1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
|
/* Regions of memory.
Copyright (C) 2019-2022 Free Software Foundation, Inc.
Contributed by David Malcolm <dmalcolm@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "diagnostic-core.h"
#include "gimple-pretty-print.h"
#include "function.h"
#include "basic-block.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "diagnostic-core.h"
#include "graphviz.h"
#include "options.h"
#include "cgraph.h"
#include "tree-dfa.h"
#include "stringpool.h"
#include "convert.h"
#include "target.h"
#include "fold-const.h"
#include "tree-pretty-print.h"
#include "diagnostic-color.h"
#include "diagnostic-metadata.h"
#include "tristate.h"
#include "bitmap.h"
#include "selftest.h"
#include "function.h"
#include "json.h"
#include "analyzer/analyzer.h"
#include "analyzer/analyzer-logging.h"
#include "ordered-hash-map.h"
#include "options.h"
#include "cgraph.h"
#include "cfg.h"
#include "digraph.h"
#include "analyzer/supergraph.h"
#include "sbitmap.h"
#include "analyzer/call-string.h"
#include "analyzer/program-point.h"
#include "analyzer/store.h"
#include "analyzer/region.h"
#include "analyzer/region-model.h"
#include "analyzer/sm.h"
#include "analyzer/program-state.h"
#if ENABLE_ANALYZER
namespace ana {
/* class region and its various subclasses. */
/* class region. */
region::~region ()
{
delete m_cached_offset;
}
/* Compare REG1 and REG2 by id. */
int
region::cmp_ids (const region *reg1, const region *reg2)
{
return (long)reg1->get_id () - (long)reg2->get_id ();
}
/* Determine the base region for this region: when considering bindings
for this region, the base region is the ancestor which identifies
which cluster they should be partitioned into.
Regions within the same struct/union/array are in the same cluster.
Different decls are in different clusters. */
const region *
region::get_base_region () const
{
const region *iter = this;
while (iter)
{
switch (iter->get_kind ())
{
case RK_FIELD:
case RK_ELEMENT:
case RK_OFFSET:
case RK_SIZED:
case RK_BIT_RANGE:
iter = iter->get_parent_region ();
continue;
case RK_CAST:
iter = iter->dyn_cast_cast_region ()->get_original_region ();
continue;
default:
return iter;
}
}
return iter;
}
/* Return true if get_base_region() == this for this region. */
bool
region::base_region_p () const
{
switch (get_kind ())
{
/* Region kinds representing a descendent of a base region. */
case RK_FIELD:
case RK_ELEMENT:
case RK_OFFSET:
case RK_SIZED:
case RK_CAST:
case RK_BIT_RANGE:
return false;
default:
return true;
}
}
/* Return true if this region is ELDER or one of its descendents. */
bool
region::descendent_of_p (const region *elder) const
{
const region *iter = this;
while (iter)
{
if (iter == elder)
return true;
if (iter->get_kind () == RK_CAST)
iter = iter->dyn_cast_cast_region ()->get_original_region ();
else
iter = iter->get_parent_region ();
}
return false;
}
/* If this region is a frame_region, or a descendent of one, return it.
Otherwise return NULL. */
const frame_region *
region::maybe_get_frame_region () const
{
const region *iter = this;
while (iter)
{
if (const frame_region *frame_reg = iter->dyn_cast_frame_region ())
return frame_reg;
if (iter->get_kind () == RK_CAST)
iter = iter->dyn_cast_cast_region ()->get_original_region ();
else
iter = iter->get_parent_region ();
}
return NULL;
}
/* Get the memory space of this region. */
enum memory_space
region::get_memory_space () const
{
const region *iter = this;
while (iter)
{
switch (iter->get_kind ())
{
default:
break;
case RK_GLOBALS:
return MEMSPACE_GLOBALS;
case RK_CODE:
case RK_FUNCTION:
case RK_LABEL:
return MEMSPACE_CODE;
case RK_FRAME:
case RK_STACK:
case RK_ALLOCA:
return MEMSPACE_STACK;
case RK_HEAP:
case RK_HEAP_ALLOCATED:
return MEMSPACE_HEAP;
case RK_STRING:
return MEMSPACE_READONLY_DATA;
}
if (iter->get_kind () == RK_CAST)
iter = iter->dyn_cast_cast_region ()->get_original_region ();
else
iter = iter->get_parent_region ();
}
return MEMSPACE_UNKNOWN;
}
/* Subroutine for use by region_model_manager::get_or_create_initial_value.
Return true if this region has an initial_svalue.
Return false if attempting to use INIT_VAL(this_region) should give
the "UNINITIALIZED" poison value. */
bool
region::can_have_initial_svalue_p () const
{
const region *base_reg = get_base_region ();
/* Check for memory spaces that are uninitialized by default. */
enum memory_space mem_space = base_reg->get_memory_space ();
switch (mem_space)
{
default:
gcc_unreachable ();
case MEMSPACE_UNKNOWN:
case MEMSPACE_CODE:
case MEMSPACE_GLOBALS:
case MEMSPACE_READONLY_DATA:
/* Such regions have initial_svalues. */
return true;
case MEMSPACE_HEAP:
/* Heap allocations are uninitialized by default. */
return false;
case MEMSPACE_STACK:
if (tree decl = base_reg->maybe_get_decl ())
{
/* See the assertion in frame_region::get_region_for_local for the
tree codes we need to handle here. */
switch (TREE_CODE (decl))
{
default:
gcc_unreachable ();
case PARM_DECL:
/* Parameters have initial values. */
return true;
case VAR_DECL:
case RESULT_DECL:
/* Function locals don't have initial values. */
return false;
case SSA_NAME:
{
tree ssa_name = decl;
/* SSA names that are the default defn of a PARM_DECL
have initial_svalues; other SSA names don't. */
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
&& SSA_NAME_VAR (ssa_name)
&& TREE_CODE (SSA_NAME_VAR (ssa_name)) == PARM_DECL)
return true;
else
return false;
}
}
}
/* If we have an on-stack region that isn't associated with a decl
or SSA name, then we have VLA/alloca, which is uninitialized. */
return false;
}
}
/* If this region is a decl_region, return the decl.
Otherwise return NULL. */
tree
region::maybe_get_decl () const
{
if (const decl_region *decl_reg = dyn_cast_decl_region ())
return decl_reg->get_decl ();
return NULL_TREE;
}
/* Get the region_offset for this region (calculating it on the
first call and caching it internally). */
region_offset
region::get_offset () const
{
if(!m_cached_offset)
m_cached_offset = new region_offset (calc_offset ());
return *m_cached_offset;
}
/* Base class implementation of region::get_byte_size vfunc.
If the size of this region (in bytes) is known statically, write it to *OUT
and return true.
Otherwise return false. */
bool
region::get_byte_size (byte_size_t *out) const
{
tree type = get_type ();
/* Bail out e.g. for heap-allocated regions. */
if (!type)
return false;
HOST_WIDE_INT bytes = int_size_in_bytes (type);
if (bytes == -1)
return false;
*out = bytes;
return true;
}
/* Base implementation of region::get_byte_size_sval vfunc. */
const svalue *
region::get_byte_size_sval (region_model_manager *mgr) const
{
tree type = get_type ();
/* Bail out e.g. for heap-allocated regions. */
if (!type)
return mgr->get_or_create_unknown_svalue (size_type_node);
HOST_WIDE_INT bytes = int_size_in_bytes (type);
if (bytes == -1)
return mgr->get_or_create_unknown_svalue (size_type_node);
tree byte_size = size_in_bytes (type);
if (TREE_TYPE (byte_size) != size_type_node)
byte_size = fold_build1 (NOP_EXPR, size_type_node, byte_size);
return mgr->get_or_create_constant_svalue (byte_size);
}
/* Attempt to get the size of TYPE in bits.
If successful, return true and write the size to *OUT.
Otherwise return false. */
bool
int_size_in_bits (const_tree type, bit_size_t *out)
{
if (INTEGRAL_TYPE_P (type))
{
*out = TYPE_PRECISION (type);
return true;
}
tree sz = TYPE_SIZE (type);
if (sz && tree_fits_uhwi_p (sz))
{
*out = TREE_INT_CST_LOW (sz);
return true;
}
else
return false;
}
/* If the size of this region (in bits) is known statically, write it to *OUT
and return true.
Otherwise return false. */
bool
region::get_bit_size (bit_size_t *out) const
{
tree type = get_type ();
/* Bail out e.g. for heap-allocated regions. */
if (!type)
return false;
return int_size_in_bits (type, out);
}
/* Get the field within RECORD_TYPE at BIT_OFFSET. */
tree
get_field_at_bit_offset (tree record_type, bit_offset_t bit_offset)
{
gcc_assert (TREE_CODE (record_type) == RECORD_TYPE);
if (bit_offset < 0)
return NULL;
/* Find the first field that has an offset > BIT_OFFSET,
then return the one preceding it.
Skip other trees within the chain, such as FUNCTION_DECLs. */
tree last_field = NULL_TREE;
for (tree iter = TYPE_FIELDS (record_type); iter != NULL_TREE;
iter = DECL_CHAIN (iter))
{
if (TREE_CODE (iter) == FIELD_DECL)
{
int iter_field_offset = int_bit_position (iter);
if (bit_offset < iter_field_offset)
return last_field;
last_field = iter;
}
}
return last_field;
}
/* Populate *OUT with descendent regions of type TYPE that match
RELATIVE_BIT_OFFSET and SIZE_IN_BITS within this region. */
void
region::get_subregions_for_binding (region_model_manager *mgr,
bit_offset_t relative_bit_offset,
bit_size_t size_in_bits,
tree type,
auto_vec <const region *> *out) const
{
if (get_type () == NULL_TREE || type == NULL_TREE)
return;
if (relative_bit_offset == 0
&& types_compatible_p (get_type (), type))
{
out->safe_push (this);
return;
}
switch (TREE_CODE (get_type ()))
{
case ARRAY_TYPE:
{
tree element_type = TREE_TYPE (get_type ());
HOST_WIDE_INT hwi_byte_size = int_size_in_bytes (element_type);
if (hwi_byte_size > 0)
{
HOST_WIDE_INT bits_per_element
= hwi_byte_size << LOG2_BITS_PER_UNIT;
HOST_WIDE_INT element_index
= (relative_bit_offset.to_shwi () / bits_per_element);
tree element_index_cst
= build_int_cst (integer_type_node, element_index);
HOST_WIDE_INT inner_bit_offset
= relative_bit_offset.to_shwi () % bits_per_element;
const region *subregion = mgr->get_element_region
(this, element_type,
mgr->get_or_create_constant_svalue (element_index_cst));
subregion->get_subregions_for_binding (mgr, inner_bit_offset,
size_in_bits, type, out);
}
}
break;
case RECORD_TYPE:
{
/* The bit offset might be *within* one of the fields (such as
with nested structs).
So we want to find the enclosing field, adjust the offset,
and repeat. */
if (tree field = get_field_at_bit_offset (get_type (),
relative_bit_offset))
{
int field_bit_offset = int_bit_position (field);
const region *subregion = mgr->get_field_region (this, field);
subregion->get_subregions_for_binding
(mgr, relative_bit_offset - field_bit_offset,
size_in_bits, type, out);
}
}
break;
case UNION_TYPE:
{
for (tree field = TYPE_FIELDS (get_type ()); field != NULL_TREE;
field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
const region *subregion = mgr->get_field_region (this, field);
subregion->get_subregions_for_binding (mgr,
relative_bit_offset,
size_in_bits,
type,
out);
}
}
break;
default:
/* Do nothing. */
break;
}
}
/* Walk from this region up to the base region within its cluster, calculating
the offset relative to the base region, either as an offset in bits,
or a symbolic offset. */
region_offset
region::calc_offset () const
{
const region *iter_region = this;
bit_offset_t accum_bit_offset = 0;
while (iter_region)
{
switch (iter_region->get_kind ())
{
case RK_FIELD:
case RK_ELEMENT:
case RK_OFFSET:
case RK_BIT_RANGE:
{
bit_offset_t rel_bit_offset;
if (!iter_region->get_relative_concrete_offset (&rel_bit_offset))
return region_offset::make_symbolic
(iter_region->get_parent_region ());
accum_bit_offset += rel_bit_offset;
iter_region = iter_region->get_parent_region ();
}
continue;
case RK_SIZED:
iter_region = iter_region->get_parent_region ();
continue;
case RK_CAST:
{
const cast_region *cast_reg
= as_a <const cast_region *> (iter_region);
iter_region = cast_reg->get_original_region ();
}
continue;
default:
return region_offset::make_concrete (iter_region, accum_bit_offset);
}
}
return region_offset::make_concrete (iter_region, accum_bit_offset);
}
/* Base implementation of region::get_relative_concrete_offset vfunc. */
bool
region::get_relative_concrete_offset (bit_offset_t *) const
{
return false;
}
/* Attempt to get the position and size of this region expressed as a
concrete range of bytes relative to its parent.
If successful, return true and write to *OUT.
Otherwise return false. */
bool
region::get_relative_concrete_byte_range (byte_range *out) const
{
/* We must have a concrete offset relative to the parent. */
bit_offset_t rel_bit_offset;
if (!get_relative_concrete_offset (&rel_bit_offset))
return false;
/* ...which must be a whole number of bytes. */
if (rel_bit_offset % BITS_PER_UNIT != 0)
return false;
byte_offset_t start_byte_offset = rel_bit_offset / BITS_PER_UNIT;
/* We must have a concrete size, which must be a whole number
of bytes. */
byte_size_t num_bytes;
if (!get_byte_size (&num_bytes))
return false;
/* Success. */
*out = byte_range (start_byte_offset, num_bytes);
return true;
}
/* Dump a description of this region to stderr. */
DEBUG_FUNCTION void
region::dump (bool simple) const
{
pretty_printer pp;
pp_format_decoder (&pp) = default_tree_printer;
pp_show_color (&pp) = pp_show_color (global_dc->printer);
pp.buffer->stream = stderr;
dump_to_pp (&pp, simple);
pp_newline (&pp);
pp_flush (&pp);
}
/* Return a new json::string describing the region. */
json::value *
region::to_json () const
{
label_text desc = get_desc (true);
json::value *reg_js = new json::string (desc.get ());
return reg_js;
}
/* Generate a description of this region. */
DEBUG_FUNCTION label_text
region::get_desc (bool simple) const
{
pretty_printer pp;
pp_format_decoder (&pp) = default_tree_printer;
dump_to_pp (&pp, simple);
return label_text::take (xstrdup (pp_formatted_text (&pp)));
}
/* Base implementation of region::accept vfunc.
Subclass implementations should chain up to this. */
void
region::accept (visitor *v) const
{
v->visit_region (this);
if (m_parent)
m_parent->accept (v);
}
/* Return true if this is a symbolic region for deferencing an
unknown ptr.
We shouldn't attempt to bind values for this region (but
can unbind values for other regions). */
bool
region::symbolic_for_unknown_ptr_p () const
{
if (const symbolic_region *sym_reg = dyn_cast_symbolic_region ())
if (sym_reg->get_pointer ()->get_kind () == SK_UNKNOWN)
return true;
return false;
}
/* Return true if this is a symbolic region. */
bool
region::symbolic_p () const
{
return get_kind () == RK_SYMBOLIC;
}
/* Return true if this is a region for a decl with name DECL_NAME.
Intended for use when debugging (for assertions and conditional
breakpoints). */
DEBUG_FUNCTION bool
region::is_named_decl_p (const char *decl_name) const
{
if (tree decl = maybe_get_decl ())
if (DECL_NAME (decl)
&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)), decl_name))
return true;
return false;
}
/* region's ctor. */
region::region (complexity c, unsigned id, const region *parent, tree type)
: m_complexity (c), m_id (id), m_parent (parent), m_type (type),
m_cached_offset (NULL)
{
gcc_assert (type == NULL_TREE || TYPE_P (type));
}
/* Comparator for use by vec<const region *>::qsort,
using their IDs to order them. */
int
region::cmp_ptr_ptr (const void *p1, const void *p2)
{
const region * const *reg1 = (const region * const *)p1;
const region * const *reg2 = (const region * const *)p2;
return cmp_ids (*reg1, *reg2);
}
/* Determine if a pointer to this region must be non-NULL.
Generally, pointers to regions must be non-NULL, but pointers
to symbolic_regions might, in fact, be NULL.
This allows us to simulate functions like malloc and calloc with:
- only one "outcome" from each statement,
- the idea that the pointer is on the heap if non-NULL
- the possibility that the pointer could be NULL
- the idea that successive values returned from malloc are non-equal
- to be able to zero-fill for calloc. */
bool
region::non_null_p () const
{
switch (get_kind ())
{
default:
return true;
case RK_SYMBOLIC:
/* Are we within a symbolic_region? If so, it could be NULL, and we
have to fall back on the constraints. */
return false;
case RK_HEAP_ALLOCATED:
return false;
}
}
/* Return true iff this region is defined in terms of SVAL. */
bool
region::involves_p (const svalue *sval) const
{
if (const symbolic_region *symbolic_reg = dyn_cast_symbolic_region ())
{
if (symbolic_reg->get_pointer ()->involves_p (sval))
return true;
}
return false;
}
/* Comparator for trees to impose a deterministic ordering on
T1 and T2. */
static int
tree_cmp (const_tree t1, const_tree t2)
{
gcc_assert (t1);
gcc_assert (t2);
/* Test tree codes first. */
if (TREE_CODE (t1) != TREE_CODE (t2))
return TREE_CODE (t1) - TREE_CODE (t2);
/* From this point on, we know T1 and T2 have the same tree code. */
if (DECL_P (t1))
{
if (DECL_NAME (t1) && DECL_NAME (t2))
return strcmp (IDENTIFIER_POINTER (DECL_NAME (t1)),
IDENTIFIER_POINTER (DECL_NAME (t2)));
else
{
if (DECL_NAME (t1))
return -1;
else if (DECL_NAME (t2))
return 1;
else
return DECL_UID (t1) - DECL_UID (t2);
}
}
switch (TREE_CODE (t1))
{
case SSA_NAME:
{
if (SSA_NAME_VAR (t1) && SSA_NAME_VAR (t2))
{
int var_cmp = tree_cmp (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
if (var_cmp)
return var_cmp;
return SSA_NAME_VERSION (t1) - SSA_NAME_VERSION (t2);
}
else
{
if (SSA_NAME_VAR (t1))
return -1;
else if (SSA_NAME_VAR (t2))
return 1;
else
return SSA_NAME_VERSION (t1) - SSA_NAME_VERSION (t2);
}
}
break;
case INTEGER_CST:
return tree_int_cst_compare (t1, t2);
case REAL_CST:
{
const real_value *rv1 = TREE_REAL_CST_PTR (t1);
const real_value *rv2 = TREE_REAL_CST_PTR (t2);
if (real_compare (UNORDERED_EXPR, rv1, rv2))
{
/* Impose an arbitrary order on NaNs relative to other NaNs
and to non-NaNs. */
if (int cmp_isnan = real_isnan (rv1) - real_isnan (rv2))
return cmp_isnan;
if (int cmp_issignaling_nan
= real_issignaling_nan (rv1) - real_issignaling_nan (rv2))
return cmp_issignaling_nan;
return real_isneg (rv1) - real_isneg (rv2);
}
if (real_compare (LT_EXPR, rv1, rv2))
return -1;
if (real_compare (GT_EXPR, rv1, rv2))
return 1;
return 0;
}
case STRING_CST:
return strcmp (TREE_STRING_POINTER (t1),
TREE_STRING_POINTER (t2));
default:
gcc_unreachable ();
break;
}
gcc_unreachable ();
return 0;
}
/* qsort comparator for trees to impose a deterministic ordering on
P1 and P2. */
int
tree_cmp (const void *p1, const void *p2)
{
const_tree t1 = *(const_tree const *)p1;
const_tree t2 = *(const_tree const *)p2;
return tree_cmp (t1, t2);
}
/* class frame_region : public space_region. */
frame_region::~frame_region ()
{
for (map_t::iterator iter = m_locals.begin ();
iter != m_locals.end ();
++iter)
delete (*iter).second;
}
void
frame_region::accept (visitor *v) const
{
region::accept (v);
if (m_calling_frame)
m_calling_frame->accept (v);
}
/* Implementation of region::dump_to_pp vfunc for frame_region. */
void
frame_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_printf (pp, "frame: %qs@%i", function_name (m_fun), get_stack_depth ());
else
pp_printf (pp, "frame_region(%qs, index: %i, depth: %i)",
function_name (m_fun), m_index, get_stack_depth ());
}
const decl_region *
frame_region::get_region_for_local (region_model_manager *mgr,
tree expr,
const region_model_context *ctxt) const
{
if (CHECKING_P)
{
/* Verify that EXPR is a local or SSA name, and that it's for the
correct function for this stack frame. */
gcc_assert (TREE_CODE (expr) == PARM_DECL
|| TREE_CODE (expr) == VAR_DECL
|| TREE_CODE (expr) == SSA_NAME
|| TREE_CODE (expr) == RESULT_DECL);
switch (TREE_CODE (expr))
{
default:
gcc_unreachable ();
case VAR_DECL:
gcc_assert (!is_global_var (expr));
/* Fall through. */
case PARM_DECL:
case RESULT_DECL:
gcc_assert (DECL_CONTEXT (expr) == m_fun->decl);
break;
case SSA_NAME:
{
if (tree var = SSA_NAME_VAR (expr))
{
if (DECL_P (var))
gcc_assert (DECL_CONTEXT (var) == m_fun->decl);
}
else if (ctxt)
if (const extrinsic_state *ext_state = ctxt->get_ext_state ())
if (const supergraph *sg
= ext_state->get_engine ()->get_supergraph ())
{
const gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
const supernode *snode
= sg->get_supernode_for_stmt (def_stmt);
gcc_assert (snode->get_function () == m_fun);
}
}
break;
}
}
/* Ideally we'd use mutable here. */
map_t &mutable_locals = const_cast <map_t &> (m_locals);
if (decl_region **slot = mutable_locals.get (expr))
return *slot;
decl_region *reg
= new decl_region (mgr->alloc_region_id (), this, expr);
mutable_locals.put (expr, reg);
return reg;
}
/* class globals_region : public space_region. */
/* Implementation of region::dump_to_pp vfunc for globals_region. */
void
globals_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_string (pp, "::");
else
pp_string (pp, "globals");
}
/* class code_region : public map_region. */
/* Implementation of region::dump_to_pp vfunc for code_region. */
void
code_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_string (pp, "code region");
else
pp_string (pp, "code_region()");
}
/* class function_region : public region. */
/* Implementation of region::dump_to_pp vfunc for function_region. */
void
function_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
dump_quoted_tree (pp, m_fndecl);
}
else
{
pp_string (pp, "function_region(");
dump_quoted_tree (pp, m_fndecl);
pp_string (pp, ")");
}
}
/* class label_region : public region. */
/* Implementation of region::dump_to_pp vfunc for label_region. */
void
label_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
dump_quoted_tree (pp, m_label);
}
else
{
pp_string (pp, "label_region(");
dump_quoted_tree (pp, m_label);
pp_string (pp, ")");
}
}
/* class stack_region : public region. */
/* Implementation of region::dump_to_pp vfunc for stack_region. */
void
stack_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_string (pp, "stack region");
else
pp_string (pp, "stack_region()");
}
/* class heap_region : public region. */
/* Implementation of region::dump_to_pp vfunc for heap_region. */
void
heap_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_string (pp, "heap region");
else
pp_string (pp, "heap_region()");
}
/* class root_region : public region. */
/* root_region's ctor. */
root_region::root_region (unsigned id)
: region (complexity (1, 1), id, NULL, NULL_TREE)
{
}
/* Implementation of region::dump_to_pp vfunc for root_region. */
void
root_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_string (pp, "root region");
else
pp_string (pp, "root_region()");
}
/* class symbolic_region : public map_region. */
/* symbolic_region's ctor. */
symbolic_region::symbolic_region (unsigned id, region *parent,
const svalue *sval_ptr)
: region (complexity::from_pair (parent, sval_ptr), id, parent,
(sval_ptr->get_type ()
? TREE_TYPE (sval_ptr->get_type ())
: NULL_TREE)),
m_sval_ptr (sval_ptr)
{
}
/* Implementation of region::accept vfunc for symbolic_region. */
void
symbolic_region::accept (visitor *v) const
{
region::accept (v);
m_sval_ptr->accept (v);
}
/* Implementation of region::dump_to_pp vfunc for symbolic_region. */
void
symbolic_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
pp_string (pp, "(*");
m_sval_ptr->dump_to_pp (pp, simple);
pp_string (pp, ")");
}
else
{
pp_string (pp, "symbolic_region(");
get_parent_region ()->dump_to_pp (pp, simple);
if (get_type ())
{
pp_string (pp, ", ");
print_quoted_type (pp, get_type ());
}
pp_string (pp, ", ");
m_sval_ptr->dump_to_pp (pp, simple);
pp_string (pp, ")");
}
}
/* class decl_region : public region. */
/* Implementation of region::dump_to_pp vfunc for decl_region. */
void
decl_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_printf (pp, "%E", m_decl);
else
{
pp_string (pp, "decl_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
print_quoted_type (pp, get_type ());
pp_printf (pp, ", %qE)", m_decl);
}
}
/* Get the stack depth for the frame containing this decl, or 0
for a global. */
int
decl_region::get_stack_depth () const
{
if (get_parent_region () == NULL)
return 0;
if (const frame_region *frame_reg
= get_parent_region ()->dyn_cast_frame_region ())
return frame_reg->get_stack_depth ();
return 0;
}
/* If the underlying decl is in the global constant pool,
return an svalue representing the constant value.
Otherwise return NULL. */
const svalue *
decl_region::maybe_get_constant_value (region_model_manager *mgr) const
{
if (TREE_CODE (m_decl) == VAR_DECL
&& DECL_IN_CONSTANT_POOL (m_decl)
&& DECL_INITIAL (m_decl)
&& TREE_CODE (DECL_INITIAL (m_decl)) == CONSTRUCTOR)
return get_svalue_for_constructor (DECL_INITIAL (m_decl), mgr);
return NULL;
}
/* Get an svalue for CTOR, a CONSTRUCTOR for this region's decl. */
const svalue *
decl_region::get_svalue_for_constructor (tree ctor,
region_model_manager *mgr) const
{
gcc_assert (!TREE_CLOBBER_P (ctor));
/* Create a binding map, applying ctor to it, using this
decl_region as the base region when building child regions
for offset calculations. */
binding_map map;
if (!map.apply_ctor_to_region (this, ctor, mgr))
return mgr->get_or_create_unknown_svalue (get_type ());
/* Return a compound svalue for the map we built. */
return mgr->get_or_create_compound_svalue (get_type (), map);
}
/* For use on decl_regions for global variables.
Get an svalue for the initial value of this region at entry to
"main" (either based on DECL_INITIAL, or implicit initialization to
zero.
Return NULL if there is a problem. */
const svalue *
decl_region::get_svalue_for_initializer (region_model_manager *mgr) const
{
tree init = DECL_INITIAL (m_decl);
if (!init)
{
/* If we have an "extern" decl then there may be an initializer in
another TU. */
if (DECL_EXTERNAL (m_decl))
return NULL;
/* Implicit initialization to zero; use a compound_svalue for it.
Doing so requires that we have a concrete binding for this region,
which can fail if we have a region with unknown size
(e.g. "extern const char arr[];"). */
const binding_key *binding
= binding_key::make (mgr->get_store_manager (), this);
if (binding->symbolic_p ())
return NULL;
/* If we don't care about tracking the content of this region, then
it's unused, and the value doesn't matter. */
if (!tracked_p ())
return NULL;
binding_cluster c (this);
c.zero_fill_region (mgr->get_store_manager (), this);
return mgr->get_or_create_compound_svalue (TREE_TYPE (m_decl),
c.get_map ());
}
/* LTO can write out error_mark_node as the DECL_INITIAL for simple scalar
values (to avoid writing out an extra section). */
if (init == error_mark_node)
return NULL;
if (TREE_CODE (init) == CONSTRUCTOR)
return get_svalue_for_constructor (init, mgr);
/* Reuse the get_rvalue logic from region_model. */
region_model m (mgr);
return m.get_rvalue (path_var (init, 0), NULL);
}
/* Subroutine of symnode_requires_tracking_p; return true if REF
might imply that we should be tracking the value of its decl. */
static bool
ipa_ref_requires_tracking (ipa_ref *ref)
{
/* If we have a load/store/alias of the symbol, then we'll track
the decl's value. */
if (ref->use != IPA_REF_ADDR)
return true;
if (ref->stmt == NULL)
return true;
switch (ref->stmt->code)
{
default:
return true;
case GIMPLE_CALL:
{
cgraph_node *caller_cnode = dyn_cast <cgraph_node *> (ref->referring);
if (caller_cnode == NULL)
return true;
cgraph_edge *edge = caller_cnode->get_edge (ref->stmt);
if (!edge)
return true;
if (edge->callee == NULL)
return true; /* e.g. call through function ptr. */
if (edge->callee->definition)
return true;
/* If we get here, then this ref is a pointer passed to
a function we don't have the definition for. */
return false;
}
break;
case GIMPLE_ASM:
{
const gasm *asm_stmt = as_a <const gasm *> (ref->stmt);
if (gimple_asm_noutputs (asm_stmt) > 0)
return true;
if (gimple_asm_nclobbers (asm_stmt) > 0)
return true;
/* If we get here, then this ref is the decl being passed
by pointer to asm with no outputs. */
return false;
}
break;
}
}
/* Determine if the decl for SYMNODE should have binding_clusters
in our state objects; return false to optimize away tracking
certain decls in our state objects, as an optimization. */
static bool
symnode_requires_tracking_p (symtab_node *symnode)
{
gcc_assert (symnode);
if (symnode->externally_visible)
return true;
tree context_fndecl = DECL_CONTEXT (symnode->decl);
if (context_fndecl == NULL)
return true;
if (TREE_CODE (context_fndecl) != FUNCTION_DECL)
return true;
for (auto ref : symnode->ref_list.referring)
if (ipa_ref_requires_tracking (ref))
return true;
/* If we get here, then we don't have uses of this decl that require
tracking; we never read from it or write to it explicitly. */
return false;
}
/* Subroutine of decl_region ctor: determine whether this decl_region
can have binding_clusters; return false to optimize away tracking
of certain decls in our state objects, as an optimization. */
bool
decl_region::calc_tracked_p (tree decl)
{
/* Precondition of symtab_node::get. */
if (TREE_CODE (decl) == VAR_DECL
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl) || in_lto_p))
if (symtab_node *symnode = symtab_node::get (decl))
return symnode_requires_tracking_p (symnode);
return true;
}
/* class field_region : public region. */
/* Implementation of region::dump_to_pp vfunc for field_region. */
void
field_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ".");
pp_printf (pp, "%E", m_field);
}
else
{
pp_string (pp, "field_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
print_quoted_type (pp, get_type ());
pp_printf (pp, ", %qE)", m_field);
}
}
/* Implementation of region::get_relative_concrete_offset vfunc
for field_region. */
bool
field_region::get_relative_concrete_offset (bit_offset_t *out) const
{
/* Compare with e.g. gimple-fold.cc's
fold_nonarray_ctor_reference. */
tree byte_offset = DECL_FIELD_OFFSET (m_field);
if (TREE_CODE (byte_offset) != INTEGER_CST)
return false;
tree field_offset = DECL_FIELD_BIT_OFFSET (m_field);
/* Compute bit offset of the field. */
offset_int bitoffset
= (wi::to_offset (field_offset)
+ (wi::to_offset (byte_offset) << LOG2_BITS_PER_UNIT));
*out = bitoffset;
return true;
}
/* class element_region : public region. */
/* Implementation of region::accept vfunc for element_region. */
void
element_region::accept (visitor *v) const
{
region::accept (v);
m_index->accept (v);
}
/* Implementation of region::dump_to_pp vfunc for element_region. */
void
element_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
//pp_string (pp, "(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, "[");
m_index->dump_to_pp (pp, simple);
pp_string (pp, "]");
//pp_string (pp, ")");
}
else
{
pp_string (pp, "element_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
print_quoted_type (pp, get_type ());
pp_string (pp, ", ");
m_index->dump_to_pp (pp, simple);
pp_printf (pp, ")");
}
}
/* Implementation of region::get_relative_concrete_offset vfunc
for element_region. */
bool
element_region::get_relative_concrete_offset (bit_offset_t *out) const
{
if (tree idx_cst = m_index->maybe_get_constant ())
{
gcc_assert (TREE_CODE (idx_cst) == INTEGER_CST);
tree elem_type = get_type ();
offset_int element_idx = wi::to_offset (idx_cst);
/* First, use int_size_in_bytes, to reject the case where we
have an incomplete type, or a non-constant value. */
HOST_WIDE_INT hwi_byte_size = int_size_in_bytes (elem_type);
if (hwi_byte_size > 0)
{
offset_int element_bit_size
= hwi_byte_size << LOG2_BITS_PER_UNIT;
offset_int element_bit_offset
= element_idx * element_bit_size;
*out = element_bit_offset;
return true;
}
}
return false;
}
/* class offset_region : public region. */
/* Implementation of region::accept vfunc for offset_region. */
void
offset_region::accept (visitor *v) const
{
region::accept (v);
m_byte_offset->accept (v);
}
/* Implementation of region::dump_to_pp vfunc for offset_region. */
void
offset_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
//pp_string (pp, "(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, "+");
m_byte_offset->dump_to_pp (pp, simple);
//pp_string (pp, ")");
}
else
{
pp_string (pp, "offset_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
print_quoted_type (pp, get_type ());
pp_string (pp, ", ");
m_byte_offset->dump_to_pp (pp, simple);
pp_printf (pp, ")");
}
}
/* Implementation of region::get_relative_concrete_offset vfunc
for offset_region. */
bool
offset_region::get_relative_concrete_offset (bit_offset_t *out) const
{
if (tree byte_offset_cst = m_byte_offset->maybe_get_constant ())
{
gcc_assert (TREE_CODE (byte_offset_cst) == INTEGER_CST);
/* Use a signed value for the byte offset, to handle
negative offsets. */
HOST_WIDE_INT byte_offset
= wi::to_offset (byte_offset_cst).to_shwi ();
HOST_WIDE_INT bit_offset = byte_offset * BITS_PER_UNIT;
*out = bit_offset;
return true;
}
return false;
}
/* Implementation of region::get_byte_size_sval vfunc for offset_region. */
const svalue *
offset_region::get_byte_size_sval (region_model_manager *mgr) const
{
tree offset_cst = get_byte_offset ()->maybe_get_constant ();
byte_size_t byte_size;
/* If the offset points in the middle of the region,
return the remaining bytes. */
if (get_byte_size (&byte_size) && offset_cst)
{
byte_size_t offset = wi::to_offset (offset_cst);
byte_range r (0, byte_size);
if (r.contains_p (offset))
{
tree remaining_byte_size = wide_int_to_tree (size_type_node,
byte_size - offset);
return mgr->get_or_create_constant_svalue (remaining_byte_size);
}
}
return region::get_byte_size_sval (mgr);
}
/* class sized_region : public region. */
/* Implementation of region::accept vfunc for sized_region. */
void
sized_region::accept (visitor *v) const
{
region::accept (v);
m_byte_size_sval->accept (v);
}
/* Implementation of region::dump_to_pp vfunc for sized_region. */
void
sized_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
pp_string (pp, "SIZED_REG(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
m_byte_size_sval->dump_to_pp (pp, simple);
pp_string (pp, ")");
}
else
{
pp_string (pp, "sized_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
m_byte_size_sval->dump_to_pp (pp, simple);
pp_printf (pp, ")");
}
}
/* Implementation of region::get_byte_size vfunc for sized_region. */
bool
sized_region::get_byte_size (byte_size_t *out) const
{
if (tree cst = m_byte_size_sval->maybe_get_constant ())
{
gcc_assert (TREE_CODE (cst) == INTEGER_CST);
*out = tree_to_uhwi (cst);
return true;
}
return false;
}
/* Implementation of region::get_bit_size vfunc for sized_region. */
bool
sized_region::get_bit_size (bit_size_t *out) const
{
byte_size_t byte_size;
if (!get_byte_size (&byte_size))
return false;
*out = byte_size * BITS_PER_UNIT;
return true;
}
/* class cast_region : public region. */
/* Implementation of region::accept vfunc for cast_region. */
void
cast_region::accept (visitor *v) const
{
region::accept (v);
m_original_region->accept (v);
}
/* Implementation of region::dump_to_pp vfunc for cast_region. */
void
cast_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
pp_string (pp, "CAST_REG(");
print_quoted_type (pp, get_type ());
pp_string (pp, ", ");
m_original_region->dump_to_pp (pp, simple);
pp_string (pp, ")");
}
else
{
pp_string (pp, "cast_region(");
m_original_region->dump_to_pp (pp, simple);
pp_string (pp, ", ");
print_quoted_type (pp, get_type ());
pp_printf (pp, ")");
}
}
/* class heap_allocated_region : public region. */
/* Implementation of region::dump_to_pp vfunc for heap_allocated_region. */
void
heap_allocated_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_printf (pp, "HEAP_ALLOCATED_REGION(%i)", get_id ());
else
pp_printf (pp, "heap_allocated_region(%i)", get_id ());
}
/* class alloca_region : public region. */
/* Implementation of region::dump_to_pp vfunc for alloca_region. */
void
alloca_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
pp_printf (pp, "ALLOCA_REGION(%i)", get_id ());
else
pp_printf (pp, "alloca_region(%i)", get_id ());
}
/* class string_region : public region. */
/* Implementation of region::dump_to_pp vfunc for string_region. */
void
string_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
dump_tree (pp, m_string_cst);
else
{
pp_string (pp, "string_region(");
dump_tree (pp, m_string_cst);
if (!flag_dump_noaddr)
{
pp_string (pp, " (");
pp_pointer (pp, m_string_cst);
pp_string (pp, "))");
}
}
}
/* class bit_range_region : public region. */
/* Implementation of region::dump_to_pp vfunc for bit_range_region. */
void
bit_range_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
pp_string (pp, "BIT_RANGE_REG(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
m_bits.dump_to_pp (pp);
pp_string (pp, ")");
}
else
{
pp_string (pp, "bit_range_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_string (pp, ", ");
m_bits.dump_to_pp (pp);
pp_printf (pp, ")");
}
}
/* Implementation of region::get_byte_size vfunc for bit_range_region. */
bool
bit_range_region::get_byte_size (byte_size_t *out) const
{
if (m_bits.m_size_in_bits % BITS_PER_UNIT == 0)
{
*out = m_bits.m_size_in_bits / BITS_PER_UNIT;
return true;
}
return false;
}
/* Implementation of region::get_bit_size vfunc for bit_range_region. */
bool
bit_range_region::get_bit_size (bit_size_t *out) const
{
*out = m_bits.m_size_in_bits;
return true;
}
/* Implementation of region::get_byte_size_sval vfunc for bit_range_region. */
const svalue *
bit_range_region::get_byte_size_sval (region_model_manager *mgr) const
{
if (m_bits.m_size_in_bits % BITS_PER_UNIT != 0)
return mgr->get_or_create_unknown_svalue (size_type_node);
HOST_WIDE_INT num_bytes = m_bits.m_size_in_bits.to_shwi () / BITS_PER_UNIT;
return mgr->get_or_create_int_cst (size_type_node, num_bytes);
}
/* Implementation of region::get_relative_concrete_offset vfunc for
bit_range_region. */
bool
bit_range_region::get_relative_concrete_offset (bit_offset_t *out) const
{
*out = m_bits.get_start_bit_offset ();
return true;
}
/* class var_arg_region : public region. */
void
var_arg_region::dump_to_pp (pretty_printer *pp, bool simple) const
{
if (simple)
{
pp_string (pp, "VAR_ARG_REG(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_printf (pp, ", arg_idx: %d)", m_idx);
}
else
{
pp_string (pp, "var_arg_region(");
get_parent_region ()->dump_to_pp (pp, simple);
pp_printf (pp, ", arg_idx: %d)", m_idx);
}
}
/* Get the frame_region for this var_arg_region. */
const frame_region *
var_arg_region::get_frame_region () const
{
gcc_assert (get_parent_region ());
return as_a <const frame_region *> (get_parent_region ());
}
/* class unknown_region : public region. */
/* Implementation of region::dump_to_pp vfunc for unknown_region. */
void
unknown_region::dump_to_pp (pretty_printer *pp, bool /*simple*/) const
{
pp_string (pp, "UNKNOWN_REGION");
}
} // namespace ana
#endif /* #if ENABLE_ANALYZER */
|