1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
|
/* AddressSanitizer, a fast memory error detector.
Copyright (C) 2012-2023 Free Software Foundation, Inc.
Contributed by Kostya Serebryany <kcc@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "varasm.h"
#include "stor-layout.h"
#include "tree-iterator.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "dojump.h"
#include "explow.h"
#include "expr.h"
#include "output.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "gimple-builder.h"
#include "gimple-fold.h"
#include "ubsan.h"
#include "builtins.h"
#include "fnmatch.h"
#include "tree-inline.h"
#include "tree-ssa.h"
#include "tree-eh.h"
#include "diagnostic-core.h"
/* AddressSanitizer finds out-of-bounds and use-after-free bugs
with <2x slowdown on average.
The tool consists of two parts:
instrumentation module (this file) and a run-time library.
The instrumentation module adds a run-time check before every memory insn.
For a 8- or 16- byte load accessing address X:
ShadowAddr = (X >> 3) + Offset
ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
if (ShadowValue)
__asan_report_load8(X);
For a load of N bytes (N=1, 2 or 4) from address X:
ShadowAddr = (X >> 3) + Offset
ShadowValue = *(char*)ShadowAddr;
if (ShadowValue)
if ((X & 7) + N - 1 > ShadowValue)
__asan_report_loadN(X);
Stores are instrumented similarly, but using __asan_report_storeN functions.
A call too __asan_init_vN() is inserted to the list of module CTORs.
N is the version number of the AddressSanitizer API. The changes between the
API versions are listed in libsanitizer/asan/asan_interface_internal.h.
The run-time library redefines malloc (so that redzone are inserted around
the allocated memory) and free (so that reuse of free-ed memory is delayed),
provides __asan_report* and __asan_init_vN functions.
Read more:
http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
The current implementation supports detection of out-of-bounds and
use-after-free in the heap, on the stack and for global variables.
[Protection of stack variables]
To understand how detection of out-of-bounds and use-after-free works
for stack variables, lets look at this example on x86_64 where the
stack grows downward:
int
foo ()
{
char a[24] = {0};
int b[2] = {0};
a[5] = 1;
b[1] = 2;
return a[5] + b[1];
}
For this function, the stack protected by asan will be organized as
follows, from the top of the stack to the bottom:
Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
the next slot be 32 bytes aligned; this one is called Partial
Redzone; this 32 bytes alignment is an asan constraint]
Slot 3/ [24 bytes for variable 'a']
Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
Slot 6/ [8 bytes for variable 'b']
Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
'LEFT RedZone']
The 32 bytes of LEFT red zone at the bottom of the stack can be
decomposed as such:
1/ The first 8 bytes contain a magical asan number that is always
0x41B58AB3.
2/ The following 8 bytes contains a pointer to a string (to be
parsed at runtime by the runtime asan library), which format is
the following:
"<function-name> <space> <num-of-variables-on-the-stack>
(<32-bytes-aligned-offset-in-bytes-of-variable> <space>
<length-of-var-in-bytes> ){n} "
where '(...){n}' means the content inside the parenthesis occurs 'n'
times, with 'n' being the number of variables on the stack.
3/ The following 8 bytes contain the PC of the current function which
will be used by the run-time library to print an error message.
4/ The following 8 bytes are reserved for internal use by the run-time.
The shadow memory for that stack layout is going to look like this:
- content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
The F1 byte pattern is a magic number called
ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
the memory for that shadow byte is part of a the LEFT red zone
intended to seat at the bottom of the variables on the stack.
- content of shadow memory 8 bytes for slots 6 and 5:
0xF4F4F400. The F4 byte pattern is a magic number
called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
memory region for this shadow byte is a PARTIAL red zone
intended to pad a variable A, so that the slot following
{A,padding} is 32 bytes aligned.
Note that the fact that the least significant byte of this
shadow memory content is 00 means that 8 bytes of its
corresponding memory (which corresponds to the memory of
variable 'b') is addressable.
- content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
The F2 byte pattern is a magic number called
ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
region for this shadow byte is a MIDDLE red zone intended to
seat between two 32 aligned slots of {variable,padding}.
- content of shadow memory 8 bytes for slot 3 and 2:
0xF4000000. This represents is the concatenation of
variable 'a' and the partial red zone following it, like what we
had for variable 'b'. The least significant 3 bytes being 00
means that the 3 bytes of variable 'a' are addressable.
- content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
The F3 byte pattern is a magic number called
ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
region for this shadow byte is a RIGHT red zone intended to seat
at the top of the variables of the stack.
Note that the real variable layout is done in expand_used_vars in
cfgexpand.cc. As far as Address Sanitizer is concerned, it lays out
stack variables as well as the different red zones, emits some
prologue code to populate the shadow memory as to poison (mark as
non-accessible) the regions of the red zones and mark the regions of
stack variables as accessible, and emit some epilogue code to
un-poison (mark as accessible) the regions of red zones right before
the function exits.
[Protection of global variables]
The basic idea is to insert a red zone between two global variables
and install a constructor function that calls the asan runtime to do
the populating of the relevant shadow memory regions at load time.
So the global variables are laid out as to insert a red zone between
them. The size of the red zones is so that each variable starts on a
32 bytes boundary.
Then a constructor function is installed so that, for each global
variable, it calls the runtime asan library function
__asan_register_globals_with an instance of this type:
struct __asan_global
{
// Address of the beginning of the global variable.
const void *__beg;
// Initial size of the global variable.
uptr __size;
// Size of the global variable + size of the red zone. This
// size is 32 bytes aligned.
uptr __size_with_redzone;
// Name of the global variable.
const void *__name;
// Name of the module where the global variable is declared.
const void *__module_name;
// 1 if it has dynamic initialization, 0 otherwise.
uptr __has_dynamic_init;
// A pointer to struct that contains source location, could be NULL.
__asan_global_source_location *__location;
}
A destructor function that calls the runtime asan library function
_asan_unregister_globals is also installed. */
static unsigned HOST_WIDE_INT asan_shadow_offset_value;
static bool asan_shadow_offset_computed;
static vec<char *> sanitized_sections;
static tree last_alloca_addr;
/* Set of variable declarations that are going to be guarded by
use-after-scope sanitizer. */
hash_set<tree> *asan_handled_variables = NULL;
hash_set <tree> *asan_used_labels = NULL;
/* Global variables for HWASAN stack tagging. */
/* hwasan_frame_tag_offset records the offset from the frame base tag that the
next object should have. */
static uint8_t hwasan_frame_tag_offset = 0;
/* hwasan_frame_base_ptr is a pointer with the same address as
`virtual_stack_vars_rtx` for the current frame, and with the frame base tag
stored in it. N.b. this global RTX does not need to be marked GTY, but is
done so anyway. The need is not there since all uses are in just one pass
(cfgexpand) and there are no calls to ggc_collect between the uses. We mark
it GTY(()) anyway to allow the use of the variable later on if needed by
future features. */
static GTY(()) rtx hwasan_frame_base_ptr = NULL_RTX;
/* hwasan_frame_base_init_seq is the sequence of RTL insns that will initialize
the hwasan_frame_base_ptr. When the hwasan_frame_base_ptr is requested, we
generate this sequence but do not emit it. If the sequence was created it
is emitted once the function body has been expanded.
This delay is because the frame base pointer may be needed anywhere in the
function body, or needed by the expand_used_vars function. Emitting once in
a known place is simpler than requiring the emission of the instructions to
be know where it should go depending on the first place the hwasan frame
base is needed. */
static GTY(()) rtx_insn *hwasan_frame_base_init_seq = NULL;
/* Structure defining the extent of one object on the stack that HWASAN needs
to tag in the corresponding shadow stack space.
The range this object spans on the stack is between `untagged_base +
nearest_offset` and `untagged_base + farthest_offset`.
`tagged_base` is an rtx containing the same value as `untagged_base` but
with a random tag stored in the top byte. We record both `untagged_base`
and `tagged_base` so that `hwasan_emit_prologue` can use both without having
to emit RTL into the instruction stream to re-calculate one from the other.
(`hwasan_emit_prologue` needs to use both bases since the
__hwasan_tag_memory call it emits uses an untagged value, and it calculates
the tag to store in shadow memory based on the tag_offset plus the tag in
tagged_base). */
struct hwasan_stack_var
{
rtx untagged_base;
rtx tagged_base;
poly_int64 nearest_offset;
poly_int64 farthest_offset;
uint8_t tag_offset;
};
/* Variable recording all stack variables that HWASAN needs to tag.
Does not need to be marked as GTY(()) since every use is in the cfgexpand
pass and gcc_collect is not called in the middle of that pass. */
static vec<hwasan_stack_var> hwasan_tagged_stack_vars;
/* Sets shadow offset to value in string VAL. */
bool
set_asan_shadow_offset (const char *val)
{
char *endp;
errno = 0;
#ifdef HAVE_LONG_LONG
asan_shadow_offset_value = strtoull (val, &endp, 0);
#else
asan_shadow_offset_value = strtoul (val, &endp, 0);
#endif
if (!(*val != '\0' && *endp == '\0' && errno == 0))
return false;
asan_shadow_offset_computed = true;
return true;
}
/* Set list of user-defined sections that need to be sanitized. */
void
set_sanitized_sections (const char *sections)
{
char *pat;
unsigned i;
FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
free (pat);
sanitized_sections.truncate (0);
for (const char *s = sections; *s; )
{
const char *end;
for (end = s; *end && *end != ','; ++end);
size_t len = end - s;
sanitized_sections.safe_push (xstrndup (s, len));
s = *end ? end + 1 : end;
}
}
bool
asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
{
return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
&& tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
}
bool
asan_sanitize_stack_p (void)
{
return (sanitize_flags_p (SANITIZE_ADDRESS) && param_asan_stack);
}
bool
asan_sanitize_allocas_p (void)
{
return (asan_sanitize_stack_p () && param_asan_protect_allocas);
}
bool
asan_instrument_reads (void)
{
return (sanitize_flags_p (SANITIZE_ADDRESS) && param_asan_instrument_reads);
}
bool
asan_instrument_writes (void)
{
return (sanitize_flags_p (SANITIZE_ADDRESS) && param_asan_instrument_writes);
}
bool
asan_memintrin (void)
{
return (sanitize_flags_p (SANITIZE_ADDRESS) && param_asan_memintrin);
}
/* Support for --param asan-kernel-mem-intrinsic-prefix=1. */
static GTY(()) rtx asan_memfn_rtls[3];
rtx
asan_memfn_rtl (tree fndecl)
{
int i;
const char *f, *p;
char buf[sizeof ("__hwasan_memmove")];
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_MEMCPY: i = 0; f = "memcpy"; break;
case BUILT_IN_MEMSET: i = 1; f = "memset"; break;
case BUILT_IN_MEMMOVE: i = 2; f = "memmove"; break;
default: gcc_unreachable ();
}
if (asan_memfn_rtls[i] == NULL_RTX)
{
tree save_name = DECL_NAME (fndecl);
tree save_assembler_name = DECL_ASSEMBLER_NAME (fndecl);
rtx save_rtl = DECL_RTL (fndecl);
if (flag_sanitize & SANITIZE_KERNEL_HWADDRESS)
p = "__hwasan_";
else
p = "__asan_";
strcpy (buf, p);
strcat (buf, f);
DECL_NAME (fndecl) = get_identifier (buf);
DECL_ASSEMBLER_NAME_RAW (fndecl) = NULL_TREE;
SET_DECL_RTL (fndecl, NULL_RTX);
asan_memfn_rtls[i] = DECL_RTL (fndecl);
DECL_NAME (fndecl) = save_name;
DECL_ASSEMBLER_NAME_RAW (fndecl) = save_assembler_name;
SET_DECL_RTL (fndecl, save_rtl);
}
return asan_memfn_rtls[i];
}
/* Checks whether section SEC should be sanitized. */
static bool
section_sanitized_p (const char *sec)
{
char *pat;
unsigned i;
FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
if (fnmatch (pat, sec, FNM_PERIOD) == 0)
return true;
return false;
}
/* Returns Asan shadow offset. */
static unsigned HOST_WIDE_INT
asan_shadow_offset ()
{
if (!asan_shadow_offset_computed)
{
asan_shadow_offset_computed = true;
asan_shadow_offset_value = targetm.asan_shadow_offset ();
}
return asan_shadow_offset_value;
}
/* Returns Asan shadow offset has been set. */
bool
asan_shadow_offset_set_p ()
{
return asan_shadow_offset_computed;
}
alias_set_type asan_shadow_set = -1;
/* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
alias set is used for all shadow memory accesses. */
static GTY(()) tree shadow_ptr_types[3];
/* Decl for __asan_option_detect_stack_use_after_return. */
static GTY(()) tree asan_detect_stack_use_after_return;
/* Hashtable support for memory references used by gimple
statements. */
/* This type represents a reference to a memory region. */
struct asan_mem_ref
{
/* The expression of the beginning of the memory region. */
tree start;
/* The size of the access. */
HOST_WIDE_INT access_size;
};
object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
/* Initializes an instance of asan_mem_ref. */
static void
asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
{
ref->start = start;
ref->access_size = access_size;
}
/* Allocates memory for an instance of asan_mem_ref into the memory
pool returned by asan_mem_ref_get_alloc_pool and initialize it.
START is the address of (or the expression pointing to) the
beginning of memory reference. ACCESS_SIZE is the size of the
access to the referenced memory. */
static asan_mem_ref*
asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
{
asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
asan_mem_ref_init (ref, start, access_size);
return ref;
}
/* This builds and returns a pointer to the end of the memory region
that starts at START and of length LEN. */
tree
asan_mem_ref_get_end (tree start, tree len)
{
if (len == NULL_TREE || integer_zerop (len))
return start;
if (!ptrofftype_p (len))
len = convert_to_ptrofftype (len);
return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
}
/* Return a tree expression that represents the end of the referenced
memory region. Beware that this function can actually build a new
tree expression. */
tree
asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
{
return asan_mem_ref_get_end (ref->start, len);
}
struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
{
static inline hashval_t hash (const asan_mem_ref *);
static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
};
/* Hash a memory reference. */
inline hashval_t
asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
{
return iterative_hash_expr (mem_ref->start, 0);
}
/* Compare two memory references. We accept the length of either
memory references to be NULL_TREE. */
inline bool
asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
const asan_mem_ref *m2)
{
return operand_equal_p (m1->start, m2->start, 0);
}
static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
/* Returns a reference to the hash table containing memory references.
This function ensures that the hash table is created. Note that
this hash table is updated by the function
update_mem_ref_hash_table. */
static hash_table<asan_mem_ref_hasher> *
get_mem_ref_hash_table ()
{
if (!asan_mem_ref_ht)
asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
return asan_mem_ref_ht;
}
/* Clear all entries from the memory references hash table. */
static void
empty_mem_ref_hash_table ()
{
if (asan_mem_ref_ht)
asan_mem_ref_ht->empty ();
}
/* Free the memory references hash table. */
static void
free_mem_ref_resources ()
{
delete asan_mem_ref_ht;
asan_mem_ref_ht = NULL;
asan_mem_ref_pool.release ();
}
/* Return true iff the memory reference REF has been instrumented. */
static bool
has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
{
asan_mem_ref r;
asan_mem_ref_init (&r, ref, access_size);
asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
return saved_ref && saved_ref->access_size >= access_size;
}
/* Return true iff the memory reference REF has been instrumented. */
static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref)
{
return has_mem_ref_been_instrumented (ref->start, ref->access_size);
}
/* Return true iff access to memory region starting at REF and of
length LEN has been instrumented. */
static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
{
HOST_WIDE_INT size_in_bytes
= tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
return size_in_bytes != -1
&& has_mem_ref_been_instrumented (ref->start, size_in_bytes);
}
/* Set REF to the memory reference present in a gimple assignment
ASSIGNMENT. Return true upon successful completion, false
otherwise. */
static bool
get_mem_ref_of_assignment (const gassign *assignment,
asan_mem_ref *ref,
bool *ref_is_store)
{
gcc_assert (gimple_assign_single_p (assignment));
if (gimple_store_p (assignment)
&& !gimple_clobber_p (assignment))
{
ref->start = gimple_assign_lhs (assignment);
*ref_is_store = true;
}
else if (gimple_assign_load_p (assignment))
{
ref->start = gimple_assign_rhs1 (assignment);
*ref_is_store = false;
}
else
return false;
ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
return true;
}
/* Return address of last allocated dynamic alloca. */
static tree
get_last_alloca_addr ()
{
if (last_alloca_addr)
return last_alloca_addr;
last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
gsi_insert_on_edge_immediate (e, g);
return last_alloca_addr;
}
/* Insert __asan_allocas_unpoison (top, bottom) call before
__builtin_stack_restore (new_sp) call.
The pseudocode of this routine should look like this:
top = last_alloca_addr;
bot = new_sp;
__asan_allocas_unpoison (top, bot);
last_alloca_addr = new_sp;
__builtin_stack_restore (new_sp);
In general, we can't use new_sp as bot parameter because on some
architectures SP has non zero offset from dynamic stack area. Moreover, on
some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
particular function only after all callees were expanded to rtl.
The most noticeable example is PowerPC{,64}, see
http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
To overcome the issue we use following trick: pass new_sp as a second
parameter to __asan_allocas_unpoison and rewrite it during expansion with
new_sp + (virtual_dynamic_stack_rtx - sp) later in
expand_asan_emit_allocas_unpoison function.
HWASAN needs to do very similar, the eventual pseudocode should be:
__hwasan_tag_memory (virtual_stack_dynamic_rtx,
0,
new_sp - sp);
__builtin_stack_restore (new_sp)
Need to use the same trick to handle STACK_DYNAMIC_OFFSET as described
above. */
static void
handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
{
if (!iter
|| !(asan_sanitize_allocas_p () || hwasan_sanitize_allocas_p ()))
return;
tree restored_stack = gimple_call_arg (call, 0);
gimple *g;
if (hwasan_sanitize_allocas_p ())
{
enum internal_fn fn = IFN_HWASAN_ALLOCA_UNPOISON;
/* There is only one piece of information `expand_HWASAN_ALLOCA_UNPOISON`
needs to work. This is the length of the area that we're
deallocating. Since the stack pointer is known at expand time, the
position of the new stack pointer after deallocation is enough
information to calculate this length. */
g = gimple_build_call_internal (fn, 1, restored_stack);
}
else
{
tree last_alloca = get_last_alloca_addr ();
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
g = gimple_build_call (fn, 2, last_alloca, restored_stack);
gsi_insert_before (iter, g, GSI_SAME_STMT);
g = gimple_build_assign (last_alloca, restored_stack);
}
gsi_insert_before (iter, g, GSI_SAME_STMT);
}
/* Deploy and poison redzones around __builtin_alloca call. To do this, we
should replace this call with another one with changed parameters and
replace all its uses with new address, so
addr = __builtin_alloca (old_size, align);
is replaced by
left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
Following two statements are optimized out if we know that
old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
redzone.
misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
right_redzone_size = ASAN_RED_ZONE_SIZE;
additional_size = left_redzone_size + partial_redzone_size +
right_redzone_size;
new_size = old_size + additional_size;
new_alloca = __builtin_alloca (new_size, max (align, 32))
__asan_alloca_poison (new_alloca, old_size)
addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
last_alloca_addr = new_alloca;
ADDITIONAL_SIZE is added to make new memory allocation contain not only
requested memory, but also left, partial and right redzones as well as some
additional space, required by alignment. */
static void
handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
{
if (!iter
|| !(asan_sanitize_allocas_p () || hwasan_sanitize_allocas_p ()))
return;
gassign *g;
gcall *gg;
tree callee = gimple_call_fndecl (call);
tree lhs = gimple_call_lhs (call);
tree old_size = gimple_call_arg (call, 0);
tree ptr_type = lhs ? TREE_TYPE (lhs) : ptr_type_node;
tree partial_size = NULL_TREE;
unsigned int align
= DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
? 0 : tree_to_uhwi (gimple_call_arg (call, 1));
bool throws = false;
edge e = NULL;
if (stmt_can_throw_internal (cfun, call))
{
if (!lhs)
return;
throws = true;
e = find_fallthru_edge (gsi_bb (*iter)->succs);
}
if (hwasan_sanitize_allocas_p ())
{
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*iter));
/*
HWASAN needs a different expansion.
addr = __builtin_alloca (size, align);
should be replaced by
new_size = size rounded up to HWASAN_TAG_GRANULE_SIZE byte alignment;
untagged_addr = __builtin_alloca (new_size, align);
tag = __hwasan_choose_alloca_tag ();
addr = ifn_HWASAN_SET_TAG (untagged_addr, tag);
__hwasan_tag_memory (untagged_addr, tag, new_size);
*/
/* Ensure alignment at least HWASAN_TAG_GRANULE_SIZE bytes so we start on
a tag granule. */
align = align > HWASAN_TAG_GRANULE_SIZE ? align : HWASAN_TAG_GRANULE_SIZE;
tree old_size = gimple_call_arg (call, 0);
tree new_size = gimple_build_round_up (&stmts, loc, size_type_node,
old_size,
HWASAN_TAG_GRANULE_SIZE);
/* Make the alloca call */
tree untagged_addr
= gimple_build (&stmts, loc,
as_combined_fn (BUILT_IN_ALLOCA_WITH_ALIGN), ptr_type,
new_size, build_int_cst (size_type_node, align));
/* Choose the tag.
Here we use an internal function so we can choose the tag at expand
time. We need the decision to be made after stack variables have been
assigned their tag (i.e. once the hwasan_frame_tag_offset variable has
been set to one after the last stack variables tag). */
tree tag = gimple_build (&stmts, loc, CFN_HWASAN_CHOOSE_TAG,
unsigned_char_type_node);
/* Add tag to pointer. */
tree addr
= gimple_build (&stmts, loc, CFN_HWASAN_SET_TAG, ptr_type,
untagged_addr, tag);
/* Tag shadow memory.
NOTE: require using `untagged_addr` here for libhwasan API. */
gimple_build (&stmts, loc, as_combined_fn (BUILT_IN_HWASAN_TAG_MEM),
void_type_node, untagged_addr, tag, new_size);
/* Insert the built up code sequence into the original instruction stream
the iterator points to. */
gsi_insert_seq_before (iter, stmts, GSI_SAME_STMT);
/* Finally, replace old alloca ptr with NEW_ALLOCA. */
replace_call_with_value (iter, addr);
return;
}
tree last_alloca = get_last_alloca_addr ();
const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
/* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
manually. */
align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
/* Extract lower bits from old_size. */
wide_int size_nonzero_bits = get_nonzero_bits (old_size);
wide_int rz_mask
= wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
/* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
redzone. Otherwise, compute its size here. */
if (wi::ne_p (old_size_lower_bits, 0))
{
/* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
partial_size = ASAN_RED_ZONE_SIZE - misalign. */
g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
BIT_AND_EXPR, old_size, alloca_rz_mask);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree misalign = gimple_assign_lhs (g);
g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
redzone_size, misalign);
gsi_insert_before (iter, g, GSI_SAME_STMT);
partial_size = gimple_assign_lhs (g);
}
/* additional_size = align + ASAN_RED_ZONE_SIZE. */
tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
+ ASAN_RED_ZONE_SIZE);
/* If alloca has partial redzone, include it to additional_size too. */
if (partial_size)
{
/* additional_size += partial_size. */
g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
partial_size, additional_size);
gsi_insert_before (iter, g, GSI_SAME_STMT);
additional_size = gimple_assign_lhs (g);
}
/* new_size = old_size + additional_size. */
g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
additional_size);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree new_size = gimple_assign_lhs (g);
/* Build new __builtin_alloca call:
new_alloca_with_rz = __builtin_alloca (new_size, align). */
tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
gg = gimple_build_call (fn, 2, new_size,
build_int_cst (size_type_node, align));
tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
gimple_call_set_lhs (gg, new_alloca_with_rz);
if (throws)
{
gimple_call_set_lhs (call, NULL);
gsi_replace (iter, gg, true);
}
else
gsi_insert_before (iter, gg, GSI_SAME_STMT);
/* new_alloca = new_alloca_with_rz + align. */
g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
new_alloca_with_rz,
build_int_cst (size_type_node,
align / BITS_PER_UNIT));
gimple_stmt_iterator gsi = gsi_none ();
if (throws)
{
gsi_insert_on_edge_immediate (e, g);
gsi = gsi_for_stmt (g);
}
else
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree new_alloca = gimple_assign_lhs (g);
/* Poison newly created alloca redzones:
__asan_alloca_poison (new_alloca, old_size). */
fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
gg = gimple_build_call (fn, 2, new_alloca, old_size);
if (throws)
gsi_insert_after (&gsi, gg, GSI_NEW_STMT);
else
gsi_insert_before (iter, gg, GSI_SAME_STMT);
/* Save new_alloca_with_rz value into last_alloca to use it during
allocas unpoisoning. */
g = gimple_build_assign (last_alloca, new_alloca_with_rz);
if (throws)
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
else
gsi_insert_before (iter, g, GSI_SAME_STMT);
/* Finally, replace old alloca ptr with NEW_ALLOCA. */
if (throws)
{
g = gimple_build_assign (lhs, new_alloca);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
}
else
replace_call_with_value (iter, new_alloca);
}
/* Return the memory references contained in a gimple statement
representing a builtin call that has to do with memory access. */
static bool
get_mem_refs_of_builtin_call (gcall *call,
asan_mem_ref *src0,
tree *src0_len,
bool *src0_is_store,
asan_mem_ref *src1,
tree *src1_len,
bool *src1_is_store,
asan_mem_ref *dst,
tree *dst_len,
bool *dst_is_store,
bool *dest_is_deref,
bool *intercepted_p,
gimple_stmt_iterator *iter = NULL)
{
gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
tree callee = gimple_call_fndecl (call);
tree source0 = NULL_TREE, source1 = NULL_TREE,
dest = NULL_TREE, len = NULL_TREE;
bool is_store = true, got_reference_p = false;
HOST_WIDE_INT access_size = 1;
*intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
switch (DECL_FUNCTION_CODE (callee))
{
/* (s, s, n) style memops. */
case BUILT_IN_BCMP:
case BUILT_IN_MEMCMP:
source0 = gimple_call_arg (call, 0);
source1 = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (src, dest, n) style memops. */
case BUILT_IN_BCOPY:
source0 = gimple_call_arg (call, 0);
dest = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (dest, src, n) style memops. */
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMPCPY_CHK:
dest = gimple_call_arg (call, 0);
source0 = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (dest, n) style memops. */
case BUILT_IN_BZERO:
dest = gimple_call_arg (call, 0);
len = gimple_call_arg (call, 1);
break;
/* (dest, x, n) style memops*/
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
dest = gimple_call_arg (call, 0);
len = gimple_call_arg (call, 2);
break;
case BUILT_IN_STRLEN:
/* Special case strlen here since its length is taken from its return
value.
The approach taken by the sanitizers is to check a memory access
before it's taken. For ASAN strlen is intercepted by libasan, so no
check is inserted by the compiler.
This function still returns `true` and provides a length to the rest
of the ASAN pass in order to record what areas have been checked,
avoiding superfluous checks later on.
HWASAN does not intercept any of these internal functions.
This means that checks for memory accesses must be inserted by the
compiler.
strlen is a special case, because we can tell the length from the
return of the function, but that is not known until after the function
has returned.
Hence we can't check the memory access before it happens.
We could check the memory access after it has already happened, but
for now we choose to just ignore `strlen` calls.
This decision was simply made because that means the special case is
limited to this one case of this one function. */
if (hwasan_sanitize_p ())
return false;
source0 = gimple_call_arg (call, 0);
len = gimple_call_lhs (call);
break;
case BUILT_IN_STACK_RESTORE:
handle_builtin_stack_restore (call, iter);
break;
CASE_BUILT_IN_ALLOCA:
handle_builtin_alloca (call, iter);
break;
/* And now the __atomic* and __sync builtins.
These are handled differently from the classical memory
access builtins above. */
case BUILT_IN_ATOMIC_LOAD_1:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_1:
case BUILT_IN_SYNC_FETCH_AND_SUB_1:
case BUILT_IN_SYNC_FETCH_AND_OR_1:
case BUILT_IN_SYNC_FETCH_AND_AND_1:
case BUILT_IN_SYNC_FETCH_AND_XOR_1:
case BUILT_IN_SYNC_FETCH_AND_NAND_1:
case BUILT_IN_SYNC_ADD_AND_FETCH_1:
case BUILT_IN_SYNC_SUB_AND_FETCH_1:
case BUILT_IN_SYNC_OR_AND_FETCH_1:
case BUILT_IN_SYNC_AND_AND_FETCH_1:
case BUILT_IN_SYNC_XOR_AND_FETCH_1:
case BUILT_IN_SYNC_NAND_AND_FETCH_1:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
case BUILT_IN_SYNC_LOCK_RELEASE_1:
case BUILT_IN_ATOMIC_EXCHANGE_1:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
case BUILT_IN_ATOMIC_STORE_1:
case BUILT_IN_ATOMIC_ADD_FETCH_1:
case BUILT_IN_ATOMIC_SUB_FETCH_1:
case BUILT_IN_ATOMIC_AND_FETCH_1:
case BUILT_IN_ATOMIC_NAND_FETCH_1:
case BUILT_IN_ATOMIC_XOR_FETCH_1:
case BUILT_IN_ATOMIC_OR_FETCH_1:
case BUILT_IN_ATOMIC_FETCH_ADD_1:
case BUILT_IN_ATOMIC_FETCH_SUB_1:
case BUILT_IN_ATOMIC_FETCH_AND_1:
case BUILT_IN_ATOMIC_FETCH_NAND_1:
case BUILT_IN_ATOMIC_FETCH_XOR_1:
case BUILT_IN_ATOMIC_FETCH_OR_1:
access_size = 1;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_2:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_2:
case BUILT_IN_SYNC_FETCH_AND_SUB_2:
case BUILT_IN_SYNC_FETCH_AND_OR_2:
case BUILT_IN_SYNC_FETCH_AND_AND_2:
case BUILT_IN_SYNC_FETCH_AND_XOR_2:
case BUILT_IN_SYNC_FETCH_AND_NAND_2:
case BUILT_IN_SYNC_ADD_AND_FETCH_2:
case BUILT_IN_SYNC_SUB_AND_FETCH_2:
case BUILT_IN_SYNC_OR_AND_FETCH_2:
case BUILT_IN_SYNC_AND_AND_FETCH_2:
case BUILT_IN_SYNC_XOR_AND_FETCH_2:
case BUILT_IN_SYNC_NAND_AND_FETCH_2:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
case BUILT_IN_SYNC_LOCK_RELEASE_2:
case BUILT_IN_ATOMIC_EXCHANGE_2:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
case BUILT_IN_ATOMIC_STORE_2:
case BUILT_IN_ATOMIC_ADD_FETCH_2:
case BUILT_IN_ATOMIC_SUB_FETCH_2:
case BUILT_IN_ATOMIC_AND_FETCH_2:
case BUILT_IN_ATOMIC_NAND_FETCH_2:
case BUILT_IN_ATOMIC_XOR_FETCH_2:
case BUILT_IN_ATOMIC_OR_FETCH_2:
case BUILT_IN_ATOMIC_FETCH_ADD_2:
case BUILT_IN_ATOMIC_FETCH_SUB_2:
case BUILT_IN_ATOMIC_FETCH_AND_2:
case BUILT_IN_ATOMIC_FETCH_NAND_2:
case BUILT_IN_ATOMIC_FETCH_XOR_2:
case BUILT_IN_ATOMIC_FETCH_OR_2:
access_size = 2;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_4:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_4:
case BUILT_IN_SYNC_FETCH_AND_SUB_4:
case BUILT_IN_SYNC_FETCH_AND_OR_4:
case BUILT_IN_SYNC_FETCH_AND_AND_4:
case BUILT_IN_SYNC_FETCH_AND_XOR_4:
case BUILT_IN_SYNC_FETCH_AND_NAND_4:
case BUILT_IN_SYNC_ADD_AND_FETCH_4:
case BUILT_IN_SYNC_SUB_AND_FETCH_4:
case BUILT_IN_SYNC_OR_AND_FETCH_4:
case BUILT_IN_SYNC_AND_AND_FETCH_4:
case BUILT_IN_SYNC_XOR_AND_FETCH_4:
case BUILT_IN_SYNC_NAND_AND_FETCH_4:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
case BUILT_IN_SYNC_LOCK_RELEASE_4:
case BUILT_IN_ATOMIC_EXCHANGE_4:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
case BUILT_IN_ATOMIC_STORE_4:
case BUILT_IN_ATOMIC_ADD_FETCH_4:
case BUILT_IN_ATOMIC_SUB_FETCH_4:
case BUILT_IN_ATOMIC_AND_FETCH_4:
case BUILT_IN_ATOMIC_NAND_FETCH_4:
case BUILT_IN_ATOMIC_XOR_FETCH_4:
case BUILT_IN_ATOMIC_OR_FETCH_4:
case BUILT_IN_ATOMIC_FETCH_ADD_4:
case BUILT_IN_ATOMIC_FETCH_SUB_4:
case BUILT_IN_ATOMIC_FETCH_AND_4:
case BUILT_IN_ATOMIC_FETCH_NAND_4:
case BUILT_IN_ATOMIC_FETCH_XOR_4:
case BUILT_IN_ATOMIC_FETCH_OR_4:
access_size = 4;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_8:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_8:
case BUILT_IN_SYNC_FETCH_AND_SUB_8:
case BUILT_IN_SYNC_FETCH_AND_OR_8:
case BUILT_IN_SYNC_FETCH_AND_AND_8:
case BUILT_IN_SYNC_FETCH_AND_XOR_8:
case BUILT_IN_SYNC_FETCH_AND_NAND_8:
case BUILT_IN_SYNC_ADD_AND_FETCH_8:
case BUILT_IN_SYNC_SUB_AND_FETCH_8:
case BUILT_IN_SYNC_OR_AND_FETCH_8:
case BUILT_IN_SYNC_AND_AND_FETCH_8:
case BUILT_IN_SYNC_XOR_AND_FETCH_8:
case BUILT_IN_SYNC_NAND_AND_FETCH_8:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
case BUILT_IN_SYNC_LOCK_RELEASE_8:
case BUILT_IN_ATOMIC_EXCHANGE_8:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
case BUILT_IN_ATOMIC_STORE_8:
case BUILT_IN_ATOMIC_ADD_FETCH_8:
case BUILT_IN_ATOMIC_SUB_FETCH_8:
case BUILT_IN_ATOMIC_AND_FETCH_8:
case BUILT_IN_ATOMIC_NAND_FETCH_8:
case BUILT_IN_ATOMIC_XOR_FETCH_8:
case BUILT_IN_ATOMIC_OR_FETCH_8:
case BUILT_IN_ATOMIC_FETCH_ADD_8:
case BUILT_IN_ATOMIC_FETCH_SUB_8:
case BUILT_IN_ATOMIC_FETCH_AND_8:
case BUILT_IN_ATOMIC_FETCH_NAND_8:
case BUILT_IN_ATOMIC_FETCH_XOR_8:
case BUILT_IN_ATOMIC_FETCH_OR_8:
access_size = 8;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_16:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_16:
case BUILT_IN_SYNC_FETCH_AND_SUB_16:
case BUILT_IN_SYNC_FETCH_AND_OR_16:
case BUILT_IN_SYNC_FETCH_AND_AND_16:
case BUILT_IN_SYNC_FETCH_AND_XOR_16:
case BUILT_IN_SYNC_FETCH_AND_NAND_16:
case BUILT_IN_SYNC_ADD_AND_FETCH_16:
case BUILT_IN_SYNC_SUB_AND_FETCH_16:
case BUILT_IN_SYNC_OR_AND_FETCH_16:
case BUILT_IN_SYNC_AND_AND_FETCH_16:
case BUILT_IN_SYNC_XOR_AND_FETCH_16:
case BUILT_IN_SYNC_NAND_AND_FETCH_16:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
case BUILT_IN_SYNC_LOCK_RELEASE_16:
case BUILT_IN_ATOMIC_EXCHANGE_16:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
case BUILT_IN_ATOMIC_STORE_16:
case BUILT_IN_ATOMIC_ADD_FETCH_16:
case BUILT_IN_ATOMIC_SUB_FETCH_16:
case BUILT_IN_ATOMIC_AND_FETCH_16:
case BUILT_IN_ATOMIC_NAND_FETCH_16:
case BUILT_IN_ATOMIC_XOR_FETCH_16:
case BUILT_IN_ATOMIC_OR_FETCH_16:
case BUILT_IN_ATOMIC_FETCH_ADD_16:
case BUILT_IN_ATOMIC_FETCH_SUB_16:
case BUILT_IN_ATOMIC_FETCH_AND_16:
case BUILT_IN_ATOMIC_FETCH_NAND_16:
case BUILT_IN_ATOMIC_FETCH_XOR_16:
case BUILT_IN_ATOMIC_FETCH_OR_16:
access_size = 16;
/* FALLTHRU */
do_atomic:
{
dest = gimple_call_arg (call, 0);
/* DEST represents the address of a memory location.
instrument_derefs wants the memory location, so lets
dereference the address DEST before handing it to
instrument_derefs. */
tree type = build_nonstandard_integer_type (access_size
* BITS_PER_UNIT, 1);
dest = build2 (MEM_REF, type, dest,
build_int_cst (build_pointer_type (char_type_node), 0));
break;
}
default:
/* The other builtins memory access are not instrumented in this
function because they either don't have any length parameter,
or their length parameter is just a limit. */
break;
}
if (len != NULL_TREE)
{
if (source0 != NULL_TREE)
{
src0->start = source0;
src0->access_size = access_size;
*src0_len = len;
*src0_is_store = false;
}
if (source1 != NULL_TREE)
{
src1->start = source1;
src1->access_size = access_size;
*src1_len = len;
*src1_is_store = false;
}
if (dest != NULL_TREE)
{
dst->start = dest;
dst->access_size = access_size;
*dst_len = len;
*dst_is_store = true;
}
got_reference_p = true;
}
else if (dest)
{
dst->start = dest;
dst->access_size = access_size;
*dst_len = NULL_TREE;
*dst_is_store = is_store;
*dest_is_deref = true;
got_reference_p = true;
}
return got_reference_p;
}
/* Return true iff a given gimple statement has been instrumented.
Note that the statement is "defined" by the memory references it
contains. */
static bool
has_stmt_been_instrumented_p (gimple *stmt)
{
if (gimple_assign_single_p (stmt))
{
bool r_is_store;
asan_mem_ref r;
asan_mem_ref_init (&r, NULL, 1);
if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
&r_is_store))
{
if (!has_mem_ref_been_instrumented (&r))
return false;
if (r_is_store && gimple_assign_load_p (stmt))
{
asan_mem_ref src;
asan_mem_ref_init (&src, NULL, 1);
src.start = gimple_assign_rhs1 (stmt);
src.access_size = int_size_in_bytes (TREE_TYPE (src.start));
if (!has_mem_ref_been_instrumented (&src))
return false;
}
return true;
}
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
asan_mem_ref src0, src1, dest;
asan_mem_ref_init (&src0, NULL, 1);
asan_mem_ref_init (&src1, NULL, 1);
asan_mem_ref_init (&dest, NULL, 1);
tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
bool src0_is_store = false, src1_is_store = false,
dest_is_store = false, dest_is_deref = false, intercepted_p = true;
if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
&src0, &src0_len, &src0_is_store,
&src1, &src1_len, &src1_is_store,
&dest, &dest_len, &dest_is_store,
&dest_is_deref, &intercepted_p))
{
if (src0.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&src0, src0_len))
return false;
if (src1.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&src1, src1_len))
return false;
if (dest.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&dest, dest_len))
return false;
return true;
}
}
else if (is_gimple_call (stmt) && gimple_store_p (stmt))
{
asan_mem_ref r;
asan_mem_ref_init (&r, NULL, 1);
r.start = gimple_call_lhs (stmt);
r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
return has_mem_ref_been_instrumented (&r);
}
return false;
}
/* Insert a memory reference into the hash table. */
static void
update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
{
hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
asan_mem_ref r;
asan_mem_ref_init (&r, ref, access_size);
asan_mem_ref **slot = ht->find_slot (&r, INSERT);
if (*slot == NULL || (*slot)->access_size < access_size)
*slot = asan_mem_ref_new (ref, access_size);
}
/* Initialize shadow_ptr_types array. */
static void
asan_init_shadow_ptr_types (void)
{
asan_shadow_set = new_alias_set ();
tree types[3] = { signed_char_type_node, short_integer_type_node,
integer_type_node };
for (unsigned i = 0; i < 3; i++)
{
shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
}
initialize_sanitizer_builtins ();
}
/* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
static tree
asan_pp_string (pretty_printer *pp)
{
const char *buf = pp_formatted_text (pp);
size_t len = strlen (buf);
tree ret = build_string (len + 1, buf);
TREE_TYPE (ret)
= build_array_type (TREE_TYPE (shadow_ptr_types[0]),
build_index_type (size_int (len)));
TREE_READONLY (ret) = 1;
TREE_STATIC (ret) = 1;
return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
}
/* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
though. */
static void
asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
{
rtx_insn *insn, *insns, *jump;
rtx_code_label *top_label;
rtx end, addr, tmp;
gcc_assert ((len & 3) == 0);
start_sequence ();
clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
insns = get_insns ();
end_sequence ();
for (insn = insns; insn; insn = NEXT_INSN (insn))
if (CALL_P (insn))
break;
if (insn == NULL_RTX)
{
emit_insn (insns);
return;
}
top_label = gen_label_rtx ();
addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
end = force_reg (Pmode, plus_constant (Pmode, addr, len));
emit_label (top_label);
emit_move_insn (shadow_mem, const0_rtx);
tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
true, OPTAB_LIB_WIDEN);
if (tmp != addr)
emit_move_insn (addr, tmp);
emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
jump = get_last_insn ();
gcc_assert (JUMP_P (jump));
add_reg_br_prob_note (jump,
profile_probability::guessed_always ()
.apply_scale (80, 100));
}
void
asan_function_start (void)
{
section *fnsec = function_section (current_function_decl);
switch_to_section (fnsec);
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
current_function_funcdef_no);
}
/* Return number of shadow bytes that are occupied by a local variable
of SIZE bytes. */
static unsigned HOST_WIDE_INT
shadow_mem_size (unsigned HOST_WIDE_INT size)
{
/* It must be possible to align stack variables to granularity
of shadow memory. */
gcc_assert (BITS_PER_UNIT
* ASAN_SHADOW_GRANULARITY <= MAX_SUPPORTED_STACK_ALIGNMENT);
return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
}
/* Always emit 4 bytes at a time. */
#define RZ_BUFFER_SIZE 4
/* ASAN redzone buffer container that handles emission of shadow bytes. */
class asan_redzone_buffer
{
public:
/* Constructor. */
asan_redzone_buffer (rtx shadow_mem, HOST_WIDE_INT prev_offset):
m_shadow_mem (shadow_mem), m_prev_offset (prev_offset),
m_original_offset (prev_offset), m_shadow_bytes (RZ_BUFFER_SIZE)
{}
/* Emit VALUE shadow byte at a given OFFSET. */
void emit_redzone_byte (HOST_WIDE_INT offset, unsigned char value);
/* Emit RTX emission of the content of the buffer. */
void flush_redzone_payload (void);
private:
/* Flush if the content of the buffer is full
(equal to RZ_BUFFER_SIZE). */
void flush_if_full (void);
/* Memory where we last emitted a redzone payload. */
rtx m_shadow_mem;
/* Relative offset where we last emitted a redzone payload. */
HOST_WIDE_INT m_prev_offset;
/* Relative original offset. Used for checking only. */
HOST_WIDE_INT m_original_offset;
public:
/* Buffer with redzone payload. */
auto_vec<unsigned char> m_shadow_bytes;
};
/* Emit VALUE shadow byte at a given OFFSET. */
void
asan_redzone_buffer::emit_redzone_byte (HOST_WIDE_INT offset,
unsigned char value)
{
gcc_assert ((offset & (ASAN_SHADOW_GRANULARITY - 1)) == 0);
gcc_assert (offset >= m_prev_offset);
HOST_WIDE_INT off
= m_prev_offset + ASAN_SHADOW_GRANULARITY * m_shadow_bytes.length ();
if (off == offset)
/* Consecutive shadow memory byte. */;
else if (offset < m_prev_offset + (HOST_WIDE_INT) (ASAN_SHADOW_GRANULARITY
* RZ_BUFFER_SIZE)
&& !m_shadow_bytes.is_empty ())
{
/* Shadow memory byte with a small gap. */
for (; off < offset; off += ASAN_SHADOW_GRANULARITY)
m_shadow_bytes.safe_push (0);
}
else
{
if (!m_shadow_bytes.is_empty ())
flush_redzone_payload ();
/* Maybe start earlier in order to use aligned store. */
HOST_WIDE_INT align = (offset - m_prev_offset) % ASAN_RED_ZONE_SIZE;
if (align)
{
offset -= align;
for (unsigned i = 0; i < align / BITS_PER_UNIT; i++)
m_shadow_bytes.safe_push (0);
}
/* Adjust m_prev_offset and m_shadow_mem. */
HOST_WIDE_INT diff = offset - m_prev_offset;
m_shadow_mem = adjust_address (m_shadow_mem, VOIDmode,
diff >> ASAN_SHADOW_SHIFT);
m_prev_offset = offset;
}
m_shadow_bytes.safe_push (value);
flush_if_full ();
}
/* Emit RTX emission of the content of the buffer. */
void
asan_redzone_buffer::flush_redzone_payload (void)
{
gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
if (m_shadow_bytes.is_empty ())
return;
/* Be sure we always emit to an aligned address. */
gcc_assert (((m_prev_offset - m_original_offset)
& (ASAN_RED_ZONE_SIZE - 1)) == 0);
/* Fill it to RZ_BUFFER_SIZE bytes with zeros if needed. */
unsigned l = m_shadow_bytes.length ();
for (unsigned i = 0; i <= RZ_BUFFER_SIZE - l; i++)
m_shadow_bytes.safe_push (0);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Flushing rzbuffer at offset %" PRId64 " with: ", m_prev_offset);
unsigned HOST_WIDE_INT val = 0;
for (unsigned i = 0; i < RZ_BUFFER_SIZE; i++)
{
unsigned char v
= m_shadow_bytes[BYTES_BIG_ENDIAN ? RZ_BUFFER_SIZE - i - 1 : i];
val |= (unsigned HOST_WIDE_INT)v << (BITS_PER_UNIT * i);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "%02x ", v);
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\n");
rtx c = gen_int_mode (val, SImode);
m_shadow_mem = adjust_address (m_shadow_mem, SImode, 0);
emit_move_insn (m_shadow_mem, c);
m_shadow_bytes.truncate (0);
}
/* Flush if the content of the buffer is full
(equal to RZ_BUFFER_SIZE). */
void
asan_redzone_buffer::flush_if_full (void)
{
if (m_shadow_bytes.length () == RZ_BUFFER_SIZE)
flush_redzone_payload ();
}
/* HWAddressSanitizer (hwasan) is a probabilistic method for detecting
out-of-bounds and use-after-free bugs.
Read more:
http://code.google.com/p/address-sanitizer/
Similar to AddressSanitizer (asan) it consists of two parts: the
instrumentation module in this file, and a run-time library.
The instrumentation module adds a run-time check before every memory insn in
the same manner as asan (see the block comment for AddressSanitizer above).
Currently, hwasan only adds out-of-line instrumentation, where each check is
implemented as a function call to the run-time library. Hence a check for a
load of N bytes from address X would be implemented with a function call to
__hwasan_loadN(X), and checking a store of N bytes from address X would be
implemented with a function call to __hwasan_storeN(X).
The main difference between hwasan and asan is in the information stored to
help this checking. Both sanitizers use a shadow memory area which stores
data recording the state of main memory at a corresponding address.
For hwasan, each 16 byte granule in main memory has a corresponding 1 byte
in shadow memory. This shadow address can be calculated with equation:
(addr >> log_2(HWASAN_TAG_GRANULE_SIZE))
+ __hwasan_shadow_memory_dynamic_address;
The conversion between real and shadow memory for asan is given in the block
comment at the top of this file.
The description of how this shadow memory is laid out for asan is in the
block comment at the top of this file, here we describe how this shadow
memory is used for hwasan.
For hwasan, each variable is assigned a byte-sized 'tag'. The extent of
the shadow memory for that variable is filled with the assigned tag, and
every pointer referencing that variable has its top byte set to the same
tag. The run-time library redefines malloc so that every allocation returns
a tagged pointer and tags the corresponding shadow memory with the same tag.
On each pointer dereference the tag found in the pointer is compared to the
tag found in the shadow memory corresponding to the accessed memory address.
If these tags are found to differ then this memory access is judged to be
invalid and a report is generated.
This method of bug detection is not perfect -- it can not catch every bad
access -- but catches them probabilistically instead. There is always the
possibility that an invalid memory access will happen to access memory
tagged with the same tag as the pointer that this access used.
The chances of this are approx. 0.4% for any two uncorrelated objects.
Random tag generation can mitigate this problem by decreasing the
probability that an invalid access will be missed in the same manner over
multiple runs. i.e. if two objects are tagged the same in one run of the
binary they are unlikely to be tagged the same in the next run.
Both heap and stack allocated objects have random tags by default.
[16 byte granule implications]
Since the shadow memory only has a resolution on real memory of 16 bytes,
invalid accesses that are within the same 16 byte granule as a valid
address will not be caught.
There is a "short-granule" feature in the runtime library which does catch
such accesses, but this feature is not implemented for stack objects (since
stack objects are allocated and tagged by compiler instrumentation, and
this feature has not yet been implemented in GCC instrumentation).
Another outcome of this 16 byte resolution is that each tagged object must
be 16 byte aligned. If two objects were to share any 16 byte granule in
memory, then they both would have to be given the same tag, and invalid
accesses to one using a pointer to the other would be undetectable.
[Compiler instrumentation]
Compiler instrumentation ensures that two adjacent buffers on the stack are
given different tags, this means an access to one buffer using a pointer
generated from the other (e.g. through buffer overrun) will have mismatched
tags and be caught by hwasan.
We don't randomly tag every object on the stack, since that would require
keeping many registers to record each tag. Instead we randomly generate a
tag for each function frame, and each new stack object uses a tag offset
from that frame tag.
i.e. each object is tagged as RFT + offset, where RFT is the "random frame
tag" generated for this frame.
This means that randomisation does not peturb the difference between tags
on tagged stack objects within a frame, but this is mitigated by the fact
that objects with the same tag within a frame are very far apart
(approx. 2^HWASAN_TAG_SIZE objects apart).
As a demonstration, using the same example program as in the asan block
comment above:
int
foo ()
{
char a[24] = {0};
int b[2] = {0};
a[5] = 1;
b[1] = 2;
return a[5] + b[1];
}
On AArch64 the stack will be ordered as follows for the above function:
Slot 1/ [24 bytes for variable 'a']
Slot 2/ [8 bytes padding for alignment]
Slot 3/ [8 bytes for variable 'b']
Slot 4/ [8 bytes padding for alignment]
(The padding is there to ensure 16 byte alignment as described in the 16
byte granule implications).
While the shadow memory will be ordered as follows:
- 2 bytes (representing 32 bytes in real memory) tagged with RFT + 1.
- 1 byte (representing 16 bytes in real memory) tagged with RFT + 2.
And any pointer to "a" will have the tag RFT + 1, and any pointer to "b"
will have the tag RFT + 2.
[Top Byte Ignore requirements]
Hwasan requires the ability to store an 8 bit tag in every pointer. There
is no instrumentation done to remove this tag from pointers before
dereferencing, which means the hardware must ignore this tag during memory
accesses.
Architectures where this feature is available should indicate this using
the TARGET_MEMTAG_CAN_TAG_ADDRESSES hook.
[Stack requires cleanup on unwinding]
During normal operation of a hwasan sanitized program more space in the
shadow memory becomes tagged as the stack grows. As the stack shrinks this
shadow memory space must become untagged. If it is not untagged then when
the stack grows again (during other function calls later on in the program)
objects on the stack that are usually not tagged (e.g. parameters passed on
the stack) can be placed in memory whose shadow space is tagged with
something else, and accesses can cause false positive reports.
Hence we place untagging code on every epilogue of functions which tag some
stack objects.
Moreover, the run-time library intercepts longjmp & setjmp to untag when
the stack is unwound this way.
C++ exceptions are not yet handled, which means this sanitizer can not
handle C++ code that throws exceptions -- it will give false positives
after an exception has been thrown. The implementation that the hwasan
library has for handling these relies on the frame pointer being after any
local variables. This is not generally the case for GCC. */
/* Returns whether we are tagging pointers and checking those tags on memory
access. */
bool
hwasan_sanitize_p ()
{
return sanitize_flags_p (SANITIZE_HWADDRESS);
}
/* Are we tagging the stack? */
bool
hwasan_sanitize_stack_p ()
{
return (hwasan_sanitize_p () && param_hwasan_instrument_stack);
}
/* Are we tagging alloca objects? */
bool
hwasan_sanitize_allocas_p (void)
{
return (hwasan_sanitize_stack_p () && param_hwasan_instrument_allocas);
}
/* Should we instrument reads? */
bool
hwasan_instrument_reads (void)
{
return (hwasan_sanitize_p () && param_hwasan_instrument_reads);
}
/* Should we instrument writes? */
bool
hwasan_instrument_writes (void)
{
return (hwasan_sanitize_p () && param_hwasan_instrument_writes);
}
/* Should we instrument builtin calls? */
bool
hwasan_memintrin (void)
{
return (hwasan_sanitize_p () && param_hwasan_instrument_mem_intrinsics);
}
/* Insert code to protect stack vars. The prologue sequence should be emitted
directly, epilogue sequence returned. BASE is the register holding the
stack base, against which OFFSETS array offsets are relative to, OFFSETS
array contains pairs of offsets in reverse order, always the end offset
of some gap that needs protection followed by starting offset,
and DECLS is an array of representative decls for each var partition.
LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
elements long (OFFSETS include gap before the first variable as well
as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
register which stack vars DECL_RTLs are based on. Either BASE should be
assigned to PBASE, when not doing use after return protection, or
corresponding address based on __asan_stack_malloc* return value. */
rtx_insn *
asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
HOST_WIDE_INT *offsets, tree *decls, int length)
{
rtx shadow_base, shadow_mem, ret, mem, orig_base;
rtx_code_label *lab;
rtx_insn *insns;
char buf[32];
HOST_WIDE_INT base_offset = offsets[length - 1];
HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
HOST_WIDE_INT last_offset, last_size, last_size_aligned;
int l;
unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
tree str_cst, decl, id;
int use_after_return_class = -1;
/* Don't emit anything when doing error recovery, the assertions
might fail e.g. if a function had a frame offset overflow. */
if (seen_error ())
return NULL;
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
expanded_location cfun_xloc
= expand_location (DECL_SOURCE_LOCATION (current_function_decl));
/* First of all, prepare the description string. */
pretty_printer asan_pp;
pp_decimal_int (&asan_pp, length / 2 - 1);
pp_space (&asan_pp);
for (l = length - 2; l; l -= 2)
{
tree decl = decls[l / 2 - 1];
pp_wide_integer (&asan_pp, offsets[l] - base_offset);
pp_space (&asan_pp);
pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
pp_space (&asan_pp);
expanded_location xloc
= expand_location (DECL_SOURCE_LOCATION (decl));
char location[32];
if (xloc.file == cfun_xloc.file)
sprintf (location, ":%d", xloc.line);
else
location[0] = '\0';
if (DECL_P (decl) && DECL_NAME (decl))
{
unsigned idlen
= IDENTIFIER_LENGTH (DECL_NAME (decl)) + strlen (location);
pp_decimal_int (&asan_pp, idlen);
pp_space (&asan_pp);
pp_tree_identifier (&asan_pp, DECL_NAME (decl));
pp_string (&asan_pp, location);
}
else
pp_string (&asan_pp, "9 <unknown>");
if (l > 2)
pp_space (&asan_pp);
}
str_cst = asan_pp_string (&asan_pp);
/* Emit the prologue sequence. */
if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
&& param_asan_use_after_return)
{
use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
/* __asan_stack_malloc_N guarantees alignment
N < 6 ? (64 << N) : 4096 bytes. */
if (alignb > (use_after_return_class < 6
? (64U << use_after_return_class) : 4096U))
use_after_return_class = -1;
else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
base_align_bias = ((asan_frame_size + alignb - 1)
& ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
}
/* Align base if target is STRICT_ALIGNMENT. */
if (STRICT_ALIGNMENT)
{
const HOST_WIDE_INT align
= (GET_MODE_ALIGNMENT (SImode) / BITS_PER_UNIT) << ASAN_SHADOW_SHIFT;
base = expand_binop (Pmode, and_optab, base, gen_int_mode (-align, Pmode),
NULL_RTX, 1, OPTAB_DIRECT);
}
if (use_after_return_class == -1 && pbase)
emit_move_insn (pbase, base);
base = expand_binop (Pmode, add_optab, base,
gen_int_mode (base_offset - base_align_bias, Pmode),
NULL_RTX, 1, OPTAB_DIRECT);
orig_base = NULL_RTX;
if (use_after_return_class != -1)
{
if (asan_detect_stack_use_after_return == NULL_TREE)
{
id = get_identifier ("__asan_option_detect_stack_use_after_return");
decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
integer_type_node);
SET_DECL_ASSEMBLER_NAME (decl, id);
TREE_ADDRESSABLE (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
DECL_EXTERNAL (decl) = 1;
TREE_STATIC (decl) = 1;
TREE_PUBLIC (decl) = 1;
TREE_USED (decl) = 1;
asan_detect_stack_use_after_return = decl;
}
orig_base = gen_reg_rtx (Pmode);
emit_move_insn (orig_base, base);
ret = expand_normal (asan_detect_stack_use_after_return);
lab = gen_label_rtx ();
emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
VOIDmode, 0, lab,
profile_probability::very_likely ());
snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
use_after_return_class);
ret = init_one_libfunc (buf);
ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
GEN_INT (asan_frame_size
+ base_align_bias),
TYPE_MODE (pointer_sized_int_node));
/* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
and NULL otherwise. Check RET value is NULL here and jump over the
BASE reassignment in this case. Otherwise, reassign BASE to RET. */
emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
VOIDmode, 0, lab,
profile_probability:: very_unlikely ());
ret = convert_memory_address (Pmode, ret);
emit_move_insn (base, ret);
emit_label (lab);
emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
gen_int_mode (base_align_bias
- base_offset, Pmode),
NULL_RTX, 1, OPTAB_DIRECT));
}
mem = gen_rtx_MEM (ptr_mode, base);
mem = adjust_address (mem, VOIDmode, base_align_bias);
emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
emit_move_insn (mem, expand_normal (str_cst));
mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
id = get_identifier (buf);
decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
VAR_DECL, id, char_type_node);
SET_DECL_ASSEMBLER_NAME (decl, id);
TREE_ADDRESSABLE (decl) = 1;
TREE_READONLY (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_STATIC (decl) = 1;
TREE_PUBLIC (decl) = 0;
TREE_USED (decl) = 1;
DECL_INITIAL (decl) = decl;
TREE_ASM_WRITTEN (decl) = 1;
TREE_ASM_WRITTEN (id) = 1;
emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
shadow_base = expand_binop (Pmode, lshr_optab, base,
gen_int_shift_amount (Pmode, ASAN_SHADOW_SHIFT),
NULL_RTX, 1, OPTAB_DIRECT);
shadow_base
= plus_constant (Pmode, shadow_base,
asan_shadow_offset ()
+ (base_align_bias >> ASAN_SHADOW_SHIFT));
gcc_assert (asan_shadow_set != -1
&& (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
shadow_mem = gen_rtx_MEM (SImode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
if (STRICT_ALIGNMENT)
set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
prev_offset = base_offset;
asan_redzone_buffer rz_buffer (shadow_mem, prev_offset);
for (l = length; l; l -= 2)
{
if (l == 2)
cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
offset = offsets[l - 1];
bool extra_byte = (offset - base_offset) & (ASAN_SHADOW_GRANULARITY - 1);
/* If a red-zone is not aligned to ASAN_SHADOW_GRANULARITY then
the previous stack variable has size % ASAN_SHADOW_GRANULARITY != 0.
In that case we have to emit one extra byte that will describe
how many bytes (our of ASAN_SHADOW_GRANULARITY) can be accessed. */
if (extra_byte)
{
HOST_WIDE_INT aoff
= base_offset + ((offset - base_offset)
& ~(ASAN_SHADOW_GRANULARITY - HOST_WIDE_INT_1));
rz_buffer.emit_redzone_byte (aoff, offset - aoff);
offset = aoff + ASAN_SHADOW_GRANULARITY;
}
/* Calculate size of red zone payload. */
while (offset < offsets[l - 2])
{
rz_buffer.emit_redzone_byte (offset, cur_shadow_byte);
offset += ASAN_SHADOW_GRANULARITY;
}
cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
}
/* As the automatic variables are aligned to
ASAN_RED_ZONE_SIZE / ASAN_SHADOW_GRANULARITY, the buffer should be
flushed here. */
gcc_assert (rz_buffer.m_shadow_bytes.is_empty ());
do_pending_stack_adjust ();
/* Construct epilogue sequence. */
start_sequence ();
lab = NULL;
if (use_after_return_class != -1)
{
rtx_code_label *lab2 = gen_label_rtx ();
char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
VOIDmode, 0, lab2,
profile_probability::very_likely ());
shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
mem = gen_rtx_MEM (ptr_mode, base);
mem = adjust_address (mem, VOIDmode, base_align_bias);
emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
if (use_after_return_class < 5
&& can_store_by_pieces (sz, builtin_memset_read_str, &c,
BITS_PER_UNIT, true))
{
/* Emit:
memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
**SavedFlagPtr(FakeStack, class_id) = 0
*/
store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
BITS_PER_UNIT, true, RETURN_BEGIN);
unsigned HOST_WIDE_INT offset
= (1 << (use_after_return_class + 6));
offset -= GET_MODE_SIZE (ptr_mode);
mem = gen_rtx_MEM (ptr_mode, base);
mem = adjust_address (mem, ptr_mode, offset);
rtx addr = gen_reg_rtx (ptr_mode);
emit_move_insn (addr, mem);
addr = convert_memory_address (Pmode, addr);
mem = gen_rtx_MEM (QImode, addr);
emit_move_insn (mem, const0_rtx);
}
else if (use_after_return_class >= 5
|| !set_storage_via_setmem (shadow_mem,
GEN_INT (sz),
gen_int_mode (c, QImode),
BITS_PER_UNIT, BITS_PER_UNIT,
-1, sz, sz, sz))
{
snprintf (buf, sizeof buf, "__asan_stack_free_%d",
use_after_return_class);
ret = init_one_libfunc (buf);
rtx addr = convert_memory_address (ptr_mode, base);
rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
emit_library_call (ret, LCT_NORMAL, ptr_mode, addr, ptr_mode,
GEN_INT (asan_frame_size + base_align_bias),
TYPE_MODE (pointer_sized_int_node),
orig_addr, ptr_mode);
}
lab = gen_label_rtx ();
emit_jump (lab);
emit_label (lab2);
}
shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
if (STRICT_ALIGNMENT)
set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
prev_offset = base_offset;
last_offset = base_offset;
last_size = 0;
last_size_aligned = 0;
for (l = length; l; l -= 2)
{
offset = base_offset + ((offsets[l - 1] - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
if (last_offset + last_size_aligned < offset)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(last_offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = last_offset;
asan_clear_shadow (shadow_mem, last_size_aligned >> ASAN_SHADOW_SHIFT);
last_offset = offset;
last_size = 0;
}
else
last_size = offset - last_offset;
last_size += base_offset + ((offsets[l - 2] - base_offset)
& ~(ASAN_MIN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
- offset;
/* Unpoison shadow memory that corresponds to a variable that is
is subject of use-after-return sanitization. */
if (l > 2)
{
decl = decls[l / 2 - 2];
if (asan_handled_variables != NULL
&& asan_handled_variables->contains (decl))
{
HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
if (dump_file && (dump_flags & TDF_DETAILS))
{
const char *n = (DECL_NAME (decl)
? IDENTIFIER_POINTER (DECL_NAME (decl))
: "<unknown>");
fprintf (dump_file, "Unpoisoning shadow stack for variable: "
"%s (%" PRId64 " B)\n", n, size);
}
last_size += size & ~(ASAN_MIN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
}
}
last_size_aligned
= ((last_size + (ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
}
if (last_size_aligned)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(last_offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
asan_clear_shadow (shadow_mem, last_size_aligned >> ASAN_SHADOW_SHIFT);
}
/* Clean-up set with instrumented stack variables. */
delete asan_handled_variables;
asan_handled_variables = NULL;
delete asan_used_labels;
asan_used_labels = NULL;
do_pending_stack_adjust ();
if (lab)
emit_label (lab);
insns = get_insns ();
end_sequence ();
return insns;
}
/* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
indicates whether we're emitting new instructions sequence or not. */
rtx_insn *
asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
{
if (before)
push_to_sequence (before);
else
start_sequence ();
rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
top = convert_memory_address (ptr_mode, top);
bot = convert_memory_address (ptr_mode, bot);
emit_library_call (ret, LCT_NORMAL, ptr_mode,
top, ptr_mode, bot, ptr_mode);
do_pending_stack_adjust ();
rtx_insn *insns = get_insns ();
end_sequence ();
return insns;
}
/* Return true if DECL, a global var, might be overridden and needs
therefore a local alias. */
static bool
asan_needs_local_alias (tree decl)
{
return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
}
/* Return true if DECL, a global var, is an artificial ODR indicator symbol
therefore doesn't need protection. */
static bool
is_odr_indicator (tree decl)
{
return (DECL_ARTIFICIAL (decl)
&& lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
}
/* Return true if DECL is a VAR_DECL that should be protected
by Address Sanitizer, by appending a red zone with protected
shadow memory after it and aligning it to at least
ASAN_RED_ZONE_SIZE bytes. */
bool
asan_protect_global (tree decl, bool ignore_decl_rtl_set_p)
{
if (!param_asan_globals)
return false;
rtx rtl, symbol;
if (TREE_CODE (decl) == STRING_CST)
{
/* Instrument all STRING_CSTs except those created
by asan_pp_string here. */
if (shadow_ptr_types[0] != NULL_TREE
&& TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
&& TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
return false;
return true;
}
if (!VAR_P (decl)
/* TLS vars aren't statically protectable. */
|| DECL_THREAD_LOCAL_P (decl)
/* Externs will be protected elsewhere. */
|| DECL_EXTERNAL (decl)
/* PR sanitizer/81697: For architectures that use section anchors first
call to asan_protect_global may occur before DECL_RTL (decl) is set.
We should ignore DECL_RTL_SET_P then, because otherwise the first call
to asan_protect_global will return FALSE and the following calls on the
same decl after setting DECL_RTL (decl) will return TRUE and we'll end
up with inconsistency at runtime. */
|| (!DECL_RTL_SET_P (decl) && !ignore_decl_rtl_set_p)
/* Comdat vars pose an ABI problem, we can't know if
the var that is selected by the linker will have
padding or not. */
|| DECL_ONE_ONLY (decl)
/* Similarly for common vars. People can use -fno-common.
Note: Linux kernel is built with -fno-common, so we do instrument
globals there even if it is C. */
|| (DECL_COMMON (decl) && TREE_PUBLIC (decl))
/* Don't protect if using user section, often vars placed
into user section from multiple TUs are then assumed
to be an array of such vars, putting padding in there
breaks this assumption. */
|| (DECL_SECTION_NAME (decl) != NULL
&& !symtab_node::get (decl)->implicit_section
&& !section_sanitized_p (DECL_SECTION_NAME (decl)))
|| DECL_SIZE (decl) == 0
|| ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
|| TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST
|| !valid_constant_size_p (DECL_SIZE_UNIT (decl))
|| DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
|| TREE_TYPE (decl) == ubsan_get_source_location_type ()
|| is_odr_indicator (decl))
return false;
if (!ignore_decl_rtl_set_p || DECL_RTL_SET_P (decl))
{
rtl = DECL_RTL (decl);
if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
return false;
symbol = XEXP (rtl, 0);
if (CONSTANT_POOL_ADDRESS_P (symbol)
|| TREE_CONSTANT_POOL_ADDRESS_P (symbol))
return false;
}
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
return false;
if (!TARGET_SUPPORTS_ALIASES && asan_needs_local_alias (decl))
return false;
return true;
}
/* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
IS_STORE is either 1 (for a store) or 0 (for a load). */
static tree
report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
int *nargs)
{
gcc_assert (!hwasan_sanitize_p ());
static enum built_in_function report[2][2][6]
= { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
{ BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
{ { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
{ BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
if (size_in_bytes == -1)
{
*nargs = 2;
return builtin_decl_implicit (report[recover_p][is_store][5]);
}
*nargs = 1;
int size_log2 = exact_log2 (size_in_bytes);
return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
}
/* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
IS_STORE is either 1 (for a store) or 0 (for a load). */
static tree
check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
int *nargs)
{
static enum built_in_function check[2][2][6]
= { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
{ BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
{ { BUILT_IN_ASAN_LOAD1_NOABORT,
BUILT_IN_ASAN_LOAD2_NOABORT,
BUILT_IN_ASAN_LOAD4_NOABORT,
BUILT_IN_ASAN_LOAD8_NOABORT,
BUILT_IN_ASAN_LOAD16_NOABORT,
BUILT_IN_ASAN_LOADN_NOABORT },
{ BUILT_IN_ASAN_STORE1_NOABORT,
BUILT_IN_ASAN_STORE2_NOABORT,
BUILT_IN_ASAN_STORE4_NOABORT,
BUILT_IN_ASAN_STORE8_NOABORT,
BUILT_IN_ASAN_STORE16_NOABORT,
BUILT_IN_ASAN_STOREN_NOABORT } } };
if (size_in_bytes == -1)
{
*nargs = 2;
return builtin_decl_implicit (check[recover_p][is_store][5]);
}
*nargs = 1;
int size_log2 = exact_log2 (size_in_bytes);
return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
}
/* Split the current basic block and create a condition statement
insertion point right before or after the statement pointed to by
ITER. Return an iterator to the point at which the caller might
safely insert the condition statement.
THEN_BLOCK must be set to the address of an uninitialized instance
of basic_block. The function will then set *THEN_BLOCK to the
'then block' of the condition statement to be inserted by the
caller.
If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
*THEN_BLOCK to *FALLTHROUGH_BLOCK.
Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
block' of the condition statement to be inserted by the caller.
Note that *FALLTHROUGH_BLOCK is a new block that contains the
statements starting from *ITER, and *THEN_BLOCK is a new empty
block.
*ITER is adjusted to point to always point to the first statement
of the basic block * FALLTHROUGH_BLOCK. That statement is the
same as what ITER was pointing to prior to calling this function,
if BEFORE_P is true; otherwise, it is its following statement. */
gimple_stmt_iterator
create_cond_insert_point (gimple_stmt_iterator *iter,
bool before_p,
bool then_more_likely_p,
bool create_then_fallthru_edge,
basic_block *then_block,
basic_block *fallthrough_block)
{
gimple_stmt_iterator gsi = *iter;
if (!gsi_end_p (gsi) && before_p)
gsi_prev (&gsi);
basic_block cur_bb = gsi_bb (*iter);
edge e = split_block (cur_bb, gsi_stmt (gsi));
/* Get a hold on the 'condition block', the 'then block' and the
'else block'. */
basic_block cond_bb = e->src;
basic_block fallthru_bb = e->dest;
basic_block then_bb = create_empty_bb (cond_bb);
if (current_loops)
{
add_bb_to_loop (then_bb, cond_bb->loop_father);
loops_state_set (LOOPS_NEED_FIXUP);
}
/* Set up the newly created 'then block'. */
e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
profile_probability fallthrough_probability
= then_more_likely_p
? profile_probability::very_unlikely ()
: profile_probability::very_likely ();
e->probability = fallthrough_probability.invert ();
then_bb->count = e->count ();
if (create_then_fallthru_edge)
make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
/* Set up the fallthrough basic block. */
e = find_edge (cond_bb, fallthru_bb);
e->flags = EDGE_FALSE_VALUE;
e->probability = fallthrough_probability;
/* Update dominance info for the newly created then_bb; note that
fallthru_bb's dominance info has already been updated by
split_bock. */
if (dom_info_available_p (CDI_DOMINATORS))
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
*then_block = then_bb;
*fallthrough_block = fallthru_bb;
*iter = gsi_start_bb (fallthru_bb);
return gsi_last_bb (cond_bb);
}
/* Insert an if condition followed by a 'then block' right before the
statement pointed to by ITER. The fallthrough block -- which is the
else block of the condition as well as the destination of the
outcoming edge of the 'then block' -- starts with the statement
pointed to by ITER.
COND is the condition of the if.
If THEN_MORE_LIKELY_P is true, the probability of the edge to the
'then block' is higher than the probability of the edge to the
fallthrough block.
Upon completion of the function, *THEN_BB is set to the newly
inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
fallthrough block.
*ITER is adjusted to still point to the same statement it was
pointing to initially. */
static void
insert_if_then_before_iter (gcond *cond,
gimple_stmt_iterator *iter,
bool then_more_likely_p,
basic_block *then_bb,
basic_block *fallthrough_bb)
{
gimple_stmt_iterator cond_insert_point =
create_cond_insert_point (iter,
/*before_p=*/true,
then_more_likely_p,
/*create_then_fallthru_edge=*/true,
then_bb,
fallthrough_bb);
gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
}
/* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
If RETURN_ADDRESS is set to true, return memory location instread
of a value in the shadow memory. */
static tree
build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
tree base_addr, tree shadow_ptr_type,
bool return_address = false)
{
tree t, uintptr_type = TREE_TYPE (base_addr);
tree shadow_type = TREE_TYPE (shadow_ptr_type);
gimple *g;
t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
base_addr, t);
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
t = build_int_cst (uintptr_type, asan_shadow_offset ());
g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
gimple_assign_lhs (g), t);
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
gimple_assign_lhs (g));
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
if (!return_address)
{
t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
build_int_cst (shadow_ptr_type, 0));
g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
}
return gimple_assign_lhs (g);
}
/* BASE can already be an SSA_NAME; in that case, do not create a
new SSA_NAME for it. */
static tree
maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
bool before_p)
{
STRIP_USELESS_TYPE_CONVERSION (base);
if (TREE_CODE (base) == SSA_NAME)
return base;
gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)), base);
gimple_set_location (g, loc);
if (before_p)
gsi_insert_before (iter, g, GSI_SAME_STMT);
else
gsi_insert_after (iter, g, GSI_NEW_STMT);
return gimple_assign_lhs (g);
}
/* LEN can already have necessary size and precision;
in that case, do not create a new variable. */
tree
maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
bool before_p)
{
if (ptrofftype_p (len))
return len;
gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, len);
gimple_set_location (g, loc);
if (before_p)
gsi_insert_before (iter, g, GSI_SAME_STMT);
else
gsi_insert_after (iter, g, GSI_NEW_STMT);
return gimple_assign_lhs (g);
}
/* Instrument the memory access instruction BASE. Insert new
statements before or after ITER.
Note that the memory access represented by BASE can be either an
SSA_NAME, or a non-SSA expression. LOCATION is the source code
location. IS_STORE is TRUE for a store, FALSE for a load.
BEFORE_P is TRUE for inserting the instrumentation code before
ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
for a scalar memory access and FALSE for memory region access.
NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
length. ALIGN tells alignment of accessed memory object.
START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
memory region have already been instrumented.
If BEFORE_P is TRUE, *ITER is arranged to still point to the
statement it was pointing to prior to calling this function,
otherwise, it points to the statement logically following it. */
static void
build_check_stmt (location_t loc, tree base, tree len,
HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
bool is_non_zero_len, bool before_p, bool is_store,
bool is_scalar_access, unsigned int align = 0)
{
gimple_stmt_iterator gsi = *iter;
gimple *g;
gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
gcc_assert (size_in_bytes == -1 || size_in_bytes >= 1);
gsi = *iter;
base = unshare_expr (base);
base = maybe_create_ssa_name (loc, base, &gsi, before_p);
if (len)
{
len = unshare_expr (len);
len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
}
else
{
gcc_assert (size_in_bytes != -1);
len = build_int_cst (pointer_sized_int_node, size_in_bytes);
}
if (size_in_bytes > 1)
{
if ((size_in_bytes & (size_in_bytes - 1)) != 0
|| size_in_bytes > 16)
is_scalar_access = false;
else if (align && align < size_in_bytes * BITS_PER_UNIT)
{
/* On non-strict alignment targets, if
16-byte access is just 8-byte aligned,
this will result in misaligned shadow
memory 2 byte load, but otherwise can
be handled using one read. */
if (size_in_bytes != 16
|| STRICT_ALIGNMENT
|| align < 8 * BITS_PER_UNIT)
is_scalar_access = false;
}
}
HOST_WIDE_INT flags = 0;
if (is_store)
flags |= ASAN_CHECK_STORE;
if (is_non_zero_len)
flags |= ASAN_CHECK_NON_ZERO_LEN;
if (is_scalar_access)
flags |= ASAN_CHECK_SCALAR_ACCESS;
enum internal_fn fn = hwasan_sanitize_p ()
? IFN_HWASAN_CHECK
: IFN_ASAN_CHECK;
g = gimple_build_call_internal (fn, 4,
build_int_cst (integer_type_node, flags),
base, len,
build_int_cst (integer_type_node,
align / BITS_PER_UNIT));
gimple_set_location (g, loc);
if (before_p)
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
else
{
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
gsi_next (&gsi);
*iter = gsi;
}
}
/* If T represents a memory access, add instrumentation code before ITER.
LOCATION is source code location.
IS_STORE is either TRUE (for a store) or FALSE (for a load). */
static void
instrument_derefs (gimple_stmt_iterator *iter, tree t,
location_t location, bool is_store)
{
if (is_store && !(asan_instrument_writes () || hwasan_instrument_writes ()))
return;
if (!is_store && !(asan_instrument_reads () || hwasan_instrument_reads ()))
return;
tree type, base;
HOST_WIDE_INT size_in_bytes;
if (location == UNKNOWN_LOCATION)
location = EXPR_LOCATION (t);
type = TREE_TYPE (t);
switch (TREE_CODE (t))
{
case ARRAY_REF:
case COMPONENT_REF:
case INDIRECT_REF:
case MEM_REF:
case VAR_DECL:
case BIT_FIELD_REF:
break;
/* FALLTHRU */
default:
return;
}
size_in_bytes = int_size_in_bytes (type);
if (size_in_bytes <= 0)
return;
poly_int64 bitsize, bitpos;
tree offset;
machine_mode mode;
int unsignedp, reversep, volatilep = 0;
tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (TREE_CODE (t) == COMPONENT_REF
&& DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
{
tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
TREE_OPERAND (t, 0), repr,
TREE_OPERAND (t, 2)),
location, is_store);
return;
}
if (!multiple_p (bitpos, BITS_PER_UNIT)
|| maybe_ne (bitsize, size_in_bytes * BITS_PER_UNIT))
return;
if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
return;
poly_int64 decl_size;
if ((VAR_P (inner) || TREE_CODE (inner) == RESULT_DECL)
&& offset == NULL_TREE
&& DECL_SIZE (inner)
&& poly_int_tree_p (DECL_SIZE (inner), &decl_size)
&& known_subrange_p (bitpos, bitsize, 0, decl_size))
{
if (VAR_P (inner) && DECL_THREAD_LOCAL_P (inner))
return;
/* If we're not sanitizing globals and we can tell statically that this
access is inside a global variable, then there's no point adding
instrumentation to check the access. N.b. hwasan currently never
sanitizes globals. */
if ((hwasan_sanitize_p () || !param_asan_globals)
&& is_global_var (inner))
return;
if (!TREE_STATIC (inner))
{
/* Automatic vars in the current function will be always
accessible. */
if (decl_function_context (inner) == current_function_decl
&& (!asan_sanitize_use_after_scope ()
|| !TREE_ADDRESSABLE (inner)))
return;
}
/* Always instrument external vars, they might be dynamically
initialized. */
else if (!DECL_EXTERNAL (inner))
{
/* For static vars if they are known not to be dynamically
initialized, they will be always accessible. */
varpool_node *vnode = varpool_node::get (inner);
if (vnode && !vnode->dynamically_initialized)
return;
}
}
if (DECL_P (inner)
&& decl_function_context (inner) == current_function_decl
&& !TREE_ADDRESSABLE (inner))
mark_addressable (inner);
base = build_fold_addr_expr (t);
if (!has_mem_ref_been_instrumented (base, size_in_bytes))
{
unsigned int align = get_object_alignment (t);
build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
/*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
is_store, /*is_scalar_access*/true, align);
update_mem_ref_hash_table (base, size_in_bytes);
update_mem_ref_hash_table (t, size_in_bytes);
}
}
/* Insert a memory reference into the hash table if access length
can be determined in compile time. */
static void
maybe_update_mem_ref_hash_table (tree base, tree len)
{
if (!POINTER_TYPE_P (TREE_TYPE (base))
|| !INTEGRAL_TYPE_P (TREE_TYPE (len)))
return;
HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
if (size_in_bytes != -1)
update_mem_ref_hash_table (base, size_in_bytes);
}
/* Instrument an access to a contiguous memory region that starts at
the address pointed to by BASE, over a length of LEN (expressed in
the sizeof (*BASE) bytes). ITER points to the instruction before
which the instrumentation instructions must be inserted. LOCATION
is the source location that the instrumentation instructions must
have. If IS_STORE is true, then the memory access is a store;
otherwise, it's a load. */
static void
instrument_mem_region_access (tree base, tree len,
gimple_stmt_iterator *iter,
location_t location, bool is_store)
{
if (!POINTER_TYPE_P (TREE_TYPE (base))
|| !INTEGRAL_TYPE_P (TREE_TYPE (len))
|| integer_zerop (len))
return;
HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
if ((size_in_bytes == -1)
|| !has_mem_ref_been_instrumented (base, size_in_bytes))
{
build_check_stmt (location, base, len, size_in_bytes, iter,
/*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
is_store, /*is_scalar_access*/false, /*align*/0);
}
maybe_update_mem_ref_hash_table (base, len);
*iter = gsi_for_stmt (gsi_stmt (*iter));
}
/* Instrument the call to a built-in memory access function that is
pointed to by the iterator ITER.
Upon completion, return TRUE iff *ITER has been advanced to the
statement following the one it was originally pointing to. */
static bool
instrument_builtin_call (gimple_stmt_iterator *iter)
{
if (!(asan_memintrin () || hwasan_memintrin ()))
return false;
bool iter_advanced_p = false;
gcall *call = as_a <gcall *> (gsi_stmt (*iter));
gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
location_t loc = gimple_location (call);
asan_mem_ref src0, src1, dest;
asan_mem_ref_init (&src0, NULL, 1);
asan_mem_ref_init (&src1, NULL, 1);
asan_mem_ref_init (&dest, NULL, 1);
tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
dest_is_deref = false, intercepted_p = true;
if (get_mem_refs_of_builtin_call (call,
&src0, &src0_len, &src0_is_store,
&src1, &src1_len, &src1_is_store,
&dest, &dest_len, &dest_is_store,
&dest_is_deref, &intercepted_p, iter))
{
if (dest_is_deref)
{
instrument_derefs (iter, dest.start, loc, dest_is_store);
gsi_next (iter);
iter_advanced_p = true;
}
else if (!intercepted_p
&& (src0_len || src1_len || dest_len))
{
if (src0.start != NULL_TREE)
instrument_mem_region_access (src0.start, src0_len,
iter, loc, /*is_store=*/false);
if (src1.start != NULL_TREE)
instrument_mem_region_access (src1.start, src1_len,
iter, loc, /*is_store=*/false);
if (dest.start != NULL_TREE)
instrument_mem_region_access (dest.start, dest_len,
iter, loc, /*is_store=*/true);
*iter = gsi_for_stmt (call);
gsi_next (iter);
iter_advanced_p = true;
}
else
{
if (src0.start != NULL_TREE)
maybe_update_mem_ref_hash_table (src0.start, src0_len);
if (src1.start != NULL_TREE)
maybe_update_mem_ref_hash_table (src1.start, src1_len);
if (dest.start != NULL_TREE)
maybe_update_mem_ref_hash_table (dest.start, dest_len);
}
}
return iter_advanced_p;
}
/* Instrument the assignment statement ITER if it is subject to
instrumentation. Return TRUE iff instrumentation actually
happened. In that case, the iterator ITER is advanced to the next
logical expression following the one initially pointed to by ITER,
and the relevant memory reference that which access has been
instrumented is added to the memory references hash table. */
static bool
maybe_instrument_assignment (gimple_stmt_iterator *iter)
{
gimple *s = gsi_stmt (*iter);
gcc_assert (gimple_assign_single_p (s));
tree ref_expr = NULL_TREE;
bool is_store, is_instrumented = false;
if (gimple_store_p (s))
{
ref_expr = gimple_assign_lhs (s);
is_store = true;
instrument_derefs (iter, ref_expr,
gimple_location (s),
is_store);
is_instrumented = true;
}
if (gimple_assign_load_p (s))
{
ref_expr = gimple_assign_rhs1 (s);
is_store = false;
instrument_derefs (iter, ref_expr,
gimple_location (s),
is_store);
is_instrumented = true;
}
if (is_instrumented)
gsi_next (iter);
return is_instrumented;
}
/* Instrument the function call pointed to by the iterator ITER, if it
is subject to instrumentation. At the moment, the only function
calls that are instrumented are some built-in functions that access
memory. Look at instrument_builtin_call to learn more.
Upon completion return TRUE iff *ITER was advanced to the statement
following the one it was originally pointing to. */
static bool
maybe_instrument_call (gimple_stmt_iterator *iter)
{
gimple *stmt = gsi_stmt (*iter);
bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
if (is_builtin && instrument_builtin_call (iter))
return true;
if (gimple_call_noreturn_p (stmt))
{
if (is_builtin)
{
tree callee = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_UNREACHABLE:
case BUILT_IN_UNREACHABLE_TRAP:
case BUILT_IN_TRAP:
/* Don't instrument these. */
return false;
default:
break;
}
}
/* If a function does not return, then we must handle clearing up the
shadow stack accordingly. For ASAN we can simply set the entire stack
to "valid" for accesses by setting the shadow space to 0 and all
accesses will pass checks. That means that some bad accesses may be
missed, but we will not report any false positives.
This is not possible for HWASAN. Since there is no "always valid" tag
we can not set any space to "always valid". If we were to clear the
entire shadow stack then code resuming from `longjmp` or a caught
exception would trigger false positives when correctly accessing
variables on the stack. Hence we need to handle things like
`longjmp`, thread exit, and exceptions in a different way. These
problems must be handled externally to the compiler, e.g. in the
language runtime. */
if (! hwasan_sanitize_p ())
{
tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
gimple *g = gimple_build_call (decl, 0);
gimple_set_location (g, gimple_location (stmt));
gsi_insert_before (iter, g, GSI_SAME_STMT);
}
}
bool instrumented = false;
if (gimple_store_p (stmt))
{
tree ref_expr = gimple_call_lhs (stmt);
instrument_derefs (iter, ref_expr,
gimple_location (stmt),
/*is_store=*/true);
instrumented = true;
}
/* Walk through gimple_call arguments and check them id needed. */
unsigned args_num = gimple_call_num_args (stmt);
for (unsigned i = 0; i < args_num; ++i)
{
tree arg = gimple_call_arg (stmt, i);
/* If ARG is not a non-aggregate register variable, compiler in general
creates temporary for it and pass it as argument to gimple call.
But in some cases, e.g. when we pass by value a small structure that
fits to register, compiler can avoid extra overhead by pulling out
these temporaries. In this case, we should check the argument. */
if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
{
instrument_derefs (iter, arg,
gimple_location (stmt),
/*is_store=*/false);
instrumented = true;
}
}
if (instrumented)
gsi_next (iter);
return instrumented;
}
/* Walk each instruction of all basic block and instrument those that
represent memory references: loads, stores, or function calls.
In a given basic block, this function avoids instrumenting memory
references that have already been instrumented. */
static void
transform_statements (void)
{
basic_block bb, last_bb = NULL;
gimple_stmt_iterator i;
int saved_last_basic_block = last_basic_block_for_fn (cfun);
FOR_EACH_BB_FN (bb, cfun)
{
basic_block prev_bb = bb;
if (bb->index >= saved_last_basic_block) continue;
/* Flush the mem ref hash table, if current bb doesn't have
exactly one predecessor, or if that predecessor (skipping
over asan created basic blocks) isn't the last processed
basic block. Thus we effectively flush on extended basic
block boundaries. */
while (single_pred_p (prev_bb))
{
prev_bb = single_pred (prev_bb);
if (prev_bb->index < saved_last_basic_block)
break;
}
if (prev_bb != last_bb)
empty_mem_ref_hash_table ();
last_bb = bb;
for (i = gsi_start_bb (bb); !gsi_end_p (i);)
{
gimple *s = gsi_stmt (i);
if (has_stmt_been_instrumented_p (s))
gsi_next (&i);
else if (gimple_assign_single_p (s)
&& !gimple_clobber_p (s)
&& maybe_instrument_assignment (&i))
/* Nothing to do as maybe_instrument_assignment advanced
the iterator I. */;
else if (is_gimple_call (s) && maybe_instrument_call (&i))
/* Nothing to do as maybe_instrument_call
advanced the iterator I. */;
else
{
/* No instrumentation happened.
If the current instruction is a function call that
might free something, let's forget about the memory
references that got instrumented. Otherwise we might
miss some instrumentation opportunities. Do the same
for a ASAN_MARK poisoning internal function. */
if (is_gimple_call (s)
&& (!nonfreeing_call_p (s)
|| asan_mark_p (s, ASAN_MARK_POISON)))
empty_mem_ref_hash_table ();
gsi_next (&i);
}
}
}
free_mem_ref_resources ();
}
/* Build
__asan_before_dynamic_init (module_name)
or
__asan_after_dynamic_init ()
call. */
tree
asan_dynamic_init_call (bool after_p)
{
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
tree fn = builtin_decl_implicit (after_p
? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
: BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
tree module_name_cst = NULL_TREE;
if (!after_p)
{
pretty_printer module_name_pp;
pp_string (&module_name_pp, main_input_filename);
module_name_cst = asan_pp_string (&module_name_pp);
module_name_cst = fold_convert (const_ptr_type_node,
module_name_cst);
}
return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
}
/* Build
struct __asan_global
{
const void *__beg;
uptr __size;
uptr __size_with_redzone;
const void *__name;
const void *__module_name;
uptr __has_dynamic_init;
__asan_global_source_location *__location;
char *__odr_indicator;
} type. */
static tree
asan_global_struct (void)
{
static const char *field_names[]
= { "__beg", "__size", "__size_with_redzone",
"__name", "__module_name", "__has_dynamic_init", "__location",
"__odr_indicator" };
tree fields[ARRAY_SIZE (field_names)], ret;
unsigned i;
ret = make_node (RECORD_TYPE);
for (i = 0; i < ARRAY_SIZE (field_names); i++)
{
fields[i]
= build_decl (UNKNOWN_LOCATION, FIELD_DECL,
get_identifier (field_names[i]),
(i == 0 || i == 3) ? const_ptr_type_node
: pointer_sized_int_node);
DECL_CONTEXT (fields[i]) = ret;
if (i)
DECL_CHAIN (fields[i - 1]) = fields[i];
}
tree type_decl = build_decl (input_location, TYPE_DECL,
get_identifier ("__asan_global"), ret);
DECL_IGNORED_P (type_decl) = 1;
DECL_ARTIFICIAL (type_decl) = 1;
TYPE_FIELDS (ret) = fields[0];
TYPE_NAME (ret) = type_decl;
TYPE_STUB_DECL (ret) = type_decl;
TYPE_ARTIFICIAL (ret) = 1;
layout_type (ret);
return ret;
}
/* Create and return odr indicator symbol for DECL.
TYPE is __asan_global struct type as returned by asan_global_struct. */
static tree
create_odr_indicator (tree decl, tree type)
{
char *name;
tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
tree decl_name
= (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
: DECL_NAME (decl));
/* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
if (decl_name == NULL_TREE)
return build_int_cst (uptr, 0);
const char *dname = IDENTIFIER_POINTER (decl_name);
if (HAS_DECL_ASSEMBLER_NAME_P (decl))
dname = targetm.strip_name_encoding (dname);
size_t len = strlen (dname) + sizeof ("__odr_asan_");
name = XALLOCAVEC (char, len);
snprintf (name, len, "__odr_asan_%s", dname);
#ifndef NO_DOT_IN_LABEL
name[sizeof ("__odr_asan") - 1] = '.';
#elif !defined(NO_DOLLAR_IN_LABEL)
name[sizeof ("__odr_asan") - 1] = '$';
#endif
tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
char_type_node);
TREE_ADDRESSABLE (var) = 1;
TREE_READONLY (var) = 0;
TREE_THIS_VOLATILE (var) = 1;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 1;
DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
TREE_USED (var) = 1;
tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
build_int_cst (unsigned_type_node, 0));
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
NULL, DECL_ATTRIBUTES (var));
make_decl_rtl (var);
varpool_node::finalize_decl (var);
return fold_convert (uptr, build_fold_addr_expr (var));
}
/* Return true if DECL, a global var, might be overridden and needs
an additional odr indicator symbol. */
static bool
asan_needs_odr_indicator_p (tree decl)
{
/* Don't emit ODR indicators for kernel because:
a) Kernel is written in C thus doesn't need ODR indicators.
b) Some kernel code may have assumptions about symbols containing specific
patterns in their names. Since ODR indicators contain original names
of symbols they are emitted for, these assumptions would be broken for
ODR indicator symbols. */
return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
&& !DECL_ARTIFICIAL (decl)
&& !DECL_WEAK (decl)
&& TREE_PUBLIC (decl));
}
/* Append description of a single global DECL into vector V.
TYPE is __asan_global struct type as returned by asan_global_struct. */
static void
asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
{
tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
unsigned HOST_WIDE_INT size;
tree str_cst, module_name_cst, refdecl = decl;
vec<constructor_elt, va_gc> *vinner = NULL;
pretty_printer asan_pp, module_name_pp;
if (DECL_NAME (decl))
pp_tree_identifier (&asan_pp, DECL_NAME (decl));
else
pp_string (&asan_pp, "<unknown>");
str_cst = asan_pp_string (&asan_pp);
if (!in_lto_p)
pp_string (&module_name_pp, main_input_filename);
else
{
const_tree tu = get_ultimate_context ((const_tree)decl);
if (tu != NULL_TREE)
pp_string (&module_name_pp, IDENTIFIER_POINTER (DECL_NAME (tu)));
else
pp_string (&module_name_pp, aux_base_name);
}
module_name_cst = asan_pp_string (&module_name_pp);
if (asan_needs_local_alias (decl))
{
char buf[20];
ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
TREE_READONLY (refdecl) = TREE_READONLY (decl);
TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
DECL_NOT_GIMPLE_REG_P (refdecl) = DECL_NOT_GIMPLE_REG_P (decl);
DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
TREE_STATIC (refdecl) = 1;
TREE_PUBLIC (refdecl) = 0;
TREE_USED (refdecl) = 1;
assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
}
tree odr_indicator_ptr
= (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
: build_int_cst (uptr, 0));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node,
build_fold_addr_expr (refdecl)));
size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
size += asan_red_zone_size (size);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node, str_cst));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node, module_name_cst));
varpool_node *vnode = varpool_node::get (decl);
int has_dynamic_init = 0;
/* FIXME: Enable initialization order fiasco detection in LTO mode once
proper fix for PR 79061 will be applied. */
if (!in_lto_p)
has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
build_int_cst (uptr, has_dynamic_init));
tree locptr = NULL_TREE;
location_t loc = DECL_SOURCE_LOCATION (decl);
expanded_location xloc = expand_location (loc);
if (xloc.file != NULL)
{
static int lasanloccnt = 0;
char buf[25];
ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
ubsan_get_source_location_type ());
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 0;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
pretty_printer filename_pp;
pp_string (&filename_pp, xloc.file);
tree str = asan_pp_string (&filename_pp);
tree ctor = build_constructor_va (TREE_TYPE (var), 3,
NULL_TREE, str, NULL_TREE,
build_int_cst (unsigned_type_node,
xloc.line), NULL_TREE,
build_int_cst (unsigned_type_node,
xloc.column));
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
varpool_node::finalize_decl (var);
locptr = fold_convert (uptr, build_fold_addr_expr (var));
}
else
locptr = build_int_cst (uptr, 0);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
init = build_constructor (type, vinner);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
}
/* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
void
initialize_sanitizer_builtins (void)
{
tree decl;
if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
return;
tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
tree BT_FN_VOID_PTR
= build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
tree BT_FN_VOID_CONST_PTR
= build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTR
= build_function_type_list (void_type_node, ptr_type_node,
ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTR_PTR
= build_function_type_list (void_type_node, ptr_type_node,
ptr_type_node, ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTRMODE
= build_function_type_list (void_type_node, ptr_type_node,
pointer_sized_int_node, NULL_TREE);
tree BT_FN_VOID_INT
= build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
tree BT_FN_SIZE_CONST_PTR_INT
= build_function_type_list (size_type_node, const_ptr_type_node,
integer_type_node, NULL_TREE);
tree BT_FN_VOID_UINT8_UINT8
= build_function_type_list (void_type_node, unsigned_char_type_node,
unsigned_char_type_node, NULL_TREE);
tree BT_FN_VOID_UINT16_UINT16
= build_function_type_list (void_type_node, uint16_type_node,
uint16_type_node, NULL_TREE);
tree BT_FN_VOID_UINT32_UINT32
= build_function_type_list (void_type_node, uint32_type_node,
uint32_type_node, NULL_TREE);
tree BT_FN_VOID_UINT64_UINT64
= build_function_type_list (void_type_node, uint64_type_node,
uint64_type_node, NULL_TREE);
tree BT_FN_VOID_FLOAT_FLOAT
= build_function_type_list (void_type_node, float_type_node,
float_type_node, NULL_TREE);
tree BT_FN_VOID_DOUBLE_DOUBLE
= build_function_type_list (void_type_node, double_type_node,
double_type_node, NULL_TREE);
tree BT_FN_VOID_UINT64_PTR
= build_function_type_list (void_type_node, uint64_type_node,
ptr_type_node, NULL_TREE);
tree BT_FN_PTR_CONST_PTR_UINT8
= build_function_type_list (ptr_type_node, const_ptr_type_node,
unsigned_char_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_UINT8_PTRMODE
= build_function_type_list (void_type_node, ptr_type_node,
unsigned_char_type_node,
pointer_sized_int_node, NULL_TREE);
tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
tree BT_FN_IX_CONST_VPTR_INT[5];
tree BT_FN_IX_VPTR_IX_INT[5];
tree BT_FN_VOID_VPTR_IX_INT[5];
tree vptr
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_VOLATILE));
tree cvptr
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_VOLATILE
|TYPE_QUAL_CONST));
tree boolt
= lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
int i;
for (i = 0; i < 5; i++)
{
tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
= build_function_type_list (boolt, vptr, ptr_type_node, ix,
integer_type_node, integer_type_node,
NULL_TREE);
BT_FN_IX_CONST_VPTR_INT[i]
= build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
BT_FN_IX_VPTR_IX_INT[i]
= build_function_type_list (ix, vptr, ix, integer_type_node,
NULL_TREE);
BT_FN_VOID_VPTR_IX_INT[i]
= build_function_type_list (void_type_node, vptr, ix,
integer_type_node, NULL_TREE);
}
#define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
#define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
#define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
#define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
#define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
#define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
#define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
#define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
#define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
#define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
#define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
#define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
#define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
#define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
#define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
#define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
#define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
#define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
#define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
#define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
#undef ATTR_NOTHROW_LIST
#define ATTR_NOTHROW_LIST ECF_NOTHROW
#undef ATTR_NOTHROW_LEAF_LIST
#define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
#undef ATTR_TMPURE_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
#undef ATTR_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
#undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_COLD_NOTHROW_LEAF_LIST
#define ATTR_COLD_NOTHROW_LEAF_LIST \
/* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
#undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
/* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
/* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_PURE_NOTHROW_LEAF_LIST
#define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
#undef DEF_BUILTIN_STUB
#define DEF_BUILTIN_STUB(ENUM, NAME)
#undef DEF_SANITIZER_BUILTIN_1
#define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
do { \
decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
BUILT_IN_NORMAL, NAME, NULL_TREE); \
set_call_expr_flags (decl, ATTRS); \
set_builtin_decl (ENUM, decl, true); \
} while (0)
#undef DEF_SANITIZER_BUILTIN
#define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
#include "sanitizer.def"
/* -fsanitize=object-size uses __builtin_dynamic_object_size and
__builtin_object_size, but they might not be available for e.g. Fortran at
this point. We use DEF_SANITIZER_BUILTIN here only as a convenience
macro. */
if (flag_sanitize & SANITIZE_OBJECT_SIZE)
{
if (!builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE, "object_size",
BT_FN_SIZE_CONST_PTR_INT,
ATTR_PURE_NOTHROW_LEAF_LIST);
if (!builtin_decl_implicit_p (BUILT_IN_DYNAMIC_OBJECT_SIZE))
DEF_SANITIZER_BUILTIN_1 (BUILT_IN_DYNAMIC_OBJECT_SIZE,
"dynamic_object_size",
BT_FN_SIZE_CONST_PTR_INT,
ATTR_PURE_NOTHROW_LEAF_LIST);
}
#undef DEF_SANITIZER_BUILTIN_1
#undef DEF_SANITIZER_BUILTIN
#undef DEF_BUILTIN_STUB
}
/* Called via htab_traverse. Count number of emitted
STRING_CSTs in the constant hash table. */
int
count_string_csts (constant_descriptor_tree **slot,
unsigned HOST_WIDE_INT *data)
{
struct constant_descriptor_tree *desc = *slot;
if (TREE_CODE (desc->value) == STRING_CST
&& TREE_ASM_WRITTEN (desc->value)
&& asan_protect_global (desc->value))
++*data;
return 1;
}
/* Helper structure to pass two parameters to
add_string_csts. */
struct asan_add_string_csts_data
{
tree type;
vec<constructor_elt, va_gc> *v;
};
/* Called via hash_table::traverse. Call asan_add_global
on emitted STRING_CSTs from the constant hash table. */
int
add_string_csts (constant_descriptor_tree **slot,
asan_add_string_csts_data *aascd)
{
struct constant_descriptor_tree *desc = *slot;
if (TREE_CODE (desc->value) == STRING_CST
&& TREE_ASM_WRITTEN (desc->value)
&& asan_protect_global (desc->value))
{
asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
aascd->type, aascd->v);
}
return 1;
}
/* Needs to be GTY(()), because cgraph_build_static_cdtor may
invoke ggc_collect. */
static GTY(()) tree asan_ctor_statements;
/* Module-level instrumentation.
- Insert __asan_init_vN() into the list of CTORs.
- TODO: insert redzones around globals.
*/
void
asan_finish_file (void)
{
varpool_node *vnode;
unsigned HOST_WIDE_INT gcount = 0;
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
/* Avoid instrumenting code in the asan ctors/dtors.
We don't need to insert padding after the description strings,
nor after .LASAN* array. */
flag_sanitize &= ~SANITIZE_ADDRESS;
/* For user-space we want asan constructors to run first.
Linux kernel does not support priorities other than default, and the only
other user of constructors is coverage. So we run with the default
priority. */
int priority = flag_sanitize & SANITIZE_USER_ADDRESS
? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
if (flag_sanitize & SANITIZE_USER_ADDRESS)
{
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
}
FOR_EACH_DEFINED_VARIABLE (vnode)
if (TREE_ASM_WRITTEN (vnode->decl)
&& asan_protect_global (vnode->decl))
++gcount;
hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
(&gcount);
if (gcount)
{
tree type = asan_global_struct (), var, ctor;
tree dtor_statements = NULL_TREE;
vec<constructor_elt, va_gc> *v;
char buf[20];
type = build_array_type_nelts (type, gcount);
ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
type);
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 0;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
vec_alloc (v, gcount);
FOR_EACH_DEFINED_VARIABLE (vnode)
if (TREE_ASM_WRITTEN (vnode->decl)
&& asan_protect_global (vnode->decl))
asan_add_global (vnode->decl, TREE_TYPE (type), v);
struct asan_add_string_csts_data aascd;
aascd.type = TREE_TYPE (type);
aascd.v = v;
const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
(&aascd);
ctor = build_constructor (type, v);
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
SET_DECL_ALIGN (var, MAX (DECL_ALIGN (var),
ASAN_SHADOW_GRANULARITY * BITS_PER_UNIT));
varpool_node::finalize_decl (var);
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
append_to_statement_list (build_call_expr (fn, 2,
build_fold_addr_expr (var),
gcount_tree),
&asan_ctor_statements);
fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
append_to_statement_list (build_call_expr (fn, 2,
build_fold_addr_expr (var),
gcount_tree),
&dtor_statements);
cgraph_build_static_cdtor ('D', dtor_statements, priority);
}
if (asan_ctor_statements)
cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
flag_sanitize |= SANITIZE_ADDRESS;
}
/* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
on SHADOW address. Newly added statements will be added to ITER with
given location LOC. We mark SIZE bytes in shadow memory, where
LAST_CHUNK_SIZE is greater than zero in situation where we are at the
end of a variable. */
static void
asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
tree shadow,
unsigned HOST_WIDE_INT base_addr_offset,
bool is_clobber, unsigned size,
unsigned last_chunk_size)
{
tree shadow_ptr_type;
switch (size)
{
case 1:
shadow_ptr_type = shadow_ptr_types[0];
break;
case 2:
shadow_ptr_type = shadow_ptr_types[1];
break;
case 4:
shadow_ptr_type = shadow_ptr_types[2];
break;
default:
gcc_unreachable ();
}
unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
unsigned HOST_WIDE_INT val = 0;
unsigned last_pos = size;
if (last_chunk_size && !is_clobber)
last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
for (unsigned i = 0; i < size; ++i)
{
unsigned char shadow_c = c;
if (i == last_pos)
shadow_c = last_chunk_size;
val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
}
/* Handle last chunk in unpoisoning. */
tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
build_int_cst (shadow_ptr_type, base_addr_offset));
gimple *g = gimple_build_assign (dest, magic);
gimple_set_location (g, loc);
gsi_insert_after (iter, g, GSI_NEW_STMT);
}
/* Expand the ASAN_MARK builtins. */
bool
asan_expand_mark_ifn (gimple_stmt_iterator *iter)
{
gimple *g = gsi_stmt (*iter);
location_t loc = gimple_location (g);
HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
tree base = gimple_call_arg (g, 1);
gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
tree decl = TREE_OPERAND (base, 0);
/* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
if (TREE_CODE (decl) == COMPONENT_REF
&& DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
decl = TREE_OPERAND (decl, 0);
gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
if (hwasan_sanitize_p ())
{
gcc_assert (param_hwasan_instrument_stack);
gimple_seq stmts = NULL;
/* Here we swap ASAN_MARK calls for HWASAN_MARK.
This is because we are using the approach of using ASAN_MARK as a
synonym until here.
That approach means we don't yet have to duplicate all the special
cases for ASAN_MARK and ASAN_POISON with the exact same handling but
called HWASAN_MARK etc.
N.b. __asan_poison_stack_memory (which implements ASAN_MARK for ASAN)
rounds the size up to its shadow memory granularity, while
__hwasan_tag_memory (which implements the same for HWASAN) does not.
Hence we emit HWASAN_MARK with an aligned size unlike ASAN_MARK. */
tree len = gimple_call_arg (g, 2);
tree new_len = gimple_build_round_up (&stmts, loc, size_type_node, len,
HWASAN_TAG_GRANULE_SIZE);
gimple_build (&stmts, loc, CFN_HWASAN_MARK,
void_type_node, gimple_call_arg (g, 0),
base, new_len);
gsi_replace_with_seq (iter, stmts, true);
return false;
}
if (is_poison)
{
if (asan_handled_variables == NULL)
asan_handled_variables = new hash_set<tree> (16);
asan_handled_variables->add (decl);
}
tree len = gimple_call_arg (g, 2);
gcc_assert (tree_fits_shwi_p (len));
unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
gcc_assert (size_in_bytes);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, base);
gimple_set_location (g, loc);
gsi_replace (iter, g, false);
tree base_addr = gimple_assign_lhs (g);
/* Generate direct emission if size_in_bytes is small. */
if (size_in_bytes
<= (unsigned)param_use_after_scope_direct_emission_threshold)
{
const unsigned HOST_WIDE_INT shadow_size
= shadow_mem_size (size_in_bytes);
const unsigned int shadow_align
= (get_pointer_alignment (base) / BITS_PER_UNIT) >> ASAN_SHADOW_SHIFT;
tree shadow = build_shadow_mem_access (iter, loc, base_addr,
shadow_ptr_types[0], true);
for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
{
unsigned size = 1;
if (shadow_size - offset >= 4
&& (!STRICT_ALIGNMENT || shadow_align >= 4))
size = 4;
else if (shadow_size - offset >= 2
&& (!STRICT_ALIGNMENT || shadow_align >= 2))
size = 2;
unsigned HOST_WIDE_INT last_chunk_size = 0;
unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
if (s > size_in_bytes)
last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
size, last_chunk_size);
offset += size;
}
}
else
{
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, len);
gimple_set_location (g, loc);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree sz_arg = gimple_assign_lhs (g);
tree fun
= builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
: BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
g = gimple_build_call (fun, 2, base_addr, sz_arg);
gimple_set_location (g, loc);
gsi_insert_after (iter, g, GSI_NEW_STMT);
}
return false;
}
/* Expand the ASAN_{LOAD,STORE} builtins. */
bool
asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
{
gcc_assert (!hwasan_sanitize_p ());
gimple *g = gsi_stmt (*iter);
location_t loc = gimple_location (g);
bool recover_p;
if (flag_sanitize & SANITIZE_USER_ADDRESS)
recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
else
recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
gcc_assert (flags < ASAN_CHECK_LAST);
bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
bool is_store = (flags & ASAN_CHECK_STORE) != 0;
bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
tree base = gimple_call_arg (g, 1);
tree len = gimple_call_arg (g, 2);
HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
HOST_WIDE_INT size_in_bytes
= is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
if (use_calls)
{
/* Instrument using callbacks. */
gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, base);
gimple_set_location (g, loc);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree base_addr = gimple_assign_lhs (g);
int nargs;
tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
if (nargs == 1)
g = gimple_build_call (fun, 1, base_addr);
else
{
gcc_assert (nargs == 2);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, len);
gimple_set_location (g, loc);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree sz_arg = gimple_assign_lhs (g);
g = gimple_build_call (fun, nargs, base_addr, sz_arg);
}
gimple_set_location (g, loc);
gsi_replace (iter, g, false);
return false;
}
HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
tree shadow_type = TREE_TYPE (shadow_ptr_type);
gimple_stmt_iterator gsi = *iter;
if (!is_non_zero_len)
{
/* So, the length of the memory area to asan-protect is
non-constant. Let's guard the generated instrumentation code
like:
if (len != 0)
{
//asan instrumentation code goes here.
}
// falltrough instructions, starting with *ITER. */
g = gimple_build_cond (NE_EXPR,
len,
build_int_cst (TREE_TYPE (len), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, loc);
basic_block then_bb, fallthrough_bb;
insert_if_then_before_iter (as_a <gcond *> (g), iter,
/*then_more_likely_p=*/true,
&then_bb, &fallthrough_bb);
/* Note that fallthrough_bb starts with the statement that was
pointed to by ITER. */
/* The 'then block' of the 'if (len != 0) condition is where
we'll generate the asan instrumentation code now. */
gsi = gsi_last_bb (then_bb);
}
/* Get an iterator on the point where we can add the condition
statement for the instrumentation. */
basic_block then_bb, else_bb;
gsi = create_cond_insert_point (&gsi, /*before_p*/false,
/*then_more_likely_p=*/false,
/*create_then_fallthru_edge*/recover_p,
&then_bb,
&else_bb);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, base);
gimple_set_location (g, loc);
gsi_insert_before (&gsi, g, GSI_NEW_STMT);
tree base_addr = gimple_assign_lhs (g);
tree t = NULL_TREE;
if (real_size_in_bytes >= 8)
{
tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
shadow_ptr_type);
t = shadow;
}
else
{
/* Slow path for 1, 2 and 4 byte accesses. */
/* Test (shadow != 0)
& ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
shadow_ptr_type);
gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
gimple_seq seq = NULL;
gimple_seq_add_stmt (&seq, shadow_test);
/* Aligned (>= 8 bytes) can test just
(real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
to be 0. */
if (align < 8)
{
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
base_addr, 7));
gimple_seq_add_stmt (&seq,
build_type_cast (shadow_type,
gimple_seq_last (seq)));
if (real_size_in_bytes > 1)
gimple_seq_add_stmt (&seq,
build_assign (PLUS_EXPR,
gimple_seq_last (seq),
real_size_in_bytes - 1));
t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
}
else
t = build_int_cst (shadow_type, real_size_in_bytes - 1);
gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
gimple_seq_last (seq)));
t = gimple_assign_lhs (gimple_seq_last (seq));
gimple_seq_set_location (seq, loc);
gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
/* For non-constant, misaligned or otherwise weird access sizes,
check first and last byte. */
if (size_in_bytes == -1)
{
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
MINUS_EXPR, len,
build_int_cst (pointer_sized_int_node, 1));
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
tree last = gimple_assign_lhs (g);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
PLUS_EXPR, base_addr, last);
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
tree base_end_addr = gimple_assign_lhs (g);
tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
shadow_ptr_type);
gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
gimple_seq seq = NULL;
gimple_seq_add_stmt (&seq, shadow_test);
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
base_end_addr, 7));
gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
gimple_seq_last (seq)));
gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
gimple_seq_last (seq),
shadow));
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
gimple_seq_last (seq)));
gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
gimple_seq_last (seq)));
t = gimple_assign_lhs (gimple_seq_last (seq));
gimple_seq_set_location (seq, loc);
gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
}
}
g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
/* Generate call to the run-time library (e.g. __asan_report_load8). */
gsi = gsi_start_bb (then_bb);
int nargs;
tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
g = gimple_build_call (fun, nargs, base_addr, len);
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
gsi_remove (iter, true);
*iter = gsi_start_bb (else_bb);
return true;
}
/* Create ASAN shadow variable for a VAR_DECL which has been rewritten
into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
static tree
create_asan_shadow_var (tree var_decl,
hash_map<tree, tree> &shadow_vars_mapping)
{
tree *slot = shadow_vars_mapping.get (var_decl);
if (slot == NULL)
{
tree shadow_var = copy_node (var_decl);
copy_body_data id;
memset (&id, 0, sizeof (copy_body_data));
id.src_fn = id.dst_fn = current_function_decl;
copy_decl_for_dup_finish (&id, var_decl, shadow_var);
DECL_ARTIFICIAL (shadow_var) = 1;
DECL_IGNORED_P (shadow_var) = 1;
DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
gimple_add_tmp_var (shadow_var);
shadow_vars_mapping.put (var_decl, shadow_var);
return shadow_var;
}
else
return *slot;
}
/* Expand ASAN_POISON ifn. */
bool
asan_expand_poison_ifn (gimple_stmt_iterator *iter,
bool *need_commit_edge_insert,
hash_map<tree, tree> &shadow_vars_mapping)
{
gimple *g = gsi_stmt (*iter);
tree poisoned_var = gimple_call_lhs (g);
if (!poisoned_var || has_zero_uses (poisoned_var))
{
gsi_remove (iter, true);
return true;
}
if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
create_tmp_var (TREE_TYPE (poisoned_var)));
tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
shadow_vars_mapping);
bool recover_p;
if (flag_sanitize & SANITIZE_USER_ADDRESS)
recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
else
recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
tree size = DECL_SIZE_UNIT (shadow_var);
gimple *poison_call
= gimple_build_call_internal (IFN_ASAN_MARK, 3,
build_int_cst (integer_type_node,
ASAN_MARK_POISON),
build_fold_addr_expr (shadow_var), size);
gimple *use;
imm_use_iterator imm_iter;
FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
{
if (is_gimple_debug (use))
continue;
int nargs;
bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
gcall *call;
if (hwasan_sanitize_p ())
{
tree fun = builtin_decl_implicit (BUILT_IN_HWASAN_TAG_MISMATCH4);
/* NOTE: hwasan has no __hwasan_report_* functions like asan does.
We use __hwasan_tag_mismatch4 with arguments that tell it the
size of access and load to report all tag mismatches.
The arguments to this function are:
Address of invalid access.
Bitfield containing information about the access
(access_info)
Pointer to a frame of registers
(for use in printing the contents of registers in a dump)
Not used yet -- to be used by inline instrumentation.
Size of access.
The access_info bitfield encodes the following pieces of
information:
- Is this a store or load?
access_info & 0x10 => store
- Should the program continue after reporting the error?
access_info & 0x20 => recover
- What size access is this (not used here since we can always
pass the size in the last argument)
if (access_info & 0xf == 0xf)
size is taken from last argument.
else
size == 1 << (access_info & 0xf)
The last argument contains the size of the access iff the
access_info size indicator is 0xf (we always use this argument
rather than storing the size in the access_info bitfield).
See the function definition `__hwasan_tag_mismatch4` in
libsanitizer/hwasan for the full definition.
*/
unsigned access_info = (0x20 * recover_p)
+ (0x10 * store_p)
+ (0xf);
call = gimple_build_call (fun, 4,
build_fold_addr_expr (shadow_var),
build_int_cst (pointer_sized_int_node,
access_info),
build_int_cst (pointer_sized_int_node, 0),
size);
}
else
{
tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
&nargs);
call = gimple_build_call (fun, 1,
build_fold_addr_expr (shadow_var));
}
gimple_set_location (call, gimple_location (use));
gimple *call_to_insert = call;
/* The USE can be a gimple PHI node. If so, insert the call on
all edges leading to the PHI node. */
if (is_a <gphi *> (use))
{
gphi *phi = dyn_cast<gphi *> (use);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
if (gimple_phi_arg_def (phi, i) == poisoned_var)
{
edge e = gimple_phi_arg_edge (phi, i);
/* Do not insert on an edge we can't split. */
if (e->flags & EDGE_ABNORMAL)
continue;
if (call_to_insert == NULL)
call_to_insert = gimple_copy (call);
gsi_insert_seq_on_edge (e, call_to_insert);
*need_commit_edge_insert = true;
call_to_insert = NULL;
}
}
else
{
gimple_stmt_iterator gsi = gsi_for_stmt (use);
if (store_p)
gsi_replace (&gsi, call, true);
else
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
}
SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
gsi_replace (iter, poison_call, false);
return true;
}
/* Instrument the current function. */
static unsigned int
asan_instrument (void)
{
if (hwasan_sanitize_p ())
{
transform_statements ();
return 0;
}
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
transform_statements ();
last_alloca_addr = NULL_TREE;
return 0;
}
static bool
gate_asan (void)
{
return sanitize_flags_p (SANITIZE_ADDRESS);
}
namespace {
const pass_data pass_data_asan =
{
GIMPLE_PASS, /* type */
"asan", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_asan : public gimple_opt_pass
{
public:
pass_asan (gcc::context *ctxt)
: gimple_opt_pass (pass_data_asan, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () final override { return new pass_asan (m_ctxt); }
bool gate (function *) final override
{
return gate_asan () || gate_hwasan ();
}
unsigned int execute (function *) final override
{
return asan_instrument ();
}
}; // class pass_asan
} // anon namespace
gimple_opt_pass *
make_pass_asan (gcc::context *ctxt)
{
return new pass_asan (ctxt);
}
namespace {
const pass_data pass_data_asan_O0 =
{
GIMPLE_PASS, /* type */
"asan0", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_asan_O0 : public gimple_opt_pass
{
public:
pass_asan_O0 (gcc::context *ctxt)
: gimple_opt_pass (pass_data_asan_O0, ctxt)
{}
/* opt_pass methods: */
bool gate (function *) final override
{
return !optimize && (gate_asan () || gate_hwasan ());
}
unsigned int execute (function *) final override
{
return asan_instrument ();
}
}; // class pass_asan_O0
} // anon namespace
gimple_opt_pass *
make_pass_asan_O0 (gcc::context *ctxt)
{
return new pass_asan_O0 (ctxt);
}
/* HWASAN */
/* For stack tagging:
Return the offset from the frame base tag that the "next" expanded object
should have. */
uint8_t
hwasan_current_frame_tag ()
{
return hwasan_frame_tag_offset;
}
/* For stack tagging:
Return the 'base pointer' for this function. If that base pointer has not
yet been created then we create a register to hold it and record the insns
to initialize the register in `hwasan_frame_base_init_seq` for later
emission. */
rtx
hwasan_frame_base ()
{
if (! hwasan_frame_base_ptr)
{
start_sequence ();
hwasan_frame_base_ptr
= force_reg (Pmode,
targetm.memtag.insert_random_tag (virtual_stack_vars_rtx,
NULL_RTX));
hwasan_frame_base_init_seq = get_insns ();
end_sequence ();
}
return hwasan_frame_base_ptr;
}
/* For stack tagging:
Check whether this RTX is a standard pointer addressing the base of the
stack variables for this frame. Returns true if the RTX is either
virtual_stack_vars_rtx or hwasan_frame_base_ptr. */
bool
stack_vars_base_reg_p (rtx base)
{
return base == virtual_stack_vars_rtx || base == hwasan_frame_base_ptr;
}
/* For stack tagging:
Emit frame base initialisation.
If hwasan_frame_base has been used before here then
hwasan_frame_base_init_seq contains the sequence of instructions to
initialize it. This must be put just before the hwasan prologue, so we emit
the insns before parm_birth_insn (which will point to the first instruction
of the hwasan prologue if it exists).
We update `parm_birth_insn` to point to the start of this initialisation
since that represents the end of the initialisation done by
expand_function_{start,end} functions and we want to maintain that. */
void
hwasan_maybe_emit_frame_base_init ()
{
if (! hwasan_frame_base_init_seq)
return;
emit_insn_before (hwasan_frame_base_init_seq, parm_birth_insn);
parm_birth_insn = hwasan_frame_base_init_seq;
}
/* Record a compile-time constant size stack variable that HWASAN will need to
tag. This record of the range of a stack variable will be used by
`hwasan_emit_prologue` to emit the RTL at the start of each frame which will
set tags in the shadow memory according to the assigned tag for each object.
The range that the object spans in stack space should be described by the
bounds `untagged_base + nearest_offset` and
`untagged_base + farthest_offset`.
`tagged_base` is the base address which contains the "base frame tag" for
this frame, and from which the value to address this object with will be
calculated.
We record the `untagged_base` since the functions in the hwasan library we
use to tag memory take pointers without a tag. */
void
hwasan_record_stack_var (rtx untagged_base, rtx tagged_base,
poly_int64 nearest_offset, poly_int64 farthest_offset)
{
hwasan_stack_var cur_var;
cur_var.untagged_base = untagged_base;
cur_var.tagged_base = tagged_base;
cur_var.nearest_offset = nearest_offset;
cur_var.farthest_offset = farthest_offset;
cur_var.tag_offset = hwasan_current_frame_tag ();
hwasan_tagged_stack_vars.safe_push (cur_var);
}
/* Return the RTX representing the farthest extent of the statically allocated
stack objects for this frame. If hwasan_frame_base_ptr has not been
initialized then we are not storing any static variables on the stack in
this frame. In this case we return NULL_RTX to represent that.
Otherwise simply return virtual_stack_vars_rtx + frame_offset. */
rtx
hwasan_get_frame_extent ()
{
return (hwasan_frame_base_ptr
? plus_constant (Pmode, virtual_stack_vars_rtx, frame_offset)
: NULL_RTX);
}
/* For stack tagging:
Increment the frame tag offset modulo the size a tag can represent. */
void
hwasan_increment_frame_tag ()
{
uint8_t tag_bits = HWASAN_TAG_SIZE;
gcc_assert (HWASAN_TAG_SIZE
<= sizeof (hwasan_frame_tag_offset) * CHAR_BIT);
hwasan_frame_tag_offset = (hwasan_frame_tag_offset + 1) % (1 << tag_bits);
/* The "background tag" of the stack is zero by definition.
This is the tag that objects like parameters passed on the stack and
spilled registers are given. It is handy to avoid this tag for objects
whose tags we decide ourselves, partly to ensure that buffer overruns
can't affect these important variables (e.g. saved link register, saved
stack pointer etc) and partly to make debugging easier (everything with a
tag of zero is space allocated automatically by the compiler).
This is not feasible when using random frame tags (the default
configuration for hwasan) since the tag for the given frame is randomly
chosen at runtime. In order to avoid any tags matching the stack
background we would need to decide tag offsets at runtime instead of
compile time (and pay the resulting performance cost).
When not using random base tags for each frame (i.e. when compiled with
`--param hwasan-random-frame-tag=0`) the base tag for each frame is zero.
This means the tag that each object gets is equal to the
hwasan_frame_tag_offset used in determining it.
When this is the case we *can* ensure no object gets the tag of zero by
simply ensuring no object has the hwasan_frame_tag_offset of zero.
There is the extra complication that we only record the
hwasan_frame_tag_offset here (which is the offset from the tag stored in
the stack pointer). In the kernel, the tag in the stack pointer is 0xff
rather than zero. This does not cause problems since tags of 0xff are
never checked in the kernel. As mentioned at the beginning of this
comment the background tag of the stack is zero by definition, which means
that for the kernel we should skip offsets of both 0 and 1 from the stack
pointer. Avoiding the offset of 0 ensures we use a tag which will be
checked, avoiding the offset of 1 ensures we use a tag that is not the
same as the background. */
if (hwasan_frame_tag_offset == 0 && ! param_hwasan_random_frame_tag)
hwasan_frame_tag_offset += 1;
if (hwasan_frame_tag_offset == 1 && ! param_hwasan_random_frame_tag
&& sanitize_flags_p (SANITIZE_KERNEL_HWADDRESS))
hwasan_frame_tag_offset += 1;
}
/* Clear internal state for the next function.
This function is called before variables on the stack get expanded, in
`init_vars_expansion`. */
void
hwasan_record_frame_init ()
{
delete asan_used_labels;
asan_used_labels = NULL;
/* If this isn't the case then some stack variable was recorded *before*
hwasan_record_frame_init is called, yet *after* the hwasan prologue for
the previous frame was emitted. Such stack variables would not have
their shadow stack filled in. */
gcc_assert (hwasan_tagged_stack_vars.is_empty ());
hwasan_frame_base_ptr = NULL_RTX;
hwasan_frame_base_init_seq = NULL;
/* When not using a random frame tag we can avoid the background stack
color which gives the user a little better debug output upon a crash.
Meanwhile, when using a random frame tag it will be nice to avoid adding
tags for the first object since that is unnecessary extra work.
Hence set the initial hwasan_frame_tag_offset to be 0 if using a random
frame tag and 1 otherwise.
As described in hwasan_increment_frame_tag, in the kernel the stack
pointer has the tag 0xff. That means that to avoid 0xff and 0 (the tag
which the kernel does not check and the background tag respectively) we
start with a tag offset of 2. */
hwasan_frame_tag_offset = param_hwasan_random_frame_tag
? 0
: sanitize_flags_p (SANITIZE_KERNEL_HWADDRESS) ? 2 : 1;
}
/* For stack tagging:
(Emits HWASAN equivalent of what is emitted by
`asan_emit_stack_protection`).
Emits the extra prologue code to set the shadow stack as required for HWASAN
stack instrumentation.
Uses the vector of recorded stack variables hwasan_tagged_stack_vars. When
this function has completed hwasan_tagged_stack_vars is empty and all
objects it had pointed to are deallocated. */
void
hwasan_emit_prologue ()
{
/* We need untagged base pointers since libhwasan only accepts untagged
pointers in __hwasan_tag_memory. We need the tagged base pointer to obtain
the base tag for an offset. */
if (hwasan_tagged_stack_vars.is_empty ())
return;
poly_int64 bot = 0, top = 0;
for (hwasan_stack_var &cur : hwasan_tagged_stack_vars)
{
poly_int64 nearest = cur.nearest_offset;
poly_int64 farthest = cur.farthest_offset;
if (known_ge (nearest, farthest))
{
top = nearest;
bot = farthest;
}
else
{
/* Given how these values are calculated, one must be known greater
than the other. */
gcc_assert (known_le (nearest, farthest));
top = farthest;
bot = nearest;
}
poly_int64 size = (top - bot);
/* Assert the edge of each variable is aligned to the HWASAN tag granule
size. */
gcc_assert (multiple_p (top, HWASAN_TAG_GRANULE_SIZE));
gcc_assert (multiple_p (bot, HWASAN_TAG_GRANULE_SIZE));
gcc_assert (multiple_p (size, HWASAN_TAG_GRANULE_SIZE));
rtx fn = init_one_libfunc ("__hwasan_tag_memory");
rtx base_tag = targetm.memtag.extract_tag (cur.tagged_base, NULL_RTX);
rtx tag = plus_constant (QImode, base_tag, cur.tag_offset);
tag = hwasan_truncate_to_tag_size (tag, NULL_RTX);
rtx bottom = convert_memory_address (ptr_mode,
plus_constant (Pmode,
cur.untagged_base,
bot));
emit_library_call (fn, LCT_NORMAL, VOIDmode,
bottom, ptr_mode,
tag, QImode,
gen_int_mode (size, ptr_mode), ptr_mode);
}
/* Clear the stack vars, we've emitted the prologue for them all now. */
hwasan_tagged_stack_vars.truncate (0);
}
/* For stack tagging:
Return RTL insns to clear the tags between DYNAMIC and VARS pointers
into the stack. These instructions should be emitted at the end of
every function.
If `dynamic` is NULL_RTX then no insns are returned. */
rtx_insn *
hwasan_emit_untag_frame (rtx dynamic, rtx vars)
{
if (! dynamic)
return NULL;
start_sequence ();
dynamic = convert_memory_address (ptr_mode, dynamic);
vars = convert_memory_address (ptr_mode, vars);
rtx top_rtx;
rtx bot_rtx;
if (FRAME_GROWS_DOWNWARD)
{
top_rtx = vars;
bot_rtx = dynamic;
}
else
{
top_rtx = dynamic;
bot_rtx = vars;
}
rtx size_rtx = expand_simple_binop (ptr_mode, MINUS, top_rtx, bot_rtx,
NULL_RTX, /* unsignedp = */0,
OPTAB_DIRECT);
rtx fn = init_one_libfunc ("__hwasan_tag_memory");
emit_library_call (fn, LCT_NORMAL, VOIDmode,
bot_rtx, ptr_mode,
HWASAN_STACK_BACKGROUND, QImode,
size_rtx, ptr_mode);
do_pending_stack_adjust ();
rtx_insn *insns = get_insns ();
end_sequence ();
return insns;
}
/* Needs to be GTY(()), because cgraph_build_static_cdtor may
invoke ggc_collect. */
static GTY(()) tree hwasan_ctor_statements;
/* Insert module initialization into this TU. This initialization calls the
initialization code for libhwasan. */
void
hwasan_finish_file (void)
{
/* Do not emit constructor initialization for the kernel.
(the kernel has its own initialization already). */
if (flag_sanitize & SANITIZE_KERNEL_HWADDRESS)
return;
/* Avoid instrumenting code in the hwasan constructors/destructors. */
flag_sanitize &= ~SANITIZE_HWADDRESS;
int priority = MAX_RESERVED_INIT_PRIORITY - 1;
tree fn = builtin_decl_implicit (BUILT_IN_HWASAN_INIT);
append_to_statement_list (build_call_expr (fn, 0), &hwasan_ctor_statements);
cgraph_build_static_cdtor ('I', hwasan_ctor_statements, priority);
flag_sanitize |= SANITIZE_HWADDRESS;
}
/* For stack tagging:
Truncate `tag` to the number of bits that a tag uses (i.e. to
HWASAN_TAG_SIZE). Store the result in `target` if it's convenient. */
rtx
hwasan_truncate_to_tag_size (rtx tag, rtx target)
{
gcc_assert (GET_MODE (tag) == QImode);
if (HWASAN_TAG_SIZE != GET_MODE_PRECISION (QImode))
{
gcc_assert (GET_MODE_PRECISION (QImode) > HWASAN_TAG_SIZE);
rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << HWASAN_TAG_SIZE) - 1,
QImode);
tag = expand_simple_binop (QImode, AND, tag, mask, target,
/* unsignedp = */1, OPTAB_WIDEN);
gcc_assert (tag);
}
return tag;
}
/* Construct a function tree for __hwasan_{load,store}{1,2,4,8,16,_n}.
IS_STORE is either 1 (for a store) or 0 (for a load). */
static combined_fn
hwasan_check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
int *nargs)
{
static enum built_in_function check[2][2][6]
= { { { BUILT_IN_HWASAN_LOAD1, BUILT_IN_HWASAN_LOAD2,
BUILT_IN_HWASAN_LOAD4, BUILT_IN_HWASAN_LOAD8,
BUILT_IN_HWASAN_LOAD16, BUILT_IN_HWASAN_LOADN },
{ BUILT_IN_HWASAN_STORE1, BUILT_IN_HWASAN_STORE2,
BUILT_IN_HWASAN_STORE4, BUILT_IN_HWASAN_STORE8,
BUILT_IN_HWASAN_STORE16, BUILT_IN_HWASAN_STOREN } },
{ { BUILT_IN_HWASAN_LOAD1_NOABORT,
BUILT_IN_HWASAN_LOAD2_NOABORT,
BUILT_IN_HWASAN_LOAD4_NOABORT,
BUILT_IN_HWASAN_LOAD8_NOABORT,
BUILT_IN_HWASAN_LOAD16_NOABORT,
BUILT_IN_HWASAN_LOADN_NOABORT },
{ BUILT_IN_HWASAN_STORE1_NOABORT,
BUILT_IN_HWASAN_STORE2_NOABORT,
BUILT_IN_HWASAN_STORE4_NOABORT,
BUILT_IN_HWASAN_STORE8_NOABORT,
BUILT_IN_HWASAN_STORE16_NOABORT,
BUILT_IN_HWASAN_STOREN_NOABORT } } };
if (size_in_bytes == -1)
{
*nargs = 2;
return as_combined_fn (check[recover_p][is_store][5]);
}
*nargs = 1;
int size_log2 = exact_log2 (size_in_bytes);
gcc_assert (size_log2 >= 0 && size_log2 <= 5);
return as_combined_fn (check[recover_p][is_store][size_log2]);
}
/* Expand the HWASAN_{LOAD,STORE} builtins. */
bool
hwasan_expand_check_ifn (gimple_stmt_iterator *iter, bool)
{
gimple *g = gsi_stmt (*iter);
location_t loc = gimple_location (g);
bool recover_p;
if (flag_sanitize & SANITIZE_USER_HWADDRESS)
recover_p = (flag_sanitize_recover & SANITIZE_USER_HWADDRESS) != 0;
else
recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_HWADDRESS) != 0;
HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
gcc_assert (flags < ASAN_CHECK_LAST);
bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
bool is_store = (flags & ASAN_CHECK_STORE) != 0;
bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
tree base = gimple_call_arg (g, 1);
tree len = gimple_call_arg (g, 2);
/* `align` is unused for HWASAN_CHECK, but we pass the argument anyway
since that way the arguments match ASAN_CHECK. */
/* HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3)); */
unsigned HOST_WIDE_INT size_in_bytes
= is_scalar_access ? tree_to_shwi (len) : -1;
gimple_stmt_iterator gsi = *iter;
if (!is_non_zero_len)
{
/* So, the length of the memory area to hwasan-protect is
non-constant. Let's guard the generated instrumentation code
like:
if (len != 0)
{
// hwasan instrumentation code goes here.
}
// falltrough instructions, starting with *ITER. */
g = gimple_build_cond (NE_EXPR,
len,
build_int_cst (TREE_TYPE (len), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, loc);
basic_block then_bb, fallthrough_bb;
insert_if_then_before_iter (as_a <gcond *> (g), iter,
/*then_more_likely_p=*/true,
&then_bb, &fallthrough_bb);
/* Note that fallthrough_bb starts with the statement that was
pointed to by ITER. */
/* The 'then block' of the 'if (len != 0) condition is where
we'll generate the hwasan instrumentation code now. */
gsi = gsi_last_bb (then_bb);
}
gimple_seq stmts = NULL;
tree base_addr = gimple_build (&stmts, loc, NOP_EXPR,
pointer_sized_int_node, base);
int nargs = 0;
combined_fn fn
= hwasan_check_func (is_store, recover_p, size_in_bytes, &nargs);
if (nargs == 1)
gimple_build (&stmts, loc, fn, void_type_node, base_addr);
else
{
gcc_assert (nargs == 2);
tree sz_arg = gimple_build (&stmts, loc, NOP_EXPR,
pointer_sized_int_node, len);
gimple_build (&stmts, loc, fn, void_type_node, base_addr, sz_arg);
}
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
gsi_remove (iter, true);
*iter = gsi;
return false;
}
/* For stack tagging:
Dummy: the HWASAN_MARK internal function should only ever be in the code
after the sanopt pass. */
bool
hwasan_expand_mark_ifn (gimple_stmt_iterator *)
{
gcc_unreachable ();
}
bool
gate_hwasan ()
{
return hwasan_sanitize_p ();
}
#include "gt-asan.h"
|