1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
|
/* Save and restore call-clobbered registers which are live across a call.
Copyright (C) 1989-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "reload.h"
#include "alias.h"
#include "addresses.h"
#include "dumpfile.h"
#include "rtl-iter.h"
#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
#define regno_save_mode \
(this_target_reload->x_regno_save_mode)
#define cached_reg_save_code \
(this_target_reload->x_cached_reg_save_code)
#define cached_reg_restore_code \
(this_target_reload->x_cached_reg_restore_code)
/* For each hard register, a place on the stack where it can be saved,
if needed. */
static rtx
regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
/* The number of elements in the subsequent array. */
static int save_slots_num;
/* Allocated slots so far. */
static rtx save_slots[FIRST_PSEUDO_REGISTER];
/* Set of hard regs currently residing in save area (during insn scan). */
static HARD_REG_SET hard_regs_saved;
/* Number of registers currently in hard_regs_saved. */
static int n_regs_saved;
/* Computed by mark_referenced_regs, all regs referenced in a given
insn. */
static HARD_REG_SET referenced_regs;
typedef void refmarker_fn (rtx *loc, machine_mode mode, int hardregno,
void *mark_arg);
static int reg_save_code (int, machine_mode);
static int reg_restore_code (int, machine_mode);
struct saved_hard_reg;
static void initiate_saved_hard_regs (void);
static void new_saved_hard_reg (int, int);
static void finish_saved_hard_regs (void);
static int saved_hard_reg_compare_func (const void *, const void *);
static void mark_set_regs (rtx, const_rtx, void *);
static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
static refmarker_fn mark_reg_as_referenced;
static refmarker_fn replace_reg_with_saved_mem;
static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
machine_mode *);
static int insert_restore (struct insn_chain *, int, int, int,
machine_mode *);
static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
rtx);
static void add_stored_regs (rtx, const_rtx, void *);
static GTY(()) rtx savepat;
static GTY(()) rtx restpat;
static GTY(()) rtx test_reg;
static GTY(()) rtx test_mem;
static GTY(()) rtx_insn *saveinsn;
static GTY(()) rtx_insn *restinsn;
/* Return the INSN_CODE used to save register REG in mode MODE. */
static int
reg_save_code (int reg, machine_mode mode)
{
bool ok;
if (cached_reg_save_code[reg][mode])
return cached_reg_save_code[reg][mode];
if (!HARD_REGNO_MODE_OK (reg, mode))
{
/* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
below silences a warning. */
gcc_assert (reg < FIRST_PSEUDO_REGISTER);
cached_reg_save_code[reg][mode] = -1;
cached_reg_restore_code[reg][mode] = -1;
return -1;
}
/* Update the register number and modes of the register
and memory operand. */
set_mode_and_regno (test_reg, mode, reg);
PUT_MODE (test_mem, mode);
/* Force re-recognition of the modified insns. */
INSN_CODE (saveinsn) = -1;
INSN_CODE (restinsn) = -1;
cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
/* Now extract both insns and see if we can meet their
constraints. We don't know here whether the save and restore will
be in size- or speed-tuned code, so just use the set of enabled
alternatives. */
ok = (cached_reg_save_code[reg][mode] != -1
&& cached_reg_restore_code[reg][mode] != -1);
if (ok)
{
extract_insn (saveinsn);
ok = constrain_operands (1, get_enabled_alternatives (saveinsn));
extract_insn (restinsn);
ok &= constrain_operands (1, get_enabled_alternatives (restinsn));
}
if (! ok)
{
cached_reg_save_code[reg][mode] = -1;
cached_reg_restore_code[reg][mode] = -1;
}
gcc_assert (cached_reg_save_code[reg][mode]);
return cached_reg_save_code[reg][mode];
}
/* Return the INSN_CODE used to restore register REG in mode MODE. */
static int
reg_restore_code (int reg, machine_mode mode)
{
if (cached_reg_restore_code[reg][mode])
return cached_reg_restore_code[reg][mode];
/* Populate our cache. */
reg_save_code (reg, mode);
return cached_reg_restore_code[reg][mode];
}
/* Initialize for caller-save.
Look at all the hard registers that are used by a call and for which
reginfo.c has not already excluded from being used across a call.
Ensure that we can find a mode to save the register and that there is a
simple insn to save and restore the register. This latter check avoids
problems that would occur if we tried to save the MQ register of some
machines directly into memory. */
void
init_caller_save (void)
{
rtx addr_reg;
int offset;
rtx address;
int i, j;
if (caller_save_initialized_p)
return;
caller_save_initialized_p = true;
CLEAR_HARD_REG_SET (no_caller_save_reg_set);
/* First find all the registers that we need to deal with and all
the modes that they can have. If we can't find a mode to use,
we can't have the register live over calls. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (call_used_regs[i]
&& !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
{
for (j = 1; j <= MOVE_MAX_WORDS; j++)
{
regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
VOIDmode);
if (regno_save_mode[i][j] == VOIDmode && j == 1)
{
SET_HARD_REG_BIT (call_fixed_reg_set, i);
}
}
}
else
regno_save_mode[i][1] = VOIDmode;
}
/* The following code tries to approximate the conditions under which
we can easily save and restore a register without scratch registers or
other complexities. It will usually work, except under conditions where
the validity of an insn operand is dependent on the address offset.
No such cases are currently known.
We first find a typical offset from some BASE_REG_CLASS register.
This address is chosen by finding the first register in the class
and by finding the smallest power of two that is a valid offset from
that register in every mode we will use to save registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT
(reg_class_contents
[(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
PLUS, CONST_INT)], i))
break;
gcc_assert (i < FIRST_PSEUDO_REGISTER);
addr_reg = gen_rtx_REG (Pmode, i);
for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
{
address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regno_save_mode[i][1] != VOIDmode
&& ! strict_memory_address_p (regno_save_mode[i][1], address))
break;
if (i == FIRST_PSEUDO_REGISTER)
break;
}
/* If we didn't find a valid address, we must use register indirect. */
if (offset == 0)
address = addr_reg;
/* Next we try to form an insn to save and restore the register. We
see if such an insn is recognized and meets its constraints.
To avoid lots of unnecessary RTL allocation, we construct all the RTL
once, then modify the memory and register operands in-place. */
test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
test_mem = gen_rtx_MEM (word_mode, address);
savepat = gen_rtx_SET (test_mem, test_reg);
restpat = gen_rtx_SET (test_reg, test_mem);
saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, savepat, 0, -1, 0);
restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, restpat, 0, -1, 0);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = 1; j <= MOVE_MAX_WORDS; j++)
if (reg_save_code (i,regno_save_mode[i][j]) == -1)
{
regno_save_mode[i][j] = VOIDmode;
if (j == 1)
{
SET_HARD_REG_BIT (call_fixed_reg_set, i);
if (call_used_regs[i])
SET_HARD_REG_BIT (no_caller_save_reg_set, i);
}
}
}
/* Initialize save areas by showing that we haven't allocated any yet. */
void
init_save_areas (void)
{
int i, j;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = 1; j <= MOVE_MAX_WORDS; j++)
regno_save_mem[i][j] = 0;
save_slots_num = 0;
}
/* The structure represents a hard register which should be saved
through the call. It is used when the integrated register
allocator (IRA) is used and sharing save slots is on. */
struct saved_hard_reg
{
/* Order number starting with 0. */
int num;
/* The hard regno. */
int hard_regno;
/* Execution frequency of all calls through which given hard
register should be saved. */
int call_freq;
/* Stack slot reserved to save the hard register through calls. */
rtx slot;
/* True if it is first hard register in the chain of hard registers
sharing the same stack slot. */
int first_p;
/* Order number of the next hard register structure with the same
slot in the chain. -1 represents end of the chain. */
int next;
};
/* Map: hard register number to the corresponding structure. */
static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
/* The number of all structures representing hard registers should be
saved, in order words, the number of used elements in the following
array. */
static int saved_regs_num;
/* Pointers to all the structures. Index is the order number of the
corresponding structure. */
static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
/* First called function for work with saved hard registers. */
static void
initiate_saved_hard_regs (void)
{
int i;
saved_regs_num = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
hard_reg_map[i] = NULL;
}
/* Allocate and return new saved hard register with given REGNO and
CALL_FREQ. */
static void
new_saved_hard_reg (int regno, int call_freq)
{
struct saved_hard_reg *saved_reg;
saved_reg
= (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
saved_reg->num = saved_regs_num++;
saved_reg->hard_regno = regno;
saved_reg->call_freq = call_freq;
saved_reg->first_p = FALSE;
saved_reg->next = -1;
}
/* Free memory allocated for the saved hard registers. */
static void
finish_saved_hard_regs (void)
{
int i;
for (i = 0; i < saved_regs_num; i++)
free (all_saved_regs[i]);
}
/* The function is used to sort the saved hard register structures
according their frequency. */
static int
saved_hard_reg_compare_func (const void *v1p, const void *v2p)
{
const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
if (flag_omit_frame_pointer)
{
if (p1->call_freq - p2->call_freq != 0)
return p1->call_freq - p2->call_freq;
}
else if (p2->call_freq - p1->call_freq != 0)
return p2->call_freq - p1->call_freq;
return p1->num - p2->num;
}
/* Allocate save areas for any hard registers that might need saving.
We take a conservative approach here and look for call-clobbered hard
registers that are assigned to pseudos that cross calls. This may
overestimate slightly (especially if some of these registers are later
used as spill registers), but it should not be significant.
For IRA we use priority coloring to decrease stack slots needed for
saving hard registers through calls. We build conflicts for them
to do coloring.
Future work:
In the fallback case we should iterate backwards across all possible
modes for the save, choosing the largest available one instead of
falling back to the smallest mode immediately. (eg TF -> DF -> SF).
We do not try to use "move multiple" instructions that exist
on some machines (such as the 68k moveml). It could be a win to try
and use them when possible. The hard part is doing it in a way that is
machine independent since they might be saving non-consecutive
registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
void
setup_save_areas (void)
{
int i, j, k, freq;
HARD_REG_SET hard_regs_used;
struct saved_hard_reg *saved_reg;
rtx_insn *insn;
struct insn_chain *chain, *next;
unsigned int regno;
HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
reg_set_iterator rsi;
CLEAR_HARD_REG_SET (hard_regs_used);
/* Find every CALL_INSN and record which hard regs are live across the
call into HARD_REG_MAP and HARD_REGS_USED. */
initiate_saved_hard_regs ();
/* Create hard reg saved regs. */
for (chain = reload_insn_chain; chain != 0; chain = next)
{
rtx cheap;
insn = chain->insn;
next = chain->next;
if (!CALL_P (insn)
|| find_reg_note (insn, REG_NORETURN, NULL))
continue;
freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
&chain->live_throughout);
get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
/* Record all registers set in this call insn. These don't
need to be saved. N.B. the call insn might set a subreg
of a multi-hard-reg pseudo; then the pseudo is considered
live during the call, but the subreg that is set
isn't. */
CLEAR_HARD_REG_SET (this_insn_sets);
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
/* Sibcalls are considered to set the return value. */
if (SIBLING_CALL_P (insn) && crtl->return_rtx)
mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
AND_HARD_REG_SET (hard_regs_to_save, used_regs);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
{
if (hard_reg_map[regno] != NULL)
hard_reg_map[regno]->call_freq += freq;
else
new_saved_hard_reg (regno, freq);
SET_HARD_REG_BIT (hard_regs_used, regno);
}
cheap = find_reg_note (insn, REG_RETURNED, NULL);
if (cheap)
cheap = XEXP (cheap, 0);
/* Look through all live pseudos, mark their hard registers. */
EXECUTE_IF_SET_IN_REG_SET
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
{
int r = reg_renumber[regno];
int bound;
if (r < 0 || regno_reg_rtx[regno] == cheap)
continue;
bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
for (; r < bound; r++)
if (TEST_HARD_REG_BIT (used_regs, r))
{
if (hard_reg_map[r] != NULL)
hard_reg_map[r]->call_freq += freq;
else
new_saved_hard_reg (r, freq);
SET_HARD_REG_BIT (hard_regs_to_save, r);
SET_HARD_REG_BIT (hard_regs_used, r);
}
}
}
/* If requested, figure out which hard regs can share save slots. */
if (optimize && flag_ira_share_save_slots)
{
rtx slot;
char *saved_reg_conflicts;
int next_k;
struct saved_hard_reg *saved_reg2, *saved_reg3;
int call_saved_regs_num;
struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
int best_slot_num;
int prev_save_slots_num;
rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
/* Find saved hard register conflicts. */
saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
for (chain = reload_insn_chain; chain != 0; chain = next)
{
rtx cheap;
call_saved_regs_num = 0;
insn = chain->insn;
next = chain->next;
if (!CALL_P (insn)
|| find_reg_note (insn, REG_NORETURN, NULL))
continue;
cheap = find_reg_note (insn, REG_RETURNED, NULL);
if (cheap)
cheap = XEXP (cheap, 0);
REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
&chain->live_throughout);
get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
/* Record all registers set in this call insn. These don't
need to be saved. N.B. the call insn might set a subreg
of a multi-hard-reg pseudo; then the pseudo is considered
live during the call, but the subreg that is set
isn't. */
CLEAR_HARD_REG_SET (this_insn_sets);
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
/* Sibcalls are considered to set the return value,
compare df-scan.c:df_get_call_refs. */
if (SIBLING_CALL_P (insn) && crtl->return_rtx)
mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
AND_HARD_REG_SET (hard_regs_to_save, used_regs);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
{
gcc_assert (hard_reg_map[regno] != NULL);
call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
}
/* Look through all live pseudos, mark their hard registers. */
EXECUTE_IF_SET_IN_REG_SET
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
{
int r = reg_renumber[regno];
int bound;
if (r < 0 || regno_reg_rtx[regno] == cheap)
continue;
bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
for (; r < bound; r++)
if (TEST_HARD_REG_BIT (used_regs, r))
call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
}
for (i = 0; i < call_saved_regs_num; i++)
{
saved_reg = call_saved_regs[i];
for (j = 0; j < call_saved_regs_num; j++)
if (i != j)
{
saved_reg2 = call_saved_regs[j];
saved_reg_conflicts[saved_reg->num * saved_regs_num
+ saved_reg2->num]
= saved_reg_conflicts[saved_reg2->num * saved_regs_num
+ saved_reg->num]
= TRUE;
}
}
}
/* Sort saved hard regs. */
qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
saved_hard_reg_compare_func);
/* Initiate slots available from the previous reload
iteration. */
prev_save_slots_num = save_slots_num;
memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
save_slots_num = 0;
/* Allocate stack slots for the saved hard registers. */
for (i = 0; i < saved_regs_num; i++)
{
saved_reg = all_saved_regs[i];
regno = saved_reg->hard_regno;
for (j = 0; j < i; j++)
{
saved_reg2 = all_saved_regs[j];
if (! saved_reg2->first_p)
continue;
slot = saved_reg2->slot;
for (k = j; k >= 0; k = next_k)
{
saved_reg3 = all_saved_regs[k];
next_k = saved_reg3->next;
if (saved_reg_conflicts[saved_reg->num * saved_regs_num
+ saved_reg3->num])
break;
}
if (k < 0
&& (GET_MODE_SIZE (regno_save_mode[regno][1])
<= GET_MODE_SIZE (regno_save_mode
[saved_reg2->hard_regno][1])))
{
saved_reg->slot
= adjust_address_nv
(slot, regno_save_mode[saved_reg->hard_regno][1], 0);
regno_save_mem[regno][1] = saved_reg->slot;
saved_reg->next = saved_reg2->next;
saved_reg2->next = i;
if (dump_file != NULL)
fprintf (dump_file, "%d uses slot of %d\n",
regno, saved_reg2->hard_regno);
break;
}
}
if (j == i)
{
saved_reg->first_p = TRUE;
for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
{
slot = prev_save_slots[j];
if (slot == NULL_RTX)
continue;
if (GET_MODE_SIZE (regno_save_mode[regno][1])
<= GET_MODE_SIZE (GET_MODE (slot))
&& best_slot_num < 0)
best_slot_num = j;
if (GET_MODE (slot) == regno_save_mode[regno][1])
break;
}
if (best_slot_num >= 0)
{
saved_reg->slot = prev_save_slots[best_slot_num];
saved_reg->slot
= adjust_address_nv
(saved_reg->slot,
regno_save_mode[saved_reg->hard_regno][1], 0);
if (dump_file != NULL)
fprintf (dump_file,
"%d uses a slot from prev iteration\n", regno);
prev_save_slots[best_slot_num] = NULL_RTX;
if (best_slot_num + 1 == prev_save_slots_num)
prev_save_slots_num--;
}
else
{
saved_reg->slot
= assign_stack_local_1
(regno_save_mode[regno][1],
GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
ASLK_REDUCE_ALIGN);
if (dump_file != NULL)
fprintf (dump_file, "%d uses a new slot\n", regno);
}
regno_save_mem[regno][1] = saved_reg->slot;
save_slots[save_slots_num++] = saved_reg->slot;
}
}
free (saved_reg_conflicts);
finish_saved_hard_regs ();
}
else
{
/* We are not sharing slots.
Run through all the call-used hard-registers and allocate
space for each in the caller-save area. Try to allocate space
in a manner which allows multi-register saves/restores to be done. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = MOVE_MAX_WORDS; j > 0; j--)
{
int do_save = 1;
/* If no mode exists for this size, try another. Also break out
if we have already saved this hard register. */
if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
continue;
/* See if any register in this group has been saved. */
for (k = 0; k < j; k++)
if (regno_save_mem[i + k][1])
{
do_save = 0;
break;
}
if (! do_save)
continue;
for (k = 0; k < j; k++)
if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
{
do_save = 0;
break;
}
if (! do_save)
continue;
/* We have found an acceptable mode to store in. Since
hard register is always saved in the widest mode
available, the mode may be wider than necessary, it is
OK to reduce the alignment of spill space. We will
verify that it is equal to or greater than required
when we restore and save the hard register in
insert_restore and insert_save. */
regno_save_mem[i][j]
= assign_stack_local_1 (regno_save_mode[i][j],
GET_MODE_SIZE (regno_save_mode[i][j]),
0, ASLK_REDUCE_ALIGN);
/* Setup single word save area just in case... */
for (k = 0; k < j; k++)
/* This should not depend on WORDS_BIG_ENDIAN.
The order of words in regs is the same as in memory. */
regno_save_mem[i + k][1]
= adjust_address_nv (regno_save_mem[i][j],
regno_save_mode[i + k][1],
k * UNITS_PER_WORD);
}
}
/* Now loop again and set the alias set of any save areas we made to
the alias set used to represent frame objects. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = MOVE_MAX_WORDS; j > 0; j--)
if (regno_save_mem[i][j] != 0)
set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
}
/* Find the places where hard regs are live across calls and save them. */
void
save_call_clobbered_regs (void)
{
struct insn_chain *chain, *next, *last = NULL;
machine_mode save_mode [FIRST_PSEUDO_REGISTER];
/* Computed in mark_set_regs, holds all registers set by the current
instruction. */
HARD_REG_SET this_insn_sets;
CLEAR_HARD_REG_SET (hard_regs_saved);
n_regs_saved = 0;
for (chain = reload_insn_chain; chain != 0; chain = next)
{
rtx_insn *insn = chain->insn;
enum rtx_code code = GET_CODE (insn);
next = chain->next;
gcc_assert (!chain->is_caller_save_insn);
if (NONDEBUG_INSN_P (insn))
{
/* If some registers have been saved, see if INSN references
any of them. We must restore them before the insn if so. */
if (n_regs_saved)
{
int regno;
HARD_REG_SET this_insn_sets;
if (code == JUMP_INSN)
/* Restore all registers if this is a JUMP_INSN. */
COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
else
{
CLEAR_HARD_REG_SET (referenced_regs);
mark_referenced_regs (&PATTERN (insn),
mark_reg_as_referenced, NULL);
AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
}
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (referenced_regs, regno))
regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
save_mode);
/* If a saved register is set after the call, this means we no
longer should restore it. This can happen when parts of a
multi-word pseudo do not conflict with other pseudos, so
IRA may allocate the same hard register for both. One may
be live across the call, while the other is set
afterwards. */
CLEAR_HARD_REG_SET (this_insn_sets);
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
}
if (code == CALL_INSN
&& ! SIBLING_CALL_P (insn)
&& ! find_reg_note (insn, REG_NORETURN, NULL))
{
unsigned regno;
HARD_REG_SET hard_regs_to_save;
HARD_REG_SET call_def_reg_set;
reg_set_iterator rsi;
rtx cheap;
cheap = find_reg_note (insn, REG_RETURNED, NULL);
if (cheap)
cheap = XEXP (cheap, 0);
/* Use the register life information in CHAIN to compute which
regs are live during the call. */
REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
&chain->live_throughout);
/* Save hard registers always in the widest mode available. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
save_mode [regno] = regno_save_mode [regno][1];
else
save_mode [regno] = VOIDmode;
/* Look through all live pseudos, mark their hard registers
and choose proper mode for saving. */
EXECUTE_IF_SET_IN_REG_SET
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
{
int r = reg_renumber[regno];
int nregs;
machine_mode mode;
if (r < 0 || regno_reg_rtx[regno] == cheap)
continue;
nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
mode = HARD_REGNO_CALLER_SAVE_MODE
(r, nregs, PSEUDO_REGNO_MODE (regno));
if (GET_MODE_BITSIZE (mode)
> GET_MODE_BITSIZE (save_mode[r]))
save_mode[r] = mode;
while (nregs-- > 0)
SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
}
/* Record all registers set in this call insn. These don't need
to be saved. N.B. the call insn might set a subreg of a
multi-hard-reg pseudo; then the pseudo is considered live
during the call, but the subreg that is set isn't. */
CLEAR_HARD_REG_SET (this_insn_sets);
note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
/* Compute which hard regs must be saved before this call. */
AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
get_call_reg_set_usage (insn, &call_def_reg_set,
call_used_reg_set);
AND_HARD_REG_SET (hard_regs_to_save, call_def_reg_set);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
/* Must recompute n_regs_saved. */
n_regs_saved = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
n_regs_saved++;
if (cheap
&& HARD_REGISTER_P (cheap)
&& TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
{
rtx dest, newpat;
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
pat = XVECEXP (pat, 0, 0);
dest = SET_DEST (pat);
/* For multiple return values dest is PARALLEL.
Currently we handle only single return value case. */
if (REG_P (dest))
{
newpat = gen_rtx_SET (cheap, copy_rtx (dest));
chain = insert_one_insn (chain, 0, -1, newpat);
}
}
}
last = chain;
}
else if (DEBUG_INSN_P (insn) && n_regs_saved)
mark_referenced_regs (&PATTERN (insn),
replace_reg_with_saved_mem,
save_mode);
if (chain->next == 0 || chain->next->block != chain->block)
{
int regno;
/* At the end of the basic block, we must restore any registers that
remain saved. If the last insn in the block is a JUMP_INSN, put
the restore before the insn, otherwise, put it after the insn. */
if (n_regs_saved
&& DEBUG_INSN_P (insn)
&& last
&& last->block == chain->block)
{
rtx_insn *ins, *prev;
basic_block bb = BLOCK_FOR_INSN (insn);
/* When adding hard reg restores after a DEBUG_INSN, move
all notes between last real insn and this DEBUG_INSN after
the DEBUG_INSN, otherwise we could get code
-g/-g0 differences. */
for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
{
prev = PREV_INSN (ins);
if (NOTE_P (ins))
{
SET_NEXT_INSN (prev) = NEXT_INSN (ins);
SET_PREV_INSN (NEXT_INSN (ins)) = prev;
SET_PREV_INSN (ins) = insn;
SET_NEXT_INSN (ins) = NEXT_INSN (insn);
SET_NEXT_INSN (insn) = ins;
if (NEXT_INSN (ins))
SET_PREV_INSN (NEXT_INSN (ins)) = ins;
if (BB_END (bb) == insn)
BB_END (bb) = ins;
}
else
gcc_assert (DEBUG_INSN_P (ins));
}
}
last = NULL;
if (n_regs_saved)
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
regno += insert_restore (chain, JUMP_P (insn),
regno, MOVE_MAX_WORDS, save_mode);
}
}
}
/* Here from note_stores, or directly from save_call_clobbered_regs, when
an insn stores a value in a register.
Set the proper bit or bits in this_insn_sets. All pseudos that have
been assigned hard regs have had their register number changed already,
so we can ignore pseudos. */
static void
mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
{
int regno, endregno, i;
HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
if (GET_CODE (reg) == SUBREG)
{
rtx inner = SUBREG_REG (reg);
if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
return;
regno = subreg_regno (reg);
endregno = regno + subreg_nregs (reg);
}
else if (REG_P (reg)
&& REGNO (reg) < FIRST_PSEUDO_REGISTER)
{
regno = REGNO (reg);
endregno = END_REGNO (reg);
}
else
return;
for (i = regno; i < endregno; i++)
SET_HARD_REG_BIT (*this_insn_sets, i);
}
/* Here from note_stores when an insn stores a value in a register.
Set the proper bit or bits in the passed regset. All pseudos that have
been assigned hard regs have had their register number changed already,
so we can ignore pseudos. */
static void
add_stored_regs (rtx reg, const_rtx setter, void *data)
{
int regno, endregno, i;
machine_mode mode = GET_MODE (reg);
int offset = 0;
if (GET_CODE (setter) == CLOBBER)
return;
if (GET_CODE (reg) == SUBREG
&& REG_P (SUBREG_REG (reg))
&& REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
{
offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
GET_MODE (SUBREG_REG (reg)),
SUBREG_BYTE (reg),
GET_MODE (reg));
regno = REGNO (SUBREG_REG (reg)) + offset;
endregno = regno + subreg_nregs (reg);
}
else
{
if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
return;
regno = REGNO (reg) + offset;
endregno = end_hard_regno (mode, regno);
}
for (i = regno; i < endregno; i++)
SET_REGNO_REG_SET ((regset) data, i);
}
/* Walk X and record all referenced registers in REFERENCED_REGS. */
static void
mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
{
enum rtx_code code = GET_CODE (*loc);
const char *fmt;
int i, j;
if (code == SET)
mark_referenced_regs (&SET_SRC (*loc), mark, arg);
if (code == SET || code == CLOBBER)
{
loc = &SET_DEST (*loc);
code = GET_CODE (*loc);
if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
|| code == PC || code == CC0
|| (code == SUBREG && REG_P (SUBREG_REG (*loc))
&& REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
/* If we're setting only part of a multi-word register,
we shall mark it as referenced, because the words
that are not being set should be restored. */
&& ((GET_MODE_SIZE (GET_MODE (*loc))
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
|| (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
<= UNITS_PER_WORD))))
return;
}
if (code == MEM || code == SUBREG)
{
loc = &XEXP (*loc, 0);
code = GET_CODE (*loc);
}
if (code == REG)
{
int regno = REGNO (*loc);
int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
: reg_renumber[regno]);
if (hardregno >= 0)
mark (loc, GET_MODE (*loc), hardregno, arg);
else if (arg)
/* ??? Will we ever end up with an equiv expression in a debug
insn, that would have required restoring a reg, or will
reload take care of it for us? */
return;
/* If this is a pseudo that did not get a hard register, scan its
memory location, since it might involve the use of another
register, which might be saved. */
else if (reg_equiv_mem (regno) != 0)
mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
else if (reg_equiv_address (regno) != 0)
mark_referenced_regs (®_equiv_address (regno), mark, arg);
return;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
mark_referenced_regs (&XEXP (*loc, i), mark, arg);
else if (fmt[i] == 'E')
for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
}
}
/* Parameter function for mark_referenced_regs() that adds registers
present in the insn and in equivalent mems and addresses to
referenced_regs. */
static void
mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
machine_mode mode,
int hardregno,
void *arg ATTRIBUTE_UNUSED)
{
add_to_hard_reg_set (&referenced_regs, mode, hardregno);
}
/* Parameter function for mark_referenced_regs() that replaces
registers referenced in a debug_insn that would have been restored,
should it be a non-debug_insn, with their save locations. */
static void
replace_reg_with_saved_mem (rtx *loc,
machine_mode mode,
int regno,
void *arg)
{
unsigned int i, nregs = hard_regno_nregs [regno][mode];
rtx mem;
machine_mode *save_mode = (machine_mode *)arg;
for (i = 0; i < nregs; i++)
if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
break;
/* If none of the registers in the range would need restoring, we're
all set. */
if (i == nregs)
return;
while (++i < nregs)
if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
break;
if (i == nregs
&& regno_save_mem[regno][nregs])
{
mem = copy_rtx (regno_save_mem[regno][nregs]);
if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
mem = adjust_address_nv (mem, save_mode[regno], 0);
if (GET_MODE (mem) != mode)
{
/* This is gen_lowpart_if_possible(), but without validating
the newly-formed address. */
int offset = 0;
if (WORDS_BIG_ENDIAN)
offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
if (BYTES_BIG_ENDIAN)
/* Adjust the address so that the address-after-the-data is
unchanged. */
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
mem = adjust_address_nv (mem, mode, offset);
}
}
else
{
mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
for (i = 0; i < nregs; i++)
if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
{
gcc_assert (regno_save_mem[regno + i][1]);
XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
}
else
{
machine_mode smode = save_mode[regno];
gcc_assert (smode != VOIDmode);
if (hard_regno_nregs [regno][smode] > 1)
smode = mode_for_size (GET_MODE_SIZE (mode) / nregs,
GET_MODE_CLASS (mode), 0);
XVECEXP (mem, 0, i) = gen_rtx_REG (smode, regno + i);
}
}
gcc_assert (GET_MODE (mem) == mode);
*loc = mem;
}
/* Insert a sequence of insns to restore. Place these insns in front of
CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
the maximum number of registers which should be restored during this call.
It should never be less than 1 since we only work with entire registers.
Note that we have verified in init_caller_save that we can do this
with a simple SET, so use it. Set INSN_CODE to what we save there
since the address might not be valid so the insn might not be recognized.
These insns will be reloaded and have register elimination done by
find_reload, so we need not worry about that here.
Return the extra number of registers saved. */
static int
insert_restore (struct insn_chain *chain, int before_p, int regno,
int maxrestore, machine_mode *save_mode)
{
int i, k;
rtx pat = NULL_RTX;
int code;
unsigned int numregs = 0;
struct insn_chain *new_chain;
rtx mem;
/* A common failure mode if register status is not correct in the
RTL is for this routine to be called with a REGNO we didn't
expect to save. That will cause us to write an insn with a (nil)
SET_DEST or SET_SRC. Instead of doing so and causing a crash
later, check for this common case here instead. This will remove
one step in debugging such problems. */
gcc_assert (regno_save_mem[regno][1]);
/* Get the pattern to emit and update our status.
See if we can restore `maxrestore' registers at once. Work
backwards to the single register case. */
for (i = maxrestore; i > 0; i--)
{
int j;
int ok = 1;
if (regno_save_mem[regno][i] == 0)
continue;
for (j = 0; j < i; j++)
if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
{
ok = 0;
break;
}
/* Must do this one restore at a time. */
if (! ok)
continue;
numregs = i;
break;
}
mem = regno_save_mem [regno][numregs];
if (save_mode [regno] != VOIDmode
&& save_mode [regno] != GET_MODE (mem)
&& numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
/* Check that insn to restore REGNO in save_mode[regno] is
correct. */
&& reg_save_code (regno, save_mode[regno]) >= 0)
mem = adjust_address_nv (mem, save_mode[regno], 0);
else
mem = copy_rtx (mem);
/* Verify that the alignment of spill space is equal to or greater
than required. */
gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
pat = gen_rtx_SET (gen_rtx_REG (GET_MODE (mem), regno), mem);
code = reg_restore_code (regno, GET_MODE (mem));
new_chain = insert_one_insn (chain, before_p, code, pat);
/* Clear status for all registers we restored. */
for (k = 0; k < i; k++)
{
CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
n_regs_saved--;
}
/* Tell our callers how many extra registers we saved/restored. */
return numregs - 1;
}
/* Like insert_restore above, but save registers instead. */
static int
insert_save (struct insn_chain *chain, int before_p, int regno,
HARD_REG_SET (*to_save), machine_mode *save_mode)
{
int i;
unsigned int k;
rtx pat = NULL_RTX;
int code;
unsigned int numregs = 0;
struct insn_chain *new_chain;
rtx mem;
/* A common failure mode if register status is not correct in the
RTL is for this routine to be called with a REGNO we didn't
expect to save. That will cause us to write an insn with a (nil)
SET_DEST or SET_SRC. Instead of doing so and causing a crash
later, check for this common case here. This will remove one
step in debugging such problems. */
gcc_assert (regno_save_mem[regno][1]);
/* Get the pattern to emit and update our status.
See if we can save several registers with a single instruction.
Work backwards to the single register case. */
for (i = MOVE_MAX_WORDS; i > 0; i--)
{
int j;
int ok = 1;
if (regno_save_mem[regno][i] == 0)
continue;
for (j = 0; j < i; j++)
if (! TEST_HARD_REG_BIT (*to_save, regno + j))
{
ok = 0;
break;
}
/* Must do this one save at a time. */
if (! ok)
continue;
numregs = i;
break;
}
mem = regno_save_mem [regno][numregs];
if (save_mode [regno] != VOIDmode
&& save_mode [regno] != GET_MODE (mem)
&& numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
/* Check that insn to save REGNO in save_mode[regno] is
correct. */
&& reg_save_code (regno, save_mode[regno]) >= 0)
mem = adjust_address_nv (mem, save_mode[regno], 0);
else
mem = copy_rtx (mem);
/* Verify that the alignment of spill space is equal to or greater
than required. */
gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
pat = gen_rtx_SET (mem, gen_rtx_REG (GET_MODE (mem), regno));
code = reg_save_code (regno, GET_MODE (mem));
new_chain = insert_one_insn (chain, before_p, code, pat);
/* Set hard_regs_saved and dead_or_set for all the registers we saved. */
for (k = 0; k < numregs; k++)
{
SET_HARD_REG_BIT (hard_regs_saved, regno + k);
SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
n_regs_saved++;
}
/* Tell our callers how many extra registers we saved/restored. */
return numregs - 1;
}
/* A note_uses callback used by insert_one_insn. Add the hard-register
equivalent of each REG to regset DATA. */
static void
add_used_regs (rtx *loc, void *data)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
{
const_rtx x = *iter;
if (REG_P (x))
{
unsigned int regno = REGNO (x);
if (HARD_REGISTER_NUM_P (regno))
bitmap_set_range ((regset) data, regno,
hard_regno_nregs[regno][GET_MODE (x)]);
else
gcc_checking_assert (reg_renumber[regno] < 0);
}
}
}
/* Emit a new caller-save insn and set the code. */
static struct insn_chain *
insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
{
rtx_insn *insn = chain->insn;
struct insn_chain *new_chain;
/* If INSN references CC0, put our insns in front of the insn that sets
CC0. This is always safe, since the only way we could be passed an
insn that references CC0 is for a restore, and doing a restore earlier
isn't a problem. We do, however, assume here that CALL_INSNs don't
reference CC0. Guard against non-INSN's like CODE_LABEL. */
if (HAVE_cc0 && (NONJUMP_INSN_P (insn) || JUMP_P (insn))
&& before_p
&& reg_referenced_p (cc0_rtx, PATTERN (insn)))
chain = chain->prev, insn = chain->insn;
new_chain = new_insn_chain ();
if (before_p)
{
rtx link;
new_chain->prev = chain->prev;
if (new_chain->prev != 0)
new_chain->prev->next = new_chain;
else
reload_insn_chain = new_chain;
chain->prev = new_chain;
new_chain->next = chain;
new_chain->insn = emit_insn_before (pat, insn);
/* ??? It would be nice if we could exclude the already / still saved
registers from the live sets. */
COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
note_uses (&PATTERN (chain->insn), add_used_regs,
&new_chain->live_throughout);
/* If CHAIN->INSN is a call, then the registers which contain
the arguments to the function are live in the new insn. */
if (CALL_P (chain->insn))
for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
link != NULL_RTX;
link = XEXP (link, 1))
note_uses (&XEXP (link, 0), add_used_regs,
&new_chain->live_throughout);
CLEAR_REG_SET (&new_chain->dead_or_set);
if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
}
else
{
new_chain->next = chain->next;
if (new_chain->next != 0)
new_chain->next->prev = new_chain;
chain->next = new_chain;
new_chain->prev = chain;
new_chain->insn = emit_insn_after (pat, insn);
/* ??? It would be nice if we could exclude the already / still saved
registers from the live sets, and observe REG_UNUSED notes. */
COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
/* Registers that are set in CHAIN->INSN live in the new insn.
(Unless there is a REG_UNUSED note for them, but we don't
look for them here.) */
note_stores (PATTERN (chain->insn), add_stored_regs,
&new_chain->live_throughout);
CLEAR_REG_SET (&new_chain->dead_or_set);
if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
}
new_chain->block = chain->block;
new_chain->is_caller_save_insn = 1;
INSN_CODE (new_chain->insn) = code;
return new_chain;
}
#include "gt-caller-save.h"
|