aboutsummaryrefslogtreecommitdiff
path: root/gcc/bitmap.h
blob: 4cad1b4d6c6a8f544045ba83652a4f89a2ec31d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
/* Functions to support general ended bitmaps.
   Copyright (C) 1997-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_BITMAP_H
#define GCC_BITMAP_H

/* Implementation of sparse integer sets as a linked list or tree.

   This sparse set representation is suitable for sparse sets with an
   unknown (a priori) universe.

   Sets are represented as double-linked lists of container nodes of
   type "struct bitmap_element" or as a binary trees of the same
   container nodes.  Each container node consists of an index for the
   first member that could be held in the container, a small array of
   integers that represent the members in the container, and pointers
   to the next and previous element in the linked list, or left and
   right children in the tree.  In linked-list form, the container
   nodes in the list are sorted in ascending order, i.e. the head of
   the list holds the element with the smallest member of the set.
   In tree form, nodes to the left have a smaller container index.

   For a given member I in the set:
     - the element for I will have index is I / (bits per element)
     - the position for I within element is I % (bits per element)

   This representation is very space-efficient for large sparse sets, and
   the size of the set can be changed dynamically without much overhead.
   An important parameter is the number of bits per element.  In this
   implementation, there are 128 bits per element.  This results in a
   high storage overhead *per element*, but a small overall overhead if
   the set is very sparse.

   The storage requirements for linked-list sparse sets are O(E), with E->N
   in the worst case (a sparse set with large distances between the values
   of the set members).

   This representation also works well for data flow problems where the size
   of the set may grow dynamically, but care must be taken that the member_p,
   add_member, and remove_member operations occur with a suitable access
   pattern.

   The linked-list set representation works well for problems involving very
   sparse sets.  The canonical example in GCC is, of course, the "set of
   sets" for some CFG-based data flow problems (liveness analysis, dominance
   frontiers, etc.).
   
   For random-access sparse sets of unknown universe, the binary tree
   representation is likely to be a more suitable choice.  Theoretical
   access times for the binary tree representation are better than those
   for the linked-list, but in practice this is only true for truely
   random access.

   Often the most suitable representation during construction of the set
   is not the best choice for the usage of the set.  For such cases, the
   "view" of the set can be changed from one representation to the other.
   This is an O(E) operation:

     * from list to tree view	: bitmap_tree_view
     * from tree to list view	: bitmap_list_view

   Traversing linked lists or trees can be cache-unfriendly.  Performance
   can be improved by keeping container nodes in the set grouped together
   in  memory, using a dedicated obstack for a set (or group of related
   sets).  Elements allocated on obstacks are released to a free-list and
   taken off the free list.  If multiple sets are allocated on the same
   obstack, elements freed from one set may be re-used for one of the other
   sets.  This usually helps avoid cache misses.

   A single free-list is used for all sets allocated in GGC space.  This is
   bad for persistent sets, so persistent sets should be allocated on an
   obstack whenever possible.

   For random-access sets with a known, relatively small universe size, the
   SparseSet or simple bitmap representations may be more efficient than a
   linked-list set.


   LINKED LIST FORM
   ================

   In linked-list form, in-order iterations of the set can be executed
   efficiently.  The downside is that many random-access operations are
   relatively slow, because the linked list has to be traversed to test
   membership (i.e. member_p/ add_member/remove_member).
   
   To improve the performance of this set representation, the last
   accessed element and its index are cached.  For membership tests on
   members close to recently accessed members, the cached last element
   improves membership test to a constant-time operation.

   The following operations can always be performed in O(1) time in
   list view:

     * clear			: bitmap_clear
     * smallest_member		: bitmap_first_set_bit
     * pop_smallest		: bitmap_clear_first_set_bit
     * choose_one		: (not implemented, but could be
				   in constant time)

   The following operations can be performed in O(E) time worst-case in
   list view (with E the number of elements in the linked list), but in
   O(1) time with a suitable access patterns:

     * member_p			: bitmap_bit_p
     * add_member		: bitmap_set_bit / bitmap_set_range
     * remove_member		: bitmap_clear_bit / bitmap_clear_range

   The following operations can be performed in O(E) time in list view:

     * cardinality		: bitmap_count_bits
     * largest_member		: bitmap_last_set_bit (but this could
				  in constant time with a pointer to
				  the last element in the chain)
     * set_size			: bitmap_last_set_bit

   In tree view the following operations can all be performed in O(log E)
   amortized time with O(E) worst-case behavior.

     * smallest_member
     * pop_smallest
     * largest_member
     * set_size
     * member_p
     * add_member
     * remove_member

   Additionally, the linked-list sparse set representation supports
   enumeration of the members in O(E) time:

     * forall			: EXECUTE_IF_SET_IN_BITMAP
     * set_copy			: bitmap_copy
     * set_intersection		: bitmap_intersect_p /
				  bitmap_and / bitmap_and_into /
				  EXECUTE_IF_AND_IN_BITMAP
     * set_union		: bitmap_ior / bitmap_ior_into
     * set_difference		: bitmap_intersect_compl_p /
				  bitmap_and_comp / bitmap_and_comp_into /
				  EXECUTE_IF_AND_COMPL_IN_BITMAP
     * set_disjuction		: bitmap_xor_comp / bitmap_xor_comp_into
     * set_compare		: bitmap_equal_p

   Some operations on 3 sets that occur frequently in data flow problems
   are also implemented:

     * A | (B & C)		: bitmap_ior_and_into
     * A | (B & ~C)		: bitmap_ior_and_compl /
				  bitmap_ior_and_compl_into


   BINARY TREE FORM
   ================
   An alternate "view" of a bitmap is its binary tree representation.
   For this representation, splay trees are used because they can be
   implemented using the same data structures as the linked list, with
   no overhead for meta-data (like color, or rank) on the tree nodes.

   In binary tree form, random-access to the set is much more efficient
   than for the linked-list representation.  Downsides are the high cost
   of clearing the set, and the relatively large number of operations
   necessary to balance the tree.  Also, iterating the set members is
   not supported.
   
   As for the linked-list representation, the last accessed element and
   its index are cached, so that membership tests on the latest accessed
   members is a constant-time operation.  Other lookups take O(logE)
   time amortized (but O(E) time worst-case).

   The following operations can always be performed in O(1) time:

     * choose_one		: (not implemented, but could be
				   implemented in constant time)

   The following operations can be performed in O(logE) time amortized
   but O(E) time worst-case, but in O(1) time if the same element is
   accessed.

     * member_p			: bitmap_bit_p
     * add_member		: bitmap_set_bit
     * remove_member		: bitmap_clear_bit

   The following operations can be performed in O(logE) time amortized
   but O(E) time worst-case:

     * smallest_member		: bitmap_first_set_bit
     * largest_member		: bitmap_last_set_bit
     * set_size			: bitmap_last_set_bit

   The following operations can be performed in O(E) time:

     * clear			: bitmap_clear

   The binary tree sparse set representation does *not* support any form
   of enumeration, and does also *not* support logical operations on sets.
   The binary tree representation is only supposed to be used for sets
   on which many random-access membership tests will happen.  */

#include "obstack.h"
#include "array-traits.h"

/* Bitmap memory usage.  */
class bitmap_usage: public mem_usage
{
public:
  /* Default contructor.  */
  bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
  /* Constructor.  */
  bitmap_usage (size_t allocated, size_t times, size_t peak,
	     uint64_t nsearches, uint64_t search_iter)
    : mem_usage (allocated, times, peak),
    m_nsearches (nsearches), m_search_iter (search_iter) {}

  /* Sum the usage with SECOND usage.  */
  bitmap_usage
  operator+ (const bitmap_usage &second)
  {
    return bitmap_usage (m_allocated + second.m_allocated,
			     m_times + second.m_times,
			     m_peak + second.m_peak,
			     m_nsearches + second.m_nsearches,
			     m_search_iter + second.m_search_iter);
  }

  /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
  inline void
  dump (mem_location *loc, const mem_usage &total) const
  {
    char *location_string = loc->to_string ();

    fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
	     PRsa (9) PRsa (9) ":%5.1f%%"
	     PRsa (11) PRsa (11) "%10s\n",
	     location_string, SIZE_AMOUNT (m_allocated),
	     get_percent (m_allocated, total.m_allocated),
	     SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
	     get_percent (m_times, total.m_times),
	     SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
	     loc->m_ggc ? "ggc" : "heap");

    free (location_string);
  }

  /* Dump header with NAME.  */
  static inline void
  dump_header (const char *name)
  {
    fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
	     "Times", "N searches", "Search iter", "Type");
  }

  /* Number search operations.  */
  uint64_t m_nsearches;
  /* Number of search iterations.  */
  uint64_t m_search_iter;
};

/* Bitmap memory description.  */
extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;

/* Fundamental storage type for bitmap.  */

typedef unsigned long BITMAP_WORD;
/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
   it is used in preprocessor directives -- hence the 1u.  */
#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)

/* Number of words to use for each element in the linked list.  */

#ifndef BITMAP_ELEMENT_WORDS
#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
#endif

/* Number of bits in each actual element of a bitmap.  */

#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)

/* Obstack for allocating bitmaps and elements from.  */
struct bitmap_obstack {
  struct bitmap_element *elements;
  bitmap_head *heads;
  struct obstack obstack;
};

/* Bitmap set element.  We use a linked list to hold only the bits that
   are set.  This allows for use to grow the bitset dynamically without
   having to realloc and copy a giant bit array.

   The free list is implemented as a list of lists.  There is one
   outer list connected together by prev fields.  Each element of that
   outer is an inner list (that may consist only of the outer list
   element) that are connected by the next fields.  The prev pointer
   is undefined for interior elements.  This allows
   bitmap_elt_clear_from to be implemented in unit time rather than
   linear in the number of elements to be freed.  */

struct GTY((chain_next ("%h.next"))) bitmap_element {
  /* In list form, the next element in the linked list;
     in tree form, the left child node in the tree.  */
  struct bitmap_element *next;
  /* In list form, the previous element in the linked list;
     in tree form, the right child node in the tree.  */
  struct bitmap_element *prev;
  /* regno/BITMAP_ELEMENT_ALL_BITS.  */
  unsigned int indx;
  /* Bits that are set, counting from INDX, inclusive  */
  BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
};

/* Head of bitmap linked list.  The 'current' member points to something
   already pointed to by the chain started by first, so GTY((skip)) it.  */

class GTY(()) bitmap_head {
public:
  static bitmap_obstack crashme;
  /* Poison obstack to not make it not a valid initialized GC bitmap.  */
  CONSTEXPR bitmap_head()
    : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL),
      current (NULL), obstack (&crashme)
  {}
  /* Index of last element looked at.  */
  unsigned int indx;
  /* False if the bitmap is in list form; true if the bitmap is in tree form.
     Bitmap iterators only work on bitmaps in list form.  */
  unsigned tree_form: 1;
  /* Next integer is shifted, so padding is needed.  */
  unsigned padding: 2;
  /* Bitmap UID used for memory allocation statistics.  */
  unsigned alloc_descriptor: 29;
  /* In list form, the first element in the linked list;
     in tree form, the root of the tree.   */
  bitmap_element *first;
  /* Last element looked at.  */
  bitmap_element * GTY((skip(""))) current;
  /* Obstack to allocate elements from.  If NULL, then use GGC allocation.  */
  bitmap_obstack * GTY((skip(""))) obstack;

  /* Dump bitmap.  */
  void dump ();

  /* Get bitmap descriptor UID casted to an unsigned integer pointer.
     Shift the descriptor because pointer_hash<Type>::hash is
     doing >> 3 shift operation.  */
  unsigned *get_descriptor ()
  {
    return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3);
  }
};

/* Global data */
extern bitmap_element bitmap_zero_bits;	/* Zero bitmap element */
extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */

/* Change the view of the bitmap to list, or tree.  */
void bitmap_list_view (bitmap);
void bitmap_tree_view (bitmap);

/* Clear a bitmap by freeing up the linked list.  */
extern void bitmap_clear (bitmap);

/* Copy a bitmap to another bitmap.  */
extern void bitmap_copy (bitmap, const_bitmap);

/* Move a bitmap to another bitmap.  */
extern void bitmap_move (bitmap, bitmap);

/* True if two bitmaps are identical.  */
extern bool bitmap_equal_p (const_bitmap, const_bitmap);

/* True if the bitmaps intersect (their AND is non-empty).  */
extern bool bitmap_intersect_p (const_bitmap, const_bitmap);

/* True if the complement of the second intersects the first (their
   AND_COMPL is non-empty).  */
extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);

/* True if MAP is an empty bitmap.  */
inline bool bitmap_empty_p (const_bitmap map)
{
  return !map->first;
}

/* True if the bitmap has only a single bit set.  */
extern bool bitmap_single_bit_set_p (const_bitmap);

/* Count the number of bits set in the bitmap.  */
extern unsigned long bitmap_count_bits (const_bitmap);

/* Count the number of unique bits set across the two bitmaps.  */
extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);

/* Boolean operations on bitmaps.  The _into variants are two operand
   versions that modify the first source operand.  The other variants
   are three operand versions that to not destroy the source bitmaps.
   The operations supported are &, & ~, |, ^.  */
extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
extern bool bitmap_and_into (bitmap, const_bitmap);
extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
extern bool bitmap_and_compl_into (bitmap, const_bitmap);
#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
extern void bitmap_compl_and_into (bitmap, const_bitmap);
extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
extern bool bitmap_ior_into (bitmap, const_bitmap);
extern bool bitmap_ior_into_and_free (bitmap, bitmap *);
extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
extern void bitmap_xor_into (bitmap, const_bitmap);

/* DST = A | (B & C).  Return true if DST changes.  */
extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
/* DST = A | (B & ~C).  Return true if DST changes.  */
extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
				  const_bitmap B, const_bitmap C);
/* A |= (B & ~C).  Return true if A changes.  */
extern bool bitmap_ior_and_compl_into (bitmap A,
				       const_bitmap B, const_bitmap C);

/* Clear a single bit in a bitmap.  Return true if the bit changed.  */
extern bool bitmap_clear_bit (bitmap, int);

/* Set a single bit in a bitmap.  Return true if the bit changed.  */
extern bool bitmap_set_bit (bitmap, int);

/* Return true if a bit is set in a bitmap.  */
extern bool bitmap_bit_p (const_bitmap, int);

/* Set and get multiple bit values in a sparse bitmap.  This allows a bitmap to
   function as a sparse array of bit patterns where the patterns are
   multiples of power of 2. This is more efficient than performing this as
   multiple individual operations.  */
void bitmap_set_aligned_chunk (bitmap, unsigned int, unsigned int, BITMAP_WORD);
BITMAP_WORD bitmap_get_aligned_chunk (const_bitmap, unsigned int, unsigned int);

/* Debug functions to print a bitmap.  */
extern void debug_bitmap (const_bitmap);
extern void debug_bitmap_file (FILE *, const_bitmap);

/* Print a bitmap.  */
extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);

/* Initialize and release a bitmap obstack.  */
extern void bitmap_obstack_initialize (bitmap_obstack *);
extern void bitmap_obstack_release (bitmap_obstack *);
extern void bitmap_register (bitmap MEM_STAT_DECL);
extern void dump_bitmap_statistics (void);

/* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
   to allocate from, NULL for GC'd bitmap.  */

inline void
bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
{
  head->first = head->current = NULL;
  head->indx = head->tree_form = 0;
  head->padding = 0;
  head->alloc_descriptor = 0;
  head->obstack = obstack;
  if (GATHER_STATISTICS)
    bitmap_register (head PASS_MEM_STAT);
}

/* Release a bitmap (but not its head).  This is suitable for pairing with
   bitmap_initialize.  */

inline void
bitmap_release (bitmap head)
{
  bitmap_clear (head);
  /* Poison the obstack pointer so the obstack can be safely released.
     Do not zero it as the bitmap then becomes initialized GC.  */
  head->obstack = &bitmap_head::crashme;
}

/* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
#define BITMAP_ALLOC bitmap_alloc
extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
#define BITMAP_GGC_ALLOC bitmap_gc_alloc
extern void bitmap_obstack_free (bitmap);

/* A few compatibility/functions macros for compatibility with sbitmaps */
inline void dump_bitmap (FILE *file, const_bitmap map)
{
  bitmap_print (file, map, "", "\n");
}
extern void debug (const bitmap_head &ref);
extern void debug (const bitmap_head *ptr);

extern unsigned bitmap_first_set_bit (const_bitmap);
extern unsigned bitmap_clear_first_set_bit (bitmap);
extern unsigned bitmap_last_set_bit (const_bitmap);

/* Compute bitmap hash (for purposes of hashing etc.)  */
extern hashval_t bitmap_hash (const_bitmap);

/* Do any cleanup needed on a bitmap when it is no longer used.  */
#define BITMAP_FREE(BITMAP) \
       ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))

/* Iterator for bitmaps.  */

struct bitmap_iterator
{
  /* Pointer to the current bitmap element.  */
  bitmap_element *elt1;

  /* Pointer to 2nd bitmap element when two are involved.  */
  bitmap_element *elt2;

  /* Word within the current element.  */
  unsigned word_no;

  /* Contents of the actually processed word.  When finding next bit
     it is shifted right, so that the actual bit is always the least
     significant bit of ACTUAL.  */
  BITMAP_WORD bits;
};

/* Initialize a single bitmap iterator.  START_BIT is the first bit to
   iterate from.  */

inline void
bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
		   unsigned start_bit, unsigned *bit_no)
{
  bi->elt1 = map->first;
  bi->elt2 = NULL;

  gcc_checking_assert (!map->tree_form);

  /* Advance elt1 until it is not before the block containing start_bit.  */
  while (1)
    {
      if (!bi->elt1)
	{
	  bi->elt1 = &bitmap_zero_bits;
	  break;
	}

      if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
	break;
      bi->elt1 = bi->elt1->next;
    }

  /* We might have gone past the start bit, so reinitialize it.  */
  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
    start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;

  /* Initialize for what is now start_bit.  */
  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
  bi->bits = bi->elt1->bits[bi->word_no];
  bi->bits >>= start_bit % BITMAP_WORD_BITS;

  /* If this word is zero, we must make sure we're not pointing at the
     first bit, otherwise our incrementing to the next word boundary
     will fail.  It won't matter if this increment moves us into the
     next word.  */
  start_bit += !bi->bits;

  *bit_no = start_bit;
}

/* Initialize an iterator to iterate over the intersection of two
   bitmaps.  START_BIT is the bit to commence from.  */

inline void
bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
		   unsigned start_bit, unsigned *bit_no)
{
  bi->elt1 = map1->first;
  bi->elt2 = map2->first;

  gcc_checking_assert (!map1->tree_form && !map2->tree_form);

  /* Advance elt1 until it is not before the block containing
     start_bit.  */
  while (1)
    {
      if (!bi->elt1)
	{
	  bi->elt2 = NULL;
	  break;
	}

      if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
	break;
      bi->elt1 = bi->elt1->next;
    }

  /* Advance elt2 until it is not before elt1.  */
  while (1)
    {
      if (!bi->elt2)
	{
	  bi->elt1 = bi->elt2 = &bitmap_zero_bits;
	  break;
	}

      if (bi->elt2->indx >= bi->elt1->indx)
	break;
      bi->elt2 = bi->elt2->next;
    }

  /* If we're at the same index, then we have some intersecting bits.  */
  if (bi->elt1->indx == bi->elt2->indx)
    {
      /* We might have advanced beyond the start_bit, so reinitialize
	 for that.  */
      if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
	start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;

      bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
      bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
      bi->bits >>= start_bit % BITMAP_WORD_BITS;
    }
  else
    {
      /* Otherwise we must immediately advance elt1, so initialize for
	 that.  */
      bi->word_no = BITMAP_ELEMENT_WORDS - 1;
      bi->bits = 0;
    }

  /* If this word is zero, we must make sure we're not pointing at the
     first bit, otherwise our incrementing to the next word boundary
     will fail.  It won't matter if this increment moves us into the
     next word.  */
  start_bit += !bi->bits;

  *bit_no = start_bit;
}

/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.  */

inline void
bmp_iter_and_compl_init (bitmap_iterator *bi,
			 const_bitmap map1, const_bitmap map2,
			 unsigned start_bit, unsigned *bit_no)
{
  bi->elt1 = map1->first;
  bi->elt2 = map2->first;

  gcc_checking_assert (!map1->tree_form && !map2->tree_form);

  /* Advance elt1 until it is not before the block containing start_bit.  */
  while (1)
    {
      if (!bi->elt1)
	{
	  bi->elt1 = &bitmap_zero_bits;
	  break;
	}

      if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
	break;
      bi->elt1 = bi->elt1->next;
    }

  /* Advance elt2 until it is not before elt1.  */
  while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
    bi->elt2 = bi->elt2->next;

  /* We might have advanced beyond the start_bit, so reinitialize for
     that.  */
  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
    start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;

  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
  bi->bits = bi->elt1->bits[bi->word_no];
  if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
    bi->bits &= ~bi->elt2->bits[bi->word_no];
  bi->bits >>= start_bit % BITMAP_WORD_BITS;

  /* If this word is zero, we must make sure we're not pointing at the
     first bit, otherwise our incrementing to the next word boundary
     will fail.  It won't matter if this increment moves us into the
     next word.  */
  start_bit += !bi->bits;

  *bit_no = start_bit;
}

/* Advance to the next bit in BI.  We don't advance to the next
   nonzero bit yet.  */

inline void
bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
{
  bi->bits >>= 1;
  *bit_no += 1;
}

/* Advance to first set bit in BI.  */

inline void
bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
{
#if (GCC_VERSION >= 3004)
  {
    unsigned int n = __builtin_ctzl (bi->bits);
    gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
    bi->bits >>= n;
    *bit_no += n;
  }
#else
  while (!(bi->bits & 1))
    {
      bi->bits >>= 1;
      *bit_no += 1;
    }
#endif
}

/* Advance to the next nonzero bit of a single bitmap, we will have
   already advanced past the just iterated bit.  Return true if there
   is a bit to iterate.  */

inline bool
bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
{
  /* If our current word is nonzero, it contains the bit we want.  */
  if (bi->bits)
    {
    next_bit:
      bmp_iter_next_bit (bi, bit_no);
      return true;
    }

  /* Round up to the word boundary.  We might have just iterated past
     the end of the last word, hence the -1.  It is not possible for
     bit_no to point at the beginning of the now last word.  */
  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
  bi->word_no++;

  while (1)
    {
      /* Find the next nonzero word in this elt.  */
      while (bi->word_no != BITMAP_ELEMENT_WORDS)
	{
	  bi->bits = bi->elt1->bits[bi->word_no];
	  if (bi->bits)
	    goto next_bit;
	  *bit_no += BITMAP_WORD_BITS;
	  bi->word_no++;
	}

      /* Make sure we didn't remove the element while iterating.  */
      gcc_checking_assert (bi->elt1->indx != -1U);

      /* Advance to the next element.  */
      bi->elt1 = bi->elt1->next;
      if (!bi->elt1)
	return false;
      *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
      bi->word_no = 0;
    }
}

/* Advance to the next nonzero bit of an intersecting pair of
   bitmaps.  We will have already advanced past the just iterated bit.
   Return true if there is a bit to iterate.  */

inline bool
bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
{
  /* If our current word is nonzero, it contains the bit we want.  */
  if (bi->bits)
    {
    next_bit:
      bmp_iter_next_bit (bi, bit_no);
      return true;
    }

  /* Round up to the word boundary.  We might have just iterated past
     the end of the last word, hence the -1.  It is not possible for
     bit_no to point at the beginning of the now last word.  */
  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
  bi->word_no++;

  while (1)
    {
      /* Find the next nonzero word in this elt.  */
      while (bi->word_no != BITMAP_ELEMENT_WORDS)
	{
	  bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
	  if (bi->bits)
	    goto next_bit;
	  *bit_no += BITMAP_WORD_BITS;
	  bi->word_no++;
	}

      /* Advance to the next identical element.  */
      do
	{
	  /* Make sure we didn't remove the element while iterating.  */
	  gcc_checking_assert (bi->elt1->indx != -1U);

	  /* Advance elt1 while it is less than elt2.  We always want
	     to advance one elt.  */
	  do
	    {
	      bi->elt1 = bi->elt1->next;
	      if (!bi->elt1)
		return false;
	    }
	  while (bi->elt1->indx < bi->elt2->indx);

	  /* Make sure we didn't remove the element while iterating.  */
	  gcc_checking_assert (bi->elt2->indx != -1U);

	  /* Advance elt2 to be no less than elt1.  This might not
	     advance.  */
	  while (bi->elt2->indx < bi->elt1->indx)
	    {
	      bi->elt2 = bi->elt2->next;
	      if (!bi->elt2)
		return false;
	    }
	}
      while (bi->elt1->indx != bi->elt2->indx);

      *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
      bi->word_no = 0;
    }
}

/* Advance to the next nonzero bit in the intersection of
   complemented bitmaps.  We will have already advanced past the just
   iterated bit.  */

inline bool
bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
{
  /* If our current word is nonzero, it contains the bit we want.  */
  if (bi->bits)
    {
    next_bit:
      bmp_iter_next_bit (bi, bit_no);
      return true;
    }

  /* Round up to the word boundary.  We might have just iterated past
     the end of the last word, hence the -1.  It is not possible for
     bit_no to point at the beginning of the now last word.  */
  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
  bi->word_no++;

  while (1)
    {
      /* Find the next nonzero word in this elt.  */
      while (bi->word_no != BITMAP_ELEMENT_WORDS)
	{
	  bi->bits = bi->elt1->bits[bi->word_no];
	  if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
	    bi->bits &= ~bi->elt2->bits[bi->word_no];
	  if (bi->bits)
	    goto next_bit;
	  *bit_no += BITMAP_WORD_BITS;
	  bi->word_no++;
	}

      /* Make sure we didn't remove the element while iterating.  */
      gcc_checking_assert (bi->elt1->indx != -1U);

      /* Advance to the next element of elt1.  */
      bi->elt1 = bi->elt1->next;
      if (!bi->elt1)
	return false;

      /* Make sure we didn't remove the element while iterating.  */
      gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);

      /* Advance elt2 until it is no less than elt1.  */
      while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
	bi->elt2 = bi->elt2->next;

      *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
      bi->word_no = 0;
    }
}

/* If you are modifying a bitmap you are currently iterating over you
   have to ensure to
     - never remove the current bit;
     - if you set or clear a bit before the current bit this operation
       will not affect the set of bits you are visiting during the iteration;
     - if you set or clear a bit after the current bit it is unspecified
       whether that affects the set of bits you are visiting during the
       iteration.
   If you want to remove the current bit you can delay this to the next
   iteration (and after the iteration in case the last iteration is
   affected).  */

/* Loop over all bits set in BITMAP, starting with MIN and setting
   BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
   should be treated as a read-only variable as it contains loop
   state.  */

#ifndef EXECUTE_IF_SET_IN_BITMAP
/* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)		\
  for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));		\
       bmp_iter_set (&(ITER), &(BITNUM));				\
       bmp_iter_next (&(ITER), &(BITNUM)))
#endif

/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
   and setting BITNUM to the bit number.  ITER is a bitmap iterator.
   BITNUM should be treated as a read-only variable as it contains
   loop state.  */

#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)	\
  for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),		\
			  &(BITNUM));					\
       bmp_iter_and (&(ITER), &(BITNUM));				\
       bmp_iter_next (&(ITER), &(BITNUM)))

/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
   and setting BITNUM to the bit number.  ITER is a bitmap iterator.
   BITNUM should be treated as a read-only variable as it contains
   loop state.  */

#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
  for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),	\
				&(BITNUM));				\
       bmp_iter_and_compl (&(ITER), &(BITNUM));				\
       bmp_iter_next (&(ITER), &(BITNUM)))

/* A class that ties the lifetime of a bitmap to its scope.  */
class auto_bitmap
{
 public:
  auto_bitmap (ALONE_CXX_MEM_STAT_INFO)
    { bitmap_initialize (&m_bits, &bitmap_default_obstack PASS_MEM_STAT); }
  explicit auto_bitmap (bitmap_obstack *o CXX_MEM_STAT_INFO)
    { bitmap_initialize (&m_bits, o PASS_MEM_STAT); }
  ~auto_bitmap () { bitmap_clear (&m_bits); }
  // Allow calling bitmap functions on our bitmap.
  operator bitmap () { return &m_bits; }

 private:
  // Prevent making a copy that references our bitmap.
  auto_bitmap (const auto_bitmap &);
  auto_bitmap &operator = (const auto_bitmap &);
  auto_bitmap (auto_bitmap &&);
  auto_bitmap &operator = (auto_bitmap &&);

  bitmap_head m_bits;
};

extern void debug (const auto_bitmap &ref);
extern void debug (const auto_bitmap *ptr);

/* Base class for bitmap_view; see there for details.  */
template<typename T, typename Traits = array_traits<T> >
class base_bitmap_view
{
public:
  typedef typename Traits::element_type array_element_type;

  base_bitmap_view (const T &, bitmap_element *);
  operator const_bitmap () const { return &m_head; }

private:
  base_bitmap_view (const base_bitmap_view &);

  bitmap_head m_head;
};

/* Provides a read-only bitmap view of a single integer bitmask or a
   constant-sized array of integer bitmasks, or of a wrapper around such
   bitmasks.  */
template<typename T, typename Traits>
class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits>
{
public:
  bitmap_view (const T &array)
    : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {}

private:
  /* How many bitmap_elements we need to hold a full T.  */
  static const size_t num_bitmap_elements
    = CEIL (CHAR_BIT
	    * sizeof (typename Traits::element_type)
	    * Traits::constant_size,
	    BITMAP_ELEMENT_ALL_BITS);
  bitmap_element m_bitmap_elements[num_bitmap_elements];
};

/* Initialize the view for array ARRAY, using the array of bitmap
   elements in BITMAP_ELEMENTS (which is known to contain enough
   entries).  */
template<typename T, typename Traits>
base_bitmap_view<T, Traits>::base_bitmap_view (const T &array,
					       bitmap_element *bitmap_elements)
{
  m_head.obstack = NULL;

  /* The code currently assumes that each element of ARRAY corresponds
     to exactly one bitmap_element.  */
  const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type);
  STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0);
  size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits;
  size_t array_size = Traits::size (array);

  /* Process each potential bitmap_element in turn.  The loop is written
     this way rather than per array element because usually there are
     only a small number of array elements per bitmap element (typically
     two or four).  The inner loops should therefore unroll completely.  */
  const array_element_type *array_elements = Traits::base (array);
  unsigned int indx = 0;
  for (size_t array_base = 0;
       array_base < array_size;
       array_base += array_step, indx += 1)
    {
      /* How many array elements are in this particular bitmap_element.  */
      unsigned int array_count
	= (STATIC_CONSTANT_P (array_size % array_step == 0)
	   ? array_step : MIN (array_step, array_size - array_base));

      /* See whether we need this bitmap element.  */
      array_element_type ior = array_elements[array_base];
      for (size_t i = 1; i < array_count; ++i)
	ior |= array_elements[array_base + i];
      if (ior == 0)
	continue;

      /* Grab the next bitmap element and chain it.  */
      bitmap_element *bitmap_element = bitmap_elements++;
      if (m_head.current)
	m_head.current->next = bitmap_element;
      else
	m_head.first = bitmap_element;
      bitmap_element->prev = m_head.current;
      bitmap_element->next = NULL;
      bitmap_element->indx = indx;
      m_head.current = bitmap_element;
      m_head.indx = indx;

      /* Fill in the bits of the bitmap element.  */
      if (array_element_bits < BITMAP_WORD_BITS)
	{
	  /* Multiple array elements fit in one element of
	     bitmap_element->bits.  */
	  size_t array_i = array_base;
	  for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS;
	       ++word_i)
	    {
	      BITMAP_WORD word = 0;
	      for (unsigned int shift = 0;
		   shift < BITMAP_WORD_BITS && array_i < array_size;
		   shift += array_element_bits)
		word |= array_elements[array_i++] << shift;
	      bitmap_element->bits[word_i] = word;
	    }
	}
      else
	{
	  /* Array elements are the same size as elements of
	     bitmap_element->bits, or are an exact multiple of that size.  */
	  unsigned int word_i = 0;
	  for (unsigned int i = 0; i < array_count; ++i)
	    for (unsigned int shift = 0; shift < array_element_bits;
		 shift += BITMAP_WORD_BITS)
	      bitmap_element->bits[word_i++]
		= array_elements[array_base + i] >> shift;
	  while (word_i < BITMAP_ELEMENT_WORDS)
	    bitmap_element->bits[word_i++] = 0;
	}
    }
}

#endif /* GCC_BITMAP_H */