aboutsummaryrefslogtreecommitdiff
path: root/gcc/analyzer/store.cc
blob: 6dc4bb5cad4891ddb458adfe342bacb9ad34669c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
/* Classes for modeling the state of memory.
   Copyright (C) 2020-2024 Free Software Foundation, Inc.
   Contributed by David Malcolm <dmalcolm@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#define INCLUDE_MEMORY
#define INCLUDE_VECTOR
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "function.h"
#include "basic-block.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "diagnostic-core.h"
#include "graphviz.h"
#include "options.h"
#include "cgraph.h"
#include "tree-dfa.h"
#include "stringpool.h"
#include "convert.h"
#include "target.h"
#include "fold-const.h"
#include "tree-pretty-print.h"
#include "diagnostic-color.h"
#include "bitmap.h"
#include "selftest.h"
#include "analyzer/analyzer.h"
#include "analyzer/analyzer-logging.h"
#include "ordered-hash-map.h"
#include "options.h"
#include "cfg.h"
#include "analyzer/supergraph.h"
#include "sbitmap.h"
#include "analyzer/call-string.h"
#include "analyzer/program-point.h"
#include "analyzer/store.h"
#include "analyzer/region-model.h"
#include "analyzer/call-summary.h"
#include "analyzer/analyzer-selftests.h"
#include "stor-layout.h"
#include "text-art/tree-widget.h"

#if ENABLE_ANALYZER

namespace ana {

/* Dump SVALS to PP, sorting them to ensure determinism.  */

static void
dump_svalue_set (const hash_set <const svalue *> &svals,
		 pretty_printer *pp, bool simple)
{
  auto_vec <const svalue *> v;
  for (hash_set<const svalue *>::iterator iter = svals.begin ();
       iter != svals.end (); ++iter)
    {
      v.safe_push (*iter);
    }
  v.qsort (svalue::cmp_ptr_ptr);

  pp_character (pp, '{');
  const svalue *sval;
  unsigned i;
  FOR_EACH_VEC_ELT (v, i, sval)
    {
      if (i > 0)
	pp_string (pp, ", ");
      sval->dump_to_pp (pp, simple);
    }
  pp_character (pp, '}');
}

/* class uncertainty_t.  */

/* Dump this object to PP.  */

void
uncertainty_t::dump_to_pp (pretty_printer *pp, bool simple) const
{
  pp_string (pp, "{m_maybe_bound_svals: ");
  dump_svalue_set (m_maybe_bound_svals, pp, simple);

  pp_string (pp, ", m_mutable_at_unknown_call_svals: ");
  dump_svalue_set (m_mutable_at_unknown_call_svals, pp, simple);
  pp_string (pp, "}");
}

/* Dump this object to stderr.  */

DEBUG_FUNCTION void
uncertainty_t::dump (bool simple) const
{
  tree_dump_pretty_printer pp (stderr);
  dump_to_pp (&pp, simple);
  pp_newline (&pp);
}

/* class binding_key.  */

const binding_key *
binding_key::make (store_manager *mgr, const region *r)
{
  region_offset offset = r->get_offset (mgr->get_svalue_manager ());
  if (offset.symbolic_p ())
    return mgr->get_symbolic_binding (r);
  else
    {
      bit_size_t bit_size;
      if (r->get_bit_size (&bit_size))
	{
	  /* Must be non-empty.  */
	  gcc_assert (bit_size > 0);
	  return mgr->get_concrete_binding (offset.get_bit_offset (),
					    bit_size);
	}
      else
	return mgr->get_symbolic_binding (r);
    }
}

/* Dump this binding_key to stderr.  */

DEBUG_FUNCTION void
binding_key::dump (bool simple) const
{
  tree_dump_pretty_printer pp (stderr);
  dump_to_pp (&pp, simple);
  pp_newline (&pp);
}

/* Get a description of this binding_key.  */

label_text
binding_key::get_desc (bool simple) const
{
  pretty_printer pp;
  pp_format_decoder (&pp) = default_tree_printer;
  dump_to_pp (&pp, simple);
  return label_text::take (xstrdup (pp_formatted_text (&pp)));
}

/* qsort callback.  */

int
binding_key::cmp_ptrs (const void *p1, const void *p2)
{
  const binding_key * const *pk1 = (const binding_key * const *)p1;
  const binding_key * const *pk2 = (const binding_key * const *)p2;
  return cmp (*pk1, *pk2);
}

/* Comparator for binding_keys.  */

int
binding_key::cmp (const binding_key *k1, const binding_key *k2)
{
  int concrete1 = k1->concrete_p ();
  int concrete2 = k2->concrete_p ();
  if (int concrete_cmp = concrete1 - concrete2)
    return concrete_cmp;
  if (concrete1)
    {
      const concrete_binding *b1 = (const concrete_binding *)k1;
      const concrete_binding *b2 = (const concrete_binding *)k2;
      if (int start_cmp = wi::cmp (b1->get_start_bit_offset (),
				   b2->get_start_bit_offset (),
				   SIGNED))
	return start_cmp;
      return wi::cmp (b1->get_next_bit_offset (), b2->get_next_bit_offset (),
		      SIGNED);
    }
  else
    {
      const symbolic_binding *s1 = (const symbolic_binding *)k1;
      const symbolic_binding *s2 = (const symbolic_binding *)k2;
      if (s1 > s2)
	return 1;
      if (s1 < s2)
	return -1;
      return 0;
    }
}

/* struct bit_range.  */

void
bit_range::dump_to_pp (pretty_printer *pp) const
{
  byte_range bytes (0, 0);
  if (as_byte_range (&bytes))
    bytes.dump_to_pp (pp);
  else
    {
      pp_string (pp, "start: ");
      pp_wide_int (pp, m_start_bit_offset, SIGNED);
      pp_string (pp, ", size: ");
      pp_wide_int (pp, m_size_in_bits, SIGNED);
      pp_string (pp, ", next: ");
      pp_wide_int (pp, get_next_bit_offset (), SIGNED);
    }
}

/* Dump this object to stderr.  */

DEBUG_FUNCTION void
bit_range::dump () const
{
  tree_dump_pretty_printer pp (stderr);
  dump_to_pp (&pp);
  pp_newline (&pp);
}

/* Generate a JSON value for this bit_range.
   This is intended for debugging the analyzer rather
   than serialization.  */

json::object *
bit_range::to_json () const
{
  json::object *obj = new json::object ();
  obj->set ("start_bit_offset",
	    bit_offset_to_json (m_start_bit_offset));
  obj->set ("size_in_bits",
	    bit_offset_to_json (m_size_in_bits));
  return obj;
}

/* If OTHER is a subset of this, return true and, if OUT is
   non-null, write to *OUT the relative range of OTHER within this.
   Otherwise return false.  */

bool
bit_range::contains_p (const bit_range &other, bit_range *out) const
{
  if (contains_p (other.get_start_bit_offset ())
      && contains_p (other.get_last_bit_offset ()))
    {
      if (out)
	{
	  out->m_start_bit_offset = other.m_start_bit_offset - m_start_bit_offset;
	  out->m_size_in_bits = other.m_size_in_bits;
	}
      return true;
    }
  else
    return false;
}

/* If OTHER intersects this, return true and write
   the relative range of OTHER within THIS to *OUT_THIS,
   and the relative range of THIS within OTHER to *OUT_OTHER.
   Otherwise return false.  */

bool
bit_range::intersects_p (const bit_range &other,
			 bit_range *out_this,
			 bit_range *out_other) const
{
  if (get_start_bit_offset () < other.get_next_bit_offset ()
      && other.get_start_bit_offset () < get_next_bit_offset ())
    {
      bit_offset_t overlap_start
	= MAX (get_start_bit_offset (),
	       other.get_start_bit_offset ());
      bit_offset_t overlap_next
	= MIN (get_next_bit_offset (),
	       other.get_next_bit_offset ());
      if (overlap_next <= overlap_start)
	/* If this has happened, some kind of overflow has happened in
	   our arithmetic.  For now, reject such cases.  */
	return false;
      bit_range abs_overlap_bits (overlap_start, overlap_next - overlap_start);
      *out_this = abs_overlap_bits - get_start_bit_offset ();
      *out_other = abs_overlap_bits - other.get_start_bit_offset ();
      return true;
    }
  else
    return false;
}

/* Return true if THIS and OTHER intersect and write the number
   of bits both buffers overlap to *OUT_NUM_OVERLAP_BITS.

   Otherwise return false.  */

bool
bit_range::intersects_p (const bit_range &other,
			 bit_size_t *out_num_overlap_bits) const
{
  if (get_start_bit_offset () < other.get_next_bit_offset ()
      && other.get_start_bit_offset () < get_next_bit_offset ())
    {
      bit_offset_t overlap_start = MAX (get_start_bit_offset (),
					 other.get_start_bit_offset ());
      bit_offset_t overlap_next = MIN (get_next_bit_offset (),
					other.get_next_bit_offset ());
      if (overlap_next <= overlap_start)
	/* If this has happened, some kind of overflow has happened in
	   our arithmetic.  For now, reject such cases.  */
	return false;
      *out_num_overlap_bits = overlap_next - overlap_start;
      return true;
    }
  else
    return false;
}

/* Return true if THIS exceeds OTHER and write the overhanging
   bit range to OUT_OVERHANGING_BIT_RANGE.  */

bool
bit_range::exceeds_p (const bit_range &other,
		      bit_range *out_overhanging_bit_range) const
{
  gcc_assert (!empty_p ());

  if (other.get_next_bit_offset () < get_next_bit_offset ())
    {
      /* THIS definitely exceeds OTHER.  */
      bit_offset_t start = MAX (get_start_bit_offset (),
				 other.get_next_bit_offset ());
      bit_offset_t size = get_next_bit_offset () - start;
      if (size <= 0)
	/* If this has happened, some kind of overflow has happened in
	   our arithmetic.  For now, reject such cases.  */
	return false;
      out_overhanging_bit_range->m_start_bit_offset = start;
      out_overhanging_bit_range->m_size_in_bits = size;
      return true;
    }
  else
    return false;
}

/* Return true if THIS falls short of OFFSET and write the
   bit range fallen short to OUT_FALL_SHORT_BITS.  */

bool
bit_range::falls_short_of_p (bit_offset_t offset,
			     bit_range *out_fall_short_bits) const
{
  gcc_assert (!empty_p ());

  if (get_start_bit_offset () < offset)
    {
      /* THIS falls short of OFFSET.  */
      bit_offset_t start = get_start_bit_offset ();
      bit_offset_t size = MIN (offset, get_next_bit_offset ()) - start;
      if (size <= 0)
	/* If this has happened, some kind of overflow has happened in
	   our arithmetic.  For now, reject such cases.  */
	return false;
      out_fall_short_bits->m_start_bit_offset = start;
      out_fall_short_bits->m_size_in_bits = size;
      return true;
    }
  else
    return false;
}

int
bit_range::cmp (const bit_range &br1, const bit_range &br2)
{
  if (int start_cmp = wi::cmps (br1.m_start_bit_offset,
				br2.m_start_bit_offset))
    return start_cmp;

  return wi::cmpu (br1.m_size_in_bits, br2.m_size_in_bits);
}

/* Offset this range by OFFSET.  */

bit_range
bit_range::operator- (bit_offset_t offset) const
{
  return bit_range (m_start_bit_offset - offset, m_size_in_bits);
}

/* If MASK is a contiguous range of set bits, write them
   to *OUT and return true.
   Otherwise return false.  */

bool
bit_range::from_mask (unsigned HOST_WIDE_INT mask, bit_range *out)
{
  unsigned iter_bit_idx = 0;
  unsigned HOST_WIDE_INT iter_bit_mask = 1;

  /* Find the first contiguous run of set bits in MASK.  */

  /* Find first set bit in MASK.  */
  while (iter_bit_idx < HOST_BITS_PER_WIDE_INT)
    {
      if (mask & iter_bit_mask)
	break;
      iter_bit_idx++;
      iter_bit_mask <<= 1;
    }
  if (iter_bit_idx == HOST_BITS_PER_WIDE_INT)
    /* MASK is zero.  */
    return false;

  unsigned first_set_iter_bit_idx = iter_bit_idx;
  unsigned num_set_bits = 1;
  iter_bit_idx++;
  iter_bit_mask <<= 1;

  /* Find next unset bit in MASK.  */
  while (iter_bit_idx < HOST_BITS_PER_WIDE_INT)
    {
      if (!(mask & iter_bit_mask))
	break;
      num_set_bits++;
      iter_bit_idx++;
      iter_bit_mask <<= 1;
    }
  if (iter_bit_idx == HOST_BITS_PER_WIDE_INT)
    {
      *out = bit_range (first_set_iter_bit_idx, num_set_bits);
      return true;
    }

  /* We now have the first contiguous run of set bits in MASK.
     Fail if any other bits are set.  */
  while (iter_bit_idx < HOST_BITS_PER_WIDE_INT)
    {
      if (mask & iter_bit_mask)
	return false;
      iter_bit_idx++;
      iter_bit_mask <<= 1;
    }

  *out = bit_range (first_set_iter_bit_idx, num_set_bits);
  return true;
}

/* Attempt to convert this bit_range to a byte_range.
   Return true if it is possible, writing the result to *OUT.
   Otherwise return false.  */

bool
bit_range::as_byte_range (byte_range *out) const
{
  if (m_start_bit_offset % BITS_PER_UNIT == 0
      && m_size_in_bits % BITS_PER_UNIT == 0)
    {
      out->m_start_byte_offset = m_start_bit_offset / BITS_PER_UNIT;
      out->m_size_in_bytes = m_size_in_bits / BITS_PER_UNIT;
      return true;
    }
  return false;
}

/* Dump this object to PP.  */

void
byte_range::dump_to_pp (pretty_printer *pp) const
{
  if (m_size_in_bytes == 0)
    {
      pp_string (pp, "empty");
    }
  else if (m_size_in_bytes == 1)
    {
      pp_string (pp, "byte ");
      pp_wide_int (pp, m_start_byte_offset, SIGNED);
    }
  else
    {
      pp_string (pp, "bytes ");
      pp_wide_int (pp, m_start_byte_offset, SIGNED);
      pp_string (pp, "-");
      pp_wide_int (pp, get_last_byte_offset (), SIGNED);
    }
}

/* Dump this object to stderr.  */

DEBUG_FUNCTION void
byte_range::dump () const
{
  tree_dump_pretty_printer pp (stderr);
  dump_to_pp (&pp);
  pp_newline (&pp);
}

/* Generate a JSON value for this byte_range.
   This is intended for debugging the analyzer rather
   than serialization.  */

json::object *
byte_range::to_json () const
{
  json::object *obj = new json::object ();
  obj->set ("start_byte_offset",
	    byte_offset_to_json (m_start_byte_offset));
  obj->set ("size_in_bytes",
	    byte_offset_to_json (m_size_in_bytes));
  return obj;
}

/* If OTHER is a subset of this, return true and write
   to *OUT the relative range of OTHER within this.
   Otherwise return false.  */

bool
byte_range::contains_p (const byte_range &other, byte_range *out) const
{
  if (contains_p (other.get_start_byte_offset ())
      && contains_p (other.get_last_byte_offset ()))
    {
      out->m_start_byte_offset = other.m_start_byte_offset - m_start_byte_offset;
      out->m_size_in_bytes = other.m_size_in_bytes;
      return true;
    }
  else
    return false;
}

/* qsort comparator for byte ranges.  */

int
byte_range::cmp (const byte_range &br1, const byte_range &br2)
{
  /* Order first by offset.  */
  if (int start_cmp = wi::cmps (br1.m_start_byte_offset,
				br2.m_start_byte_offset))
    return start_cmp;

  /* ...then by size.  */
  return wi::cmpu (br1.m_size_in_bytes, br2.m_size_in_bytes);
}

/* class concrete_binding : public binding_key.  */

/* Implementation of binding_key::dump_to_pp vfunc for concrete_binding.  */

void
concrete_binding::dump_to_pp (pretty_printer *pp, bool) const
{
  m_bit_range.dump_to_pp (pp);
}

/* Return true if this binding overlaps with OTHER.  */

bool
concrete_binding::overlaps_p (const concrete_binding &other) const
{
  if (get_start_bit_offset () < other.get_next_bit_offset ()
      && get_next_bit_offset () > other.get_start_bit_offset ())
    return true;
  return false;
}

/* If this is expressible as a concrete byte range, return true
   and write it to *OUT.  Otherwise return false.  */

bool
concrete_binding::get_byte_range (byte_range *out) const
{
  return m_bit_range.as_byte_range (out);
}

/* Comparator for use by vec<const concrete_binding *>::qsort.  */

int
concrete_binding::cmp_ptr_ptr (const void *p1, const void *p2)
{
  const concrete_binding *b1 = *(const concrete_binding * const *)p1;
  const concrete_binding *b2 = *(const concrete_binding * const *)p2;

  return bit_range::cmp (b1->m_bit_range, b2->m_bit_range);
}

/* class symbolic_binding : public binding_key.  */

void
symbolic_binding::dump_to_pp (pretty_printer *pp, bool simple) const
{
  //binding_key::dump_to_pp (pp, simple);
  pp_string (pp, "region: ");
  m_region->dump_to_pp (pp, simple);
}

/* Comparator for use by vec<const symbolic_binding *>::qsort.  */

int
symbolic_binding::cmp_ptr_ptr (const void *p1, const void *p2)
{
  const symbolic_binding *b1 = *(const symbolic_binding * const *)p1;
  const symbolic_binding *b2 = *(const symbolic_binding * const *)p2;

  return region::cmp_ids (b1->get_region (), b2->get_region ());
}

/* The store is oblivious to the types of the svalues bound within
   it: any type can get bound at any location.
   Simplify any casts before binding.

   For example, if we have:
     struct big { int ia[1024]; };
     struct big src, dst;
     memcpy (&dst, &src, sizeof (struct big));
   this reaches us in gimple form as:
     MEM <unsigned char[4096]> [(char * {ref-all})&dst]
       = MEM <unsigned char[4096]> [(char * {ref-all})&src];
   Using cast_region when handling the MEM_REF would give us:
     INIT_VAL(CAST_REG(unsigned char[4096], src))
   as rhs_sval, but we can fold that into a cast svalue:
     CAST(unsigned char[4096], INIT_VAL(src))
   We can discard that cast from the svalue when binding it in
   the store for "dst", and simply store:
     cluster for: dst
       key:   {kind: direct, start: 0, size: 32768, next: 32768}
       value: ‘struct big’ {INIT_VAL(src)}.  */

static const svalue *
simplify_for_binding (const svalue *sval)
{
  if (const svalue *cast_sval = sval->maybe_undo_cast ())
    sval = cast_sval;
  return sval;
}

/* class binding_map.  */

/* binding_map's copy ctor.  */

binding_map::binding_map (const binding_map &other)
: m_map (other.m_map)
{
}

/* binding_map's assignment operator.  */

binding_map&
binding_map::operator=(const binding_map &other)
{
  /* For now, assume we only ever copy to an empty cluster.  */
  gcc_assert (m_map.elements () == 0);
  for (map_t::iterator iter = other.m_map.begin (); iter != other.m_map.end ();
       ++iter)
    {
      const binding_key *key = (*iter).first;
      const svalue *sval = (*iter).second;
      m_map.put (key, sval);
    }
  return *this;
}

/* binding_map's equality operator.  */

bool
binding_map::operator== (const binding_map &other) const
{
  if (m_map.elements () != other.m_map.elements ())
    return false;

  for (map_t::iterator iter = m_map.begin (); iter != m_map.end (); ++iter)
    {
      const binding_key *key = (*iter).first;
      const svalue *sval = (*iter).second;
      const svalue **other_slot
	= const_cast <map_t &> (other.m_map).get (key);
      if (other_slot == NULL)
	return false;
      if (sval != *other_slot)
	return false;
    }
  gcc_checking_assert (hash () == other.hash ());
  return true;
}

/* Generate a hash value for this binding_map.  */

hashval_t
binding_map::hash () const
{
  hashval_t result = 0;
  for (map_t::iterator iter = m_map.begin (); iter != m_map.end (); ++iter)
    {
      /* Use a new hasher for each key to avoid depending on the ordering
	 of keys when accumulating the result.  */
      inchash::hash hstate;
      hstate.add_ptr ((*iter).first);
      hstate.add_ptr ((*iter).second);
      result ^= hstate.end ();
    }
  return result;
}

/* Dump a representation of this binding_map to PP.
   SIMPLE controls how values and regions are to be printed.
   If MULTILINE, then split the dump over multiple lines and
   use whitespace for readability, otherwise put all on one line.  */

void
binding_map::dump_to_pp (pretty_printer *pp, bool simple,
			 bool multiline) const
{
  auto_vec <const binding_key *> binding_keys;
  for (map_t::iterator iter = m_map.begin ();
       iter != m_map.end (); ++iter)
    {
      const binding_key *key = (*iter).first;
      binding_keys.safe_push (key);
    }
  binding_keys.qsort (binding_key::cmp_ptrs);

  const binding_key *key;
  unsigned i;
  FOR_EACH_VEC_ELT (binding_keys, i, key)
    {
      const svalue *value = *const_cast <map_t &> (m_map).get (key);
      if (multiline)
	{
	  pp_string (pp, "    key:   {");
	  key->dump_to_pp (pp, simple);
	  pp_string (pp, "}");
	  pp_newline (pp);
	  pp_string (pp, "    value: ");
	  if (tree t = value->get_type ())
	    dump_quoted_tree (pp, t);
	  pp_string (pp, " {");
	  value->dump_to_pp (pp, simple);
	  pp_string (pp, "}");
	  pp_newline (pp);
	}
      else
	{
	  if (i > 0)
	    pp_string (pp, ", ");
	  pp_string (pp, "binding key: {");
	  key->dump_to_pp (pp, simple);
	  pp_string (pp, "}, value: {");
	  value->dump_to_pp (pp, simple);
	  pp_string (pp, "}");
	}
    }
}

/* Dump a multiline representation of this binding_map to stderr.  */

DEBUG_FUNCTION void
binding_map::dump (bool simple) const
{
  tree_dump_pretty_printer pp (stderr);
  dump_to_pp (&pp, simple, true);
  pp_newline (&pp);
}

/* Return a new json::object of the form
   {KEY_DESC : SVALUE_DESC,
    ...for the various key/value pairs in this binding_map}.  */

json::object *
binding_map::to_json () const
{
  json::object *map_obj = new json::object ();

  auto_vec <const binding_key *> binding_keys;
  for (map_t::iterator iter = m_map.begin ();
       iter != m_map.end (); ++iter)
    {
      const binding_key *key = (*iter).first;
      binding_keys.safe_push (key);
    }
  binding_keys.qsort (binding_key::cmp_ptrs);

  const binding_key *key;
  unsigned i;
  FOR_EACH_VEC_ELT (binding_keys, i, key)
    {
      const svalue *value = *const_cast <map_t &> (m_map).get (key);
      label_text key_desc = key->get_desc ();
      map_obj->set (key_desc.get (), value->to_json ());
    }

  return map_obj;
}

/* Add a child to PARENT_WIDGET expressing a binding between
   KEY and SVAL.  */

static void
add_binding_to_tree_widget (text_art::tree_widget &parent_widget,
			    const text_art::dump_widget_info &dwi,
			    const binding_key *key,
			    const svalue *sval)
{
  pretty_printer the_pp;
  pretty_printer * const pp = &the_pp;
  pp_format_decoder (pp) = default_tree_printer;
  pp_show_color (pp) = true;
  const bool simple = true;

  key->dump_to_pp (pp, simple);
  pp_string (pp, ": ");
  if (tree t = sval->get_type ())
    dump_quoted_tree (pp, t);
  pp_string (pp, " {");
  sval->dump_to_pp (pp, simple);
  pp_string (pp, "}");

  parent_widget.add_child (text_art::tree_widget::make (dwi, pp));
}

void
binding_map::add_to_tree_widget (text_art::tree_widget &parent_widget,
				 const text_art::dump_widget_info &dwi) const
{
  auto_vec <const binding_key *> binding_keys;
  for (map_t::iterator iter = m_map.begin ();
       iter != m_map.end (); ++iter)
    {
      const binding_key *key = (*iter).first;
      binding_keys.safe_push (key);
    }
  binding_keys.qsort (binding_key::cmp_ptrs);

  const binding_key *key;
  unsigned i;
  FOR_EACH_VEC_ELT (binding_keys, i, key)
    {
      const svalue *sval = *const_cast <map_t &> (m_map).get (key);
      add_binding_to_tree_widget (parent_widget, dwi,
				  key, sval);
    }
}


/* Comparator for imposing an order on binding_maps.  */

int
binding_map::cmp (const binding_map &map1, const binding_map &map2)
{
  if (int count_cmp = map1.elements () - map2.elements ())
    return count_cmp;

  auto_vec <const binding_key *> keys1 (map1.elements ());
  for (map_t::iterator iter = map1.begin ();
       iter != map1.end (); ++iter)
    keys1.quick_push ((*iter).first);
  keys1.qsort (binding_key::cmp_ptrs);

  auto_vec <const binding_key *> keys2 (map2.elements ());
  for (map_t::iterator iter = map2.begin ();
       iter != map2.end (); ++iter)
    keys2.quick_push ((*iter).first);
  keys2.qsort (binding_key::cmp_ptrs);

  for (size_t i = 0; i < keys1.length (); i++)
    {
      const binding_key *k1 = keys1[i];
      const binding_key *k2 = keys2[i];
      if (int key_cmp = binding_key::cmp (k1, k2))
	return key_cmp;
      gcc_assert (k1 == k2);
      if (int sval_cmp = svalue::cmp_ptr (map1.get (k1), map2.get (k2)))
	return sval_cmp;
    }

  return 0;
}

/* Get the child region of PARENT_REG based upon INDEX within a
   CONSTRUCTOR.   */

static const region *
get_subregion_within_ctor (const region *parent_reg, tree index,
			   region_model_manager *mgr)
{
  switch (TREE_CODE (index))
    {
    default:
      gcc_unreachable ();
    case INTEGER_CST:
      {
	const svalue *index_sval
	  = mgr->get_or_create_constant_svalue (index);
	return mgr->get_element_region (parent_reg,
					TREE_TYPE (parent_reg->get_type ()),
					index_sval);
      }
      break;
    case FIELD_DECL:
      return mgr->get_field_region (parent_reg, index);
    }
}

/* Get the svalue for VAL, a non-CONSTRUCTOR value within a CONSTRUCTOR.  */

static const svalue *
get_svalue_for_ctor_val (tree val, region_model_manager *mgr)
{
  /* Reuse the get_rvalue logic from region_model.  */
  region_model m (mgr);
  return m.get_rvalue (path_var (val, 0), NULL);
}

/* Bind values from CONSTRUCTOR to this map, relative to
   PARENT_REG's relationship to its base region.
   Return true if successful, false if there was a problem (e.g. due
   to hitting a complexity limit).  */

bool
binding_map::apply_ctor_to_region (const region *parent_reg, tree ctor,
				   region_model_manager *mgr)
{
  gcc_assert (parent_reg);
  gcc_assert (TREE_CODE (ctor) == CONSTRUCTOR);

  unsigned ix;
  tree index;
  tree val;
  tree parent_type = parent_reg->get_type ();
  tree field;
  if (TREE_CODE (parent_type) == RECORD_TYPE)
    field = TYPE_FIELDS (parent_type);
  else
    field = NULL_TREE;
  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, index, val)
    {
      if (!index)
	{
	  /* If index is NULL, then iterate through the fields for
	     a RECORD_TYPE, or use an INTEGER_CST otherwise.
	     Compare with similar logic in output_constructor.  */
	  if (field)
	    {
	      index = field;
	      field = DECL_CHAIN (field);
	    }
	  else
	    index = build_int_cst (integer_type_node, ix);
	}
      else if (TREE_CODE (index) == RANGE_EXPR)
	{
	  tree min_index = TREE_OPERAND (index, 0);
	  tree max_index = TREE_OPERAND (index, 1);
	  if (min_index == max_index)
	    {
	      if (!apply_ctor_pair_to_child_region (parent_reg, mgr,
						    min_index, val))
		return false;
	    }
	  else
	    {
	      if (!apply_ctor_val_to_range (parent_reg, mgr,
					    min_index, max_index, val))
		return false;
	    }
	  continue;
	}
      if (!apply_ctor_pair_to_child_region (parent_reg, mgr, index, val))
	return false;
    }
  return true;
}

/* Bind the value VAL into the range of elements within PARENT_REF
   from MIN_INDEX to MAX_INDEX (including endpoints).
   For use in handling RANGE_EXPR within a CONSTRUCTOR.
   Return true if successful, false if there was a problem (e.g. due
   to hitting a complexity limit).  */

bool
binding_map::apply_ctor_val_to_range (const region *parent_reg,
				      region_model_manager *mgr,
				      tree min_index, tree max_index,
				      tree val)
{
  gcc_assert (TREE_CODE (min_index) == INTEGER_CST);
  gcc_assert (TREE_CODE (max_index) == INTEGER_CST);

  /* Generate a binding key for the range.  */
  const region *min_element
    = get_subregion_within_ctor (parent_reg, min_index, mgr);
  const region *max_element
    = get_subregion_within_ctor (parent_reg, max_index, mgr);
  region_offset min_offset = min_element->get_offset (mgr);
  if (min_offset.symbolic_p ())
    return false;
  bit_offset_t start_bit_offset = min_offset.get_bit_offset ();
  store_manager *smgr = mgr->get_store_manager ();
  if (max_element->empty_p ())
    return false;
  const binding_key *max_element_key = binding_key::make (smgr, max_element);
  if (max_element_key->symbolic_p ())
    return false;
  const concrete_binding *max_element_ckey
    = max_element_key->dyn_cast_concrete_binding ();
  bit_size_t range_size_in_bits
    = max_element_ckey->get_next_bit_offset () - start_bit_offset;
  const concrete_binding *range_key
    = smgr->get_concrete_binding (start_bit_offset, range_size_in_bits);
  if (range_key->symbolic_p ())
    return false;

  /* Get the value.  */
  if (TREE_CODE (val) == CONSTRUCTOR)
    return false;
  const svalue *sval = get_svalue_for_ctor_val (val, mgr);

  /* Bind the value to the range.  */
  put (range_key, sval);
  return true;
}

/* Bind the value VAL into INDEX within PARENT_REF.
   For use in handling a pair of entries within a CONSTRUCTOR.
   Return true if successful, false if there was a problem (e.g. due
   to hitting a complexity limit).  */

bool
binding_map::apply_ctor_pair_to_child_region (const region *parent_reg,
					      region_model_manager *mgr,
					      tree index, tree val)
{
  const region *child_reg
    = get_subregion_within_ctor (parent_reg, index, mgr);
  if (TREE_CODE (val) == CONSTRUCTOR)
    return apply_ctor_to_region (child_reg, val, mgr);
  else
    {
      const svalue *sval = get_svalue_for_ctor_val (val, mgr);
      if (child_reg->empty_p ())
	return false;
      const binding_key *k
	= binding_key::make (mgr->get_store_manager (), child_reg);
      /* Handle the case where we have an unknown size for child_reg
	 (e.g. due to it being a trailing field with incomplete array
	 type.  */
      if (!k->concrete_p ())
	{
	  /* Assume that sval has a well-defined size for this case.  */
	  tree sval_type = sval->get_type ();
	  gcc_assert (sval_type);
	  HOST_WIDE_INT sval_byte_size = int_size_in_bytes (sval_type);
	  gcc_assert (sval_byte_size != -1);
	  bit_size_t sval_bit_size = sval_byte_size * BITS_PER_UNIT;
	  /* Get offset of child relative to base region.  */
	  region_offset child_base_offset = child_reg->get_offset (mgr);
	  if (child_base_offset.symbolic_p ())
	    return false;
	  /* Convert to an offset relative to the parent region.  */
	  region_offset parent_base_offset = parent_reg->get_offset (mgr);
	  gcc_assert (!parent_base_offset.symbolic_p ());
	  bit_offset_t child_parent_offset
	    = (child_base_offset.get_bit_offset ()
	       - parent_base_offset.get_bit_offset ());
	  /* Create a concrete key for the child within the parent.  */
	  k = mgr->get_store_manager ()->get_concrete_binding
	    (child_parent_offset, sval_bit_size);
	}
      gcc_assert (k->concrete_p ());
      put (k, sval);
      return true;
    }
}

/* Populate OUT with all bindings within this map that overlap KEY.  */

void
binding_map::get_overlapping_bindings (const binding_key *key,
				       auto_vec<const binding_key *> *out)
{
  for (auto iter : *this)
    {
      const binding_key *iter_key = iter.first;
      if (const concrete_binding *ckey
	    = key->dyn_cast_concrete_binding ())
	{
	  if (const concrete_binding *iter_ckey
	      = iter_key->dyn_cast_concrete_binding ())
	    {
	      if (ckey->overlaps_p (*iter_ckey))
		out->safe_push (iter_key);
	    }
	  else
	    {
	      /* Assume overlap.  */
	      out->safe_push (iter_key);
	    }
	}
      else
	{
	  /* Assume overlap.  */
	  out->safe_push (iter_key);
	}
    }
}

/* Remove, truncate, and/or split any bindings within this map that
   overlap DROP_KEY.

   For example, if we have:

     +------------------------------------+
     |             old binding            |
     +------------------------------------+

   which is to be overwritten with:

     .......+----------------------+.......
     .......|      new binding     |.......
     .......+----------------------+.......

   this function "cuts a hole" out of the old binding:

     +------+......................+------+
     |prefix| hole for new binding |suffix|
     +------+......................+------+

   into which the new binding can be added without
   overlapping the prefix or suffix.

   The prefix and suffix (if added) will be bound to the pertinent
   parts of the value of the old binding.

   For example, given:
     struct s5
     {
       char arr[8];
     };
     void test_5 (struct s5 *p)
     {
       struct s5 f = *p;
       f.arr[3] = 42;
     }
   then after the "f = *p;" we have:
     cluster for: f: INIT_VAL((*INIT_VAL(p_33(D))))
   and at the "f.arr[3] = 42;" we remove the bindings overlapping
   "f.arr[3]", replacing it with a prefix (bytes 0-2) and suffix (bytes 4-7)
   giving:
     cluster for: f
       key:   {bytes 0-2}
       value:  {BITS_WITHIN(bytes 0-2, inner_val: INIT_VAL((*INIT_VAL(p_33(D))).arr))}
       key:   {bytes 4-7}
       value:  {BITS_WITHIN(bytes 4-7, inner_val: INIT_VAL((*INIT_VAL(p_33(D))).arr))}
   punching a hole into which the new value can be written at byte 3:
     cluster for: f
       key:   {bytes 0-2}
       value:  {BITS_WITHIN(bytes 0-2, inner_val: INIT_VAL((*INIT_VAL(p_33(D))).arr))}
       key:   {byte 3}
       value: 'char' {(char)42}
       key:   {bytes 4-7}
       value:  {BITS_WITHIN(bytes 4-7, inner_val: INIT_VAL((*INIT_VAL(p_33(D))).arr))}

   If UNCERTAINTY is non-NULL, use it to record any svalues that
   were removed, as being maybe-bound.

   If MAYBE_LIVE_VALUES is non-NULL, then use it to record any svalues that
   were removed as being maybe-live.

   If ALWAYS_OVERLAP, then assume that DROP_KEY can overlap anything
   in the map, due to one or both of the underlying clusters being
   symbolic (but not the same symbolic region).  Hence even if DROP_KEY is a
   concrete binding it could actually be referring to the same memory as
   distinct concrete bindings in the map.  Remove all bindings, but
   register any svalues with *UNCERTAINTY.  */

void
binding_map::remove_overlapping_bindings (store_manager *mgr,
					  const binding_key *drop_key,
					  uncertainty_t *uncertainty,
					  svalue_set *maybe_live_values,
					  bool always_overlap)
{
  /* Get the bindings of interest within this map.  */
  auto_vec<const binding_key *> bindings;
  if (always_overlap)
    for (auto iter : *this)
      bindings.safe_push (iter.first); /* Add all bindings.  */
  else
    /* Just add overlapping bindings.  */
    get_overlapping_bindings (drop_key, &bindings);

  unsigned i;
  const binding_key *iter_binding;
  FOR_EACH_VEC_ELT (bindings, i, iter_binding)
    {
      /* Record any svalues that were removed to *UNCERTAINTY as being
	 maybe-bound, provided at least some part of the binding is symbolic.

	 Specifically, if at least one of the bindings is symbolic, or we
	 have ALWAYS_OVERLAP for the case where we have possibly aliasing
	 regions, then we don't know that the svalue has been overwritten,
	 and should record that to *UNCERTAINTY.

	 However, if we have concrete keys accessing within the same symbolic
	 region, then we *know* that the symbolic region has been overwritten,
	 so we don't record it to *UNCERTAINTY, as this could be a genuine
	 leak.  */
      const svalue *old_sval = get (iter_binding);
      if (uncertainty
	  && (drop_key->symbolic_p ()
	      || iter_binding->symbolic_p ()
	      || always_overlap))
	uncertainty->on_maybe_bound_sval (old_sval);

      /* Record any svalues that were removed to *MAYBE_LIVE_VALUES as being
	 maybe-live. */
      if (maybe_live_values)
	maybe_live_values->add (old_sval);

      /* Begin by removing the old binding. */
      m_map.remove (iter_binding);

      /* Don't attempt to handle prefixes/suffixes for the
	 "always_overlap" case; everything's being removed.  */
      if (always_overlap)
	continue;

      /* Now potentially add the prefix and suffix.  */
      if (const concrete_binding *drop_ckey
	  = drop_key->dyn_cast_concrete_binding ())
	if (const concrete_binding *iter_ckey
	      = iter_binding->dyn_cast_concrete_binding ())
	  {
	    gcc_assert (drop_ckey->overlaps_p (*iter_ckey));

	    const bit_range &drop_bits = drop_ckey->get_bit_range ();
	    const bit_range &iter_bits = iter_ckey->get_bit_range ();

	    if (iter_bits.get_start_bit_offset ()
		  < drop_bits.get_start_bit_offset ())
	      {
		/* We have a truncated prefix.  */
		bit_range prefix_bits (iter_bits.get_start_bit_offset (),
				       (drop_bits.get_start_bit_offset ()
					- iter_bits.get_start_bit_offset ()));
		const concrete_binding *prefix_key
		  = mgr->get_concrete_binding (prefix_bits);
		bit_range rel_prefix (0, prefix_bits.m_size_in_bits);
		const svalue *prefix_sval
		  = old_sval->extract_bit_range (NULL_TREE,
						 rel_prefix,
						 mgr->get_svalue_manager ());
		m_map.put (prefix_key, prefix_sval);
	      }

	    if (iter_bits.get_next_bit_offset ()
		  > drop_bits.get_next_bit_offset ())
	      {
		/* We have a truncated suffix.  */
		bit_range suffix_bits (drop_bits.get_next_bit_offset (),
				       (iter_bits.get_next_bit_offset ()
					- drop_bits.get_next_bit_offset ()));
		const concrete_binding *suffix_key
		  = mgr->get_concrete_binding (suffix_bits);
		bit_range rel_suffix (drop_bits.get_next_bit_offset ()
					- iter_bits.get_start_bit_offset (),
				      suffix_bits.m_size_in_bits);
		const svalue *suffix_sval
		  = old_sval->extract_bit_range (NULL_TREE,
						 rel_suffix,
						 mgr->get_svalue_manager ());
		m_map.put (suffix_key, suffix_sval);
	      }
	  }
    }
}

/* class binding_cluster.  */

binding_cluster::binding_cluster (const region *base_region)
: m_base_region (base_region), m_map (),
  m_escaped (false), m_touched (false)
{
}

/* binding_cluster's copy ctor.  */

binding_cluster::binding_cluster (const binding_cluster &other)
: m_base_region (other.m_base_region), m_map (other.m_map),
  m_escaped (other.m_escaped), m_touched (other.m_touched)
{
}

/* binding_cluster's assignment operator.  */

binding_cluster&
binding_cluster::operator= (const binding_cluster &other)
{
  gcc_assert (m_base_region == other.m_base_region);
  m_map = other.m_map;
  m_escaped = other.m_escaped;
  m_touched = other.m_touched;
  return *this;
}

/* binding_cluster's equality operator.  */

bool
binding_cluster::operator== (const binding_cluster &other) const
{
  if (m_map != other.m_map)
    return false;

  if (m_base_region != other.m_base_region)
    return false;

  if (m_escaped != other.m_escaped)
    return false;

  if (m_touched != other.m_touched)
    return false;

  gcc_checking_assert (hash () == other.hash ());

  return true;
}

/* Generate a hash value for this binding_cluster.  */

hashval_t
binding_cluster::hash () const
{
  return m_map.hash ();
}

/* Return true if this binding_cluster is symbolic
   i.e. its base region is symbolic.  */

bool
binding_cluster::symbolic_p () const
{
  return m_base_region->get_kind () == RK_SYMBOLIC;
}

/* Dump a representation of this binding_cluster to PP.
   SIMPLE controls how values and regions are to be printed.
   If MULTILINE, then split the dump over multiple lines and
   use whitespace for readability, otherwise put all on one line.  */

void
binding_cluster::dump_to_pp (pretty_printer *pp, bool simple,
			     bool multiline) const
{
  if (m_escaped)
    {
      if (multiline)
	{
	  pp_string (pp, "    ESCAPED");
	  pp_newline (pp);
	}
      else
	pp_string (pp, "(ESCAPED)");
    }
  if (m_touched)
    {
      if (multiline)
	{
	  pp_string (pp, "    TOUCHED");
	  pp_newline (pp);
	}
      else
	pp_string (pp, "(TOUCHED)");
    }

  m_map.dump_to_pp (pp, simple, multiline);
}

/* Dump a multiline representation of this binding_cluster to stderr.  */

DEBUG_FUNCTION void
binding_cluster::dump (bool simple) const
{
  tree_dump_pretty_printer pp (stderr);
  pp_string (&pp, "  cluster for: ");
  m_base_region->dump_to_pp (&pp, simple);
  pp_string (&pp, ": ");
  pp_newline (&pp);
  dump_to_pp (&pp, simple, true);
  pp_newline (&pp);
}

/* Assert that this object is valid.  */

void
binding_cluster::validate () const
{
  int num_symbolic = 0;
  int num_concrete = 0;
  for (auto iter : m_map)
    {
      if (iter.first->symbolic_p ())
	num_symbolic++;
      else
	num_concrete++;
    }
  /* We shouldn't have more than one symbolic key per cluster
     (or one would have clobbered the other).  */
  gcc_assert (num_symbolic < 2);
  /* We can't have both concrete and symbolic keys.  */
  gcc_assert (num_concrete == 0 || num_symbolic == 0);
}

/* Return a new json::object of the form
   {"escaped": true/false,
    "touched": true/false,
    "map" : object for the binding_map.  */

json::object *
binding_cluster::to_json () const
{
  json::object *cluster_obj = new json::object ();

  cluster_obj->set_bool ("escaped", m_escaped);
  cluster_obj->set_bool ("touched", m_touched);
  cluster_obj->set ("map", m_map.to_json ());

  return cluster_obj;
}

std::unique_ptr<text_art::tree_widget>
binding_cluster::make_dump_widget (const text_art::dump_widget_info &dwi,
				   store_manager *mgr) const
{
  pretty_printer the_pp;
  pretty_printer * const pp = &the_pp;
  pp_format_decoder (pp) = default_tree_printer;
  pp_show_color (pp) = true;
  const bool simple = true;

  m_base_region->dump_to_pp (pp, simple);
  pp_string (pp, ": ");

  if (const svalue *sval = maybe_get_simple_value (mgr))
    {
      /* Special-case to simplify dumps for the common case where
	 we just have one value directly bound to the whole of a
	 region.  */
      sval->dump_to_pp (pp, simple);
      if (escaped_p ())
	pp_string (pp, " (ESCAPED)");
      if (touched_p ())
	pp_string (pp, " (TOUCHED)");

      return text_art::tree_widget::make (dwi, pp);
    }
  else
    {
      if (escaped_p ())
	pp_string (pp, " (ESCAPED)");
      if (touched_p ())
	pp_string (pp, " (TOUCHED)");

      std::unique_ptr<text_art::tree_widget> cluster_widget
	(text_art::tree_widget::make (dwi, pp));

      m_map.add_to_tree_widget (*cluster_widget, dwi);

      return cluster_widget;
    }
}

/* Add a binding of SVAL of kind KIND to REG, unpacking SVAL if it is a
   compound_sval.  */

void
binding_cluster::bind (store_manager *mgr,
		       const region *reg, const svalue *sval)
{
  if (const compound_svalue *compound_sval
	= sval->dyn_cast_compound_svalue ())
    {
      bind_compound_sval (mgr, reg, compound_sval);
      return;
    }

  if (reg->empty_p ())
    return;
  const binding_key *binding = binding_key::make (mgr, reg);
  bind_key (binding, sval);
}

/* Bind SVAL to KEY.
   Unpacking of compound_svalues should already have been done by the
   time this is called.  */

void
binding_cluster::bind_key (const binding_key *key, const svalue *sval)
{
  gcc_assert (sval->get_kind () != SK_COMPOUND);

  m_map.put (key, sval);
  if (key->symbolic_p ())
    m_touched = true;
}

/* Subroutine of binding_cluster::bind.
   Unpack compound_svals when binding them, so that we bind them
   element-wise.  */

void
binding_cluster::bind_compound_sval (store_manager *mgr,
				     const region *reg,
				     const compound_svalue *compound_sval)
{
  region_offset reg_offset
    = reg->get_offset (mgr->get_svalue_manager ());
  if (reg_offset.symbolic_p ())
    {
      m_touched = true;
      clobber_region (mgr, reg);
      return;
    }

  for (map_t::iterator iter = compound_sval->begin ();
       iter != compound_sval->end (); ++iter)
    {
      const binding_key *iter_key = (*iter).first;
      const svalue *iter_sval = (*iter).second;

      if (const concrete_binding *concrete_key
	  = iter_key->dyn_cast_concrete_binding ())
	{
	  bit_offset_t effective_start
	    = (concrete_key->get_start_bit_offset ()
	       + reg_offset.get_bit_offset ());
	  const concrete_binding *effective_concrete_key
	    = mgr->get_concrete_binding (effective_start,
					 concrete_key->get_size_in_bits ());
	  bind_key (effective_concrete_key, iter_sval);
	}
      else
	gcc_unreachable ();
    }
}

/* Remove all bindings overlapping REG within this cluster.  */

void
binding_cluster::clobber_region (store_manager *mgr, const region *reg)
{
  remove_overlapping_bindings (mgr, reg, NULL, NULL);
}

/* Remove any bindings for REG within this cluster.  */

void
binding_cluster::purge_region (store_manager *mgr, const region *reg)
{
  gcc_assert (reg->get_kind () == RK_DECL);
  if (reg->empty_p ())
    return;
  const binding_key *binding
    = binding_key::make (mgr, const_cast<region *> (reg));
  m_map.remove (binding);
}

/* Clobber REG and fill it with repeated copies of SVAL.  */

void
binding_cluster::fill_region (store_manager *mgr,
			      const region *reg,
			      const svalue *sval)
{
  clobber_region (mgr, reg);

  region_model_manager *sval_mgr = mgr->get_svalue_manager ();
  const svalue *byte_size_sval = reg->get_byte_size_sval (sval_mgr);
  const svalue *fill_sval
    = sval_mgr->get_or_create_repeated_svalue (reg->get_type (),
					       byte_size_sval, sval);
  bind (mgr, reg, fill_sval);
}

/* Clobber REG within this cluster and fill it with zeroes.  */

void
binding_cluster::zero_fill_region (store_manager *mgr, const region *reg)
{
  region_model_manager *sval_mgr = mgr->get_svalue_manager ();
  const svalue *zero_sval = sval_mgr->get_or_create_int_cst (char_type_node, 0);
  fill_region (mgr, reg, zero_sval);
}

/* Mark REG_TO_BIND within this cluster as being unknown.

   Remove any bindings overlapping REG_FOR_OVERLAP.
   If UNCERTAINTY is non-NULL, use it to record any svalues that
   had bindings to them removed, as being maybe-bound.
   If MAYBE_LIVE_VALUES is non-NULL, use it to record any svalues that
   had bindings to them removed, as being maybe-live.

   REG_TO_BIND and REG_FOR_OVERLAP are the same for
   store::mark_region_as_unknown, but are different in
   store::set_value's alias handling, for handling the case where
   we have a write to a symbolic REG_FOR_OVERLAP. */

void
binding_cluster::mark_region_as_unknown (store_manager *mgr,
					 const region *reg_to_bind,
					 const region *reg_for_overlap,
					 uncertainty_t *uncertainty,
					 svalue_set *maybe_live_values)
{
  if (reg_to_bind->empty_p ())
    return;

  remove_overlapping_bindings (mgr, reg_for_overlap, uncertainty,
			       maybe_live_values);

  /* Add a default binding to "unknown".  */
  region_model_manager *sval_mgr = mgr->get_svalue_manager ();
  const svalue *sval
    = sval_mgr->get_or_create_unknown_svalue (reg_to_bind->get_type ());
  bind (mgr, reg_to_bind, sval);
}

/* Purge state involving SVAL.  */

void
binding_cluster::purge_state_involving (const svalue *sval,
					region_model_manager *sval_mgr)
{
  auto_vec<const binding_key *> to_remove;
  auto_vec<std::pair<const binding_key *, tree> > to_make_unknown;
  for (auto iter : m_map)
    {
      const binding_key *iter_key = iter.first;
      if (const symbolic_binding *symbolic_key
	    = iter_key->dyn_cast_symbolic_binding ())
	{
	  const region *reg = symbolic_key->get_region ();
	  if (reg->involves_p (sval))
	    to_remove.safe_push (iter_key);
	}
      const svalue *iter_sval = iter.second;
      if (iter_sval->involves_p (sval))
	to_make_unknown.safe_push (std::make_pair(iter_key,
						  iter_sval->get_type ()));
    }
  for (auto iter : to_remove)
    {
      m_map.remove (iter);
      m_touched = true;
    }
  for (auto iter : to_make_unknown)
    {
      const svalue *new_sval
	= sval_mgr->get_or_create_unknown_svalue (iter.second);
      m_map.put (iter.first, new_sval);
    }
}

/* Get any SVAL bound to REG within this cluster via kind KIND,
   without checking parent regions of REG.  */

const svalue *
binding_cluster::get_binding (store_manager *mgr,
			      const region *reg) const
{
  if (reg->empty_p ())
    return NULL;
  const binding_key *reg_binding = binding_key::make (mgr, reg);
  const svalue *sval = m_map.get (reg_binding);
  if (sval)
    {
      /* If we have a struct with a single field, then the binding of
	 the field will equal that of the struct, and looking up e.g.
	 PARENT_REG.field within:
	    cluster for PARENT_REG: INIT_VAL(OTHER_REG)
	 will erroneously return INIT_VAL(OTHER_REG), rather than
	   SUB_VALUE(INIT_VAL(OTHER_REG), FIELD) == INIT_VAL(OTHER_REG.FIELD).
	 Fix this issue by iterating upwards whilst the bindings are equal,
	 expressing the lookups as subvalues.
	 We have to gather a list of subregion accesses, then walk it
	 in reverse to get the subvalues.  */
      auto_vec<const region *> regions;
      while (const region *parent_reg = reg->get_parent_region ())
	{
	  const binding_key *parent_reg_binding
	    = binding_key::make (mgr, parent_reg);
	  if (parent_reg_binding == reg_binding
	      && sval->get_type ()
	      && reg->get_type ()
	      && sval->get_type () != reg->get_type ())
	    {
	      regions.safe_push (reg);
	      reg = parent_reg;
	    }
	  else
	    break;
	}
      if (sval->get_type ()
	  && reg->get_type ()
	  && sval->get_type () == reg->get_type ())
	{
	  unsigned i;
	  const region *iter_reg;
	  FOR_EACH_VEC_ELT_REVERSE (regions, i, iter_reg)
	    {
	      region_model_manager *rmm_mgr = mgr->get_svalue_manager ();
	      sval = rmm_mgr->get_or_create_sub_svalue (iter_reg->get_type (),
							sval, iter_reg);
	    }
	}
    }
  return sval;
}

/* Get any SVAL bound to REG within this cluster,
   either directly for REG, or recursively checking for bindings within
   parent regions and extracting subvalues if need be.  */

const svalue *
binding_cluster::get_binding_recursive (store_manager *mgr,
					const region *reg) const
{
  if (const svalue *sval = get_binding (mgr, reg))
    return sval;
  if (reg != m_base_region)
    if (const region *parent_reg = reg->get_parent_region ())
      if (const svalue *parent_sval
	  = get_binding_recursive (mgr, parent_reg))
	{
	  /* Extract child svalue from parent svalue.  */
	  region_model_manager *rmm_mgr = mgr->get_svalue_manager ();
	  return rmm_mgr->get_or_create_sub_svalue (reg->get_type (),
						    parent_sval, reg);
	}
  return NULL;
}

/* Get any value bound for REG within this cluster.  */

const svalue *
binding_cluster::get_any_binding (store_manager *mgr,
				  const region *reg) const
{
  /* Look for a direct binding.  */
  if (const svalue *direct_sval
      = get_binding_recursive (mgr, reg))
    return direct_sval;

  /* If we had a write to a cluster of unknown size, we might
     have a self-binding of the whole base region with an svalue,
     where the base region is symbolic.
     Handle such cases by returning sub_svalue instances.  */
  if (const svalue *cluster_sval = maybe_get_simple_value (mgr))
    {
      /* Extract child svalue from parent svalue.  */
      region_model_manager *rmm_mgr = mgr->get_svalue_manager ();
      return rmm_mgr->get_or_create_sub_svalue (reg->get_type (),
						cluster_sval, reg);
    }

  /* If this cluster has been touched by a symbolic write, then the content
     of any subregion not currently specifically bound is "UNKNOWN".  */
  if (m_touched)
    {
      region_model_manager *rmm_mgr = mgr->get_svalue_manager ();
      return rmm_mgr->get_or_create_unknown_svalue (reg->get_type ());
    }

  /* Alternatively, if this is a symbolic read and the cluster has any bindings,
     then we don't know if we're reading those values or not, so the result
     is also "UNKNOWN".  */
  if (reg->get_offset (mgr->get_svalue_manager ()).symbolic_p ()
      && m_map.elements () > 0)
    {
      region_model_manager *rmm_mgr = mgr->get_svalue_manager ();
      return rmm_mgr->get_or_create_unknown_svalue (reg->get_type ());
    }

  if (const svalue *compound_sval = maybe_get_compound_binding (mgr, reg))
    return compound_sval;

  /* Otherwise, the initial value, or uninitialized.  */
  return NULL;
}

/* Attempt to get a compound_svalue for the bindings within the cluster
   affecting REG (which could be the base region itself).

   Create a compound_svalue with the subset of bindings the affect REG,
   offsetting them so that the offsets are relative to the start of REG
   within the cluster.

   For example, REG could be one element within an array of structs.

   Return the resulting compound_svalue, or NULL if there's a problem.  */

const svalue *
binding_cluster::maybe_get_compound_binding (store_manager *mgr,
					     const region *reg) const
{
  region_offset cluster_offset
    = m_base_region->get_offset (mgr->get_svalue_manager ());
  if (cluster_offset.symbolic_p ())
    return NULL;
  region_offset reg_offset = reg->get_offset (mgr->get_svalue_manager ());
  if (reg_offset.symbolic_p ())
    return NULL;

  if (reg->empty_p ())
    return NULL;

  region_model_manager *sval_mgr = mgr->get_svalue_manager ();

  /* We will a build the result map in two parts:
     (a) result_map, holding the concrete keys from this cluster,

     (b) default_map, holding the initial values for the region
     (e.g. uninitialized, initializer values, or zero), unless this
     cluster has been touched.

     We will populate (a), and as we do, clobber (b), trimming and
     splitting its bindings as necessary.
     Finally, we will merge (b) into (a), giving a concrete map
     that merges both the initial values and the bound values from
     the binding_cluster.
     Doing it this way reduces N for the O(N^2) intersection-finding,
     perhaps we should have a spatial-organized data structure for
     concrete keys, though.  */

  binding_map result_map;
  binding_map default_map;

  /* Set up default values in default_map.  */
  const svalue *default_sval;
  if (m_touched)
    default_sval = sval_mgr->get_or_create_unknown_svalue (reg->get_type ());
  else
    default_sval = sval_mgr->get_or_create_initial_value (reg);
  const binding_key *default_key = binding_key::make (mgr, reg);

  /* Express the bit-range of the default key for REG relative to REG,
     rather than to the base region.  */
  const concrete_binding *concrete_default_key
    = default_key->dyn_cast_concrete_binding ();
  if (!concrete_default_key)
    return nullptr;
  const concrete_binding *default_key_relative_to_reg
     = mgr->get_concrete_binding (0, concrete_default_key->get_size_in_bits ());
  default_map.put (default_key_relative_to_reg, default_sval);

  for (map_t::iterator iter = m_map.begin (); iter != m_map.end (); ++iter)
    {
      const binding_key *key = (*iter).first;
      const svalue *sval = (*iter).second;

      if (const concrete_binding *concrete_key
	  = key->dyn_cast_concrete_binding ())
	{
	  const bit_range &bound_range = concrete_key->get_bit_range ();

	  bit_size_t reg_bit_size;
	  if (!reg->get_bit_size (&reg_bit_size))
	    return NULL;

	  bit_range reg_range (reg_offset.get_bit_offset (),
			       reg_bit_size);

	  /* Skip bindings that are outside the bit range of REG.  */
	  if (!bound_range.intersects_p (reg_range))
	    continue;

	  /* We shouldn't have an exact match; that should have been
	     handled already.  */
	  gcc_assert (!(reg_range == bound_range));

	  bit_range subrange (0, 0);
	  if (reg_range.contains_p (bound_range, &subrange))
	    {
	      /* We have a bound range fully within REG.
		 Add it to map, offsetting accordingly.  */

	      /* Get offset of KEY relative to REG, rather than to
		 the cluster.  */
	      const concrete_binding *offset_concrete_key
		= mgr->get_concrete_binding (subrange);
	      result_map.put (offset_concrete_key, sval);

	      /* Clobber default_map, removing/trimming/spliting where
		 it overlaps with offset_concrete_key.  */
	      default_map.remove_overlapping_bindings (mgr,
						       offset_concrete_key,
						       NULL, NULL, false);
	    }
	  else if (bound_range.contains_p (reg_range, &subrange))
	    {
	      /* REG is fully within the bound range, but
		 is not equal to it; we're extracting a subvalue.  */
	      return sval->extract_bit_range (reg->get_type (),
					      subrange,
					      mgr->get_svalue_manager ());
	    }
	  else
	    {
	      /* REG and the bound range partially overlap.  */
	      bit_range reg_subrange (0, 0);
	      bit_range bound_subrange (0, 0);
	      reg_range.intersects_p (bound_range,
				      &reg_subrange, &bound_subrange);

	      /* Get the bits from the bound value for the bits at the
		 intersection (relative to the bound value).  */
	      const svalue *overlap_sval
		= sval->extract_bit_range (NULL_TREE,
					   bound_subrange,
					   mgr->get_svalue_manager ());

	      /* Get key for overlap, relative to the REG.  */
	      const concrete_binding *overlap_concrete_key
		= mgr->get_concrete_binding (reg_subrange);
	      result_map.put (overlap_concrete_key, overlap_sval);

	      /* Clobber default_map, removing/trimming/spliting where
		 it overlaps with overlap_concrete_key.  */
	      default_map.remove_overlapping_bindings (mgr,
						       overlap_concrete_key,
						       NULL, NULL, false);
	    }
	}
      else
	/* Can't handle symbolic bindings.  */
	return NULL;
    }

  if (result_map.elements () == 0)
    return NULL;

  /* Merge any bindings from default_map into result_map.  */
  for (auto iter : default_map)
    {
      const binding_key *key = iter.first;
      const svalue *sval = iter.second;
      result_map.put (key, sval);
    }

  return sval_mgr->get_or_create_compound_svalue (reg->get_type (), result_map);
}

/* Remove, truncate, and/or split any bindings within this map that
   could overlap REG.

   If REG's base region or this cluster is symbolic and they're different
   base regions, then remove everything in this cluster's map, on the
   grounds that REG could be referring to the same memory as anything
   in the map.

   If UNCERTAINTY is non-NULL, use it to record any svalues that
   were removed, as being maybe-bound.

   If MAYBE_LIVE_VALUES is non-NULL, use it to record any svalues that
   were removed, as being maybe-live.  */

void
binding_cluster::remove_overlapping_bindings (store_manager *mgr,
					      const region *reg,
					      uncertainty_t *uncertainty,
					      svalue_set *maybe_live_values)
{
  if (reg->empty_p ())
    return;
  const binding_key *reg_binding = binding_key::make (mgr, reg);

  const region *cluster_base_reg = get_base_region ();
  const region *other_base_reg = reg->get_base_region ();
  /* If at least one of the base regions involved is symbolic, and they're
     not the same base region, then consider everything in the map as
     potentially overlapping with reg_binding (even if it's a concrete
     binding and things in the map are concrete - they could be referring
     to the same memory when the symbolic base regions are taken into
     account).  */
  bool always_overlap = (cluster_base_reg != other_base_reg
			 && (cluster_base_reg->get_kind () == RK_SYMBOLIC
			     || other_base_reg->get_kind () == RK_SYMBOLIC));
  m_map.remove_overlapping_bindings (mgr, reg_binding, uncertainty,
				     maybe_live_values,
				     always_overlap);
}

/* Attempt to merge CLUSTER_A and CLUSTER_B into OUT_CLUSTER, using
   MGR and MERGER.
   Return true if they can be merged, false otherwise.  */

bool
binding_cluster::can_merge_p (const binding_cluster *cluster_a,
			      const binding_cluster *cluster_b,
			      binding_cluster *out_cluster,
			      store *out_store,
			      store_manager *mgr,
			      model_merger *merger)
{
  gcc_assert (out_cluster);

  /* Merge flags ("ESCAPED" and "TOUCHED") by setting the merged flag to
     true if either of the inputs is true.  */
  if ((cluster_a && cluster_a->m_escaped)
      || (cluster_b && cluster_b->m_escaped))
    out_cluster->m_escaped = true;
  if ((cluster_a && cluster_a->m_touched)
      || (cluster_b && cluster_b->m_touched))
    out_cluster->m_touched = true;

  /* At least one of CLUSTER_A and CLUSTER_B are non-NULL, but either
     could be NULL.  Handle these cases.  */
  if (cluster_a == NULL)
    {
      gcc_assert (cluster_b != NULL);
      gcc_assert (cluster_b->m_base_region == out_cluster->m_base_region);
      out_cluster->make_unknown_relative_to (cluster_b, out_store, mgr);
      return true;
    }
  if (cluster_b == NULL)
    {
      gcc_assert (cluster_a != NULL);
      gcc_assert (cluster_a->m_base_region == out_cluster->m_base_region);
      out_cluster->make_unknown_relative_to (cluster_a, out_store, mgr);
      return true;
    }

  /* The "both inputs are non-NULL" case.  */
  gcc_assert (cluster_a != NULL && cluster_b != NULL);
  gcc_assert (cluster_a->m_base_region == out_cluster->m_base_region);
  gcc_assert (cluster_b->m_base_region == out_cluster->m_base_region);

  hash_set<const binding_key *> keys;
  for (map_t::iterator iter_a = cluster_a->m_map.begin ();
       iter_a != cluster_a->m_map.end (); ++iter_a)
    {
      const binding_key *key_a = (*iter_a).first;
      keys.add (key_a);
    }
  for (map_t::iterator iter_b = cluster_b->m_map.begin ();
       iter_b != cluster_b->m_map.end (); ++iter_b)
    {
      const binding_key *key_b = (*iter_b).first;
      keys.add (key_b);
    }
  int num_symbolic_keys = 0;
  int num_concrete_keys = 0;
  for (hash_set<const binding_key *>::iterator iter = keys.begin ();
       iter != keys.end (); ++iter)
    {
      region_model_manager *sval_mgr = mgr->get_svalue_manager ();
      const binding_key *key = *iter;
      const svalue *sval_a = cluster_a->get_any_value (key);
      const svalue *sval_b = cluster_b->get_any_value (key);

      if (key->symbolic_p ())
	num_symbolic_keys++;
      else
	num_concrete_keys++;

      if (sval_a == sval_b)
	{
	  gcc_assert (sval_a);
	  out_cluster->m_map.put (key, sval_a);
	  continue;
	}
      else if (sval_a && sval_b)
	{
	  if (const svalue *merged_sval
	      = sval_a->can_merge_p (sval_b, sval_mgr, merger))
	    {
	      out_cluster->m_map.put (key, merged_sval);
	      continue;
	    }
	  /* Merger of the svalues failed.  Reject merger of the cluster.   */
	  return false;
	}

      /* If we get here, then one cluster binds this key and the other
	 doesn't; merge them as "UNKNOWN".  */
      gcc_assert (sval_a || sval_b);

      const svalue *bound_sval = sval_a ? sval_a : sval_b;
      tree type = bound_sval->get_type ();
      const svalue *unknown_sval
	= mgr->get_svalue_manager ()->get_or_create_unknown_svalue (type);

      /* ...but reject the merger if this sval shouldn't be mergeable
	 (e.g. reject merging svalues that have non-purgable sm-state,
	 to avoid falsely reporting memory leaks by merging them
	 with something else).  */
      if (!bound_sval->can_merge_p (unknown_sval, sval_mgr, merger))
	return false;

      out_cluster->m_map.put (key, unknown_sval);
    }

  /* We can only have at most one symbolic key per cluster,
     and if we do, we can't have any concrete keys.
     If this happens, mark the cluster as touched, with no keys.  */
  if (num_symbolic_keys >= 2
      || (num_concrete_keys > 0 && num_symbolic_keys > 0))
    {
      out_cluster->m_touched = true;
      out_cluster->m_map.empty ();
    }

  /* We don't handle other kinds of overlaps yet.  */

  return true;
}

/* Update this cluster to reflect an attempt to merge OTHER where there
   is no other cluster to merge with, and so we're notionally merging the
   bound values in OTHER with the initial value of the relevant regions.

   Any bound keys in OTHER should be bound to unknown in this.  */

void
binding_cluster::make_unknown_relative_to (const binding_cluster *other,
					   store *out_store,
					   store_manager *mgr)
{
  for (map_t::iterator iter = other->m_map.begin ();
       iter != other->m_map.end (); ++iter)
    {
      const binding_key *iter_key = (*iter).first;
      const svalue *iter_sval = (*iter).second;
      const svalue *unknown_sval
	= mgr->get_svalue_manager ()->get_or_create_unknown_svalue
	  (iter_sval->get_type ());
      m_map.put (iter_key, unknown_sval);

      /* For any pointers in OTHER, the merger means that the
	 concrete pointer becomes an unknown value, which could
	 show up as a false report of a leak when considering what
	 pointers are live before vs after.
	 Avoid this by marking the base regions they point to as having
	 escaped.  */
      if (const region_svalue *region_sval
	  = iter_sval->dyn_cast_region_svalue ())
	{
	  const region *base_reg
	    = region_sval->get_pointee ()->get_base_region ();
	  if (base_reg->tracked_p ()
	      && !base_reg->symbolic_for_unknown_ptr_p ())
	    {
	      binding_cluster *c = out_store->get_or_create_cluster (base_reg);
	      c->mark_as_escaped ();
	    }
	}
    }
}

/* Mark this cluster as having escaped.  */

void
binding_cluster::mark_as_escaped ()
{
  m_escaped = true;
}

/* If this cluster has escaped (by this call, or by an earlier one, or
   by being an external param), then unbind all values and mark it
   as "touched", so that it has a conjured value, rather than an
   initial_svalue.
   Use P to purge state involving conjured_svalues.  */

void
binding_cluster::on_unknown_fncall (const gcall *call,
				    store_manager *mgr,
				    const conjured_purge &p)
{
  if (m_escaped)
    {
      m_map.empty ();

      if (!m_base_region->empty_p ())
	{
	  /* Bind it to a new "conjured" value using CALL.  */
	  const svalue *sval
	    = mgr->get_svalue_manager ()->get_or_create_conjured_svalue
	    (m_base_region->get_type (), call, m_base_region, p);
	  bind (mgr, m_base_region, sval);
	}

      m_touched = true;
    }
}

/* Mark this cluster as having been clobbered by STMT.
   Use P to purge state involving conjured_svalues.  */

void
binding_cluster::on_asm (const gasm *stmt,
			 store_manager *mgr,
			 const conjured_purge &p)
{
  m_map.empty ();

  /* Bind it to a new "conjured" value using CALL.  */
  const svalue *sval
    = mgr->get_svalue_manager ()->get_or_create_conjured_svalue
    (m_base_region->get_type (), stmt, m_base_region, p);
  bind (mgr, m_base_region, sval);

  m_touched = true;
}

/* Return true if this cluster has escaped.  */

bool
binding_cluster::escaped_p () const
{
  /* Consider the "errno" region to always have escaped.  */
  if (m_base_region->get_kind () == RK_ERRNO)
    return true;
  return m_escaped;
}

/* Return true if this binding_cluster has no information
   i.e. if there are no bindings, and it hasn't been marked as having
   escaped, or touched symbolically.  */

bool
binding_cluster::redundant_p () const
{
  return (m_map.elements () == 0
	  && !m_escaped
	  && !m_touched);
}

/* Add PV to OUT_PVS, casting it to TYPE if it is not already of that type.  */

static void
append_pathvar_with_type (path_var pv,
			  tree type,
			  auto_vec<path_var> *out_pvs)
{
  gcc_assert (pv.m_tree);

  if (TREE_TYPE (pv.m_tree) != type)
    pv.m_tree = build1 (NOP_EXPR, type, pv.m_tree);

  out_pvs->safe_push (pv);
}

/* Find representative path_vars for SVAL within this binding of BASE_REG,
   appending the results to OUT_PVS.  */

void
binding_cluster::get_representative_path_vars (const region_model *model,
					       svalue_set *visited,
					       const region *base_reg,
					       const svalue *sval,
					       logger *logger,
					       auto_vec<path_var> *out_pvs)
  const
{
  sval = simplify_for_binding (sval);

  for (map_t::iterator iter = m_map.begin (); iter != m_map.end (); ++iter)
    {
      const binding_key *key = (*iter).first;
      const svalue *bound_sval = (*iter).second;
      if (bound_sval == sval)
	{
	  if (const concrete_binding *ckey
		= key->dyn_cast_concrete_binding ())
	    {
	      auto_vec <const region *> subregions;
	      base_reg->get_subregions_for_binding
		(model->get_manager (),
		 ckey->get_start_bit_offset (),
		 ckey->get_size_in_bits (),
		 sval->get_type (),
		 &subregions);
	      unsigned i;
	      const region *subregion;
	      FOR_EACH_VEC_ELT (subregions, i, subregion)
		{
		  if (path_var pv
		      = model->get_representative_path_var (subregion,
							    visited,
							    logger))
		    append_pathvar_with_type (pv, sval->get_type (), out_pvs);
		}
	    }
	  else
	    {
	      const symbolic_binding *skey = (const symbolic_binding *)key;
	      if (path_var pv
		  = model->get_representative_path_var (skey->get_region (),
							visited,
							logger))
		append_pathvar_with_type (pv, sval->get_type (), out_pvs);
	    }
	}
    }
}

/* Get any svalue bound to KEY, or NULL.  */

const svalue *
binding_cluster::get_any_value (const binding_key *key) const
{
  return m_map.get (key);
}

/* If this cluster has a single direct binding for the whole of the region,
   return it.
   For use in simplifying dumps.  */

const svalue *
binding_cluster::maybe_get_simple_value (store_manager *mgr) const
{
  /* Fail gracefully if MGR is NULL to make it easier to dump store
     instances in the debugger.  */
  if (mgr == NULL)
    return NULL;

  if (m_map.elements () != 1)
    return NULL;

  if (m_base_region->empty_p ())
    return NULL;

  const binding_key *key = binding_key::make (mgr, m_base_region);
  return get_any_value (key);
}

/* class store_manager.  */

logger *
store_manager::get_logger () const
{
  return m_mgr->get_logger ();
}

/* binding consolidation.  */

const concrete_binding *
store_manager::get_concrete_binding (bit_offset_t start_bit_offset,
				     bit_offset_t size_in_bits)
{
  concrete_binding b (start_bit_offset, size_in_bits);
  if (concrete_binding *existing = m_concrete_binding_key_mgr.get (b))
    return existing;

  concrete_binding *to_save = new concrete_binding (b);
  m_concrete_binding_key_mgr.put (b, to_save);
  return to_save;
}

const symbolic_binding *
store_manager::get_symbolic_binding (const region *reg)
{
  symbolic_binding b (reg);
  if (symbolic_binding *existing = m_symbolic_binding_key_mgr.get (b))
    return existing;

  symbolic_binding *to_save = new symbolic_binding (b);
  m_symbolic_binding_key_mgr.put (b, to_save);
  return to_save;
}

/* class store.  */

/* store's default ctor.  */

store::store ()
: m_called_unknown_fn (false)
{
}

/* store's copy ctor.  */

store::store (const store &other)
: m_cluster_map (other.m_cluster_map.elements ()),
  m_called_unknown_fn (other.m_called_unknown_fn)
{
  for (cluster_map_t::iterator iter = other.m_cluster_map.begin ();
       iter != other.m_cluster_map.end ();
       ++iter)
    {
      const region *reg = (*iter).first;
      gcc_assert (reg);
      binding_cluster *c = (*iter).second;
      gcc_assert (c);
      m_cluster_map.put (reg, new binding_cluster (*c));
    }
}

/* store's dtor.  */

store::~store ()
{
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end ();
       ++iter)
    delete (*iter).second;
}

/* store's assignment operator.  */

store &
store::operator= (const store &other)
{
  /* Delete existing cluster map.  */
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end ();
       ++iter)
    delete (*iter).second;
  m_cluster_map.empty ();

  m_called_unknown_fn = other.m_called_unknown_fn;

  for (cluster_map_t::iterator iter = other.m_cluster_map.begin ();
       iter != other.m_cluster_map.end ();
       ++iter)
    {
      const region *reg = (*iter).first;
      gcc_assert (reg);
      binding_cluster *c = (*iter).second;
      gcc_assert (c);
      m_cluster_map.put (reg, new binding_cluster (*c));
    }
  return *this;
}

/* store's equality operator.  */

bool
store::operator== (const store &other) const
{
  if (m_called_unknown_fn != other.m_called_unknown_fn)
    return false;

  if (m_cluster_map.elements () != other.m_cluster_map.elements ())
    return false;

  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end ();
       ++iter)
    {
      const region *reg = (*iter).first;
      binding_cluster *c = (*iter).second;
      binding_cluster **other_slot
	= const_cast <cluster_map_t &> (other.m_cluster_map).get (reg);
      if (other_slot == NULL)
	return false;
      if (*c != **other_slot)
	return false;
    }

  gcc_checking_assert (hash () == other.hash ());

  return true;
}

/* Get a hash value for this store.  */

hashval_t
store::hash () const
{
  hashval_t result = 0;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end ();
       ++iter)
    result ^= (*iter).second->hash ();
  return result;
}

/* Populate OUT with a sorted list of parent regions for the regions in IN,
   removing duplicate parents.  */

static void
get_sorted_parent_regions (auto_vec<const region *> *out,
			   auto_vec<const region *> &in)
{
  /* Get the set of parent regions.  */
  hash_set<const region *> parent_regions;
  const region *iter_reg;
  unsigned i;
  FOR_EACH_VEC_ELT (in, i, iter_reg)
    {
      const region *parent_reg = iter_reg->get_parent_region ();
      gcc_assert (parent_reg);
      parent_regions.add (parent_reg);
    }

  /* Write to OUT.  */
  for (hash_set<const region *>::iterator iter = parent_regions.begin();
       iter != parent_regions.end(); ++iter)
    out->safe_push (*iter);

  /* Sort OUT.  */
  out->qsort (region::cmp_ptr_ptr);
}

/* Dump a representation of this store to PP, using SIMPLE to control how
   svalues and regions are printed.
   MGR is used for simplifying dumps if non-NULL, but can also be NULL
   (to make it easier to use from the debugger).  */

void
store::dump_to_pp (pretty_printer *pp, bool simple, bool multiline,
		   store_manager *mgr) const
{
  /* Sort into some deterministic order.  */
  auto_vec<const region *> base_regions;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      base_regions.safe_push (base_reg);
    }
  base_regions.qsort (region::cmp_ptr_ptr);

  /* Gather clusters, organize by parent region, so that we can group
     together locals, globals, etc.  */
  auto_vec<const region *> parent_regions;
  get_sorted_parent_regions (&parent_regions, base_regions);

  const region *parent_reg;
  unsigned i;
  FOR_EACH_VEC_ELT (parent_regions, i, parent_reg)
    {
      gcc_assert (parent_reg);
      pp_string (pp, "clusters within ");
      parent_reg->dump_to_pp (pp, simple);
      if (multiline)
	pp_newline (pp);
      else
	pp_string (pp, " {");

      const region *base_reg;
      unsigned j;
      FOR_EACH_VEC_ELT (base_regions, j, base_reg)
	{
	  /* This is O(N * M), but N ought to be small.  */
	  if (base_reg->get_parent_region () != parent_reg)
	    continue;
	  binding_cluster *cluster
	    = *const_cast<cluster_map_t &> (m_cluster_map).get (base_reg);
	  if (!multiline)
	    {
	      if (j > 0)
		pp_string (pp, ", ");
	    }
	  if (const svalue *sval = cluster->maybe_get_simple_value (mgr))
	    {
	      /* Special-case to simplify dumps for the common case where
		 we just have one value directly bound to the whole of a
		 region.  */
	      if (multiline)
		{
		  pp_string (pp, "  cluster for: ");
		  base_reg->dump_to_pp (pp, simple);
		  pp_string (pp, ": ");
		  sval->dump_to_pp (pp, simple);
		  if (cluster->escaped_p ())
		    pp_string (pp, " (ESCAPED)");
		  if (cluster->touched_p ())
		    pp_string (pp, " (TOUCHED)");
		  pp_newline (pp);
		}
	      else
		{
		  pp_string (pp, "region: {");
		  base_reg->dump_to_pp (pp, simple);
		  pp_string (pp, ", value: ");
		  sval->dump_to_pp (pp, simple);
		  if (cluster->escaped_p ())
		    pp_string (pp, " (ESCAPED)");
		  if (cluster->touched_p ())
		    pp_string (pp, " (TOUCHED)");
		  pp_string (pp, "}");
		}
	    }
	  else if (multiline)
	    {
	      pp_string (pp, "  cluster for: ");
	      base_reg->dump_to_pp (pp, simple);
	      pp_newline (pp);
	      cluster->dump_to_pp (pp, simple, multiline);
	    }
	  else
	    {
	      pp_string (pp, "base region: {");
	      base_reg->dump_to_pp (pp, simple);
	      pp_string (pp, "} has cluster: {");
	      cluster->dump_to_pp (pp, simple, multiline);
	      pp_string (pp, "}");
	    }
	}
      if (!multiline)
	pp_string (pp, "}");
    }
  pp_printf (pp, "m_called_unknown_fn: %s",
	     m_called_unknown_fn ? "TRUE" : "FALSE");
  if (multiline)
    pp_newline (pp);
}

/* Dump a multiline representation of this store to stderr.  */

DEBUG_FUNCTION void
store::dump (bool simple) const
{
  tree_dump_pretty_printer pp (stderr);
  dump_to_pp (&pp, simple, true, NULL);
  pp_newline (&pp);
}

/* Assert that this object is valid.  */

void
store::validate () const
{
  for (auto iter : m_cluster_map)
    iter.second->validate ();
}

/* Return a new json::object of the form
   {PARENT_REGION_DESC: {BASE_REGION_DESC: object for binding_map,
			 ... for each cluster within parent region},
    ...for each parent region,
    "called_unknown_fn": true/false}.  */

json::object *
store::to_json () const
{
  json::object *store_obj = new json::object ();

  /* Sort into some deterministic order.  */
  auto_vec<const region *> base_regions;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      base_regions.safe_push (base_reg);
    }
  base_regions.qsort (region::cmp_ptr_ptr);

  /* Gather clusters, organize by parent region, so that we can group
     together locals, globals, etc.  */
  auto_vec<const region *> parent_regions;
  get_sorted_parent_regions (&parent_regions, base_regions);

  const region *parent_reg;
  unsigned i;
  FOR_EACH_VEC_ELT (parent_regions, i, parent_reg)
    {
      gcc_assert (parent_reg);

      json::object *clusters_in_parent_reg_obj = new json::object ();

      const region *base_reg;
      unsigned j;
      FOR_EACH_VEC_ELT (base_regions, j, base_reg)
	{
	  /* This is O(N * M), but N ought to be small.  */
	  if (base_reg->get_parent_region () != parent_reg)
	    continue;
	  binding_cluster *cluster
	    = *const_cast<cluster_map_t &> (m_cluster_map).get (base_reg);
	  label_text base_reg_desc = base_reg->get_desc ();
	  clusters_in_parent_reg_obj->set (base_reg_desc.get (),
					   cluster->to_json ());
	}
      label_text parent_reg_desc = parent_reg->get_desc ();
      store_obj->set (parent_reg_desc.get (), clusters_in_parent_reg_obj);
    }

  store_obj->set_bool ("called_unknown_fn", m_called_unknown_fn);

  return store_obj;
}

std::unique_ptr<text_art::tree_widget>
store::make_dump_widget (const text_art::dump_widget_info &dwi,
			 store_manager *mgr) const
{
  std::unique_ptr<text_art::tree_widget> store_widget
    (text_art::tree_widget::make (dwi, "Store"));

  store_widget->add_child
    (text_art::tree_widget::from_fmt (dwi, nullptr,
				      "m_called_unknown_fn: %s",
				      m_called_unknown_fn ? "true" : "false"));

    /* Sort into some deterministic order.  */
  auto_vec<const region *> base_regions;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      base_regions.safe_push (base_reg);
    }
  base_regions.qsort (region::cmp_ptr_ptr);

  /* Gather clusters, organize by parent region, so that we can group
     together locals, globals, etc.  */
  auto_vec<const region *> parent_regions;
  get_sorted_parent_regions (&parent_regions, base_regions);

  const region *parent_reg;
  unsigned i;
  FOR_EACH_VEC_ELT (parent_regions, i, parent_reg)
    {
      gcc_assert (parent_reg);

      pretty_printer the_pp;
      pretty_printer * const pp = &the_pp;
      pp_format_decoder (pp) = default_tree_printer;
      pp_show_color (pp) = true;
      const bool simple = true;

      parent_reg->dump_to_pp (pp, simple);

      std::unique_ptr<text_art::tree_widget> parent_reg_widget
	(text_art::tree_widget::make (dwi, pp));

      const region *base_reg;
      unsigned j;
      FOR_EACH_VEC_ELT (base_regions, j, base_reg)
	{
	  /* This is O(N * M), but N ought to be small.  */
	  if (base_reg->get_parent_region () != parent_reg)
	    continue;
	  binding_cluster *cluster
	    = *const_cast<cluster_map_t &> (m_cluster_map).get (base_reg);
	  parent_reg_widget->add_child
	    (cluster->make_dump_widget (dwi, mgr));
	}
      store_widget->add_child (std::move (parent_reg_widget));
    }

  return store_widget;
}

/* Get any svalue bound to REG, or NULL.  */

const svalue *
store::get_any_binding (store_manager *mgr, const region *reg) const
{
  const region *base_reg = reg->get_base_region ();
  binding_cluster **cluster_slot
    = const_cast <cluster_map_t &> (m_cluster_map).get (base_reg);
  if (!cluster_slot)
    return NULL;
  return (*cluster_slot)->get_any_binding (mgr, reg);
}

/* Set the value of LHS_REG to RHS_SVAL.  */

void
store::set_value (store_manager *mgr, const region *lhs_reg,
		  const svalue *rhs_sval,
		  uncertainty_t *uncertainty)
{
  logger *logger = mgr->get_logger ();
  LOG_SCOPE (logger);

  remove_overlapping_bindings (mgr, lhs_reg, uncertainty);

  if (lhs_reg->get_type ())
    rhs_sval = simplify_for_binding (rhs_sval);
  /* ...but if we have no type for the region, retain any cast.  */

  const region *lhs_base_reg = lhs_reg->get_base_region ();
  binding_cluster *lhs_cluster;
  if (lhs_base_reg->symbolic_for_unknown_ptr_p ())
    {
      /* Reject attempting to bind values into a symbolic region
	 for an unknown ptr; merely invalidate values below.  */
      lhs_cluster = NULL;

      /* The LHS of the write is *UNKNOWN.  If the RHS is a pointer,
	 then treat the region being pointed to as having escaped.  */
      if (const region_svalue *ptr_sval = rhs_sval->dyn_cast_region_svalue ())
	{
	  const region *ptr_dst = ptr_sval->get_pointee ();
	  const region *ptr_base_reg = ptr_dst->get_base_region ();
	  mark_as_escaped (ptr_base_reg);
	}
      if (uncertainty)
	uncertainty->on_maybe_bound_sval (rhs_sval);
    }
  else if (lhs_base_reg->tracked_p ())
    {
      lhs_cluster = get_or_create_cluster (lhs_base_reg);
      lhs_cluster->bind (mgr, lhs_reg, rhs_sval);
    }
  else
    {
      /* Reject attempting to bind values into an untracked region;
	 merely invalidate values below.  */
      lhs_cluster = NULL;
    }

  /* Bindings to a cluster can affect other clusters if a symbolic
     base region is involved.
     Writes to concrete clusters can't affect other concrete clusters,
     but can affect symbolic clusters.
     Writes to symbolic clusters can affect both concrete and symbolic
     clusters.
     Invalidate our knowledge of other clusters that might have been
     affected by the write.
     Gather the set of all svalues that might still be live even if
     the store doesn't refer to them.  */
  svalue_set maybe_live_values;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      const region *iter_base_reg = (*iter).first;
      binding_cluster *iter_cluster = (*iter).second;
      if (iter_base_reg != lhs_base_reg
	  && (lhs_cluster == NULL
	      || lhs_cluster->symbolic_p ()
	      || iter_cluster->symbolic_p ()))
	{
	  tristate t_alias = eval_alias (lhs_base_reg, iter_base_reg);
	  switch (t_alias.get_value ())
	    {
	    default:
	      gcc_unreachable ();

	    case tristate::TS_UNKNOWN:
	      if (logger)
		{
		  pretty_printer *pp = logger->get_printer ();
		  logger->start_log_line ();
		  logger->log_partial ("possible aliasing of ");
		  iter_base_reg->dump_to_pp (pp, true);
		  logger->log_partial (" when writing SVAL: ");
		  rhs_sval->dump_to_pp (pp, true);
		  logger->log_partial (" to LHS_REG: ");
		  lhs_reg->dump_to_pp (pp, true);
		  logger->end_log_line ();
		}
	      /* Mark all of iter_cluster's iter_base_reg as unknown,
		 using LHS_REG when considering overlaps, to handle
		 symbolic vs concrete issues.  */
	      iter_cluster->mark_region_as_unknown
		(mgr,
		 iter_base_reg, /* reg_to_bind */
		 lhs_reg, /* reg_for_overlap */
		 uncertainty,
		 &maybe_live_values);
	      break;

	    case tristate::TS_TRUE:
	      gcc_unreachable ();
	      break;

	    case tristate::TS_FALSE:
	      /* If they can't be aliases, then don't invalidate this
		 cluster.  */
	      break;
	    }
	}
    }
  /* Given the set of svalues that might still be live, process them
     (e.g. marking regions as escaped).
     We do this after the iteration to avoid potentially changing
     m_cluster_map whilst iterating over it.  */
  on_maybe_live_values (maybe_live_values);
}

/* Determine if BASE_REG_A could be an alias of BASE_REG_B.  */

tristate
store::eval_alias (const region *base_reg_a,
		   const region *base_reg_b) const
{
  /* SSA names can't alias.  */
  tree decl_a = base_reg_a->maybe_get_decl ();
  if (decl_a && TREE_CODE (decl_a) == SSA_NAME)
    return tristate::TS_FALSE;
  tree decl_b = base_reg_b->maybe_get_decl ();
  if (decl_b && TREE_CODE (decl_b) == SSA_NAME)
    return tristate::TS_FALSE;

  /* Try both ways, for symmetry.  */
  tristate ts_ab = eval_alias_1 (base_reg_a, base_reg_b);
  if (ts_ab.is_false ())
    return tristate::TS_FALSE;
  tristate ts_ba = eval_alias_1 (base_reg_b, base_reg_a);
  if (ts_ba.is_false ())
    return tristate::TS_FALSE;
  return tristate::TS_UNKNOWN;
}

/* Half of store::eval_alias; called twice for symmetry.  */

tristate
store::eval_alias_1 (const region *base_reg_a,
		     const region *base_reg_b) const
{
  /* If they're in different memory spaces, they can't alias.  */
  {
    enum memory_space memspace_a = base_reg_a->get_memory_space ();
    if (memspace_a != MEMSPACE_UNKNOWN)
      {
	enum memory_space memspace_b = base_reg_b->get_memory_space ();
	if (memspace_b != MEMSPACE_UNKNOWN
	    && memspace_a != memspace_b)
	  return tristate::TS_FALSE;
      }
  }

  if (const symbolic_region *sym_reg_a
      = base_reg_a->dyn_cast_symbolic_region ())
    {
      const svalue *sval_a = sym_reg_a->get_pointer ();
      if (tree decl_b = base_reg_b->maybe_get_decl ())
	{
	  if (!may_be_aliased (decl_b))
	    return tristate::TS_FALSE;
	  if (sval_a->get_kind () == SK_INITIAL)
	    if (!is_global_var (decl_b))
	      {
		/* The initial value of a pointer can't point to a local.  */
		return tristate::TS_FALSE;
	      }
	}
      if (sval_a->get_kind () == SK_INITIAL
	  && base_reg_b->get_kind () == RK_HEAP_ALLOCATED)
	{
	  /* The initial value of a pointer can't point to a
	     region that was allocated on the heap after the beginning of the
	     path.  */
	  return tristate::TS_FALSE;
	}
      if (const widening_svalue *widening_sval_a
	  = sval_a->dyn_cast_widening_svalue ())
	{
	  const svalue *base = widening_sval_a->get_base_svalue ();
	  if (const region_svalue *region_sval
		= base->dyn_cast_region_svalue ())
	    {
	      const region *pointee = region_sval->get_pointee ();
	      /* If we have sval_a is WIDENING(&REGION, OP), and
		 B can't alias REGION, then B can't alias A either.
		 For example, A might arise from
		   for (ptr = &REGION; ...; ptr++)
		 where sval_a is ptr in the 2nd iteration of the loop.
		 We want to ensure that "*ptr" can only clobber things
		 within REGION's base region.  */
	      tristate ts = eval_alias (pointee->get_base_region (),
					base_reg_b);
	      if (ts.is_false ())
		return tristate::TS_FALSE;
	    }
	}
    }
  return tristate::TS_UNKNOWN;
}

/* Record all of the values in MAYBE_LIVE_VALUES as being possibly live.  */

void
store::on_maybe_live_values (const svalue_set &maybe_live_values)
{
  for (auto sval : maybe_live_values)
    {
      if (const region_svalue *ptr_sval = sval->dyn_cast_region_svalue ())
	{
	  const region *base_reg = ptr_sval->get_pointee ()->get_base_region ();
	  mark_as_escaped (base_reg);
	}
    }
}

/* Remove all bindings overlapping REG within this store.  */

void
store::clobber_region (store_manager *mgr, const region *reg)
{
  const region *base_reg = reg->get_base_region ();
  binding_cluster **slot = m_cluster_map.get (base_reg);
  if (!slot)
    return;
  binding_cluster *cluster = *slot;
  cluster->clobber_region (mgr, reg);
  if (cluster->redundant_p ())
    {
      delete cluster;
      m_cluster_map.remove (base_reg);
    }
}

/* Remove any bindings for REG within this store.  */

void
store::purge_region (store_manager *mgr, const region *reg)
{
  const region *base_reg = reg->get_base_region ();
  binding_cluster **slot = m_cluster_map.get (base_reg);
  if (!slot)
    return;
  binding_cluster *cluster = *slot;
  cluster->purge_region (mgr, reg);
  if (cluster->redundant_p ())
    {
      delete cluster;
      m_cluster_map.remove (base_reg);
    }
}

/* Fill REG with SVAL.  */

void
store::fill_region (store_manager *mgr, const region *reg, const svalue *sval)
{
  /* Filling an empty region is a no-op.  */
  if (reg->empty_p ())
    return;

  const region *base_reg = reg->get_base_region ();
  if (base_reg->symbolic_for_unknown_ptr_p ()
      || !base_reg->tracked_p ())
    return;
  binding_cluster *cluster = get_or_create_cluster (base_reg);
  cluster->fill_region (mgr, reg, sval);
}

/* Zero-fill REG.  */

void
store::zero_fill_region (store_manager *mgr, const region *reg)
{
  region_model_manager *sval_mgr = mgr->get_svalue_manager ();
  const svalue *zero_sval = sval_mgr->get_or_create_int_cst (char_type_node, 0);
  fill_region (mgr, reg, zero_sval);
}

/* Mark REG as having unknown content.  */

void
store::mark_region_as_unknown (store_manager *mgr, const region *reg,
			       uncertainty_t *uncertainty,
			       svalue_set *maybe_live_values)
{
  const region *base_reg = reg->get_base_region ();
  if (base_reg->symbolic_for_unknown_ptr_p ()
      || !base_reg->tracked_p ())
    return;
  binding_cluster *cluster = get_or_create_cluster (base_reg);
  cluster->mark_region_as_unknown (mgr, reg, reg, uncertainty,
				   maybe_live_values);
}

/* Purge state involving SVAL.  */

void
store::purge_state_involving (const svalue *sval,
			      region_model_manager *sval_mgr)
{
  auto_vec <const region *> base_regs_to_purge;
  for (auto iter : m_cluster_map)
    {
      const region *base_reg = iter.first;
      if (base_reg->involves_p (sval))
	base_regs_to_purge.safe_push (base_reg);
      else
	{
	  binding_cluster *cluster = iter.second;
	  cluster->purge_state_involving (sval, sval_mgr);
	}
    }

  for (auto iter : base_regs_to_purge)
    purge_cluster (iter);
}

/* Get the cluster for BASE_REG, or NULL (const version).  */

const binding_cluster *
store::get_cluster (const region *base_reg) const
{
  gcc_assert (base_reg);
  gcc_assert (base_reg->get_base_region () == base_reg);
  if (binding_cluster **slot
	= const_cast <cluster_map_t &> (m_cluster_map).get (base_reg))
    return *slot;
  else
    return NULL;
}

/* Get the cluster for BASE_REG, or NULL (non-const version).  */

binding_cluster *
store::get_cluster (const region *base_reg)
{
  gcc_assert (base_reg);
  gcc_assert (base_reg->get_base_region () == base_reg);
  if (binding_cluster **slot = m_cluster_map.get (base_reg))
    return *slot;
  else
    return NULL;
}

/* Get the cluster for BASE_REG, creating it if doesn't already exist.  */

binding_cluster *
store::get_or_create_cluster (const region *base_reg)
{
  gcc_assert (base_reg);
  gcc_assert (base_reg->get_base_region () == base_reg);

  /* We shouldn't create clusters for dereferencing an UNKNOWN ptr.  */
  gcc_assert (!base_reg->symbolic_for_unknown_ptr_p ());

  /* We shouldn't create clusters for base regions that aren't trackable.  */
  gcc_assert (base_reg->tracked_p ());

  if (binding_cluster **slot = m_cluster_map.get (base_reg))
    return *slot;

  binding_cluster *cluster = new binding_cluster (base_reg);
  m_cluster_map.put (base_reg, cluster);

  return cluster;
}

/* Remove any cluster for BASE_REG, for use by
   region_model::unbind_region_and_descendents
   when popping stack frames and handling deleted heap regions.  */

void
store::purge_cluster (const region *base_reg)
{
  gcc_assert (base_reg->get_base_region () == base_reg);
  binding_cluster **slot = m_cluster_map.get (base_reg);
  if (!slot)
    return;
  binding_cluster *cluster = *slot;
  delete cluster;
  m_cluster_map.remove (base_reg);
}

/* Attempt to merge STORE_A and STORE_B into OUT_STORE.
   Return true if successful, or false if the stores can't be merged.  */

bool
store::can_merge_p (const store *store_a, const store *store_b,
		    store *out_store, store_manager *mgr,
		    model_merger *merger)
{
  if (store_a->m_called_unknown_fn || store_b->m_called_unknown_fn)
    out_store->m_called_unknown_fn = true;

  /* Get the union of all base regions for STORE_A and STORE_B.  */
  hash_set<const region *> base_regions;
  for (cluster_map_t::iterator iter_a = store_a->m_cluster_map.begin ();
       iter_a != store_a->m_cluster_map.end (); ++iter_a)
    {
      const region *base_reg_a = (*iter_a).first;
      base_regions.add (base_reg_a);
    }
  for (cluster_map_t::iterator iter_b = store_b->m_cluster_map.begin ();
       iter_b != store_b->m_cluster_map.end (); ++iter_b)
    {
      const region *base_reg_b = (*iter_b).first;
      base_regions.add (base_reg_b);
    }

  /* Sort the base regions before considering them.  This ought not to
     affect the results, but can affect which types UNKNOWN_REGIONs are
     created for in a run; sorting them thus avoids minor differences
     in logfiles.  */
  auto_vec<const region *> vec_base_regions (base_regions.elements ());
  for (hash_set<const region *>::iterator iter = base_regions.begin ();
       iter != base_regions.end (); ++iter)
    vec_base_regions.quick_push (*iter);
  vec_base_regions.qsort (region::cmp_ptr_ptr);
  unsigned i;
  const region *base_reg;
  FOR_EACH_VEC_ELT (vec_base_regions, i, base_reg)
    {
      const binding_cluster *cluster_a = store_a->get_cluster (base_reg);
      const binding_cluster *cluster_b = store_b->get_cluster (base_reg);
      /* At least one of cluster_a and cluster_b must be non-NULL.  */
      binding_cluster *out_cluster
	= out_store->get_or_create_cluster (base_reg);
      if (!binding_cluster::can_merge_p (cluster_a, cluster_b,
					 out_cluster, out_store, mgr, merger))
	return false;
    }
  return true;
}

/* Mark the cluster for BASE_REG as having escaped.
   For use when handling an unrecognized function call, and
   for params to "top-level" calls.
   Further unknown function calls could touch it, even if the cluster
   isn't reachable from args of those calls.  */

void
store::mark_as_escaped (const region *base_reg)
{
  gcc_assert (base_reg);
  gcc_assert (base_reg->get_base_region () == base_reg);

  if (base_reg->symbolic_for_unknown_ptr_p ()
      || !base_reg->tracked_p ())
    return;

  binding_cluster *cluster = get_or_create_cluster (base_reg);
  cluster->mark_as_escaped ();
}

/* Handle an unknown fncall by updating any clusters that have escaped
   (either in this fncall, or in a prior one).  */

void
store::on_unknown_fncall (const gcall *call, store_manager *mgr,
			  const conjured_purge &p)
{
  m_called_unknown_fn = true;

  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    (*iter).second->on_unknown_fncall (call, mgr, p);
}

/* Return true if a non-const pointer to BASE_REG (or something within it)
   has escaped to code outside of the TU being analyzed.  */

bool
store::escaped_p (const region *base_reg) const
{
  gcc_assert (base_reg);
  gcc_assert (base_reg->get_base_region () == base_reg);

  /* "errno" can always be modified by external code.  */
  if (base_reg->get_kind () == RK_ERRNO)
    return true;

  if (binding_cluster **cluster_slot
      = const_cast <cluster_map_t &>(m_cluster_map).get (base_reg))
    return (*cluster_slot)->escaped_p ();
  return false;
}

/* Populate OUT_PVS with a list of path_vars for describing SVAL based on
   this store, using VISITED to ensure the traversal terminates.  */

void
store::get_representative_path_vars (const region_model *model,
				     svalue_set *visited,
				     const svalue *sval,
				     logger *logger,
				     auto_vec<path_var> *out_pvs) const
{
  gcc_assert (sval);

  /* Find all bindings that reference SVAL.  */
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      binding_cluster *cluster = (*iter).second;
      cluster->get_representative_path_vars (model, visited, base_reg, sval,
					     logger,
					     out_pvs);
    }

  if (const initial_svalue *init_sval = sval->dyn_cast_initial_svalue ())
    {
      const region *reg = init_sval->get_region ();
      if (path_var pv = model->get_representative_path_var (reg,
							    visited,
							    logger))
	out_pvs->safe_push (pv);
    }
}

/* Remove all bindings overlapping REG within this store, removing
   any clusters that become redundant.

   If UNCERTAINTY is non-NULL, use it to record any svalues that
   were removed, as being maybe-bound.  */

void
store::remove_overlapping_bindings (store_manager *mgr, const region *reg,
				    uncertainty_t *uncertainty)
{
  const region *base_reg = reg->get_base_region ();
  if (binding_cluster **cluster_slot = m_cluster_map.get (base_reg))
    {
      binding_cluster *cluster = *cluster_slot;
      if (reg == base_reg && !escaped_p (base_reg))
	{
	  /* Remove whole cluster.  */
	  m_cluster_map.remove (base_reg);
	  delete cluster;
	  return;
	}
      /* Pass NULL for the maybe_live_values here, as we don't want to
	 record the old svalues as being maybe-bound.  */
      cluster->remove_overlapping_bindings (mgr, reg, uncertainty, NULL);
    }
}

/* Subclass of visitor that accumulates a hash_set of the regions that
   were visited.  */

struct region_finder : public visitor
{
  void visit_region (const region *reg) final override
  {
    m_regs.add (reg);
  }

  hash_set<const region *> m_regs;
};

/* Canonicalize this store, to maximize the chance of equality between
   instances.  */

void
store::canonicalize (store_manager *mgr)
{
  /* If we have e.g.:
         cluster for: HEAP_ALLOCATED_REGION(543)
           ESCAPED
           TOUCHED
     where the heap region is empty and unreferenced, then purge that
     cluster, to avoid unbounded state chains involving these.  */

  /* Find regions that are referenced by bound values in the store.  */
  region_finder s;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      binding_cluster *cluster = (*iter).second;
      for (binding_cluster::iterator_t bind_iter = cluster->m_map.begin ();
	   bind_iter != cluster->m_map.end (); ++bind_iter)
	(*bind_iter).second->accept (&s);
    }

  /* Locate heap-allocated regions that have empty bindings that weren't
     found above.  */
  hash_set<const region *> purgeable_regions;
  for (cluster_map_t::iterator iter = m_cluster_map.begin ();
       iter != m_cluster_map.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      binding_cluster *cluster = (*iter).second;
      if (base_reg->get_kind () == RK_HEAP_ALLOCATED)
	{
	  /* Don't purge a heap-allocated region that's been marked as
	     escaping, since this could be recording that a ptr to it
	     was written to an unknown symbolic region along this
	     path, and so we don't know whether it's referenced or
	     not, and hence should report it as leaking
	     (PR analyzer/106473).  */
	  if (cluster->escaped_p ())
	    continue;

	  if (cluster->empty_p ())
	    if (!s.m_regs.contains (base_reg))
	      purgeable_regions.add (base_reg);

	  /* Also cover the UNKNOWN case.  */
	  if (const svalue *sval = cluster->maybe_get_simple_value (mgr))
	    if (sval->get_kind () == SK_UNKNOWN)
	      if (!s.m_regs.contains (base_reg))
		purgeable_regions.add (base_reg);
	}
    }

  /* Purge them.  */
  for (hash_set<const region *>::iterator iter = purgeable_regions.begin ();
       iter != purgeable_regions.end (); ++iter)
    {
      const region *base_reg = *iter;
      purge_cluster (base_reg);
    }
}

/* Subroutine for use by exploded_path::feasible_p.

   We need to deal with state differences between:
   (a) when the exploded_graph is being initially constructed and
   (b) when replaying the state changes along a specific path in
   in exploded_path::feasible_p.

   In (a), state merging happens, so when exploring a loop
     for (i = 0; i < 1024; i++)
   on successive iterations we have i == 0, then i == WIDENING.

   In (b), no state merging happens, so naively replaying the path
   that goes twice through the loop then exits it
   would lead to i == 0, then i == 1, and then a (i >= 1024) eedge
   that exits the loop, which would be found to be infeasible as i == 1,
   and the path would be rejected.

   We need to fix up state during replay.  This subroutine is
   called whenever we enter a supernode that we've already
   visited along this exploded_path, passing in OTHER_STORE
   from the destination enode's state.

   Find bindings to widening values in OTHER_STORE.
   For all that are found, update the binding in this store to UNKNOWN.  */

void
store::loop_replay_fixup (const store *other_store,
			  region_model_manager *mgr)
{
  gcc_assert (other_store);
  for (cluster_map_t::iterator iter = other_store->m_cluster_map.begin ();
       iter != other_store->m_cluster_map.end (); ++iter)
    {
      const region *base_reg = (*iter).first;
      binding_cluster *cluster = (*iter).second;
      for (binding_cluster::iterator_t bind_iter = cluster->m_map.begin ();
	   bind_iter != cluster->m_map.end (); ++bind_iter)
	{
	  const binding_key *key = (*bind_iter).first;
	  const svalue *sval = (*bind_iter).second;
	  if (sval->get_kind () == SK_WIDENING)
	    {
	      binding_cluster *this_cluster
		= get_or_create_cluster (base_reg);
	      const svalue *unknown
		= mgr->get_or_create_unknown_svalue (sval->get_type ());
	      this_cluster->bind_key (key, unknown);
	    }
	}
    }
}

/* Use R to replay the bindings from SUMMARY into this object.  */

void
store::replay_call_summary (call_summary_replay &r,
			    const store &summary)
{
  if (summary.m_called_unknown_fn)
    {
      /* A call to an external function occurred in the summary.
	 Hence we need to invalidate our knownledge of globals,
	 escaped regions, etc.  */
      on_unknown_fncall (r.get_call_stmt (),
			 r.get_store_manager (),
			 conjured_purge (r.get_caller_model (),
					 r.get_ctxt ()));
    }

  auto_vec<const region *> keys (summary.m_cluster_map.elements ());
  for (auto kv : summary.m_cluster_map)
    keys.quick_push (kv.first);
  keys.qsort (region::cmp_ptr_ptr);
  for (auto base_reg : keys)
    replay_call_summary_cluster (r, summary, base_reg);
}

/* Use R and SUMMARY to replay the bindings in SUMMARY_CLUSTER
   into this object.  */

void
store::replay_call_summary_cluster (call_summary_replay &r,
				    const store &summary,
				    const region *summary_base_reg)
{
  const call_details &cd = r.get_call_details ();
  region_model_manager *reg_mgr = r.get_manager ();
  store_manager *mgr = reg_mgr->get_store_manager ();
  const binding_cluster *summary_cluster
    = summary.get_cluster (summary_base_reg);

  /* Handle "ESCAPED" and "TOUCHED" flags.  */
  if (summary_cluster->escaped_p () || summary_cluster->touched_p ())
    if (const region *caller_reg
	= r.convert_region_from_summary (summary_base_reg))
      {
	const region *caller_base_reg = caller_reg->get_base_region ();
	if (caller_base_reg->tracked_p ()
	    && !caller_base_reg->symbolic_for_unknown_ptr_p ())
	  {
	    binding_cluster *caller_cluster
	      = get_or_create_cluster (caller_base_reg);
	    if (summary_cluster->escaped_p ())
	      caller_cluster->mark_as_escaped ();
	    if (summary_cluster->touched_p ())
	      caller_cluster->m_touched = true;
	  }
      }

  switch (summary_base_reg->get_kind ())
    {
    /* Top-level regions.  */
    case RK_FRAME:
    case RK_GLOBALS:
    case RK_CODE:
    case RK_STACK:
    case RK_HEAP:
    case RK_THREAD_LOCAL:
    case RK_ROOT:
    /* Child regions.  */
    case RK_FIELD:
    case RK_ELEMENT:
    case RK_OFFSET:
    case RK_SIZED:
    case RK_CAST:
    case RK_BIT_RANGE:
    /* Other regions.  */
    case RK_VAR_ARG:
    case RK_UNKNOWN:
      /* These should never be the base region of a binding cluster.  */
      gcc_unreachable ();
      break;

    case RK_FUNCTION:
    case RK_LABEL:
    case RK_STRING:
      /* These can be marked as escaping.  */
      break;

    case RK_SYMBOLIC:
      {
	const symbolic_region *summary_symbolic_reg
	  = as_a <const symbolic_region *> (summary_base_reg);
	const svalue *summary_ptr_sval = summary_symbolic_reg->get_pointer ();
	const svalue *caller_ptr_sval
	  = r.convert_svalue_from_summary (summary_ptr_sval);
	if (!caller_ptr_sval)
	  return;
	const region *caller_dest_reg
	  = cd.get_model ()->deref_rvalue (caller_ptr_sval,
					   NULL_TREE,
					   cd.get_ctxt ());
	const svalue *summary_sval
	  = summary.get_any_binding (mgr, summary_base_reg);
	if (!summary_sval)
	  return;
	const svalue *caller_sval
	  = r.convert_svalue_from_summary (summary_sval);
	if (!caller_sval)
	  caller_sval =
	    reg_mgr->get_or_create_unknown_svalue (summary_sval->get_type ());
	set_value (mgr, caller_dest_reg,
		   caller_sval, NULL /* uncertainty_t * */);
      }
      break;

    case RK_HEAP_ALLOCATED:
    case RK_DECL:
    case RK_ERRNO:
    case RK_PRIVATE:
      {
	const region *caller_dest_reg
	  = r.convert_region_from_summary (summary_base_reg);
	if (!caller_dest_reg)
	  return;
	const svalue *summary_sval
	  = summary.get_any_binding (mgr, summary_base_reg);
	if (!summary_sval)
	  summary_sval = reg_mgr->get_or_create_compound_svalue
	    (summary_base_reg->get_type (),
	     summary_cluster->get_map ());
	const svalue *caller_sval
	  = r.convert_svalue_from_summary (summary_sval);
	if (!caller_sval)
	  caller_sval =
	    reg_mgr->get_or_create_unknown_svalue (summary_sval->get_type ());
	set_value (mgr, caller_dest_reg,
		   caller_sval, NULL /* uncertainty_t * */);
      }
      break;

    case RK_ALLOCA:
      /* Ignore bindings of alloca regions in the summary.  */
      break;
    }
}

#if CHECKING_P

namespace selftest {

/* Verify that bit_range::intersects_p works as expected.  */

static void
test_bit_range_intersects_p ()
{
  bit_range b0 (0, 1);
  bit_range b1 (1, 1);
  bit_range b2 (2, 1);
  bit_range b3 (3, 1);
  bit_range b4 (4, 1);
  bit_range b5 (5, 1);
  bit_range b6 (6, 1);
  bit_range b7 (7, 1);
  bit_range b1_to_6 (1, 6);
  bit_range b0_to_7 (0, 8);
  bit_range b3_to_5 (3, 3);
  bit_range b6_to_7 (6, 2);

  /* self-intersection is true.  */
  ASSERT_TRUE (b0.intersects_p (b0));
  ASSERT_TRUE (b7.intersects_p (b7));
  ASSERT_TRUE (b1_to_6.intersects_p (b1_to_6));
  ASSERT_TRUE (b0_to_7.intersects_p (b0_to_7));

  ASSERT_FALSE (b0.intersects_p (b1));
  ASSERT_FALSE (b1.intersects_p (b0));
  ASSERT_FALSE (b0.intersects_p (b7));
  ASSERT_FALSE (b7.intersects_p (b0));

  ASSERT_TRUE (b0_to_7.intersects_p (b0));
  ASSERT_TRUE (b0_to_7.intersects_p (b7));
  ASSERT_TRUE (b0.intersects_p (b0_to_7));
  ASSERT_TRUE (b7.intersects_p (b0_to_7));

  ASSERT_FALSE (b0.intersects_p (b1_to_6));
  ASSERT_FALSE (b1_to_6.intersects_p (b0));
  ASSERT_TRUE (b1.intersects_p (b1_to_6));
  ASSERT_TRUE (b1_to_6.intersects_p (b1));
  ASSERT_TRUE (b1_to_6.intersects_p (b6));
  ASSERT_FALSE (b1_to_6.intersects_p (b7));

  ASSERT_TRUE (b1_to_6.intersects_p (b0_to_7));
  ASSERT_TRUE (b0_to_7.intersects_p (b1_to_6));

  ASSERT_FALSE (b3_to_5.intersects_p (b6_to_7));
  ASSERT_FALSE (b6_to_7.intersects_p (b3_to_5));

  bit_range r1 (0,0);
  bit_range r2 (0,0);
  ASSERT_TRUE (b1_to_6.intersects_p (b0_to_7, &r1, &r2));
  ASSERT_EQ (r1.get_start_bit_offset (), 0);
  ASSERT_EQ (r1.m_size_in_bits, 6);
  ASSERT_EQ (r2.get_start_bit_offset (), 1);
  ASSERT_EQ (r2.m_size_in_bits, 6);

  ASSERT_TRUE (b0_to_7.intersects_p (b1_to_6, &r1, &r2));
  ASSERT_EQ (r1.get_start_bit_offset (), 1);
  ASSERT_EQ (r1.m_size_in_bits, 6);
  ASSERT_EQ (r2.get_start_bit_offset (), 0);
  ASSERT_EQ (r2.m_size_in_bits, 6);
}

/* Implementation detail of ASSERT_BIT_RANGE_FROM_MASK_EQ.  */

static void
assert_bit_range_from_mask_eq (const location &loc,
			       unsigned HOST_WIDE_INT mask,
			       const bit_range &expected)
{
  bit_range actual (0, 0);
  bool ok = bit_range::from_mask (mask, &actual);
  ASSERT_TRUE_AT (loc, ok);
  ASSERT_EQ_AT (loc, actual, expected);
}

/* Assert that bit_range::from_mask (MASK) returns true, and writes
   out EXPECTED_BIT_RANGE.  */

#define ASSERT_BIT_RANGE_FROM_MASK_EQ(MASK, EXPECTED_BIT_RANGE) \
  SELFTEST_BEGIN_STMT							\
  assert_bit_range_from_mask_eq (SELFTEST_LOCATION, MASK,		\
				 EXPECTED_BIT_RANGE);			\
  SELFTEST_END_STMT

/* Implementation detail of ASSERT_NO_BIT_RANGE_FROM_MASK.  */

static void
assert_no_bit_range_from_mask_eq (const location &loc,
				  unsigned HOST_WIDE_INT mask)
{
  bit_range actual (0, 0);
  bool ok = bit_range::from_mask (mask, &actual);
  ASSERT_FALSE_AT (loc, ok);
}

/* Assert that bit_range::from_mask (MASK) returns false.  */

#define ASSERT_NO_BIT_RANGE_FROM_MASK(MASK) \
  SELFTEST_BEGIN_STMT							\
  assert_no_bit_range_from_mask_eq (SELFTEST_LOCATION, MASK);		\
  SELFTEST_END_STMT

/* Verify that bit_range::from_mask works as expected.  */

static void
test_bit_range_from_mask ()
{
  /* Should fail on zero.  */
  ASSERT_NO_BIT_RANGE_FROM_MASK (0);

  /* Verify 1-bit masks.  */
  ASSERT_BIT_RANGE_FROM_MASK_EQ (1, bit_range (0, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (2, bit_range (1, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (4, bit_range (2, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (8, bit_range (3, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (16, bit_range (4, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (32, bit_range (5, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (64, bit_range (6, 1));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (128, bit_range (7, 1));

  /* Verify N-bit masks starting at bit 0.  */
  ASSERT_BIT_RANGE_FROM_MASK_EQ (3, bit_range (0, 2));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (7, bit_range (0, 3));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (15, bit_range (0, 4));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (31, bit_range (0, 5));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (63, bit_range (0, 6));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (127, bit_range (0, 7));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (255, bit_range (0, 8));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (0xffff, bit_range (0, 16));

  /* Various other tests. */
  ASSERT_BIT_RANGE_FROM_MASK_EQ (0x30, bit_range (4, 2));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (0x700, bit_range (8, 3));
  ASSERT_BIT_RANGE_FROM_MASK_EQ (0x600, bit_range (9, 2));

  /* Multiple ranges of set bits should fail.  */
  ASSERT_NO_BIT_RANGE_FROM_MASK (0x101);
  ASSERT_NO_BIT_RANGE_FROM_MASK (0xf0f0f0f0);
}

/* Implementation detail of ASSERT_OVERLAP.  */

static void
assert_overlap (const location &loc,
		const concrete_binding *b1,
		const concrete_binding *b2)
{
  ASSERT_TRUE_AT (loc, b1->overlaps_p (*b2));
  ASSERT_TRUE_AT (loc, b2->overlaps_p (*b1));
}

/* Implementation detail of ASSERT_DISJOINT.  */

static void
assert_disjoint (const location &loc,
		 const concrete_binding *b1,
		 const concrete_binding *b2)
{
  ASSERT_FALSE_AT (loc, b1->overlaps_p (*b2));
  ASSERT_FALSE_AT (loc, b2->overlaps_p (*b1));
}

/* Assert that B1 and B2 overlap, checking both ways.  */

#define ASSERT_OVERLAP(B1, B2) \
  SELFTEST_BEGIN_STMT				\
  assert_overlap (SELFTEST_LOCATION, B1, B2);	\
  SELFTEST_END_STMT

/* Assert that B1 and B2 do not overlap, checking both ways.  */

#define ASSERT_DISJOINT(B1, B2) \
  SELFTEST_BEGIN_STMT				\
  assert_disjoint (SELFTEST_LOCATION, B1, B2);  \
  SELFTEST_END_STMT

/* Verify that concrete_binding::overlaps_p works as expected.  */

static void
test_binding_key_overlap ()
{
  store_manager mgr (NULL);

  /* Various 8-bit bindings.  */
  const concrete_binding *cb_0_7 = mgr.get_concrete_binding (0, 8);
  const concrete_binding *cb_8_15 = mgr.get_concrete_binding (8, 8);
  const concrete_binding *cb_16_23 = mgr.get_concrete_binding (16, 8);
  const concrete_binding *cb_24_31 = mgr.get_concrete_binding (24, 8);

  /* 16-bit bindings.  */
  const concrete_binding *cb_0_15 = mgr.get_concrete_binding (0, 16);
  const concrete_binding *cb_8_23 = mgr.get_concrete_binding (8, 16);
  const concrete_binding *cb_16_31 = mgr.get_concrete_binding (16, 16);

  /* 32-bit binding.  */
  const concrete_binding *cb_0_31 = mgr.get_concrete_binding (0, 32);

  /* Everything should self-overlap.  */
  ASSERT_OVERLAP (cb_0_7, cb_0_7);
  ASSERT_OVERLAP (cb_8_15, cb_8_15);
  ASSERT_OVERLAP (cb_16_23, cb_16_23);
  ASSERT_OVERLAP (cb_24_31, cb_24_31);
  ASSERT_OVERLAP (cb_0_15, cb_0_15);
  ASSERT_OVERLAP (cb_8_23, cb_8_23);
  ASSERT_OVERLAP (cb_16_31, cb_16_31);
  ASSERT_OVERLAP (cb_0_31, cb_0_31);

  /* Verify the 8-bit bindings that don't overlap each other.  */
  ASSERT_DISJOINT (cb_0_7, cb_8_15);
  ASSERT_DISJOINT (cb_8_15, cb_16_23);

  /* Check for overlap of differently-sized bindings.  */
  ASSERT_OVERLAP (cb_0_7, cb_0_31);
  /* ...and with differing start points.  */
  ASSERT_OVERLAP (cb_8_15, cb_0_31);
  ASSERT_DISJOINT (cb_8_15, cb_16_31);
  ASSERT_OVERLAP (cb_16_23, cb_0_31);
  ASSERT_OVERLAP (cb_16_31, cb_0_31);

  ASSERT_DISJOINT (cb_0_7, cb_8_23);
  ASSERT_OVERLAP (cb_8_23, cb_16_23);
  ASSERT_OVERLAP (cb_8_23, cb_16_31);
  ASSERT_DISJOINT (cb_8_23, cb_24_31);
}

/* Run all of the selftests within this file.  */

void
analyzer_store_cc_tests ()
{
  test_bit_range_intersects_p ();
  test_bit_range_from_mask ();
  test_binding_key_overlap ();
}

} // namespace selftest

#endif /* CHECKING_P */

} // namespace ana

#endif /* #if ENABLE_ANALYZER */