern matching functions above are written to look for a small
     number to begin the sequence (0, 1, N/2).  If we begin with an index
     from the second operand, we can swap the operands.  */
  poly_int64 nelt = d->perm.length ();
  if (known_ge (d->perm[0], nelt))
    {
      d->perm.rotate_inputs (1);
      std::swap (d->op0, d->op1);
    }

  if (((d->vec_flags == VEC_ADVSIMD && TARGET_SIMD)
       || d->vec_flags == VEC_SVE_DATA
       || d->vec_flags == (VEC_SVE_DATA | VEC_PARTIAL)
       || d->vec_flags == VEC_SVE_PRED)
      && known_gt (nelt, 1))
    {
      if (d->vmode == d->op_mode)
	{
	  if (aarch64_evpc_rev_local (d))
	    return true;
	  else if (aarch64_evpc_rev_global (d))
	    return true;
	  else if (aarch64_evpc_ext (d))
	    return true;
	  else if (aarch64_evpc_dup (d))
	    return true;
	  else if (aarch64_evpc_zip (d))
	    return true;
	  else if (aarch64_evpc_uzp (d))
	    return true;
	  else if (aarch64_evpc_trn (d))
	    return true;
	  else if (aarch64_evpc_sel (d))
	    return true;
	  else if (aarch64_evpc_ins (d))
	    return true;
	  else if (aarch64_evpc_reencode (d))
	    return true;

	  if (d->vec_flags == VEC_SVE_DATA)
	    return aarch64_evpc_sve_tbl (d);
	  else if (d->vec_flags == VEC_ADVSIMD)
	    return aarch64_evpc_tbl (d);
	}
      else
	{
	  if (aarch64_evpc_sve_dup (d))
	    return true;
	}
    }
  return false;
}

/* Implement TARGET_VECTORIZE_VEC_PERM_CONST.  */

static bool
aarch64_vectorize_vec_perm_const (machine_mode vmode, machine_mode op_mode,
				  rtx target, rtx op0, rtx op1,
				  const vec_perm_indices &sel)
{
  struct expand_vec_perm_d d;

  /* Check whether the mask can be applied to a single vector.  */
  if (sel.ninputs () == 1
      || (op0 && rtx_equal_p (op0, op1)))
    d.one_vector_p = true;
  else if (sel.all_from_input_p (0))
    {
      d.one_vector_p = true;
      op1 = op0;
    }
  else if (sel.all_from_input_p (1))
    {
      d.one_vector_p = true;
      op0 = op1;
    }
  else
    d.one_vector_p = false;

  d.perm.new_vector (sel.encoding (), d.one_vector_p ? 1 : 2,
		     sel.nelts_per_input ());
  d.vmode = vmode;
  d.vec_flags = aarch64_classify_vector_mode (d.vmode);
  d.op_mode = op_mode;
  d.op_vec_flags = aarch64_classify_vector_mode (d.op_mode);
  d.target = target;
  d.op0 = op0 ? force_reg (op_mode, op0) : NULL_RTX;
  if (op0 == op1)
    d.op1 = d.op0;
  else
    d.op1 = op1 ? force_reg (op_mode, op1) : NULL_RTX;
  d.testing_p = !target;

  if (!d.testing_p)
    return aarch64_expand_vec_perm_const_1 (&d);

  rtx_insn *last = get_last_insn ();
  bool ret = aarch64_expand_vec_perm_const_1 (&d);
  gcc_assert (last == get_last_insn ());

  return ret;
}

/* Generate a byte permute mask for a register of mode MODE,
   which has NUNITS units.  */

rtx
aarch64_reverse_mask (machine_mode mode, unsigned int nunits)
{
  /* We have to reverse each vector because we dont have
     a permuted load that can reverse-load according to ABI rules.  */
  rtx mask;
  rtvec v = rtvec_alloc (16);
  unsigned int i, j;
  unsigned int usize = GET_MODE_UNIT_SIZE (mode);

  gcc_assert (BYTES_BIG_ENDIAN);
  gcc_assert (AARCH64_VALID_SIMD_QREG_MODE (mode));

  for (i = 0; i < nunits; i++)
    for (j = 0; j < usize; j++)
      RTVEC_ELT (v, i * usize + j) = GEN_INT ((i + 1) * usize - 1 - j);
  mask = gen_rtx_CONST_VECTOR (V16QImode, v);
  return force_reg (V16QImode, mask);
}

/* Expand an SVE integer comparison using the SVE equivalent of:

     (set TARGET (CODE OP0 OP1)).  */

void
aarch64_expand_sve_vec_cmp_int (rtx target, rtx_code code, rtx op0, rtx op1)
{
  machine_mode pred_mode = GET_MODE (target);
  machine_mode data_mode = GET_MODE (op0);
  rtx res = aarch64_sve_emit_int_cmp (target, pred_mode, code, data_mode,
				      op0, op1);
  if (!rtx_equal_p (target, res))
    emit_move_insn (target, res);
}

/* Return the UNSPEC_COND_* code for comparison CODE.  */

static unsigned int
aarch64_unspec_cond_code (rtx_code code)
{
  switch (code)
    {
    case NE:
      return UNSPEC_COND_FCMNE;
    case EQ:
      return UNSPEC_COND_FCMEQ;
    case LT:
      return UNSPEC_COND_FCMLT;
    case GT:
      return UNSPEC_COND_FCMGT;
    case LE:
      return UNSPEC_COND_FCMLE;
    case GE:
      return UNSPEC_COND_FCMGE;
    case UNORDERED:
      return UNSPEC_COND_FCMUO;
    default:
      gcc_unreachable ();
    }
}

/* Emit:

      (set TARGET (unspec [PRED KNOWN_PTRUE_P OP0 OP1] UNSPEC_COND_<X>))

   where <X> is the operation associated with comparison CODE.
   KNOWN_PTRUE_P is true if PRED is known to be a PTRUE.  */

static void
aarch64_emit_sve_fp_cond (rtx target, rtx_code code, rtx pred,
			  bool known_ptrue_p, rtx op0, rtx op1)
{
  rtx flag = gen_int_mode (known_ptrue_p, SImode);
  rtx unspec = gen_rtx_UNSPEC (GET_MODE (pred),
			       gen_rtvec (4, pred, flag, op0, op1),
			       aarch64_unspec_cond_code (code));
  emit_set_insn (target, unspec);
}

/* Emit the SVE equivalent of:

      (set TMP1 (unspec [PRED KNOWN_PTRUE_P OP0 OP1] UNSPEC_COND_<X1>))
      (set TMP2 (unspec [PRED KNOWN_PTRUE_P OP0 OP1] UNSPEC_COND_<X2>))
      (set TARGET (ior:PRED_MODE TMP1 TMP2))

   where <Xi> is the operation associated with comparison CODEi.
   KNOWN_PTRUE_P is true if PRED is known to be a PTRUE.  */

static void
aarch64_emit_sve_or_fp_conds (rtx target, rtx_code code1, rtx_code code2,
			      rtx pred, bool known_ptrue_p, rtx op0, rtx op1)
{
  machine_mode pred_mode = GET_MODE (pred);
  rtx tmp1 = gen_reg_rtx (pred_mode);
  aarch64_emit_sve_fp_cond (tmp1, code1, pred, known_ptrue_p, op0, op1);
  rtx tmp2 = gen_reg_rtx (pred_mode);
  aarch64_emit_sve_fp_cond (tmp2, code2, pred, known_ptrue_p, op0, op1);
  aarch64_emit_binop (target, ior_optab, tmp1, tmp2);
}

/* Emit the SVE equivalent of:

      (set TMP (unspec [PRED KNOWN_PTRUE_P OP0 OP1] UNSPEC_COND_<X>))
      (set TARGET (not TMP))

   where <X> is the operation associated with comparison CODE.
   KNOWN_PTRUE_P is true if PRED is known to be a PTRUE.  */

static void
aarch64_emit_sve_invert_fp_cond (rtx target, rtx_code code, rtx pred,
				 bool known_ptrue_p, rtx op0, rtx op1)
{
  machine_mode pred_mode = GET_MODE (pred);
  rtx tmp = gen_reg_rtx (pred_mode);
  aarch64_emit_sve_fp_cond (tmp, code, pred, known_ptrue_p, op0, op1);
  aarch64_emit_unop (target, one_cmpl_optab, tmp);
}

/* Expand an SVE floating-point comparison using the SVE equivalent of:

     (set TARGET (CODE OP0 OP1))

   If CAN_INVERT_P is true, the caller can also handle inverted results;
   return true if the result is in fact inverted.  */

bool
aarch64_expand_sve_vec_cmp_float (rtx target, rtx_code code,
				  rtx op0, rtx op1, bool can_invert_p)
{
  machine_mode pred_mode = GET_MODE (target);
  machine_mode data_mode = GET_MODE (op0);

  rtx ptrue = aarch64_ptrue_reg (pred_mode);
  switch (code)
    {
    case UNORDERED:
      /* UNORDERED has no immediate form.  */
      op1 = force_reg (data_mode, op1);
      /* fall through */
    case LT:
    case LE:
    case GT:
    case GE:
    case EQ:
    case NE:
      {
	/* There is native support for the comparison.  */
	aarch64_emit_sve_fp_cond (target, code, ptrue, true, op0, op1);
	return false;
      }

    case LTGT:
      /* This is a trapping operation (LT or GT).  */
      aarch64_emit_sve_or_fp_conds (target, LT, GT, ptrue, true, op0, op1);
      return false;

    case UNEQ:
      if (!flag_trapping_math)
	{
	  /* This would trap for signaling NaNs.  */
	  op1 = force_reg (data_mode, op1);
	  aarch64_emit_sve_or_fp_conds (target, UNORDERED, EQ,
					ptrue, true, op0, op1);
	  return false;
	}
      /* fall through */
    case UNLT:
    case UNLE:
    case UNGT:
    case UNGE:
      if (flag_trapping_math)
	{
	  /* Work out which elements are ordered.  */
	  rtx ordered = gen_reg_rtx (pred_mode);
	  op1 = force_reg (data_mode, op1);
	  aarch64_emit_sve_invert_fp_cond (ordered, UNORDERED,
					   ptrue, true, op0, op1);

	  /* Test the opposite condition for the ordered elements,
	     then invert the result.  */
	  if (code == UNEQ)
	    code = NE;
	  else
	    code = reverse_condition_maybe_unordered (code);
	  if (can_invert_p)
	    {
	      aarch64_emit_sve_fp_cond (target, code,
					ordered, false, op0, op1);
	      return true;
	    }
	  aarch64_emit_sve_invert_fp_cond (target, code,
					   ordered, false, op0, op1);
	  return false;
	}
      break;

    case ORDERED:
      /* ORDERED has no immediate form.  */
      op1 = force_reg (data_mode, op1);
      break;

    default:
      gcc_unreachable ();
    }

  /* There is native support for the inverse comparison.  */
  code = reverse_condition_maybe_unordered (code);
  if (can_invert_p)
    {
      aarch64_emit_sve_fp_cond (target, code, ptrue, true, op0, op1);
      return true;
    }
  aarch64_emit_sve_invert_fp_cond (target, code, ptrue, true, op0, op1);
  return false;
}

/* Expand an SVE vcond pattern with operands OPS.  DATA_MODE is the mode
   of the data being selected and CMP_MODE is the mode of the values being
   compared.  */

void
aarch64_expand_sve_vcond (machine_mode data_mode, machine_mode cmp_mode,
			  rtx *ops)
{
  machine_mode pred_mode = aarch64_get_mask_mode (cmp_mode).require ();
  rtx pred = gen_reg_rtx (pred_mode);
  if (FLOAT_MODE_P (cmp_mode))
    {
      if (aarch64_expand_sve_vec_cmp_float (pred, GET_CODE (ops[3]),
					    ops[4], ops[5], true))
	std::swap (ops[1], ops[2]);
    }
  else
    aarch64_expand_sve_vec_cmp_int (pred, GET_CODE (ops[3]), ops[4], ops[5]);

  if (!aarch64_sve_reg_or_dup_imm (ops[1], data_mode))
    ops[1] = force_reg (data_mode, ops[1]);
  /* The "false" value can only be zero if the "true" value is a constant.  */
  if (register_operand (ops[1], data_mode)
      || !aarch64_simd_reg_or_zero (ops[2], data_mode))
    ops[2] = force_reg (data_mode, ops[2]);

  rtvec vec = gen_rtvec (3, pred, ops[1], ops[2]);
  emit_set_insn (ops[0], gen_rtx_UNSPEC (data_mode, vec, UNSPEC_SEL));
}

/* Implement TARGET_MODES_TIEABLE_P.  In principle we should always return
   true.  However due to issues with register allocation it is preferable
   to avoid tieing integer scalar and FP scalar modes.  Executing integer
   operations in general registers is better than treating them as scalar
   vector operations.  This reduces latency and avoids redundant int<->FP
   moves.  So tie modes if they are either the same class, or vector modes
   with other vector modes, vector structs or any scalar mode.  */

static bool
aarch64_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  if ((aarch64_advsimd_partial_struct_mode_p (mode1)
       != aarch64_advsimd_partial_struct_mode_p (mode2))
      && maybe_gt (GET_MODE_SIZE (mode1), 8)
      && maybe_gt (GET_MODE_SIZE (mode2), 8))
    return false;

  if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2))
    return true;

  /* We specifically want to allow elements of "structure" modes to
     be tieable to the structure.  This more general condition allows
     other rarer situations too.  The reason we don't extend this to
     predicate modes is that there are no predicate structure modes
     nor any specific instructions for extracting part of a predicate
     register.  */
  if (aarch64_vector_data_mode_p (mode1)
      && aarch64_vector_data_mode_p (mode2))
    return true;

  /* Also allow any scalar modes with vectors.  */
  if (aarch64_vector_mode_supported_p (mode1)
      || aarch64_vector_mode_supported_p (mode2))
    return true;

  return false;
}

/* Return a new RTX holding the result of moving POINTER forward by
   AMOUNT bytes.  */

static rtx
aarch64_move_pointer (rtx pointer, poly_int64 amount)
{
  rtx next = plus_constant (Pmode, XEXP (pointer, 0), amount);

  return adjust_automodify_address (pointer, GET_MODE (pointer),
				    next, amount);
}

/* Return a new RTX holding the result of moving POINTER forward by the
   size of the mode it points to.  */

static rtx
aarch64_progress_pointer (rtx pointer)
{
  return aarch64_move_pointer (pointer, GET_MODE_SIZE (GET_MODE (pointer)));
}

/* Copy one MODE sized block from SRC to DST, then progress SRC and DST by
   MODE bytes.  */

static void
aarch64_copy_one_block_and_progress_pointers (rtx *src, rtx *dst,
					      machine_mode mode)
{
  /* Handle 256-bit memcpy separately.  We do this by making 2 adjacent memory
     address copies using V4SImode so that we can use Q registers.  */
  if (known_eq (GET_MODE_BITSIZE (mode), 256))
    {
      mode = V4SImode;
      rtx reg1 = gen_reg_rtx (mode);
      rtx reg2 = gen_reg_rtx (mode);
      /* "Cast" the pointers to the correct mode.  */
      *src = adjust_address (*src, mode, 0);
      *dst = adjust_address (*dst, mode, 0);
      /* Emit the memcpy.  */
      emit_insn (aarch64_gen_load_pair (mode, reg1, *src, reg2,
					aarch64_progress_pointer (*src)));
      emit_insn (aarch64_gen_store_pair (mode, *dst, reg1,
					 aarch64_progress_pointer (*dst), reg2));
      /* Move the pointers forward.  */
      *src = aarch64_move_pointer (*src, 32);
      *dst = aarch64_move_pointer (*dst, 32);
      return;
    }

  rtx reg = gen_reg_rtx (mode);

  /* "Cast" the pointers to the correct mode.  */
  *src = adjust_address (*src, mode, 0);
  *dst = adjust_address (*dst, mode, 0);
  /* Emit the memcpy.  */
  emit_move_insn (reg, *src);
  emit_move_insn (*dst, reg);
  /* Move the pointers forward.  */
  *src = aarch64_progress_pointer (*src);
  *dst = aarch64_progress_pointer (*dst);
}

/* Expand a cpymem using the MOPS extension.  OPERANDS are taken
   from the cpymem pattern.  Return true iff we succeeded.  */
static bool
aarch64_expand_cpymem_mops (rtx *operands)
{
  if (!TARGET_MOPS)
    return false;

  /* All three registers are changed by the instruction, so each one
     must be a fresh pseudo.  */
  rtx dst_addr = copy_to_mode_reg (Pmode, XEXP (operands[0], 0));
  rtx src_addr = copy_to_mode_reg (Pmode, XEXP (operands[1], 0));
  rtx dst_mem = replace_equiv_address (operands[0], dst_addr);
  rtx src_mem = replace_equiv_address (operands[1], src_addr);
  rtx sz_reg = copy_to_mode_reg (DImode, operands[2]);
  emit_insn (gen_aarch64_cpymemdi (dst_mem, src_mem, sz_reg));

  return true;
}

/* Expand cpymem, as if from a __builtin_memcpy.  Return true if
   we succeed, otherwise return false, indicating that a libcall to
   memcpy should be emitted.  */

bool
aarch64_expand_cpymem (rtx *operands)
{
  int mode_bits;
  rtx dst = operands[0];
  rtx src = operands[1];
  rtx base;
  machine_mode cur_mode = BLKmode;

  /* Variable-sized memcpy can go through the MOPS expansion if available.  */
  if (!CONST_INT_P (operands[2]))
    return aarch64_expand_cpymem_mops (operands);

  unsigned HOST_WIDE_INT size = INTVAL (operands[2]);

  /* Try to inline up to 256 bytes or use the MOPS threshold if available.  */
  unsigned HOST_WIDE_INT max_copy_size
    = TARGET_MOPS ? aarch64_mops_memcpy_size_threshold : 256;

  bool size_p = optimize_function_for_size_p (cfun);

  /* Large constant-sized cpymem should go through MOPS when possible.
     It should be a win even for size optimization in the general case.
     For speed optimization the choice between MOPS and the SIMD sequence
     depends on the size of the copy, rather than number of instructions,
     alignment etc.  */
  if (size > max_copy_size)
    return aarch64_expand_cpymem_mops (operands);

  int copy_bits = 256;

  /* Default to 256-bit LDP/STP on large copies, however small copies, no SIMD
     support or slow 256-bit LDP/STP fall back to 128-bit chunks.  */
  if (size <= 24
      || !TARGET_SIMD
      || (aarch64_tune_params.extra_tuning_flags
	  & AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS))
    copy_bits = 128;

  /* Emit an inline load+store sequence and count the number of operations
     involved.  We use a simple count of just the loads and stores emitted
     rather than rtx_insn count as all the pointer adjustments and reg copying
     in this function will get optimized away later in the pipeline.  */
  start_sequence ();
  unsigned nops = 0;

  base = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  dst = adjust_automodify_address (dst, VOIDmode, base, 0);

  base = copy_to_mode_reg (Pmode, XEXP (src, 0));
  src = adjust_automodify_address (src, VOIDmode, base, 0);

  /* Convert size to bits to make the rest of the code simpler.  */
  int n = size * BITS_PER_UNIT;

  while (n > 0)
    {
      /* Find the largest mode in which to do the copy in without over reading
	 or writing.  */
      opt_scalar_int_mode mode_iter;
      FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
	if (GET_MODE_BITSIZE (mode_iter.require ()) <= MIN (n, copy_bits))
	  cur_mode = mode_iter.require ();

      gcc_assert (cur_mode != BLKmode);

      mode_bits = GET_MODE_BITSIZE (cur_mode).to_constant ();

      /* Prefer Q-register accesses for the last bytes.  */
      if (mode_bits == 128 && copy_bits == 256)
	cur_mode = V4SImode;

      aarch64_copy_one_block_and_progress_pointers (&src, &dst, cur_mode);
      /* A single block copy is 1 load + 1 store.  */
      nops += 2;
      n -= mode_bits;

      /* Emit trailing copies using overlapping unaligned accesses
	(when !STRICT_ALIGNMENT) - this is smaller and faster.  */
      if (n > 0 && n < copy_bits / 2 && !STRICT_ALIGNMENT)
	{
	  machine_mode next_mode = smallest_mode_for_size (n, MODE_INT);
	  int n_bits = GET_MODE_BITSIZE (next_mode).to_constant ();
	  gcc_assert (n_bits <= mode_bits);
	  src = aarch64_move_pointer (src, (n - n_bits) / BITS_PER_UNIT);
	  dst = aarch64_move_pointer (dst, (n - n_bits) / BITS_PER_UNIT);
	  n = n_bits;
	}
    }
  rtx_insn *seq = get_insns ();
  end_sequence ();
  /* MOPS sequence requires 3 instructions for the memory copying + 1 to move
     the constant size into a register.  */
  unsigned mops_cost = 3 + 1;

  /* If MOPS is available at this point we don't consider the libcall as it's
     not a win even on code size.  At this point only consider MOPS if
     optimizing for size.  For speed optimizations we will have chosen between
     the two based on copy size already.  */
  if (TARGET_MOPS)
    {
      if (size_p && mops_cost < nops)
	return aarch64_expand_cpymem_mops (operands);
      emit_insn (seq);
      return true;
    }

  /* A memcpy libcall in the worst case takes 3 instructions to prepare the
     arguments + 1 for the call.  When MOPS is not available and we're
     optimizing for size a libcall may be preferable.  */
  unsigned libcall_cost = 4;
  if (size_p && libcall_cost < nops)
    return false;

  emit_insn (seq);
  return true;
}

/* Like aarch64_copy_one_block_and_progress_pointers, except for memset where
   SRC is a register we have created with the duplicated value to be set.  */
static void
aarch64_set_one_block_and_progress_pointer (rtx src, rtx *dst,
					    machine_mode mode)
{
  /* If we are copying 128bits or 256bits, we can do that straight from
     the SIMD register we prepared.  */
  if (known_eq (GET_MODE_BITSIZE (mode), 256))
    {
      mode = GET_MODE (src);
      /* "Cast" the *dst to the correct mode.  */
      *dst = adjust_address (*dst, mode, 0);
      /* Emit the memset.  */
      emit_insn (aarch64_gen_store_pair (mode, *dst, src,
					 aarch64_progress_pointer (*dst), src));

      /* Move the pointers forward.  */
      *dst = aarch64_move_pointer (*dst, 32);
      return;
    }
  if (known_eq (GET_MODE_BITSIZE (mode), 128))
    {
      /* "Cast" the *dst to the correct mode.  */
      *dst = adjust_address (*dst, GET_MODE (src), 0);
      /* Emit the memset.  */
      emit_move_insn (*dst, src);
      /* Move the pointers forward.  */
      *dst = aarch64_move_pointer (*dst, 16);
      return;
    }
  /* For copying less, we have to extract the right amount from src.  */
  rtx reg = lowpart_subreg (mode, src, GET_MODE (src));

  /* "Cast" the *dst to the correct mode.  */
  *dst = adjust_address (*dst, mode, 0);
  /* Emit the memset.  */
  emit_move_insn (*dst, reg);
  /* Move the pointer forward.  */
  *dst = aarch64_progress_pointer (*dst);
}

/* Expand a setmem using the MOPS instructions.  OPERANDS are the same
   as for the setmem pattern.  Return true iff we succeed.  */
static bool
aarch64_expand_setmem_mops (rtx *operands)
{
  if (!TARGET_MOPS)
    return false;

  /* The first two registers are changed by the instruction, so both
     of them must be a fresh pseudo.  */
  rtx dst_addr = copy_to_mode_reg (Pmode, XEXP (operands[0], 0));
  rtx dst_mem = replace_equiv_address (operands[0], dst_addr);
  rtx sz_reg = copy_to_mode_reg (DImode, operands[1]);
  rtx val = operands[2];
  if (val != CONST0_RTX (QImode))
    val = force_reg (QImode, val);
  emit_insn (gen_aarch64_setmemdi (dst_mem, val, sz_reg));
  return true;
}

/* Expand setmem, as if from a __builtin_memset.  Return true if
   we succeed, otherwise return false.  */

bool
aarch64_expand_setmem (rtx *operands)
{
  int n, mode_bits;
  unsigned HOST_WIDE_INT len;
  rtx dst = operands[0];
  rtx val = operands[2], src;
  rtx base;
  machine_mode cur_mode = BLKmode, next_mode;

  /* If we don't have SIMD registers or the size is variable use the MOPS
     inlined sequence if possible.  */
  if (!CONST_INT_P (operands[1]) || !TARGET_SIMD)
    return aarch64_expand_setmem_mops (operands);

  bool size_p = optimize_function_for_size_p (cfun);

  /* Default the maximum to 256-bytes when considering only libcall vs
     SIMD broadcast sequence.  */
  unsigned max_set_size = 256;

  len = INTVAL (operands[1]);
  if (len > max_set_size && !TARGET_MOPS)
    return false;

  int cst_val = !!(CONST_INT_P (val) && (INTVAL (val) != 0));
  /* The MOPS sequence takes:
     3 instructions for the memory storing
     + 1 to move the constant size into a reg
     + 1 if VAL is a non-zero constant to move into a reg
    (zero constants can use XZR directly).  */
  unsigned mops_cost = 3 + 1 + cst_val;
  /* A libcall to memset in the worst case takes 3 instructions to prepare
     the arguments + 1 for the call.  */
  unsigned libcall_cost = 4;

  /* Upper bound check.  For large constant-sized setmem use the MOPS sequence
     when available.  */
  if (TARGET_MOPS
      && len >= (unsigned HOST_WIDE_INT) aarch64_mops_memset_size_threshold)
    return aarch64_expand_setmem_mops (operands);

  /* Attempt a sequence with a vector broadcast followed by stores.
     Count the number of operations involved to see if it's worth it
     against the alternatives.  A simple counter simd_ops on the
     algorithmically-relevant operations is used rather than an rtx_insn count
     as all the pointer adjusmtents and mode reinterprets will be optimized
     away later.  */
  start_sequence ();
  unsigned simd_ops = 0;

  base = copy_to_mode_reg (Pmode, XEXP (dst, 0));
  dst = adjust_automodify_address (dst, VOIDmode, base, 0);

  /* Prepare the val using a DUP/MOVI v0.16B, val.  */
  src = expand_vector_broadcast (V16QImode, val);
  src = force_reg (V16QImode, src);
  simd_ops++;
  /* Convert len to bits to make the rest of the code simpler.  */
  n = len * BITS_PER_UNIT;

  /* Maximum amount to copy in one go.  We allow 256-bit chunks based on the
     AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS tuning parameter.  */
  const int copy_limit = (aarch64_tune_params.extra_tuning_flags
			  & AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS)
			  ? GET_MODE_BITSIZE (TImode) : 256;

  while (n > 0)
    {
      /* Find the largest mode in which to do the copy without
	 over writing.  */
      opt_scalar_int_mode mode_iter;
      FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
	if (GET_MODE_BITSIZE (mode_iter.require ()) <= MIN (n, copy_limit))
	  cur_mode = mode_iter.require ();

      gcc_assert (cur_mode != BLKmode);

      mode_bits = GET_MODE_BITSIZE (cur_mode).to_constant ();
      aarch64_set_one_block_and_progress_pointer (src, &dst, cur_mode);
      simd_ops++;
      n -= mode_bits;

      /* Do certain trailing copies as overlapping if it's going to be
	 cheaper.  i.e. less instructions to do so.  For instance doing a 15
	 byte copy it's more efficient to do two overlapping 8 byte copies than
	 8 + 4 + 2 + 1.  Only do this when -mstrict-align is not supplied.  */
      if (n > 0 && n < copy_limit / 2 && !STRICT_ALIGNMENT)
	{
	  next_mode = smallest_mode_for_size (n, MODE_INT);
	  int n_bits = GET_MODE_BITSIZE (next_mode).to_constant ();
	  gcc_assert (n_bits <= mode_bits);
	  dst = aarch64_move_pointer (dst, (n - n_bits) / BITS_PER_UNIT);
	  n = n_bits;
	}
    }
  rtx_insn *seq = get_insns ();
  end_sequence ();

  if (size_p)
    {
      /* When optimizing for size we have 3 options: the SIMD broadcast sequence,
	 call to memset or the MOPS expansion.  */
      if (TARGET_MOPS
	  && mops_cost <= libcall_cost
	  && mops_cost <= simd_ops)
	return aarch64_expand_setmem_mops (operands);
      /* If MOPS is not available or not shorter pick a libcall if the SIMD
	 sequence is too long.  */
      else if (libcall_cost < simd_ops)
	return false;
      emit_insn (seq);
      return true;
    }

  /* At this point the SIMD broadcast sequence is the best choice when
     optimizing for speed.  */
  emit_insn (seq);
  return true;
}


/* Split a DImode store of a CONST_INT SRC to MEM DST as two
   SImode stores.  Handle the case when the constant has identical
   bottom and top halves.  This is beneficial when the two stores can be
   merged into an STP and we avoid synthesising potentially expensive
   immediates twice.  Return true if such a split is possible.  */

bool
aarch64_split_dimode_const_store (rtx dst, rtx src)
{
  rtx lo = gen_lowpart (SImode, src);
  rtx hi = gen_highpart_mode (SImode, DImode, src);

  bool size_p = optimize_function_for_size_p (cfun);

  if (!rtx_equal_p (lo, hi))
    return false;

  unsigned int orig_cost
    = aarch64_internal_mov_immediate (NULL_RTX, src, false, DImode);
  unsigned int lo_cost
    = aarch64_internal_mov_immediate (NULL_RTX, lo, false, SImode);

  /* We want to transform:
     MOV	x1, 49370
     MOVK	x1, 0x140, lsl 16
     MOVK	x1, 0xc0da, lsl 32
     MOVK	x1, 0x140, lsl 48
     STR	x1, [x0]
   into:
     MOV	w1, 49370
     MOVK	w1, 0x140, lsl 16
     STP	w1, w1, [x0]
   So we want to perform this only when we save two instructions
   or more.  When optimizing for size, however, accept any code size
   savings we can.  */
  if (size_p && orig_cost <= lo_cost)
    return false;

  if (!size_p
      && (orig_cost <= lo_cost + 1))
    return false;

  rtx mem_lo = adjust_address (dst, SImode, 0);
  if (!aarch64_mem_pair_operand (mem_lo, SImode))
    return false;

  rtx tmp_reg = gen_reg_rtx (SImode);
  aarch64_expand_mov_immediate (tmp_reg, lo);
  rtx mem_hi = aarch64_move_pointer (mem_lo, GET_MODE_SIZE (SImode));
  /* Don't emit an explicit store pair as this may not be always profitable.
     Let the sched-fusion logic decide whether to merge them.  */
  emit_move_insn (mem_lo, tmp_reg);
  emit_move_insn (mem_hi, tmp_reg);

  return true;
}

/* Generate RTL for a conditional branch with rtx comparison CODE in
   mode CC_MODE.  The destination of the unlikely conditional branch
   is LABEL_REF.  */

void
aarch64_gen_unlikely_cbranch (enum rtx_code code, machine_mode cc_mode,
			      rtx label_ref)
{
  rtx x;
  x = gen_rtx_fmt_ee (code, VOIDmode,
		      gen_rtx_REG (cc_mode, CC_REGNUM),
		      const0_rtx);

  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
			    gen_rtx_LABEL_REF (VOIDmode, label_ref),
			    pc_rtx);
  aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x));
}

/* Generate DImode scratch registers for 128-bit (TImode) addition.

   OP1 represents the TImode destination operand 1
   OP2 represents the TImode destination operand 2
   LOW_DEST represents the low half (DImode) of TImode operand 0
   LOW_IN1 represents the low half (DImode) of TImode operand 1
   LOW_IN2 represents the low half (DImode) of TImode operand 2
   HIGH_DEST represents the high half (DImode) of TImode operand 0
   HIGH_IN1 represents the high half (DImode) of TImode operand 1
   HIGH_IN2 represents the high half (DImode) of TImode operand 2.  */

void
aarch64_addti_scratch_regs (rtx op1, rtx op2, rtx *low_dest,
			    rtx *low_in1, rtx *low_in2,
			    rtx *high_dest, rtx *high_in1,
			    rtx *high_in2)
{
  *low_dest = gen_reg_rtx (DImode);
  *low_in1 = gen_lowpart (DImode, op1);
  *low_in2 = simplify_gen_subreg (DImode, op2, TImode,
				  subreg_lowpart_offset (DImode, TImode));
  *high_dest = gen_reg_rtx (DImode);
  *high_in1 = gen_highpart (DImode, op1);
  *high_in2 = simplify_gen_subreg (DImode, op2, TImode,
				   subreg_highpart_offset (DImode, TImode));
}

/* Generate DImode scratch registers for 128-bit (TImode) subtraction.

   This function differs from 'arch64_addti_scratch_regs' in that
   OP1 can be an immediate constant (zero). We must call
   subreg_highpart_offset with DImode and TImode arguments, otherwise
   VOIDmode will be used for the const_int which generates an internal
   error from subreg_size_highpart_offset which does not expect a size of zero.

   OP1 represents the TImode destination operand 1
   OP2 represents the TImode destination operand 2
   LOW_DEST represents the low half (DImode) of TImode operand 0
   LOW_IN1 represents the low half (DImode) of TImode operand 1
   LOW_IN2 represents the low half (DImode) of TImode operand 2
   HIGH_DEST represents the high half (DImode) of TImode operand 0
   HIGH_IN1 represents the high half (DImode) of TImode operand 1
   HIGH_IN2 represents the high half (DImode) of TImode operand 2.  */


void
aarch64_subvti_scratch_regs (rtx op1, rtx op2, rtx *low_dest,
			     rtx *low_in1, rtx *low_in2,
			     rtx *high_dest, rtx *high_in1,
			     rtx *high_in2)
{
  *low_dest = gen_reg_rtx (DImode);
  *low_in1 = simplify_gen_subreg (DImode, op1, TImode,
				  subreg_lowpart_offset (DImode, TImode));

  *low_in2 = simplify_gen_subreg (DImode, op2, TImode,
				  subreg_lowpart_offset (DImode, TImode));
  *high_dest = gen_reg_rtx (DImode);

  *high_in1 = simplify_gen_subreg (DImode, op1, TImode,
				   subreg_highpart_offset (DImode, TImode));
  *high_in2 = simplify_gen_subreg (DImode, op2, TImode,
				   subreg_highpart_offset (DImode, TImode));
}

/* Generate RTL for 128-bit (TImode) subtraction with overflow.

   OP0 represents the TImode destination operand 0
   LOW_DEST represents the low half (DImode) of TImode operand 0
   LOW_IN1 represents the low half (DImode) of TImode operand 1
   LOW_IN2 represents the low half (DImode) of TImode operand 2
   HIGH_DEST represents the high half (DImode) of TImode operand 0
   HIGH_IN1 represents the high half (DImode) of TImode operand 1
   HIGH_IN2 represents the high half (DImode) of TImode operand 2
   UNSIGNED_P is true if the operation is being performed on unsigned
   values.  */
void
aarch64_expand_subvti (rtx op0, rtx low_dest, rtx low_in1,
		       rtx low_in2, rtx high_dest, rtx high_in1,
		       rtx high_in2, bool unsigned_p)
{
  if (low_in2 == const0_rtx)
    {
      low_dest = low_in1;
      high_in2 = force_reg (DImode, high_in2);
      if (unsigned_p)
	emit_insn (gen_subdi3_compare1 (high_dest, high_in1, high_in2));
      else
	emit_insn (gen_subvdi_insn (high_dest, high_in1, high_in2));
    }
  else
    {
      if (aarch64_plus_immediate (low_in2, DImode))
	emit_insn (gen_subdi3_compare1_imm (low_dest, low_in1, low_in2,
					    GEN_INT (-UINTVAL (low_in2))));
      else
	{
	  low_in2 = force_reg (DImode, low_in2);
	  emit_insn (gen_subdi3_compare1 (low_dest, low_in1, low_in2));
	}
      high_in2 = force_reg (DImode, high_in2);

      if (unsigned_p)
	emit_insn (gen_usubdi3_carryinC (high_dest, high_in1, high_in2));
      else
	emit_insn (gen_subdi3_carryinV (high_dest, high_in1, high_in2));
    }

  emit_move_insn (gen_lowpart (DImode, op0), low_dest);
  emit_move_insn (gen_highpart (DImode, op0), high_dest);

}

/* Implement the TARGET_ASAN_SHADOW_OFFSET hook.  */

static unsigned HOST_WIDE_INT
aarch64_asan_shadow_offset (void)
{
  if (TARGET_ILP32)
    return (HOST_WIDE_INT_1 << 29);
  else
    return (HOST_WIDE_INT_1 << 36);
}

static rtx
aarch64_gen_ccmp_first (rtx_insn **prep_seq, rtx_insn **gen_seq,
			int code, tree treeop0, tree treeop1)
{
  machine_mode op_mode, cmp_mode, cc_mode = CCmode;
  rtx op0, op1;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
  insn_code icode;
  struct expand_operand ops[4];

  start_sequence ();
  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);

  op_mode = GET_MODE (op0);
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (op1);

  switch (op_mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      cmp_mode = SImode;
      icode = CODE_FOR_cmpsi;
      break;

    case E_DImode:
      cmp_mode = DImode;
      icode = CODE_FOR_cmpdi;
      break;

    case E_SFmode:
      cmp_mode = SFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpesf : CODE_FOR_fcmpsf;
      break;

    case E_DFmode:
      cmp_mode = DFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1);
      icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpedf : CODE_FOR_fcmpdf;
      break;

    default:
      end_sequence ();
      return NULL_RTX;
    }

  op0 = prepare_operand (icode, op0, 0, op_mode, cmp_mode, unsignedp);
  op1 = prepare_operand (icode, op1, 1, op_mode, cmp_mode, unsignedp);
  if (!op0 || !op1)
    {
      end_sequence ();
      return NULL_RTX;
    }
  *prep_seq = get_insns ();
  end_sequence ();

  create_fixed_operand (&ops[0], op0);
  create_fixed_operand (&ops[1], op1);

  start_sequence ();
  if (!maybe_expand_insn (icode, 2, ops))
    {
      end_sequence ();
      return NULL_RTX;
    }
  *gen_seq = get_insns ();
  end_sequence ();

  return gen_rtx_fmt_ee ((rtx_code) code, cc_mode,
			 gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx);
}

static rtx
aarch64_gen_ccmp_next (rtx_insn **prep_seq, rtx_insn **gen_seq, rtx prev,
		       int cmp_code, tree treeop0, tree treeop1, int bit_code)
{
  rtx op0, op1, target;
  machine_mode op_mode, cmp_mode, cc_mode = CCmode;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
  insn_code icode;
  struct expand_operand ops[6];
  int aarch64_cond;

  push_to_sequence (*prep_seq);
  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);

  op_mode = GET_MODE (op0);
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (op1);

  switch (op_mode)
    {
    case E_QImode:
    case E_HImode:
    case E_SImode:
      cmp_mode = SImode;
      break;

    case E_DImode:
      cmp_mode = DImode;
      break;

    case E_SFmode:
      cmp_mode = SFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1);
      break;

    case E_DFmode:
      cmp_mode = DFmode;
      cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1);
      break;

    default:
      end_sequence ();
      return NULL_RTX;
    }

  icode = code_for_ccmp (cc_mode, cmp_mode);

  op0 = prepare_operand (icode, op0, 2, op_mode, cmp_mode, unsignedp);
  op1 = prepare_operand (icode, op1, 3, op_mode, cmp_mode, unsignedp);
  if (!op0 || !op1)
    {
      end_sequence ();
      return NULL_RTX;
    }
  *prep_seq = get_insns ();
  end_sequence ();

  target = gen_rtx_REG (cc_mode, CC_REGNUM);
  aarch64_cond = aarch64_get_condition_code_1 (cc_mode, (rtx_code) cmp_code);

  if (bit_code != AND)
    {
      /* Treat the ccmp patterns as canonical and use them where possible,
	 but fall back to ccmp_rev patterns if there's no other option.  */
      rtx_code prev_code = GET_CODE (prev);
      machine_mode prev_mode = GET_MODE (XEXP (prev, 0));
      if ((prev_mode == CCFPmode || prev_mode == CCFPEmode)
	  && !(prev_code == EQ
	       || prev_code == NE
	       || prev_code == ORDERED
	       || prev_code == UNORDERED))
	icode = code_for_ccmp_rev (cc_mode, cmp_mode);
      else
	{
	  rtx_code code = reverse_condition (prev_code);
	  prev = gen_rtx_fmt_ee (code, VOIDmode, XEXP (prev, 0), const0_rtx);
	}
      aarch64_cond = AARCH64_INVERSE_CONDITION_CODE (aarch64_cond);
    }

  create_fixed_operand (&ops[0], XEXP (prev, 0));
  create_fixed_operand (&ops[1], target);
  create_fixed_operand (&ops[2], op0);
  create_fixed_operand (&ops[3], op1);
  create_fixed_operand (&ops[4], prev);
  create_fixed_operand (&ops[5], GEN_INT (aarch64_cond));

  push_to_sequence (*gen_seq);
  if (!maybe_expand_insn (icode, 6, ops))
    {
      end_sequence ();
      return NULL_RTX;
    }

  *gen_seq = get_insns ();
  end_sequence ();

  return gen_rtx_fmt_ee ((rtx_code) cmp_code, VOIDmode, target, const0_rtx);
}

#undef TARGET_GEN_CCMP_FIRST
#define TARGET_GEN_CCMP_FIRST aarch64_gen_ccmp_first

#undef TARGET_GEN_CCMP_NEXT
#define TARGET_GEN_CCMP_NEXT aarch64_gen_ccmp_next

/* Implement TARGET_SCHED_MACRO_FUSION_P.  Return true if target supports
   instruction fusion of some sort.  */

static bool
aarch64_macro_fusion_p (void)
{
  return aarch64_tune_params.fusible_ops != AARCH64_FUSE_NOTHING;
}


/* Implement TARGET_SCHED_MACRO_FUSION_PAIR_P.  Return true if PREV and CURR
   should be kept together during scheduling.  */

static bool
aarch_macro_fusion_pair_p (rtx_insn *prev, rtx_insn *curr)
{
  rtx set_dest;
  rtx prev_set = single_set (prev);
  rtx curr_set = single_set (curr);
  /* prev and curr are simple SET insns i.e. no flag setting or branching.  */
  bool simple_sets_p = prev_set && curr_set && !any_condjump_p (curr);

  if (!aarch64_macro_fusion_p ())
    return false;

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOV_MOVK))
    {
      /* We are trying to match:
         prev (mov)  == (set (reg r0) (const_int imm16))
         curr (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 16))
                             (const_int imm16_1))  */

      set_dest = SET_DEST (curr_set);

      if (GET_CODE (set_dest) == ZERO_EXTRACT
          && CONST_INT_P (SET_SRC (curr_set))
          && CONST_INT_P (SET_SRC (prev_set))
          && CONST_INT_P (XEXP (set_dest, 2))
          && INTVAL (XEXP (set_dest, 2)) == 16
          && REG_P (XEXP (set_dest, 0))
          && REG_P (SET_DEST (prev_set))
          && REGNO (XEXP (set_dest, 0)) == REGNO (SET_DEST (prev_set)))
        {
          return true;
        }
    }

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_ADD))
    {

      /*  We're trying to match:
          prev (adrp) == (set (reg r1)
                              (high (symbol_ref ("SYM"))))
          curr (add) == (set (reg r0)
                             (lo_sum (reg r1)
                                     (symbol_ref ("SYM"))))
          Note that r0 need not necessarily be the same as r1, especially
          during pre-regalloc scheduling.  */

      if (satisfies_constraint_Ush (SET_SRC (prev_set))
          && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set)))
        {
          if (GET_CODE (SET_SRC (curr_set)) == LO_SUM
              && REG_P (XEXP (SET_SRC (curr_set), 0))
              && REGNO (XEXP (SET_SRC (curr_set), 0))
                 == REGNO (SET_DEST (prev_set))
              && rtx_equal_p (XEXP (SET_SRC (prev_set), 0),
                              XEXP (SET_SRC (curr_set), 1)))
            return true;
        }
    }

  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOVK_MOVK))
    {

      /* We're trying to match:
         prev (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 32))
                             (const_int imm16_1))
         curr (movk) == (set (zero_extract (reg r0)
                                           (const_int 16)
                                           (const_int 48))
                             (const_int imm16_2))  */

      if (GET_CODE (SET_DEST (prev_set)) == ZERO_EXTRACT
          && GET_CODE (SET_DEST (curr_set)) == ZERO_EXTRACT
          && REG_P (XEXP (SET_DEST (prev_set), 0))
          && REG_P (XEXP (SET_DEST (curr_set), 0))
          && REGNO (XEXP (SET_DEST (prev_set), 0))
             == REGNO (XEXP (SET_DEST (curr_set), 0))
          && CONST_INT_P (XEXP (SET_DEST (prev_set), 2))
          && CONST_INT_P (XEXP (SET_DEST (curr_set), 2))
          && INTVAL (XEXP (SET_DEST (prev_set), 2)) == 32
          && INTVAL (XEXP (SET_DEST (curr_set), 2)) == 48
          && CONST_INT_P (SET_SRC (prev_set))
          && CONST_INT_P (SET_SRC (curr_set)))
        return true;

    }
  if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_LDR))
    {
      /* We're trying to match:
          prev (adrp) == (set (reg r0)
                              (high (symbol_ref ("SYM"))))
          curr (ldr) == (set (reg r1)
                             (mem (lo_sum (reg r0)
                                             (symbol_ref ("SYM")))))
                 or
          curr (ldr) == (set (reg r1)
                             (zero_extend (mem
                                           (lo_sum (reg r0)
                                                   (symbol_ref ("SYM"))))))  */
      if (satisfies_constraint_Ush (SET_SRC (prev_set))
          && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set)))
        {
          rtx curr_src = SET_SRC (curr_set);

          if (GET_CODE (curr_src) == ZERO_EXTEND)
            curr_src = XEXP (curr_src, 0);

          if (MEM_P (curr_src) && GET_CODE (XEXP (curr_src, 0)) == LO_SUM
              && REG_P (XEXP (XEXP (curr_src, 0), 0))
              && REGNO (XEXP (XEXP (curr_src, 0), 0))
                 == REGNO (SET_DEST (prev_set))
              && rtx_equal_p (XEXP (XEXP (curr_src, 0), 1),
                              XEXP (SET_SRC (prev_set), 0)))
              return true;
        }
    }

  /* Fuse compare (CMP/CMN/TST/BICS) and conditional branch.  */
  if (aarch64_fusion_enabled_p (AARCH64_FUSE_CMP_BRANCH)
      && prev_set && curr_set && any_condjump_p (curr)
      && GET_CODE (SET_SRC (prev_set)) == COMPARE
      && SCALAR_INT_MODE_P (GET_MODE (XEXP (SET_SRC (prev_set), 0)))
      && reg_referenced_p (SET_DEST (prev_set), PATTERN (curr)))
    return true;

  /* Fuse flag-setting ALU instructions and conditional branch.  */
  if (aarch64_fusion_enabled_p (AARCH64_FUSE_ALU_BRANCH)
      && any_condjump_p (curr))
    {
      unsigned int condreg1, condreg2;
      rtx cc_reg_1;
      aarch64_fixed_condition_code_regs (&condreg1, &condreg2);
      cc_reg_1 = gen_rtx_REG (CCmode, condreg1);

      if (reg_referenced_p (cc_reg_1, PATTERN (curr))
	  && prev
	  && modified_in_p (cc_reg_1, prev))
	{
	  enum attr_type prev_type = get_attr_type (prev);

	  /* FIXME: this misses some which is considered simple arthematic
	     instructions for ThunderX.  Simple shifts are missed here.  */
	  if (prev_type == TYPE_ALUS_SREG
	      || prev_type == TYPE_ALUS_IMM
	      || prev_type == TYPE_LOGICS_REG
	      || prev_type == TYPE_LOGICS_IMM)
	    return true;
	}
    }

  /* Fuse ALU instructions and CBZ/CBNZ.  */
  if (prev_set
      && curr_set
      && aarch64_fusion_enabled_p (AARCH64_FUSE_ALU_CBZ)
      && any_condjump_p (curr))
    {
      /* We're trying to match:
	  prev (alu_insn) == (set (r0) plus ((r0) (r1/imm)))
	  curr (cbz) ==  (set (pc) (if_then_else (eq/ne) (r0)
							 (const_int 0))
						 (label_ref ("SYM"))
						 (pc))  */
      if (SET_DEST (curr_set) == (pc_rtx)
	  && GET_CODE (SET_SRC (curr_set)) == IF_THEN_ELSE
	  && REG_P (XEXP (XEXP (SET_SRC (curr_set), 0), 0))
	  && REG_P (SET_DEST (prev_set))
	  && REGNO (SET_DEST (prev_set))
	     == REGNO (XEXP (XEXP (SET_SRC (curr_set), 0), 0)))
	{
	  /* Fuse ALU operations followed by conditional branch instruction.  */
	  switch (get_attr_type (prev))
	    {
	    case TYPE_ALU_IMM:
	    case TYPE_ALU_SREG:
	    case TYPE_ADC_REG:
	    case TYPE_ADC_IMM:
	    case TYPE_ADCS_REG:
	    case TYPE_ADCS_IMM:
	    case TYPE_LOGIC_REG:
	    case TYPE_LOGIC_IMM:
	    case TYPE_CSEL:
	    case TYPE_ADR:
	    case TYPE_MOV_IMM:
	    case TYPE_SHIFT_REG:
	    case TYPE_SHIFT_IMM:
	    case TYPE_BFM:
	    case TYPE_RBIT:
	    case TYPE_REV:
	    case TYPE_EXTEND:
	      return true;

	    default:;
	    }
	}
    }

  return false;
}

/* Return true iff the instruction fusion described by OP is enabled.  */

bool
aarch64_fusion_enabled_p (enum aarch64_fusion_pairs op)
{
  return (aarch64_tune_params.fusible_ops & op) != 0;
}

/* If MEM is in the form of [base+offset], extract the two parts
   of address and set to BASE and OFFSET, otherwise return false
   after clearing BASE and OFFSET.  */

bool
extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset)
{
  rtx addr;

  gcc_assert (MEM_P (mem));

  addr = XEXP (mem, 0);

  if (REG_P (addr))
    {
      *base = addr;
      *offset = const0_rtx;
      return true;
    }

  if (GET_CODE (addr) == PLUS
      && REG_P (XEXP (addr, 0)) && CONST_INT_P (XEXP (addr, 1)))
    {
      *base = XEXP (addr, 0);
      *offset = XEXP (addr, 1);
      return true;
    }

  *base = NULL_RTX;
  *offset = NULL_RTX;

  return false;
}

/* Types for scheduling fusion.  */
enum sched_fusion_type
{
  SCHED_FUSION_NONE = 0,
  SCHED_FUSION_LD_SIGN_EXTEND,
  SCHED_FUSION_LD_ZERO_EXTEND,
  SCHED_FUSION_LD,
  SCHED_FUSION_ST,
  SCHED_FUSION_NUM
};

/* If INSN is a load or store of address in the form of [base+offset],
   extract the two parts and set to BASE and OFFSET.  Return scheduling
   fusion type this INSN is.  */

static enum sched_fusion_type
fusion_load_store (rtx_insn *insn, rtx *base, rtx *offset)
{
  rtx x, dest, src;
  enum sched_fusion_type fusion = SCHED_FUSION_LD;

  gcc_assert (INSN_P (insn));
  x = PATTERN (insn);
  if (GET_CODE (x) != SET)
    return SCHED_FUSION_NONE;

  src = SET_SRC (x);
  dest = SET_DEST (x);

  machine_mode dest_mode = GET_MODE (dest);

  if (!aarch64_mode_valid_for_sched_fusion_p (dest_mode))
    return SCHED_FUSION_NONE;

  if (GET_CODE (src) == SIGN_EXTEND)
    {
      fusion = SCHED_FUSION_LD_SIGN_EXTEND;
      src = XEXP (src, 0);
      if (!MEM_P (src) || GET_MODE (src) != SImode)
	return SCHED_FUSION_NONE;
    }
  else if (GET_CODE (src) == ZERO_EXTEND)
    {
      fusion = SCHED_FUSION_LD_ZERO_EXTEND;
      src = XEXP (src, 0);
      if (!MEM_P (src) || GET_MODE (src) != SImode)
	return SCHED_FUSION_NONE;
    }

  if (MEM_P (src) && REG_P (dest))
    extract_base_offset_in_addr (src, base, offset);
  else if (MEM_P (dest) && (REG_P (src) || src == const0_rtx))
    {
      fusion = SCHED_FUSION_ST;
      extract_base_offset_in_addr (dest, base, offset);
    }
  else
    return SCHED_FUSION_NONE;

  if (*base == NULL_RTX || *offset == NULL_RTX)
    fusion = SCHED_FUSION_NONE;

  return fusion;
}

/* Implement the TARGET_SCHED_FUSION_PRIORITY hook.

   Currently we only support to fuse ldr or str instructions, so FUSION_PRI
   and PRI are only calculated for these instructions.  For other instruction,
   FUSION_PRI and PRI are simply set to MAX_PRI - 1.  In the future, other
   type instruction fusion can be added by returning different priorities.

   It's important that irrelevant instructions get the largest FUSION_PRI.  */

static void
aarch64_sched_fusion_priority (rtx_insn *insn, int max_pri,
			       int *fusion_pri, int *pri)
{
  int tmp, off_val;
  rtx base, offset;
  enum sched_fusion_type fusion;

  gcc_assert (INSN_P (insn));

  tmp = max_pri - 1;
  fusion = fusion_load_store (insn, &base, &offset);
  if (fusion == SCHED_FUSION_NONE)
    {
      *pri = tmp;
      *fusion_pri = tmp;
      return;
    }

  /* Set FUSION_PRI according to fusion type and base register.  */
  *fusion_pri = tmp - fusion * FIRST_PSEUDO_REGISTER - REGNO (base);

  /* Calculate PRI.  */
  tmp /= 2;

  /* INSN with smaller offset goes first.  */
  off_val = (int)(INTVAL (offset));
  if (off_val >= 0)
    tmp -= (off_val & 0xfffff);
  else
    tmp += ((- off_val) & 0xfffff);

  *pri = tmp;
  return;
}

/* Implement the TARGET_SCHED_ADJUST_PRIORITY hook.
   Adjust priority of sha1h instructions so they are scheduled before
   other SHA1 instructions.  */

static int
aarch64_sched_adjust_priority (rtx_insn *insn, int priority)
{
  rtx x = PATTERN (insn);

  if (GET_CODE (x) == SET)
    {
      x = SET_SRC (x);

      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SHA1H)
	return priority + 10;
    }

  return priority;
}

/* If REVERSED is null, return true if memory reference *MEM2 comes
   immediately after memory reference *MEM1.  Do not change the references
   in this case.

   Otherwise, check if *MEM1 and *MEM2 are consecutive memory references and,
   if they are, try to make them use constant offsets from the same base
   register.  Return true on success.  When returning true, set *REVERSED
   to true if *MEM1 comes after *MEM2, false if *MEM1 comes before *MEM2.  */
static bool
aarch64_check_consecutive_mems (rtx *mem1, rtx *mem2, bool *reversed)
{
  if (reversed)
    *reversed = false;

  if (GET_RTX_CLASS (GET_CODE (XEXP (*mem1, 0))) == RTX_AUTOINC
      || GET_RTX_CLASS (GET_CODE (XEXP (*mem2, 0))) == RTX_AUTOINC)
    return false;

  if (!MEM_SIZE_KNOWN_P (*mem1) || !MEM_SIZE_KNOWN_P (*mem2))
    return false;

  auto size1 = MEM_SIZE (*mem1);
  auto size2 = MEM_SIZE (*mem2);

  rtx base1, base2, offset1, offset2;
  extract_base_offset_in_addr (*mem1, &base1, &offset1);
  extract_base_offset_in_addr (*mem2, &base2, &offset2);

  /* Make sure at least one memory is in base+offset form.  */
  if (!(base1 && offset1) && !(base2 && offset2))
    return false;

  /* If both mems already use the same base register, just check the
     offsets.  */
  if (base1 && base2 && rtx_equal_p (base1, base2))
    {
      if (!offset1 || !offset2)
	return false;

      if (known_eq (UINTVAL (offset1) + size1, UINTVAL (offset2)))
	return true;

      if (known_eq (UINTVAL (offset2) + size2, UINTVAL (offset1)) && reversed)
	{
	  *reversed = true;
	  return true;
	}

      return false;
    }

  /* Otherwise, check whether the MEM_EXPRs and MEM_OFFSETs together
     guarantee that the values are consecutive.  */
  if (MEM_EXPR (*mem1)
      && MEM_EXPR (*mem2)
      && MEM_OFFSET_KNOWN_P (*mem1)
      && MEM_OFFSET_KNOWN_P (*mem2))
    {
      poly_int64 expr_offset1;
      poly_int64 expr_offset2;
      tree expr_base1 = get_addr_base_and_unit_offset (MEM_EXPR (*mem1),
						       &expr_offset1);
      tree expr_base2 = get_addr_base_and_unit_offset (MEM_EXPR (*mem2),
						       &expr_offset2);
      if (!expr_base1
	  || !expr_base2
	  || !DECL_P (expr_base1)
	  || !operand_equal_p (expr_base1, expr_base2, OEP_ADDRESS_OF))
	return false;

      expr_offset1 += MEM_OFFSET (*mem1);
      expr_offset2 += MEM_OFFSET (*mem2);

      if (known_eq (expr_offset1 + size1, expr_offset2))
	;
      else if (known_eq (expr_offset2 + size2, expr_offset1) && reversed)
	*reversed = true;
      else
	return false;

      if (reversed)
	{
	  if (base2)
	    {
	      rtx addr1 = plus_constant (Pmode, XEXP (*mem2, 0),
					 expr_offset1 - expr_offset2);
	      *mem1 = replace_equiv_address_nv (*mem1, addr1);
	    }
	  else
	    {
	      rtx addr2 = plus_constant (Pmode, XEXP (*mem1, 0),
					 expr_offset2 - expr_offset1);
	      *mem2 = replace_equiv_address_nv (*mem2, addr2);
	    }
	}
      return true;
    }

  return false;
}

/* Return true if MEM1 and MEM2 can be combined into a single access
   of mode MODE, with the combined access having the same address as MEM1.  */

bool
aarch64_mergeable_load_pair_p (machine_mode mode, rtx mem1, rtx mem2)
{
  if (STRICT_ALIGNMENT && MEM_ALIGN (mem1) < GET_MODE_ALIGNMENT (mode))
    return false;
  return aarch64_check_consecutive_mems (&mem1, &mem2, nullptr);
}

/* Given OPERANDS of consecutive load/store, check if we can merge
   them into ldp/stp.  LOAD is true if they are load instructions.
   MODE is the mode of memory operands.  */

bool
aarch64_operands_ok_for_ldpstp (rtx *operands, bool load,
				machine_mode mode)
{
  enum reg_class rclass_1, rclass_2;
  rtx mem_1, mem_2, reg_1, reg_2;

  if (load)
    {
      mem_1 = operands[1];
      mem_2 = operands[3];
      reg_1 = operands[0];
      reg_2 = operands[2];
      gcc_assert (REG_P (reg_1) && REG_P (reg_2));
      if (REGNO (reg_1) == REGNO (reg_2))
	return false;
      if (reg_overlap_mentioned_p (reg_1, mem_2))
	return false;
    }
  else
    {
      mem_1 = operands[0];
      mem_2 = operands[2];
      reg_1 = operands[1];
      reg_2 = operands[3];
    }

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2))
    return false;

  /* If we have SImode and slow unaligned ldp,
     check the alignment to be at least 8 byte. */
  if (mode == SImode
      && (aarch64_tune_params.extra_tuning_flags
          & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW)
      && !optimize_size
      && MEM_ALIGN (mem_1) < 8 * BITS_PER_UNIT)
    return false;

  /* Check if the addresses are in the form of [base+offset].  */
  bool reversed = false;
  if (!aarch64_check_consecutive_mems (&mem_1, &mem_2, &reversed))
    return false;

  /* The operands must be of the same size.  */
  gcc_assert (known_eq (GET_MODE_SIZE (GET_MODE (mem_1)),
			GET_MODE_SIZE (GET_MODE (mem_2))));

  /* One of the memory accesses must be a mempair operand.
     If it is not the first one, they need to be swapped by the
     peephole.  */
  if (!aarch64_mem_pair_operand (mem_1, GET_MODE (mem_1))
       && !aarch64_mem_pair_operand (mem_2, GET_MODE (mem_2)))
    return false;

  if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1)))
    rclass_1 = FP_REGS;
  else
    rclass_1 = GENERAL_REGS;

  if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2)))
    rclass_2 = FP_REGS;
  else
    rclass_2 = GENERAL_REGS;

  /* Check if the registers are of same class.  */
  if (rclass_1 != rclass_2)
    return false;

  return true;
}

/* Given OPERANDS of consecutive load/store that can be merged,
   swap them if they are not in ascending order.  */
void
aarch64_swap_ldrstr_operands (rtx* operands, bool load)
{
  int mem_op = load ? 1 : 0;
  bool reversed = false;
  if (!aarch64_check_consecutive_mems (operands + mem_op,
				       operands + mem_op + 2, &reversed))
    gcc_unreachable ();

  if (reversed)
    {
      /* Irrespective of whether this is a load or a store,
	 we do the same swap.  */
      std::swap (operands[0], operands[2]);
      std::swap (operands[1], operands[3]);
    }
}

/* Taking X and Y to be HOST_WIDE_INT pointers, return the result of a
   comparison between the two.  */
int
aarch64_host_wide_int_compare (const void *x, const void *y)
{
  return wi::cmps (* ((const HOST_WIDE_INT *) x),
		   * ((const HOST_WIDE_INT *) y));
}

/* Taking X and Y to be pairs of RTX, one pointing to a MEM rtx and the
   other pointing to a REG rtx containing an offset, compare the offsets
   of the two pairs.

   Return:

	1 iff offset (X) > offset (Y)
	0 iff offset (X) == offset (Y)
	-1 iff offset (X) < offset (Y)  */
int
aarch64_ldrstr_offset_compare (const void *x, const void *y)
{
  const rtx * operands_1 = (const rtx *) x;
  const rtx * operands_2 = (const rtx *) y;
  rtx mem_1, mem_2, base, offset_1, offset_2;

  if (MEM_P (operands_1[0]))
    mem_1 = operands_1[0];
  else
    mem_1 = operands_1[1];

  if (MEM_P (operands_2[0]))
    mem_2 = operands_2[0];
  else
    mem_2 = operands_2[1];

  /* Extract the offsets.  */
  extract_base_offset_in_addr (mem_1, &base, &offset_1);
  extract_base_offset_in_addr (mem_2, &base, &offset_2);

  gcc_assert (offset_1 != NULL_RTX && offset_2 != NULL_RTX);

  return wi::cmps (INTVAL (offset_1), INTVAL (offset_2));
}

/* Given OPERANDS of consecutive load/store, check if we can merge
   them into ldp/stp by adjusting the offset.  LOAD is true if they
   are load instructions.  MODE is the mode of memory operands.

   Given below consecutive stores:

     str  w1, [xb, 0x100]
     str  w1, [xb, 0x104]
     str  w1, [xb, 0x108]
     str  w1, [xb, 0x10c]

   Though the offsets are out of the range supported by stp, we can
   still pair them after adjusting the offset, like:

     add  scratch, xb, 0x100
     stp  w1, w1, [scratch]
     stp  w1, w1, [scratch, 0x8]

   The peephole patterns detecting this opportunity should guarantee
   the scratch register is avaliable.  */

bool
aarch64_operands_adjust_ok_for_ldpstp (rtx *operands, bool load,
				       machine_mode mode)
{
  const int num_insns = 4;
  enum reg_class rclass;
  HOST_WIDE_INT offvals[num_insns], msize;
  rtx mem[num_insns], reg[num_insns], base[num_insns], offset[num_insns];

  if (load)
    {
      for (int i = 0; i < num_insns; i++)
	{
	  reg[i] = operands[2 * i];
	  mem[i] = operands[2 * i + 1];

	  gcc_assert (REG_P (reg[i]));
	}

      /* Do not attempt to merge the loads if the loads clobber each other.  */
      for (int i = 0; i < 8; i += 2)
	for (int j = i + 2; j < 8; j += 2)
	  if (reg_overlap_mentioned_p (operands[i], operands[j]))
	    return false;
    }
  else
    for (int i = 0; i < num_insns; i++)
      {
	mem[i] = operands[2 * i];
	reg[i] = operands[2 * i + 1];
      }

  /* Skip if memory operand is by itself valid for ldp/stp.  */
  if (!MEM_P (mem[0]) || aarch64_mem_pair_operand (mem[0], mode))
    return false;

  for (int i = 0; i < num_insns; i++)
    {
      /* The mems cannot be volatile.  */
      if (MEM_VOLATILE_P (mem[i]))
	return false;

      /* Check if the addresses are in the form of [base+offset].  */
      extract_base_offset_in_addr (mem[i], base + i, offset + i);
      if (base[i] == NULL_RTX || offset[i] == NULL_RTX)
	return false;
    }

  /* Check if the registers are of same class.  */
  rclass = REG_P (reg[0]) && FP_REGNUM_P (REGNO (reg[0]))
    ? FP_REGS : GENERAL_REGS;

  for (int i = 1; i < num_insns; i++)
    if (REG_P (reg[i]) && FP_REGNUM_P (REGNO (reg[i])))
      {
	if (rclass != FP_REGS)
	  return false;
      }
    else
      {
	if (rclass != GENERAL_REGS)
	  return false;
      }

  /* Only the last register in the order in which they occur
     may be clobbered by the load.  */
  if (rclass == GENERAL_REGS && load)
    for (int i = 0; i < num_insns - 1; i++)
      if (reg_mentioned_p (reg[i], mem[i]))
	return false;

  /* Check if the bases are same.  */
  for (int i = 0; i < num_insns - 1; i++)
    if (!rtx_equal_p (base[i], base[i + 1]))
      return false;

  for (int i = 0; i < num_insns; i++)
    offvals[i] = INTVAL (offset[i]);

  msize = GET_MODE_SIZE (mode).to_constant ();

  /* Check if the offsets can be put in the right order to do a ldp/stp.  */
  qsort (offvals, num_insns, sizeof (HOST_WIDE_INT),
	 aarch64_host_wide_int_compare);

  if (!(offvals[1] == offvals[0] + msize
	&& offvals[3] == offvals[2] + msize))
    return false;

  /* Check that offsets are within range of each other.  The ldp/stp
     instructions have 7 bit immediate offsets, so use 0x80.  */
  if (offvals[2] - offvals[0] >= msize * 0x80)
    return false;

  /* The offsets must be aligned with respect to each other.  */
  if (offvals[0] % msize != offvals[2] % msize)
    return false;

  /* If we have SImode and slow unaligned ldp,
     check the alignment to be at least 8 byte. */
  if (mode == SImode
      && (aarch64_tune_params.extra_tuning_flags
	  & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW)
      && !optimize_size
      && MEM_ALIGN (mem[0]) < 8 * BITS_PER_UNIT)
    return false;

  return true;
}

/* Given OPERANDS of consecutive load/store, this function pairs them
   into LDP/STP after adjusting the offset.  It depends on the fact
   that the operands can be sorted so the offsets are correct for STP.
   MODE is the mode of memory operands.  CODE is the rtl operator
   which should be applied to all memory operands, it's SIGN_EXTEND,
   ZERO_EXTEND or UNKNOWN.  */

bool
aarch64_gen_adjusted_ldpstp (rtx *operands, bool load,
			     machine_mode mode, RTX_CODE code)
{
  rtx base, offset_1, offset_3, t1, t2;
  rtx mem_1, mem_2, mem_3, mem_4;
  rtx temp_operands[8];
  HOST_WIDE_INT off_val_1, off_val_3, base_off, new_off_1, new_off_3,
		stp_off_upper_limit, stp_off_lower_limit, msize;

  /* We make changes on a copy as we may still bail out.  */
  for (int i = 0; i < 8; i ++)
    temp_operands[i] = operands[i];

  /* Sort the operands.  Note for cases as below:
       [base + 0x310] = A
       [base + 0x320] = B
       [base + 0x330] = C
       [base + 0x320] = D
     We need stable sorting otherwise wrong data may be store to offset 0x320.
     Also note the dead store in above case should be optimized away, but no
     guarantees here.  */
  gcc_stablesort(temp_operands, 4, 2 * sizeof (rtx *),
		 aarch64_ldrstr_offset_compare);

  /* Copy the memory operands so that if we have to bail for some
     reason the original addresses are unchanged.  */
  if (load)
    {
      mem_1 = copy_rtx (temp_operands[1]);
      mem_2 = copy_rtx (temp_operands[3]);
      mem_3 = copy_rtx (temp_operands[5]);
      mem_4 = copy_rtx (temp_operands[7]);
    }
  else
    {
      mem_1 = copy_rtx (temp_operands[0]);
      mem_2 = copy_rtx (temp_operands[2]);
      mem_3 = copy_rtx (temp_operands[4]);
      mem_4 = copy_rtx (temp_operands[6]);
      gcc_assert (code == UNKNOWN);
    }

  extract_base_offset_in_addr (mem_1, &base, &offset_1);
  extract_base_offset_in_addr (mem_3, &base, &offset_3);
  gcc_assert (base != NULL_RTX && offset_1 != NULL_RTX
	      && offset_3 != NULL_RTX);

  /* Adjust offset so it can fit in LDP/STP instruction.  */
  msize = GET_MODE_SIZE (mode).to_constant();
  stp_off_upper_limit = msize * (0x40 - 1);
  stp_off_lower_limit = - msize * 0x40;

  off_val_1 = INTVAL (offset_1);
  off_val_3 = INTVAL (offset_3);

  /* The base offset is optimally half way between the two STP/LDP offsets.  */
  if (msize <= 4)
    base_off = (off_val_1 + off_val_3) / 2;
  else
    /* However, due to issues with negative LDP/STP offset generation for
       larger modes, for DF, DD, DI and vector modes. we must not use negative
       addresses smaller than 9 signed unadjusted bits can store.  This
       provides the most range in this case.  */
    base_off = off_val_1;

  /* Adjust the base so that it is aligned with the addresses but still
     optimal.  */
  if (base_off % msize != off_val_1 % msize)
    /* Fix the offset, bearing in mind we want to make it bigger not
       smaller.  */
    base_off += (((base_off % msize) - (off_val_1 % msize)) + msize) % msize;
  else if (msize <= 4)
    /* The negative range of LDP/STP is one larger than the positive range.  */
    base_off += msize;

  /* Check if base offset is too big or too small.  We can attempt to resolve
     this issue by setting it to the maximum value and seeing if the offsets
     still fit.  */
  if (base_off >= 0x1000)
    {
      base_off = 0x1000 - 1;
      /* We must still make sure that the base offset is aligned with respect
	 to the address.  But it may not be made any bigger.  */
      base_off -= (((base_off % msize) - (off_val_1 % msize)) + msize) % msize;
    }

  /* Likewise for the case where the base is too small.  */
  if (base_off <= -0x1000)
    {
      base_off = -0x1000 + 1;
      base_off += (((base_off % msize) - (off_val_1 % msize)) + msize) % msize;
    }

  /* Offset of the first STP/LDP.  */
  new_off_1 = off_val_1 - base_off;

  /* Offset of the second STP/LDP.  */
  new_off_3 = off_val_3 - base_off;

  /* The offsets must be within the range of the LDP/STP instructions.  */
  if (new_off_1 > stp_off_upper_limit || new_off_1 < stp_off_lower_limit
      || new_off_3 > stp_off_upper_limit || new_off_3 < stp_off_lower_limit)
    return false;

  replace_equiv_address_nv (mem_1, plus_constant (Pmode, operands[8],
						  new_off_1), true);
  replace_equiv_address_nv (mem_2, plus_constant (Pmode, operands[8],
						  new_off_1 + msize), true);
  replace_equiv_address_nv (mem_3, plus_constant (Pmode, operands[8],
						  new_off_3), true);
  replace_equiv_address_nv (mem_4, plus_constant (Pmode, operands[8],
						  new_off_3 + msize), true);

  if (!aarch64_mem_pair_operand (mem_1, mode)
      || !aarch64_mem_pair_operand (mem_3, mode))
    return false;

  if (code == ZERO_EXTEND)
    {
      mem_1 = gen_rtx_ZERO_EXTEND (DImode, mem_1);
      mem_2 = gen_rtx_ZERO_EXTEND (DImode, mem_2);
      mem_3 = gen_rtx_ZERO_EXTEND (DImode, mem_3);
      mem_4 = gen_rtx_ZERO_EXTEND (DImode, mem_4);
    }
  else if (code == SIGN_EXTEND)
    {
      mem_1 = gen_rtx_SIGN_EXTEND (DImode, mem_1);
      mem_2 = gen_rtx_SIGN_EXTEND (DImode, mem_2);
      mem_3 = gen_rtx_SIGN_EXTEND (DImode, mem_3);
      mem_4 = gen_rtx_SIGN_EXTEND (DImode, mem_4);
    }

  if (load)
    {
      operands[0] = temp_operands[0];
      operands[1] = mem_1;
      operands[2] = temp_operands[2];
      operands[3] = mem_2;
      operands[4] = temp_operands[4];
      operands[5] = mem_3;
      operands[6] = temp_operands[6];
      operands[7] = mem_4;
    }
  else
    {
      operands[0] = mem_1;
      operands[1] = temp_operands[1];
      operands[2] = mem_2;
      operands[3] = temp_operands[3];
      operands[4] = mem_3;
      operands[5] = temp_operands[5];
      operands[6] = mem_4;
      operands[7] = temp_operands[7];
    }

  /* Emit adjusting instruction.  */
  emit_insn (gen_rtx_SET (operands[8], plus_constant (DImode, base, base_off)));
  /* Emit ldp/stp instructions.  */
  t1 = gen_rtx_SET (operands[0], operands[1]);
  t2 = gen_rtx_SET (operands[2], operands[3]);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2)));
  t1 = gen_rtx_SET (operands[4], operands[5]);
  t2 = gen_rtx_SET (operands[6], operands[7]);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2)));
  return true;
}

/* Implement TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE.  Assume for now that
   it isn't worth branching around empty masked ops (including masked
   stores).  */

static bool
aarch64_empty_mask_is_expensive (unsigned)
{
  return false;
}

/* Return 1 if pseudo register should be created and used to hold
   GOT address for PIC code.  */

bool
aarch64_use_pseudo_pic_reg (void)
{
  return aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC;
}

/* Implement TARGET_UNSPEC_MAY_TRAP_P.  */

static int
aarch64_unspec_may_trap_p (const_rtx x, unsigned flags)
{
  switch (XINT (x, 1))
    {
    case UNSPEC_GOTSMALLPIC:
    case UNSPEC_GOTSMALLPIC28K:
    case UNSPEC_GOTTINYPIC:
      return 0;
    default:
      break;
    }

  return default_unspec_may_trap_p (x, flags);
}


/* If X is a positive CONST_DOUBLE with a value that is a power of 2
   return the log2 of that value.  Otherwise return -1.  */

int
aarch64_fpconst_pow_of_2 (rtx x)
{
  const REAL_VALUE_TYPE *r;

  if (!CONST_DOUBLE_P (x))
    return -1;

  r = CONST_DOUBLE_REAL_VALUE (x);

  if (REAL_VALUE_NEGATIVE (*r)
      || REAL_VALUE_ISNAN (*r)
      || REAL_VALUE_ISINF (*r)
      || !real_isinteger (r, DFmode))
    return -1;

  return exact_log2 (real_to_integer (r));
}

/* If X is a positive CONST_DOUBLE with a value that is the reciprocal of a
   power of 2 (i.e 1/2^n) return the number of float bits. e.g. for x==(1/2^n)
   return n. Otherwise return -1.  */

int
aarch64_fpconst_pow2_recip (rtx x)
{
  REAL_VALUE_TYPE r0;

  if (!CONST_DOUBLE_P (x))
    return -1;

  r0 = *CONST_DOUBLE_REAL_VALUE (x);
  if (exact_real_inverse (DFmode, &r0)
      && !REAL_VALUE_NEGATIVE (r0))
    {
	int ret = exact_log2 (real_to_integer (&r0));
	if (ret >= 1 && ret <= 32)
	    return ret;
    }
  return -1;
}

/* If X is a vector of equal CONST_DOUBLE values and that value is
   Y, return the aarch64_fpconst_pow_of_2 of Y.  Otherwise return -1.  */

int
aarch64_vec_fpconst_pow_of_2 (rtx x)
{
  int nelts;
  if (!CONST_VECTOR_P (x)
      || !CONST_VECTOR_NUNITS (x).is_constant (&nelts))
    return -1;

  if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_FLOAT)
    return -1;

  int firstval = aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, 0));
  if (firstval <= 0)
    return -1;

  for (int i = 1; i < nelts; i++)
    if (aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, i)) != firstval)
      return -1;

  return firstval;
}

/* Implement TARGET_PROMOTED_TYPE to promote 16-bit floating point types
   to float.

   __fp16 always promotes through this hook.
   _Float16 may promote if TARGET_FLT_EVAL_METHOD is 16, but we do that
   through the generic excess precision logic rather than here.  */

static tree
aarch64_promoted_type (const_tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t)
      && TYPE_MAIN_VARIANT (t) == aarch64_fp16_type_node)
    return float_type_node;

  return NULL_TREE;
}

/* Implement the TARGET_OPTAB_SUPPORTED_P hook.  */

static bool
aarch64_optab_supported_p (int op, machine_mode mode1, machine_mode,
			   optimization_type opt_type)
{
  switch (op)
    {
    case rsqrt_optab:
      return opt_type == OPTIMIZE_FOR_SPEED && use_rsqrt_p (mode1);

    default:
      return true;
    }
}

/* Implement the TARGET_DWARF_POLY_INDETERMINATE_VALUE hook.  */

static unsigned int
aarch64_dwarf_poly_indeterminate_value (unsigned int i, unsigned int *factor,
					int *offset)
{
  /* Polynomial invariant 1 == (VG / 2) - 1.  */
  gcc_assert (i == 1);
  *factor = 2;
  *offset = 1;
  return AARCH64_DWARF_VG;
}

/* Implement TARGET_LIBGCC_FLOATING_POINT_MODE_SUPPORTED_P - return TRUE
   if MODE is HFmode, and punt to the generic implementation otherwise.  */

static bool
aarch64_libgcc_floating_mode_supported_p (scalar_float_mode mode)
{
  return (mode == HFmode
	  ? true
	  : default_libgcc_floating_mode_supported_p (mode));
}

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P - return TRUE
   if MODE is HFmode, and punt to the generic implementation otherwise.  */

static bool
aarch64_scalar_mode_supported_p (scalar_mode mode)
{
  if (DECIMAL_FLOAT_MODE_P (mode))
    return default_decimal_float_supported_p ();

  return (mode == HFmode
	  ? true
	  : default_scalar_mode_supported_p (mode));
}

/* Set the value of FLT_EVAL_METHOD.
   ISO/IEC TS 18661-3 defines two values that we'd like to make use of:

    0: evaluate all operations and constants, whose semantic type has at
       most the range and precision of type float, to the range and
       precision of float; evaluate all other operations and constants to
       the range and precision of the semantic type;

    N, where _FloatN is a supported interchange floating type
       evaluate all operations and constants, whose semantic type has at
       most the range and precision of _FloatN type, to the range and
       precision of the _FloatN type; evaluate all other operations and
       constants to the range and precision of the semantic type;

   If we have the ARMv8.2-A extensions then we support _Float16 in native
   precision, so we should set this to 16.  Otherwise, we support the type,
   but want to evaluate expressions in float precision, so set this to
   0.  */

static enum flt_eval_method
aarch64_excess_precision (enum excess_precision_type type)
{
  switch (type)
    {
      case EXCESS_PRECISION_TYPE_FAST:
      case EXCESS_PRECISION_TYPE_STANDARD:
	/* We can calculate either in 16-bit range and precision or
	   32-bit range and precision.  Make that decision based on whether
	   we have native support for the ARMv8.2-A 16-bit floating-point
	   instructions or not.  */
	return (TARGET_FP_F16INST
		? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
		: FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
      case EXCESS_PRECISION_TYPE_IMPLICIT:
      case EXCESS_PRECISION_TYPE_FLOAT16:
	return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16;
      default:
	gcc_unreachable ();
    }
  return FLT_EVAL_METHOD_UNPREDICTABLE;
}

/* Implement TARGET_SCHED_CAN_SPECULATE_INSN.  Return true if INSN can be
   scheduled for speculative execution.  Reject the long-running division
   and square-root instructions.  */

static bool
aarch64_sched_can_speculate_insn (rtx_insn *insn)
{
  switch (get_attr_type (insn))
    {
      case TYPE_SDIV:
      case TYPE_UDIV:
      case TYPE_FDIVS:
      case TYPE_FDIVD:
      case TYPE_FSQRTS:
      case TYPE_FSQRTD:
      case TYPE_NEON_FP_SQRT_S:
      case TYPE_NEON_FP_SQRT_D:
      case TYPE_NEON_FP_SQRT_S_Q:
      case TYPE_NEON_FP_SQRT_D_Q:
      case TYPE_NEON_FP_DIV_S:
      case TYPE_NEON_FP_DIV_D:
      case TYPE_NEON_FP_DIV_S_Q:
      case TYPE_NEON_FP_DIV_D_Q:
	return false;
      default:
	return true;
    }
}

/* Implement TARGET_COMPUTE_PRESSURE_CLASSES.  */

static int
aarch64_compute_pressure_classes (reg_class *classes)
{
  int i = 0;
  classes[i++] = GENERAL_REGS;
  classes[i++] = FP_REGS;
  /* PR_REGS isn't a useful pressure class because many predicate pseudo
     registers need to go in PR_LO_REGS at some point during their
     lifetime.  Splitting it into two halves has the effect of making
     all predicates count against PR_LO_REGS, so that we try whenever
     possible to restrict the number of live predicates to 8.  This
     greatly reduces the amount of spilling in certain loops.  */
  classes[i++] = PR_LO_REGS;
  classes[i++] = PR_HI_REGS;
  return i;
}

/* Implement TARGET_CAN_CHANGE_MODE_CLASS.  */

static bool
aarch64_can_change_mode_class (machine_mode from,
			       machine_mode to, reg_class_t)
{
  unsigned int from_flags = aarch64_classify_vector_mode (from);
  unsigned int to_flags = aarch64_classify_vector_mode (to);

  bool from_sve_p = (from_flags & VEC_ANY_SVE);
  bool to_sve_p = (to_flags & VEC_ANY_SVE);

  bool from_partial_sve_p = from_sve_p && (from_flags & VEC_PARTIAL);
  bool to_partial_sve_p = to_sve_p && (to_flags & VEC_PARTIAL);

  bool from_pred_p = (from_flags & VEC_SVE_PRED);
  bool to_pred_p = (to_flags & VEC_SVE_PRED);

  bool from_full_advsimd_struct_p = (from_flags == (VEC_ADVSIMD | VEC_STRUCT));
  bool to_partial_advsimd_struct_p = (to_flags == (VEC_ADVSIMD | VEC_STRUCT
						   | VEC_PARTIAL));

  /* Don't allow changes between predicate modes and other modes.
     Only predicate registers can hold predicate modes and only
     non-predicate registers can hold non-predicate modes, so any
     attempt to mix them would require a round trip through memory.  */
  if (from_pred_p != to_pred_p)
    return false;

  /* Don't allow changes between partial SVE modes and other modes.
     The contents of partial SVE modes are distributed evenly across
     the register, whereas GCC expects them to be clustered together.  */
  if (from_partial_sve_p != to_partial_sve_p)
    return false;

  /* Similarly reject changes between partial SVE modes that have
     different patterns of significant and insignificant bits.  */
  if (from_partial_sve_p
      && (aarch64_sve_container_bits (from) != aarch64_sve_container_bits (to)
	  || GET_MODE_UNIT_SIZE (from) != GET_MODE_UNIT_SIZE (to)))
    return false;

  /* Don't allow changes between partial and full Advanced SIMD structure
     modes.  */
  if (from_full_advsimd_struct_p && to_partial_advsimd_struct_p)
    return false;

  if (maybe_ne (BITS_PER_SVE_VECTOR, 128u))
    {
      /* Don't allow changes between SVE modes and other modes that might
	 be bigger than 128 bits.  In particular, OImode, CImode and XImode
	 divide into 128-bit quantities while SVE modes divide into
	 BITS_PER_SVE_VECTOR quantities.  */
      if (from_sve_p && !to_sve_p && maybe_gt (GET_MODE_BITSIZE (to), 128))
	return false;
      if (to_sve_p && !from_sve_p && maybe_gt (GET_MODE_BITSIZE (from), 128))
	return false;
    }

  if (BYTES_BIG_ENDIAN)
    {
      /* Don't allow changes between SVE data modes and non-SVE modes.
	 See the comment at the head of aarch64-sve.md for details.  */
      if (from_sve_p != to_sve_p)
	return false;

      /* Don't allow changes in element size: lane 0 of the new vector
	 would not then be lane 0 of the old vector.  See the comment
	 above aarch64_maybe_expand_sve_subreg_move for a more detailed
	 description.

	 In the worst case, this forces a register to be spilled in
	 one mode and reloaded in the other, which handles the
	 endianness correctly.  */
      if (from_sve_p && GET_MODE_UNIT_SIZE (from) != GET_MODE_UNIT_SIZE (to))
	return false;
    }
  return true;
}

/* Implement TARGET_EARLY_REMAT_MODES.  */

static void
aarch64_select_early_remat_modes (sbitmap modes)
{
  /* SVE values are not normally live across a call, so it should be
     worth doing early rematerialization even in VL-specific mode.  */
  for (int i = 0; i < NUM_MACHINE_MODES; ++i)
    if (aarch64_sve_mode_p ((machine_mode) i))
      bitmap_set_bit (modes, i);
}

/* Override the default target speculation_safe_value.  */
static rtx
aarch64_speculation_safe_value (machine_mode mode,
				rtx result, rtx val, rtx failval)
{
  /* Maybe we should warn if falling back to hard barriers.  They are
     likely to be noticably more expensive than the alternative below.  */
  if (!aarch64_track_speculation)
    return default_speculation_safe_value (mode, result, val, failval);

  if (!REG_P (val))
    val = copy_to_mode_reg (mode, val);

  if (!aarch64_reg_or_zero (failval, mode))
    failval = copy_to_mode_reg (mode, failval);

  emit_insn (gen_despeculate_copy (mode, result, val, failval));
  return result;
}

/* Implement TARGET_ESTIMATED_POLY_VALUE.
   Look into the tuning structure for an estimate.
   KIND specifies the type of requested estimate: min, max or likely.
   For cores with a known SVE width all three estimates are the same.
   For generic SVE tuning we want to distinguish the maximum estimate from
   the minimum and likely ones.
   The likely estimate is the same as the minimum in that case to give a
   conservative behavior of auto-vectorizing with SVE when it is a win
   even for 128-bit SVE.
   When SVE width information is available VAL.coeffs[1] is multiplied by
   the number of VQ chunks over the initial Advanced SIMD 128 bits.  */

static HOST_WIDE_INT
aarch64_estimated_poly_value (poly_int64 val,
			      poly_value_estimate_kind kind
				= POLY_VALUE_LIKELY)
{
  unsigned int width_source = aarch64_tune_params.sve_width;

  /* If there is no core-specific information then the minimum and likely
     values are based on 128-bit vectors and the maximum is based on
     the architectural maximum of 2048 bits.  */
  if (width_source == SVE_SCALABLE)
    switch (kind)
      {
      case POLY_VALUE_MIN:
      case POLY_VALUE_LIKELY:
	return val.coeffs[0];
      case POLY_VALUE_MAX:
	  return val.coeffs[0] + val.coeffs[1] * 15;
      }

  /* Allow sve_width to be a bitmask of different VL, treating the lowest
     as likely.  This could be made more general if future -mtune options
     need it to be.  */
  if (kind == POLY_VALUE_MAX)
    width_source = 1 << floor_log2 (width_source);
  else
    width_source = least_bit_hwi (width_source);

  /* If the core provides width information, use that.  */
  HOST_WIDE_INT over_128 = width_source - 128;
  return val.coeffs[0] + val.coeffs[1] * over_128 / 128;
}


/* Return true for types that could be supported as SIMD return or
   argument types.  */

static bool
supported_simd_type (tree t)
{
  if (SCALAR_FLOAT_TYPE_P (t) || INTEGRAL_TYPE_P (t) || POINTER_TYPE_P (t))
    {
      HOST_WIDE_INT s = tree_to_shwi (TYPE_SIZE_UNIT (t));
      return s == 1 || s == 2 || s == 4 || s == 8;
    }
  return false;
}

/* Return true for types that currently are supported as SIMD return
   or argument types.  */

static bool
currently_supported_simd_type (tree t, tree b)
{
  if (COMPLEX_FLOAT_TYPE_P (t))
    return false;

  if (TYPE_SIZE (t) != TYPE_SIZE (b))
    return false;

  return supported_simd_type (t);
}

/* Implement TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN.  */

static int
aarch64_simd_clone_compute_vecsize_and_simdlen (struct cgraph_node *node,
					struct cgraph_simd_clone *clonei,
					tree base_type, int num)
{
  tree t, ret_type;
  unsigned int elt_bits, count;
  unsigned HOST_WIDE_INT const_simdlen;
  poly_uint64 vec_bits;

  if (!TARGET_SIMD)
    return 0;

  /* For now, SVE simdclones won't produce illegal simdlen, So only check
     const simdlens here.  */
  if (maybe_ne (clonei->simdlen, 0U)
      && clonei->simdlen.is_constant (&const_simdlen)
      && (const_simdlen < 2
	  || const_simdlen > 1024
	  || (const_simdlen & (const_simdlen - 1)) != 0))
    {
      warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
		  "unsupported simdlen %wd", const_simdlen);
      return 0;
    }

  ret_type = TREE_TYPE (TREE_TYPE (node->decl));
  if (TREE_CODE (ret_type) != VOID_TYPE
      && !currently_supported_simd_type (ret_type, base_type))
    {
      if (TYPE_SIZE (ret_type) != TYPE_SIZE (base_type))
	warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
		    "GCC does not currently support mixed size types "
		    "for %<simd%> functions");
      else if (supported_simd_type (ret_type))
	warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
		    "GCC does not currently support return type %qT "
		    "for %<simd%> functions", ret_type);
      else
	warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
		    "unsupported return type %qT for %<simd%> functions",
		    ret_type);
      return 0;
    }

  int i;
  tree type_arg_types = TYPE_ARG_TYPES (TREE_TYPE (node->decl));
  bool decl_arg_p = (node->definition || type_arg_types == NULL_TREE);

  for (t = (decl_arg_p ? DECL_ARGUMENTS (node->decl) : type_arg_types), i = 0;
       t && t != void_list_node; t = TREE_CHAIN (t), i++)
    {
      tree arg_type = decl_arg_p ? TREE_TYPE (t) : TREE_VALUE (t);

      if (clonei->args[i].arg_type != SIMD_CLONE_ARG_TYPE_UNIFORM
	  && !currently_supported_simd_type (arg_type, base_type))
	{
	  if (TYPE_SIZE (arg_type) != TYPE_SIZE (base_type))
	    warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
			"GCC does not currently support mixed size types "
			"for %<simd%> functions");
	  else
	    warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
			"GCC does not currently support argument type %qT "
			"for %<simd%> functions", arg_type);
	  return 0;
	}
    }

  clonei->vecsize_mangle = 'n';
  clonei->mask_mode = VOIDmode;
  elt_bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (base_type));
  if (known_eq (clonei->simdlen, 0U))
    {
      count = 2;
      vec_bits = (num == 0 ? 64 : 128);
      clonei->simdlen = exact_div (vec_bits, elt_bits);
    }
  else
    {
      count = 1;
      vec_bits = clonei->simdlen * elt_bits;
      /* For now, SVE simdclones won't produce illegal simdlen, So only check
	 const simdlens here.  */
      if (clonei->simdlen.is_constant (&const_simdlen)
	  && maybe_ne (vec_bits, 64U) && maybe_ne (vec_bits, 128U))
	{
	  warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
		      "GCC does not currently support simdlen %wd for type %qT",
		      const_simdlen, base_type);
	  return 0;
	}
    }
  clonei->vecsize_int = vec_bits;
  clonei->vecsize_float = vec_bits;
  return count;
}

/* Implement TARGET_SIMD_CLONE_ADJUST.  */

static void
aarch64_simd_clone_adjust (struct cgraph_node *node)
{
  /* Add aarch64_vector_pcs target attribute to SIMD clones so they
     use the correct ABI.  */

  tree t = TREE_TYPE (node->decl);
  TYPE_ATTRIBUTES (t) = make_attribute ("aarch64_vector_pcs", "default",
					TYPE_ATTRIBUTES (t));
}

/* Implement TARGET_SIMD_CLONE_USABLE.  */

static int
aarch64_simd_clone_usable (struct cgraph_node *node)
{
  switch (node->simdclone->vecsize_mangle)
    {
    case 'n':
      if (!TARGET_SIMD)
	return -1;
      return 0;
    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_COMP_TYPE_ATTRIBUTES */

static int
aarch64_comp_type_attributes (const_tree type1, const_tree type2)
{
  auto check_attr = [&](const char *name) {
    tree attr1 = lookup_attribute (name, TYPE_ATTRIBUTES (type1));
    tree attr2 = lookup_attribute (name, TYPE_ATTRIBUTES (type2));
    if (!attr1 && !attr2)
      return true;

    return attr1 && attr2 && attribute_value_equal (attr1, attr2);
  };

  if (!check_attr ("aarch64_vector_pcs"))
    return 0;
  if (!check_attr ("Advanced SIMD type"))
    return 0;
  if (!check_attr ("SVE type"))
    return 0;
  if (!check_attr ("SVE sizeless type"))
    return 0;
  return 1;
}

/* Implement TARGET_GET_MULTILIB_ABI_NAME */

static const char *
aarch64_get_multilib_abi_name (void)
{
  if (TARGET_BIG_END)
    return TARGET_ILP32 ? "aarch64_be_ilp32" : "aarch64_be";
  return TARGET_ILP32 ? "aarch64_ilp32" : "aarch64";
}

/* Implement TARGET_STACK_PROTECT_GUARD. In case of a
   global variable based guard use the default else
   return a null tree.  */
static tree
aarch64_stack_protect_guard (void)
{
  if (aarch64_stack_protector_guard == SSP_GLOBAL)
    return default_stack_protect_guard ();

  return NULL_TREE;
}

/* Return the diagnostic message string if conversion from FROMTYPE to
   TOTYPE is not allowed, NULL otherwise.  */

static const char *
aarch64_invalid_conversion (const_tree fromtype, const_tree totype)
{
  if (element_mode (fromtype) != element_mode (totype))
    {
      /* Do no allow conversions to/from BFmode scalar types.  */
      if (TYPE_MODE (fromtype) == BFmode)
	return N_("invalid conversion from type %<bfloat16_t%>");
      if (TYPE_MODE (totype) == BFmode)
	return N_("invalid conversion to type %<bfloat16_t%>");
    }

  /* Conversion allowed.  */
  return NULL;
}

/* Return the diagnostic message string if the unary operation OP is
   not permitted on TYPE, NULL otherwise.  */

static const char *
aarch64_invalid_unary_op (int op, const_tree type)
{
  /* Reject all single-operand operations on BFmode except for &.  */
  if (element_mode (type) == BFmode && op != ADDR_EXPR)
    return N_("operation not permitted on type %<bfloat16_t%>");

  /* Operation allowed.  */
  return NULL;
}

/* Return the diagnostic message string if the binary operation OP is
   not permitted on TYPE1 and TYPE2, NULL otherwise.  */

static const char *
aarch64_invalid_binary_op (int op ATTRIBUTE_UNUSED, const_tree type1,
			   const_tree type2)
{
  /* Reject all 2-operand operations on BFmode.  */
  if (element_mode (type1) == BFmode
      || element_mode (type2) == BFmode)
    return N_("operation not permitted on type %<bfloat16_t%>");

  if (VECTOR_TYPE_P (type1)
      && VECTOR_TYPE_P (type2)
      && !TYPE_INDIVISIBLE_P (type1)
      && !TYPE_INDIVISIBLE_P (type2)
      && (aarch64_sve::builtin_type_p (type1)
	  != aarch64_sve::builtin_type_p (type2)))
    return N_("cannot combine GNU and SVE vectors in a binary operation");

  /* Operation allowed.  */
  return NULL;
}

/* Implement TARGET_MEMTAG_CAN_TAG_ADDRESSES.  Here we tell the rest of the
   compiler that we automatically ignore the top byte of our pointers, which
   allows using -fsanitize=hwaddress.  */
bool
aarch64_can_tag_addresses ()
{
  return !TARGET_ILP32;
}

/* Implement TARGET_ASM_FILE_END for AArch64.  This adds the AArch64 GNU NOTE
   section at the end if needed.  */
#define GNU_PROPERTY_AARCH64_FEATURE_1_AND	0xc0000000
#define GNU_PROPERTY_AARCH64_FEATURE_1_BTI	(1U << 0)
#define GNU_PROPERTY_AARCH64_FEATURE_1_PAC	(1U << 1)
void
aarch64_file_end_indicate_exec_stack ()
{
  file_end_indicate_exec_stack ();

  unsigned feature_1_and = 0;
  if (aarch64_bti_enabled ())
    feature_1_and |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;

  if (aarch64_ra_sign_scope != AARCH64_FUNCTION_NONE)
    feature_1_and |= GNU_PROPERTY_AARCH64_FEATURE_1_PAC;

  if (feature_1_and)
    {
      /* Generate .note.gnu.property section.  */
      switch_to_section (get_section (".note.gnu.property",
				      SECTION_NOTYPE, NULL));

      /* PT_NOTE header: namesz, descsz, type.
	 namesz = 4 ("GNU\0")
	 descsz = 16 (Size of the program property array)
		  [(12 + padding) * Number of array elements]
	 type   = 5 (NT_GNU_PROPERTY_TYPE_0).  */
      assemble_align (POINTER_SIZE);
      assemble_integer (GEN_INT (4), 4, 32, 1);
      assemble_integer (GEN_INT (ROUND_UP (12, POINTER_BYTES)), 4, 32, 1);
      assemble_integer (GEN_INT (5), 4, 32, 1);

      /* PT_NOTE name.  */
      assemble_string ("GNU", 4);

      /* PT_NOTE contents for NT_GNU_PROPERTY_TYPE_0:
	 type   = GNU_PROPERTY_AARCH64_FEATURE_1_AND
	 datasz = 4
	 data   = feature_1_and.  */
      assemble_integer (GEN_INT (GNU_PROPERTY_AARCH64_FEATURE_1_AND), 4, 32, 1);
      assemble_integer (GEN_INT (4), 4, 32, 1);
      assemble_integer (GEN_INT (feature_1_and), 4, 32, 1);

      /* Pad the size of the note to the required alignment.  */
      assemble_align (POINTER_SIZE);
    }
}
#undef GNU_PROPERTY_AARCH64_FEATURE_1_PAC
#undef GNU_PROPERTY_AARCH64_FEATURE_1_BTI
#undef GNU_PROPERTY_AARCH64_FEATURE_1_AND

/* Helper function for straight line speculation.
   Return what barrier should be emitted for straight line speculation
   mitigation.
   When not mitigating against straight line speculation this function returns
   an empty string.
   When mitigating against straight line speculation, use:
   * SB when the v8.5-A SB extension is enabled.
   * DSB+ISB otherwise.  */
const char *
aarch64_sls_barrier (int mitigation_required)
{
  return mitigation_required
    ? (TARGET_SB ? "sb" : "dsb\tsy\n\tisb")
    : "";
}

static GTY (()) tree aarch64_sls_shared_thunks[30];
static GTY (()) bool aarch64_sls_shared_thunks_needed = false;
const char *indirect_symbol_names[30] = {
    "__call_indirect_x0",
    "__call_indirect_x1",
    "__call_indirect_x2",
    "__call_indirect_x3",
    "__call_indirect_x4",
    "__call_indirect_x5",
    "__call_indirect_x6",
    "__call_indirect_x7",
    "__call_indirect_x8",
    "__call_indirect_x9",
    "__call_indirect_x10",
    "__call_indirect_x11",
    "__call_indirect_x12",
    "__call_indirect_x13",
    "__call_indirect_x14",
    "__call_indirect_x15",
    "", /* "__call_indirect_x16",  */
    "", /* "__call_indirect_x17",  */
    "__call_indirect_x18",
    "__call_indirect_x19",
    "__call_indirect_x20",
    "__call_indirect_x21",
    "__call_indirect_x22",
    "__call_indirect_x23",
    "__call_indirect_x24",
    "__call_indirect_x25",
    "__call_indirect_x26",
    "__call_indirect_x27",
    "__call_indirect_x28",
    "__call_indirect_x29",
};

/* Function to create a BLR thunk.  This thunk is used to mitigate straight
   line speculation.  Instead of a simple BLR that can be speculated past,
   we emit a BL to this thunk, and this thunk contains a BR to the relevant
   register.  These thunks have the relevant speculation barries put after
   their indirect branch so that speculation is blocked.

   We use such a thunk so the speculation barriers are kept off the
   architecturally executed path in order to reduce the performance overhead.

   When optimizing for size we use stubs shared by the linked object.
   When optimizing for performance we emit stubs for each function in the hope
   that the branch predictor can better train on jumps specific for a given
   function.  */
rtx
aarch64_sls_create_blr_label (int regnum)
{
  gcc_assert (STUB_REGNUM_P (regnum));
  if (optimize_function_for_size_p (cfun))
    {
      /* For the thunks shared between different functions in this compilation
	 unit we use a named symbol -- this is just for users to more easily
	 understand the generated assembly.  */
      aarch64_sls_shared_thunks_needed = true;
      const char *thunk_name = indirect_symbol_names[regnum];
      if (aarch64_sls_shared_thunks[regnum] == NULL)
	{
	  /* Build a decl representing this function stub and record it for
	     later.  We build a decl here so we can use the GCC machinery for
	     handling sections automatically (through `get_named_section` and
	     `make_decl_one_only`).  That saves us a lot of trouble handling
	     the specifics of different output file formats.  */
	  tree decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
				  get_identifier (thunk_name),
				  build_function_type_list (void_type_node,
							    NULL_TREE));
	  DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
					   NULL_TREE, void_type_node);
	  TREE_PUBLIC (decl) = 1;
	  TREE_STATIC (decl) = 1;
	  DECL_IGNORED_P (decl) = 1;
	  DECL_ARTIFICIAL (decl) = 1;
	  make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
	  resolve_unique_section (decl, 0, false);
	  aarch64_sls_shared_thunks[regnum] = decl;
	}

      return gen_rtx_SYMBOL_REF (Pmode, thunk_name);
    }

  if (cfun->machine->call_via[regnum] == NULL)
    cfun->machine->call_via[regnum]
      = gen_rtx_LABEL_REF (Pmode, gen_label_rtx ());
  return cfun->machine->call_via[regnum];
}

/* Helper function for aarch64_sls_emit_blr_function_thunks and
   aarch64_sls_emit_shared_blr_thunks below.  */
static void
aarch64_sls_emit_function_stub (FILE *out_file, int regnum)
{
  /* Save in x16 and branch to that function so this transformation does
     not prevent jumping to `BTI c` instructions.  */
  asm_fprintf (out_file, "\tmov\tx16, x%d\n", regnum);
  asm_fprintf (out_file, "\tbr\tx16\n");
}

/* Emit all BLR stubs for this particular function.
   Here we emit all the BLR stubs needed for the current function.  Since we
   emit these stubs in a consecutive block we know there will be no speculation
   gadgets between each stub, and hence we only emit a speculation barrier at
   the end of the stub sequences.

   This is called in the TARGET_ASM_FUNCTION_EPILOGUE hook.  */
void
aarch64_sls_emit_blr_function_thunks (FILE *out_file)
{
  if (! aarch64_harden_sls_blr_p ())
    return;

  bool any_functions_emitted = false;
  /* We must save and restore the current function section since this assembly
     is emitted at the end of the function.  This means it can be emitted *just
     after* the cold section of a function.  That cold part would be emitted in
     a different section.  That switch would trigger a `.cfi_endproc` directive
     to be emitted in the original section and a `.cfi_startproc` directive to
     be emitted in the new section.  Switching to the original section without
     restoring would mean that the `.cfi_endproc` emitted as a function ends
     would happen in a different section -- leaving an unmatched
     `.cfi_startproc` in the cold text section and an unmatched `.cfi_endproc`
     in the standard text section.  */
  section *save_text_section = in_section;
  switch_to_section (function_section (current_function_decl));
  for (int regnum = 0; regnum < 30; ++regnum)
    {
      rtx specu_label = cfun->machine->call_via[regnum];
      if (specu_label == NULL)
	continue;

      targetm.asm_out.print_operand (out_file, specu_label, 0);
      asm_fprintf (out_file, ":\n");
      aarch64_sls_emit_function_stub (out_file, regnum);
      any_functions_emitted = true;
    }
  if (any_functions_emitted)
    /* Can use the SB if needs be here, since this stub will only be used
      by the current function, and hence for the current target.  */
    asm_fprintf (out_file, "\t%s\n", aarch64_sls_barrier (true));
  switch_to_section (save_text_section);
}

/* Emit shared BLR stubs for the current compilation unit.
   Over the course of compiling this unit we may have converted some BLR
   instructions to a BL to a shared stub function.  This is where we emit those
   stub functions.
   This function is for the stubs shared between different functions in this
   compilation unit.  We share when optimizing for size instead of speed.

   This function is called through the TARGET_ASM_FILE_END hook.  */
void
aarch64_sls_emit_shared_blr_thunks (FILE *out_file)
{
  if (! aarch64_sls_shared_thunks_needed)
    return;

  for (int regnum = 0; regnum < 30; ++regnum)
    {
      tree decl = aarch64_sls_shared_thunks[regnum];
      if (!decl)
	continue;

      const char *name = indirect_symbol_names[regnum];
      switch_to_section (get_named_section (decl, NULL, 0));
      ASM_OUTPUT_ALIGN (out_file, 2);
      targetm.asm_out.globalize_label (out_file, name);
      /* Only emits if the compiler is configured for an assembler that can
	 handle visibility directives.  */
      targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
      ASM_OUTPUT_TYPE_DIRECTIVE (out_file, name, "function");
      ASM_OUTPUT_LABEL (out_file, name);
      aarch64_sls_emit_function_stub (out_file, regnum);
      /* Use the most conservative target to ensure it can always be used by any
	 function in the translation unit.  */
      asm_fprintf (out_file, "\tdsb\tsy\n\tisb\n");
      ASM_DECLARE_FUNCTION_SIZE (out_file, name, decl);
    }
}

/* Implement TARGET_ASM_FILE_END.  */
void
aarch64_asm_file_end ()
{
  aarch64_sls_emit_shared_blr_thunks (asm_out_file);
  /* Since this function will be called for the ASM_FILE_END hook, we ensure
     that what would be called otherwise (e.g. `file_end_indicate_exec_stack`
     for FreeBSD) still gets called.  */
#ifdef TARGET_ASM_FILE_END
  TARGET_ASM_FILE_END ();
#endif
}

const char *
aarch64_indirect_call_asm (rtx addr)
{
  gcc_assert (REG_P (addr));
  if (aarch64_harden_sls_blr_p ())
    {
      rtx stub_label = aarch64_sls_create_blr_label (REGNO (addr));
      output_asm_insn ("bl\t%0", &stub_label);
    }
  else
   output_asm_insn ("blr\t%0", &addr);
  return "";
}

/* Target-specific selftests.  */

#if CHECKING_P

namespace selftest {

/* Selftest for the RTL loader.
   Verify that the RTL loader copes with a dump from
   print_rtx_function.  This is essentially just a test that class
   function_reader can handle a real dump, but it also verifies
   that lookup_reg_by_dump_name correctly handles hard regs.
   The presence of hard reg names in the dump means that the test is
   target-specific, hence it is in this file.  */

static void
aarch64_test_loading_full_dump ()
{
  rtl_dump_test t (SELFTEST_LOCATION, locate_file ("aarch64/times-two.rtl"));

  ASSERT_STREQ ("times_two", IDENTIFIER_POINTER (DECL_NAME (cfun->decl)));

  rtx_insn *insn_1 = get_insn_by_uid (1);
  ASSERT_EQ (NOTE, GET_CODE (insn_1));

  rtx_insn *insn_15 = get_insn_by_uid (15);
  ASSERT_EQ (INSN, GET_CODE (insn_15));
  ASSERT_EQ (USE, GET_CODE (PATTERN (insn_15)));

  /* Verify crtl->return_rtx.  */
  ASSERT_EQ (REG, GET_CODE (crtl->return_rtx));
  ASSERT_EQ (0, REGNO (crtl->return_rtx));
  ASSERT_EQ (SImode, GET_MODE (crtl->return_rtx));
}

/* Test the fractional_cost class.  */

static void
aarch64_test_fractional_cost ()
{
  using cf = fractional_cost;

  ASSERT_EQ (cf (0, 20), 0);

  ASSERT_EQ (cf (4, 2), 2);
  ASSERT_EQ (3, cf (9, 3));

  ASSERT_NE (cf (5, 2), 2);
  ASSERT_NE (3, cf (8, 3));

  ASSERT_EQ (cf (7, 11) + cf (15, 11), 2);
  ASSERT_EQ (cf (2, 3) + cf (3, 5), cf (19, 15));
  ASSERT_EQ (cf (2, 3) + cf (1, 6) + cf (1, 6), 1);

  ASSERT_EQ (cf (14, 15) - cf (4, 15), cf (2, 3));
  ASSERT_EQ (cf (1, 4) - cf (1, 2), 0);
  ASSERT_EQ (cf (3, 5) - cf (1, 10), cf (1, 2));
  ASSERT_EQ (cf (11, 3) - 3, cf (2, 3));
  ASSERT_EQ (3 - cf (7, 3), cf (2, 3));
  ASSERT_EQ (3 - cf (10, 3), 0);

  ASSERT_EQ (cf (2, 3) * 5, cf (10, 3));
  ASSERT_EQ (14 * cf (11, 21), cf (22, 3));

  ASSERT_TRUE (cf (4, 15) < cf (5, 15));
  ASSERT_FALSE (cf (5, 15) < cf (5, 15));
  ASSERT_FALSE (cf (6, 15) < cf (5, 15));
  ASSERT_TRUE (cf (1, 3) < cf (2, 5));
  ASSERT_TRUE (cf (1, 12) < cf (1, 6));
  ASSERT_FALSE (cf (5, 3) < cf (5, 3));
  ASSERT_TRUE (cf (239, 240) < 1);
  ASSERT_FALSE (cf (240, 240) < 1);
  ASSERT_FALSE (cf (241, 240) < 1);
  ASSERT_FALSE (2 < cf (207, 104));
  ASSERT_FALSE (2 < cf (208, 104));
  ASSERT_TRUE (2 < cf (209, 104));

  ASSERT_TRUE (cf (4, 15) < cf (5, 15));
  ASSERT_FALSE (cf (5, 15) < cf (5, 15));
  ASSERT_FALSE (cf (6, 15) < cf (5, 15));
  ASSERT_TRUE (cf (1, 3) < cf (2, 5));
  ASSERT_TRUE (cf (1, 12) < cf (1, 6));
  ASSERT_FALSE (cf (5, 3) < cf (5, 3));
  ASSERT_TRUE (cf (239, 240) < 1);
  ASSERT_FALSE (cf (240, 240) < 1);
  ASSERT_FALSE (cf (241, 240) < 1);
  ASSERT_FALSE (2 < cf (207, 104));
  ASSERT_FALSE (2 < cf (208, 104));
  ASSERT_TRUE (2 < cf (209, 104));

  ASSERT_FALSE (cf (4, 15) >= cf (5, 15));
  ASSERT_TRUE (cf (5, 15) >= cf (5, 15));
  ASSERT_TRUE (cf (6, 15) >= cf (5, 15));
  ASSERT_FALSE (cf (1, 3) >= cf (2, 5));
  ASSERT_FALSE (cf (1, 12) >= cf (1, 6));
  ASSERT_TRUE (cf (5, 3) >= cf (5, 3));
  ASSERT_FALSE (cf (239, 240) >= 1);
  ASSERT_TRUE (cf (240, 240) >= 1);
  ASSERT_TRUE (cf (241, 240) >= 1);
  ASSERT_TRUE (2 >= cf (207, 104));
  ASSERT_TRUE (2 >= cf (208, 104));
  ASSERT_FALSE (2 >= cf (209, 104));

  ASSERT_FALSE (cf (4, 15) > cf (5, 15));
  ASSERT_FALSE (cf (5, 15) > cf (5, 15));
  ASSERT_TRUE (cf (6, 15) > cf (5, 15));
  ASSERT_FALSE (cf (1, 3) > cf (2, 5));
  ASSERT_FALSE (cf (1, 12) > cf (1, 6));
  ASSERT_FALSE (cf (5, 3) > cf (5, 3));
  ASSERT_FALSE (cf (239, 240) > 1);
  ASSERT_FALSE (cf (240, 240) > 1);
  ASSERT_TRUE (cf (241, 240) > 1);
  ASSERT_TRUE (2 > cf (207, 104));
  ASSERT_FALSE (2 > cf (208, 104));
  ASSERT_FALSE (2 > cf (209, 104));

  ASSERT_EQ (cf (1, 2).ceil (), 1);
  ASSERT_EQ (cf (11, 7).ceil (), 2);
  ASSERT_EQ (cf (20, 1).ceil (), 20);
  ASSERT_EQ ((cf (0xfffffffd) + 1).ceil (), 0xfffffffe);
  ASSERT_EQ ((cf (0xfffffffd) + 2).ceil (), 0xffffffff);
  ASSERT_EQ ((cf (0xfffffffd) + 3).ceil (), 0xffffffff);
  ASSERT_EQ ((cf (0x7fffffff) * 2).ceil (), 0xfffffffe);
  ASSERT_EQ ((cf (0x80000000) * 2).ceil (), 0xffffffff);

  ASSERT_EQ (cf (1, 2).as_double (), 0.5);
}

/* Run all target-specific selftests.  */

static void
aarch64_run_selftests (void)
{
  aarch64_test_loading_full_dump ();
  aarch64_test_fractional_cost ();
}

} // namespace selftest

#endif /* #if CHECKING_P */

#undef TARGET_STACK_PROTECT_GUARD
#define TARGET_STACK_PROTECT_GUARD aarch64_stack_protect_guard

#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST aarch64_address_cost

/* This hook will determines whether unnamed bitfields affect the alignment
   of the containing structure.  The hook returns true if the structure
   should inherit the alignment requirements of an unnamed bitfield's
   type.  */
#undef TARGET_ALIGN_ANON_BITFIELD
#define TARGET_ALIGN_ANON_BITFIELD hook_bool_void_true

#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.xword\t"

#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"

#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START aarch64_start_file

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK aarch64_output_mi_thunk

#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION aarch64_select_rtx_section

#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE aarch64_asm_trampoline_template

#undef TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY
#define TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY aarch64_print_patchable_function_entry

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST aarch64_build_builtin_va_list

#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_arg_info_false

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE aarch64_can_eliminate

#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P aarch64_can_inline_p

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM aarch64_cannot_force_const_mem

#undef TARGET_CASE_VALUES_THRESHOLD
#define TARGET_CASE_VALUES_THRESHOLD aarch64_case_values_threshold

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE aarch64_conditional_register_usage

#undef TARGET_MEMBER_TYPE_FORCES_BLK
#define TARGET_MEMBER_TYPE_FORCES_BLK aarch64_member_type_forces_blk

/* Only the least significant bit is used for initialization guard
   variables.  */
#undef TARGET_CXX_GUARD_MASK_BIT
#define TARGET_CXX_GUARD_MASK_BIT hook_bool_void_true

#undef TARGET_C_MODE_FOR_SUFFIX
#define TARGET_C_MODE_FOR_SUFFIX aarch64_c_mode_for_suffix

#ifdef TARGET_BIG_ENDIAN_DEFAULT
#undef  TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_END)
#endif

#undef TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS aarch64_class_max_nregs

#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL aarch64_builtin_decl

#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL aarch64_builtin_reciprocal

#undef TARGET_C_EXCESS_PRECISION
#define TARGET_C_EXCESS_PRECISION aarch64_excess_precision

#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN aarch64_expand_builtin

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START aarch64_expand_builtin_va_start

#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN aarch64_fold_builtin

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG aarch64_function_arg

#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE aarch64_function_arg_advance

#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY aarch64_function_arg_boundary

#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING aarch64_function_arg_padding

#undef TARGET_GET_RAW_RESULT_MODE
#define TARGET_GET_RAW_RESULT_MODE aarch64_get_reg_raw_mode
#undef TARGET_GET_RAW_ARG_MODE
#define TARGET_GET_RAW_ARG_MODE aarch64_get_reg_raw_mode

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL aarch64_function_ok_for_sibcall

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE aarch64_function_value

#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P aarch64_function_value_regno_p

#undef TARGET_GIMPLE_FOLD_BUILTIN
#define TARGET_GIMPLE_FOLD_BUILTIN aarch64_gimple_fold_builtin

#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR aarch64_gimplify_va_arg_expr

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS  aarch64_init_builtins

#undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
#define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS \
  aarch64_ira_change_pseudo_allocno_class

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P aarch64_legitimate_address_hook_p

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P aarch64_legitimate_constant_p

#undef TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT
#define TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT \
  aarch64_legitimize_address_displacement

#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE aarch64_libgcc_cmp_return_mode

#undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
#define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \
aarch64_libgcc_floating_mode_supported_p

#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE aarch64_mangle_type

#undef TARGET_INVALID_CONVERSION
#define TARGET_INVALID_CONVERSION aarch64_invalid_conversion

#undef TARGET_INVALID_UNARY_OP
#define TARGET_INVALID_UNARY_OP aarch64_invalid_unary_op

#undef TARGET_INVALID_BINARY_OP
#define TARGET_INVALID_BINARY_OP aarch64_invalid_binary_op

#undef TARGET_VERIFY_TYPE_CONTEXT
#define TARGET_VERIFY_TYPE_CONTEXT aarch64_verify_type_context

#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST aarch64_memory_move_cost

#undef TARGET_MIN_DIVISIONS_FOR_RECIP_MUL
#define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL aarch64_min_divisions_for_recip_mul

#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size

/* This target hook should return true if accesses to volatile bitfields
   should use the narrowest mode possible.  It should return false if these
   accesses should use the bitfield container type.  */
#undef TARGET_NARROW_VOLATILE_BITFIELD
#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE aarch64_override_options

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE \
  aarch64_override_options_after_change

#undef TARGET_OFFLOAD_OPTIONS
#define TARGET_OFFLOAD_OPTIONS aarch64_offload_options

#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE aarch64_option_restore

#undef TARGET_OPTION_PRINT
#define TARGET_OPTION_PRINT aarch64_option_print

#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P aarch64_option_valid_attribute_p

#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION aarch64_set_current_function

#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE aarch64_pass_by_reference

#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS aarch64_preferred_reload_class

#undef TARGET_SCHED_REASSOCIATION_WIDTH
#define TARGET_SCHED_REASSOCIATION_WIDTH aarch64_reassociation_width

#undef TARGET_PROMOTED_TYPE
#define TARGET_PROMOTED_TYPE aarch64_promoted_type

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD aarch64_secondary_reload

#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED aarch64_secondary_memory_needed

#undef TARGET_SHIFT_TRUNCATION_MASK
#define TARGET_SHIFT_TRUNCATION_MASK aarch64_shift_truncation_mask

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS aarch64_setup_incoming_varargs

#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX   aarch64_struct_value_rtx

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST aarch64_register_move_cost

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY aarch64_return_in_memory

#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB aarch64_return_in_msb

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS aarch64_rtx_costs_wrapper

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P aarch64_scalar_mode_supported_p

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE aarch64_sched_issue_rate

#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE aarch64_sched_variable_issue

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  aarch64_sched_first_cycle_multipass_dfa_lookahead

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD \
  aarch64_first_cycle_multipass_dfa_lookahead_guard

#undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
#define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS \
  aarch64_get_separate_components

#undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
#define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB \
  aarch64_components_for_bb

#undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
#define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS \
  aarch64_disqualify_components

#undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS \
  aarch64_emit_prologue_components

#undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS \
  aarch64_emit_epilogue_components

#undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
#define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS \
  aarch64_set_handled_components

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT aarch64_trampoline_init

#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P aarch64_use_blocks_for_constant_p

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P aarch64_vector_mode_supported_p

#undef TARGET_COMPATIBLE_VECTOR_TYPES_P
#define TARGET_COMPATIBLE_VECTOR_TYPES_P aarch64_compatible_vector_types_p

#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
  aarch64_builtin_support_vector_misalignment

#undef TARGET_ARRAY_MODE
#define TARGET_ARRAY_MODE aarch64_array_mode

#undef TARGET_ARRAY_MODE_SUPPORTED_P
#define TARGET_ARRAY_MODE_SUPPORTED_P aarch64_array_mode_supported_p

#undef TARGET_VECTORIZE_CREATE_COSTS
#define TARGET_VECTORIZE_CREATE_COSTS aarch64_vectorize_create_costs

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
  aarch64_builtin_vectorization_cost

#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE aarch64_preferred_simd_mode

#undef TARGET_VECTORIZE_BUILTINS
#define TARGET_VECTORIZE_BUILTINS

#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \
  aarch64_autovectorize_vector_modes

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV \
  aarch64_atomic_assign_expand_fenv

/* Section anchor support.  */

#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -256

/* Limit the maximum anchor offset to 4k-1, since that's the limit for a
   byte offset; we can do much more for larger data types, but have no way
   to determine the size of the access.  We assume accesses are aligned.  */
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 4095

#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT aarch64_simd_vector_alignment

#undef TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT
#define TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT \
  aarch64_vectorize_preferred_vector_alignment
#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
  aarch64_simd_vector_alignment_reachable

/* vec_perm support.  */

#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST \
  aarch64_vectorize_vec_perm_const

#undef TARGET_VECTORIZE_RELATED_MODE
#define TARGET_VECTORIZE_RELATED_MODE aarch64_vectorize_related_mode
#undef TARGET_VECTORIZE_GET_MASK_MODE
#define TARGET_VECTORIZE_GET_MASK_MODE aarch64_get_mask_mode
#undef TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE
#define TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE \
  aarch64_empty_mask_is_expensive
#undef TARGET_PREFERRED_ELSE_VALUE
#define TARGET_PREFERRED_ELSE_VALUE \
  aarch64_preferred_else_value

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS aarch64_init_libfuncs

#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS aarch64_fixed_condition_code_regs

#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM CC_REGNUM

#undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
#define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true

#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET aarch64_asan_shadow_offset

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS aarch64_legitimize_address

#undef TARGET_SCHED_CAN_SPECULATE_INSN
#define TARGET_SCHED_CAN_SPECULATE_INSN aarch64_sched_can_speculate_insn

#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY aarch64_sched_adjust_priority

#undef TARGET_SCHED_MACRO_FUSION_P
#define TARGET_SCHED_MACRO_FUSION_P aarch64_macro_fusion_p

#undef TARGET_SCHED_MACRO_FUSION_PAIR_P
#define TARGET_SCHED_MACRO_FUSION_PAIR_P aarch_macro_fusion_pair_p

#undef TARGET_SCHED_FUSION_PRIORITY
#define TARGET_SCHED_FUSION_PRIORITY aarch64_sched_fusion_priority

#undef TARGET_UNSPEC_MAY_TRAP_P
#define TARGET_UNSPEC_MAY_TRAP_P aarch64_unspec_may_trap_p

#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG aarch64_use_pseudo_pic_reg

#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND aarch64_print_operand

#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS aarch64_print_operand_address

#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA aarch64_output_addr_const_extra

#undef TARGET_OPTAB_SUPPORTED_P
#define TARGET_OPTAB_SUPPORTED_P aarch64_optab_supported_p

#undef TARGET_OMIT_STRUCT_RETURN_REG
#define TARGET_OMIT_STRUCT_RETURN_REG true

#undef TARGET_DWARF_POLY_INDETERMINATE_VALUE
#define TARGET_DWARF_POLY_INDETERMINATE_VALUE \
  aarch64_dwarf_poly_indeterminate_value

/* The architecture reserves bits 0 and 1 so use bit 2 for descriptors.  */
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 4

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS aarch64_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK aarch64_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P aarch64_modes_tieable_p

#undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
#define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
  aarch64_hard_regno_call_part_clobbered

#undef TARGET_INSN_CALLEE_ABI
#define TARGET_INSN_CALLEE_ABI aarch64_insn_callee_abi

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT aarch64_constant_alignment

#undef TARGET_STACK_CLASH_PROTECTION_ALLOCA_PROBE_RANGE
#define TARGET_STACK_CLASH_PROTECTION_ALLOCA_PROBE_RANGE \
  aarch64_stack_clash_protection_alloca_probe_range

#undef TARGET_COMPUTE_PRESSURE_CLASSES
#define TARGET_COMPUTE_PRESSURE_CLASSES aarch64_compute_pressure_classes

#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS aarch64_can_change_mode_class

#undef TARGET_SELECT_EARLY_REMAT_MODES
#define TARGET_SELECT_EARLY_REMAT_MODES aarch64_select_early_remat_modes

#undef TARGET_SPECULATION_SAFE_VALUE
#define TARGET_SPECULATION_SAFE_VALUE aarch64_speculation_safe_value

#undef TARGET_ESTIMATED_POLY_VALUE
#define TARGET_ESTIMATED_POLY_VALUE aarch64_estimated_poly_value

#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE aarch64_attribute_table

#undef TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
#define TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN \
  aarch64_simd_clone_compute_vecsize_and_simdlen

#undef TARGET_SIMD_CLONE_ADJUST
#define TARGET_SIMD_CLONE_ADJUST aarch64_simd_clone_adjust

#undef TARGET_SIMD_CLONE_USABLE
#define TARGET_SIMD_CLONE_USABLE aarch64_simd_clone_usable

#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES aarch64_comp_type_attributes

#undef TARGET_GET_MULTILIB_ABI_NAME
#define TARGET_GET_MULTILIB_ABI_NAME aarch64_get_multilib_abi_name

#undef TARGET_FNTYPE_ABI
#define TARGET_FNTYPE_ABI aarch64_fntype_abi

#undef TARGET_MEMTAG_CAN_TAG_ADDRESSES
#define TARGET_MEMTAG_CAN_TAG_ADDRESSES aarch64_can_tag_addresses

#if CHECKING_P
#undef TARGET_RUN_TARGET_SELFTESTS
#define TARGET_RUN_TARGET_SELFTESTS selftest::aarch64_run_selftests
#endif /* #if CHECKING_P */

#undef TARGET_ASM_POST_CFI_STARTPROC
#define TARGET_ASM_POST_CFI_STARTPROC aarch64_post_cfi_startproc

#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true

#undef TARGET_MD_ASM_ADJUST
#define TARGET_MD_ASM_ADJUST arm_md_asm_adjust

#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END aarch64_asm_file_end

#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE aarch64_sls_emit_blr_function_thunks

#undef TARGET_HAVE_SHADOW_CALL_STACK
#define TARGET_HAVE_SHADOW_CALL_STACK true

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-aarch64.h"