aboutsummaryrefslogtreecommitdiff
path: root/gcc/analyzer/sm-taint.cc
blob: a2b442a4ef28e2a92150606f24b366ca49a8d71f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
/* An experimental state machine, for tracking "taint": unsanitized uses
   of data potentially under an attacker's control.

   Copyright (C) 2019-2022 Free Software Foundation, Inc.
   Contributed by David Malcolm <dmalcolm@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#define INCLUDE_MEMORY
#include "system.h"
#include "coretypes.h"
#include "make-unique.h"
#include "tree.h"
#include "function.h"
#include "basic-block.h"
#include "gimple.h"
#include "options.h"
#include "diagnostic-path.h"
#include "diagnostic-metadata.h"
#include "analyzer/analyzer.h"
#include "analyzer/analyzer-logging.h"
#include "gimple-iterator.h"
#include "ordered-hash-map.h"
#include "cgraph.h"
#include "cfg.h"
#include "digraph.h"
#include "stringpool.h"
#include "attribs.h"
#include "analyzer/supergraph.h"
#include "analyzer/call-string.h"
#include "analyzer/program-point.h"
#include "analyzer/store.h"
#include "analyzer/region-model.h"
#include "analyzer/sm.h"
#include "analyzer/program-state.h"
#include "analyzer/pending-diagnostic.h"
#include "analyzer/constraint-manager.h"

#if ENABLE_ANALYZER

namespace ana {

namespace {

/* An enum for describing tainted values.  */

enum bounds
{
  /* This tainted value has no upper or lower bound.  */
  BOUNDS_NONE,

  /* This tainted value has an upper bound but not lower bound.  */
  BOUNDS_UPPER,

  /* This tainted value has a lower bound but no upper bound.  */
  BOUNDS_LOWER
};

/* An experimental state machine, for tracking "taint": unsanitized uses
   of data potentially under an attacker's control.  */

class taint_state_machine : public state_machine
{
public:
  taint_state_machine (logger *logger);

  bool inherited_state_p () const final override { return true; }

  state_t alt_get_inherited_state (const sm_state_map &map,
				   const svalue *sval,
				   const extrinsic_state &ext_state)
    const final override;

  bool on_stmt (sm_context *sm_ctxt,
		const supernode *node,
		const gimple *stmt) const final override;

  void on_condition (sm_context *sm_ctxt,
		     const supernode *node,
		     const gimple *stmt,
		     const svalue *lhs,
		     enum tree_code op,
		     const svalue *rhs) const final override;
  void on_bounded_ranges (sm_context *sm_ctxt,
			  const supernode *node,
			  const gimple *stmt,
			  const svalue &sval,
			  const bounded_ranges &ranges) const final override;

  bool can_purge_p (state_t s) const final override;

  bool get_taint (state_t s, tree type, enum bounds *out) const;

  state_t combine_states (state_t s0, state_t s1) const;

private:
  void check_control_flow_arg_for_taint (sm_context *sm_ctxt,
					 const gimple *stmt,
					 tree expr) const;

  void check_for_tainted_size_arg (sm_context *sm_ctxt,
				   const supernode *node,
				   const gcall *call,
				   tree callee_fndecl) const;
  void check_for_tainted_divisor (sm_context *sm_ctxt,
				  const supernode *node,
				  const gassign *assign) const;

public:
  /* State for a "tainted" value: unsanitized data potentially under an
     attacker's control.  */
  state_t m_tainted;

  /* State for a "tainted" value that has a lower bound.  */
  state_t m_has_lb;

  /* State for a "tainted" value that has an upper bound.  */
  state_t m_has_ub;

  /* Stop state, for a value we don't want to track any more.  */
  state_t m_stop;

  /* Global state, for when the last condition had tainted arguments.  */
  state_t m_tainted_control_flow;
};

/* Class for diagnostics relating to taint_state_machine.  */

class taint_diagnostic : public pending_diagnostic
{
public:
  taint_diagnostic (const taint_state_machine &sm, tree arg,
		    enum bounds has_bounds)
  : m_sm (sm), m_arg (arg), m_has_bounds (has_bounds)
  {}

  bool subclass_equal_p (const pending_diagnostic &base_other) const override
  {
    const taint_diagnostic &other = (const taint_diagnostic &)base_other;
    return (same_tree_p (m_arg, other.m_arg)
	    && m_has_bounds == other.m_has_bounds);
  }

  label_text describe_state_change (const evdesc::state_change &change) override
  {
    if (change.m_new_state == m_sm.m_tainted)
      {
	if (change.m_origin)
	  return change.formatted_print ("%qE has an unchecked value here"
					 " (from %qE)",
					 change.m_expr, change.m_origin);
	else
	  return change.formatted_print ("%qE gets an unchecked value here",
					 change.m_expr);
      }
    else if (change.m_new_state == m_sm.m_has_lb)
      return change.formatted_print ("%qE has its lower bound checked here",
				     change.m_expr);
    else if (change.m_new_state == m_sm.m_has_ub)
      return change.formatted_print ("%qE has its upper bound checked here",
				     change.m_expr);
    return label_text ();
  }

  diagnostic_event::meaning
  get_meaning_for_state_change (const evdesc::state_change &change)
    const final override
  {
    if (change.m_new_state == m_sm.m_tainted)
      return diagnostic_event::meaning (diagnostic_event::VERB_acquire,
					diagnostic_event::NOUN_taint);
    return diagnostic_event::meaning ();
  }

protected:
  const taint_state_machine &m_sm;
  tree m_arg;
  enum bounds m_has_bounds;
};

/* Concrete taint_diagnostic subclass for reporting attacker-controlled
   array index.  */

class tainted_array_index : public taint_diagnostic
{
public:
  tainted_array_index (const taint_state_machine &sm, tree arg,
		       enum bounds has_bounds)
  : taint_diagnostic (sm, arg, has_bounds)
  {}

  const char *get_kind () const final override { return "tainted_array_index"; }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_tainted_array_index;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    /* CWE-129: "Improper Validation of Array Index".  */
    m.add_cwe (129);
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE"
			       " in array lookup without bounds checking",
			       m_arg);
	  break;
	case BOUNDS_UPPER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE"
			       " in array lookup without checking for negative",
			       m_arg);
	  break;
	case BOUNDS_LOWER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE"
			       " in array lookup without upper-bounds checking",
			       m_arg);
	  break;
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value"
			       " in array lookup without bounds checking");
	  break;
	case BOUNDS_UPPER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value"
			       " in array lookup without checking for"
			       " negative");
	  break;
	case BOUNDS_LOWER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value"
			       " in array lookup without upper-bounds"
			       " checking");
	  break;
	}
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print
	    ("use of attacker-controlled value %qE in array lookup"
	     " without bounds checking",
	     m_arg);
	case BOUNDS_UPPER:
	  return ev.formatted_print
	    ("use of attacker-controlled value %qE"
	     " in array lookup without checking for negative",
	     m_arg);
	case BOUNDS_LOWER:
	  return ev.formatted_print
	    ("use of attacker-controlled value %qE"
	     " in array lookup without upper-bounds checking",
	     m_arg);
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print
	    ("use of attacker-controlled value in array lookup"
	     " without bounds checking");
	case BOUNDS_UPPER:
	  return ev.formatted_print
	    ("use of attacker-controlled value"
	     " in array lookup without checking for negative");
	case BOUNDS_LOWER:
	  return ev.formatted_print
	    ("use of attacker-controlled value"
	     " in array lookup without upper-bounds checking");
	}
  }
};

/* Concrete taint_diagnostic subclass for reporting attacker-controlled
   pointer offset.  */

class tainted_offset : public taint_diagnostic
{
public:
  tainted_offset (const taint_state_machine &sm, tree arg,
		       enum bounds has_bounds)
  : taint_diagnostic (sm, arg, has_bounds)
  {}

  const char *get_kind () const final override { return "tainted_offset"; }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_tainted_offset;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    /* CWE-823: "Use of Out-of-range Pointer Offset".  */
    m.add_cwe (823);
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE as offset"
			       " without bounds checking",
			       m_arg);
	  break;
	case BOUNDS_UPPER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE as offset"
			       " without lower-bounds checking",
			       m_arg);
	  break;
	case BOUNDS_LOWER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE as offset"
			       " without upper-bounds checking",
			       m_arg);
	  break;
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value as offset"
			       " without bounds checking");
	  break;
	case BOUNDS_UPPER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value as offset"
			       " without lower-bounds checking");
	  break;
	case BOUNDS_LOWER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value as offset"
			       " without upper-bounds checking");
	  break;
	}
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print ("use of attacker-controlled value %qE"
				     " as offset without bounds checking",
				     m_arg);
	case BOUNDS_UPPER:
	  return ev.formatted_print ("use of attacker-controlled value %qE"
				     " as offset without lower-bounds checking",
				     m_arg);
	case BOUNDS_LOWER:
	  return ev.formatted_print ("use of attacker-controlled value %qE"
				     " as offset without upper-bounds checking",
				     m_arg);
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print ("use of attacker-controlled value"
				     " as offset without bounds checking");
	case BOUNDS_UPPER:
	  return ev.formatted_print ("use of attacker-controlled value"
				     " as offset without lower-bounds"
				     " checking");
	case BOUNDS_LOWER:
	  return ev.formatted_print ("use of attacker-controlled value"
				     " as offset without upper-bounds"
				     " checking");
	}
  }
};

/* Concrete taint_diagnostic subclass for reporting attacker-controlled
   size.  */

class tainted_size : public taint_diagnostic
{
public:
  tainted_size (const taint_state_machine &sm, tree arg,
		enum bounds has_bounds)
  : taint_diagnostic (sm, arg, has_bounds)
  {}

  const char *get_kind () const override { return "tainted_size"; }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_tainted_size;
  }

  bool emit (rich_location *rich_loc) override
  {
    /* "CWE-129: Improper Validation of Array Index".  */
    diagnostic_metadata m;
    m.add_cwe (129);
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE as size"
			       " without bounds checking",
			       m_arg);
	  break;
	case BOUNDS_UPPER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE as size"
			       " without lower-bounds checking",
			       m_arg);
	  break;
	case BOUNDS_LOWER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value %qE as size"
			       " without upper-bounds checking",
			       m_arg);
	  break;
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value as size"
			       " without bounds checking");
	  break;
	case BOUNDS_UPPER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value as size"
			       " without lower-bounds checking");
	  break;
	case BOUNDS_LOWER:
	  return warning_meta (rich_loc, m, get_controlling_option (),
			       "use of attacker-controlled value as size"
			       " without upper-bounds checking");
	  break;
	}
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print ("use of attacker-controlled value %qE"
				     " as size without bounds checking",
				     m_arg);
	case BOUNDS_UPPER:
	  return ev.formatted_print ("use of attacker-controlled value %qE"
				     " as size without lower-bounds checking",
				     m_arg);
	case BOUNDS_LOWER:
	  return ev.formatted_print ("use of attacker-controlled value %qE"
				     " as size without upper-bounds checking",
				     m_arg);
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print ("use of attacker-controlled value"
				     " as size without bounds checking");
	case BOUNDS_UPPER:
	  return ev.formatted_print ("use of attacker-controlled value"
				     " as size without lower-bounds checking");
	case BOUNDS_LOWER:
	  return ev.formatted_print ("use of attacker-controlled value"
				     " as size without upper-bounds checking");
	}
  }
};

/* Subclass of tainted_size for reporting on tainted size values
   passed to an external function annotated with attribute "access".  */

class tainted_access_attrib_size : public tainted_size
{
public:
  tainted_access_attrib_size (const taint_state_machine &sm, tree arg,
			      enum bounds has_bounds, tree callee_fndecl,
			      unsigned size_argno, const char *access_str)
  : tainted_size (sm, arg, has_bounds),
    m_callee_fndecl (callee_fndecl),
    m_size_argno (size_argno), m_access_str (access_str)
  {
  }

  const char *get_kind () const override
  {
    return "tainted_access_attrib_size";
  }

  bool emit (rich_location *rich_loc) final override
  {
    bool warned = tainted_size::emit (rich_loc);
    if (warned)
      {
	inform (DECL_SOURCE_LOCATION (m_callee_fndecl),
		"parameter %i of %qD marked as a size via attribute %qs",
		m_size_argno + 1, m_callee_fndecl, m_access_str);
      }
    return warned;
  }

private:
  tree m_callee_fndecl;
  unsigned m_size_argno;
  const char *m_access_str;
};

/* Concrete taint_diagnostic subclass for reporting attacker-controlled
   divisor (so that an attacker can trigger a divide by zero).  */

class tainted_divisor : public taint_diagnostic
{
public:
  tainted_divisor (const taint_state_machine &sm, tree arg,
		   enum bounds has_bounds)
  : taint_diagnostic (sm, arg, has_bounds)
  {}

  const char *get_kind () const final override { return "tainted_divisor"; }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_tainted_divisor;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    /* CWE-369: "Divide By Zero".  */
    m.add_cwe (369);
    if (m_arg)
      return warning_meta (rich_loc, m, get_controlling_option (),
			   "use of attacker-controlled value %qE as divisor"
			   " without checking for zero",
			   m_arg);
    else
      return warning_meta (rich_loc, m, get_controlling_option (),
			   "use of attacker-controlled value as divisor"
			   " without checking for zero");
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    if (m_arg)
      return ev.formatted_print
	("use of attacker-controlled value %qE as divisor"
	 " without checking for zero",
	 m_arg);
    else
      return ev.formatted_print
	("use of attacker-controlled value as divisor"
	 " without checking for zero");
  }
};

/* Concrete taint_diagnostic subclass for reporting attacker-controlled
   size of a dynamic allocation.  */

class tainted_allocation_size : public taint_diagnostic
{
public:
  tainted_allocation_size (const taint_state_machine &sm, tree arg,
			   enum bounds has_bounds, enum memory_space mem_space)
  : taint_diagnostic (sm, arg, has_bounds),
    m_mem_space (mem_space)
  {
  }

  const char *get_kind () const final override
  {
    return "tainted_allocation_size";
  }

  bool subclass_equal_p (const pending_diagnostic &base_other) const override
  {
    if (!taint_diagnostic::subclass_equal_p (base_other))
      return false;
    const tainted_allocation_size &other
      = (const tainted_allocation_size &)base_other;
    return m_mem_space == other.m_mem_space;
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_tainted_allocation_size;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    /* "CWE-789: Memory Allocation with Excessive Size Value".  */
    m.add_cwe (789);

    bool warned;
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  warned = warning_meta (rich_loc, m, get_controlling_option (),
				 "use of attacker-controlled value %qE as"
				 " allocation size without bounds checking",
				 m_arg);
	  break;
	case BOUNDS_UPPER:
	  warned = warning_meta (rich_loc, m, get_controlling_option (),
				 "use of attacker-controlled value %qE as"
				 " allocation size without"
				 " lower-bounds checking",
				 m_arg);
	  break;
	case BOUNDS_LOWER:
	  warned = warning_meta (rich_loc, m, get_controlling_option (),
				 "use of attacker-controlled value %qE as"
				 " allocation size without"
				 " upper-bounds checking",
				 m_arg);
	  break;
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  warned = warning_meta (rich_loc, m, get_controlling_option (),
				 "use of attacker-controlled value as"
				 " allocation size without bounds"
				 " checking");
	  break;
	case BOUNDS_UPPER:
	  warned = warning_meta (rich_loc, m, get_controlling_option (),
				 "use of attacker-controlled value as"
				 " allocation size without"
				 " lower-bounds checking");
	  break;
	case BOUNDS_LOWER:
	  warned = warning_meta (rich_loc, m, get_controlling_option (),
				 "use of attacker-controlled value as"
				 " allocation size without"
				 " upper-bounds checking");
	  break;
	}
    if (warned)
      {
	location_t loc = rich_loc->get_loc ();
	switch (m_mem_space)
	  {
	  default:
	    break;
	  case MEMSPACE_STACK:
	    inform (loc, "stack-based allocation");
	    break;
	  case MEMSPACE_HEAP:
	    inform (loc, "heap-based allocation");
	    break;
	  }
      }
    return warned;
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    if (m_arg)
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print
	    ("use of attacker-controlled value %qE as allocation size"
	     " without bounds checking",
	     m_arg);
	case BOUNDS_UPPER:
	  return ev.formatted_print
	    ("use of attacker-controlled value %qE as allocation size"
	     " without lower-bounds checking",
	     m_arg);
	case BOUNDS_LOWER:
	  return ev.formatted_print
	    ("use of attacker-controlled value %qE as allocation size"
	     " without upper-bounds checking",
	     m_arg);
	}
    else
      switch (m_has_bounds)
	{
	default:
	  gcc_unreachable ();
	case BOUNDS_NONE:
	  return ev.formatted_print
	    ("use of attacker-controlled value as allocation size"
	     " without bounds checking");
	case BOUNDS_UPPER:
	  return ev.formatted_print
	    ("use of attacker-controlled value as allocation size"
	     " without lower-bounds checking");
	case BOUNDS_LOWER:
	  return ev.formatted_print
	    ("use of attacker-controlled value as allocation size"
	     " without upper-bounds checking");
	}
  }

private:
  enum memory_space m_mem_space;
};

/* Concrete taint_diagnostic subclass for reporting attacker-controlled
   value being used as part of the condition of an assertion.  */

class tainted_assertion : public taint_diagnostic
{
public:
  tainted_assertion (const taint_state_machine &sm, tree arg,
		     tree assert_failure_fndecl)
  : taint_diagnostic (sm, arg, BOUNDS_NONE),
    m_assert_failure_fndecl (assert_failure_fndecl)
  {
    gcc_assert (m_assert_failure_fndecl);
  }

  const char *get_kind () const final override
  {
    return "tainted_assertion";
  }

  bool subclass_equal_p (const pending_diagnostic &base_other) const override
  {
    if (!taint_diagnostic::subclass_equal_p (base_other))
      return false;
    const tainted_assertion &other
      = (const tainted_assertion &)base_other;
    return m_assert_failure_fndecl == other.m_assert_failure_fndecl;
  }

  int get_controlling_option () const final override
  {
    return OPT_Wanalyzer_tainted_assertion;
  }

  bool emit (rich_location *rich_loc) final override
  {
    diagnostic_metadata m;
    /* "CWE-617: Reachable Assertion".  */
    m.add_cwe (617);

    return warning_meta (rich_loc, m, get_controlling_option (),
			 "use of attacked-controlled value in"
			 " condition for assertion");
  }

  location_t fixup_location (location_t loc,
			     bool primary) const final override
  {
    if (primary)
      /* For the primary location we want to avoid being in e.g. the
	 <assert.h> system header, since this would suppress the
	 diagnostic.  */
      return expansion_point_location_if_in_system_header (loc);
    else if (in_system_header_at (loc))
      /* For events, we want to show the implemenation of the assert
	 macro when we're describing them.  */
      return linemap_resolve_location (line_table, loc,
				       LRK_SPELLING_LOCATION,
				       NULL);
    else
      return pending_diagnostic::fixup_location (loc, primary);
  }

  label_text describe_state_change (const evdesc::state_change &change) override
  {
    if (change.m_new_state == m_sm.m_tainted_control_flow)
      return change.formatted_print
	("use of attacker-controlled value for control flow");
    return taint_diagnostic::describe_state_change (change);
  }

  label_text describe_final_event (const evdesc::final_event &ev) final override
  {
    if (mention_noreturn_attribute_p ())
      return ev.formatted_print
	("treating %qE as an assertion failure handler"
	 " due to %<__attribute__((__noreturn__))%>",
	 m_assert_failure_fndecl);
    else
      return ev.formatted_print
	("treating %qE as an assertion failure handler",
	 m_assert_failure_fndecl);
  }

private:
  bool mention_noreturn_attribute_p () const
  {
    if (fndecl_built_in_p (m_assert_failure_fndecl, BUILT_IN_UNREACHABLE))
      return false;
    return true;
  }

  tree m_assert_failure_fndecl;
};

/* taint_state_machine's ctor.  */

taint_state_machine::taint_state_machine (logger *logger)
: state_machine ("taint", logger)
{
  m_tainted = add_state ("tainted");
  m_has_lb = add_state ("has_lb");
  m_has_ub = add_state ("has_ub");
  m_stop = add_state ("stop");
  m_tainted_control_flow = add_state ("tainted-control-flow");
}

state_machine::state_t
taint_state_machine::alt_get_inherited_state (const sm_state_map &map,
					      const svalue *sval,
					      const extrinsic_state &ext_state)
  const
{
  switch (sval->get_kind ())
    {
    default:
      break;
    case SK_UNARYOP:
      {
	const unaryop_svalue *unaryop_sval
	  = as_a <const unaryop_svalue *> (sval);
	enum tree_code op = unaryop_sval->get_op ();
	const svalue *arg = unaryop_sval->get_arg ();
	switch (op)
	  {
	  case NOP_EXPR:
	    {
	      state_t arg_state = map.get_state (arg, ext_state);
	      return arg_state;
	    }
	  default:
	    break;
	  }
      }
      break;
    case SK_BINOP:
      {
	const binop_svalue *binop_sval = as_a <const binop_svalue *> (sval);
	enum tree_code op = binop_sval->get_op ();
	const svalue *arg0 = binop_sval->get_arg0 ();
	const svalue *arg1 = binop_sval->get_arg1 ();
	switch (op)
	  {
	  default:
	    break;

	  case EQ_EXPR:
	  case GE_EXPR:
	  case LE_EXPR:
	  case NE_EXPR:
	  case GT_EXPR:
	  case LT_EXPR:
	  case UNORDERED_EXPR:
	  case ORDERED_EXPR:
	  case PLUS_EXPR:
	  case MINUS_EXPR:
	  case MULT_EXPR:
	  case POINTER_PLUS_EXPR:
	  case TRUNC_DIV_EXPR:
	  case TRUNC_MOD_EXPR:
	    {
	      state_t arg0_state = map.get_state (arg0, ext_state);
	      state_t arg1_state = map.get_state (arg1, ext_state);
	      return combine_states (arg0_state, arg1_state);
	    }
	    break;

	  case BIT_AND_EXPR:
	  case RSHIFT_EXPR:
	    return NULL;
	  }
      }
      break;
    }
  return NULL;
}

/* Return true iff FNDECL should be considered to be an assertion failure
   handler by -Wanalyzer-tainted-assertion. */

static bool
is_assertion_failure_handler_p (tree fndecl)
{
  // i.e. "noreturn"
  if (TREE_THIS_VOLATILE (fndecl))
    return true;

  return false;
}

/* Implementation of state_machine::on_stmt vfunc for taint_state_machine.  */

bool
taint_state_machine::on_stmt (sm_context *sm_ctxt,
			       const supernode *node,
			       const gimple *stmt) const
{
  if (const gcall *call = dyn_cast <const gcall *> (stmt))
    if (tree callee_fndecl = sm_ctxt->get_fndecl_for_call (call))
      {
	if (is_named_call_p (callee_fndecl, "fread", call, 4))
	  {
	    tree arg = gimple_call_arg (call, 0);

	    sm_ctxt->on_transition (node, stmt, arg, m_start, m_tainted);

	    /* Dereference an ADDR_EXPR.  */
	    // TODO: should the engine do this?
	    if (TREE_CODE (arg) == ADDR_EXPR)
	      sm_ctxt->on_transition (node, stmt, TREE_OPERAND (arg, 0),
				      m_start, m_tainted);
	    return true;
	  }

	/* External function with "access" attribute. */
	if (sm_ctxt->unknown_side_effects_p ())
	  check_for_tainted_size_arg (sm_ctxt, node, call, callee_fndecl);

	if (is_assertion_failure_handler_p (callee_fndecl)
	    && sm_ctxt->get_global_state () == m_tainted_control_flow)
	  {
	    sm_ctxt->warn (node, call, NULL_TREE,
			   make_unique<tainted_assertion> (*this, NULL_TREE,
							   callee_fndecl));
	  }
      }
  // TODO: ...etc; many other sources of untrusted data

  if (const gassign *assign = dyn_cast <const gassign *> (stmt))
    {
      enum tree_code op = gimple_assign_rhs_code (assign);

      switch (op)
	{
	default:
	  break;
	case TRUNC_DIV_EXPR:
	case CEIL_DIV_EXPR:
	case FLOOR_DIV_EXPR:
	case ROUND_DIV_EXPR:
	case TRUNC_MOD_EXPR:
	case CEIL_MOD_EXPR:
	case FLOOR_MOD_EXPR:
	case ROUND_MOD_EXPR:
	case RDIV_EXPR:
	case EXACT_DIV_EXPR:
	  check_for_tainted_divisor (sm_ctxt, node, assign);
	  break;
	}
    }

  if (const gcond *cond = dyn_cast <const gcond *> (stmt))
    {
      /* Reset the state of "tainted-control-flow" before each
	 control flow statement, so that only the last one before
	 an assertion-failure-handler counts.  */
      sm_ctxt->set_global_state (m_start);
      check_control_flow_arg_for_taint (sm_ctxt, cond, gimple_cond_lhs (cond));
      check_control_flow_arg_for_taint (sm_ctxt, cond, gimple_cond_rhs (cond));
    }

  if (const gswitch *switch_ = dyn_cast <const gswitch *> (stmt))
    {
      /* Reset the state of "tainted-control-flow" before each
	 control flow statement, so that only the last one before
	 an assertion-failure-handler counts.  */
      sm_ctxt->set_global_state (m_start);
      check_control_flow_arg_for_taint (sm_ctxt, switch_,
					gimple_switch_index (switch_));
    }

  return false;
}

/* If EXPR is tainted, mark this execution path with the
   "tainted-control-flow" global state, in case we're about
   to call an assertion-failure-handler.  */

void
taint_state_machine::check_control_flow_arg_for_taint (sm_context *sm_ctxt,
						       const gimple *stmt,
						       tree expr) const
{
  const region_model *old_model = sm_ctxt->get_old_region_model ();
  const svalue *sval = old_model->get_rvalue (expr, NULL);
  state_t state = sm_ctxt->get_state (stmt, sval);
  enum bounds b;
  if (get_taint (state, TREE_TYPE (expr), &b))
    sm_ctxt->set_global_state (m_tainted_control_flow);
}

/* Implementation of state_machine::on_condition vfunc for taint_state_machine.
   Potentially transition state 'tainted' to 'has_ub' or 'has_lb',
   and states 'has_ub' and 'has_lb' to 'stop'.  */

void
taint_state_machine::on_condition (sm_context *sm_ctxt,
				   const supernode *node,
				   const gimple *stmt,
				   const svalue *lhs,
				   enum tree_code op,
				   const svalue *rhs) const
{
  if (stmt == NULL)
    return;

  // TODO
  switch (op)
    {
      //case NE_EXPR:
      //case EQ_EXPR:
    case GE_EXPR:
    case GT_EXPR:
      {
	/* (LHS >= RHS) or (LHS > RHS)
	   LHS gains a lower bound
	   RHS gains an upper bound.  */
	sm_ctxt->on_transition (node, stmt, lhs, m_tainted,
				m_has_lb);
	sm_ctxt->on_transition (node, stmt, lhs, m_has_ub,
				m_stop);
	sm_ctxt->on_transition (node, stmt, rhs, m_tainted,
				m_has_ub);
	sm_ctxt->on_transition (node, stmt, rhs, m_has_lb,
				m_stop);
      }
      break;
    case LE_EXPR:
    case LT_EXPR:
      {
	/* Detect where build_range_check has optimized
	   (c>=low) && (c<=high)
	   into
	   (c-low>=0) && (c-low<=high-low)
	   and thus into:
	   (unsigned)(c - low) <= (unsigned)(high-low).  */
	if (const binop_svalue *binop_sval
	      = lhs->dyn_cast_binop_svalue ())
	  {
	    const svalue *inner_lhs = binop_sval->get_arg0 ();
	    enum tree_code inner_op = binop_sval->get_op ();
	    const svalue *inner_rhs = binop_sval->get_arg1 ();
	    if (const svalue *before_cast = inner_lhs->maybe_undo_cast ())
	      inner_lhs = before_cast;
	    if (tree outer_rhs_cst = rhs->maybe_get_constant ())
	      if (tree inner_rhs_cst = inner_rhs->maybe_get_constant ())
		if (inner_op == PLUS_EXPR
		    && TREE_CODE (inner_rhs_cst) == INTEGER_CST
		    && TREE_CODE (outer_rhs_cst) == INTEGER_CST
		    && TYPE_UNSIGNED (TREE_TYPE (inner_rhs_cst))
		    && TYPE_UNSIGNED (TREE_TYPE (outer_rhs_cst)))
		  {
		    /* We have
		       (unsigned)(INNER_LHS + CST_A) </<= UNSIGNED_CST_B
		       and thus an optimized test of INNER_LHS (before any
		       cast to unsigned) against a range.
		       Transition any of the tainted states to the stop state.
		       We have to special-case this here rather than in
		       region_model::on_condition since we can't apply
		       both conditions simultaneously (we'd have a transition
		       from the old state to has_lb, then a transition from
		       the old state *again* to has_ub).  */
		    state_t old_state
		      = sm_ctxt->get_state (stmt, inner_lhs);
		    if (old_state == m_tainted
			|| old_state == m_has_lb
			|| old_state == m_has_ub)
		      sm_ctxt->set_next_state (stmt, inner_lhs, m_stop);
		    return;
		  }
	  }

	/* (LHS <= RHS) or (LHS < RHS)
	   LHS gains an upper bound
	   RHS gains a lower bound.  */
	sm_ctxt->on_transition (node, stmt, lhs, m_tainted,
				m_has_ub);
	sm_ctxt->on_transition (node, stmt, lhs, m_has_lb,
				m_stop);
	sm_ctxt->on_transition (node, stmt, rhs, m_tainted,
				m_has_lb);
	sm_ctxt->on_transition (node, stmt, rhs, m_has_ub,
				m_stop);
      }
      break;
    default:
      break;
    }
}

/* Implementation of state_machine::on_bounded_ranges vfunc for
   taint_state_machine, for handling switch statement cases.
   Potentially transition state 'tainted' to 'has_ub' or 'has_lb',
   and states 'has_ub' and 'has_lb' to 'stop'.  */

void
taint_state_machine::on_bounded_ranges (sm_context *sm_ctxt,
					const supernode *,
					const gimple *stmt,
					const svalue &sval,
					const bounded_ranges &ranges) const
{
  gcc_assert (!ranges.empty_p ());
  gcc_assert (ranges.get_count () > 0);

  /* We have one or more ranges; this could be a "default:", or one or
     more single or range cases.

     Look at the overall endpoints to see if the ranges impose any lower
     bounds or upper bounds beyond those of the underlying numeric type.  */

  tree lowest_bound = ranges.get_range (0).m_lower;
  tree highest_bound = ranges.get_range (ranges.get_count () - 1).m_upper;
  gcc_assert (lowest_bound);
  gcc_assert (highest_bound);

  bool ranges_have_lb
    = (lowest_bound != TYPE_MIN_VALUE (TREE_TYPE (lowest_bound)));
  bool ranges_have_ub
    = (highest_bound != TYPE_MAX_VALUE (TREE_TYPE (highest_bound)));

  if (!ranges_have_lb && !ranges_have_ub)
    return;

  /* We have new bounds from the ranges; combine them with any
     existing bounds on SVAL.  */
  state_t old_state = sm_ctxt->get_state (stmt, &sval);
  if (old_state == m_tainted)
    {
      if (ranges_have_lb && ranges_have_ub)
	sm_ctxt->set_next_state (stmt, &sval, m_stop);
      else if (ranges_have_lb)
	sm_ctxt->set_next_state (stmt, &sval, m_has_lb);
      else if (ranges_have_ub)
	sm_ctxt->set_next_state (stmt, &sval, m_has_ub);
    }
  else if (old_state == m_has_ub && ranges_have_lb)
    sm_ctxt->set_next_state (stmt, &sval, m_stop);
  else if (old_state == m_has_lb && ranges_have_ub)
    sm_ctxt->set_next_state (stmt, &sval, m_stop);
}

bool
taint_state_machine::can_purge_p (state_t s ATTRIBUTE_UNUSED) const
{
  return true;
}

/* If STATE is a tainted state, write the bounds to *OUT and return true.
   Otherwise return false.
   Use the signedness of TYPE to determine if "has_ub" is tainted.  */

bool
taint_state_machine::get_taint (state_t state, tree type,
				enum bounds *out) const
{
  /* Unsigned types have an implicit lower bound.  */
  bool is_unsigned = false;
  if (type)
    if (INTEGRAL_TYPE_P (type))
      is_unsigned = TYPE_UNSIGNED (type);

  /* Can't use a switch as the states are non-const.  */
  if (state == m_tainted)
    {
      *out = is_unsigned ? BOUNDS_LOWER : BOUNDS_NONE;
      return true;
    }
  else if (state == m_has_lb)
    {
      *out = BOUNDS_LOWER;
      return true;
    }
  else if (state == m_has_ub && !is_unsigned)
    {
      /* Missing lower bound.  */
      *out = BOUNDS_UPPER;
      return true;
    }
  return false;
}

/* Find the most tainted state of S0 and S1.  */

state_machine::state_t
taint_state_machine::combine_states (state_t s0, state_t s1) const
{
  gcc_assert (s0);
  gcc_assert (s1);
  if (s0 == s1)
    return s0;
  if (s0 == m_tainted || s1 == m_tainted)
    return m_tainted;
  if (s0 == m_start)
    return s1;
  if (s1 == m_start)
    return s0;
  if (s0 == m_stop)
    return s1;
  if (s1 == m_stop)
    return s0;
  /* The only remaining combinations are one of has_ub and has_lb
     (in either order).  */
  gcc_assert ((s0 == m_has_lb && s1 == m_has_ub)
	      || (s0 == m_has_ub && s1 == m_has_lb));
  return m_tainted;
}

/* Check for calls to external functions marked with
   __attribute__((access)) with a size-index: complain about
   tainted values passed as a size to such a function.  */

void
taint_state_machine::check_for_tainted_size_arg (sm_context *sm_ctxt,
						 const supernode *node,
						 const gcall *call,
						 tree callee_fndecl) const
{
  tree fntype = TREE_TYPE (callee_fndecl);
  if (!fntype)
    return;

  if (!TYPE_ATTRIBUTES (fntype))
    return;

  /* Initialize a map of attribute access specifications for arguments
     to the function call.  */
  rdwr_map rdwr_idx;
  init_attr_rdwr_indices (&rdwr_idx, TYPE_ATTRIBUTES (fntype));

  unsigned argno = 0;

  for (tree iter = TYPE_ARG_TYPES (fntype); iter;
       iter = TREE_CHAIN (iter), ++argno)
    {
      const attr_access* access = rdwr_idx.get (argno);
      if (!access)
	continue;

      /* Ignore any duplicate entry in the map for the size argument.  */
      if (access->ptrarg != argno)
	continue;

      if (access->sizarg == UINT_MAX)
	continue;

      tree size_arg = gimple_call_arg (call, access->sizarg);

      state_t state = sm_ctxt->get_state (call, size_arg);
      enum bounds b;
      if (get_taint (state, TREE_TYPE (size_arg), &b))
	{
	  const char* const access_str =
	    TREE_STRING_POINTER (access->to_external_string ());
	  tree diag_size = sm_ctxt->get_diagnostic_tree (size_arg);
	  sm_ctxt->warn (node, call, size_arg,
			 make_unique<tainted_access_attrib_size>
			   (*this, diag_size, b,
			    callee_fndecl,
			    access->sizarg,
			    access_str));
	}
    }
}

/* Complain if ASSIGN (a division operation) has a tainted divisor
   that could be zero.  */

void
taint_state_machine::check_for_tainted_divisor (sm_context *sm_ctxt,
						const supernode *node,
						const gassign *assign) const
{
  const region_model *old_model = sm_ctxt->get_old_region_model ();
  if (!old_model)
    return;

  tree divisor_expr = gimple_assign_rhs2 (assign);;
  const svalue *divisor_sval = old_model->get_rvalue (divisor_expr, NULL);

  state_t state = sm_ctxt->get_state (assign, divisor_sval);
  enum bounds b;
  if (get_taint (state, TREE_TYPE (divisor_expr), &b))
    {
      const svalue *zero_sval
	= old_model->get_manager ()->get_or_create_int_cst
	    (TREE_TYPE (divisor_expr), 0);
      tristate ts
	= old_model->eval_condition (divisor_sval, NE_EXPR, zero_sval);
      if (ts.is_true ())
	/* The divisor is known to not equal 0: don't warn.  */
	return;

      tree diag_divisor = sm_ctxt->get_diagnostic_tree (divisor_expr);
      sm_ctxt->warn (node, assign, divisor_expr,
		     make_unique <tainted_divisor> (*this, diag_divisor, b));
      sm_ctxt->set_next_state (assign, divisor_sval, m_stop);
    }
}

} // anonymous namespace

/* Internal interface to this file. */

state_machine *
make_taint_state_machine (logger *logger)
{
  return new taint_state_machine (logger);
}

/* Complain to CTXT if accessing REG leads could lead to arbitrary
   memory access under an attacker's control (due to taint).  */

void
region_model::check_region_for_taint (const region *reg,
				      enum access_direction,
				      region_model_context *ctxt) const
{
  gcc_assert (reg);
  gcc_assert (ctxt);

  LOG_SCOPE (ctxt->get_logger ());

  sm_state_map *smap;
  const state_machine *sm;
  unsigned sm_idx;
  if (!ctxt->get_taint_map (&smap, &sm, &sm_idx))
    return;

  gcc_assert (smap);
  gcc_assert (sm);

  const taint_state_machine &taint_sm = (const taint_state_machine &)*sm;

  const extrinsic_state *ext_state = ctxt->get_ext_state ();
  if (!ext_state)
    return;

  const region *iter_region = reg;
  while (iter_region)
    {
      switch (iter_region->get_kind ())
	{
	default:
	  break;

	case RK_ELEMENT:
	  {
	    const element_region *element_reg
	      = (const element_region *)iter_region;
	    const svalue *index = element_reg->get_index ();
	    const state_machine::state_t
	      state = smap->get_state (index, *ext_state);
	    gcc_assert (state);
	    enum bounds b;
	    if (taint_sm.get_taint (state, index->get_type (), &b))
	    {
	      tree arg = get_representative_tree (index);
	      ctxt->warn (make_unique<tainted_array_index> (taint_sm, arg, b));
	    }
	  }
	  break;

	case RK_OFFSET:
	  {
	    const offset_region *offset_reg
	      = (const offset_region *)iter_region;
	    const svalue *offset = offset_reg->get_byte_offset ();
	    const state_machine::state_t
	      state = smap->get_state (offset, *ext_state);
	    gcc_assert (state);
	    /* Handle implicit cast to sizetype.  */
	    tree effective_type = offset->get_type ();
	    if (const svalue *cast = offset->maybe_undo_cast ())
	      if (cast->get_type ())
		effective_type = cast->get_type ();
	    enum bounds b;
	    if (taint_sm.get_taint (state, effective_type, &b))
	      {
		tree arg = get_representative_tree (offset);
		ctxt->warn (make_unique<tainted_offset> (taint_sm, arg, b));
	      }
	  }
	  break;

	case RK_CAST:
	  {
	    const cast_region *cast_reg
	      = as_a <const cast_region *> (iter_region);
	    iter_region = cast_reg->get_original_region ();
	    continue;
	  }

	case RK_SIZED:
	  {
	    const sized_region *sized_reg
	      = (const sized_region *)iter_region;
	    const svalue *size_sval = sized_reg->get_byte_size_sval (m_mgr);
	    const state_machine::state_t
	      state = smap->get_state (size_sval, *ext_state);
	    gcc_assert (state);
	    enum bounds b;
	    if (taint_sm.get_taint (state, size_sval->get_type (), &b))
	      {
		tree arg = get_representative_tree (size_sval);
		ctxt->warn (make_unique<tainted_size> (taint_sm, arg, b));
	      }
	  }
	  break;
	}

      iter_region = iter_region->get_parent_region ();
    }
}

/* Complain to CTXT about a tainted allocation size if SIZE_IN_BYTES is
   under an attacker's control (due to taint), where the allocation
   is happening within MEM_SPACE.  */

void
region_model::check_dynamic_size_for_taint (enum memory_space mem_space,
					    const svalue *size_in_bytes,
					    region_model_context *ctxt) const
{
  gcc_assert (size_in_bytes);
  gcc_assert (ctxt);

  LOG_SCOPE (ctxt->get_logger ());

  sm_state_map *smap;
  const state_machine *sm;
  unsigned sm_idx;
  if (!ctxt->get_taint_map (&smap, &sm, &sm_idx))
    return;

  gcc_assert (smap);
  gcc_assert (sm);

  const taint_state_machine &taint_sm = (const taint_state_machine &)*sm;

  const extrinsic_state *ext_state = ctxt->get_ext_state ();
  if (!ext_state)
    return;

  const state_machine::state_t
    state = smap->get_state (size_in_bytes, *ext_state);
  gcc_assert (state);
  enum bounds b;
  if (taint_sm.get_taint (state, size_in_bytes->get_type (), &b))
    {
      tree arg = get_representative_tree (size_in_bytes);
      ctxt->warn (make_unique<tainted_allocation_size>
		    (taint_sm, arg, b, mem_space));
    }
}

/* Mark SVAL as TAINTED.  CTXT must be non-NULL.  */

void
region_model::mark_as_tainted (const svalue *sval,
			       region_model_context *ctxt)
{
  gcc_assert (sval);
  gcc_assert (ctxt);

  sm_state_map *smap;
  const state_machine *sm;
  unsigned sm_idx;
  if (!ctxt->get_taint_map (&smap, &sm, &sm_idx))
    return;

  gcc_assert (smap);
  gcc_assert (sm);

  const taint_state_machine &taint_sm = (const taint_state_machine &)*sm;

  const extrinsic_state *ext_state = ctxt->get_ext_state ();
  if (!ext_state)
    return;

  smap->set_state (this, sval, taint_sm.m_tainted, NULL, *ext_state);
}

} // namespace ana

#endif /* #if ENABLE_ANALYZER */