aboutsummaryrefslogtreecommitdiff
path: root/gcc/cfgloop.c
blob: 9afd48ba21790f887ec6cc46a5e136cb65b23d5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
/* Natural loop discovery code for GNU compiler.
   Copyright (C) 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "function.h"
#include "basic-block.h"
#include "toplev.h"
#include "cfgloop.h"
#include "flags.h"
#include "tree.h"
#include "tree-flow.h"

/* Ratio of frequencies of edges so that one of more latch edges is
   considered to belong to inner loop with same header.  */
#define HEAVY_EDGE_RATIO 8

#define HEADER_BLOCK(B) (* (int *) (B)->aux)
#define LATCH_EDGE(E) (*(int *) (E)->aux)

static void flow_loops_cfg_dump (const struct loops *, FILE *);
static int flow_loop_level_compute (struct loop *);
static void flow_loops_level_compute (struct loops *);
static void establish_preds (struct loop *);
static void canonicalize_loop_headers (void);
static bool glb_enum_p (basic_block, void *);

/* Dump loop related CFG information.  */

static void
flow_loops_cfg_dump (const struct loops *loops, FILE *file)
{
  int i;
  basic_block bb;

  if (! loops->num || ! file)
    return;

  FOR_EACH_BB (bb)
    {
      edge succ;
      edge_iterator ei;

      fprintf (file, ";; %d succs { ", bb->index);
      FOR_EACH_EDGE (succ, ei, bb->succs)
	fprintf (file, "%d ", succ->dest->index);
      fprintf (file, "}\n");
    }

  /* Dump the DFS node order.  */
  if (loops->cfg.dfs_order)
    {
      fputs (";; DFS order: ", file);
      for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
	fprintf (file, "%d ", loops->cfg.dfs_order[i]);

      fputs ("\n", file);
    }

  /* Dump the reverse completion node order.  */
  if (loops->cfg.rc_order)
    {
      fputs (";; RC order: ", file);
      for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
	fprintf (file, "%d ", loops->cfg.rc_order[i]);

      fputs ("\n", file);
    }
}

/* Return nonzero if the nodes of LOOP are a subset of OUTER.  */

bool
flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
{
  return (loop->depth > outer->depth
	 && loop->pred[outer->depth] == outer);
}

/* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
   loops within LOOP.  */

struct loop *
superloop_at_depth (struct loop *loop, unsigned depth)
{
  gcc_assert (depth <= (unsigned) loop->depth);

  if (depth == (unsigned) loop->depth)
    return loop;

  return loop->pred[depth];
}

/* Dump the loop information specified by LOOP to the stream FILE
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */

void
flow_loop_dump (const struct loop *loop, FILE *file,
		void (*loop_dump_aux) (const struct loop *, FILE *, int),
		int verbose)
{
  basic_block *bbs;
  unsigned i;

  if (! loop || ! loop->header)
    return;

  fprintf (file, ";;\n;; Loop %d\n", loop->num);

  fprintf (file, ";;  header %d, latch %d\n",
	   loop->header->index, loop->latch->index);
  fprintf (file, ";;  depth %d, level %d, outer %ld\n",
	   loop->depth, loop->level,
	   (long) (loop->outer ? loop->outer->num : -1));

  fprintf (file, ";;  nodes:");
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    fprintf (file, " %d", bbs[i]->index);
  free (bbs);
  fprintf (file, "\n");

  if (loop_dump_aux)
    loop_dump_aux (loop, file, verbose);
}

/* Dump the loop information specified by LOOPS to the stream FILE,
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */

void
flow_loops_dump (const struct loops *loops, FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
{
  int i;
  int num_loops;

  num_loops = loops->num;
  if (! num_loops || ! file)
    return;

  fprintf (file, ";; %d loops found\n", num_loops);

  for (i = 0; i < num_loops; i++)
    {
      struct loop *loop = loops->parray[i];

      if (!loop)
	continue;

      flow_loop_dump (loop, file, loop_dump_aux, verbose);
    }

  if (verbose)
    flow_loops_cfg_dump (loops, file);
}

/* Free data allocated for LOOP.  */
void
flow_loop_free (struct loop *loop)
{
  if (loop->pred)
    free (loop->pred);
  free (loop);
}

/* Free all the memory allocated for LOOPS.  */

void
flow_loops_free (struct loops *loops)
{
  if (loops->parray)
    {
      unsigned i;

      gcc_assert (loops->num);

      /* Free the loop descriptors.  */
      for (i = 0; i < loops->num; i++)
	{
	  struct loop *loop = loops->parray[i];

	  if (!loop)
	    continue;

	  flow_loop_free (loop);
	}

      free (loops->parray);
      loops->parray = NULL;

      if (loops->cfg.dfs_order)
	free (loops->cfg.dfs_order);
      if (loops->cfg.rc_order)
	free (loops->cfg.rc_order);

    }
}

/* Find the nodes contained within the LOOP with header HEADER.
   Return the number of nodes within the loop.  */

int
flow_loop_nodes_find (basic_block header, struct loop *loop)
{
  basic_block *stack;
  int sp;
  int num_nodes = 1;

  header->loop_father = loop;
  header->loop_depth = loop->depth;

  if (loop->latch->loop_father != loop)
    {
      stack = XNEWVEC (basic_block, n_basic_blocks);
      sp = 0;
      num_nodes++;
      stack[sp++] = loop->latch;
      loop->latch->loop_father = loop;
      loop->latch->loop_depth = loop->depth;

      while (sp)
	{
	  basic_block node;
	  edge e;
	  edge_iterator ei;

	  node = stack[--sp];

	  FOR_EACH_EDGE (e, ei, node->preds)
	    {
	      basic_block ancestor = e->src;

	      if (ancestor != ENTRY_BLOCK_PTR
		  && ancestor->loop_father != loop)
		{
		  ancestor->loop_father = loop;
		  ancestor->loop_depth = loop->depth;
		  num_nodes++;
		  stack[sp++] = ancestor;
		}
	    }
	}
      free (stack);
    }
  return num_nodes;
}

/* For each loop in the lOOPS tree that has just a single exit
   record the exit edge.  */

void
mark_single_exit_loops (struct loops *loops)
{
  basic_block bb;
  edge e;
  struct loop *loop;
  unsigned i;

  for (i = 1; i < loops->num; i++)
    {
      loop = loops->parray[i];
      if (loop)
	loop->single_exit = NULL;
    }

  FOR_EACH_BB (bb)
    {
      edge_iterator ei;
      if (bb->loop_father == loops->tree_root)
	continue;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (e->dest == EXIT_BLOCK_PTR)
	    continue;

	  if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
	    continue;

	  for (loop = bb->loop_father;
	       loop != e->dest->loop_father;
	       loop = loop->outer)
	    {
	      /* If we have already seen an exit, mark this by the edge that
		 surely does not occur as any exit.  */
	      if (loop->single_exit)
		loop->single_exit = single_succ_edge (ENTRY_BLOCK_PTR);
	      else
		loop->single_exit = e;
	    }
	}
    }

  for (i = 1; i < loops->num; i++)
    {
      loop = loops->parray[i];
      if (!loop)
	continue;

      if (loop->single_exit == single_succ_edge (ENTRY_BLOCK_PTR))
	loop->single_exit = NULL;
    }

  loops->state |= LOOPS_HAVE_MARKED_SINGLE_EXITS;
}

static void
establish_preds (struct loop *loop)
{
  struct loop *ploop, *father = loop->outer;

  loop->depth = father->depth + 1;

  /* Remember the current loop depth if it is the largest seen so far.  */
  cfun->max_loop_depth = MAX (cfun->max_loop_depth, loop->depth);

  if (loop->pred)
    free (loop->pred);
  loop->pred = XNEWVEC (struct loop *, loop->depth);
  memcpy (loop->pred, father->pred, sizeof (struct loop *) * father->depth);
  loop->pred[father->depth] = father;

  for (ploop = loop->inner; ploop; ploop = ploop->next)
    establish_preds (ploop);
}

/* Add LOOP to the loop hierarchy tree where FATHER is father of the
   added loop.  If LOOP has some children, take care of that their
   pred field will be initialized correctly.  */

void
flow_loop_tree_node_add (struct loop *father, struct loop *loop)
{
  loop->next = father->inner;
  father->inner = loop;
  loop->outer = father;

  establish_preds (loop);
}

/* Remove LOOP from the loop hierarchy tree.  */

void
flow_loop_tree_node_remove (struct loop *loop)
{
  struct loop *prev, *father;

  father = loop->outer;
  loop->outer = NULL;

  /* Remove loop from the list of sons.  */
  if (father->inner == loop)
    father->inner = loop->next;
  else
    {
      for (prev = father->inner; prev->next != loop; prev = prev->next);
      prev->next = loop->next;
    }

  loop->depth = -1;
  free (loop->pred);
  loop->pred = NULL;
}

/* Helper function to compute loop nesting depth and enclosed loop level
   for the natural loop specified by LOOP.  Returns the loop level.  */

static int
flow_loop_level_compute (struct loop *loop)
{
  struct loop *inner;
  int level = 1;

  if (! loop)
    return 0;

  /* Traverse loop tree assigning depth and computing level as the
     maximum level of all the inner loops of this loop.  The loop
     level is equivalent to the height of the loop in the loop tree
     and corresponds to the number of enclosed loop levels (including
     itself).  */
  for (inner = loop->inner; inner; inner = inner->next)
    {
      int ilevel = flow_loop_level_compute (inner) + 1;

      if (ilevel > level)
	level = ilevel;
    }

  loop->level = level;
  return level;
}

/* Compute the loop nesting depth and enclosed loop level for the loop
   hierarchy tree specified by LOOPS.  Return the maximum enclosed loop
   level.  */

static void
flow_loops_level_compute (struct loops *loops)
{
  flow_loop_level_compute (loops->tree_root);
}

/* A callback to update latch and header info for basic block JUMP created
   by redirecting an edge.  */

static void
update_latch_info (basic_block jump)
{
  alloc_aux_for_block (jump, sizeof (int));
  HEADER_BLOCK (jump) = 0;
  alloc_aux_for_edge (single_pred_edge (jump), sizeof (int));
  LATCH_EDGE (single_pred_edge (jump)) = 0;
  set_immediate_dominator (CDI_DOMINATORS, jump, single_pred (jump));
}

/* A callback for make_forwarder block, to redirect all edges except for
   MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
   whether to redirect it.  */

static edge mfb_kj_edge;
static bool
mfb_keep_just (edge e)
{
  return e != mfb_kj_edge;
}

/* A callback for make_forwarder block, to redirect the latch edges into an
   entry part.  E is the edge for that we should decide whether to redirect
   it.  */

static bool
mfb_keep_nonlatch (edge e)
{
  return LATCH_EDGE (e);
}

/* Takes care of merging natural loops with shared headers.  */

static void
canonicalize_loop_headers (void)
{
  basic_block header;
  edge e;

  alloc_aux_for_blocks (sizeof (int));
  alloc_aux_for_edges (sizeof (int));

  /* Split blocks so that each loop has only single latch.  */
  FOR_EACH_BB (header)
    {
      edge_iterator ei;
      int num_latches = 0;
      int have_abnormal_edge = 0;

      FOR_EACH_EDGE (e, ei, header->preds)
	{
	  basic_block latch = e->src;

	  if (e->flags & EDGE_ABNORMAL)
	    have_abnormal_edge = 1;

	  if (latch != ENTRY_BLOCK_PTR
	      && dominated_by_p (CDI_DOMINATORS, latch, header))
	    {
	      num_latches++;
	      LATCH_EDGE (e) = 1;
	    }
	}
      if (have_abnormal_edge)
	HEADER_BLOCK (header) = 0;
      else
	HEADER_BLOCK (header) = num_latches;
    }

  if (HEADER_BLOCK (single_succ (ENTRY_BLOCK_PTR)))
    {
      basic_block bb;

      /* We could not redirect edges freely here. On the other hand,
	 we can simply split the edge from entry block.  */
      bb = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));

      alloc_aux_for_edge (single_succ_edge (bb), sizeof (int));
      LATCH_EDGE (single_succ_edge (bb)) = 0;
      alloc_aux_for_block (bb, sizeof (int));
      HEADER_BLOCK (bb) = 0;
    }

  FOR_EACH_BB (header)
    {
      int max_freq, is_heavy;
      edge heavy, tmp_edge;
      edge_iterator ei;

      if (HEADER_BLOCK (header) <= 1)
	continue;

      /* Find a heavy edge.  */
      is_heavy = 1;
      heavy = NULL;
      max_freq = 0;
      FOR_EACH_EDGE (e, ei, header->preds)
	if (LATCH_EDGE (e) &&
	    EDGE_FREQUENCY (e) > max_freq)
	  max_freq = EDGE_FREQUENCY (e);
      FOR_EACH_EDGE (e, ei, header->preds)
	if (LATCH_EDGE (e) &&
	    EDGE_FREQUENCY (e) >= max_freq / HEAVY_EDGE_RATIO)
	  {
	    if (heavy)
	      {
		is_heavy = 0;
		break;
	      }
	    else
	      heavy = e;
	  }

      if (is_heavy)
	{
	  /* Split out the heavy edge, and create inner loop for it.  */
	  mfb_kj_edge = heavy;
	  tmp_edge = make_forwarder_block (header, mfb_keep_just,
					   update_latch_info);
	  alloc_aux_for_block (tmp_edge->dest, sizeof (int));
	  HEADER_BLOCK (tmp_edge->dest) = 1;
	  alloc_aux_for_edge (tmp_edge, sizeof (int));
	  LATCH_EDGE (tmp_edge) = 0;
	  HEADER_BLOCK (header)--;
	}

      if (HEADER_BLOCK (header) > 1)
	{
	  /* Create a new latch block.  */
	  tmp_edge = make_forwarder_block (header, mfb_keep_nonlatch,
					   update_latch_info);
	  alloc_aux_for_block (tmp_edge->dest, sizeof (int));
	  HEADER_BLOCK (tmp_edge->src) = 0;
	  HEADER_BLOCK (tmp_edge->dest) = 1;
	  alloc_aux_for_edge (tmp_edge, sizeof (int));
	  LATCH_EDGE (tmp_edge) = 1;
	}
    }

  free_aux_for_blocks ();
  free_aux_for_edges ();

#ifdef ENABLE_CHECKING
  verify_dominators (CDI_DOMINATORS);
#endif
}

/* Initialize all the parallel_p fields of the loops structure to true.  */

static void
initialize_loops_parallel_p (struct loops *loops)
{
  unsigned int i;

  for (i = 0; i < loops->num; i++)
    {
      struct loop *loop = loops->parray[i];
      loop->parallel_p = true;
    }
}

/* Find all the natural loops in the function and save in LOOPS structure and
   recalculate loop_depth information in basic block structures.
   Return the number of natural loops found.  */

int
flow_loops_find (struct loops *loops)
{
  int b;
  int num_loops;
  edge e;
  sbitmap headers;
  int *dfs_order;
  int *rc_order;
  basic_block header;
  basic_block bb;

  memset (loops, 0, sizeof *loops);

  /* We are going to recount the maximum loop depth,
     so throw away the last count.  */
  cfun->max_loop_depth = 0;

  /* Taking care of this degenerate case makes the rest of
     this code simpler.  */
  if (n_basic_blocks == NUM_FIXED_BLOCKS)
    return 0;

  dfs_order = NULL;
  rc_order = NULL;

  /* Ensure that the dominators are computed.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* Join loops with shared headers.  */
  canonicalize_loop_headers ();

  /* Count the number of loop headers.  This should be the
     same as the number of natural loops.  */
  headers = sbitmap_alloc (last_basic_block);
  sbitmap_zero (headers);

  num_loops = 0;
  FOR_EACH_BB (header)
    {
      edge_iterator ei;
      int more_latches = 0;

      header->loop_depth = 0;

      /* If we have an abnormal predecessor, do not consider the
	 loop (not worth the problems).  */
      FOR_EACH_EDGE (e, ei, header->preds)
	if (e->flags & EDGE_ABNORMAL)
	  break;
      if (e)
	continue;

      FOR_EACH_EDGE (e, ei, header->preds)
	{
	  basic_block latch = e->src;

	  gcc_assert (!(e->flags & EDGE_ABNORMAL));

	  /* Look for back edges where a predecessor is dominated
	     by this block.  A natural loop has a single entry
	     node (header) that dominates all the nodes in the
	     loop.  It also has single back edge to the header
	     from a latch node.  */
	  if (latch != ENTRY_BLOCK_PTR
	      && dominated_by_p (CDI_DOMINATORS, latch, header))
	    {
	      /* Shared headers should be eliminated by now.  */
	      gcc_assert (!more_latches);
	      more_latches = 1;
	      SET_BIT (headers, header->index);
	      num_loops++;
	    }
	}
    }

  /* Allocate loop structures.  */
  loops->parray = XCNEWVEC (struct loop *, num_loops + 1);

  /* Dummy loop containing whole function.  */
  loops->parray[0] = XCNEW (struct loop);
  loops->parray[0]->next = NULL;
  loops->parray[0]->inner = NULL;
  loops->parray[0]->outer = NULL;
  loops->parray[0]->depth = 0;
  loops->parray[0]->pred = NULL;
  loops->parray[0]->num_nodes = n_basic_blocks;
  loops->parray[0]->latch = EXIT_BLOCK_PTR;
  loops->parray[0]->header = ENTRY_BLOCK_PTR;
  ENTRY_BLOCK_PTR->loop_father = loops->parray[0];
  EXIT_BLOCK_PTR->loop_father = loops->parray[0];

  loops->tree_root = loops->parray[0];

  /* Find and record information about all the natural loops
     in the CFG.  */
  loops->num = 1;
  FOR_EACH_BB (bb)
    bb->loop_father = loops->tree_root;

  if (num_loops)
    {
      /* Compute depth first search order of the CFG so that outer
	 natural loops will be found before inner natural loops.  */
      dfs_order = XNEWVEC (int, n_basic_blocks);
      rc_order = XNEWVEC (int, n_basic_blocks);
      pre_and_rev_post_order_compute (dfs_order, rc_order, false);

      /* Save CFG derived information to avoid recomputing it.  */
      loops->cfg.dfs_order = dfs_order;
      loops->cfg.rc_order = rc_order;

      num_loops = 1;

      for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
	{
	  struct loop *loop;
	  edge_iterator ei;

	  /* Search the nodes of the CFG in reverse completion order
	     so that we can find outer loops first.  */
	  if (!TEST_BIT (headers, rc_order[b]))
	    continue;

	  header = BASIC_BLOCK (rc_order[b]);

	  loop = loops->parray[num_loops] = XCNEW (struct loop);

	  loop->header = header;
	  loop->num = num_loops;
	  num_loops++;

	  /* Look for the latch for this header block.  */
	  FOR_EACH_EDGE (e, ei, header->preds)
	    {
	      basic_block latch = e->src;

	      if (latch != ENTRY_BLOCK_PTR
		  && dominated_by_p (CDI_DOMINATORS, latch, header))
		{
		  loop->latch = latch;
		  break;
		}
	    }

	  flow_loop_tree_node_add (header->loop_father, loop);
	  loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
	}

      /* Assign the loop nesting depth and enclosed loop level for each
	 loop.  */
      flow_loops_level_compute (loops);

      loops->num = num_loops;
      initialize_loops_parallel_p (loops);
    }

  sbitmap_free (headers);

  loops->state = 0;
#ifdef ENABLE_CHECKING
  verify_flow_info ();
  verify_loop_structure (loops);
#endif

  return loops->num;
}

/* Return nonzero if basic block BB belongs to LOOP.  */
bool
flow_bb_inside_loop_p (const struct loop *loop, const basic_block bb)
{
  struct loop *source_loop;

  if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
    return 0;

  source_loop = bb->loop_father;
  return loop == source_loop || flow_loop_nested_p (loop, source_loop);
}

/* Enumeration predicate for get_loop_body.  */
static bool
glb_enum_p (basic_block bb, void *glb_header)
{
  return bb != (basic_block) glb_header;
}

/* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
   order against direction of edges from latch.  Specially, if
   header != latch, latch is the 1-st block.  */
basic_block *
get_loop_body (const struct loop *loop)
{
  basic_block *tovisit, bb;
  unsigned tv = 0;

  gcc_assert (loop->num_nodes);

  tovisit = XCNEWVEC (basic_block, loop->num_nodes);
  tovisit[tv++] = loop->header;

  if (loop->latch == EXIT_BLOCK_PTR)
    {
      /* There may be blocks unreachable from EXIT_BLOCK.  */
      gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
      FOR_EACH_BB (bb)
	tovisit[tv++] = bb;
      tovisit[tv++] = EXIT_BLOCK_PTR;
    }
  else if (loop->latch != loop->header)
    {
      tv = dfs_enumerate_from (loop->latch, 1, glb_enum_p,
			       tovisit + 1, loop->num_nodes - 1,
			       loop->header) + 1;
    }

  gcc_assert (tv == loop->num_nodes);
  return tovisit;
}

/* Fills dominance descendants inside LOOP of the basic block BB into
   array TOVISIT from index *TV.  */

static void
fill_sons_in_loop (const struct loop *loop, basic_block bb,
		   basic_block *tovisit, int *tv)
{
  basic_block son, postpone = NULL;

  tovisit[(*tv)++] = bb;
  for (son = first_dom_son (CDI_DOMINATORS, bb);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    {
      if (!flow_bb_inside_loop_p (loop, son))
	continue;

      if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
	{
	  postpone = son;
	  continue;
	}
      fill_sons_in_loop (loop, son, tovisit, tv);
    }

  if (postpone)
    fill_sons_in_loop (loop, postpone, tovisit, tv);
}

/* Gets body of a LOOP (that must be different from the outermost loop)
   sorted by dominance relation.  Additionally, if a basic block s dominates
   the latch, then only blocks dominated by s are be after it.  */

basic_block *
get_loop_body_in_dom_order (const struct loop *loop)
{
  basic_block *tovisit;
  int tv;

  gcc_assert (loop->num_nodes);

  tovisit = XCNEWVEC (basic_block, loop->num_nodes);

  gcc_assert (loop->latch != EXIT_BLOCK_PTR);

  tv = 0;
  fill_sons_in_loop (loop, loop->header, tovisit, &tv);

  gcc_assert (tv == (int) loop->num_nodes);

  return tovisit;
}

/* Get body of a LOOP in breadth first sort order.  */

basic_block *
get_loop_body_in_bfs_order (const struct loop *loop)
{
  basic_block *blocks;
  basic_block bb;
  bitmap visited;
  unsigned int i = 0;
  unsigned int vc = 1;

  gcc_assert (loop->num_nodes);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);

  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  visited = BITMAP_ALLOC (NULL);

  bb = loop->header;
  while (i < loop->num_nodes)
    {
      edge e;
      edge_iterator ei;

      if (!bitmap_bit_p (visited, bb->index))
	{
	  /* This basic block is now visited */
	  bitmap_set_bit (visited, bb->index);
	  blocks[i++] = bb;
	}

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (flow_bb_inside_loop_p (loop, e->dest))
	    {
	      if (!bitmap_bit_p (visited, e->dest->index))
		{
		  bitmap_set_bit (visited, e->dest->index);
		  blocks[i++] = e->dest;
		}
	    }
	}

      gcc_assert (i >= vc);

      bb = blocks[vc++];
    }

  BITMAP_FREE (visited);
  return blocks;
}

/* Gets exit edges of a LOOP, returning their number in N_EDGES.  */
edge *
get_loop_exit_edges (const struct loop *loop, unsigned int *num_edges)
{
  edge *edges, e;
  unsigned i, n;
  basic_block * body;
  edge_iterator ei;

  gcc_assert (loop->latch != EXIT_BLOCK_PTR);

  body = get_loop_body (loop);
  n = 0;
  for (i = 0; i < loop->num_nodes; i++)
    FOR_EACH_EDGE (e, ei, body[i]->succs)
      if (!flow_bb_inside_loop_p (loop, e->dest))
	n++;
  edges = XNEWVEC (edge, n);
  *num_edges = n;
  n = 0;
  for (i = 0; i < loop->num_nodes; i++)
    FOR_EACH_EDGE (e, ei, body[i]->succs)
      if (!flow_bb_inside_loop_p (loop, e->dest))
	edges[n++] = e;
  free (body);

  return edges;
}

/* Counts the number of conditional branches inside LOOP.  */

unsigned
num_loop_branches (const struct loop *loop)
{
  unsigned i, n;
  basic_block * body;

  gcc_assert (loop->latch != EXIT_BLOCK_PTR);

  body = get_loop_body (loop);
  n = 0;
  for (i = 0; i < loop->num_nodes; i++)
    if (EDGE_COUNT (body[i]->succs) >= 2)
      n++;
  free (body);

  return n;
}

/* Adds basic block BB to LOOP.  */
void
add_bb_to_loop (basic_block bb, struct loop *loop)
{
   int i;

   bb->loop_father = loop;
   bb->loop_depth = loop->depth;
   loop->num_nodes++;
   for (i = 0; i < loop->depth; i++)
     loop->pred[i]->num_nodes++;
 }

/* Remove basic block BB from loops.  */
void
remove_bb_from_loops (basic_block bb)
{
   int i;
   struct loop *loop = bb->loop_father;

   loop->num_nodes--;
   for (i = 0; i < loop->depth; i++)
     loop->pred[i]->num_nodes--;
   bb->loop_father = NULL;
   bb->loop_depth = 0;
}

/* Finds nearest common ancestor in loop tree for given loops.  */
struct loop *
find_common_loop (struct loop *loop_s, struct loop *loop_d)
{
  if (!loop_s) return loop_d;
  if (!loop_d) return loop_s;

  if (loop_s->depth < loop_d->depth)
    loop_d = loop_d->pred[loop_s->depth];
  else if (loop_s->depth > loop_d->depth)
    loop_s = loop_s->pred[loop_d->depth];

  while (loop_s != loop_d)
    {
      loop_s = loop_s->outer;
      loop_d = loop_d->outer;
    }
  return loop_s;
}

/* Cancels the LOOP; it must be innermost one.  */

static void
cancel_loop (struct loops *loops, struct loop *loop)
{
  basic_block *bbs;
  unsigned i;

  gcc_assert (!loop->inner);

  /* Move blocks up one level (they should be removed as soon as possible).  */
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    bbs[i]->loop_father = loop->outer;

  /* Remove the loop from structure.  */
  flow_loop_tree_node_remove (loop);

  /* Remove loop from loops array.  */
  loops->parray[loop->num] = NULL;

  /* Free loop data.  */
  flow_loop_free (loop);
}

/* Cancels LOOP and all its subloops.  */
void
cancel_loop_tree (struct loops *loops, struct loop *loop)
{
  while (loop->inner)
    cancel_loop_tree (loops, loop->inner);
  cancel_loop (loops, loop);
}

/* Checks that LOOPS are all right:
     -- sizes of loops are all right
     -- results of get_loop_body really belong to the loop
     -- loop header have just single entry edge and single latch edge
     -- loop latches have only single successor that is header of their loop
     -- irreducible loops are correctly marked
  */
void
verify_loop_structure (struct loops *loops)
{
  unsigned *sizes, i, j;
  sbitmap irreds;
  basic_block *bbs, bb;
  struct loop *loop;
  int err = 0;
  edge e;

  /* Check sizes.  */
  sizes = XCNEWVEC (unsigned, loops->num);
  sizes[0] = 2;

  FOR_EACH_BB (bb)
    for (loop = bb->loop_father; loop; loop = loop->outer)
      sizes[loop->num]++;

  for (i = 0; i < loops->num; i++)
    {
      if (!loops->parray[i])
	continue;

      if (loops->parray[i]->num_nodes != sizes[i])
	{
	  error ("size of loop %d should be %d, not %d",
		   i, sizes[i], loops->parray[i]->num_nodes);
	  err = 1;
	}
    }

  /* Check get_loop_body.  */
  for (i = 1; i < loops->num; i++)
    {
      loop = loops->parray[i];
      if (!loop)
	continue;
      bbs = get_loop_body (loop);

      for (j = 0; j < loop->num_nodes; j++)
	if (!flow_bb_inside_loop_p (loop, bbs[j]))
	  {
	    error ("bb %d do not belong to loop %d",
		    bbs[j]->index, i);
	    err = 1;
	  }
      free (bbs);
    }

  /* Check headers and latches.  */
  for (i = 1; i < loops->num; i++)
    {
      loop = loops->parray[i];
      if (!loop)
	continue;

      if ((loops->state & LOOPS_HAVE_PREHEADERS)
	  && EDGE_COUNT (loop->header->preds) != 2)
	{
	  error ("loop %d's header does not have exactly 2 entries", i);
	  err = 1;
	}
      if (loops->state & LOOPS_HAVE_SIMPLE_LATCHES)
	{
	  if (!single_succ_p (loop->latch))
	    {
	      error ("loop %d's latch does not have exactly 1 successor", i);
	      err = 1;
	    }
	  if (single_succ (loop->latch) != loop->header)
	    {
	      error ("loop %d's latch does not have header as successor", i);
	      err = 1;
	    }
	  if (loop->latch->loop_father != loop)
	    {
	      error ("loop %d's latch does not belong directly to it", i);
	      err = 1;
	    }
	}
      if (loop->header->loop_father != loop)
	{
	  error ("loop %d's header does not belong directly to it", i);
	  err = 1;
	}
      if ((loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
	  && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
	{
	  error ("loop %d's latch is marked as part of irreducible region", i);
	  err = 1;
	}
    }

  /* Check irreducible loops.  */
  if (loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
    {
      /* Record old info.  */
      irreds = sbitmap_alloc (last_basic_block);
      FOR_EACH_BB (bb)
	{
	  edge_iterator ei;
	  if (bb->flags & BB_IRREDUCIBLE_LOOP)
	    SET_BIT (irreds, bb->index);
	  else
	    RESET_BIT (irreds, bb->index);
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->flags & EDGE_IRREDUCIBLE_LOOP)
	      e->flags |= EDGE_ALL_FLAGS + 1;
	}

      /* Recount it.  */
      mark_irreducible_loops (loops);

      /* Compare.  */
      FOR_EACH_BB (bb)
	{
	  edge_iterator ei;

	  if ((bb->flags & BB_IRREDUCIBLE_LOOP)
	      && !TEST_BIT (irreds, bb->index))
	    {
	      error ("basic block %d should be marked irreducible", bb->index);
	      err = 1;
	    }
	  else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
	      && TEST_BIT (irreds, bb->index))
	    {
	      error ("basic block %d should not be marked irreducible", bb->index);
	      err = 1;
	    }
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
		  && !(e->flags & (EDGE_ALL_FLAGS + 1)))
		{
		  error ("edge from %d to %d should be marked irreducible",
			 e->src->index, e->dest->index);
		  err = 1;
		}
	      else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
		       && (e->flags & (EDGE_ALL_FLAGS + 1)))
		{
		  error ("edge from %d to %d should not be marked irreducible",
			 e->src->index, e->dest->index);
		  err = 1;
		}
	      e->flags &= ~(EDGE_ALL_FLAGS + 1);
	    }
	}
      free (irreds);
    }

  /* Check the single_exit.  */
  if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
    {
      memset (sizes, 0, sizeof (unsigned) * loops->num);
      FOR_EACH_BB (bb)
	{
	  edge_iterator ei;
	  if (bb->loop_father == loops->tree_root)
	    continue;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;

	      if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
		continue;

	      for (loop = bb->loop_father;
		   loop != e->dest->loop_father;
		   loop = loop->outer)
		{
		  sizes[loop->num]++;
		  if (loop->single_exit
		      && loop->single_exit != e)
		    {
		      error ("wrong single exit %d->%d recorded for loop %d",
			     loop->single_exit->src->index,
			     loop->single_exit->dest->index,
			     loop->num);
		      error ("right exit is %d->%d",
			     e->src->index, e->dest->index);
		      err = 1;
		    }
		}
	    }
	}

      for (i = 1; i < loops->num; i++)
	{
	  loop = loops->parray[i];
	  if (!loop)
	    continue;

	  if (sizes[i] == 1
	      && !loop->single_exit)
	    {
	      error ("single exit not recorded for loop %d", loop->num);
	      err = 1;
	    }

	  if (sizes[i] != 1
	      && loop->single_exit)
	    {
	      error ("loop %d should not have single exit (%d -> %d)",
		     loop->num,
		     loop->single_exit->src->index,
		     loop->single_exit->dest->index);
	      err = 1;
	    }
	}
    }

  gcc_assert (!err);

  free (sizes);
}

/* Returns latch edge of LOOP.  */
edge
loop_latch_edge (const struct loop *loop)
{
  return find_edge (loop->latch, loop->header);
}

/* Returns preheader edge of LOOP.  */
edge
loop_preheader_edge (const struct loop *loop)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, loop->header->preds)
    if (e->src != loop->latch)
      break;

  return e;
}

/* Returns true if E is an exit of LOOP.  */

bool
loop_exit_edge_p (const struct loop *loop, edge e)
{
  return (flow_bb_inside_loop_p (loop, e->src)
	  && !flow_bb_inside_loop_p (loop, e->dest));
}