aboutsummaryrefslogtreecommitdiff
path: root/gcc/caller-save.c
blob: 5b096066833e891e7e3cc02e271e4c221fd33872 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/* Save and restore call-clobbered registers which are live across a call.
   Copyright (C) 1989, 1992, 1994 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include "config.h"
#include "rtl.h"
#include "insn-config.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "basic-block.h"
#include "reload.h"
#include "expr.h"

#ifndef MAX_MOVE_MAX
#define MAX_MOVE_MAX MOVE_MAX
#endif

#ifndef MAX_UNITS_PER_WORD
#define MAX_UNITS_PER_WORD UNITS_PER_WORD
#endif

/* Modes for each hard register that we can save.  The smallest mode is wide
   enough to save the entire contents of the register.  When saving the
   register because it is live we first try to save in multi-register modes.
   If that is not possible the save is done one register at a time.  */

static enum machine_mode 
  regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];

/* For each hard register, a place on the stack where it can be saved,
   if needed.  */

static rtx 
  regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];

/* We will only make a register eligible for caller-save if it can be
   saved in its widest mode with a simple SET insn as long as the memory
   address is valid.  We record the INSN_CODE is those insns here since
   when we emit them, the addresses might not be valid, so they might not
   be recognized.  */

static enum insn_code 
  reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];
static enum insn_code 
  reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];

/* Set of hard regs currently live (during scan of all insns).  */

static HARD_REG_SET hard_regs_live;

/* Set of hard regs currently residing in save area (during insn scan).  */

static HARD_REG_SET hard_regs_saved;

/* Set of hard regs which need to be restored before referenced.  */

static HARD_REG_SET hard_regs_need_restore;

/* Number of registers currently in hard_regs_saved.  */

int n_regs_saved;

static void set_reg_live		PROTO((rtx, rtx));
static void clear_reg_live		PROTO((rtx));
static void restore_referenced_regs	PROTO((rtx, rtx, enum machine_mode));
static int insert_save_restore		PROTO((rtx, int, int,
					       enum machine_mode, int));

/* Initialize for caller-save.

   Look at all the hard registers that are used by a call and for which
   regclass.c has not already excluded from being used across a call.

   Ensure that we can find a mode to save the register and that there is a 
   simple insn to save and restore the register.  This latter check avoids
   problems that would occur if we tried to save the MQ register of some
   machines directly into memory.  */

void
init_caller_save ()
{
  char *first_obj = (char *) oballoc (0);
  rtx addr_reg;
  int offset;
  rtx address;
  int i, j;

  /* First find all the registers that we need to deal with and all
     the modes that they can have.  If we can't find a mode to use,
     we can't have the register live over calls.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (call_used_regs[i] && ! call_fixed_regs[i])
	{
	  for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
	    {
	      regno_save_mode[i][j] = choose_hard_reg_mode (i, j);
	      if (regno_save_mode[i][j] == VOIDmode && j == 1)
		{
		  call_fixed_regs[i] = 1;
		  SET_HARD_REG_BIT (call_fixed_reg_set, i);
		}
	    }
	}
      else
	regno_save_mode[i][1] = VOIDmode;
    }

  /* The following code tries to approximate the conditions under which
     we can easily save and restore a register without scratch registers or
     other complexities.  It will usually work, except under conditions where
     the validity of an insn operand is dependent on the address offset.
     No such cases are currently known.

     We first find a typical offset from some BASE_REG_CLASS register.
     This address is chosen by finding the first register in the class
     and by finding the smallest power of two that is a valid offset from
     that register in every mode we will use to save registers.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
      break;

  if (i == FIRST_PSEUDO_REGISTER)
    abort ();

  addr_reg = gen_rtx (REG, Pmode, i);

  for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
    {
      address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset));

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (regno_save_mode[i][1] != VOIDmode
	  && ! strict_memory_address_p (regno_save_mode[i][1], address))
	  break;

      if (i == FIRST_PSEUDO_REGISTER)
	break;
    }

  /* If we didn't find a valid address, we must use register indirect.  */
  if (offset == 0)
    address = addr_reg;

  /* Next we try to form an insn to save and restore the register.  We
     see if such an insn is recognized and meets its constraints.  */

  start_sequence ();

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
      if (regno_save_mode[i][j] != VOIDmode)
        {
	  rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address);
	  rtx reg = gen_rtx (REG, regno_save_mode[i][j], i);
	  rtx savepat = gen_rtx (SET, VOIDmode, mem, reg);
	  rtx restpat = gen_rtx (SET, VOIDmode, reg, mem);
	  rtx saveinsn = emit_insn (savepat);
	  rtx restinsn = emit_insn (restpat);
	  int ok;

	  reg_save_code[i][j] = recog_memoized (saveinsn);
	  reg_restore_code[i][j] = recog_memoized (restinsn);

	  /* Now extract both insns and see if we can meet their constraints. */
	  ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1);
	  if (ok)
	    {
	      insn_extract (saveinsn);
	      ok = constrain_operands (reg_save_code[i][j], 1);
	      insn_extract (restinsn);
	      ok &= constrain_operands (reg_restore_code[i][j], 1);
	    }

	  if (! ok)
	    {
	      regno_save_mode[i][j] = VOIDmode;
	      if (j == 1)
		{
		  call_fixed_regs[i] = 1;
		  SET_HARD_REG_BIT (call_fixed_reg_set, i);
		}
	    }
      }

  end_sequence ();

  obfree (first_obj);
}

/* Initialize save areas by showing that we haven't allocated any yet.  */

void
init_save_areas ()
{
  int i, j;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
      regno_save_mem[i][j] = 0;
}

/* Allocate save areas for any hard registers that might need saving.
   We take a conservative approach here and look for call-clobbered hard
   registers that are assigned to pseudos that cross calls.  This may
   overestimate slightly (especially if some of these registers are later
   used as spill registers), but it should not be significant.

   Then perform register elimination in the addresses of the save area
   locations; return 1 if all eliminated addresses are strictly valid.
   We assume that our caller has set up the elimination table to the
   worst (largest) possible offsets.

   Set *PCHANGED to 1 if we had to allocate some memory for the save area.  

   Future work:

     In the fallback case we should iterate backwards across all possible
     modes for the save, choosing the largest available one instead of 
     falling back to the smallest mode immediately.  (eg TF -> DF -> SF).

     We do not try to use "move multiple" instructions that exist
     on some machines (such as the 68k moveml).  It could be a win to try 
     and use them when possible.  The hard part is doing it in a way that is
     machine independent since they might be saving non-consecutive 
     registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */

int
setup_save_areas (pchanged)
     int *pchanged;
{
  int i, j, k;
  HARD_REG_SET hard_regs_used;
  int ok = 1;


  /* Allocate space in the save area for the largest multi-register
     pseudos first, then work backwards to single register
     pseudos.  */

  /* Find and record all call-used hard-registers in this function.  */
  CLEAR_HARD_REG_SET (hard_regs_used);
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_renumber[i] >= 0 && reg_n_calls_crossed[i] > 0)
      {
	int regno = reg_renumber[i];
	int endregno 
	  = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
	int nregs = endregno - regno;

	for (j = 0; j < nregs; j++)
	  {
	    if (call_used_regs[regno+j]) 
	      SET_HARD_REG_BIT (hard_regs_used, regno+j);
	  }
      }

  /* Now run through all the call-used hard-registers and allocate
     space for them in the caller-save area.  Try to allocate space
     in a manner which allows multi-register saves/restores to be done.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--)
      {
	int ok = 1;
	int do_save;

	/* If no mode exists for this size, try another.  Also break out
	   if we have already saved this hard register.  */
	if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
	  continue;

	/* See if any register in this group has been saved.  */
	do_save = 1;
	for (k = 0; k < j; k++)
	  if (regno_save_mem[i + k][1])
	    {
	      do_save = 0;
	      break;
	    }
	if (! do_save)
	  continue;

	for (k = 0; k < j; k++)
	    {
	      int regno = i + k;
	      ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0);
	    }

	/* We have found an acceptable mode to store in. */
	if (ok)
	  {

	    regno_save_mem[i][j]
	      = assign_stack_local (regno_save_mode[i][j],
				    GET_MODE_SIZE (regno_save_mode[i][j]), 0);

	    /* Setup single word save area just in case... */
	    for (k = 0; k < j; k++)
	      {
		/* This should not depend on WORDS_BIG_ENDIAN.
		   The order of words in regs is the same as in memory.  */
		rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1], 
				    XEXP (regno_save_mem[i][j], 0));

		regno_save_mem[i+k][1] 
		  = adj_offsettable_operand (temp, k * UNITS_PER_WORD);
	      }
	    *pchanged = 1;
	  }
      }

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
      if (regno_save_mem[i][j] != 0)
	ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]),
				       XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0));

  return ok;
}

/* Find the places where hard regs are live across calls and save them.

   INSN_MODE is the mode to assign to any insns that we add.  This is used
   by reload to determine whether or not reloads or register eliminations
   need be done on these insns.  */

void
save_call_clobbered_regs (insn_mode)
     enum machine_mode insn_mode;
{
  rtx insn;
  int b;

  for (b = 0; b < n_basic_blocks; b++)
    {
      regset regs_live = basic_block_live_at_start[b];
      rtx prev_block_last = PREV_INSN (basic_block_head[b]);
      REGSET_ELT_TYPE bit;
      int offset, i, j;
      int regno;

      /* Compute hard regs live at start of block -- this is the
	 real hard regs marked live, plus live pseudo regs that
	 have been renumbered to hard regs.  No registers have yet been
	 saved because we restore all of them before the end of the basic
	 block.  */

#ifdef HARD_REG_SET
      hard_regs_live = *regs_live;
#else
      COPY_HARD_REG_SET (hard_regs_live, regs_live);
#endif

      CLEAR_HARD_REG_SET (hard_regs_saved);
      CLEAR_HARD_REG_SET (hard_regs_need_restore);
      n_regs_saved = 0;

      for (offset = 0, i = 0; offset < regset_size; offset++)
	{
	  if (regs_live[offset] == 0)
	    i += REGSET_ELT_BITS;
	  else
	    for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
	      if ((regs_live[offset] & bit)
		  && (regno = reg_renumber[i]) >= 0)
		for (j = regno;
		     j < regno + HARD_REGNO_NREGS (regno,
						   PSEUDO_REGNO_MODE (i));
		     j++)
		  SET_HARD_REG_BIT (hard_regs_live, j);

	}

      /* Now scan the insns in the block, keeping track of what hard
	 regs are live as we go.  When we see a call, save the live
	 call-clobbered hard regs.  */

      for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn))
	{
	  RTX_CODE code = GET_CODE (insn);

	  if (GET_RTX_CLASS (code) == 'i')
	    {
	      rtx link;

	      /* If some registers have been saved, see if INSN references
		 any of them.  We must restore them before the insn if so.  */

	      if (n_regs_saved)
		restore_referenced_regs (PATTERN (insn), insn, insn_mode);

	      /* NB: the normal procedure is to first enliven any
		 registers set by insn, then deaden any registers that
		 had their last use at insn.  This is incorrect now,
		 since multiple pseudos may have been mapped to the
		 same hard reg, and the death notes are ambiguous.  So
		 it must be done in the other, safe, order.  */

	      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_DEAD)
		  clear_reg_live (XEXP (link, 0));

	      /* When we reach a call, we need to save all registers that are
		 live, call-used, not fixed, and not already saved.  We must
		 test at this point because registers that die in a CALL_INSN
		 are not live across the call and likewise for registers that
		 are born in the CALL_INSN.
		 
		 If registers are filled with parameters for this function,
		 and some of these are also being set by this function, then
		 they will not appear to die (no REG_DEAD note for them),
		 to check if in fact they do, collect the set registers in
		 hard_regs_live first.  */

	      if (code == CALL_INSN)
		{
		  HARD_REG_SET this_call_sets;
		  {
		    HARD_REG_SET old_hard_regs_live;

		    /* Save the hard_regs_live information.  */
		    COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live);

		    /* Now calculate hard_regs_live for this CALL_INSN
		       only.  */
		    CLEAR_HARD_REG_SET (hard_regs_live);
		    note_stores (PATTERN (insn), set_reg_live);
		    COPY_HARD_REG_SET (this_call_sets, hard_regs_live);

		    /* Restore the hard_regs_live information.  */
		    COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live);
		  }

		  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		    if (call_used_regs[regno] && ! call_fixed_regs[regno]
		        && TEST_HARD_REG_BIT (hard_regs_live, regno)
			/* It must not be set by this instruction.  */
		        && ! TEST_HARD_REG_BIT (this_call_sets, regno)
		        && ! TEST_HARD_REG_BIT (hard_regs_saved, regno))
		      regno += insert_save_restore (insn, 1, regno, 
						    insn_mode, 0);

		  /* Put the information for this CALL_INSN on top of what
		     we already had.  */
		  IOR_HARD_REG_SET (hard_regs_live, this_call_sets);
		  COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved);

		  /* Must recompute n_regs_saved.  */
		  n_regs_saved = 0;
		  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		    if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
		      n_regs_saved++;
		}
	      else
		note_stores (PATTERN (insn), set_reg_live);

	      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_UNUSED)
		  clear_reg_live (XEXP (link, 0));
	    }

	  if (insn == basic_block_end[b])
	    break;
	}

      /* At the end of the basic block, we must restore any registers that
	 remain saved.  If the last insn in the block is a JUMP_INSN, put
	 the restore before the insn, otherwise, put it after the insn.  */

      if (n_regs_saved)
	for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	  if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno))
	    regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN
				  ? insn : NEXT_INSN (insn)), 0,
				  regno, insn_mode, MOVE_MAX / UNITS_PER_WORD);

      /* If we added any insns at the start of the block, update the start
	 of the block to point at those insns.  */
      basic_block_head[b] = NEXT_INSN (prev_block_last);
    }
}

/* Here from note_stores when an insn stores a value in a register.
   Set the proper bit or bits in hard_regs_live.  All pseudos that have
   been assigned hard regs have had their register number changed already,
   so we can ignore pseudos.  */

static void
set_reg_live (reg, setter)
     rtx reg, setter;
{
  register int regno, endregno, i;
  enum machine_mode mode = GET_MODE (reg);
  int word = 0;

  if (GET_CODE (reg) == SUBREG)
    {
      word = SUBREG_WORD (reg);
      reg = SUBREG_REG (reg);
    }

  if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
    return;

  regno = REGNO (reg) + word;
  endregno = regno + HARD_REGNO_NREGS (regno, mode);

  for (i = regno; i < endregno; i++)
    {
      SET_HARD_REG_BIT (hard_regs_live, i);
      CLEAR_HARD_REG_BIT (hard_regs_saved, i);
      CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
    }
}

/* Here when a REG_DEAD note records the last use of a reg.  Clear
   the appropriate bit or bits in hard_regs_live.  Again we can ignore
   pseudos.  */

static void
clear_reg_live (reg)
     rtx reg;
{
  register int regno, endregno, i;

  if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
    return;

  regno = REGNO (reg);
  endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));

  for (i = regno; i < endregno; i++)
    {
      CLEAR_HARD_REG_BIT (hard_regs_live, i);
      CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
      CLEAR_HARD_REG_BIT (hard_regs_saved, i);
    }
}      

/* If any register currently residing in the save area is referenced in X,
   which is part of INSN, emit code to restore the register in front of INSN.
   INSN_MODE is the mode to assign to any insns that we add.  */

static void
restore_referenced_regs (x, insn, insn_mode)
     rtx x;
     rtx insn;
     enum machine_mode insn_mode;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt;
  int i, j;

  if (code == CLOBBER)
    return;

  if (code == REG)
    {
      int regno = REGNO (x);

      /* If this is a pseudo, scan its memory location, since it might
	 involve the use of another register, which might be saved.  */

      if (regno >= FIRST_PSEUDO_REGISTER
	  && reg_equiv_mem[regno] != 0)
	restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0),
				 insn, insn_mode);
      else if (regno >= FIRST_PSEUDO_REGISTER
	       && reg_equiv_address[regno] != 0)
	restore_referenced_regs (reg_equiv_address[regno],
				 insn, insn_mode);

      /* Otherwise if this is a hard register, restore any piece of it that
	 is currently saved.  */

      else if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
	  /* Save at most SAVEREGS at a time.  This can not be larger than
	     MOVE_MAX, because that causes insert_save_restore to fail.  */
	  int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD);
	  int endregno = regno + numregs;

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (hard_regs_need_restore, i))
	      i += insert_save_restore (insn, 0, i, insn_mode, saveregs);
	}

      return;
    }
	  
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	restore_referenced_regs (XEXP (x, i), insn, insn_mode);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode);
    }
}

/* Insert a sequence of insns to save or restore, SAVE_P says which,
   REGNO.  Place these insns in front of INSN.  INSN_MODE is the mode
   to assign to these insns.   MAXRESTORE is the maximum number of registers
   which should be restored during this call (when SAVE_P == 0).  It should
   never be less than 1 since we only work with entire registers.

   Note that we have verified in init_caller_save that we can do this
   with a simple SET, so use it.  Set INSN_CODE to what we save there
   since the address might not be valid so the insn might not be recognized.
   These insns will be reloaded and have register elimination done by
   find_reload, so we need not worry about that here.

   Return the extra number of registers saved.  */

static int
insert_save_restore (insn, save_p, regno, insn_mode, maxrestore)
     rtx insn;
     int save_p;
     int regno;
     enum machine_mode insn_mode;
     int maxrestore;
{
  rtx pat;
  enum insn_code code;
  int i, numregs;

  /* A common failure mode if register status is not correct in the RTL
     is for this routine to be called with a REGNO we didn't expect to
     save.  That will cause us to write an insn with a (nil) SET_DEST
     or SET_SRC.  Instead of doing so and causing a crash later, check
     for this common case and abort here instead.  This will remove one
     step in debugging such problems.  */

  if (regno_save_mem[regno][1] == 0)
    abort ();

#ifdef HAVE_cc0
  /* If INSN references CC0, put our insns in front of the insn that sets
     CC0.  This is always safe, since the only way we could be passed an
     insn that references CC0 is for a restore, and doing a restore earlier
     isn't a problem.  We do, however, assume here that CALL_INSNs don't
     reference CC0.  Guard against non-INSN's like CODE_LABEL.  */

  if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
      && reg_referenced_p (cc0_rtx, PATTERN (insn)))
    insn = prev_nonnote_insn (insn);
#endif

  /* Get the pattern to emit and update our status.  */
  if (save_p)
    {
      int i, j, k;
      int ok;

      /* See if we can save several registers with a single instruction.  
	 Work backwards to the single register case.  */
      for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--)
	{
	  ok = 1;
	  if (regno_save_mem[regno][i] != 0)
	    for (j = 0; j < i; j++)
	      {
		if (! call_used_regs[regno + j] || call_fixed_regs[regno + j]
		    || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j)
		    || TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
		  ok = 0;
	      }
	  else 
	    continue;

	  /* Must do this one save at a time */
	  if (! ok)
	    continue;

          pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i],
		     gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno));
          code = reg_save_code[regno][i];

	  /* Set hard_regs_saved for all the registers we saved.  */
	  for (k = 0; k < i; k++)
	    {
	      SET_HARD_REG_BIT (hard_regs_saved, regno + k);
	      SET_HARD_REG_BIT (hard_regs_need_restore, regno + k);
	      n_regs_saved++;
	    }

	  numregs = i;
	  break;
        }
    }
  else
    {
      int i, j, k;
      int ok;

      /* See if we can restore `maxrestore' registers at once.  Work
	 backwards to the single register case.  */
      for (i = maxrestore; i > 0; i--)
	{
	  ok = 1;
	  if (regno_save_mem[regno][i])
	    for (j = 0; j < i; j++)
	      {
	  	if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j))
		  ok = 0;
	      }
	  else
	    continue;

	  /* Must do this one restore at a time */
	  if (! ok)
	    continue;
	    
          pat = gen_rtx (SET, VOIDmode,
		         gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), 
				  regno), 
			 regno_save_mem[regno][i]);
          code = reg_restore_code[regno][i];


	  /* Clear status for all registers we restored.  */
	  for (k = 0; k < i; k++)
	    {
	      CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k);
	      n_regs_saved--;
	    }

	  numregs = i;
	  break;
        }
    }
  /* Emit the insn and set the code and mode.  */

  insn = emit_insn_before (pat, insn);
  PUT_MODE (insn, insn_mode);
  INSN_CODE (insn) = code;

  /* Tell our callers how many extra registers we saved/restored */
  return numregs - 1;
}