1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch11; use Exp_Ch11;
with Exp_Disp; use Exp_Disp;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Freeze; use Freeze;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet.Sp; use Namet.Sp;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Attr; use Sem_Attr;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Warn; use Sem_Warn;
with Sem_Type; use Sem_Type;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Stand; use Stand;
with Style;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uname; use Uname;
with GNAT.HTable; use GNAT.HTable;
package body Sem_Util is
----------------------------------------
-- Global_Variables for New_Copy_Tree --
----------------------------------------
-- These global variables are used by New_Copy_Tree. See description
-- of the body of this subprogram for details. Global variables can be
-- safely used by New_Copy_Tree, since there is no case of a recursive
-- call from the processing inside New_Copy_Tree.
NCT_Hash_Threshold : constant := 20;
-- If there are more than this number of pairs of entries in the
-- map, then Hash_Tables_Used will be set, and the hash tables will
-- be initialized and used for the searches.
NCT_Hash_Tables_Used : Boolean := False;
-- Set to True if hash tables are in use
NCT_Table_Entries : Nat := 0;
-- Count entries in table to see if threshold is reached
NCT_Hash_Table_Setup : Boolean := False;
-- Set to True if hash table contains data. We set this True if we
-- setup the hash table with data, and leave it set permanently
-- from then on, this is a signal that second and subsequent users
-- of the hash table must clear the old entries before reuse.
subtype NCT_Header_Num is Int range 0 .. 511;
-- Defines range of headers in hash tables (512 headers)
-----------------------
-- Local Subprograms --
-----------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id;
-- This function builds the subtype for Build_Actual_Subtype_Of_Component
-- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
-- Loc is the source location, T is the original subtype.
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
-- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
-- with discriminants whose default values are static, examine only the
-- components in the selected variant to determine whether all of them
-- have a default.
function Has_Enabled_Property
(Item_Id : Entity_Id;
Property : Name_Id) return Boolean;
-- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
-- Determine whether an abstract state or a variable denoted by entity
-- Item_Id has enabled property Property.
function Has_Null_Extension (T : Entity_Id) return Boolean;
-- T is a derived tagged type. Check whether the type extension is null.
-- If the parent type is fully initialized, T can be treated as such.
------------------------------
-- Abstract_Interface_List --
------------------------------
function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
Nod : Node_Id;
begin
if Is_Concurrent_Type (Typ) then
-- If we are dealing with a synchronized subtype, go to the base
-- type, whose declaration has the interface list.
-- Shouldn't this be Declaration_Node???
Nod := Parent (Base_Type (Typ));
if Nkind (Nod) = N_Full_Type_Declaration then
return Empty_List;
end if;
elsif Ekind (Typ) = E_Record_Type_With_Private then
if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
Nod := Type_Definition (Parent (Typ));
elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
if Present (Full_View (Typ))
and then
Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
then
Nod := Type_Definition (Parent (Full_View (Typ)));
-- If the full-view is not available we cannot do anything else
-- here (the source has errors).
else
return Empty_List;
end if;
-- Support for generic formals with interfaces is still missing ???
elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
return Empty_List;
else
pragma Assert
(Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
Nod := Parent (Typ);
end if;
elsif Ekind (Typ) = E_Record_Subtype then
Nod := Type_Definition (Parent (Etype (Typ)));
elsif Ekind (Typ) = E_Record_Subtype_With_Private then
-- Recurse, because parent may still be a private extension. Also
-- note that the full view of the subtype or the full view of its
-- base type may (both) be unavailable.
return Abstract_Interface_List (Etype (Typ));
else pragma Assert ((Ekind (Typ)) = E_Record_Type);
if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
Nod := Formal_Type_Definition (Parent (Typ));
else
Nod := Type_Definition (Parent (Typ));
end if;
end if;
return Interface_List (Nod);
end Abstract_Interface_List;
--------------------------------
-- Add_Access_Type_To_Process --
--------------------------------
procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
L : Elist_Id;
begin
Ensure_Freeze_Node (E);
L := Access_Types_To_Process (Freeze_Node (E));
if No (L) then
L := New_Elmt_List;
Set_Access_Types_To_Process (Freeze_Node (E), L);
end if;
Append_Elmt (A, L);
end Add_Access_Type_To_Process;
--------------------------
-- Add_Block_Identifier --
--------------------------
procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
pragma Assert (Nkind (N) = N_Block_Statement);
-- The block already has a label, return its entity
if Present (Identifier (N)) then
Id := Entity (Identifier (N));
-- Create a new block label and set its attributes
else
Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
Set_Etype (Id, Standard_Void_Type);
Set_Parent (Id, N);
Set_Identifier (N, New_Occurrence_Of (Id, Loc));
Set_Block_Node (Id, Identifier (N));
end if;
end Add_Block_Identifier;
-----------------------
-- Add_Contract_Item --
-----------------------
procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id) is
Items : constant Node_Id := Contract (Id);
Nam : Name_Id;
N : Node_Id;
begin
-- The related context must have a contract and the item to be added
-- must be a pragma.
pragma Assert (Present (Items));
pragma Assert (Nkind (Prag) = N_Pragma);
Nam := Original_Aspect_Name (Prag);
-- Contract items related to [generic] packages or instantiations. The
-- applicable pragmas are:
-- Abstract_States
-- Initial_Condition
-- Initializes
-- Part_Of (instantiation only)
if Ekind_In (Id, E_Generic_Package, E_Package) then
if Nam_In (Nam, Name_Abstract_State,
Name_Initial_Condition,
Name_Initializes)
then
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
-- Indicator Part_Of must be associated with a package instantiation
elsif Nam = Name_Part_Of and then Is_Generic_Instance (Id) then
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to package bodies. The applicable pragmas are:
-- Refined_States
elsif Ekind (Id) = E_Package_Body then
if Nam = Name_Refined_State then
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to subprogram or entry declarations. The
-- applicable pragmas are:
-- Contract_Cases
-- Depends
-- Global
-- Post
-- Postcondition
-- Pre
-- Precondition
-- Test_Case
elsif Ekind_In (Id, E_Entry, E_Entry_Family)
or else Is_Generic_Subprogram (Id)
or else Is_Subprogram (Id)
then
if Nam_In (Nam, Name_Precondition,
Name_Postcondition,
Name_Pre,
Name_Post,
Name_uPre,
Name_uPost)
then
-- Before we add a precondition or postcondition to the list,
-- make sure we do not have a disallowed duplicate, which can
-- happen if we use a pragma for Pre[_Class] or Post[_Class]
-- instead of the corresponding aspect.
if not From_Aspect_Specification (Prag)
and then Nam_In (Nam, Name_Pre_Class,
Name_Pre,
Name_uPre,
Name_Post_Class,
Name_Post,
Name_uPost)
then
N := Pre_Post_Conditions (Items);
while Present (N) loop
if not Split_PPC (N)
and then Original_Aspect_Name (N) = Nam
then
Error_Msg_Sloc := Sloc (N);
Error_Msg_NE
("duplication of aspect for & given#", Prag, Id);
return;
else
N := Next_Pragma (N);
end if;
end loop;
end if;
Set_Next_Pragma (Prag, Pre_Post_Conditions (Items));
Set_Pre_Post_Conditions (Items, Prag);
elsif Nam_In (Nam, Name_Contract_Cases, Name_Test_Case) then
Set_Next_Pragma (Prag, Contract_Test_Cases (Items));
Set_Contract_Test_Cases (Items, Prag);
elsif Nam_In (Nam, Name_Depends, Name_Global) then
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to subprogram bodies. The applicable pragmas
-- are:
-- Refined_Depends
-- Refined_Global
-- Refined_Post
elsif Ekind (Id) = E_Subprogram_Body then
if Nam = Name_Refined_Post then
Set_Next_Pragma (Prag, Pre_Post_Conditions (Items));
Set_Pre_Post_Conditions (Items, Prag);
elsif Nam_In (Nam, Name_Refined_Depends, Name_Refined_Global) then
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to variables. The applicable pragmas are:
-- Async_Readers
-- Async_Writers
-- Effective_Reads
-- Effective_Writes
-- Part_Of
elsif Ekind (Id) = E_Variable then
if Nam_In (Nam, Name_Async_Readers,
Name_Async_Writers,
Name_Effective_Reads,
Name_Effective_Writes,
Name_Part_Of)
then
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
end if;
end Add_Contract_Item;
----------------------------
-- Add_Global_Declaration --
----------------------------
procedure Add_Global_Declaration (N : Node_Id) is
Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
begin
if No (Declarations (Aux_Node)) then
Set_Declarations (Aux_Node, New_List);
end if;
Append_To (Declarations (Aux_Node), N);
Analyze (N);
end Add_Global_Declaration;
--------------------------------
-- Address_Integer_Convert_OK --
--------------------------------
function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
begin
if Allow_Integer_Address
and then ((Is_Descendent_Of_Address (T1)
and then Is_Private_Type (T1)
and then Is_Integer_Type (T2))
or else
(Is_Descendent_Of_Address (T2)
and then Is_Private_Type (T2)
and then Is_Integer_Type (T1)))
then
return True;
else
return False;
end if;
end Address_Integer_Convert_OK;
-----------------
-- Addressable --
-----------------
-- For now, just 8/16/32/64. but analyze later if AAMP is special???
function Addressable (V : Uint) return Boolean is
begin
return V = Uint_8 or else
V = Uint_16 or else
V = Uint_32 or else
V = Uint_64;
end Addressable;
function Addressable (V : Int) return Boolean is
begin
return V = 8 or else
V = 16 or else
V = 32 or else
V = 64;
end Addressable;
---------------------------------
-- Aggregate_Constraint_Checks --
---------------------------------
procedure Aggregate_Constraint_Checks
(Exp : Node_Id;
Check_Typ : Entity_Id)
is
Exp_Typ : constant Entity_Id := Etype (Exp);
begin
if Raises_Constraint_Error (Exp) then
return;
end if;
-- Ada 2005 (AI-230): Generate a conversion to an anonymous access
-- component's type to force the appropriate accessibility checks.
-- Ada 2005 (AI-231): Generate conversion to the null-excluding
-- type to force the corresponding run-time check
if Is_Access_Type (Check_Typ)
and then ((Is_Local_Anonymous_Access (Check_Typ))
or else (Can_Never_Be_Null (Check_Typ)
and then not Can_Never_Be_Null (Exp_Typ)))
then
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- This is really expansion activity, so make sure that expansion is
-- on and is allowed. In GNATprove mode, we also want check flags to
-- be added in the tree, so that the formal verification can rely on
-- those to be present. In GNATprove mode for formal verification, some
-- treatment typically only done during expansion needs to be performed
-- on the tree, but it should not be applied inside generics. Otherwise,
-- this breaks the name resolution mechanism for generic instances.
if not Expander_Active
and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
then
return;
end if;
-- First check if we have to insert discriminant checks
if Has_Discriminants (Exp_Typ) then
Apply_Discriminant_Check (Exp, Check_Typ);
-- Next emit length checks for array aggregates
elsif Is_Array_Type (Exp_Typ) then
Apply_Length_Check (Exp, Check_Typ);
-- Finally emit scalar and string checks. If we are dealing with a
-- scalar literal we need to check by hand because the Etype of
-- literals is not necessarily correct.
elsif Is_Scalar_Type (Exp_Typ)
and then Compile_Time_Known_Value (Exp)
then
if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}??", CE_Range_Check_Failed,
Ent => Base_Type (Check_Typ),
Typ => Base_Type (Check_Typ));
elsif Is_Out_Of_Range (Exp, Check_Typ) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}??", CE_Range_Check_Failed,
Ent => Check_Typ,
Typ => Check_Typ);
elsif not Range_Checks_Suppressed (Check_Typ) then
Apply_Scalar_Range_Check (Exp, Check_Typ);
end if;
-- Verify that target type is also scalar, to prevent view anomalies
-- in instantiations.
elsif (Is_Scalar_Type (Exp_Typ)
or else Nkind (Exp) = N_String_Literal)
and then Is_Scalar_Type (Check_Typ)
and then Exp_Typ /= Check_Typ
then
if Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Constant
then
-- If expression is a constant, it is worthwhile checking whether
-- it is a bound of the type.
if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
or else
(Is_Entity_Name (Type_High_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
then
return;
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- Could use a comment on this case ???
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
end if;
end Aggregate_Constraint_Checks;
-----------------------
-- Alignment_In_Bits --
-----------------------
function Alignment_In_Bits (E : Entity_Id) return Uint is
begin
return Alignment (E) * System_Storage_Unit;
end Alignment_In_Bits;
---------------------------------
-- Append_Inherited_Subprogram --
---------------------------------
procedure Append_Inherited_Subprogram (S : Entity_Id) is
Par : constant Entity_Id := Alias (S);
-- The parent subprogram
Scop : constant Entity_Id := Scope (Par);
-- The scope of definition of the parent subprogram
Typ : constant Entity_Id := Defining_Entity (Parent (S));
-- The derived type of which S is a primitive operation
Decl : Node_Id;
Next_E : Entity_Id;
begin
if Ekind (Current_Scope) = E_Package
and then In_Private_Part (Current_Scope)
and then Has_Private_Declaration (Typ)
and then Is_Tagged_Type (Typ)
and then Scop = Current_Scope
then
-- The inherited operation is available at the earliest place after
-- the derived type declaration ( RM 7.3.1 (6/1)). This is only
-- relevant for type extensions. If the parent operation appears
-- after the type extension, the operation is not visible.
Decl := First
(Visible_Declarations
(Package_Specification (Current_Scope)));
while Present (Decl) loop
if Nkind (Decl) = N_Private_Extension_Declaration
and then Defining_Entity (Decl) = Typ
then
if Sloc (Decl) > Sloc (Par) then
Next_E := Next_Entity (Par);
Set_Next_Entity (Par, S);
Set_Next_Entity (S, Next_E);
return;
else
exit;
end if;
end if;
Next (Decl);
end loop;
end if;
-- If partial view is not a type extension, or it appears before the
-- subprogram declaration, insert normally at end of entity list.
Append_Entity (S, Current_Scope);
end Append_Inherited_Subprogram;
-----------------------------------------
-- Apply_Compile_Time_Constraint_Error --
-----------------------------------------
procedure Apply_Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Reason : RT_Exception_Code;
Ent : Entity_Id := Empty;
Typ : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Rep : Boolean := True;
Warn : Boolean := False)
is
Stat : constant Boolean := Is_Static_Expression (N);
R_Stat : constant Node_Id :=
Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
Rtyp : Entity_Id;
begin
if No (Typ) then
Rtyp := Etype (N);
else
Rtyp := Typ;
end if;
Discard_Node
(Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
if not Rep then
return;
end if;
-- Now we replace the node by an N_Raise_Constraint_Error node
-- This does not need reanalyzing, so set it as analyzed now.
Rewrite (N, R_Stat);
Set_Analyzed (N, True);
Set_Etype (N, Rtyp);
Set_Raises_Constraint_Error (N);
-- Now deal with possible local raise handling
Possible_Local_Raise (N, Standard_Constraint_Error);
-- If the original expression was marked as static, the result is
-- still marked as static, but the Raises_Constraint_Error flag is
-- always set so that further static evaluation is not attempted.
if Stat then
Set_Is_Static_Expression (N);
end if;
end Apply_Compile_Time_Constraint_Error;
---------------------------
-- Async_Readers_Enabled --
---------------------------
function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Async_Readers);
end Async_Readers_Enabled;
---------------------------
-- Async_Writers_Enabled --
---------------------------
function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Async_Writers);
end Async_Writers_Enabled;
--------------------------------------
-- Available_Full_View_Of_Component --
--------------------------------------
function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
ST : constant Entity_Id := Scope (T);
SCT : constant Entity_Id := Scope (Component_Type (T));
begin
return In_Open_Scopes (ST)
and then In_Open_Scopes (SCT)
and then Scope_Depth (ST) >= Scope_Depth (SCT);
end Available_Full_View_Of_Component;
-------------------
-- Bad_Attribute --
-------------------
procedure Bad_Attribute
(N : Node_Id;
Nam : Name_Id;
Warn : Boolean := False)
is
begin
Error_Msg_Warn := Warn;
Error_Msg_N ("unrecognized attribute&<<", N);
-- Check for possible misspelling
Error_Msg_Name_1 := First_Attribute_Name;
while Error_Msg_Name_1 <= Last_Attribute_Name loop
if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
Error_Msg_N -- CODEFIX
("\possible misspelling of %<<", N);
exit;
end if;
Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
end loop;
end Bad_Attribute;
--------------------------------
-- Bad_Predicated_Subtype_Use --
--------------------------------
procedure Bad_Predicated_Subtype_Use
(Msg : String;
N : Node_Id;
Typ : Entity_Id;
Suggest_Static : Boolean := False)
is
Gen : Entity_Id;
begin
if Inside_A_Generic then
Gen := Current_Scope;
while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
Gen := Scope (Gen);
end loop;
if No (Gen) then
return;
end if;
if Is_Generic_Formal (Typ)
and then Is_Discrete_Type (Typ)
then
Set_No_Predicate_On_Actual (Typ);
end if;
elsif Has_Predicates (Typ) then
if Is_Generic_Actual_Type (Typ) then
-- The restriction on loop parameters is only that the type
-- should have no dynamic predicates.
if Nkind (Parent (N)) = N_Loop_Parameter_Specification
and then not Has_Dynamic_Predicate_Aspect (Typ)
and then Is_Static_Subtype (Typ)
then
return;
end if;
Gen := Current_Scope;
while not Is_Generic_Instance (Gen) loop
Gen := Scope (Gen);
end loop;
pragma Assert (Present (Gen));
if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_FE (Msg & "<<", N, Typ);
Error_Msg_F ("\Program_Error [<<", N);
Insert_Action (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Bad_Predicated_Generic_Type));
else
Error_Msg_FE (Msg & "<<", N, Typ);
end if;
else
Error_Msg_FE (Msg, N, Typ);
end if;
-- Emit an optional suggestion on how to remedy the error if the
-- context warrants it.
if Suggest_Static and then Has_Static_Predicate (Typ) then
Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
end if;
end if;
end Bad_Predicated_Subtype_Use;
-----------------------------------------
-- Bad_Unordered_Enumeration_Reference --
-----------------------------------------
function Bad_Unordered_Enumeration_Reference
(N : Node_Id;
T : Entity_Id) return Boolean
is
begin
return Is_Enumeration_Type (T)
and then Comes_From_Source (N)
and then Warn_On_Unordered_Enumeration_Type
and then not Has_Pragma_Ordered (T)
and then not In_Same_Extended_Unit (N, T);
end Bad_Unordered_Enumeration_Reference;
--------------------------
-- Build_Actual_Subtype --
--------------------------
function Build_Actual_Subtype
(T : Entity_Id;
N : Node_Or_Entity_Id) return Node_Id
is
Loc : Source_Ptr;
-- Normally Sloc (N), but may point to corresponding body in some cases
Constraints : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
Hi : Node_Id;
Lo : Node_Id;
Subt : Entity_Id;
Disc_Type : Entity_Id;
Obj : Node_Id;
begin
Loc := Sloc (N);
if Nkind (N) = N_Defining_Identifier then
Obj := New_Occurrence_Of (N, Loc);
-- If this is a formal parameter of a subprogram declaration, and
-- we are compiling the body, we want the declaration for the
-- actual subtype to carry the source position of the body, to
-- prevent anomalies in gdb when stepping through the code.
if Is_Formal (N) then
declare
Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
begin
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Loc := Sloc (Corresponding_Body (Decl));
end if;
end;
end if;
else
Obj := N;
end if;
if Is_Array_Type (T) then
Constraints := New_List;
for J in 1 .. Number_Dimensions (T) loop
-- Build an array subtype declaration with the nominal subtype and
-- the bounds of the actual. Add the declaration in front of the
-- local declarations for the subprogram, for analysis before any
-- reference to the formal in the body.
Lo :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Hi :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Append (Make_Range (Loc, Lo, Hi), Constraints);
end loop;
-- If the type has unknown discriminants there is no constrained
-- subtype to build. This is never called for a formal or for a
-- lhs, so returning the type is ok ???
elsif Has_Unknown_Discriminants (T) then
return T;
else
Constraints := New_List;
-- Type T is a generic derived type, inherit the discriminants from
-- the parent type.
if Is_Private_Type (T)
and then No (Full_View (T))
-- T was flagged as an error if it was declared as a formal
-- derived type with known discriminants. In this case there
-- is no need to look at the parent type since T already carries
-- its own discriminants.
and then not Error_Posted (T)
then
Disc_Type := Etype (Base_Type (T));
else
Disc_Type := T;
end if;
Discr := First_Discriminant (Disc_Type);
while Present (Discr) loop
Append_To (Constraints,
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj),
Selector_Name => New_Occurrence_Of (Discr, Loc)));
Next_Discriminant (Discr);
end loop;
end if;
Subt := Make_Temporary (Loc, 'S', Related_Node => N);
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Actual_Subtype;
---------------------------------------
-- Build_Actual_Subtype_Of_Component --
---------------------------------------
function Build_Actual_Subtype_Of_Component
(T : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Prefix (N);
D : Elmt_Id;
Id : Node_Id;
Index_Typ : Entity_Id;
Desig_Typ : Entity_Id;
-- This is either a copy of T, or if T is an access type, then it is
-- the directly designated type of this access type.
function Build_Actual_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Actual_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained
-- by the discriminant of the enclosing object.
-----------------------------------
-- Build_Actual_Array_Constraint --
-----------------------------------
function Build_Actual_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (Desig_Typ);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
else
Lo := New_Copy_Tree (Old_Lo);
-- The new bound will be reanalyzed in the enclosing
-- declaration. For literal bounds that come from a type
-- declaration, the type of the context must be imposed, so
-- insure that analysis will take place. For non-universal
-- types this is not strictly necessary.
Set_Analyzed (Lo, False);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
else
Hi := New_Copy_Tree (Old_Hi);
Set_Analyzed (Hi, False);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Actual_Array_Constraint;
------------------------------------
-- Build_Actual_Record_Constraint --
------------------------------------
function Build_Actual_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val := Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Actual_Record_Constraint;
-- Start of processing for Build_Actual_Subtype_Of_Component
begin
-- Why the test for Spec_Expression mode here???
if In_Spec_Expression then
return Empty;
-- More comments for the rest of this body would be good ???
elsif Nkind (N) = N_Explicit_Dereference then
if Is_Composite_Type (T)
and then not Is_Constrained (T)
and then not (Is_Class_Wide_Type (T)
and then Is_Constrained (Root_Type (T)))
and then not Has_Unknown_Discriminants (T)
then
-- If the type of the dereference is already constrained, it is an
-- actual subtype.
if Is_Array_Type (Etype (N))
and then Is_Constrained (Etype (N))
then
return Empty;
else
Remove_Side_Effects (P);
return Build_Actual_Subtype (T, N);
end if;
else
return Empty;
end if;
end if;
if Ekind (T) = E_Access_Subtype then
Desig_Typ := Designated_Type (T);
else
Desig_Typ := T;
end if;
if Ekind (Desig_Typ) = E_Array_Subtype then
Id := First_Index (Desig_Typ);
while Present (Id) loop
Index_Typ := Underlying_Type (Etype (Id));
if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
or else
Denotes_Discriminant (Type_High_Bound (Index_Typ))
then
Remove_Side_Effects (P);
return
Build_Component_Subtype
(Build_Actual_Array_Constraint, Loc, Base_Type (T));
end if;
Next_Index (Id);
end loop;
elsif Is_Composite_Type (Desig_Typ)
and then Has_Discriminants (Desig_Typ)
and then not Has_Unknown_Discriminants (Desig_Typ)
then
if Is_Private_Type (Desig_Typ)
and then No (Discriminant_Constraint (Desig_Typ))
then
Desig_Typ := Full_View (Desig_Typ);
end if;
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
Remove_Side_Effects (P);
return
Build_Component_Subtype (
Build_Actual_Record_Constraint, Loc, Base_Type (T));
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Actual_Subtype_Of_Component;
-----------------------------
-- Build_Component_Subtype --
-----------------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id
is
Subt : Entity_Id;
Decl : Node_Id;
begin
-- Unchecked_Union components do not require component subtypes
if Is_Unchecked_Union (T) then
return Empty;
end if;
Subt := Make_Temporary (Loc, 'S');
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => C)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Component_Subtype;
---------------------------
-- Build_Default_Subtype --
---------------------------
function Build_Default_Subtype
(T : Entity_Id;
N : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (N);
Disc : Entity_Id;
Bas : Entity_Id;
-- The base type that is to be constrained by the defaults
begin
if not Has_Discriminants (T) or else Is_Constrained (T) then
return T;
end if;
Bas := Base_Type (T);
-- If T is non-private but its base type is private, this is the
-- completion of a subtype declaration whose parent type is private
-- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
-- are to be found in the full view of the base. Check that the private
-- status of T and its base differ.
if Is_Private_Type (Bas)
and then not Is_Private_Type (T)
and then Present (Full_View (Bas))
then
Bas := Full_View (Bas);
end if;
Disc := First_Discriminant (T);
if No (Discriminant_Default_Value (Disc)) then
return T;
end if;
declare
Act : constant Entity_Id := Make_Temporary (Loc, 'S');
Constraints : constant List_Id := New_List;
Decl : Node_Id;
begin
while Present (Disc) loop
Append_To (Constraints,
New_Copy_Tree (Discriminant_Default_Value (Disc)));
Next_Discriminant (Disc);
end loop;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Act,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Bas, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Insert_Action (N, Decl);
Analyze (Decl);
return Act;
end;
end Build_Default_Subtype;
--------------------------------------------
-- Build_Discriminal_Subtype_Of_Component --
--------------------------------------------
function Build_Discriminal_Subtype_Of_Component
(T : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (T);
D : Elmt_Id;
Id : Node_Id;
function Build_Discriminal_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Discriminal_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained by
-- the discriminant of the enclosing object.
----------------------------------------
-- Build_Discriminal_Array_Constraint --
----------------------------------------
function Build_Discriminal_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (T);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
else
Lo := New_Copy_Tree (Old_Lo);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
else
Hi := New_Copy_Tree (Old_Hi);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Discriminal_Array_Constraint;
-----------------------------------------
-- Build_Discriminal_Record_Constraint --
-----------------------------------------
function Build_Discriminal_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val :=
New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Discriminal_Record_Constraint;
-- Start of processing for Build_Discriminal_Subtype_Of_Component
begin
if Ekind (T) = E_Array_Subtype then
Id := First_Index (T);
while Present (Id) loop
if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
or else
Denotes_Discriminant (Type_High_Bound (Etype (Id)))
then
return Build_Component_Subtype
(Build_Discriminal_Array_Constraint, Loc, T);
end if;
Next_Index (Id);
end loop;
elsif Ekind (T) = E_Record_Subtype
and then Has_Discriminants (T)
and then not Has_Unknown_Discriminants (T)
then
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
return Build_Component_Subtype
(Build_Discriminal_Record_Constraint, Loc, T);
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Discriminal_Subtype_Of_Component;
------------------------------
-- Build_Elaboration_Entity --
------------------------------
procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Elab_Ent : Entity_Id;
procedure Set_Package_Name (Ent : Entity_Id);
-- Given an entity, sets the fully qualified name of the entity in
-- Name_Buffer, with components separated by double underscores. This
-- is a recursive routine that climbs the scope chain to Standard.
----------------------
-- Set_Package_Name --
----------------------
procedure Set_Package_Name (Ent : Entity_Id) is
begin
if Scope (Ent) /= Standard_Standard then
Set_Package_Name (Scope (Ent));
declare
Nam : constant String := Get_Name_String (Chars (Ent));
begin
Name_Buffer (Name_Len + 1) := '_';
Name_Buffer (Name_Len + 2) := '_';
Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
Name_Len := Name_Len + Nam'Length + 2;
end;
else
Get_Name_String (Chars (Ent));
end if;
end Set_Package_Name;
-- Start of processing for Build_Elaboration_Entity
begin
-- Ignore call if already constructed
if Present (Elaboration_Entity (Spec_Id)) then
return;
-- Ignore in ASIS mode, elaboration entity is not in source and plays
-- no role in analysis.
elsif ASIS_Mode then
return;
-- See if we need elaboration entity. We always need it for the dynamic
-- elaboration model, since it is needed to properly generate the PE
-- exception for access before elaboration.
elsif Dynamic_Elaboration_Checks then
null;
-- For the static model, we don't need the elaboration counter if this
-- unit is sure to have no elaboration code, since that means there
-- is no elaboration unit to be called. Note that we can't just decide
-- after the fact by looking to see whether there was elaboration code,
-- because that's too late to make this decision.
elsif Restriction_Active (No_Elaboration_Code) then
return;
-- Similarly, for the static model, we can skip the elaboration counter
-- if we have the No_Multiple_Elaboration restriction, since for the
-- static model, that's the only purpose of the counter (to avoid
-- multiple elaboration).
elsif Restriction_Active (No_Multiple_Elaboration) then
return;
end if;
-- Here we need the elaboration entity
-- Construct name of elaboration entity as xxx_E, where xxx is the unit
-- name with dots replaced by double underscore. We have to manually
-- construct this name, since it will be elaborated in the outer scope,
-- and thus will not have the unit name automatically prepended.
Set_Package_Name (Spec_Id);
Add_Str_To_Name_Buffer ("_E");
-- Create elaboration counter
Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
Set_Elaboration_Entity (Spec_Id, Elab_Ent);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Elab_Ent,
Object_Definition =>
New_Occurrence_Of (Standard_Short_Integer, Loc),
Expression => Make_Integer_Literal (Loc, Uint_0));
Push_Scope (Standard_Standard);
Add_Global_Declaration (Decl);
Pop_Scope;
-- Reset True_Constant indication, since we will indeed assign a value
-- to the variable in the binder main. We also kill the Current_Value
-- and Last_Assignment fields for the same reason.
Set_Is_True_Constant (Elab_Ent, False);
Set_Current_Value (Elab_Ent, Empty);
Set_Last_Assignment (Elab_Ent, Empty);
-- We do not want any further qualification of the name (if we did not
-- do this, we would pick up the name of the generic package in the case
-- of a library level generic instantiation).
Set_Has_Qualified_Name (Elab_Ent);
Set_Has_Fully_Qualified_Name (Elab_Ent);
end Build_Elaboration_Entity;
--------------------------------
-- Build_Explicit_Dereference --
--------------------------------
procedure Build_Explicit_Dereference
(Expr : Node_Id;
Disc : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Expr);
begin
-- An entity of a type with a reference aspect is overloaded with
-- both interpretations: with and without the dereference. Now that
-- the dereference is made explicit, set the type of the node properly,
-- to prevent anomalies in the backend. Same if the expression is an
-- overloaded function call whose return type has a reference aspect.
if Is_Entity_Name (Expr) then
Set_Etype (Expr, Etype (Entity (Expr)));
elsif Nkind (Expr) = N_Function_Call then
Set_Etype (Expr, Etype (Name (Expr)));
end if;
Set_Is_Overloaded (Expr, False);
-- The expression will often be a generalized indexing that yields a
-- container element that is then dereferenced, in which case the
-- generalized indexing call is also non-overloaded.
if Nkind (Expr) = N_Indexed_Component
and then Present (Generalized_Indexing (Expr))
then
Set_Is_Overloaded (Generalized_Indexing (Expr), False);
end if;
Rewrite (Expr,
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Expr),
Selector_Name => New_Occurrence_Of (Disc, Loc))));
Set_Etype (Prefix (Expr), Etype (Disc));
Set_Etype (Expr, Designated_Type (Etype (Disc)));
end Build_Explicit_Dereference;
-----------------------------------
-- Cannot_Raise_Constraint_Error --
-----------------------------------
function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Expr) then
return True;
elsif Do_Range_Check (Expr) then
return False;
elsif Raises_Constraint_Error (Expr) then
return False;
else
case Nkind (Expr) is
when N_Identifier =>
return True;
when N_Expanded_Name =>
return True;
when N_Selected_Component =>
return not Do_Discriminant_Check (Expr);
when N_Attribute_Reference =>
if Do_Overflow_Check (Expr) then
return False;
elsif No (Expressions (Expr)) then
return True;
else
declare
N : Node_Id;
begin
N := First (Expressions (Expr));
while Present (N) loop
if Cannot_Raise_Constraint_Error (N) then
Next (N);
else
return False;
end if;
end loop;
return True;
end;
end if;
when N_Type_Conversion =>
if Do_Overflow_Check (Expr)
or else Do_Length_Check (Expr)
or else Do_Tag_Check (Expr)
then
return False;
else
return Cannot_Raise_Constraint_Error (Expression (Expr));
end if;
when N_Unchecked_Type_Conversion =>
return Cannot_Raise_Constraint_Error (Expression (Expr));
when N_Unary_Op =>
if Do_Overflow_Check (Expr) then
return False;
else
return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Divide |
N_Op_Mod |
N_Op_Rem
=>
if Do_Division_Check (Expr)
or else
Do_Overflow_Check (Expr)
then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Add |
N_Op_And |
N_Op_Concat |
N_Op_Eq |
N_Op_Expon |
N_Op_Ge |
N_Op_Gt |
N_Op_Le |
N_Op_Lt |
N_Op_Multiply |
N_Op_Ne |
N_Op_Or |
N_Op_Rotate_Left |
N_Op_Rotate_Right |
N_Op_Shift_Left |
N_Op_Shift_Right |
N_Op_Shift_Right_Arithmetic |
N_Op_Subtract |
N_Op_Xor
=>
if Do_Overflow_Check (Expr) then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when others =>
return False;
end case;
end if;
end Cannot_Raise_Constraint_Error;
-----------------------------------------
-- Check_Dynamically_Tagged_Expression --
-----------------------------------------
procedure Check_Dynamically_Tagged_Expression
(Expr : Node_Id;
Typ : Entity_Id;
Related_Nod : Node_Id)
is
begin
pragma Assert (Is_Tagged_Type (Typ));
-- In order to avoid spurious errors when analyzing the expanded code,
-- this check is done only for nodes that come from source and for
-- actuals of generic instantiations.
if (Comes_From_Source (Related_Nod)
or else In_Generic_Actual (Expr))
and then (Is_Class_Wide_Type (Etype (Expr))
or else Is_Dynamically_Tagged (Expr))
and then Is_Tagged_Type (Typ)
and then not Is_Class_Wide_Type (Typ)
then
Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
end if;
end Check_Dynamically_Tagged_Expression;
--------------------------
-- Check_Fully_Declared --
--------------------------
procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
begin
if Ekind (T) = E_Incomplete_Type then
-- Ada 2005 (AI-50217): If the type is available through a limited
-- with_clause, verify that its full view has been analyzed.
if From_Limited_With (T)
and then Present (Non_Limited_View (T))
and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
then
-- The non-limited view is fully declared
null;
else
Error_Msg_NE
("premature usage of incomplete}", N, First_Subtype (T));
end if;
-- Need comments for these tests ???
elsif Has_Private_Component (T)
and then not Is_Generic_Type (Root_Type (T))
and then not In_Spec_Expression
then
-- Special case: if T is the anonymous type created for a single
-- task or protected object, use the name of the source object.
if Is_Concurrent_Type (T)
and then not Comes_From_Source (T)
and then Nkind (N) = N_Object_Declaration
then
Error_Msg_NE
("type of& has incomplete component",
N, Defining_Identifier (N));
else
Error_Msg_NE
("premature usage of incomplete}",
N, First_Subtype (T));
end if;
end if;
end Check_Fully_Declared;
-------------------------------------
-- Check_Function_Writable_Actuals --
-------------------------------------
procedure Check_Function_Writable_Actuals (N : Node_Id) is
Writable_Actuals_List : Elist_Id := No_Elist;
Identifiers_List : Elist_Id := No_Elist;
Error_Node : Node_Id := Empty;
procedure Collect_Identifiers (N : Node_Id);
-- In a single traversal of subtree N collect in Writable_Actuals_List
-- all the actuals of functions with writable actuals, and in the list
-- Identifiers_List collect all the identifiers that are not actuals of
-- functions with writable actuals. If a writable actual is referenced
-- twice as writable actual then Error_Node is set to reference its
-- second occurrence, the error is reported, and the tree traversal
-- is abandoned.
function Get_Function_Id (Call : Node_Id) return Entity_Id;
-- Return the entity associated with the function call
procedure Preanalyze_Without_Errors (N : Node_Id);
-- Preanalyze N without reporting errors. Very dubious, you can't just
-- go analyzing things more than once???
-------------------------
-- Collect_Identifiers --
-------------------------
procedure Collect_Identifiers (N : Node_Id) is
function Check_Node (N : Node_Id) return Traverse_Result;
-- Process a single node during the tree traversal to collect the
-- writable actuals of functions and all the identifiers which are
-- not writable actuals of functions.
function Contains (List : Elist_Id; N : Node_Id) return Boolean;
-- Returns True if List has a node whose Entity is Entity (N)
-------------------------
-- Check_Function_Call --
-------------------------
function Check_Node (N : Node_Id) return Traverse_Result is
Is_Writable_Actual : Boolean := False;
Id : Entity_Id;
begin
if Nkind (N) = N_Identifier then
-- No analysis possible if the entity is not decorated
if No (Entity (N)) then
return Skip;
-- Don't collect identifiers of packages, called functions, etc
elsif Ekind_In (Entity (N), E_Package,
E_Function,
E_Procedure,
E_Entry)
then
return Skip;
-- Analyze if N is a writable actual of a function
elsif Nkind (Parent (N)) = N_Function_Call then
declare
Call : constant Node_Id := Parent (N);
Actual : Node_Id;
Formal : Node_Id;
begin
Id := Get_Function_Id (Call);
Formal := First_Formal (Id);
Actual := First_Actual (Call);
while Present (Actual) and then Present (Formal) loop
if Actual = N then
if Ekind_In (Formal, E_Out_Parameter,
E_In_Out_Parameter)
then
Is_Writable_Actual := True;
end if;
exit;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
end;
end if;
if Is_Writable_Actual then
if Contains (Writable_Actuals_List, N) then
Error_Msg_NE
("value may be affected by call to& "
& "because order of evaluation is arbitrary", N, Id);
Error_Node := N;
return Abandon;
end if;
if Writable_Actuals_List = No_Elist then
Writable_Actuals_List := New_Elmt_List;
end if;
Append_Elmt (N, Writable_Actuals_List);
else
if Identifiers_List = No_Elist then
Identifiers_List := New_Elmt_List;
end if;
Append_Unique_Elmt (N, Identifiers_List);
end if;
end if;
return OK;
end Check_Node;
--------------
-- Contains --
--------------
function Contains
(List : Elist_Id;
N : Node_Id) return Boolean
is
pragma Assert (Nkind (N) in N_Has_Entity);
Elmt : Elmt_Id;
begin
if List = No_Elist then
return False;
end if;
Elmt := First_Elmt (List);
while Present (Elmt) loop
if Entity (Node (Elmt)) = Entity (N) then
return True;
else
Next_Elmt (Elmt);
end if;
end loop;
return False;
end Contains;
------------------
-- Do_Traversal --
------------------
procedure Do_Traversal is new Traverse_Proc (Check_Node);
-- The traversal procedure
-- Start of processing for Collect_Identifiers
begin
if Present (Error_Node) then
return;
end if;
if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
return;
end if;
Do_Traversal (N);
end Collect_Identifiers;
---------------------
-- Get_Function_Id --
---------------------
function Get_Function_Id (Call : Node_Id) return Entity_Id is
Nam : constant Node_Id := Name (Call);
Id : Entity_Id;
begin
if Nkind (Nam) = N_Explicit_Dereference then
Id := Etype (Nam);
pragma Assert (Ekind (Id) = E_Subprogram_Type);
elsif Nkind (Nam) = N_Selected_Component then
Id := Entity (Selector_Name (Nam));
elsif Nkind (Nam) = N_Indexed_Component then
Id := Entity (Selector_Name (Prefix (Nam)));
else
Id := Entity (Nam);
end if;
return Id;
end Get_Function_Id;
---------------------------
-- Preanalyze_Expression --
---------------------------
procedure Preanalyze_Without_Errors (N : Node_Id) is
Status : constant Boolean := Get_Ignore_Errors;
begin
Set_Ignore_Errors (True);
Preanalyze (N);
Set_Ignore_Errors (Status);
end Preanalyze_Without_Errors;
-- Start of processing for Check_Function_Writable_Actuals
begin
-- The check only applies to Ada 2012 code, and only to constructs that
-- have multiple constituents whose order of evaluation is not specified
-- by the language.
if Ada_Version < Ada_2012
or else (not (Nkind (N) in N_Op)
and then not (Nkind (N) in N_Membership_Test)
and then not Nkind_In (N, N_Range,
N_Aggregate,
N_Extension_Aggregate,
N_Full_Type_Declaration,
N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement))
or else (Nkind (N) = N_Full_Type_Declaration
and then not Is_Record_Type (Defining_Identifier (N)))
-- In addition, this check only applies to source code, not to code
-- generated by constraint checks.
or else not Comes_From_Source (N)
then
return;
end if;
-- If a construct C has two or more direct constituents that are names
-- or expressions whose evaluation may occur in an arbitrary order, at
-- least one of which contains a function call with an in out or out
-- parameter, then the construct is legal only if: for each name N that
-- is passed as a parameter of mode in out or out to some inner function
-- call C2 (not including the construct C itself), there is no other
-- name anywhere within a direct constituent of the construct C other
-- than the one containing C2, that is known to refer to the same
-- object (RM 6.4.1(6.17/3)).
case Nkind (N) is
when N_Range =>
Collect_Identifiers (Low_Bound (N));
Collect_Identifiers (High_Bound (N));
when N_Op | N_Membership_Test =>
declare
Expr : Node_Id;
begin
Collect_Identifiers (Left_Opnd (N));
if Present (Right_Opnd (N)) then
Collect_Identifiers (Right_Opnd (N));
end if;
if Nkind_In (N, N_In, N_Not_In)
and then Present (Alternatives (N))
then
Expr := First (Alternatives (N));
while Present (Expr) loop
Collect_Identifiers (Expr);
Next (Expr);
end loop;
end if;
end;
when N_Full_Type_Declaration =>
declare
function Get_Record_Part (N : Node_Id) return Node_Id;
-- Return the record part of this record type definition
function Get_Record_Part (N : Node_Id) return Node_Id is
Type_Def : constant Node_Id := Type_Definition (N);
begin
if Nkind (Type_Def) = N_Derived_Type_Definition then
return Record_Extension_Part (Type_Def);
else
return Type_Def;
end if;
end Get_Record_Part;
Comp : Node_Id;
Def_Id : Entity_Id := Defining_Identifier (N);
Rec : Node_Id := Get_Record_Part (N);
begin
-- No need to perform any analysis if the record has no
-- components
if No (Rec) or else No (Component_List (Rec)) then
return;
end if;
-- Collect the identifiers starting from the deepest
-- derivation. Done to report the error in the deepest
-- derivation.
loop
if Present (Component_List (Rec)) then
Comp := First (Component_Items (Component_List (Rec)));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Declaration
and then Present (Expression (Comp))
then
Collect_Identifiers (Expression (Comp));
end if;
Next (Comp);
end loop;
end if;
exit when No (Underlying_Type (Etype (Def_Id)))
or else Base_Type (Underlying_Type (Etype (Def_Id)))
= Def_Id;
Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
Rec := Get_Record_Part (Parent (Def_Id));
end loop;
end;
when N_Subprogram_Call |
N_Entry_Call_Statement =>
declare
Id : constant Entity_Id := Get_Function_Id (N);
Formal : Node_Id;
Actual : Node_Id;
begin
Formal := First_Formal (Id);
Actual := First_Actual (N);
while Present (Actual) and then Present (Formal) loop
if Ekind_In (Formal, E_Out_Parameter,
E_In_Out_Parameter)
then
Collect_Identifiers (Actual);
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
end;
when N_Aggregate |
N_Extension_Aggregate =>
declare
Assoc : Node_Id;
Choice : Node_Id;
Comp_Expr : Node_Id;
begin
-- Handle the N_Others_Choice of array aggregates with static
-- bounds. There is no need to perform this analysis in
-- aggregates without static bounds since we cannot evaluate
-- if the N_Others_Choice covers several elements. There is
-- no need to handle the N_Others choice of record aggregates
-- since at this stage it has been already expanded by
-- Resolve_Record_Aggregate.
if Is_Array_Type (Etype (N))
and then Nkind (N) = N_Aggregate
and then Present (Aggregate_Bounds (N))
and then Compile_Time_Known_Bounds (Etype (N))
and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
>
Expr_Value (Low_Bound (Aggregate_Bounds (N)))
then
declare
Count_Components : Uint := Uint_0;
Num_Components : Uint;
Others_Assoc : Node_Id;
Others_Choice : Node_Id := Empty;
Others_Box_Present : Boolean := False;
begin
-- Count positional associations
if Present (Expressions (N)) then
Comp_Expr := First (Expressions (N));
while Present (Comp_Expr) loop
Count_Components := Count_Components + 1;
Next (Comp_Expr);
end loop;
end if;
-- Count the rest of elements and locate the N_Others
-- choice (if any)
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Assoc := Assoc;
Others_Choice := Choice;
Others_Box_Present := Box_Present (Assoc);
-- Count several components
elsif Nkind_In (Choice, N_Range,
N_Subtype_Indication)
or else (Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice)))
then
declare
L, H : Node_Id;
begin
Get_Index_Bounds (Choice, L, H);
pragma Assert
(Compile_Time_Known_Value (L)
and then Compile_Time_Known_Value (H));
Count_Components :=
Count_Components
+ Expr_Value (H) - Expr_Value (L) + 1;
end;
-- Count single component. No other case available
-- since we are handling an aggregate with static
-- bounds.
else
pragma Assert (Is_OK_Static_Expression (Choice)
or else Nkind (Choice) = N_Identifier
or else Nkind (Choice) = N_Integer_Literal);
Count_Components := Count_Components + 1;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
Num_Components :=
Expr_Value (High_Bound (Aggregate_Bounds (N))) -
Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
pragma Assert (Count_Components <= Num_Components);
-- Handle the N_Others choice if it covers several
-- components
if Present (Others_Choice)
and then (Num_Components - Count_Components) > 1
then
if not Others_Box_Present then
-- At this stage, if expansion is active, the
-- expression of the others choice has not been
-- analyzed. Hence we generate a duplicate and
-- we analyze it silently to have available the
-- minimum decoration required to collect the
-- identifiers.
if not Expander_Active then
Comp_Expr := Expression (Others_Assoc);
else
Comp_Expr :=
New_Copy_Tree (Expression (Others_Assoc));
Preanalyze_Without_Errors (Comp_Expr);
end if;
Collect_Identifiers (Comp_Expr);
if Writable_Actuals_List /= No_Elist then
-- As suggested by Robert, at current stage we
-- report occurrences of this case as warnings.
Error_Msg_N
("writable function parameter may affect "
& "value in other component because order "
& "of evaluation is unspecified??",
Node (First_Elmt (Writable_Actuals_List)));
end if;
end if;
end if;
end;
end if;
-- Handle ancestor part of extension aggregates
if Nkind (N) = N_Extension_Aggregate then
Collect_Identifiers (Ancestor_Part (N));
end if;
-- Handle positional associations
if Present (Expressions (N)) then
Comp_Expr := First (Expressions (N));
while Present (Comp_Expr) loop
if not Is_OK_Static_Expression (Comp_Expr) then
Collect_Identifiers (Comp_Expr);
end if;
Next (Comp_Expr);
end loop;
end if;
-- Handle discrete associations
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if not Box_Present (Assoc) then
Choice := First (Choices (Assoc));
while Present (Choice) loop
-- For now we skip discriminants since it requires
-- performing the analysis in two phases: first one
-- analyzing discriminants and second one analyzing
-- the rest of components since discriminants are
-- evaluated prior to components: too much extra
-- work to detect a corner case???
if Nkind (Choice) in N_Has_Entity
and then Present (Entity (Choice))
and then Ekind (Entity (Choice)) = E_Discriminant
then
null;
elsif Box_Present (Assoc) then
null;
else
if not Analyzed (Expression (Assoc)) then
Comp_Expr :=
New_Copy_Tree (Expression (Assoc));
Set_Parent (Comp_Expr, Parent (N));
Preanalyze_Without_Errors (Comp_Expr);
else
Comp_Expr := Expression (Assoc);
end if;
Collect_Identifiers (Comp_Expr);
end if;
Next (Choice);
end loop;
end if;
Next (Assoc);
end loop;
end if;
end;
when others =>
return;
end case;
-- No further action needed if we already reported an error
if Present (Error_Node) then
return;
end if;
-- Check if some writable argument of a function is referenced
if Writable_Actuals_List /= No_Elist
and then Identifiers_List /= No_Elist
then
declare
Elmt_1 : Elmt_Id;
Elmt_2 : Elmt_Id;
begin
Elmt_1 := First_Elmt (Writable_Actuals_List);
while Present (Elmt_1) loop
Elmt_2 := First_Elmt (Identifiers_List);
while Present (Elmt_2) loop
if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
case Nkind (Parent (Node (Elmt_2))) is
when N_Aggregate |
N_Component_Association |
N_Component_Declaration =>
Error_Msg_N
("value may be affected by call in other "
& "component because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
when N_In | N_Not_In =>
Error_Msg_N
("value may be affected by call in other "
& "alternative because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
when others =>
Error_Msg_N
("value of actual may be affected by call in "
& "other actual because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
end case;
end if;
Next_Elmt (Elmt_2);
end loop;
Next_Elmt (Elmt_1);
end loop;
end;
end if;
end Check_Function_Writable_Actuals;
--------------------------------
-- Check_Implicit_Dereference --
--------------------------------
procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id) is
Disc : Entity_Id;
Desig : Entity_Id;
begin
if Ada_Version < Ada_2012
or else not Has_Implicit_Dereference (Base_Type (Typ))
then
return;
elsif not Comes_From_Source (Nam) then
return;
elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
null;
else
Disc := First_Discriminant (Typ);
while Present (Disc) loop
if Has_Implicit_Dereference (Disc) then
Desig := Designated_Type (Etype (Disc));
Add_One_Interp (Nam, Disc, Desig);
exit;
end if;
Next_Discriminant (Disc);
end loop;
end if;
end Check_Implicit_Dereference;
----------------------------------
-- Check_Internal_Protected_Use --
----------------------------------
procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
S : Entity_Id;
Prot : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if S = Standard_Standard then
return;
elsif Ekind (S) = E_Function
and then Ekind (Scope (S)) = E_Protected_Type
then
Prot := Scope (S);
exit;
end if;
S := Scope (S);
end loop;
if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
-- An indirect function call (e.g. a callback within a protected
-- function body) is not statically illegal. If the access type is
-- anonymous and is the type of an access parameter, the scope of Nam
-- will be the protected type, but it is not a protected operation.
if Ekind (Nam) = E_Subprogram_Type
and then
Nkind (Associated_Node_For_Itype (Nam)) = N_Function_Specification
then
null;
elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
Error_Msg_N
("within protected function cannot use protected "
& "procedure in renaming or as generic actual", N);
elsif Nkind (N) = N_Attribute_Reference then
Error_Msg_N
("within protected function cannot take access of "
& " protected procedure", N);
else
Error_Msg_N
("within protected function, protected object is constant", N);
Error_Msg_N
("\cannot call operation that may modify it", N);
end if;
end if;
end Check_Internal_Protected_Use;
---------------------------------------
-- Check_Later_Vs_Basic_Declarations --
---------------------------------------
procedure Check_Later_Vs_Basic_Declarations
(Decls : List_Id;
During_Parsing : Boolean)
is
Body_Sloc : Source_Ptr;
Decl : Node_Id;
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
-- Return whether Decl is considered as a declarative item.
-- When During_Parsing is True, the semantics of Ada 83 is followed.
-- When During_Parsing is False, the semantics of SPARK is followed.
-------------------------------
-- Is_Later_Declarative_Item --
-------------------------------
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
begin
if Nkind (Decl) in N_Later_Decl_Item then
return True;
elsif Nkind (Decl) = N_Pragma then
return True;
elsif During_Parsing then
return False;
-- In SPARK, a package declaration is not considered as a later
-- declarative item.
elsif Nkind (Decl) = N_Package_Declaration then
return False;
-- In SPARK, a renaming is considered as a later declarative item
elsif Nkind (Decl) in N_Renaming_Declaration then
return True;
else
return False;
end if;
end Is_Later_Declarative_Item;
-- Start of Check_Later_Vs_Basic_Declarations
begin
Decl := First (Decls);
-- Loop through sequence of basic declarative items
Outer : while Present (Decl) loop
if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
and then Nkind (Decl) not in N_Body_Stub
then
Next (Decl);
-- Once a body is encountered, we only allow later declarative
-- items. The inner loop checks the rest of the list.
else
Body_Sloc := Sloc (Decl);
Inner : while Present (Decl) loop
if not Is_Later_Declarative_Item (Decl) then
if During_Parsing then
if Ada_Version = Ada_83 then
Error_Msg_Sloc := Body_Sloc;
Error_Msg_N
("(Ada 83) decl cannot appear after body#", Decl);
end if;
else
Error_Msg_Sloc := Body_Sloc;
Check_SPARK_Restriction
("decl cannot appear after body#", Decl);
end if;
end if;
Next (Decl);
end loop Inner;
end if;
end loop Outer;
end Check_Later_Vs_Basic_Declarations;
-------------------------
-- Check_Nested_Access --
-------------------------
procedure Check_Nested_Access (Ent : Entity_Id) is
Scop : constant Entity_Id := Current_Scope;
Current_Subp : Entity_Id;
Enclosing : Entity_Id;
begin
-- Currently only enabled for VM back-ends for efficiency, should we
-- enable it more systematically ???
-- Check for Is_Imported needs commenting below ???
if VM_Target /= No_VM
and then Ekind_In (Ent, E_Variable, E_Constant, E_Loop_Parameter)
and then Scope (Ent) /= Empty
and then not Is_Library_Level_Entity (Ent)
and then not Is_Imported (Ent)
then
if Is_Subprogram (Scop)
or else Is_Generic_Subprogram (Scop)
or else Is_Entry (Scop)
then
Current_Subp := Scop;
else
Current_Subp := Current_Subprogram;
end if;
Enclosing := Enclosing_Subprogram (Ent);
if Enclosing /= Empty and then Enclosing /= Current_Subp then
Set_Has_Up_Level_Access (Ent, True);
end if;
end if;
end Check_Nested_Access;
---------------------------
-- Check_No_Hidden_State --
---------------------------
procedure Check_No_Hidden_State (Id : Entity_Id) is
function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean;
-- Determine whether the entity of a package denoted by Pkg has a null
-- abstract state.
-----------------------------
-- Has_Null_Abstract_State --
-----------------------------
function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean is
States : constant Elist_Id := Abstract_States (Pkg);
begin
-- Check first available state of related package. A null abstract
-- state always appears as the sole element of the state list.
return
Present (States)
and then Is_Null_State (Node (First_Elmt (States)));
end Has_Null_Abstract_State;
-- Local variables
Context : Entity_Id := Empty;
Not_Visible : Boolean := False;
Scop : Entity_Id;
-- Start of processing for Check_No_Hidden_State
begin
pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
-- Find the proper context where the object or state appears
Scop := Scope (Id);
while Present (Scop) loop
Context := Scop;
-- Keep track of the context's visibility
Not_Visible := Not_Visible or else In_Private_Part (Context);
-- Prevent the search from going too far
if Context = Standard_Standard then
return;
-- Objects and states that appear immediately within a subprogram or
-- inside a construct nested within a subprogram do not introduce a
-- hidden state. They behave as local variable declarations.
elsif Is_Subprogram (Context) then
return;
-- When examining a package body, use the entity of the spec as it
-- carries the abstract state declarations.
elsif Ekind (Context) = E_Package_Body then
Context := Spec_Entity (Context);
end if;
-- Stop the traversal when a package subject to a null abstract state
-- has been found.
if Ekind_In (Context, E_Generic_Package, E_Package)
and then Has_Null_Abstract_State (Context)
then
exit;
end if;
Scop := Scope (Scop);
end loop;
-- At this point we know that there is at least one package with a null
-- abstract state in visibility. Emit an error message unconditionally
-- if the entity being processed is a state because the placement of the
-- related package is irrelevant. This is not the case for objects as
-- the intermediate context matters.
if Present (Context)
and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
then
Error_Msg_N ("cannot introduce hidden state &", Id);
Error_Msg_NE ("\package & has null abstract state", Id, Context);
end if;
end Check_No_Hidden_State;
------------------------------------------
-- Check_Potentially_Blocking_Operation --
------------------------------------------
procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
S : Entity_Id;
begin
-- N is one of the potentially blocking operations listed in 9.5.1(8).
-- When pragma Detect_Blocking is active, the run time will raise
-- Program_Error. Here we only issue a warning, since we generally
-- support the use of potentially blocking operations in the absence
-- of the pragma.
-- Indirect blocking through a subprogram call cannot be diagnosed
-- statically without interprocedural analysis, so we do not attempt
-- to do it here.
S := Scope (Current_Scope);
while Present (S) and then S /= Standard_Standard loop
if Is_Protected_Type (S) then
Error_Msg_N
("potentially blocking operation in protected operation??", N);
return;
end if;
S := Scope (S);
end loop;
end Check_Potentially_Blocking_Operation;
---------------------------------
-- Check_Result_And_Post_State --
---------------------------------
procedure Check_Result_And_Post_State
(Prag : Node_Id;
Result_Seen : in out Boolean)
is
procedure Check_Expression (Expr : Node_Id);
-- Perform the 'Result and post-state checks on a given expression
function Is_Function_Result (N : Node_Id) return Traverse_Result;
-- Attempt to find attribute 'Result in a subtree denoted by N
function Is_Trivial_Boolean (N : Node_Id) return Boolean;
-- Determine whether source node N denotes "True" or "False"
function Mentions_Post_State (N : Node_Id) return Boolean;
-- Determine whether a subtree denoted by N mentions any construct that
-- denotes a post-state.
procedure Check_Function_Result is
new Traverse_Proc (Is_Function_Result);
----------------------
-- Check_Expression --
----------------------
procedure Check_Expression (Expr : Node_Id) is
begin
if not Is_Trivial_Boolean (Expr) then
Check_Function_Result (Expr);
if not Mentions_Post_State (Expr) then
if Pragma_Name (Prag) = Name_Contract_Cases then
Error_Msg_N
("contract case refers only to pre-state?T?", Expr);
elsif Pragma_Name (Prag) = Name_Refined_Post then
Error_Msg_N
("refined postcondition refers only to pre-state?T?",
Prag);
else
Error_Msg_N
("postcondition refers only to pre-state?T?", Prag);
end if;
end if;
end if;
end Check_Expression;
------------------------
-- Is_Function_Result --
------------------------
function Is_Function_Result (N : Node_Id) return Traverse_Result is
begin
if Is_Attribute_Result (N) then
Result_Seen := True;
return Abandon;
-- Continue the traversal
else
return OK;
end if;
end Is_Function_Result;
------------------------
-- Is_Trivial_Boolean --
------------------------
function Is_Trivial_Boolean (N : Node_Id) return Boolean is
begin
return
Comes_From_Source (N)
and then Is_Entity_Name (N)
and then (Entity (N) = Standard_True
or else Entity (N) = Standard_False);
end Is_Trivial_Boolean;
-------------------------
-- Mentions_Post_State --
-------------------------
function Mentions_Post_State (N : Node_Id) return Boolean is
Post_State_Seen : Boolean := False;
function Is_Post_State (N : Node_Id) return Traverse_Result;
-- Attempt to find a construct that denotes a post-state. If this is
-- the case, set flag Post_State_Seen.
-------------------
-- Is_Post_State --
-------------------
function Is_Post_State (N : Node_Id) return Traverse_Result is
Ent : Entity_Id;
begin
if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
Post_State_Seen := True;
return Abandon;
elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
Ent := Entity (N);
-- The entity may be modifiable through an implicit dereference
if No (Ent)
or else Ekind (Ent) in Assignable_Kind
or else (Is_Access_Type (Etype (Ent))
and then Nkind (Parent (N)) = N_Selected_Component)
then
Post_State_Seen := True;
return Abandon;
end if;
elsif Nkind (N) = N_Attribute_Reference then
if Attribute_Name (N) = Name_Old then
return Skip;
elsif Attribute_Name (N) = Name_Result then
Post_State_Seen := True;
return Abandon;
end if;
end if;
return OK;
end Is_Post_State;
procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
-- Start of processing for Mentions_Post_State
begin
Find_Post_State (N);
return Post_State_Seen;
end Mentions_Post_State;
-- Local variables
Expr : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
Nam : constant Name_Id := Pragma_Name (Prag);
CCase : Node_Id;
-- Start of processing for Check_Result_And_Post_State
begin
-- Examine all consequences
if Nam = Name_Contract_Cases then
CCase := First (Component_Associations (Expr));
while Present (CCase) loop
Check_Expression (Expression (CCase));
Next (CCase);
end loop;
-- Examine the expression of a postcondition
else pragma Assert (Nam_In (Nam, Name_Postcondition, Name_Refined_Post));
Check_Expression (Expr);
end if;
end Check_Result_And_Post_State;
---------------------------------
-- Check_SPARK_Mode_In_Generic --
---------------------------------
procedure Check_SPARK_Mode_In_Generic (N : Node_Id) is
Aspect : Node_Id;
begin
-- Try to find aspect SPARK_Mode and flag it as illegal
if Has_Aspects (N) then
Aspect := First (Aspect_Specifications (N));
while Present (Aspect) loop
if Get_Aspect_Id (Aspect) = Aspect_SPARK_Mode then
Error_Msg_Name_1 := Name_SPARK_Mode;
Error_Msg_N
("incorrect placement of aspect % on a generic", Aspect);
exit;
end if;
Next (Aspect);
end loop;
end if;
end Check_SPARK_Mode_In_Generic;
------------------------------
-- Check_Unprotected_Access --
------------------------------
procedure Check_Unprotected_Access
(Context : Node_Id;
Expr : Node_Id)
is
Cont_Encl_Typ : Entity_Id;
Pref_Encl_Typ : Entity_Id;
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
-- Check whether Obj is a private component of a protected object.
-- Return the protected type where the component resides, Empty
-- otherwise.
function Is_Public_Operation return Boolean;
-- Verify that the enclosing operation is callable from outside the
-- protected object, to minimize false positives.
------------------------------
-- Enclosing_Protected_Type --
------------------------------
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
begin
if Is_Entity_Name (Obj) then
declare
Ent : Entity_Id := Entity (Obj);
begin
-- The object can be a renaming of a private component, use
-- the original record component.
if Is_Prival (Ent) then
Ent := Prival_Link (Ent);
end if;
if Is_Protected_Type (Scope (Ent)) then
return Scope (Ent);
end if;
end;
end if;
-- For indexed and selected components, recursively check the prefix
if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
return Enclosing_Protected_Type (Prefix (Obj));
-- The object does not denote a protected component
else
return Empty;
end if;
end Enclosing_Protected_Type;
-------------------------
-- Is_Public_Operation --
-------------------------
function Is_Public_Operation return Boolean is
S : Entity_Id;
E : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Pref_Encl_Typ loop
if Scope (S) = Pref_Encl_Typ then
E := First_Entity (Pref_Encl_Typ);
while Present (E)
and then E /= First_Private_Entity (Pref_Encl_Typ)
loop
if E = S then
return True;
end if;
Next_Entity (E);
end loop;
end if;
S := Scope (S);
end loop;
return False;
end Is_Public_Operation;
-- Start of processing for Check_Unprotected_Access
begin
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Unchecked_Access
then
Cont_Encl_Typ := Enclosing_Protected_Type (Context);
Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
-- Check whether we are trying to export a protected component to a
-- context with an equal or lower access level.
if Present (Pref_Encl_Typ)
and then No (Cont_Encl_Typ)
and then Is_Public_Operation
and then Scope_Depth (Pref_Encl_Typ) >=
Object_Access_Level (Context)
then
Error_Msg_N
("??possible unprotected access to protected data", Expr);
end if;
end if;
end Check_Unprotected_Access;
------------------------
-- Collect_Interfaces --
------------------------
procedure Collect_Interfaces
(T : Entity_Id;
Ifaces_List : out Elist_Id;
Exclude_Parents : Boolean := False;
Use_Full_View : Boolean := True)
is
procedure Collect (Typ : Entity_Id);
-- Subsidiary subprogram used to traverse the whole list
-- of directly and indirectly implemented interfaces
-------------
-- Collect --
-------------
procedure Collect (Typ : Entity_Id) is
Ancestor : Entity_Id;
Full_T : Entity_Id;
Id : Node_Id;
Iface : Entity_Id;
begin
Full_T := Typ;
-- Handle private types
if Use_Full_View
and then Is_Private_Type (Typ)
and then Present (Full_View (Typ))
then
Full_T := Full_View (Typ);
end if;
-- Include the ancestor if we are generating the whole list of
-- abstract interfaces.
if Etype (Full_T) /= Typ
-- Protect the frontend against wrong sources. For example:
-- package P is
-- type A is tagged null record;
-- type B is new A with private;
-- type C is new A with private;
-- private
-- type B is new C with null record;
-- type C is new B with null record;
-- end P;
and then Etype (Full_T) /= T
then
Ancestor := Etype (Full_T);
Collect (Ancestor);
if Is_Interface (Ancestor) and then not Exclude_Parents then
Append_Unique_Elmt (Ancestor, Ifaces_List);
end if;
end if;
-- Traverse the graph of ancestor interfaces
if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
Id := First (Abstract_Interface_List (Full_T));
while Present (Id) loop
Iface := Etype (Id);
-- Protect against wrong uses. For example:
-- type I is interface;
-- type O is tagged null record;
-- type Wrong is new I and O with null record; -- ERROR
if Is_Interface (Iface) then
if Exclude_Parents
and then Etype (T) /= T
and then Interface_Present_In_Ancestor (Etype (T), Iface)
then
null;
else
Collect (Iface);
Append_Unique_Elmt (Iface, Ifaces_List);
end if;
end if;
Next (Id);
end loop;
end if;
end Collect;
-- Start of processing for Collect_Interfaces
begin
pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
Ifaces_List := New_Elmt_List;
Collect (T);
end Collect_Interfaces;
----------------------------------
-- Collect_Interface_Components --
----------------------------------
procedure Collect_Interface_Components
(Tagged_Type : Entity_Id;
Components_List : out Elist_Id)
is
procedure Collect (Typ : Entity_Id);
-- Subsidiary subprogram used to climb to the parents
-------------
-- Collect --
-------------
procedure Collect (Typ : Entity_Id) is
Tag_Comp : Entity_Id;
Parent_Typ : Entity_Id;
begin
-- Handle private types
if Present (Full_View (Etype (Typ))) then
Parent_Typ := Full_View (Etype (Typ));
else
Parent_Typ := Etype (Typ);
end if;
if Parent_Typ /= Typ
-- Protect the frontend against wrong sources. For example:
-- package P is
-- type A is tagged null record;
-- type B is new A with private;
-- type C is new A with private;
-- private
-- type B is new C with null record;
-- type C is new B with null record;
-- end P;
and then Parent_Typ /= Tagged_Type
then
Collect (Parent_Typ);
end if;
-- Collect the components containing tags of secondary dispatch
-- tables.
Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
while Present (Tag_Comp) loop
pragma Assert (Present (Related_Type (Tag_Comp)));
Append_Elmt (Tag_Comp, Components_List);
Tag_Comp := Next_Tag_Component (Tag_Comp);
end loop;
end Collect;
-- Start of processing for Collect_Interface_Components
begin
pragma Assert (Ekind (Tagged_Type) = E_Record_Type
and then Is_Tagged_Type (Tagged_Type));
Components_List := New_Elmt_List;
Collect (Tagged_Type);
end Collect_Interface_Components;
-----------------------------
-- Collect_Interfaces_Info --
-----------------------------
procedure Collect_Interfaces_Info
(T : Entity_Id;
Ifaces_List : out Elist_Id;
Components_List : out Elist_Id;
Tags_List : out Elist_Id)
is
Comps_List : Elist_Id;
Comp_Elmt : Elmt_Id;
Comp_Iface : Entity_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
function Search_Tag (Iface : Entity_Id) return Entity_Id;
-- Search for the secondary tag associated with the interface type
-- Iface that is implemented by T.
----------------
-- Search_Tag --
----------------
function Search_Tag (Iface : Entity_Id) return Entity_Id is
ADT : Elmt_Id;
begin
if not Is_CPP_Class (T) then
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
else
ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
end if;
while Present (ADT)
and then Is_Tag (Node (ADT))
and then Related_Type (Node (ADT)) /= Iface
loop
-- Skip secondary dispatch table referencing thunks to user
-- defined primitives covered by this interface.
pragma Assert (Has_Suffix (Node (ADT), 'P'));
Next_Elmt (ADT);
-- Skip secondary dispatch tables of Ada types
if not Is_CPP_Class (T) then
-- Skip secondary dispatch table referencing thunks to
-- predefined primitives.
pragma Assert (Has_Suffix (Node (ADT), 'Y'));
Next_Elmt (ADT);
-- Skip secondary dispatch table referencing user-defined
-- primitives covered by this interface.
pragma Assert (Has_Suffix (Node (ADT), 'D'));
Next_Elmt (ADT);
-- Skip secondary dispatch table referencing predefined
-- primitives.
pragma Assert (Has_Suffix (Node (ADT), 'Z'));
Next_Elmt (ADT);
end if;
end loop;
pragma Assert (Is_Tag (Node (ADT)));
return Node (ADT);
end Search_Tag;
-- Start of processing for Collect_Interfaces_Info
begin
Collect_Interfaces (T, Ifaces_List);
Collect_Interface_Components (T, Comps_List);
-- Search for the record component and tag associated with each
-- interface type of T.
Components_List := New_Elmt_List;
Tags_List := New_Elmt_List;
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
-- Associate the primary tag component and the primary dispatch table
-- with all the interfaces that are parents of T
if Is_Ancestor (Iface, T, Use_Full_View => True) then
Append_Elmt (First_Tag_Component (T), Components_List);
Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
-- Otherwise search for the tag component and secondary dispatch
-- table of Iface
else
Comp_Elmt := First_Elmt (Comps_List);
while Present (Comp_Elmt) loop
Comp_Iface := Related_Type (Node (Comp_Elmt));
if Comp_Iface = Iface
or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
then
Append_Elmt (Node (Comp_Elmt), Components_List);
Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
exit;
end if;
Next_Elmt (Comp_Elmt);
end loop;
pragma Assert (Present (Comp_Elmt));
end if;
Next_Elmt (Iface_Elmt);
end loop;
end Collect_Interfaces_Info;
---------------------
-- Collect_Parents --
---------------------
procedure Collect_Parents
(T : Entity_Id;
List : out Elist_Id;
Use_Full_View : Boolean := True)
is
Current_Typ : Entity_Id := T;
Parent_Typ : Entity_Id;
begin
List := New_Elmt_List;
-- No action if the if the type has no parents
if T = Etype (T) then
return;
end if;
loop
Parent_Typ := Etype (Current_Typ);
if Is_Private_Type (Parent_Typ)
and then Present (Full_View (Parent_Typ))
and then Use_Full_View
then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
Append_Elmt (Parent_Typ, List);
exit when Parent_Typ = Current_Typ;
Current_Typ := Parent_Typ;
end loop;
end Collect_Parents;
----------------------------------
-- Collect_Primitive_Operations --
----------------------------------
function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
B_Type : constant Entity_Id := Base_Type (T);
B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
B_Scope : Entity_Id := Scope (B_Type);
Op_List : Elist_Id;
Formal : Entity_Id;
Is_Prim : Boolean;
Is_Type_In_Pkg : Boolean;
Formal_Derived : Boolean := False;
Id : Entity_Id;
function Match (E : Entity_Id) return Boolean;
-- True if E's base type is B_Type, or E is of an anonymous access type
-- and the base type of its designated type is B_Type.
-----------
-- Match --
-----------
function Match (E : Entity_Id) return Boolean is
Etyp : Entity_Id := Etype (E);
begin
if Ekind (Etyp) = E_Anonymous_Access_Type then
Etyp := Designated_Type (Etyp);
end if;
-- In Ada 2012 a primitive operation may have a formal of an
-- incomplete view of the parent type.
return Base_Type (Etyp) = B_Type
or else
(Ada_Version >= Ada_2012
and then Ekind (Etyp) = E_Incomplete_Type
and then Full_View (Etyp) = B_Type);
end Match;
-- Start of processing for Collect_Primitive_Operations
begin
-- For tagged types, the primitive operations are collected as they
-- are declared, and held in an explicit list which is simply returned.
if Is_Tagged_Type (B_Type) then
return Primitive_Operations (B_Type);
-- An untagged generic type that is a derived type inherits the
-- primitive operations of its parent type. Other formal types only
-- have predefined operators, which are not explicitly represented.
elsif Is_Generic_Type (B_Type) then
if Nkind (B_Decl) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (B_Decl)) =
N_Formal_Derived_Type_Definition
then
Formal_Derived := True;
else
return New_Elmt_List;
end if;
end if;
Op_List := New_Elmt_List;
if B_Scope = Standard_Standard then
if B_Type = Standard_String then
Append_Elmt (Standard_Op_Concat, Op_List);
elsif B_Type = Standard_Wide_String then
Append_Elmt (Standard_Op_Concatw, Op_List);
else
null;
end if;
-- Locate the primitive subprograms of the type
else
-- The primitive operations appear after the base type, except
-- if the derivation happens within the private part of B_Scope
-- and the type is a private type, in which case both the type
-- and some primitive operations may appear before the base
-- type, and the list of candidates starts after the type.
if In_Open_Scopes (B_Scope)
and then Scope (T) = B_Scope
and then In_Private_Part (B_Scope)
then
Id := Next_Entity (T);
-- In Ada 2012, If the type has an incomplete partial view, there
-- may be primitive operations declared before the full view, so
-- we need to start scanning from the incomplete view, which is
-- earlier on the entity chain.
elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
and then Present (Incomplete_View (Parent (B_Type)))
then
Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
else
Id := Next_Entity (B_Type);
end if;
-- Set flag if this is a type in a package spec
Is_Type_In_Pkg :=
Is_Package_Or_Generic_Package (B_Scope)
and then
Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
N_Package_Body;
while Present (Id) loop
-- Test whether the result type or any of the parameter types of
-- each subprogram following the type match that type when the
-- type is declared in a package spec, is a derived type, or the
-- subprogram is marked as primitive. (The Is_Primitive test is
-- needed to find primitives of nonderived types in declarative
-- parts that happen to override the predefined "=" operator.)
-- Note that generic formal subprograms are not considered to be
-- primitive operations and thus are never inherited.
if Is_Overloadable (Id)
and then (Is_Type_In_Pkg
or else Is_Derived_Type (B_Type)
or else Is_Primitive (Id))
and then Nkind (Parent (Parent (Id)))
not in N_Formal_Subprogram_Declaration
then
Is_Prim := False;
if Match (Id) then
Is_Prim := True;
else
Formal := First_Formal (Id);
while Present (Formal) loop
if Match (Formal) then
Is_Prim := True;
exit;
end if;
Next_Formal (Formal);
end loop;
end if;
-- For a formal derived type, the only primitives are the ones
-- inherited from the parent type. Operations appearing in the
-- package declaration are not primitive for it.
if Is_Prim
and then (not Formal_Derived or else Present (Alias (Id)))
then
-- In the special case of an equality operator aliased to
-- an overriding dispatching equality belonging to the same
-- type, we don't include it in the list of primitives.
-- This avoids inheriting multiple equality operators when
-- deriving from untagged private types whose full type is
-- tagged, which can otherwise cause ambiguities. Note that
-- this should only happen for this kind of untagged parent
-- type, since normally dispatching operations are inherited
-- using the type's Primitive_Operations list.
if Chars (Id) = Name_Op_Eq
and then Is_Dispatching_Operation (Id)
and then Present (Alias (Id))
and then Present (Overridden_Operation (Alias (Id)))
and then Base_Type (Etype (First_Entity (Id))) =
Base_Type (Etype (First_Entity (Alias (Id))))
then
null;
-- Include the subprogram in the list of primitives
else
Append_Elmt (Id, Op_List);
end if;
end if;
end if;
Next_Entity (Id);
-- For a type declared in System, some of its operations may
-- appear in the target-specific extension to System.
if No (Id)
and then B_Scope = RTU_Entity (System)
and then Present_System_Aux
then
B_Scope := System_Aux_Id;
Id := First_Entity (System_Aux_Id);
end if;
end loop;
end if;
return Op_List;
end Collect_Primitive_Operations;
-----------------------------------
-- Compile_Time_Constraint_Error --
-----------------------------------
function Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Ent : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Warn : Boolean := False) return Node_Id
is
Msgc : String (1 .. Msg'Length + 3);
-- Copy of message, with room for possible ?? or << and ! at end
Msgl : Natural;
Wmsg : Boolean;
Eloc : Source_Ptr;
-- Start of processing for Compile_Time_Constraint_Error
begin
-- If this is a warning, convert it into an error if we are in code
-- subject to SPARK_Mode being set ON.
Error_Msg_Warn := SPARK_Mode /= On;
-- A static constraint error in an instance body is not a fatal error.
-- we choose to inhibit the message altogether, because there is no
-- obvious node (for now) on which to post it. On the other hand the
-- offending node must be replaced with a constraint_error in any case.
-- No messages are generated if we already posted an error on this node
if not Error_Posted (N) then
if Loc /= No_Location then
Eloc := Loc;
else
Eloc := Sloc (N);
end if;
-- Copy message to Msgc, converting any ? in the message into
-- < instead, so that we have an error in GNATprove mode.
Msgl := Msg'Length;
for J in 1 .. Msgl loop
if Msg (J) = '?' and then (J = 1 or else Msg (J) /= ''') then
Msgc (J) := '<';
else
Msgc (J) := Msg (J);
end if;
end loop;
-- Message is a warning, even in Ada 95 case
if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
Wmsg := True;
-- In Ada 83, all messages are warnings. In the private part and
-- the body of an instance, constraint_checks are only warnings.
-- We also make this a warning if the Warn parameter is set.
elsif Warn
or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
then
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Wmsg := True;
elsif In_Instance_Not_Visible then
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Wmsg := True;
-- Otherwise we have a real error message (Ada 95 static case)
-- and we make this an unconditional message. Note that in the
-- warning case we do not make the message unconditional, it seems
-- quite reasonable to delete messages like this (about exceptions
-- that will be raised) in dead code.
else
Wmsg := False;
Msgl := Msgl + 1;
Msgc (Msgl) := '!';
end if;
-- One more test, skip the warning if the related expression is
-- statically unevaluated, since we don't want to warn about what
-- will happen when something is evaluated if it never will be
-- evaluated.
if not Is_Statically_Unevaluated (N) then
Error_Msg_Warn := SPARK_Mode /= On;
if Present (Ent) then
Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
else
Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
end if;
if Wmsg then
-- Check whether the context is an Init_Proc
if Inside_Init_Proc then
declare
Conc_Typ : constant Entity_Id :=
Corresponding_Concurrent_Type
(Entity (Parameter_Type (First
(Parameter_Specifications
(Parent (Current_Scope))))));
begin
-- Don't complain if the corresponding concurrent type
-- doesn't come from source (i.e. a single task/protected
-- object).
if Present (Conc_Typ)
and then not Comes_From_Source (Conc_Typ)
then
Error_Msg_NEL
("\& [<<", N, Standard_Constraint_Error, Eloc);
else
if GNATprove_Mode then
Error_Msg_NEL
("\& would have been raised for objects of this "
& "type", N, Standard_Constraint_Error, Eloc);
else
Error_Msg_NEL
("\& will be raised for objects of this type??",
N, Standard_Constraint_Error, Eloc);
end if;
end if;
end;
else
Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
end if;
else
Error_Msg ("\static expression fails Constraint_Check", Eloc);
Set_Error_Posted (N);
end if;
end if;
end if;
return N;
end Compile_Time_Constraint_Error;
-----------------------
-- Conditional_Delay --
-----------------------
procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
begin
if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
Set_Has_Delayed_Freeze (New_Ent);
end if;
end Conditional_Delay;
----------------------------
-- Contains_Refined_State --
----------------------------
function Contains_Refined_State (Prag : Node_Id) return Boolean is
function Has_State_In_Dependency (List : Node_Id) return Boolean;
-- Determine whether a dependency list mentions a state with a visible
-- refinement.
function Has_State_In_Global (List : Node_Id) return Boolean;
-- Determine whether a global list mentions a state with a visible
-- refinement.
function Is_Refined_State (Item : Node_Id) return Boolean;
-- Determine whether Item is a reference to an abstract state with a
-- visible refinement.
-----------------------------
-- Has_State_In_Dependency --
-----------------------------
function Has_State_In_Dependency (List : Node_Id) return Boolean is
Clause : Node_Id;
Output : Node_Id;
begin
-- A null dependency list does not mention any states
if Nkind (List) = N_Null then
return False;
-- Dependency clauses appear as component associations of an
-- aggregate.
elsif Nkind (List) = N_Aggregate
and then Present (Component_Associations (List))
then
Clause := First (Component_Associations (List));
while Present (Clause) loop
-- Inspect the outputs of a dependency clause
Output := First (Choices (Clause));
while Present (Output) loop
if Is_Refined_State (Output) then
return True;
end if;
Next (Output);
end loop;
-- Inspect the outputs of a dependency clause
if Is_Refined_State (Expression (Clause)) then
return True;
end if;
Next (Clause);
end loop;
-- If we get here, then none of the dependency clauses mention a
-- state with visible refinement.
return False;
-- An illegal pragma managed to sneak in
else
raise Program_Error;
end if;
end Has_State_In_Dependency;
-------------------------
-- Has_State_In_Global --
-------------------------
function Has_State_In_Global (List : Node_Id) return Boolean is
Item : Node_Id;
begin
-- A null global list does not mention any states
if Nkind (List) = N_Null then
return False;
-- Simple global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
-- The declaration of a simple global list appear as a collection
-- of expressions.
if Present (Expressions (List)) then
Item := First (Expressions (List));
while Present (Item) loop
if Is_Refined_State (Item) then
return True;
end if;
Next (Item);
end loop;
-- The declaration of a moded global list appears as a collection
-- of component associations where individual choices denote
-- modes.
else
Item := First (Component_Associations (List));
while Present (Item) loop
if Has_State_In_Global (Expression (Item)) then
return True;
end if;
Next (Item);
end loop;
end if;
-- If we get here, then the simple/moded global list did not
-- mention any states with a visible refinement.
return False;
-- Single global item declaration
elsif Is_Entity_Name (List) then
return Is_Refined_State (List);
-- An illegal pragma managed to sneak in
else
raise Program_Error;
end if;
end Has_State_In_Global;
----------------------
-- Is_Refined_State --
----------------------
function Is_Refined_State (Item : Node_Id) return Boolean is
Elmt : Node_Id;
Item_Id : Entity_Id;
begin
if Nkind (Item) = N_Null then
return False;
-- States cannot be subject to attribute 'Result. This case arises
-- in dependency relations.
elsif Nkind (Item) = N_Attribute_Reference
and then Attribute_Name (Item) = Name_Result
then
return False;
-- Multiple items appear as an aggregate. This case arises in
-- dependency relations.
elsif Nkind (Item) = N_Aggregate
and then Present (Expressions (Item))
then
Elmt := First (Expressions (Item));
while Present (Elmt) loop
if Is_Refined_State (Elmt) then
return True;
end if;
Next (Elmt);
end loop;
-- If we get here, then none of the inputs or outputs reference a
-- state with visible refinement.
return False;
-- Single item
else
Item_Id := Entity_Of (Item);
return
Present (Item_Id)
and then Ekind (Item_Id) = E_Abstract_State
and then Has_Visible_Refinement (Item_Id);
end if;
end Is_Refined_State;
-- Local variables
Arg : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
Nam : constant Name_Id := Pragma_Name (Prag);
-- Start of processing for Contains_Refined_State
begin
if Nam = Name_Depends then
return Has_State_In_Dependency (Arg);
else pragma Assert (Nam = Name_Global);
return Has_State_In_Global (Arg);
end if;
end Contains_Refined_State;
-------------------------
-- Copy_Component_List --
-------------------------
function Copy_Component_List
(R_Typ : Entity_Id;
Loc : Source_Ptr) return List_Id
is
Comp : Node_Id;
Comps : constant List_Id := New_List;
begin
Comp := First_Component (Underlying_Type (R_Typ));
while Present (Comp) loop
if Comes_From_Source (Comp) then
declare
Comp_Decl : constant Node_Id := Declaration_Node (Comp);
begin
Append_To (Comps,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Comp)),
Component_Definition =>
New_Copy_Tree
(Component_Definition (Comp_Decl), New_Sloc => Loc)));
end;
end if;
Next_Component (Comp);
end loop;
return Comps;
end Copy_Component_List;
-------------------------
-- Copy_Parameter_List --
-------------------------
function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
Loc : constant Source_Ptr := Sloc (Subp_Id);
Plist : List_Id;
Formal : Entity_Id;
begin
if No (First_Formal (Subp_Id)) then
return No_List;
else
Plist := New_List;
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Append
(Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression =>
New_Copy_Tree (Expression (Parent (Formal)))),
Plist);
Next_Formal (Formal);
end loop;
end if;
return Plist;
end Copy_Parameter_List;
--------------------------------
-- Corresponding_Generic_Type --
--------------------------------
function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
Inst : Entity_Id;
Gen : Entity_Id;
Typ : Entity_Id;
begin
if not Is_Generic_Actual_Type (T) then
return Any_Type;
-- If the actual is the actual of an enclosing instance, resolution
-- was correct in the generic.
elsif Nkind (Parent (T)) = N_Subtype_Declaration
and then Is_Entity_Name (Subtype_Indication (Parent (T)))
and then
Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
then
return Any_Type;
else
Inst := Scope (T);
if Is_Wrapper_Package (Inst) then
Inst := Related_Instance (Inst);
end if;
Gen :=
Generic_Parent
(Specification (Unit_Declaration_Node (Inst)));
-- Generic actual has the same name as the corresponding formal
Typ := First_Entity (Gen);
while Present (Typ) loop
if Chars (Typ) = Chars (T) then
return Typ;
end if;
Next_Entity (Typ);
end loop;
return Any_Type;
end if;
end Corresponding_Generic_Type;
--------------------
-- Current_Entity --
--------------------
-- The currently visible definition for a given identifier is the
-- one most chained at the start of the visibility chain, i.e. the
-- one that is referenced by the Node_Id value of the name of the
-- given identifier.
function Current_Entity (N : Node_Id) return Entity_Id is
begin
return Get_Name_Entity_Id (Chars (N));
end Current_Entity;
-----------------------------
-- Current_Entity_In_Scope --
-----------------------------
function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
E : Entity_Id;
CS : constant Entity_Id := Current_Scope;
Transient_Case : constant Boolean := Scope_Is_Transient;
begin
E := Get_Name_Entity_Id (Chars (N));
while Present (E)
and then Scope (E) /= CS
and then (not Transient_Case or else Scope (E) /= Scope (CS))
loop
E := Homonym (E);
end loop;
return E;
end Current_Entity_In_Scope;
-------------------
-- Current_Scope --
-------------------
function Current_Scope return Entity_Id is
begin
if Scope_Stack.Last = -1 then
return Standard_Standard;
else
declare
C : constant Entity_Id :=
Scope_Stack.Table (Scope_Stack.Last).Entity;
begin
if Present (C) then
return C;
else
return Standard_Standard;
end if;
end;
end if;
end Current_Scope;
------------------------
-- Current_Subprogram --
------------------------
function Current_Subprogram return Entity_Id is
Scop : constant Entity_Id := Current_Scope;
begin
if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
return Scop;
else
return Enclosing_Subprogram (Scop);
end if;
end Current_Subprogram;
----------------------------------
-- Deepest_Type_Access_Level --
----------------------------------
function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
begin
if Ekind (Typ) = E_Anonymous_Access_Type
and then not Is_Local_Anonymous_Access (Typ)
and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
then
-- Typ is the type of an Ada 2012 stand-alone object of an anonymous
-- access type.
return
Scope_Depth (Enclosing_Dynamic_Scope
(Defining_Identifier
(Associated_Node_For_Itype (Typ))));
-- For generic formal type, return Int'Last (infinite).
-- See comment preceding Is_Generic_Type call in Type_Access_Level.
elsif Is_Generic_Type (Root_Type (Typ)) then
return UI_From_Int (Int'Last);
else
return Type_Access_Level (Typ);
end if;
end Deepest_Type_Access_Level;
---------------------
-- Defining_Entity --
---------------------
function Defining_Entity (N : Node_Id) return Entity_Id is
K : constant Node_Kind := Nkind (N);
Err : Entity_Id := Empty;
begin
case K is
when
N_Subprogram_Declaration |
N_Abstract_Subprogram_Declaration |
N_Subprogram_Body |
N_Package_Declaration |
N_Subprogram_Renaming_Declaration |
N_Subprogram_Body_Stub |
N_Generic_Subprogram_Declaration |
N_Generic_Package_Declaration |
N_Formal_Subprogram_Declaration |
N_Expression_Function
=>
return Defining_Entity (Specification (N));
when
N_Component_Declaration |
N_Defining_Program_Unit_Name |
N_Discriminant_Specification |
N_Entry_Body |
N_Entry_Declaration |
N_Entry_Index_Specification |
N_Exception_Declaration |
N_Exception_Renaming_Declaration |
N_Formal_Object_Declaration |
N_Formal_Package_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Implicit_Label_Declaration |
N_Incomplete_Type_Declaration |
N_Loop_Parameter_Specification |
N_Number_Declaration |
N_Object_Declaration |
N_Object_Renaming_Declaration |
N_Package_Body_Stub |
N_Parameter_Specification |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Protected_Body |
N_Protected_Body_Stub |
N_Protected_Type_Declaration |
N_Single_Protected_Declaration |
N_Single_Task_Declaration |
N_Subtype_Declaration |
N_Task_Body |
N_Task_Body_Stub |
N_Task_Type_Declaration
=>
return Defining_Identifier (N);
when N_Subunit =>
return Defining_Entity (Proper_Body (N));
when
N_Function_Instantiation |
N_Function_Specification |
N_Generic_Function_Renaming_Declaration |
N_Generic_Package_Renaming_Declaration |
N_Generic_Procedure_Renaming_Declaration |
N_Package_Body |
N_Package_Instantiation |
N_Package_Renaming_Declaration |
N_Package_Specification |
N_Procedure_Instantiation |
N_Procedure_Specification
=>
declare
Nam : constant Node_Id := Defining_Unit_Name (N);
begin
if Nkind (Nam) in N_Entity then
return Nam;
-- For Error, make up a name and attach to declaration
-- so we can continue semantic analysis
elsif Nam = Error then
Err := Make_Temporary (Sloc (N), 'T');
Set_Defining_Unit_Name (N, Err);
return Err;
-- If not an entity, get defining identifier
else
return Defining_Identifier (Nam);
end if;
end;
when
N_Block_Statement |
N_Loop_Statement
=>
return Entity (Identifier (N));
when others =>
raise Program_Error;
end case;
end Defining_Entity;
--------------------------
-- Denotes_Discriminant --
--------------------------
function Denotes_Discriminant
(N : Node_Id;
Check_Concurrent : Boolean := False) return Boolean
is
E : Entity_Id;
begin
if not Is_Entity_Name (N) or else No (Entity (N)) then
return False;
else
E := Entity (N);
end if;
-- If we are checking for a protected type, the discriminant may have
-- been rewritten as the corresponding discriminal of the original type
-- or of the corresponding concurrent record, depending on whether we
-- are in the spec or body of the protected type.
return Ekind (E) = E_Discriminant
or else
(Check_Concurrent
and then Ekind (E) = E_In_Parameter
and then Present (Discriminal_Link (E))
and then
(Is_Concurrent_Type (Scope (Discriminal_Link (E)))
or else
Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
end Denotes_Discriminant;
-------------------------
-- Denotes_Same_Object --
-------------------------
function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
Obj1 : Node_Id := A1;
Obj2 : Node_Id := A2;
function Has_Prefix (N : Node_Id) return Boolean;
-- Return True if N has attribute Prefix
function Is_Renaming (N : Node_Id) return Boolean;
-- Return true if N names a renaming entity
function Is_Valid_Renaming (N : Node_Id) return Boolean;
-- For renamings, return False if the prefix of any dereference within
-- the renamed object_name is a variable, or any expression within the
-- renamed object_name contains references to variables or calls on
-- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
----------------
-- Has_Prefix --
----------------
function Has_Prefix (N : Node_Id) return Boolean is
begin
return
Nkind_In (N,
N_Attribute_Reference,
N_Expanded_Name,
N_Explicit_Dereference,
N_Indexed_Component,
N_Reference,
N_Selected_Component,
N_Slice);
end Has_Prefix;
-----------------
-- Is_Renaming --
-----------------
function Is_Renaming (N : Node_Id) return Boolean is
begin
return Is_Entity_Name (N)
and then Present (Renamed_Entity (Entity (N)));
end Is_Renaming;
-----------------------
-- Is_Valid_Renaming --
-----------------------
function Is_Valid_Renaming (N : Node_Id) return Boolean is
function Check_Renaming (N : Node_Id) return Boolean;
-- Recursive function used to traverse all the prefixes of N
function Check_Renaming (N : Node_Id) return Boolean is
begin
if Is_Renaming (N)
and then not Check_Renaming (Renamed_Entity (Entity (N)))
then
return False;
end if;
if Nkind (N) = N_Indexed_Component then
declare
Indx : Node_Id;
begin
Indx := First (Expressions (N));
while Present (Indx) loop
if not Is_OK_Static_Expression (Indx) then
return False;
end if;
Next_Index (Indx);
end loop;
end;
end if;
if Has_Prefix (N) then
declare
P : constant Node_Id := Prefix (N);
begin
if Nkind (N) = N_Explicit_Dereference
and then Is_Variable (P)
then
return False;
elsif Is_Entity_Name (P)
and then Ekind (Entity (P)) = E_Function
then
return False;
elsif Nkind (P) = N_Function_Call then
return False;
end if;
-- Recursion to continue traversing the prefix of the
-- renaming expression
return Check_Renaming (P);
end;
end if;
return True;
end Check_Renaming;
-- Start of processing for Is_Valid_Renaming
begin
return Check_Renaming (N);
end Is_Valid_Renaming;
-- Start of processing for Denotes_Same_Object
begin
-- Both names statically denote the same stand-alone object or parameter
-- (RM 6.4.1(6.5/3))
if Is_Entity_Name (Obj1)
and then Is_Entity_Name (Obj2)
and then Entity (Obj1) = Entity (Obj2)
then
return True;
end if;
-- For renamings, the prefix of any dereference within the renamed
-- object_name is not a variable, and any expression within the
-- renamed object_name contains no references to variables nor
-- calls on nonstatic functions (RM 6.4.1(6.10/3)).
if Is_Renaming (Obj1) then
if Is_Valid_Renaming (Obj1) then
Obj1 := Renamed_Entity (Entity (Obj1));
else
return False;
end if;
end if;
if Is_Renaming (Obj2) then
if Is_Valid_Renaming (Obj2) then
Obj2 := Renamed_Entity (Entity (Obj2));
else
return False;
end if;
end if;
-- No match if not same node kind (such cases are handled by
-- Denotes_Same_Prefix)
if Nkind (Obj1) /= Nkind (Obj2) then
return False;
-- After handling valid renamings, one of the two names statically
-- denoted a renaming declaration whose renamed object_name is known
-- to denote the same object as the other (RM 6.4.1(6.10/3))
elsif Is_Entity_Name (Obj1) then
if Is_Entity_Name (Obj2) then
return Entity (Obj1) = Entity (Obj2);
else
return False;
end if;
-- Both names are selected_components, their prefixes are known to
-- denote the same object, and their selector_names denote the same
-- component (RM 6.4.1(6.6/3)
elsif Nkind (Obj1) = N_Selected_Component then
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
and then
Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
-- Both names are dereferences and the dereferenced names are known to
-- denote the same object (RM 6.4.1(6.7/3))
elsif Nkind (Obj1) = N_Explicit_Dereference then
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
-- Both names are indexed_components, their prefixes are known to denote
-- the same object, and each of the pairs of corresponding index values
-- are either both static expressions with the same static value or both
-- names that are known to denote the same object (RM 6.4.1(6.8/3))
elsif Nkind (Obj1) = N_Indexed_Component then
if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
return False;
else
declare
Indx1 : Node_Id;
Indx2 : Node_Id;
begin
Indx1 := First (Expressions (Obj1));
Indx2 := First (Expressions (Obj2));
while Present (Indx1) loop
-- Indexes must denote the same static value or same object
if Is_OK_Static_Expression (Indx1) then
if not Is_OK_Static_Expression (Indx2) then
return False;
elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
return False;
end if;
elsif not Denotes_Same_Object (Indx1, Indx2) then
return False;
end if;
Next (Indx1);
Next (Indx2);
end loop;
return True;
end;
end if;
-- Both names are slices, their prefixes are known to denote the same
-- object, and the two slices have statically matching index constraints
-- (RM 6.4.1(6.9/3))
elsif Nkind (Obj1) = N_Slice
and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
then
declare
Lo1, Lo2, Hi1, Hi2 : Node_Id;
begin
Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
-- Check whether bounds are statically identical. There is no
-- attempt to detect partial overlap of slices.
return Denotes_Same_Object (Lo1, Lo2)
and then Denotes_Same_Object (Hi1, Hi2);
end;
-- In the recursion, literals appear as indexes
elsif Nkind (Obj1) = N_Integer_Literal
and then
Nkind (Obj2) = N_Integer_Literal
then
return Intval (Obj1) = Intval (Obj2);
else
return False;
end if;
end Denotes_Same_Object;
-------------------------
-- Denotes_Same_Prefix --
-------------------------
function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
begin
if Is_Entity_Name (A1) then
if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
and then not Is_Access_Type (Etype (A1))
then
return Denotes_Same_Object (A1, Prefix (A2))
or else Denotes_Same_Prefix (A1, Prefix (A2));
else
return False;
end if;
elsif Is_Entity_Name (A2) then
return Denotes_Same_Prefix (A1 => A2, A2 => A1);
elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
and then
Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
then
declare
Root1, Root2 : Node_Id;
Depth1, Depth2 : Int := 0;
begin
Root1 := Prefix (A1);
while not Is_Entity_Name (Root1) loop
if not Nkind_In
(Root1, N_Selected_Component, N_Indexed_Component)
then
return False;
else
Root1 := Prefix (Root1);
end if;
Depth1 := Depth1 + 1;
end loop;
Root2 := Prefix (A2);
while not Is_Entity_Name (Root2) loop
if not Nkind_In
(Root2, N_Selected_Component, N_Indexed_Component)
then
return False;
else
Root2 := Prefix (Root2);
end if;
Depth2 := Depth2 + 1;
end loop;
-- If both have the same depth and they do not denote the same
-- object, they are disjoint and no warning is needed.
if Depth1 = Depth2 then
return False;
elsif Depth1 > Depth2 then
Root1 := Prefix (A1);
for I in 1 .. Depth1 - Depth2 - 1 loop
Root1 := Prefix (Root1);
end loop;
return Denotes_Same_Object (Root1, A2);
else
Root2 := Prefix (A2);
for I in 1 .. Depth2 - Depth1 - 1 loop
Root2 := Prefix (Root2);
end loop;
return Denotes_Same_Object (A1, Root2);
end if;
end;
else
return False;
end if;
end Denotes_Same_Prefix;
----------------------
-- Denotes_Variable --
----------------------
function Denotes_Variable (N : Node_Id) return Boolean is
begin
return Is_Variable (N) and then Paren_Count (N) = 0;
end Denotes_Variable;
-----------------------------
-- Depends_On_Discriminant --
-----------------------------
function Depends_On_Discriminant (N : Node_Id) return Boolean is
L : Node_Id;
H : Node_Id;
begin
Get_Index_Bounds (N, L, H);
return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
end Depends_On_Discriminant;
-------------------------
-- Designate_Same_Unit --
-------------------------
function Designate_Same_Unit
(Name1 : Node_Id;
Name2 : Node_Id) return Boolean
is
K1 : constant Node_Kind := Nkind (Name1);
K2 : constant Node_Kind := Nkind (Name2);
function Prefix_Node (N : Node_Id) return Node_Id;
-- Returns the parent unit name node of a defining program unit name
-- or the prefix if N is a selected component or an expanded name.
function Select_Node (N : Node_Id) return Node_Id;
-- Returns the defining identifier node of a defining program unit
-- name or the selector node if N is a selected component or an
-- expanded name.
-----------------
-- Prefix_Node --
-----------------
function Prefix_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Name (N);
else
return Prefix (N);
end if;
end Prefix_Node;
-----------------
-- Select_Node --
-----------------
function Select_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Defining_Identifier (N);
else
return Selector_Name (N);
end if;
end Select_Node;
-- Start of processing for Designate_Next_Unit
begin
if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
and then
(K2 = N_Identifier or else K2 = N_Defining_Identifier)
then
return Chars (Name1) = Chars (Name2);
elsif
(K1 = N_Expanded_Name or else
K1 = N_Selected_Component or else
K1 = N_Defining_Program_Unit_Name)
and then
(K2 = N_Expanded_Name or else
K2 = N_Selected_Component or else
K2 = N_Defining_Program_Unit_Name)
then
return
(Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
and then
Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
else
return False;
end if;
end Designate_Same_Unit;
------------------------------------------
-- function Dynamic_Accessibility_Level --
------------------------------------------
function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
E : Entity_Id;
Loc : constant Source_Ptr := Sloc (Expr);
function Make_Level_Literal (Level : Uint) return Node_Id;
-- Construct an integer literal representing an accessibility level
-- with its type set to Natural.
------------------------
-- Make_Level_Literal --
------------------------
function Make_Level_Literal (Level : Uint) return Node_Id is
Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
begin
Set_Etype (Result, Standard_Natural);
return Result;
end Make_Level_Literal;
-- Start of processing for Dynamic_Accessibility_Level
begin
if Is_Entity_Name (Expr) then
E := Entity (Expr);
if Present (Renamed_Object (E)) then
return Dynamic_Accessibility_Level (Renamed_Object (E));
end if;
if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
if Present (Extra_Accessibility (E)) then
return New_Occurrence_Of (Extra_Accessibility (E), Loc);
end if;
end if;
end if;
-- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
case Nkind (Expr) is
-- For access discriminant, the level of the enclosing object
when N_Selected_Component =>
if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
E_Anonymous_Access_Type
then
return Make_Level_Literal (Object_Access_Level (Expr));
end if;
when N_Attribute_Reference =>
case Get_Attribute_Id (Attribute_Name (Expr)) is
-- For X'Access, the level of the prefix X
when Attribute_Access =>
return Make_Level_Literal
(Object_Access_Level (Prefix (Expr)));
-- Treat the unchecked attributes as library-level
when Attribute_Unchecked_Access |
Attribute_Unrestricted_Access =>
return Make_Level_Literal (Scope_Depth (Standard_Standard));
-- No other access-valued attributes
when others =>
raise Program_Error;
end case;
when N_Allocator =>
-- Unimplemented: depends on context. As an actual parameter where
-- formal type is anonymous, use
-- Scope_Depth (Current_Scope) + 1.
-- For other cases, see 3.10.2(14/3) and following. ???
null;
when N_Type_Conversion =>
if not Is_Local_Anonymous_Access (Etype (Expr)) then
-- Handle type conversions introduced for a rename of an
-- Ada 2012 stand-alone object of an anonymous access type.
return Dynamic_Accessibility_Level (Expression (Expr));
end if;
when others =>
null;
end case;
return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
end Dynamic_Accessibility_Level;
-----------------------------------
-- Effective_Extra_Accessibility --
-----------------------------------
function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
begin
if Present (Renamed_Object (Id))
and then Is_Entity_Name (Renamed_Object (Id))
then
return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
else
return Extra_Accessibility (Id);
end if;
end Effective_Extra_Accessibility;
-----------------------------
-- Effective_Reads_Enabled --
-----------------------------
function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Effective_Reads);
end Effective_Reads_Enabled;
------------------------------
-- Effective_Writes_Enabled --
------------------------------
function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Effective_Writes);
end Effective_Writes_Enabled;
------------------------------
-- Enclosing_Comp_Unit_Node --
------------------------------
function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
Current_Node : Node_Id;
begin
Current_Node := N;
while Present (Current_Node)
and then Nkind (Current_Node) /= N_Compilation_Unit
loop
Current_Node := Parent (Current_Node);
end loop;
if Nkind (Current_Node) /= N_Compilation_Unit then
return Empty;
else
return Current_Node;
end if;
end Enclosing_Comp_Unit_Node;
--------------------------
-- Enclosing_CPP_Parent --
--------------------------
function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
Parent_Typ : Entity_Id := Typ;
begin
while not Is_CPP_Class (Parent_Typ)
and then Etype (Parent_Typ) /= Parent_Typ
loop
Parent_Typ := Etype (Parent_Typ);
if Is_Private_Type (Parent_Typ) then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
end loop;
pragma Assert (Is_CPP_Class (Parent_Typ));
return Parent_Typ;
end Enclosing_CPP_Parent;
----------------------------
-- Enclosing_Generic_Body --
----------------------------
function Enclosing_Generic_Body
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return P;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Body;
----------------------------
-- Enclosing_Generic_Unit --
----------------------------
function Enclosing_Generic_Unit
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Generic_Package_Declaration
or else Nkind (P) = N_Generic_Subprogram_Declaration
then
return P;
elsif Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return Decl;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Unit;
-------------------------------
-- Enclosing_Lib_Unit_Entity --
-------------------------------
function Enclosing_Lib_Unit_Entity
(E : Entity_Id := Current_Scope) return Entity_Id
is
Unit_Entity : Entity_Id;
begin
-- Look for enclosing library unit entity by following scope links.
-- Equivalent to, but faster than indexing through the scope stack.
Unit_Entity := E;
while (Present (Scope (Unit_Entity))
and then Scope (Unit_Entity) /= Standard_Standard)
and not Is_Child_Unit (Unit_Entity)
loop
Unit_Entity := Scope (Unit_Entity);
end loop;
return Unit_Entity;
end Enclosing_Lib_Unit_Entity;
-----------------------
-- Enclosing_Package --
-----------------------
function Enclosing_Package (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Standard_Standard;
elsif Dynamic_Scope = Empty then
return Empty;
elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
E_Generic_Package)
then
return Dynamic_Scope;
else
return Enclosing_Package (Dynamic_Scope);
end if;
end Enclosing_Package;
--------------------------
-- Enclosing_Subprogram --
--------------------------
function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Empty;
elsif Dynamic_Scope = Empty then
return Empty;
elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
elsif Ekind (Dynamic_Scope) = E_Block
or else Ekind (Dynamic_Scope) = E_Return_Statement
then
return Enclosing_Subprogram (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Task_Type then
return Get_Task_Body_Procedure (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
and then Present (Full_View (Dynamic_Scope))
and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
then
return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
-- No body is generated if the protected operation is eliminated
elsif Convention (Dynamic_Scope) = Convention_Protected
and then not Is_Eliminated (Dynamic_Scope)
and then Present (Protected_Body_Subprogram (Dynamic_Scope))
then
return Protected_Body_Subprogram (Dynamic_Scope);
else
return Dynamic_Scope;
end if;
end Enclosing_Subprogram;
------------------------
-- Ensure_Freeze_Node --
------------------------
procedure Ensure_Freeze_Node (E : Entity_Id) is
FN : Node_Id;
begin
if No (Freeze_Node (E)) then
FN := Make_Freeze_Entity (Sloc (E));
Set_Has_Delayed_Freeze (E);
Set_Freeze_Node (E, FN);
Set_Access_Types_To_Process (FN, No_Elist);
Set_TSS_Elist (FN, No_Elist);
Set_Entity (FN, E);
end if;
end Ensure_Freeze_Node;
----------------
-- Enter_Name --
----------------
procedure Enter_Name (Def_Id : Entity_Id) is
C : constant Entity_Id := Current_Entity (Def_Id);
E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
S : constant Entity_Id := Current_Scope;
begin
Generate_Definition (Def_Id);
-- Add new name to current scope declarations. Check for duplicate
-- declaration, which may or may not be a genuine error.
if Present (E) then
-- Case of previous entity entered because of a missing declaration
-- or else a bad subtype indication. Best is to use the new entity,
-- and make the previous one invisible.
if Etype (E) = Any_Type then
Set_Is_Immediately_Visible (E, False);
-- Case of renaming declaration constructed for package instances.
-- if there is an explicit declaration with the same identifier,
-- the renaming is not immediately visible any longer, but remains
-- visible through selected component notation.
elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (E)
then
Set_Is_Immediately_Visible (E, False);
-- The new entity may be the package renaming, which has the same
-- same name as a generic formal which has been seen already.
elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (Def_Id)
then
Set_Is_Immediately_Visible (E, False);
-- For a fat pointer corresponding to a remote access to subprogram,
-- we use the same identifier as the RAS type, so that the proper
-- name appears in the stub. This type is only retrieved through
-- the RAS type and never by visibility, and is not added to the
-- visibility list (see below).
elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
and then Ekind (Def_Id) = E_Record_Type
and then Present (Corresponding_Remote_Type (Def_Id))
then
null;
-- Case of an implicit operation or derived literal. The new entity
-- hides the implicit one, which is removed from all visibility,
-- i.e. the entity list of its scope, and homonym chain of its name.
elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
or else Is_Internal (E)
then
declare
Prev : Entity_Id;
Prev_Vis : Entity_Id;
Decl : constant Node_Id := Parent (E);
begin
-- If E is an implicit declaration, it cannot be the first
-- entity in the scope.
Prev := First_Entity (Current_Scope);
while Present (Prev) and then Next_Entity (Prev) /= E loop
Next_Entity (Prev);
end loop;
if No (Prev) then
-- If E is not on the entity chain of the current scope,
-- it is an implicit declaration in the generic formal
-- part of a generic subprogram. When analyzing the body,
-- the generic formals are visible but not on the entity
-- chain of the subprogram. The new entity will become
-- the visible one in the body.
pragma Assert
(Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
null;
else
Set_Next_Entity (Prev, Next_Entity (E));
if No (Next_Entity (Prev)) then
Set_Last_Entity (Current_Scope, Prev);
end if;
if E = Current_Entity (E) then
Prev_Vis := Empty;
else
Prev_Vis := Current_Entity (E);
while Homonym (Prev_Vis) /= E loop
Prev_Vis := Homonym (Prev_Vis);
end loop;
end if;
if Present (Prev_Vis) then
-- Skip E in the visibility chain
Set_Homonym (Prev_Vis, Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Homonym (E));
end if;
end if;
end;
-- This section of code could use a comment ???
elsif Present (Etype (E))
and then Is_Concurrent_Type (Etype (E))
and then E = Def_Id
then
return;
-- If the homograph is a protected component renaming, it should not
-- be hiding the current entity. Such renamings are treated as weak
-- declarations.
elsif Is_Prival (E) then
Set_Is_Immediately_Visible (E, False);
-- In this case the current entity is a protected component renaming.
-- Perform minimal decoration by setting the scope and return since
-- the prival should not be hiding other visible entities.
elsif Is_Prival (Def_Id) then
Set_Scope (Def_Id, Current_Scope);
return;
-- Analogous to privals, the discriminal generated for an entry index
-- parameter acts as a weak declaration. Perform minimal decoration
-- to avoid bogus errors.
elsif Is_Discriminal (Def_Id)
and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
then
Set_Scope (Def_Id, Current_Scope);
return;
-- In the body or private part of an instance, a type extension may
-- introduce a component with the same name as that of an actual. The
-- legality rule is not enforced, but the semantics of the full type
-- with two components of same name are not clear at this point???
elsif In_Instance_Not_Visible then
null;
-- When compiling a package body, some child units may have become
-- visible. They cannot conflict with local entities that hide them.
elsif Is_Child_Unit (E)
and then In_Open_Scopes (Scope (E))
and then not Is_Immediately_Visible (E)
then
null;
-- Conversely, with front-end inlining we may compile the parent body
-- first, and a child unit subsequently. The context is now the
-- parent spec, and body entities are not visible.
elsif Is_Child_Unit (Def_Id)
and then Is_Package_Body_Entity (E)
and then not In_Package_Body (Current_Scope)
then
null;
-- Case of genuine duplicate declaration
else
Error_Msg_Sloc := Sloc (E);
-- If the previous declaration is an incomplete type declaration
-- this may be an attempt to complete it with a private type. The
-- following avoids confusing cascaded errors.
if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
then
Error_Msg_N
("incomplete type cannot be completed with a private " &
"declaration", Parent (Def_Id));
Set_Is_Immediately_Visible (E, False);
Set_Full_View (E, Def_Id);
-- An inherited component of a record conflicts with a new
-- discriminant. The discriminant is inserted first in the scope,
-- but the error should be posted on it, not on the component.
elsif Ekind (E) = E_Discriminant
and then Present (Scope (Def_Id))
and then Scope (Def_Id) /= Current_Scope
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_N ("& conflicts with declaration#", E);
return;
-- If the name of the unit appears in its own context clause, a
-- dummy package with the name has already been created, and the
-- error emitted. Try to continue quietly.
elsif Error_Posted (E)
and then Sloc (E) = No_Location
and then Nkind (Parent (E)) = N_Package_Specification
and then Current_Scope = Standard_Standard
then
Set_Scope (Def_Id, Current_Scope);
return;
else
Error_Msg_N ("& conflicts with declaration#", Def_Id);
-- Avoid cascaded messages with duplicate components in
-- derived types.
if Ekind_In (E, E_Component, E_Discriminant) then
return;
end if;
end if;
if Nkind (Parent (Parent (Def_Id))) =
N_Generic_Subprogram_Declaration
and then Def_Id =
Defining_Entity (Specification (Parent (Parent (Def_Id))))
then
Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
end if;
-- If entity is in standard, then we are in trouble, because it
-- means that we have a library package with a duplicated name.
-- That's hard to recover from, so abort.
if S = Standard_Standard then
raise Unrecoverable_Error;
-- Otherwise we continue with the declaration. Having two
-- identical declarations should not cause us too much trouble.
else
null;
end if;
end if;
end if;
-- If we fall through, declaration is OK, at least OK enough to continue
-- If Def_Id is a discriminant or a record component we are in the midst
-- of inheriting components in a derived record definition. Preserve
-- their Ekind and Etype.
if Ekind_In (Def_Id, E_Discriminant, E_Component) then
null;
-- If a type is already set, leave it alone (happens when a type
-- declaration is reanalyzed following a call to the optimizer).
elsif Present (Etype (Def_Id)) then
null;
-- Otherwise, the kind E_Void insures that premature uses of the entity
-- will be detected. Any_Type insures that no cascaded errors will occur
else
Set_Ekind (Def_Id, E_Void);
Set_Etype (Def_Id, Any_Type);
end if;
-- Inherited discriminants and components in derived record types are
-- immediately visible. Itypes are not.
-- Unless the Itype is for a record type with a corresponding remote
-- type (what is that about, it was not commented ???)
if Ekind_In (Def_Id, E_Discriminant, E_Component)
or else
((not Is_Record_Type (Def_Id)
or else No (Corresponding_Remote_Type (Def_Id)))
and then not Is_Itype (Def_Id))
then
Set_Is_Immediately_Visible (Def_Id);
Set_Current_Entity (Def_Id);
end if;
Set_Homonym (Def_Id, C);
Append_Entity (Def_Id, S);
Set_Public_Status (Def_Id);
-- Declaring a homonym is not allowed in SPARK ...
if Present (C) and then Restriction_Check_Required (SPARK_05) then
declare
Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
begin
-- ... unless the new declaration is in a subprogram, and the
-- visible declaration is a variable declaration or a parameter
-- specification outside that subprogram.
if Present (Enclosing_Subp)
and then Nkind_In (Parent (C), N_Object_Declaration,
N_Parameter_Specification)
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
then
null;
-- ... or the new declaration is in a package, and the visible
-- declaration occurs outside that package.
elsif Present (Enclosing_Pack)
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
then
null;
-- ... or the new declaration is a component declaration in a
-- record type definition.
elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
null;
-- Don't issue error for non-source entities
elsif Comes_From_Source (Def_Id)
and then Comes_From_Source (C)
then
Error_Msg_Sloc := Sloc (C);
Check_SPARK_Restriction
("redeclaration of identifier &#", Def_Id);
end if;
end;
end if;
-- Warn if new entity hides an old one
if Warn_On_Hiding and then Present (C)
-- Don't warn for record components since they always have a well
-- defined scope which does not confuse other uses. Note that in
-- some cases, Ekind has not been set yet.
and then Ekind (C) /= E_Component
and then Ekind (C) /= E_Discriminant
and then Nkind (Parent (C)) /= N_Component_Declaration
and then Ekind (Def_Id) /= E_Component
and then Ekind (Def_Id) /= E_Discriminant
and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
-- Don't warn for one character variables. It is too common to use
-- such variables as locals and will just cause too many false hits.
and then Length_Of_Name (Chars (C)) /= 1
-- Don't warn for non-source entities
and then Comes_From_Source (C)
and then Comes_From_Source (Def_Id)
-- Don't warn unless entity in question is in extended main source
and then In_Extended_Main_Source_Unit (Def_Id)
-- Finally, the hidden entity must be either immediately visible or
-- use visible (i.e. from a used package).
and then
(Is_Immediately_Visible (C)
or else
Is_Potentially_Use_Visible (C))
then
Error_Msg_Sloc := Sloc (C);
Error_Msg_N ("declaration hides &#?h?", Def_Id);
end if;
end Enter_Name;
---------------
-- Entity_Of --
---------------
function Entity_Of (N : Node_Id) return Entity_Id is
Id : Entity_Id;
begin
Id := Empty;
if Is_Entity_Name (N) then
Id := Entity (N);
-- Follow a possible chain of renamings to reach the root renamed
-- object.
while Present (Id) and then Present (Renamed_Object (Id)) loop
if Is_Entity_Name (Renamed_Object (Id)) then
Id := Entity (Renamed_Object (Id));
else
Id := Empty;
exit;
end if;
end loop;
end if;
return Id;
end Entity_Of;
--------------------------
-- Explain_Limited_Type --
--------------------------
procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
C : Entity_Id;
begin
-- For array, component type must be limited
if Is_Array_Type (T) then
Error_Msg_Node_2 := T;
Error_Msg_NE
("\component type& of type& is limited", N, Component_Type (T));
Explain_Limited_Type (Component_Type (T), N);
elsif Is_Record_Type (T) then
-- No need for extra messages if explicit limited record
if Is_Limited_Record (Base_Type (T)) then
return;
end if;
-- Otherwise find a limited component. Check only components that
-- come from source, or inherited components that appear in the
-- source of the ancestor.
C := First_Component (T);
while Present (C) loop
if Is_Limited_Type (Etype (C))
and then
(Comes_From_Source (C)
or else
(Present (Original_Record_Component (C))
and then
Comes_From_Source (Original_Record_Component (C))))
then
Error_Msg_Node_2 := T;
Error_Msg_NE ("\component& of type& has limited type", N, C);
Explain_Limited_Type (Etype (C), N);
return;
end if;
Next_Component (C);
end loop;
-- The type may be declared explicitly limited, even if no component
-- of it is limited, in which case we fall out of the loop.
return;
end if;
end Explain_Limited_Type;
-----------------
-- Find_Actual --
-----------------
procedure Find_Actual
(N : Node_Id;
Formal : out Entity_Id;
Call : out Node_Id)
is
Parnt : constant Node_Id := Parent (N);
Actual : Node_Id;
begin
if Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
and then N = Prefix (Parnt)
then
Find_Actual (Parnt, Formal, Call);
return;
elsif Nkind (Parnt) = N_Parameter_Association
and then N = Explicit_Actual_Parameter (Parnt)
then
Call := Parent (Parnt);
elsif Nkind (Parnt) in N_Subprogram_Call then
Call := Parnt;
else
Formal := Empty;
Call := Empty;
return;
end if;
-- If we have a call to a subprogram look for the parameter. Note that
-- we exclude overloaded calls, since we don't know enough to be sure
-- of giving the right answer in this case.
if Nkind_In (Call, N_Function_Call, N_Procedure_Call_Statement)
and then Is_Entity_Name (Name (Call))
and then Present (Entity (Name (Call)))
and then Is_Overloadable (Entity (Name (Call)))
and then not Is_Overloaded (Name (Call))
then
-- Fall here if we are definitely a parameter
Actual := First_Actual (Call);
Formal := First_Formal (Entity (Name (Call)));
while Present (Formal) and then Present (Actual) loop
if Actual = N then
return;
-- An actual that is the prefix in a prefixed call may have
-- been rewritten in the call, after the deferred reference
-- was collected. Check if sloc and kinds and names match.
elsif Sloc (Actual) = Sloc (N)
and then Nkind (Actual) = N_Identifier
and then Nkind (Actual) = Nkind (N)
and then Chars (Actual) = Chars (N)
then
return;
else
Actual := Next_Actual (Actual);
Formal := Next_Formal (Formal);
end if;
end loop;
end if;
-- Fall through here if we did not find matching actual
Formal := Empty;
Call := Empty;
end Find_Actual;
---------------------------
-- Find_Body_Discriminal --
---------------------------
function Find_Body_Discriminal
(Spec_Discriminant : Entity_Id) return Entity_Id
is
Tsk : Entity_Id;
Disc : Entity_Id;
begin
-- If expansion is suppressed, then the scope can be the concurrent type
-- itself rather than a corresponding concurrent record type.
if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
Tsk := Scope (Spec_Discriminant);
else
pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
end if;
-- Find discriminant of original concurrent type, and use its current
-- discriminal, which is the renaming within the task/protected body.
Disc := First_Discriminant (Tsk);
while Present (Disc) loop
if Chars (Disc) = Chars (Spec_Discriminant) then
return Discriminal (Disc);
end if;
Next_Discriminant (Disc);
end loop;
-- That loop should always succeed in finding a matching entry and
-- returning. Fatal error if not.
raise Program_Error;
end Find_Body_Discriminal;
-------------------------------------
-- Find_Corresponding_Discriminant --
-------------------------------------
function Find_Corresponding_Discriminant
(Id : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Par_Disc : Entity_Id;
Old_Disc : Entity_Id;
New_Disc : Entity_Id;
begin
Par_Disc := Original_Record_Component (Original_Discriminant (Id));
-- The original type may currently be private, and the discriminant
-- only appear on its full view.
if Is_Private_Type (Scope (Par_Disc))
and then not Has_Discriminants (Scope (Par_Disc))
and then Present (Full_View (Scope (Par_Disc)))
then
Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
else
Old_Disc := First_Discriminant (Scope (Par_Disc));
end if;
if Is_Class_Wide_Type (Typ) then
New_Disc := First_Discriminant (Root_Type (Typ));
else
New_Disc := First_Discriminant (Typ);
end if;
while Present (Old_Disc) and then Present (New_Disc) loop
if Old_Disc = Par_Disc then
return New_Disc;
end if;
Next_Discriminant (Old_Disc);
Next_Discriminant (New_Disc);
end loop;
-- Should always find it
raise Program_Error;
end Find_Corresponding_Discriminant;
----------------------------------
-- Find_Enclosing_Iterator_Loop --
----------------------------------
function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
Constr : Node_Id;
S : Entity_Id;
begin
-- Traverse the scope chain looking for an iterator loop. Such loops are
-- usually transformed into blocks, hence the use of Original_Node.
S := Id;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Loop
and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
then
Constr := Original_Node (Label_Construct (Parent (S)));
if Nkind (Constr) = N_Loop_Statement
and then Present (Iteration_Scheme (Constr))
and then Nkind (Iterator_Specification
(Iteration_Scheme (Constr))) =
N_Iterator_Specification
then
return S;
end if;
end if;
S := Scope (S);
end loop;
return Empty;
end Find_Enclosing_Iterator_Loop;
------------------------------------
-- Find_Loop_In_Conditional_Block --
------------------------------------
function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
Stmt : Node_Id;
begin
Stmt := N;
if Nkind (Stmt) = N_If_Statement then
Stmt := First (Then_Statements (Stmt));
end if;
pragma Assert (Nkind (Stmt) = N_Block_Statement);
-- Inspect the statements of the conditional block. In general the loop
-- should be the first statement in the statement sequence of the block,
-- but the finalization machinery may have introduced extra object
-- declarations.
Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
while Present (Stmt) loop
if Nkind (Stmt) = N_Loop_Statement then
return Stmt;
end if;
Next (Stmt);
end loop;
-- The expansion of attribute 'Loop_Entry produced a malformed block
raise Program_Error;
end Find_Loop_In_Conditional_Block;
--------------------------
-- Find_Overlaid_Entity --
--------------------------
procedure Find_Overlaid_Entity
(N : Node_Id;
Ent : out Entity_Id;
Off : out Boolean)
is
Expr : Node_Id;
begin
-- We are looking for one of the two following forms:
-- for X'Address use Y'Address
-- or
-- Const : constant Address := expr;
-- ...
-- for X'Address use Const;
-- In the second case, the expr is either Y'Address, or recursively a
-- constant that eventually references Y'Address.
Ent := Empty;
Off := False;
if Nkind (N) = N_Attribute_Definition_Clause
and then Chars (N) = Name_Address
then
Expr := Expression (N);
-- This loop checks the form of the expression for Y'Address,
-- using recursion to deal with intermediate constants.
loop
-- Check for Y'Address
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
then
Expr := Prefix (Expr);
exit;
-- Check for Const where Const is a constant entity
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Expr := Constant_Value (Entity (Expr));
-- Anything else does not need checking
else
return;
end if;
end loop;
-- This loop checks the form of the prefix for an entity, using
-- recursion to deal with intermediate components.
loop
-- Check for Y where Y is an entity
if Is_Entity_Name (Expr) then
Ent := Entity (Expr);
return;
-- Check for components
elsif
Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
then
Expr := Prefix (Expr);
Off := True;
-- Anything else does not need checking
else
return;
end if;
end loop;
end if;
end Find_Overlaid_Entity;
-------------------------
-- Find_Parameter_Type --
-------------------------
function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
begin
if Nkind (Param) /= N_Parameter_Specification then
return Empty;
-- For an access parameter, obtain the type from the formal entity
-- itself, because access to subprogram nodes do not carry a type.
-- Shouldn't we always use the formal entity ???
elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
return Etype (Defining_Identifier (Param));
else
return Etype (Parameter_Type (Param));
end if;
end Find_Parameter_Type;
-----------------------------------
-- Find_Placement_In_State_Space --
-----------------------------------
procedure Find_Placement_In_State_Space
(Item_Id : Entity_Id;
Placement : out State_Space_Kind;
Pack_Id : out Entity_Id)
is
Context : Entity_Id;
begin
-- Assume that the item does not appear in the state space of a package
Placement := Not_In_Package;
Pack_Id := Empty;
-- Climb the scope stack and examine the enclosing context
Context := Scope (Item_Id);
while Present (Context) and then Context /= Standard_Standard loop
if Ekind (Context) = E_Package then
Pack_Id := Context;
-- A package body is a cut off point for the traversal as the item
-- cannot be visible to the outside from this point on. Note that
-- this test must be done first as a body is also classified as a
-- private part.
if In_Package_Body (Context) then
Placement := Body_State_Space;
return;
-- The private part of a package is a cut off point for the
-- traversal as the item cannot be visible to the outside from
-- this point on.
elsif In_Private_Part (Context) then
Placement := Private_State_Space;
return;
-- When the item appears in the visible state space of a package,
-- continue to climb the scope stack as this may not be the final
-- state space.
else
Placement := Visible_State_Space;
-- The visible state space of a child unit acts as the proper
-- placement of an item.
if Is_Child_Unit (Context) then
return;
end if;
end if;
-- The item or its enclosing package appear in a construct that has
-- no state space.
else
Placement := Not_In_Package;
return;
end if;
Context := Scope (Context);
end loop;
end Find_Placement_In_State_Space;
------------------------
-- Find_Specific_Type --
------------------------
function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
Typ : Entity_Id := Root_Type (CW);
begin
if Ekind (Typ) = E_Incomplete_Type then
if From_Limited_With (Typ) then
Typ := Non_Limited_View (Typ);
else
Typ := Full_View (Typ);
end if;
end if;
if Is_Private_Type (Typ)
and then not Is_Tagged_Type (Typ)
and then Present (Full_View (Typ))
then
return Full_View (Typ);
else
return Typ;
end if;
end Find_Specific_Type;
-----------------------------
-- Find_Static_Alternative --
-----------------------------
function Find_Static_Alternative (N : Node_Id) return Node_Id is
Expr : constant Node_Id := Expression (N);
Val : constant Uint := Expr_Value (Expr);
Alt : Node_Id;
Choice : Node_Id;
begin
Alt := First (Alternatives (N));
Search : loop
if Nkind (Alt) /= N_Pragma then
Choice := First (Discrete_Choices (Alt));
while Present (Choice) loop
-- Others choice, always matches
if Nkind (Choice) = N_Others_Choice then
exit Search;
-- Range, check if value is in the range
elsif Nkind (Choice) = N_Range then
exit Search when
Val >= Expr_Value (Low_Bound (Choice))
and then
Val <= Expr_Value (High_Bound (Choice));
-- Choice is a subtype name. Note that we know it must
-- be a static subtype, since otherwise it would have
-- been diagnosed as illegal.
elsif Is_Entity_Name (Choice) and then Is_Type (Entity (Choice))
then
exit Search when Is_In_Range (Expr, Etype (Choice),
Assume_Valid => False);
-- Choice is a subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
declare
C : constant Node_Id := Constraint (Choice);
R : constant Node_Id := Range_Expression (C);
begin
exit Search when
Val >= Expr_Value (Low_Bound (R))
and then
Val <= Expr_Value (High_Bound (R));
end;
-- Choice is a simple expression
else
exit Search when Val = Expr_Value (Choice);
end if;
Next (Choice);
end loop;
end if;
Next (Alt);
pragma Assert (Present (Alt));
end loop Search;
-- The above loop *must* terminate by finding a match, since
-- we know the case statement is valid, and the value of the
-- expression is known at compile time. When we fall out of
-- the loop, Alt points to the alternative that we know will
-- be selected at run time.
return Alt;
end Find_Static_Alternative;
------------------
-- First_Actual --
------------------
function First_Actual (Node : Node_Id) return Node_Id is
N : Node_Id;
begin
if No (Parameter_Associations (Node)) then
return Empty;
end if;
N := First (Parameter_Associations (Node));
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Node);
else
return N;
end if;
end First_Actual;
-----------------------
-- Gather_Components --
-----------------------
procedure Gather_Components
(Typ : Entity_Id;
Comp_List : Node_Id;
Governed_By : List_Id;
Into : Elist_Id;
Report_Errors : out Boolean)
is
Assoc : Node_Id;
Variant : Node_Id;
Discrete_Choice : Node_Id;
Comp_Item : Node_Id;
Discrim : Entity_Id;
Discrim_Name : Node_Id;
Discrim_Value : Node_Id;
begin
Report_Errors := False;
if No (Comp_List) or else Null_Present (Comp_List) then
return;
elsif Present (Component_Items (Comp_List)) then
Comp_Item := First (Component_Items (Comp_List));
else
Comp_Item := Empty;
end if;
while Present (Comp_Item) loop
-- Skip the tag of a tagged record, the interface tags, as well
-- as all items that are not user components (anonymous types,
-- rep clauses, Parent field, controller field).
if Nkind (Comp_Item) = N_Component_Declaration then
declare
Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
begin
if not Is_Tag (Comp)
and then Chars (Comp) /= Name_uParent
then
Append_Elmt (Comp, Into);
end if;
end;
end if;
Next (Comp_Item);
end loop;
if No (Variant_Part (Comp_List)) then
return;
else
Discrim_Name := Name (Variant_Part (Comp_List));
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
end if;
-- Look for the discriminant that governs this variant part.
-- The discriminant *must* be in the Governed_By List
Assoc := First (Governed_By);
Find_Constraint : loop
Discrim := First (Choices (Assoc));
exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
or else (Present (Corresponding_Discriminant (Entity (Discrim)))
and then
Chars (Corresponding_Discriminant (Entity (Discrim))) =
Chars (Discrim_Name))
or else Chars (Original_Record_Component (Entity (Discrim)))
= Chars (Discrim_Name);
if No (Next (Assoc)) then
if not Is_Constrained (Typ)
and then Is_Derived_Type (Typ)
and then Present (Stored_Constraint (Typ))
then
-- If the type is a tagged type with inherited discriminants,
-- use the stored constraint on the parent in order to find
-- the values of discriminants that are otherwise hidden by an
-- explicit constraint. Renamed discriminants are handled in
-- the code above.
-- If several parent discriminants are renamed by a single
-- discriminant of the derived type, the call to obtain the
-- Corresponding_Discriminant field only retrieves the last
-- of them. We recover the constraint on the others from the
-- Stored_Constraint as well.
declare
D : Entity_Id;
C : Elmt_Id;
begin
D := First_Discriminant (Etype (Typ));
C := First_Elmt (Stored_Constraint (Typ));
while Present (D) and then Present (C) loop
if Chars (Discrim_Name) = Chars (D) then
if Is_Entity_Name (Node (C))
and then Entity (Node (C)) = Entity (Discrim)
then
-- D is renamed by Discrim, whose value is given in
-- Assoc.
null;
else
Assoc :=
Make_Component_Association (Sloc (Typ),
New_List
(New_Occurrence_Of (D, Sloc (Typ))),
Duplicate_Subexpr_No_Checks (Node (C)));
end if;
exit Find_Constraint;
end if;
Next_Discriminant (D);
Next_Elmt (C);
end loop;
end;
end if;
end if;
if No (Next (Assoc)) then
Error_Msg_NE (" missing value for discriminant&",
First (Governed_By), Discrim_Name);
Report_Errors := True;
return;
end if;
Next (Assoc);
end loop Find_Constraint;
Discrim_Value := Expression (Assoc);
if not Is_OK_Static_Expression (Discrim_Value) then
Error_Msg_FE
("value for discriminant & must be static!",
Discrim_Value, Discrim);
Why_Not_Static (Discrim_Value);
Report_Errors := True;
return;
end if;
Search_For_Discriminant_Value : declare
Low : Node_Id;
High : Node_Id;
UI_High : Uint;
UI_Low : Uint;
UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
begin
Find_Discrete_Value : while Present (Variant) loop
Discrete_Choice := First (Discrete_Choices (Variant));
while Present (Discrete_Choice) loop
exit Find_Discrete_Value when
Nkind (Discrete_Choice) = N_Others_Choice;
Get_Index_Bounds (Discrete_Choice, Low, High);
UI_Low := Expr_Value (Low);
UI_High := Expr_Value (High);
exit Find_Discrete_Value when
UI_Low <= UI_Discrim_Value
and then
UI_High >= UI_Discrim_Value;
Next (Discrete_Choice);
end loop;
Next_Non_Pragma (Variant);
end loop Find_Discrete_Value;
end Search_For_Discriminant_Value;
if No (Variant) then
Error_Msg_NE
("value of discriminant & is out of range", Discrim_Value, Discrim);
Report_Errors := True;
return;
end if;
-- If we have found the corresponding choice, recursively add its
-- components to the Into list.
Gather_Components
(Empty, Component_List (Variant), Governed_By, Into, Report_Errors);
end Gather_Components;
------------------------
-- Get_Actual_Subtype --
------------------------
function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
Utyp : Entity_Id := Underlying_Type (Typ);
Decl : Node_Id;
Atyp : Entity_Id;
begin
if No (Utyp) then
Utyp := Typ;
end if;
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Actual subtype of unchecked union is always itself. We never need
-- the "real" actual subtype. If we did, we couldn't get it anyway
-- because the discriminant is not available. The restrictions on
-- Unchecked_Union are designed to make sure that this is OK.
elsif Is_Unchecked_Union (Base_Type (Utyp)) then
return Typ;
-- Here for the unconstrained case, we must find actual subtype
-- No actual subtype is available, so we must build it on the fly.
-- Checking the type, not the underlying type, for constrainedness
-- seems to be necessary. Maybe all the tests should be on the type???
elsif (not Is_Constrained (Typ))
and then (Is_Array_Type (Utyp)
or else (Is_Record_Type (Utyp)
and then Has_Discriminants (Utyp)))
and then not Has_Unknown_Discriminants (Utyp)
and then not (Ekind (Utyp) = E_String_Literal_Subtype)
then
-- Nothing to do if in spec expression (why not???)
if In_Spec_Expression then
return Typ;
elsif Is_Private_Type (Typ)
and then not Has_Discriminants (Typ)
then
-- If the type has no discriminants, there is no subtype to
-- build, even if the underlying type is discriminated.
return Typ;
-- Else build the actual subtype
else
Decl := Build_Actual_Subtype (Typ, N);
Atyp := Defining_Identifier (Decl);
-- If Build_Actual_Subtype generated a new declaration then use it
if Atyp /= Typ then
-- The actual subtype is an Itype, so analyze the declaration,
-- but do not attach it to the tree, to get the type defined.
Set_Parent (Decl, N);
Set_Is_Itype (Atyp);
Analyze (Decl, Suppress => All_Checks);
Set_Associated_Node_For_Itype (Atyp, N);
Set_Has_Delayed_Freeze (Atyp, False);
-- We need to freeze the actual subtype immediately. This is
-- needed, because otherwise this Itype will not get frozen
-- at all, and it is always safe to freeze on creation because
-- any associated types must be frozen at this point.
Freeze_Itype (Atyp, N);
return Atyp;
-- Otherwise we did not build a declaration, so return original
else
return Typ;
end if;
end if;
-- For all remaining cases, the actual subtype is the same as
-- the nominal type.
else
return Typ;
end if;
end Get_Actual_Subtype;
-------------------------------------
-- Get_Actual_Subtype_If_Available --
-------------------------------------
function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
begin
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Otherwise the Etype of N is returned unchanged
else
return Typ;
end if;
end Get_Actual_Subtype_If_Available;
------------------------
-- Get_Body_From_Stub --
------------------------
function Get_Body_From_Stub (N : Node_Id) return Node_Id is
begin
return Proper_Body (Unit (Library_Unit (N)));
end Get_Body_From_Stub;
---------------------
-- Get_Cursor_Type --
---------------------
function Get_Cursor_Type
(Aspect : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Assoc : Node_Id;
Func : Entity_Id;
First_Op : Entity_Id;
Cursor : Entity_Id;
begin
-- If error already detected, return
if Error_Posted (Aspect) then
return Any_Type;
end if;
-- The cursor type for an Iterable aspect is the return type of a
-- non-overloaded First primitive operation. Locate association for
-- First.
Assoc := First (Component_Associations (Expression (Aspect)));
First_Op := Any_Id;
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) = Name_First then
First_Op := Expression (Assoc);
exit;
end if;
Next (Assoc);
end loop;
if First_Op = Any_Id then
Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
return Any_Type;
end if;
Cursor := Any_Type;
-- Locate function with desired name and profile in scope of type
Func := First_Entity (Scope (Typ));
while Present (Func) loop
if Chars (Func) = Chars (First_Op)
and then Ekind (Func) = E_Function
and then Present (First_Formal (Func))
and then Etype (First_Formal (Func)) = Typ
and then No (Next_Formal (First_Formal (Func)))
then
if Cursor /= Any_Type then
Error_Msg_N
("Operation First for iterable type must be unique", Aspect);
return Any_Type;
else
Cursor := Etype (Func);
end if;
end if;
Next_Entity (Func);
end loop;
-- If not found, no way to resolve remaining primitives.
if Cursor = Any_Type then
Error_Msg_N
("No legal primitive operation First for Iterable type", Aspect);
end if;
return Cursor;
end Get_Cursor_Type;
-------------------------------
-- Get_Default_External_Name --
-------------------------------
function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
begin
Get_Decoded_Name_String (Chars (E));
if Opt.External_Name_Imp_Casing = Uppercase then
Set_Casing (All_Upper_Case);
else
Set_Casing (All_Lower_Case);
end if;
return
Make_String_Literal (Sloc (E),
Strval => String_From_Name_Buffer);
end Get_Default_External_Name;
--------------------------
-- Get_Enclosing_Object --
--------------------------
function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
begin
if Is_Entity_Name (N) then
return Entity (N);
else
case Nkind (N) is
when N_Indexed_Component |
N_Slice |
N_Selected_Component =>
-- If not generating code, a dereference may be left implicit.
-- In thoses cases, return Empty.
if Is_Access_Type (Etype (Prefix (N))) then
return Empty;
else
return Get_Enclosing_Object (Prefix (N));
end if;
when N_Type_Conversion =>
return Get_Enclosing_Object (Expression (N));
when others =>
return Empty;
end case;
end if;
end Get_Enclosing_Object;
---------------------------
-- Get_Enum_Lit_From_Pos --
---------------------------
function Get_Enum_Lit_From_Pos
(T : Entity_Id;
Pos : Uint;
Loc : Source_Ptr) return Node_Id
is
Btyp : Entity_Id := Base_Type (T);
Lit : Node_Id;
begin
-- In the case where the literal is of type Character, Wide_Character
-- or Wide_Wide_Character or of a type derived from them, there needs
-- to be some special handling since there is no explicit chain of
-- literals to search. Instead, an N_Character_Literal node is created
-- with the appropriate Char_Code and Chars fields.
if Is_Standard_Character_Type (T) then
Set_Character_Literal_Name (UI_To_CC (Pos));
return
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => Pos);
-- For all other cases, we have a complete table of literals, and
-- we simply iterate through the chain of literal until the one
-- with the desired position value is found.
--
else
if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
Btyp := Full_View (Btyp);
end if;
Lit := First_Literal (Btyp);
for J in 1 .. UI_To_Int (Pos) loop
Next_Literal (Lit);
end loop;
return New_Occurrence_Of (Lit, Loc);
end if;
end Get_Enum_Lit_From_Pos;
---------------------------------
-- Get_Ensures_From_CTC_Pragma --
---------------------------------
function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id is
Args : constant List_Id := Pragma_Argument_Associations (N);
Res : Node_Id;
begin
if List_Length (Args) = 4 then
Res := Pick (Args, 4);
elsif List_Length (Args) = 3 then
Res := Pick (Args, 3);
if Chars (Res) /= Name_Ensures then
Res := Empty;
end if;
else
Res := Empty;
end if;
return Res;
end Get_Ensures_From_CTC_Pragma;
------------------------
-- Get_Generic_Entity --
------------------------
function Get_Generic_Entity (N : Node_Id) return Entity_Id is
Ent : constant Entity_Id := Entity (Name (N));
begin
if Present (Renamed_Object (Ent)) then
return Renamed_Object (Ent);
else
return Ent;
end if;
end Get_Generic_Entity;
-------------------------------------
-- Get_Incomplete_View_Of_Ancestor --
-------------------------------------
function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
Par_Scope : Entity_Id;
Par_Type : Entity_Id;
begin
-- The incomplete view of an ancestor is only relevant for private
-- derived types in child units.
if not Is_Derived_Type (E)
or else not Is_Child_Unit (Cur_Unit)
then
return Empty;
else
Par_Scope := Scope (Cur_Unit);
if No (Par_Scope) then
return Empty;
end if;
Par_Type := Etype (Base_Type (E));
-- Traverse list of ancestor types until we find one declared in
-- a parent or grandparent unit (two levels seem sufficient).
while Present (Par_Type) loop
if Scope (Par_Type) = Par_Scope
or else Scope (Par_Type) = Scope (Par_Scope)
then
return Par_Type;
elsif not Is_Derived_Type (Par_Type) then
return Empty;
else
Par_Type := Etype (Base_Type (Par_Type));
end if;
end loop;
-- If none found, there is no relevant ancestor type.
return Empty;
end if;
end Get_Incomplete_View_Of_Ancestor;
----------------------
-- Get_Index_Bounds --
----------------------
procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
Kind : constant Node_Kind := Nkind (N);
R : Node_Id;
begin
if Kind = N_Range then
L := Low_Bound (N);
H := High_Bound (N);
elsif Kind = N_Subtype_Indication then
R := Range_Expression (Constraint (N));
if R = Error then
L := Error;
H := Error;
return;
else
L := Low_Bound (Range_Expression (Constraint (N)));
H := High_Bound (Range_Expression (Constraint (N)));
end if;
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
if Error_Posted (Scalar_Range (Entity (N))) then
L := Error;
H := Error;
elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
else
L := Low_Bound (Scalar_Range (Entity (N)));
H := High_Bound (Scalar_Range (Entity (N)));
end if;
else
-- N is an expression, indicating a range with one value
L := N;
H := N;
end if;
end Get_Index_Bounds;
---------------------------------
-- Get_Iterable_Type_Primitive --
---------------------------------
function Get_Iterable_Type_Primitive
(Typ : Entity_Id;
Nam : Name_Id) return Entity_Id
is
Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
Assoc : Node_Id;
begin
if No (Funcs) then
return Empty;
else
Assoc := First (Component_Associations (Funcs));
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) = Nam then
return Entity (Expression (Assoc));
end if;
Assoc := Next (Assoc);
end loop;
return Empty;
end if;
end Get_Iterable_Type_Primitive;
----------------------------------
-- Get_Library_Unit_Name_string --
----------------------------------
procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
begin
Get_Unit_Name_String (Unit_Name_Id);
-- Remove seven last character (" (spec)" or " (body)")
Name_Len := Name_Len - 7;
pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
end Get_Library_Unit_Name_String;
------------------------
-- Get_Name_Entity_Id --
------------------------
function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
begin
return Entity_Id (Get_Name_Table_Info (Id));
end Get_Name_Entity_Id;
------------------------------
-- Get_Name_From_CTC_Pragma --
------------------------------
function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
Arg : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
begin
return Strval (Expr_Value_S (Arg));
end Get_Name_From_CTC_Pragma;
-------------------
-- Get_Pragma_Id --
-------------------
function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
begin
return Get_Pragma_Id (Pragma_Name (N));
end Get_Pragma_Id;
-----------------------
-- Get_Reason_String --
-----------------------
procedure Get_Reason_String (N : Node_Id) is
begin
if Nkind (N) = N_String_Literal then
Store_String_Chars (Strval (N));
elsif Nkind (N) = N_Op_Concat then
Get_Reason_String (Left_Opnd (N));
Get_Reason_String (Right_Opnd (N));
-- If not of required form, error
else
Error_Msg_N
("Reason for pragma Warnings has wrong form", N);
Error_Msg_N
("\must be string literal or concatenation of string literals", N);
return;
end if;
end Get_Reason_String;
---------------------------
-- Get_Referenced_Object --
---------------------------
function Get_Referenced_Object (N : Node_Id) return Node_Id is
R : Node_Id;
begin
R := N;
while Is_Entity_Name (R)
and then Present (Renamed_Object (Entity (R)))
loop
R := Renamed_Object (Entity (R));
end loop;
return R;
end Get_Referenced_Object;
------------------------
-- Get_Renamed_Entity --
------------------------
function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
R : Entity_Id;
begin
R := E;
while Present (Renamed_Entity (R)) loop
R := Renamed_Entity (R);
end loop;
return R;
end Get_Renamed_Entity;
----------------------------------
-- Get_Requires_From_CTC_Pragma --
----------------------------------
function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id is
Args : constant List_Id := Pragma_Argument_Associations (N);
Res : Node_Id;
begin
if List_Length (Args) >= 3 then
Res := Pick (Args, 3);
if Chars (Res) /= Name_Requires then
Res := Empty;
end if;
else
Res := Empty;
end if;
return Res;
end Get_Requires_From_CTC_Pragma;
-------------------------
-- Get_Subprogram_Body --
-------------------------
function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Body then
return Decl;
-- The below comment is bad, because it is possible for
-- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
else -- Nkind (Decl) = N_Subprogram_Declaration
if Present (Corresponding_Body (Decl)) then
return Unit_Declaration_Node (Corresponding_Body (Decl));
-- Imported subprogram case
else
return Empty;
end if;
end if;
end Get_Subprogram_Body;
---------------------------
-- Get_Subprogram_Entity --
---------------------------
function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
Subp : Node_Id;
Subp_Id : Entity_Id;
begin
if Nkind (Nod) = N_Accept_Statement then
Subp := Entry_Direct_Name (Nod);
elsif Nkind (Nod) = N_Slice then
Subp := Prefix (Nod);
else
Subp := Name (Nod);
end if;
-- Strip the subprogram call
loop
if Nkind_In (Subp, N_Explicit_Dereference,
N_Indexed_Component,
N_Selected_Component)
then
Subp := Prefix (Subp);
elsif Nkind_In (Subp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Subp := Expression (Subp);
else
exit;
end if;
end loop;
-- Extract the entity of the subprogram call
if Is_Entity_Name (Subp) then
Subp_Id := Entity (Subp);
if Ekind (Subp_Id) = E_Access_Subprogram_Type then
Subp_Id := Directly_Designated_Type (Subp_Id);
end if;
if Is_Subprogram (Subp_Id) then
return Subp_Id;
else
return Empty;
end if;
-- The search did not find a construct that denotes a subprogram
else
return Empty;
end if;
end Get_Subprogram_Entity;
-----------------------------
-- Get_Task_Body_Procedure --
-----------------------------
function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
begin
-- Note: A task type may be the completion of a private type with
-- discriminants. When performing elaboration checks on a task
-- declaration, the current view of the type may be the private one,
-- and the procedure that holds the body of the task is held in its
-- underlying type.
-- This is an odd function, why not have Task_Body_Procedure do
-- the following digging???
return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
end Get_Task_Body_Procedure;
-----------------------
-- Has_Access_Values --
-----------------------
function Has_Access_Values (T : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (T);
begin
-- Case of a private type which is not completed yet. This can only
-- happen in the case of a generic format type appearing directly, or
-- as a component of the type to which this function is being applied
-- at the top level. Return False in this case, since we certainly do
-- not know that the type contains access types.
if No (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Has_Access_Values (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
-- Loop to Check components
Comp := First_Component_Or_Discriminant (Typ);
while Present (Comp) loop
-- Check for access component, tag field does not count, even
-- though it is implemented internally using an access type.
if Has_Access_Values (Etype (Comp))
and then Chars (Comp) /= Name_uTag
then
return True;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end;
return False;
else
return False;
end if;
end Has_Access_Values;
------------------------------
-- Has_Compatible_Alignment --
------------------------------
function Has_Compatible_Alignment
(Obj : Entity_Id;
Expr : Node_Id) return Alignment_Result
is
function Has_Compatible_Alignment_Internal
(Obj : Entity_Id;
Expr : Node_Id;
Default : Alignment_Result) return Alignment_Result;
-- This is the internal recursive function that actually does the work.
-- There is one additional parameter, which says what the result should
-- be if no alignment information is found, and there is no definite
-- indication of compatible alignments. At the outer level, this is set
-- to Unknown, but for internal recursive calls in the case where types
-- are known to be correct, it is set to Known_Compatible.
---------------------------------------
-- Has_Compatible_Alignment_Internal --
---------------------------------------
function Has_Compatible_Alignment_Internal
(Obj : Entity_Id;
Expr : Node_Id;
Default : Alignment_Result) return Alignment_Result
is
Result : Alignment_Result := Known_Compatible;
-- Holds the current status of the result. Note that once a value of
-- Known_Incompatible is set, it is sticky and does not get changed
-- to Unknown (the value in Result only gets worse as we go along,
-- never better).
Offs : Uint := No_Uint;
-- Set to a factor of the offset from the base object when Expr is a
-- selected or indexed component, based on Component_Bit_Offset and
-- Component_Size respectively. A negative value is used to represent
-- a value which is not known at compile time.
procedure Check_Prefix;
-- Checks the prefix recursively in the case where the expression
-- is an indexed or selected component.
procedure Set_Result (R : Alignment_Result);
-- If R represents a worse outcome (unknown instead of known
-- compatible, or known incompatible), then set Result to R.
------------------
-- Check_Prefix --
------------------
procedure Check_Prefix is
begin
-- The subtlety here is that in doing a recursive call to check
-- the prefix, we have to decide what to do in the case where we
-- don't find any specific indication of an alignment problem.
-- At the outer level, we normally set Unknown as the result in
-- this case, since we can only set Known_Compatible if we really
-- know that the alignment value is OK, but for the recursive
-- call, in the case where the types match, and we have not
-- specified a peculiar alignment for the object, we are only
-- concerned about suspicious rep clauses, the default case does
-- not affect us, since the compiler will, in the absence of such
-- rep clauses, ensure that the alignment is correct.
if Default = Known_Compatible
or else
(Etype (Obj) = Etype (Expr)
and then (Unknown_Alignment (Obj)
or else
Alignment (Obj) = Alignment (Etype (Obj))))
then
Set_Result
(Has_Compatible_Alignment_Internal
(Obj, Prefix (Expr), Known_Compatible));
-- In all other cases, we need a full check on the prefix
else
Set_Result
(Has_Compatible_Alignment_Internal
(Obj, Prefix (Expr), Unknown));
end if;
end Check_Prefix;
----------------
-- Set_Result --
----------------
procedure Set_Result (R : Alignment_Result) is
begin
if R > Result then
Result := R;
end if;
end Set_Result;
-- Start of processing for Has_Compatible_Alignment_Internal
begin
-- If Expr is a selected component, we must make sure there is no
-- potentially troublesome component clause, and that the record is
-- not packed.
if Nkind (Expr) = N_Selected_Component then
-- Packed record always generate unknown alignment
if Is_Packed (Etype (Prefix (Expr))) then
Set_Result (Unknown);
end if;
-- Check prefix and component offset
Check_Prefix;
Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
-- If Expr is an indexed component, we must make sure there is no
-- potentially troublesome Component_Size clause and that the array
-- is not bit-packed.
elsif Nkind (Expr) = N_Indexed_Component then
declare
Typ : constant Entity_Id := Etype (Prefix (Expr));
Ind : constant Node_Id := First_Index (Typ);
begin
-- Bit packed array always generates unknown alignment
if Is_Bit_Packed_Array (Typ) then
Set_Result (Unknown);
end if;
-- Check prefix and component offset
Check_Prefix;
Offs := Component_Size (Typ);
-- Small optimization: compute the full offset when possible
if Offs /= No_Uint
and then Offs > Uint_0
and then Present (Ind)
and then Nkind (Ind) = N_Range
and then Compile_Time_Known_Value (Low_Bound (Ind))
and then Compile_Time_Known_Value (First (Expressions (Expr)))
then
Offs := Offs * (Expr_Value (First (Expressions (Expr)))
- Expr_Value (Low_Bound ((Ind))));
end if;
end;
end if;
-- If we have a null offset, the result is entirely determined by
-- the base object and has already been computed recursively.
if Offs = Uint_0 then
null;
-- Case where we know the alignment of the object
elsif Known_Alignment (Obj) then
declare
ObjA : constant Uint := Alignment (Obj);
ExpA : Uint := No_Uint;
SizA : Uint := No_Uint;
begin
-- If alignment of Obj is 1, then we are always OK
if ObjA = 1 then
Set_Result (Known_Compatible);
-- Alignment of Obj is greater than 1, so we need to check
else
-- If we have an offset, see if it is compatible
if Offs /= No_Uint and Offs > Uint_0 then
if Offs mod (System_Storage_Unit * ObjA) /= 0 then
Set_Result (Known_Incompatible);
end if;
-- See if Expr is an object with known alignment
elsif Is_Entity_Name (Expr)
and then Known_Alignment (Entity (Expr))
then
ExpA := Alignment (Entity (Expr));
-- Otherwise, we can use the alignment of the type of
-- Expr given that we already checked for
-- discombobulating rep clauses for the cases of indexed
-- and selected components above.
elsif Known_Alignment (Etype (Expr)) then
ExpA := Alignment (Etype (Expr));
-- Otherwise the alignment is unknown
else
Set_Result (Default);
end if;
-- If we got an alignment, see if it is acceptable
if ExpA /= No_Uint and then ExpA < ObjA then
Set_Result (Known_Incompatible);
end if;
-- If Expr is not a piece of a larger object, see if size
-- is given. If so, check that it is not too small for the
-- required alignment.
if Offs /= No_Uint then
null;
-- See if Expr is an object with known size
elsif Is_Entity_Name (Expr)
and then Known_Static_Esize (Entity (Expr))
then
SizA := Esize (Entity (Expr));
-- Otherwise, we check the object size of the Expr type
elsif Known_Static_Esize (Etype (Expr)) then
SizA := Esize (Etype (Expr));
end if;
-- If we got a size, see if it is a multiple of the Obj
-- alignment, if not, then the alignment cannot be
-- acceptable, since the size is always a multiple of the
-- alignment.
if SizA /= No_Uint then
if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
Set_Result (Known_Incompatible);
end if;
end if;
end if;
end;
-- If we do not know required alignment, any non-zero offset is a
-- potential problem (but certainly may be OK, so result is unknown).
elsif Offs /= No_Uint then
Set_Result (Unknown);
-- If we can't find the result by direct comparison of alignment
-- values, then there is still one case that we can determine known
-- result, and that is when we can determine that the types are the
-- same, and no alignments are specified. Then we known that the
-- alignments are compatible, even if we don't know the alignment
-- value in the front end.
elsif Etype (Obj) = Etype (Expr) then
-- Types are the same, but we have to check for possible size
-- and alignments on the Expr object that may make the alignment
-- different, even though the types are the same.
if Is_Entity_Name (Expr) then
-- First check alignment of the Expr object. Any alignment less
-- than Maximum_Alignment is worrisome since this is the case
-- where we do not know the alignment of Obj.
if Known_Alignment (Entity (Expr))
and then UI_To_Int (Alignment (Entity (Expr))) <
Ttypes.Maximum_Alignment
then
Set_Result (Unknown);
-- Now check size of Expr object. Any size that is not an
-- even multiple of Maximum_Alignment is also worrisome
-- since it may cause the alignment of the object to be less
-- than the alignment of the type.
elsif Known_Static_Esize (Entity (Expr))
and then
(UI_To_Int (Esize (Entity (Expr))) mod
(Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
/= 0
then
Set_Result (Unknown);
-- Otherwise same type is decisive
else
Set_Result (Known_Compatible);
end if;
end if;
-- Another case to deal with is when there is an explicit size or
-- alignment clause when the types are not the same. If so, then the
-- result is Unknown. We don't need to do this test if the Default is
-- Unknown, since that result will be set in any case.
elsif Default /= Unknown
and then (Has_Size_Clause (Etype (Expr))
or else
Has_Alignment_Clause (Etype (Expr)))
then
Set_Result (Unknown);
-- If no indication found, set default
else
Set_Result (Default);
end if;
-- Return worst result found
return Result;
end Has_Compatible_Alignment_Internal;
-- Start of processing for Has_Compatible_Alignment
begin
-- If Obj has no specified alignment, then set alignment from the type
-- alignment. Perhaps we should always do this, but for sure we should
-- do it when there is an address clause since we can do more if the
-- alignment is known.
if Unknown_Alignment (Obj) then
Set_Alignment (Obj, Alignment (Etype (Obj)));
end if;
-- Now do the internal call that does all the work
return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
end Has_Compatible_Alignment;
----------------------
-- Has_Declarations --
----------------------
function Has_Declarations (N : Node_Id) return Boolean is
begin
return Nkind_In (Nkind (N), N_Accept_Statement,
N_Block_Statement,
N_Compilation_Unit_Aux,
N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body,
N_Package_Specification);
end Has_Declarations;
---------------------------------
-- Has_Defaulted_Discriminants --
---------------------------------
function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
begin
return Has_Discriminants (Typ)
and then Present (First_Discriminant (Typ))
and then Present (Discriminant_Default_Value
(First_Discriminant (Typ)));
end Has_Defaulted_Discriminants;
-------------------
-- Has_Denormals --
-------------------
function Has_Denormals (E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E)
and then Denorm_On_Target
and then not Vax_Float (E);
end Has_Denormals;
-------------------------------------------
-- Has_Discriminant_Dependent_Constraint --
-------------------------------------------
function Has_Discriminant_Dependent_Constraint
(Comp : Entity_Id) return Boolean
is
Comp_Decl : constant Node_Id := Parent (Comp);
Subt_Indic : Node_Id;
Constr : Node_Id;
Assn : Node_Id;
begin
-- Discriminants can't depend on discriminants
if Ekind (Comp) = E_Discriminant then
return False;
else
Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
if Nkind (Subt_Indic) = N_Subtype_Indication then
Constr := Constraint (Subt_Indic);
if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
Assn := First (Constraints (Constr));
while Present (Assn) loop
case Nkind (Assn) is
when N_Subtype_Indication |
N_Range |
N_Identifier
=>
if Depends_On_Discriminant (Assn) then
return True;
end if;
when N_Discriminant_Association =>
if Depends_On_Discriminant (Expression (Assn)) then
return True;
end if;
when others =>
null;
end case;
Next (Assn);
end loop;
end if;
end if;
end if;
return False;
end Has_Discriminant_Dependent_Constraint;
--------------------------
-- Has_Enabled_Property --
--------------------------
function Has_Enabled_Property
(Item_Id : Entity_Id;
Property : Name_Id) return Boolean
is
function State_Has_Enabled_Property return Boolean;
-- Determine whether a state denoted by Item_Id has the property enabled
function Variable_Has_Enabled_Property return Boolean;
-- Determine whether a variable denoted by Item_Id has the property
-- enabled.
--------------------------------
-- State_Has_Enabled_Property --
--------------------------------
function State_Has_Enabled_Property return Boolean is
Decl : constant Node_Id := Parent (Item_Id);
Opt : Node_Id;
Opt_Nam : Node_Id;
Prop : Node_Id;
Prop_Nam : Node_Id;
Props : Node_Id;
begin
-- The declaration of an external abstract state appears as an
-- extension aggregate. If this is not the case, properties can never
-- be set.
if Nkind (Decl) /= N_Extension_Aggregate then
return False;
end if;
-- When External appears as a simple option, it automatically enables
-- all properties.
Opt := First (Expressions (Decl));
while Present (Opt) loop
if Nkind (Opt) = N_Identifier
and then Chars (Opt) = Name_External
then
return True;
end if;
Next (Opt);
end loop;
-- When External specifies particular properties, inspect those and
-- find the desired one (if any).
Opt := First (Component_Associations (Decl));
while Present (Opt) loop
Opt_Nam := First (Choices (Opt));
if Nkind (Opt_Nam) = N_Identifier
and then Chars (Opt_Nam) = Name_External
then
Props := Expression (Opt);
-- Multiple properties appear as an aggregate
if Nkind (Props) = N_Aggregate then
-- Simple property form
Prop := First (Expressions (Props));
while Present (Prop) loop
if Chars (Prop) = Property then
return True;
end if;
Next (Prop);
end loop;
-- Property with expression form
Prop := First (Component_Associations (Props));
while Present (Prop) loop
Prop_Nam := First (Choices (Prop));
-- The property can be represented in two ways:
-- others => <value>
-- <property> => <value>
if Nkind (Prop_Nam) = N_Others_Choice
or else (Nkind (Prop_Nam) = N_Identifier
and then Chars (Prop_Nam) = Property)
then
return Is_True (Expr_Value (Expression (Prop)));
end if;
Next (Prop);
end loop;
-- Single property
else
return Chars (Props) = Property;
end if;
end if;
Next (Opt);
end loop;
return False;
end State_Has_Enabled_Property;
-----------------------------------
-- Variable_Has_Enabled_Property --
-----------------------------------
function Variable_Has_Enabled_Property return Boolean is
function Is_Enabled (Prag : Node_Id) return Boolean;
-- Determine whether property pragma Prag (if present) denotes an
-- enabled property.
----------------
-- Is_Enabled --
----------------
function Is_Enabled (Prag : Node_Id) return Boolean is
Arg2 : Node_Id;
begin
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
-- The pragma has an optional Boolean expression, the related
-- property is enabled only when the expression evaluates to
-- True.
if Present (Arg2) then
return Is_True (Expr_Value (Get_Pragma_Arg (Arg2)));
-- Otherwise the lack of expression enables the property by
-- default.
else
return True;
end if;
-- The property was never set in the first place
else
return False;
end if;
end Is_Enabled;
-- Local variables
AR : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Async_Readers);
AW : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Async_Writers);
ER : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Effective_Reads);
EW : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Effective_Writes);
-- Start of processing for Variable_Has_Enabled_Property
begin
-- A non-effectively volatile object can never possess external
-- properties.
if not Is_Effectively_Volatile (Item_Id) then
return False;
-- External properties related to variables come in two flavors -
-- explicit and implicit. The explicit case is characterized by the
-- presence of a property pragma with an optional Boolean flag. The
-- property is enabled when the flag evaluates to True or the flag is
-- missing altogether.
elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
return True;
elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
return True;
elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
return True;
elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
return True;
-- The implicit case lacks all property pragmas
elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
return True;
else
return False;
end if;
end Variable_Has_Enabled_Property;
-- Start of processing for Has_Enabled_Property
begin
-- Abstract states and variables have a flexible scheme of specifying
-- external properties.
if Ekind (Item_Id) = E_Abstract_State then
return State_Has_Enabled_Property;
elsif Ekind (Item_Id) = E_Variable then
return Variable_Has_Enabled_Property;
-- Otherwise a property is enabled when the related item is effectively
-- volatile.
else
return Is_Effectively_Volatile (Item_Id);
end if;
end Has_Enabled_Property;
--------------------
-- Has_Infinities --
--------------------
function Has_Infinities (E : Entity_Id) return Boolean is
begin
return
Is_Floating_Point_Type (E)
and then Nkind (Scalar_Range (E)) = N_Range
and then Includes_Infinities (Scalar_Range (E));
end Has_Infinities;
--------------------
-- Has_Interfaces --
--------------------
function Has_Interfaces
(T : Entity_Id;
Use_Full_View : Boolean := True) return Boolean
is
Typ : Entity_Id := Base_Type (T);
begin
-- Handle concurrent types
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
if not Present (Typ)
or else not Is_Record_Type (Typ)
or else not Is_Tagged_Type (Typ)
then
return False;
end if;
-- Handle private types
if Use_Full_View and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle concurrent record types
if Is_Concurrent_Record_Type (Typ)
and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
then
return True;
end if;
loop
if Is_Interface (Typ)
or else
(Is_Record_Type (Typ)
and then Present (Interfaces (Typ))
and then not Is_Empty_Elmt_List (Interfaces (Typ)))
then
return True;
end if;
exit when Etype (Typ) = Typ
-- Handle private types
or else (Present (Full_View (Etype (Typ)))
and then Full_View (Etype (Typ)) = Typ)
-- Protect frontend against wrong sources with cyclic derivations
or else Etype (Typ) = T;
-- Climb to the ancestor type handling private types
if Present (Full_View (Etype (Typ))) then
Typ := Full_View (Etype (Typ));
else
Typ := Etype (Typ);
end if;
end loop;
return False;
end Has_Interfaces;
---------------------------------
-- Has_No_Obvious_Side_Effects --
---------------------------------
function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
begin
-- For now, just handle literals, constants, and non-volatile
-- variables and expressions combining these with operators or
-- short circuit forms.
if Nkind (N) in N_Numeric_Or_String_Literal then
return True;
elsif Nkind (N) = N_Character_Literal then
return True;
elsif Nkind (N) in N_Unary_Op then
return Has_No_Obvious_Side_Effects (Right_Opnd (N));
elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
return Has_No_Obvious_Side_Effects (Left_Opnd (N))
and then
Has_No_Obvious_Side_Effects (Right_Opnd (N));
elsif Nkind (N) = N_Expression_With_Actions
and then Is_Empty_List (Actions (N))
then
return Has_No_Obvious_Side_Effects (Expression (N));
elsif Nkind (N) in N_Has_Entity then
return Present (Entity (N))
and then Ekind_In (Entity (N), E_Variable,
E_Constant,
E_Enumeration_Literal,
E_In_Parameter,
E_Out_Parameter,
E_In_Out_Parameter)
and then not Is_Volatile (Entity (N));
else
return False;
end if;
end Has_No_Obvious_Side_Effects;
------------------------
-- Has_Null_Exclusion --
------------------------
function Has_Null_Exclusion (N : Node_Id) return Boolean is
begin
case Nkind (N) is
when N_Access_Definition |
N_Access_Function_Definition |
N_Access_Procedure_Definition |
N_Access_To_Object_Definition |
N_Allocator |
N_Derived_Type_Definition |
N_Function_Specification |
N_Subtype_Declaration =>
return Null_Exclusion_Present (N);
when N_Component_Definition |
N_Formal_Object_Declaration |
N_Object_Renaming_Declaration =>
if Present (Subtype_Mark (N)) then
return Null_Exclusion_Present (N);
else pragma Assert (Present (Access_Definition (N)));
return Null_Exclusion_Present (Access_Definition (N));
end if;
when N_Discriminant_Specification =>
if Nkind (Discriminant_Type (N)) = N_Access_Definition then
return Null_Exclusion_Present (Discriminant_Type (N));
else
return Null_Exclusion_Present (N);
end if;
when N_Object_Declaration =>
if Nkind (Object_Definition (N)) = N_Access_Definition then
return Null_Exclusion_Present (Object_Definition (N));
else
return Null_Exclusion_Present (N);
end if;
when N_Parameter_Specification =>
if Nkind (Parameter_Type (N)) = N_Access_Definition then
return Null_Exclusion_Present (Parameter_Type (N));
else
return Null_Exclusion_Present (N);
end if;
when others =>
return False;
end case;
end Has_Null_Exclusion;
------------------------
-- Has_Null_Extension --
------------------------
function Has_Null_Extension (T : Entity_Id) return Boolean is
B : constant Entity_Id := Base_Type (T);
Comps : Node_Id;
Ext : Node_Id;
begin
if Nkind (Parent (B)) = N_Full_Type_Declaration
and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
then
Ext := Record_Extension_Part (Type_Definition (Parent (B)));
if Present (Ext) then
if Null_Present (Ext) then
return True;
else
Comps := Component_List (Ext);
-- The null component list is rewritten during analysis to
-- include the parent component. Any other component indicates
-- that the extension was not originally null.
return Null_Present (Comps)
or else No (Next (First (Component_Items (Comps))));
end if;
else
return False;
end if;
else
return False;
end if;
end Has_Null_Extension;
-------------------------------
-- Has_Overriding_Initialize --
-------------------------------
function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
BT : constant Entity_Id := Base_Type (T);
P : Elmt_Id;
begin
if Is_Controlled (BT) then
if Is_RTU (Scope (BT), Ada_Finalization) then
return False;
elsif Present (Primitive_Operations (BT)) then
P := First_Elmt (Primitive_Operations (BT));
while Present (P) loop
declare
Init : constant Entity_Id := Node (P);
Formal : constant Entity_Id := First_Formal (Init);
begin
if Ekind (Init) = E_Procedure
and then Chars (Init) = Name_Initialize
and then Comes_From_Source (Init)
and then Present (Formal)
and then Etype (Formal) = BT
and then No (Next_Formal (Formal))
and then (Ada_Version < Ada_2012
or else not Null_Present (Parent (Init)))
then
return True;
end if;
end;
Next_Elmt (P);
end loop;
end if;
-- Here if type itself does not have a non-null Initialize operation:
-- check immediate ancestor.
if Is_Derived_Type (BT)
and then Has_Overriding_Initialize (Etype (BT))
then
return True;
end if;
end if;
return False;
end Has_Overriding_Initialize;
--------------------------------------
-- Has_Preelaborable_Initialization --
--------------------------------------
function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
Has_PE : Boolean;
procedure Check_Components (E : Entity_Id);
-- Check component/discriminant chain, sets Has_PE False if a component
-- or discriminant does not meet the preelaborable initialization rules.
----------------------
-- Check_Components --
----------------------
procedure Check_Components (E : Entity_Id) is
Ent : Entity_Id;
Exp : Node_Id;
function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
-- Returns True if and only if the expression denoted by N does not
-- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
---------------------------------
-- Is_Preelaborable_Expression --
---------------------------------
function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
Exp : Node_Id;
Assn : Node_Id;
Choice : Node_Id;
Comp_Type : Entity_Id;
Is_Array_Aggr : Boolean;
begin
if Is_OK_Static_Expression (N) then
return True;
elsif Nkind (N) = N_Null then
return True;
-- Attributes are allowed in general, even if their prefix is a
-- formal type. (It seems that certain attributes known not to be
-- static might not be allowed, but there are no rules to prevent
-- them.)
elsif Nkind (N) = N_Attribute_Reference then
return True;
-- The name of a discriminant evaluated within its parent type is
-- defined to be preelaborable (10.2.1(8)). Note that we test for
-- names that denote discriminals as well as discriminants to
-- catch references occurring within init procs.
elsif Is_Entity_Name (N)
and then
(Ekind (Entity (N)) = E_Discriminant
or else
((Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_In_Parameter)
and then Present (Discriminal_Link (Entity (N)))))
then
return True;
elsif Nkind (N) = N_Qualified_Expression then
return Is_Preelaborable_Expression (Expression (N));
-- For aggregates we have to check that each of the associations
-- is preelaborable.
elsif Nkind (N) = N_Aggregate
or else Nkind (N) = N_Extension_Aggregate
then
Is_Array_Aggr := Is_Array_Type (Etype (N));
if Is_Array_Aggr then
Comp_Type := Component_Type (Etype (N));
end if;
-- Check the ancestor part of extension aggregates, which must
-- be either the name of a type that has preelaborable init or
-- an expression that is preelaborable.
if Nkind (N) = N_Extension_Aggregate then
declare
Anc_Part : constant Node_Id := Ancestor_Part (N);
begin
if Is_Entity_Name (Anc_Part)
and then Is_Type (Entity (Anc_Part))
then
if not Has_Preelaborable_Initialization
(Entity (Anc_Part))
then
return False;
end if;
elsif not Is_Preelaborable_Expression (Anc_Part) then
return False;
end if;
end;
end if;
-- Check positional associations
Exp := First (Expressions (N));
while Present (Exp) loop
if not Is_Preelaborable_Expression (Exp) then
return False;
end if;
Next (Exp);
end loop;
-- Check named associations
Assn := First (Component_Associations (N));
while Present (Assn) loop
Choice := First (Choices (Assn));
while Present (Choice) loop
if Is_Array_Aggr then
if Nkind (Choice) = N_Others_Choice then
null;
elsif Nkind (Choice) = N_Range then
if not Is_OK_Static_Range (Choice) then
return False;
end if;
elsif not Is_OK_Static_Expression (Choice) then
return False;
end if;
else
Comp_Type := Etype (Choice);
end if;
Next (Choice);
end loop;
-- If the association has a <> at this point, then we have
-- to check whether the component's type has preelaborable
-- initialization. Note that this only occurs when the
-- association's corresponding component does not have a
-- default expression, the latter case having already been
-- expanded as an expression for the association.
if Box_Present (Assn) then
if not Has_Preelaborable_Initialization (Comp_Type) then
return False;
end if;
-- In the expression case we check whether the expression
-- is preelaborable.
elsif
not Is_Preelaborable_Expression (Expression (Assn))
then
return False;
end if;
Next (Assn);
end loop;
-- If we get here then aggregate as a whole is preelaborable
return True;
-- All other cases are not preelaborable
else
return False;
end if;
end Is_Preelaborable_Expression;
-- Start of processing for Check_Components
begin
-- Loop through entities of record or protected type
Ent := E;
while Present (Ent) loop
-- We are interested only in components and discriminants
Exp := Empty;
case Ekind (Ent) is
when E_Component =>
-- Get default expression if any. If there is no declaration
-- node, it means we have an internal entity. The parent and
-- tag fields are examples of such entities. For such cases,
-- we just test the type of the entity.
if Present (Declaration_Node (Ent)) then
Exp := Expression (Declaration_Node (Ent));
end if;
when E_Discriminant =>
-- Note: for a renamed discriminant, the Declaration_Node
-- may point to the one from the ancestor, and have a
-- different expression, so use the proper attribute to
-- retrieve the expression from the derived constraint.
Exp := Discriminant_Default_Value (Ent);
when others =>
goto Check_Next_Entity;
end case;
-- A component has PI if it has no default expression and the
-- component type has PI.
if No (Exp) then
if not Has_Preelaborable_Initialization (Etype (Ent)) then
Has_PE := False;
exit;
end if;
-- Require the default expression to be preelaborable
elsif not Is_Preelaborable_Expression (Exp) then
Has_PE := False;
exit;
end if;
<<Check_Next_Entity>>
Next_Entity (Ent);
end loop;
end Check_Components;
-- Start of processing for Has_Preelaborable_Initialization
begin
-- Immediate return if already marked as known preelaborable init. This
-- covers types for which this function has already been called once
-- and returned True (in which case the result is cached), and also
-- types to which a pragma Preelaborable_Initialization applies.
if Known_To_Have_Preelab_Init (E) then
return True;
end if;
-- If the type is a subtype representing a generic actual type, then
-- test whether its base type has preelaborable initialization since
-- the subtype representing the actual does not inherit this attribute
-- from the actual or formal. (but maybe it should???)
if Is_Generic_Actual_Type (E) then
return Has_Preelaborable_Initialization (Base_Type (E));
end if;
-- All elementary types have preelaborable initialization
if Is_Elementary_Type (E) then
Has_PE := True;
-- Array types have PI if the component type has PI
elsif Is_Array_Type (E) then
Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
-- A derived type has preelaborable initialization if its parent type
-- has preelaborable initialization and (in the case of a derived record
-- extension) if the non-inherited components all have preelaborable
-- initialization. However, a user-defined controlled type with an
-- overriding Initialize procedure does not have preelaborable
-- initialization.
elsif Is_Derived_Type (E) then
-- If the derived type is a private extension then it doesn't have
-- preelaborable initialization.
if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
return False;
end if;
-- First check whether ancestor type has preelaborable initialization
Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
-- If OK, check extension components (if any)
if Has_PE and then Is_Record_Type (E) then
Check_Components (First_Entity (E));
end if;
-- Check specifically for 10.2.1(11.4/2) exception: a controlled type
-- with a user defined Initialize procedure does not have PI. If
-- the type is untagged, the control primitives come from a component
-- that has already been checked.
if Has_PE
and then Is_Controlled (E)
and then Is_Tagged_Type (E)
and then Has_Overriding_Initialize (E)
then
Has_PE := False;
end if;
-- Private types not derived from a type having preelaborable init and
-- that are not marked with pragma Preelaborable_Initialization do not
-- have preelaborable initialization.
elsif Is_Private_Type (E) then
return False;
-- Record type has PI if it is non private and all components have PI
elsif Is_Record_Type (E) then
Has_PE := True;
Check_Components (First_Entity (E));
-- Protected types must not have entries, and components must meet
-- same set of rules as for record components.
elsif Is_Protected_Type (E) then
if Has_Entries (E) then
Has_PE := False;
else
Has_PE := True;
Check_Components (First_Entity (E));
Check_Components (First_Private_Entity (E));
end if;
-- Type System.Address always has preelaborable initialization
elsif Is_RTE (E, RE_Address) then
Has_PE := True;
-- In all other cases, type does not have preelaborable initialization
else
return False;
end if;
-- If type has preelaborable initialization, cache result
if Has_PE then
Set_Known_To_Have_Preelab_Init (E);
end if;
return Has_PE;
end Has_Preelaborable_Initialization;
---------------------------
-- Has_Private_Component --
---------------------------
function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
Btype : Entity_Id := Base_Type (Type_Id);
Component : Entity_Id;
begin
if Error_Posted (Type_Id)
or else Error_Posted (Btype)
then
return False;
end if;
if Is_Class_Wide_Type (Btype) then
Btype := Root_Type (Btype);
end if;
if Is_Private_Type (Btype) then
declare
UT : constant Entity_Id := Underlying_Type (Btype);
begin
if No (UT) then
if No (Full_View (Btype)) then
return not Is_Generic_Type (Btype)
and then not Is_Generic_Type (Root_Type (Btype));
else
return not Is_Generic_Type (Root_Type (Full_View (Btype)));
end if;
else
return not Is_Frozen (UT) and then Has_Private_Component (UT);
end if;
end;
elsif Is_Array_Type (Btype) then
return Has_Private_Component (Component_Type (Btype));
elsif Is_Record_Type (Btype) then
Component := First_Component (Btype);
while Present (Component) loop
if Has_Private_Component (Etype (Component)) then
return True;
end if;
Next_Component (Component);
end loop;
return False;
elsif Is_Protected_Type (Btype)
and then Present (Corresponding_Record_Type (Btype))
then
return Has_Private_Component (Corresponding_Record_Type (Btype));
else
return False;
end if;
end Has_Private_Component;
----------------------
-- Has_Signed_Zeros --
----------------------
function Has_Signed_Zeros (E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E)
and then Signed_Zeros_On_Target
and then not Vax_Float (E);
end Has_Signed_Zeros;
-----------------------------
-- Has_Static_Array_Bounds --
-----------------------------
function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
Ndims : constant Nat := Number_Dimensions (Typ);
Index : Node_Id;
Low : Node_Id;
High : Node_Id;
begin
-- Unconstrained types do not have static bounds
if not Is_Constrained (Typ) then
return False;
end if;
-- First treat string literals specially, as the lower bound and length
-- of string literals are not stored like those of arrays.
-- A string literal always has static bounds
if Ekind (Typ) = E_String_Literal_Subtype then
return True;
end if;
-- Treat all dimensions in turn
Index := First_Index (Typ);
for Indx in 1 .. Ndims loop
-- In case of an illegal index which is not a discrete type, return
-- that the type is not static.
if not Is_Discrete_Type (Etype (Index))
or else Etype (Index) = Any_Type
then
return False;
end if;
Get_Index_Bounds (Index, Low, High);
if Error_Posted (Low) or else Error_Posted (High) then
return False;
end if;
if Is_OK_Static_Expression (Low)
and then
Is_OK_Static_Expression (High)
then
null;
else
return False;
end if;
Next (Index);
end loop;
-- If we fall through the loop, all indexes matched
return True;
end Has_Static_Array_Bounds;
----------------
-- Has_Stream --
----------------
function Has_Stream (T : Entity_Id) return Boolean is
E : Entity_Id;
begin
if No (T) then
return False;
elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
return True;
elsif Is_Array_Type (T) then
return Has_Stream (Component_Type (T));
elsif Is_Record_Type (T) then
E := First_Component (T);
while Present (E) loop
if Has_Stream (Etype (E)) then
return True;
else
Next_Component (E);
end if;
end loop;
return False;
elsif Is_Private_Type (T) then
return Has_Stream (Underlying_Type (T));
else
return False;
end if;
end Has_Stream;
----------------
-- Has_Suffix --
----------------
function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
begin
Get_Name_String (Chars (E));
return Name_Buffer (Name_Len) = Suffix;
end Has_Suffix;
----------------
-- Add_Suffix --
----------------
function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
begin
Get_Name_String (Chars (E));
Add_Char_To_Name_Buffer (Suffix);
return Name_Find;
end Add_Suffix;
-------------------
-- Remove_Suffix --
-------------------
function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
begin
pragma Assert (Has_Suffix (E, Suffix));
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end Remove_Suffix;
--------------------------
-- Has_Tagged_Component --
--------------------------
function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Is_Private_Type (Typ)
and then Present (Underlying_Type (Typ))
then
return Has_Tagged_Component (Underlying_Type (Typ));
elsif Is_Array_Type (Typ) then
return Has_Tagged_Component (Component_Type (Typ));
elsif Is_Tagged_Type (Typ) then
return True;
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Has_Tagged_Component (Etype (Comp)) then
return True;
end if;
Next_Component (Comp);
end loop;
return False;
else
return False;
end if;
end Has_Tagged_Component;
----------------------------
-- Has_Volatile_Component --
----------------------------
function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Has_Volatile_Components (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Is_Volatile (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Is_Volatile_Object (Comp) then
return True;
end if;
Comp := Next_Component (Comp);
end loop;
end if;
return False;
end Has_Volatile_Component;
-------------------------
-- Implementation_Kind --
-------------------------
function Implementation_Kind (Subp : Entity_Id) return Name_Id is
Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
Arg : Node_Id;
begin
pragma Assert (Present (Impl_Prag));
Arg := Last (Pragma_Argument_Associations (Impl_Prag));
return Chars (Get_Pragma_Arg (Arg));
end Implementation_Kind;
--------------------------
-- Implements_Interface --
--------------------------
function Implements_Interface
(Typ_Ent : Entity_Id;
Iface_Ent : Entity_Id;
Exclude_Parents : Boolean := False) return Boolean
is
Ifaces_List : Elist_Id;
Elmt : Elmt_Id;
Iface : Entity_Id := Base_Type (Iface_Ent);
Typ : Entity_Id := Base_Type (Typ_Ent);
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
if not Has_Interfaces (Typ) then
return False;
end if;
if Is_Class_Wide_Type (Iface) then
Iface := Root_Type (Iface);
end if;
Collect_Interfaces (Typ, Ifaces_List);
Elmt := First_Elmt (Ifaces_List);
while Present (Elmt) loop
if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
and then Exclude_Parents
then
null;
elsif Node (Elmt) = Iface then
return True;
end if;
Next_Elmt (Elmt);
end loop;
return False;
end Implements_Interface;
------------------------------------
-- In_Assertion_Expression_Pragma --
------------------------------------
function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
Par : Node_Id;
Prag : Node_Id := Empty;
begin
-- Climb the parent chain looking for an enclosing pragma
Par := N;
while Present (Par) loop
if Nkind (Par) = N_Pragma then
Prag := Par;
exit;
-- Precondition-like pragmas are expanded into if statements, check
-- the original node instead.
elsif Nkind (Original_Node (Par)) = N_Pragma then
Prag := Original_Node (Par);
exit;
-- The expansion of attribute 'Old generates a constant to capture
-- the result of the prefix. If the parent traversal reaches
-- one of these constants, then the node technically came from a
-- postcondition-like pragma. Note that the Ekind is not tested here
-- because N may be the expression of an object declaration which is
-- currently being analyzed. Such objects carry Ekind of E_Void.
elsif Nkind (Par) = N_Object_Declaration
and then Constant_Present (Par)
and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Par := Parent (Par);
end loop;
return
Present (Prag)
and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
end In_Assertion_Expression_Pragma;
-----------------
-- In_Instance --
-----------------
function In_Instance return Boolean is
Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if (Ekind (S) = E_Function
or else Ekind (S) = E_Package
or else Ekind (S) = E_Procedure)
and then Is_Generic_Instance (S)
then
-- A child instance is always compiled in the context of a parent
-- instance. Nevertheless, the actuals are not analyzed in an
-- instance context. We detect this case by examining the current
-- compilation unit, which must be a child instance, and checking
-- that it is not currently on the scope stack.
if Is_Child_Unit (Curr_Unit)
and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
N_Package_Instantiation
and then not In_Open_Scopes (Curr_Unit)
then
return False;
else
return True;
end if;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance;
----------------------
-- In_Instance_Body --
----------------------
function In_Instance_Body return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then In_Package_Body (S)
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Body;
-----------------------------
-- In_Instance_Not_Visible --
-----------------------------
function In_Instance_Not_Visible return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then (In_Package_Body (S) or else In_Private_Part (S))
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Not_Visible;
------------------------------
-- In_Instance_Visible_Part --
------------------------------
function In_Instance_Visible_Part return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Package
and then Is_Generic_Instance (S)
and then not In_Package_Body (S)
and then not In_Private_Part (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Visible_Part;
---------------------
-- In_Package_Body --
---------------------
function In_Package_Body return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Package and then In_Package_Body (S) then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end In_Package_Body;
--------------------------------
-- In_Parameter_Specification --
--------------------------------
function In_Parameter_Specification (N : Node_Id) return Boolean is
PN : Node_Id;
begin
PN := Parent (N);
while Present (PN) loop
if Nkind (PN) = N_Parameter_Specification then
return True;
end if;
PN := Parent (PN);
end loop;
return False;
end In_Parameter_Specification;
--------------------------
-- In_Pragma_Expression --
--------------------------
function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
P : Node_Id;
begin
P := Parent (N);
loop
if No (P) then
return False;
elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
return True;
else
P := Parent (P);
end if;
end loop;
end In_Pragma_Expression;
-------------------------------------
-- In_Reverse_Storage_Order_Object --
-------------------------------------
function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
Pref : Node_Id;
Btyp : Entity_Id := Empty;
begin
-- Climb up indexed components
Pref := N;
loop
case Nkind (Pref) is
when N_Selected_Component =>
Pref := Prefix (Pref);
exit;
when N_Indexed_Component =>
Pref := Prefix (Pref);
when others =>
Pref := Empty;
exit;
end case;
end loop;
if Present (Pref) then
Btyp := Base_Type (Etype (Pref));
end if;
return Present (Btyp)
and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
and then Reverse_Storage_Order (Btyp);
end In_Reverse_Storage_Order_Object;
--------------------------------------
-- In_Subprogram_Or_Concurrent_Unit --
--------------------------------------
function In_Subprogram_Or_Concurrent_Unit return Boolean is
E : Entity_Id;
K : Entity_Kind;
begin
-- Use scope chain to check successively outer scopes
E := Current_Scope;
loop
K := Ekind (E);
if K in Subprogram_Kind
or else K in Concurrent_Kind
or else K in Generic_Subprogram_Kind
then
return True;
elsif E = Standard_Standard then
return False;
end if;
E := Scope (E);
end loop;
end In_Subprogram_Or_Concurrent_Unit;
---------------------
-- In_Visible_Part --
---------------------
function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
begin
return Is_Package_Or_Generic_Package (Scope_Id)
and then In_Open_Scopes (Scope_Id)
and then not In_Package_Body (Scope_Id)
and then not In_Private_Part (Scope_Id);
end In_Visible_Part;
--------------------------------
-- Incomplete_Or_Private_View --
--------------------------------
function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id is
function Inspect_Decls
(Decls : List_Id;
Taft : Boolean := False) return Entity_Id;
-- Check whether a declarative region contains the incomplete or private
-- view of Typ.
-------------------
-- Inspect_Decls --
-------------------
function Inspect_Decls
(Decls : List_Id;
Taft : Boolean := False) return Entity_Id
is
Decl : Node_Id;
Match : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
Match := Empty;
if Taft then
if Nkind (Decl) = N_Incomplete_Type_Declaration then
Match := Defining_Identifier (Decl);
end if;
else
if Nkind_In (Decl, N_Private_Extension_Declaration,
N_Private_Type_Declaration)
then
Match := Defining_Identifier (Decl);
end if;
end if;
if Present (Match)
and then Present (Full_View (Match))
and then Full_View (Match) = Typ
then
return Match;
end if;
Next (Decl);
end loop;
return Empty;
end Inspect_Decls;
-- Local variables
Prev : Entity_Id;
-- Start of processing for Incomplete_Or_Partial_View
begin
-- Incomplete type case
Prev := Current_Entity_In_Scope (Typ);
if Present (Prev)
and then Is_Incomplete_Type (Prev)
and then Present (Full_View (Prev))
and then Full_View (Prev) = Typ
then
return Prev;
end if;
-- Private or Taft amendment type case
declare
Pkg : constant Entity_Id := Scope (Typ);
Pkg_Decl : Node_Id := Pkg;
begin
if Ekind (Pkg) = E_Package then
while Nkind (Pkg_Decl) /= N_Package_Specification loop
Pkg_Decl := Parent (Pkg_Decl);
end loop;
-- It is knows that Typ has a private view, look for it in the
-- visible declarations of the enclosing scope. A special case
-- of this is when the two views have been exchanged - the full
-- appears earlier than the private.
if Has_Private_Declaration (Typ) then
Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
-- Exchanged view case, look in the private declarations
if No (Prev) then
Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
end if;
return Prev;
-- Otherwise if this is the package body, then Typ is a potential
-- Taft amendment type. The incomplete view should be located in
-- the private declarations of the enclosing scope.
elsif In_Package_Body (Pkg) then
return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
end if;
end if;
end;
-- The type has no incomplete or private view
return Empty;
end Incomplete_Or_Private_View;
---------------------------------
-- Insert_Explicit_Dereference --
---------------------------------
procedure Insert_Explicit_Dereference (N : Node_Id) is
New_Prefix : constant Node_Id := Relocate_Node (N);
Ent : Entity_Id := Empty;
Pref : Node_Id;
I : Interp_Index;
It : Interp;
T : Entity_Id;
begin
Save_Interps (N, New_Prefix);
Rewrite (N,
Make_Explicit_Dereference (Sloc (Parent (N)),
Prefix => New_Prefix));
Set_Etype (N, Designated_Type (Etype (New_Prefix)));
if Is_Overloaded (New_Prefix) then
-- The dereference is also overloaded, and its interpretations are
-- the designated types of the interpretations of the original node.
Set_Etype (N, Any_Type);
Get_First_Interp (New_Prefix, I, It);
while Present (It.Nam) loop
T := It.Typ;
if Is_Access_Type (T) then
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
end if;
Get_Next_Interp (I, It);
end loop;
End_Interp_List;
else
-- Prefix is unambiguous: mark the original prefix (which might
-- Come_From_Source) as a reference, since the new (relocated) one
-- won't be taken into account.
if Is_Entity_Name (New_Prefix) then
Ent := Entity (New_Prefix);
Pref := New_Prefix;
-- For a retrieval of a subcomponent of some composite object,
-- retrieve the ultimate entity if there is one.
elsif Nkind_In (New_Prefix, N_Selected_Component,
N_Indexed_Component)
then
Pref := Prefix (New_Prefix);
while Present (Pref)
and then Nkind_In (Pref, N_Selected_Component,
N_Indexed_Component)
loop
Pref := Prefix (Pref);
end loop;
if Present (Pref) and then Is_Entity_Name (Pref) then
Ent := Entity (Pref);
end if;
end if;
-- Place the reference on the entity node
if Present (Ent) then
Generate_Reference (Ent, Pref);
end if;
end if;
end Insert_Explicit_Dereference;
------------------------------------------
-- Inspect_Deferred_Constant_Completion --
------------------------------------------
procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
Decl : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
-- Deferred constant signature
if Nkind (Decl) = N_Object_Declaration
and then Constant_Present (Decl)
and then No (Expression (Decl))
-- No need to check internally generated constants
and then Comes_From_Source (Decl)
-- The constant is not completed. A full object declaration or a
-- pragma Import complete a deferred constant.
and then not Has_Completion (Defining_Identifier (Decl))
then
Error_Msg_N
("constant declaration requires initialization expression",
Defining_Identifier (Decl));
end if;
Decl := Next (Decl);
end loop;
end Inspect_Deferred_Constant_Completion;
-----------------------------
-- Is_Actual_Out_Parameter --
-----------------------------
function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
Formal : Entity_Id;
Call : Node_Id;
begin
Find_Actual (N, Formal, Call);
return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
end Is_Actual_Out_Parameter;
-------------------------
-- Is_Actual_Parameter --
-------------------------
function Is_Actual_Parameter (N : Node_Id) return Boolean is
PK : constant Node_Kind := Nkind (Parent (N));
begin
case PK is
when N_Parameter_Association =>
return N = Explicit_Actual_Parameter (Parent (N));
when N_Subprogram_Call =>
return Is_List_Member (N)
and then
List_Containing (N) = Parameter_Associations (Parent (N));
when others =>
return False;
end case;
end Is_Actual_Parameter;
--------------------------------
-- Is_Actual_Tagged_Parameter --
--------------------------------
function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
Formal : Entity_Id;
Call : Node_Id;
begin
Find_Actual (N, Formal, Call);
return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
end Is_Actual_Tagged_Parameter;
---------------------
-- Is_Aliased_View --
---------------------
function Is_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
return
(Is_Object (E)
and then
(Is_Aliased (E)
or else (Present (Renamed_Object (E))
and then Is_Aliased_View (Renamed_Object (E)))))
or else ((Is_Formal (E)
or else Ekind (E) = E_Generic_In_Out_Parameter
or else Ekind (E) = E_Generic_In_Parameter)
and then Is_Tagged_Type (Etype (E)))
or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
-- Current instance of type, either directly or as rewritten
-- reference to the current object.
or else (Is_Entity_Name (Original_Node (Obj))
and then Present (Entity (Original_Node (Obj)))
and then Is_Type (Entity (Original_Node (Obj))))
or else (Is_Type (E) and then E = Current_Scope)
or else (Is_Incomplete_Or_Private_Type (E)
and then Full_View (E) = Current_Scope)
-- Ada 2012 AI05-0053: the return object of an extended return
-- statement is aliased if its type is immutably limited.
or else (Is_Return_Object (E)
and then Is_Limited_View (Etype (E)));
elsif Nkind (Obj) = N_Selected_Component then
return Is_Aliased (Entity (Selector_Name (Obj)));
elsif Nkind (Obj) = N_Indexed_Component then
return Has_Aliased_Components (Etype (Prefix (Obj)))
or else
(Is_Access_Type (Etype (Prefix (Obj)))
and then Has_Aliased_Components
(Designated_Type (Etype (Prefix (Obj)))));
elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
return Is_Tagged_Type (Etype (Obj))
and then Is_Aliased_View (Expression (Obj));
elsif Nkind (Obj) = N_Explicit_Dereference then
return Nkind (Original_Node (Obj)) /= N_Function_Call;
else
return False;
end if;
end Is_Aliased_View;
-------------------------
-- Is_Ancestor_Package --
-------------------------
function Is_Ancestor_Package
(E1 : Entity_Id;
E2 : Entity_Id) return Boolean
is
Par : Entity_Id;
begin
Par := E2;
while Present (Par) and then Par /= Standard_Standard loop
if Par = E1 then
return True;
end if;
Par := Scope (Par);
end loop;
return False;
end Is_Ancestor_Package;
----------------------
-- Is_Atomic_Object --
----------------------
function Is_Atomic_Object (N : Node_Id) return Boolean is
function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
-- Determines if given object has atomic components
function Is_Atomic_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
----------------------
-- Is_Atomic_Prefix --
----------------------
function Is_Atomic_Prefix (N : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (N)) then
return
Has_Atomic_Components (Designated_Type (Etype (N)));
else
return Object_Has_Atomic_Components (N);
end if;
end Is_Atomic_Prefix;
----------------------------------
-- Object_Has_Atomic_Components --
----------------------------------
function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
begin
if Has_Atomic_Components (Etype (N))
or else Is_Atomic (Etype (N))
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Atomic_Components (Entity (N))
or else Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Atomic (Entity (Selector_Name (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Atomic_Components;
-- Start of processing for Is_Atomic_Object
begin
-- Predicate is not relevant to subprograms
if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
return False;
elsif Is_Atomic (Etype (N))
or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Atomic (Entity (Selector_Name (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Is_Atomic_Object;
-------------------------
-- Is_Attribute_Result --
-------------------------
function Is_Attribute_Result (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Result;
end Is_Attribute_Result;
------------------------------------
-- Is_Body_Or_Package_Declaration --
------------------------------------
function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
begin
return Nkind_In (N, N_Entry_Body,
N_Package_Body,
N_Package_Declaration,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body);
end Is_Body_Or_Package_Declaration;
-----------------------
-- Is_Bounded_String --
-----------------------
function Is_Bounded_String (T : Entity_Id) return Boolean is
Under : constant Entity_Id := Underlying_Type (Root_Type (T));
begin
-- Check whether T is ultimately derived from Ada.Strings.Superbounded.
-- Super_String, or one of the [Wide_]Wide_ versions. This will
-- be True for all the Bounded_String types in instances of the
-- Generic_Bounded_Length generics, and for types derived from those.
return Present (Under)
and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
Is_RTE (Root_Type (Under), RO_WW_Super_String));
end Is_Bounded_String;
-------------------------
-- Is_Child_Or_Sibling --
-------------------------
function Is_Child_Or_Sibling
(Pack_1 : Entity_Id;
Pack_2 : Entity_Id) return Boolean
is
function Distance_From_Standard (Pack : Entity_Id) return Nat;
-- Given an arbitrary package, return the number of "climbs" necessary
-- to reach scope Standard_Standard.
procedure Equalize_Depths
(Pack : in out Entity_Id;
Depth : in out Nat;
Depth_To_Reach : Nat);
-- Given an arbitrary package, its depth and a target depth to reach,
-- climb the scope chain until the said depth is reached. The pointer
-- to the package and its depth a modified during the climb.
----------------------------
-- Distance_From_Standard --
----------------------------
function Distance_From_Standard (Pack : Entity_Id) return Nat is
Dist : Nat;
Scop : Entity_Id;
begin
Dist := 0;
Scop := Pack;
while Present (Scop) and then Scop /= Standard_Standard loop
Dist := Dist + 1;
Scop := Scope (Scop);
end loop;
return Dist;
end Distance_From_Standard;
---------------------
-- Equalize_Depths --
---------------------
procedure Equalize_Depths
(Pack : in out Entity_Id;
Depth : in out Nat;
Depth_To_Reach : Nat)
is
begin
-- The package must be at a greater or equal depth
if Depth < Depth_To_Reach then
raise Program_Error;
end if;
-- Climb the scope chain until the desired depth is reached
while Present (Pack) and then Depth /= Depth_To_Reach loop
Pack := Scope (Pack);
Depth := Depth - 1;
end loop;
end Equalize_Depths;
-- Local variables
P_1 : Entity_Id := Pack_1;
P_1_Child : Boolean := False;
P_1_Depth : Nat := Distance_From_Standard (P_1);
P_2 : Entity_Id := Pack_2;
P_2_Child : Boolean := False;
P_2_Depth : Nat := Distance_From_Standard (P_2);
-- Start of processing for Is_Child_Or_Sibling
begin
pragma Assert
(Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
-- Both packages denote the same entity, therefore they cannot be
-- children or siblings.
if P_1 = P_2 then
return False;
-- One of the packages is at a deeper level than the other. Note that
-- both may still come from differen hierarchies.
-- (root) P_2
-- / \ :
-- X P_2 or X
-- : :
-- P_1 P_1
elsif P_1_Depth > P_2_Depth then
Equalize_Depths
(Pack => P_1,
Depth => P_1_Depth,
Depth_To_Reach => P_2_Depth);
P_1_Child := True;
-- (root) P_1
-- / \ :
-- P_1 X or X
-- : :
-- P_2 P_2
elsif P_2_Depth > P_1_Depth then
Equalize_Depths
(Pack => P_2,
Depth => P_2_Depth,
Depth_To_Reach => P_1_Depth);
P_2_Child := True;
end if;
-- At this stage the package pointers have been elevated to the same
-- depth. If the related entities are the same, then one package is a
-- potential child of the other:
-- P_1
-- :
-- X became P_1 P_2 or vica versa
-- :
-- P_2
if P_1 = P_2 then
if P_1_Child then
return Is_Child_Unit (Pack_1);
else pragma Assert (P_2_Child);
return Is_Child_Unit (Pack_2);
end if;
-- The packages may come from the same package chain or from entirely
-- different hierarcies. To determine this, climb the scope stack until
-- a common root is found.
-- (root) (root 1) (root 2)
-- / \ | |
-- P_1 P_2 P_1 P_2
else
while Present (P_1) and then Present (P_2) loop
-- The two packages may be siblings
if P_1 = P_2 then
return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
end if;
P_1 := Scope (P_1);
P_2 := Scope (P_2);
end loop;
end if;
return False;
end Is_Child_Or_Sibling;
-----------------------------
-- Is_Concurrent_Interface --
-----------------------------
function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
begin
return Is_Interface (T)
and then
(Is_Protected_Interface (T)
or else Is_Synchronized_Interface (T)
or else Is_Task_Interface (T));
end Is_Concurrent_Interface;
---------------------------
-- Is_Container_Element --
---------------------------
function Is_Container_Element (Exp : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Exp);
Pref : constant Node_Id := Prefix (Exp);
Call : Node_Id;
-- Call to an indexing aspect
Cont_Typ : Entity_Id;
-- The type of the container being accessed
Elem_Typ : Entity_Id;
-- Its element type
Indexing : Entity_Id;
Is_Const : Boolean;
-- Indicates that constant indexing is used, and the element is thus
-- a constant.
Ref_Typ : Entity_Id;
-- The reference type returned by the indexing operation
begin
-- If C is a container, in a context that imposes the element type of
-- that container, the indexing notation C (X) is rewritten as:
-- Indexing (C, X).Discr.all
-- where Indexing is one of the indexing aspects of the container.
-- If the context does not require a reference, the construct can be
-- rewritten as
-- Element (C, X)
-- First, verify that the construct has the proper form
if not Expander_Active then
return False;
elsif Nkind (Pref) /= N_Selected_Component then
return False;
elsif Nkind (Prefix (Pref)) /= N_Function_Call then
return False;
else
Call := Prefix (Pref);
Ref_Typ := Etype (Call);
end if;
if not Has_Implicit_Dereference (Ref_Typ)
or else No (First (Parameter_Associations (Call)))
or else not Is_Entity_Name (Name (Call))
then
return False;
end if;
-- Retrieve type of container object, and its iterator aspects
Cont_Typ := Etype (First (Parameter_Associations (Call)));
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
Is_Const := False;
if No (Indexing) then
-- Container should have at least one indexing operation
return False;
elsif Entity (Name (Call)) /= Entity (Indexing) then
-- This may be a variable indexing operation
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
if No (Indexing)
or else Entity (Name (Call)) /= Entity (Indexing)
then
return False;
end if;
else
Is_Const := True;
end if;
Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
return False;
end if;
-- Check that the expression is not the target of an assignment, in
-- which case the rewriting is not possible.
if not Is_Const then
declare
Par : Node_Id;
begin
Par := Exp;
while Present (Par)
loop
if Nkind (Parent (Par)) = N_Assignment_Statement
and then Par = Name (Parent (Par))
then
return False;
-- A renaming produces a reference, and the transformation
-- does not apply.
elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
return False;
elsif Nkind_In
(Nkind (Parent (Par)), N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement)
then
-- Check that the element is not part of an actual for an
-- in-out parameter.
declare
F : Entity_Id;
A : Node_Id;
begin
F := First_Formal (Entity (Name (Parent (Par))));
A := First (Parameter_Associations (Parent (Par)));
while Present (F) loop
if A = Par and then Ekind (F) /= E_In_Parameter then
return False;
end if;
Next_Formal (F);
Next (A);
end loop;
end;
-- E_In_Parameter in a call: element is not modified.
exit;
end if;
Par := Parent (Par);
end loop;
end;
end if;
-- The expression has the proper form and the context requires the
-- element type. Retrieve the Element function of the container and
-- rewrite the construct as a call to it.
declare
Op : Elmt_Id;
begin
Op := First_Elmt (Primitive_Operations (Cont_Typ));
while Present (Op) loop
exit when Chars (Node (Op)) = Name_Element;
Next_Elmt (Op);
end loop;
if No (Op) then
return False;
else
Rewrite (Exp,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Node (Op), Loc),
Parameter_Associations => Parameter_Associations (Call)));
Analyze_And_Resolve (Exp, Entity (Elem_Typ));
return True;
end if;
end;
end Is_Container_Element;
-----------------------
-- Is_Constant_Bound --
-----------------------
function Is_Constant_Bound (Exp : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Exp) then
return True;
elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
return Is_Constant_Object (Entity (Exp))
or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
elsif Nkind (Exp) in N_Binary_Op then
return Is_Constant_Bound (Left_Opnd (Exp))
and then Is_Constant_Bound (Right_Opnd (Exp))
and then Scope (Entity (Exp)) = Standard_Standard;
else
return False;
end if;
end Is_Constant_Bound;
--------------------------------------
-- Is_Controlling_Limited_Procedure --
--------------------------------------
function Is_Controlling_Limited_Procedure
(Proc_Nam : Entity_Id) return Boolean
is
Param_Typ : Entity_Id := Empty;
begin
if Ekind (Proc_Nam) = E_Procedure
and then Present (Parameter_Specifications (Parent (Proc_Nam)))
then
Param_Typ := Etype (Parameter_Type (First (
Parameter_Specifications (Parent (Proc_Nam)))));
-- In this case where an Itype was created, the procedure call has been
-- rewritten.
elsif Present (Associated_Node_For_Itype (Proc_Nam))
and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
and then
Present (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam)))
then
Param_Typ :=
Etype (First (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam))));
end if;
if Present (Param_Typ) then
return
Is_Interface (Param_Typ)
and then Is_Limited_Record (Param_Typ);
end if;
return False;
end Is_Controlling_Limited_Procedure;
-----------------------------
-- Is_CPP_Constructor_Call --
-----------------------------
function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Function_Call
and then Is_CPP_Class (Etype (Etype (N)))
and then Is_Constructor (Entity (Name (N)))
and then Is_Imported (Entity (Name (N)));
end Is_CPP_Constructor_Call;
-----------------
-- Is_Delegate --
-----------------
function Is_Delegate (T : Entity_Id) return Boolean is
Desig_Type : Entity_Id;
begin
if VM_Target /= CLI_Target then
return False;
end if;
-- Access-to-subprograms are delegates in CIL
if Ekind (T) = E_Access_Subprogram_Type then
return True;
end if;
if not Is_Access_Type (T) then
-- A delegate is a managed pointer. If no designated type is defined
-- it means that it's not a delegate.
return False;
end if;
Desig_Type := Etype (Directly_Designated_Type (T));
if not Is_Tagged_Type (Desig_Type) then
return False;
end if;
-- Test if the type is inherited from [mscorlib]System.Delegate
while Etype (Desig_Type) /= Desig_Type loop
if Chars (Scope (Desig_Type)) /= No_Name
and then Is_Imported (Scope (Desig_Type))
and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
then
return True;
end if;
Desig_Type := Etype (Desig_Type);
end loop;
return False;
end Is_Delegate;
----------------------------------------------
-- Is_Dependent_Component_Of_Mutable_Object --
----------------------------------------------
function Is_Dependent_Component_Of_Mutable_Object
(Object : Node_Id) return Boolean
is
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
-- Returns True if and only if Comp is declared within a variant part
--------------------------------
-- Is_Declared_Within_Variant --
--------------------------------
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
Comp_Decl : constant Node_Id := Parent (Comp);
Comp_List : constant Node_Id := Parent (Comp_Decl);
begin
return Nkind (Parent (Comp_List)) = N_Variant;
end Is_Declared_Within_Variant;
P : Node_Id;
Prefix_Type : Entity_Id;
P_Aliased : Boolean := False;
Comp : Entity_Id;
Deref : Node_Id := Object;
-- Dereference node, in something like X.all.Y(2)
-- Start of processing for Is_Dependent_Component_Of_Mutable_Object
begin
-- Find the dereference node if any
while Nkind_In (Deref, N_Indexed_Component,
N_Selected_Component,
N_Slice)
loop
Deref := Prefix (Deref);
end loop;
-- Ada 2005: If we have a component or slice of a dereference,
-- something like X.all.Y (2), and the type of X is access-to-constant,
-- Is_Variable will return False, because it is indeed a constant
-- view. But it might be a view of a variable object, so we want the
-- following condition to be True in that case.
if Is_Variable (Object)
or else (Ada_Version >= Ada_2005
and then Nkind (Deref) = N_Explicit_Dereference)
then
if Nkind (Object) = N_Selected_Component then
P := Prefix (Object);
Prefix_Type := Etype (P);
if Is_Entity_Name (P) then
if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
Prefix_Type := Base_Type (Prefix_Type);
end if;
if Is_Aliased (Entity (P)) then
P_Aliased := True;
end if;
-- A discriminant check on a selected component may be expanded
-- into a dereference when removing side-effects. Recover the
-- original node and its type, which may be unconstrained.
elsif Nkind (P) = N_Explicit_Dereference
and then not (Comes_From_Source (P))
then
P := Original_Node (P);
Prefix_Type := Etype (P);
else
-- Check for prefix being an aliased component???
null;
end if;
-- A heap object is constrained by its initial value
-- Ada 2005 (AI-363): Always assume the object could be mutable in
-- the dereferenced case, since the access value might denote an
-- unconstrained aliased object, whereas in Ada 95 the designated
-- object is guaranteed to be constrained. A worst-case assumption
-- has to apply in Ada 2005 because we can't tell at compile
-- time whether the object is "constrained by its initial value"
-- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
-- rules (these rules are acknowledged to need fixing).
if Ada_Version < Ada_2005 then
if Is_Access_Type (Prefix_Type)
or else Nkind (P) = N_Explicit_Dereference
then
return False;
end if;
else pragma Assert (Ada_Version >= Ada_2005);
if Is_Access_Type (Prefix_Type) then
-- If the access type is pool-specific, and there is no
-- constrained partial view of the designated type, then the
-- designated object is known to be constrained.
if Ekind (Prefix_Type) = E_Access_Type
and then not Object_Type_Has_Constrained_Partial_View
(Typ => Designated_Type (Prefix_Type),
Scop => Current_Scope)
then
return False;
-- Otherwise (general access type, or there is a constrained
-- partial view of the designated type), we need to check
-- based on the designated type.
else
Prefix_Type := Designated_Type (Prefix_Type);
end if;
end if;
end if;
Comp :=
Original_Record_Component (Entity (Selector_Name (Object)));
-- As per AI-0017, the renaming is illegal in a generic body, even
-- if the subtype is indefinite.
-- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
if not Is_Constrained (Prefix_Type)
and then (not Is_Indefinite_Subtype (Prefix_Type)
or else
(Is_Generic_Type (Prefix_Type)
and then Ekind (Current_Scope) = E_Generic_Package
and then In_Package_Body (Current_Scope)))
and then (Is_Declared_Within_Variant (Comp)
or else Has_Discriminant_Dependent_Constraint (Comp))
and then (not P_Aliased or else Ada_Version >= Ada_2005)
then
return True;
-- If the prefix is of an access type at this point, then we want
-- to return False, rather than calling this function recursively
-- on the access object (which itself might be a discriminant-
-- dependent component of some other object, but that isn't
-- relevant to checking the object passed to us). This avoids
-- issuing wrong errors when compiling with -gnatc, where there
-- can be implicit dereferences that have not been expanded.
elsif Is_Access_Type (Etype (Prefix (Object))) then
return False;
else
return
Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
end if;
elsif Nkind (Object) = N_Indexed_Component
or else Nkind (Object) = N_Slice
then
return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
-- A type conversion that Is_Variable is a view conversion:
-- go back to the denoted object.
elsif Nkind (Object) = N_Type_Conversion then
return
Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
end if;
end if;
return False;
end Is_Dependent_Component_Of_Mutable_Object;
---------------------
-- Is_Dereferenced --
---------------------
function Is_Dereferenced (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
return Nkind_In (P, N_Selected_Component,
N_Explicit_Dereference,
N_Indexed_Component,
N_Slice)
and then Prefix (P) = N;
end Is_Dereferenced;
----------------------
-- Is_Descendent_Of --
----------------------
function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
T : Entity_Id;
Etyp : Entity_Id;
begin
pragma Assert (Nkind (T1) in N_Entity);
pragma Assert (Nkind (T2) in N_Entity);
T := Base_Type (T1);
-- Immediate return if the types match
if T = T2 then
return True;
-- Comment needed here ???
elsif Ekind (T) = E_Class_Wide_Type then
return Etype (T) = T2;
-- All other cases
else
loop
Etyp := Etype (T);
-- Done if we found the type we are looking for
if Etyp = T2 then
return True;
-- Done if no more derivations to check
elsif T = T1
or else T = Etyp
then
return False;
-- Following test catches error cases resulting from prev errors
elsif No (Etyp) then
return False;
elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
return False;
elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
return False;
end if;
T := Base_Type (Etyp);
end loop;
end if;
end Is_Descendent_Of;
-----------------------------
-- Is_Effectively_Volatile --
-----------------------------
function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
begin
if Is_Type (Id) then
-- An arbitrary type is effectively volatile when it is subject to
-- pragma Atomic or Volatile.
if Is_Volatile (Id) then
return True;
-- An array type is effectively volatile when it is subject to pragma
-- Atomic_Components or Volatile_Components or its compolent type is
-- effectively volatile.
elsif Is_Array_Type (Id) then
return
Has_Volatile_Components (Id)
or else
Is_Effectively_Volatile (Component_Type (Base_Type (Id)));
else
return False;
end if;
-- Otherwise Id denotes an object
else
return
Is_Volatile (Id)
or else Has_Volatile_Components (Id)
or else Is_Effectively_Volatile (Etype (Id));
end if;
end Is_Effectively_Volatile;
------------------------------------
-- Is_Effectively_Volatile_Object --
------------------------------------
function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Is_Effectively_Volatile (Entity (N));
elsif Nkind (N) = N_Expanded_Name then
return Is_Effectively_Volatile (Entity (N));
elsif Nkind (N) = N_Indexed_Component then
return Is_Effectively_Volatile_Object (Prefix (N));
elsif Nkind (N) = N_Selected_Component then
return
Is_Effectively_Volatile_Object (Prefix (N))
or else
Is_Effectively_Volatile_Object (Selector_Name (N));
else
return False;
end if;
end Is_Effectively_Volatile_Object;
----------------------------
-- Is_Expression_Function --
----------------------------
function Is_Expression_Function (Subp : Entity_Id) return Boolean is
Decl : Node_Id;
begin
if Ekind (Subp) /= E_Function then
return False;
else
Decl := Unit_Declaration_Node (Subp);
return Nkind (Decl) = N_Subprogram_Declaration
and then
(Nkind (Original_Node (Decl)) = N_Expression_Function
or else
(Present (Corresponding_Body (Decl))
and then
Nkind (Original_Node
(Unit_Declaration_Node
(Corresponding_Body (Decl)))) =
N_Expression_Function));
end if;
end Is_Expression_Function;
--------------
-- Is_False --
--------------
function Is_False (U : Uint) return Boolean is
begin
return (U = 0);
end Is_False;
---------------------------
-- Is_Fixed_Model_Number --
---------------------------
function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
S : constant Ureal := Small_Value (T);
M : Urealp.Save_Mark;
R : Boolean;
begin
M := Urealp.Mark;
R := (U = UR_Trunc (U / S) * S);
Urealp.Release (M);
return R;
end Is_Fixed_Model_Number;
-------------------------------
-- Is_Fully_Initialized_Type --
-------------------------------
function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
begin
-- In Ada2012, a scalar type with an aspect Default_Value
-- is fully initialized.
if Is_Scalar_Type (Typ) then
return Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ);
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
if Is_Fully_Initialized_Type (Component_Type (Typ))
or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
then
return True;
end if;
-- An interesting case, if we have a constrained type one of whose
-- bounds is known to be null, then there are no elements to be
-- initialized, so all the elements are initialized.
if Is_Constrained (Typ) then
declare
Indx : Node_Id;
Indx_Typ : Entity_Id;
Lbd, Hbd : Node_Id;
begin
Indx := First_Index (Typ);
while Present (Indx) loop
if Etype (Indx) = Any_Type then
return False;
-- If index is a range, use directly
elsif Nkind (Indx) = N_Range then
Lbd := Low_Bound (Indx);
Hbd := High_Bound (Indx);
else
Indx_Typ := Etype (Indx);
if Is_Private_Type (Indx_Typ) then
Indx_Typ := Full_View (Indx_Typ);
end if;
if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
return False;
else
Lbd := Type_Low_Bound (Indx_Typ);
Hbd := Type_High_Bound (Indx_Typ);
end if;
end if;
if Compile_Time_Known_Value (Lbd)
and then
Compile_Time_Known_Value (Hbd)
then
if Expr_Value (Hbd) < Expr_Value (Lbd) then
return True;
end if;
end if;
Next_Index (Indx);
end loop;
end;
end if;
-- If no null indexes, then type is not fully initialized
return False;
-- Record types
elsif Is_Record_Type (Typ) then
if Has_Discriminants (Typ)
and then
Present (Discriminant_Default_Value (First_Discriminant (Typ)))
and then Is_Fully_Initialized_Variant (Typ)
then
return True;
end if;
-- We consider bounded string types to be fully initialized, because
-- otherwise we get false alarms when the Data component is not
-- default-initialized.
if Is_Bounded_String (Typ) then
return True;
end if;
-- Controlled records are considered to be fully initialized if
-- there is a user defined Initialize routine. This may not be
-- entirely correct, but as the spec notes, we are guessing here
-- what is best from the point of view of issuing warnings.
if Is_Controlled (Typ) then
declare
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Present (Utyp) then
declare
Init : constant Entity_Id :=
(Find_Prim_Op
(Underlying_Type (Typ), Name_Initialize));
begin
if Present (Init)
and then Comes_From_Source (Init)
and then not
Is_Predefined_File_Name
(File_Name (Get_Source_File_Index (Sloc (Init))))
then
return True;
elsif Has_Null_Extension (Typ)
and then
Is_Fully_Initialized_Type
(Etype (Base_Type (Typ)))
then
return True;
end if;
end;
end if;
end;
end if;
-- Otherwise see if all record components are initialized
declare
Ent : Entity_Id;
begin
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component
and then (No (Parent (Ent))
or else No (Expression (Parent (Ent))))
and then not Is_Fully_Initialized_Type (Etype (Ent))
-- Special VM case for tag components, which need to be
-- defined in this case, but are never initialized as VMs
-- are using other dispatching mechanisms. Ignore this
-- uninitialized case. Note that this applies both to the
-- uTag entry and the main vtable pointer (CPP_Class case).
and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
then
return False;
end if;
Next_Entity (Ent);
end loop;
end;
-- No uninitialized components, so type is fully initialized.
-- Note that this catches the case of no components as well.
return True;
elsif Is_Concurrent_Type (Typ) then
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Type (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Type;
----------------------------------
-- Is_Fully_Initialized_Variant --
----------------------------------
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Typ);
Constraints : constant List_Id := New_List;
Components : constant Elist_Id := New_Elmt_List;
Comp_Elmt : Elmt_Id;
Comp_Id : Node_Id;
Comp_List : Node_Id;
Discr : Entity_Id;
Discr_Val : Node_Id;
Report_Errors : Boolean;
pragma Warnings (Off, Report_Errors);
begin
if Serious_Errors_Detected > 0 then
return False;
end if;
if Is_Record_Type (Typ)
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
then
Comp_List := Component_List (Type_Definition (Parent (Typ)));
Discr := First_Discriminant (Typ);
while Present (Discr) loop
if Nkind (Parent (Discr)) = N_Discriminant_Specification then
Discr_Val := Expression (Parent (Discr));
if Present (Discr_Val)
and then Is_OK_Static_Expression (Discr_Val)
then
Append_To (Constraints,
Make_Component_Association (Loc,
Choices => New_List (New_Occurrence_Of (Discr, Loc)),
Expression => New_Copy (Discr_Val)));
else
return False;
end if;
else
return False;
end if;
Next_Discriminant (Discr);
end loop;
Gather_Components
(Typ => Typ,
Comp_List => Comp_List,
Governed_By => Constraints,
Into => Components,
Report_Errors => Report_Errors);
-- Check that each component present is fully initialized
Comp_Elmt := First_Elmt (Components);
while Present (Comp_Elmt) loop
Comp_Id := Node (Comp_Elmt);
if Ekind (Comp_Id) = E_Component
and then (No (Parent (Comp_Id))
or else No (Expression (Parent (Comp_Id))))
and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
then
return False;
end if;
Next_Elmt (Comp_Elmt);
end loop;
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Variant (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Variant;
----------------------------
-- Is_Inherited_Operation --
----------------------------
function Is_Inherited_Operation (E : Entity_Id) return Boolean is
pragma Assert (Is_Overloadable (E));
Kind : constant Node_Kind := Nkind (Parent (E));
begin
return Kind = N_Full_Type_Declaration
or else Kind = N_Private_Extension_Declaration
or else Kind = N_Subtype_Declaration
or else (Ekind (E) = E_Enumeration_Literal
and then Is_Derived_Type (Etype (E)));
end Is_Inherited_Operation;
-------------------------------------
-- Is_Inherited_Operation_For_Type --
-------------------------------------
function Is_Inherited_Operation_For_Type
(E : Entity_Id;
Typ : Entity_Id) return Boolean
is
begin
-- Check that the operation has been created by the type declaration
return Is_Inherited_Operation (E)
and then Defining_Identifier (Parent (E)) = Typ;
end Is_Inherited_Operation_For_Type;
-----------------
-- Is_Iterator --
-----------------
function Is_Iterator (Typ : Entity_Id) return Boolean is
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
begin
if Is_Class_Wide_Type (Typ)
and then Nam_In (Chars (Etype (Typ)), Name_Forward_Iterator,
Name_Reversible_Iterator)
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Etype (Typ))))
then
return True;
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
return False;
elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
return True;
else
Collect_Interfaces (Typ, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
if Chars (Iface) = Name_Forward_Iterator
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Iface)))
then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
return False;
end if;
end Is_Iterator;
------------
-- Is_LHS --
------------
-- We seem to have a lot of overlapping functions that do similar things
-- (testing for left hand sides or lvalues???).
function Is_LHS (N : Node_Id) return Is_LHS_Result is
P : constant Node_Id := Parent (N);
begin
-- Return True if we are the left hand side of an assignment statement
if Nkind (P) = N_Assignment_Statement then
if Name (P) = N then
return Yes;
else
return No;
end if;
-- Case of prefix of indexed or selected component or slice
elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
and then N = Prefix (P)
then
-- Here we have the case where the parent P is N.Q or N(Q .. R).
-- If P is an LHS, then N is also effectively an LHS, but there
-- is an important exception. If N is of an access type, then
-- what we really have is N.all.Q (or N.all(Q .. R)). In either
-- case this makes N.all a left hand side but not N itself.
-- If we don't know the type yet, this is the case where we return
-- Unknown, since the answer depends on the type which is unknown.
if No (Etype (N)) then
return Unknown;
-- We have an Etype set, so we can check it
elsif Is_Access_Type (Etype (N)) then
return No;
-- OK, not access type case, so just test whole expression
else
return Is_LHS (P);
end if;
-- All other cases are not left hand sides
else
return No;
end if;
end Is_LHS;
-----------------------------
-- Is_Library_Level_Entity --
-----------------------------
function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
begin
-- The following is a small optimization, and it also properly handles
-- discriminals, which in task bodies might appear in expressions before
-- the corresponding procedure has been created, and which therefore do
-- not have an assigned scope.
if Is_Formal (E) then
return False;
end if;
-- Normal test is simply that the enclosing dynamic scope is Standard
return Enclosing_Dynamic_Scope (E) = Standard_Standard;
end Is_Library_Level_Entity;
--------------------------------
-- Is_Limited_Class_Wide_Type --
--------------------------------
function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
begin
return
Is_Class_Wide_Type (Typ)
and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
end Is_Limited_Class_Wide_Type;
---------------------------------
-- Is_Local_Variable_Reference --
---------------------------------
function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
begin
if not Is_Entity_Name (Expr) then
return False;
else
declare
Ent : constant Entity_Id := Entity (Expr);
Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
begin
if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
return False;
else
return Present (Sub) and then Sub = Current_Subprogram;
end if;
end;
end if;
end Is_Local_Variable_Reference;
-------------------------
-- Is_Object_Reference --
-------------------------
function Is_Object_Reference (N : Node_Id) return Boolean is
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
-- Determine whether N is the name of an internally-generated renaming
--------------------------------------
-- Is_Internally_Generated_Renaming --
--------------------------------------
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
P : Node_Id;
begin
P := N;
while Present (P) loop
if Nkind (P) = N_Object_Renaming_Declaration then
return not Comes_From_Source (P);
elsif Is_List_Member (P) then
return False;
end if;
P := Parent (P);
end loop;
return False;
end Is_Internally_Generated_Renaming;
-- Start of processing for Is_Object_Reference
begin
if Is_Entity_Name (N) then
return Present (Entity (N)) and then Is_Object (Entity (N));
else
case Nkind (N) is
when N_Indexed_Component | N_Slice =>
return
Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N)));
-- In Ada 95, a function call is a constant object; a procedure
-- call is not.
when N_Function_Call =>
return Etype (N) /= Standard_Void_Type;
-- Attributes 'Input, 'Old and 'Result produce objects
when N_Attribute_Reference =>
return
Nam_In
(Attribute_Name (N), Name_Input, Name_Old, Name_Result);
when N_Selected_Component =>
return
Is_Object_Reference (Selector_Name (N))
and then
(Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N))));
when N_Explicit_Dereference =>
return True;
-- A view conversion of a tagged object is an object reference
when N_Type_Conversion =>
return Is_Tagged_Type (Etype (Subtype_Mark (N)))
and then Is_Tagged_Type (Etype (Expression (N)))
and then Is_Object_Reference (Expression (N));
-- An unchecked type conversion is considered to be an object if
-- the operand is an object (this construction arises only as a
-- result of expansion activities).
when N_Unchecked_Type_Conversion =>
return True;
-- Allow string literals to act as objects as long as they appear
-- in internally-generated renamings. The expansion of iterators
-- may generate such renamings when the range involves a string
-- literal.
when N_String_Literal =>
return Is_Internally_Generated_Renaming (Parent (N));
-- AI05-0003: In Ada 2012 a qualified expression is a name.
-- This allows disambiguation of function calls and the use
-- of aggregates in more contexts.
when N_Qualified_Expression =>
if Ada_Version < Ada_2012 then
return False;
else
return Is_Object_Reference (Expression (N))
or else Nkind (Expression (N)) = N_Aggregate;
end if;
when others =>
return False;
end case;
end if;
end Is_Object_Reference;
-----------------------------------
-- Is_OK_Variable_For_Out_Formal --
-----------------------------------
function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
begin
Note_Possible_Modification (AV, Sure => True);
-- We must reject parenthesized variable names. Comes_From_Source is
-- checked because there are currently cases where the compiler violates
-- this rule (e.g. passing a task object to its controlled Initialize
-- routine). This should be properly documented in sinfo???
if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
return False;
-- A variable is always allowed
elsif Is_Variable (AV) then
return True;
-- Unchecked conversions are allowed only if they come from the
-- generated code, which sometimes uses unchecked conversions for out
-- parameters in cases where code generation is unaffected. We tell
-- source unchecked conversions by seeing if they are rewrites of
-- an original Unchecked_Conversion function call, or of an explicit
-- conversion of a function call or an aggregate (as may happen in the
-- expansion of a packed array aggregate).
elsif Nkind (AV) = N_Unchecked_Type_Conversion then
if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
return False;
elsif Comes_From_Source (AV)
and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
then
return False;
elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
return Is_OK_Variable_For_Out_Formal (Expression (AV));
else
return True;
end if;
-- Normal type conversions are allowed if argument is a variable
elsif Nkind (AV) = N_Type_Conversion then
if Is_Variable (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
then
Note_Possible_Modification (Expression (AV), Sure => True);
return True;
-- We also allow a non-parenthesized expression that raises
-- constraint error if it rewrites what used to be a variable
elsif Raises_Constraint_Error (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
and then Is_Variable (Original_Node (Expression (AV)))
then
return True;
-- Type conversion of something other than a variable
else
return False;
end if;
-- If this node is rewritten, then test the original form, if that is
-- OK, then we consider the rewritten node OK (for example, if the
-- original node is a conversion, then Is_Variable will not be true
-- but we still want to allow the conversion if it converts a variable).
elsif Original_Node (AV) /= AV then
-- In Ada 2012, the explicit dereference may be a rewritten call to a
-- Reference function.
if Ada_Version >= Ada_2012
and then Nkind (Original_Node (AV)) = N_Function_Call
and then
Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
then
return True;
else
return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
end if;
-- All other non-variables are rejected
else
return False;
end if;
end Is_OK_Variable_For_Out_Formal;
-----------------------------------
-- Is_Partially_Initialized_Type --
-----------------------------------
function Is_Partially_Initialized_Type
(Typ : Entity_Id;
Include_Implicit : Boolean := True) return Boolean
is
begin
if Is_Scalar_Type (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return Include_Implicit;
elsif Is_Array_Type (Typ) then
-- If component type is partially initialized, so is array type
if Is_Partially_Initialized_Type
(Component_Type (Typ), Include_Implicit)
then
return True;
-- Otherwise we are only partially initialized if we are fully
-- initialized (this is the empty array case, no point in us
-- duplicating that code here).
else
return Is_Fully_Initialized_Type (Typ);
end if;
elsif Is_Record_Type (Typ) then
-- A discriminated type is always partially initialized if in
-- all mode
if Has_Discriminants (Typ) and then Include_Implicit then
return True;
-- A tagged type is always partially initialized
elsif Is_Tagged_Type (Typ) then
return True;
-- Case of non-discriminated record
else
declare
Ent : Entity_Id;
Component_Present : Boolean := False;
-- Set True if at least one component is present. If no
-- components are present, then record type is fully
-- initialized (another odd case, like the null array).
begin
-- Loop through components
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component then
Component_Present := True;
-- If a component has an initialization expression then
-- the enclosing record type is partially initialized
if Present (Parent (Ent))
and then Present (Expression (Parent (Ent)))
then
return True;
-- If a component is of a type which is itself partially
-- initialized, then the enclosing record type is also.
elsif Is_Partially_Initialized_Type
(Etype (Ent), Include_Implicit)
then
return True;
end if;
end if;
Next_Entity (Ent);
end loop;
-- No initialized components found. If we found any components
-- they were all uninitialized so the result is false.
if Component_Present then
return False;
-- But if we found no components, then all the components are
-- initialized so we consider the type to be initialized.
else
return True;
end if;
end;
end if;
-- Concurrent types are always fully initialized
elsif Is_Concurrent_Type (Typ) then
return True;
-- For a private type, go to underlying type. If there is no underlying
-- type then just assume this partially initialized. Not clear if this
-- can happen in a non-error case, but no harm in testing for this.
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return True;
else
return Is_Partially_Initialized_Type (U, Include_Implicit);
end if;
end;
-- For any other type (are there any?) assume partially initialized
else
return True;
end if;
end Is_Partially_Initialized_Type;
------------------------------------
-- Is_Potentially_Persistent_Type --
------------------------------------
function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
Comp : Entity_Id;
Indx : Node_Id;
begin
-- For private type, test corresponding full type
if Is_Private_Type (T) then
return Is_Potentially_Persistent_Type (Full_View (T));
-- Scalar types are potentially persistent
elsif Is_Scalar_Type (T) then
return True;
-- Record type is potentially persistent if not tagged and the types of
-- all it components are potentially persistent, and no component has
-- an initialization expression.
elsif Is_Record_Type (T)
and then not Is_Tagged_Type (T)
and then not Is_Partially_Initialized_Type (T)
then
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Potentially_Persistent_Type (Etype (Comp)) then
return False;
else
Next_Entity (Comp);
end if;
end loop;
return True;
-- Array type is potentially persistent if its component type is
-- potentially persistent and if all its constraints are static.
elsif Is_Array_Type (T) then
if not Is_Potentially_Persistent_Type (Component_Type (T)) then
return False;
end if;
Indx := First_Index (T);
while Present (Indx) loop
if not Is_OK_Static_Subtype (Etype (Indx)) then
return False;
else
Next_Index (Indx);
end if;
end loop;
return True;
-- All other types are not potentially persistent
else
return False;
end if;
end Is_Potentially_Persistent_Type;
--------------------------------
-- Is_Potentially_Unevaluated --
--------------------------------
function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
Par : Node_Id;
Expr : Node_Id;
begin
Expr := N;
Par := Parent (N);
while not Nkind_In (Par, N_If_Expression,
N_Case_Expression,
N_And_Then,
N_Or_Else,
N_In,
N_Not_In)
loop
Expr := Par;
Par := Parent (Par);
-- If the context is not an expression, or if is the result of
-- expansion of an enclosing construct (such as another attribute)
-- the predicate does not apply.
if Nkind (Par) not in N_Subexpr
or else not Comes_From_Source (Par)
then
return False;
end if;
end loop;
if Nkind (Par) = N_If_Expression then
return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
elsif Nkind (Par) = N_Case_Expression then
return Expr /= Expression (Par);
elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
return Expr = Right_Opnd (Par);
elsif Nkind_In (Par, N_In, N_Not_In) then
return Expr /= Left_Opnd (Par);
else
return False;
end if;
end Is_Potentially_Unevaluated;
---------------------------------
-- Is_Protected_Self_Reference --
---------------------------------
function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
function In_Access_Definition (N : Node_Id) return Boolean;
-- Returns true if N belongs to an access definition
--------------------------
-- In_Access_Definition --
--------------------------
function In_Access_Definition (N : Node_Id) return Boolean is
P : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Access_Definition then
return True;
end if;
P := Parent (P);
end loop;
return False;
end In_Access_Definition;
-- Start of processing for Is_Protected_Self_Reference
begin
-- Verify that prefix is analyzed and has the proper form. Note that
-- the attributes Elab_Spec, Elab_Body, Elab_Subp_Body and UET_Address,
-- which also produce the address of an entity, do not analyze their
-- prefix because they denote entities that are not necessarily visible.
-- Neither of them can apply to a protected type.
return Ada_Version >= Ada_2005
and then Is_Entity_Name (N)
and then Present (Entity (N))
and then Is_Protected_Type (Entity (N))
and then In_Open_Scopes (Entity (N))
and then not In_Access_Definition (N);
end Is_Protected_Self_Reference;
-----------------------------
-- Is_RCI_Pkg_Spec_Or_Body --
-----------------------------
function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
-- Return True if the unit of Cunit is an RCI package declaration
---------------------------
-- Is_RCI_Pkg_Decl_Cunit --
---------------------------
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
The_Unit : constant Node_Id := Unit (Cunit);
begin
if Nkind (The_Unit) /= N_Package_Declaration then
return False;
end if;
return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
end Is_RCI_Pkg_Decl_Cunit;
-- Start of processing for Is_RCI_Pkg_Spec_Or_Body
begin
return Is_RCI_Pkg_Decl_Cunit (Cunit)
or else
(Nkind (Unit (Cunit)) = N_Package_Body
and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
end Is_RCI_Pkg_Spec_Or_Body;
-----------------------------------------
-- Is_Remote_Access_To_Class_Wide_Type --
-----------------------------------------
function Is_Remote_Access_To_Class_Wide_Type
(E : Entity_Id) return Boolean
is
begin
-- A remote access to class-wide type is a general access to object type
-- declared in the visible part of a Remote_Types or Remote_Call_
-- Interface unit.
return Ekind (E) = E_General_Access_Type
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
end Is_Remote_Access_To_Class_Wide_Type;
-----------------------------------------
-- Is_Remote_Access_To_Subprogram_Type --
-----------------------------------------
function Is_Remote_Access_To_Subprogram_Type
(E : Entity_Id) return Boolean
is
begin
return (Ekind (E) = E_Access_Subprogram_Type
or else (Ekind (E) = E_Record_Type
and then Present (Corresponding_Remote_Type (E))))
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
end Is_Remote_Access_To_Subprogram_Type;
--------------------
-- Is_Remote_Call --
--------------------
function Is_Remote_Call (N : Node_Id) return Boolean is
begin
if Nkind (N) not in N_Subprogram_Call then
-- An entry call cannot be remote
return False;
elsif Nkind (Name (N)) in N_Has_Entity
and then Is_Remote_Call_Interface (Entity (Name (N)))
then
-- A subprogram declared in the spec of a RCI package is remote
return True;
elsif Nkind (Name (N)) = N_Explicit_Dereference
and then Is_Remote_Access_To_Subprogram_Type
(Etype (Prefix (Name (N))))
then
-- The dereference of a RAS is a remote call
return True;
elsif Present (Controlling_Argument (N))
and then Is_Remote_Access_To_Class_Wide_Type
(Etype (Controlling_Argument (N)))
then
-- Any primitive operation call with a controlling argument of
-- a RACW type is a remote call.
return True;
end if;
-- All other calls are local calls
return False;
end Is_Remote_Call;
----------------------
-- Is_Renamed_Entry --
----------------------
function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
Orig_Node : Node_Id := Empty;
Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
function Is_Entry (Nam : Node_Id) return Boolean;
-- Determine whether Nam is an entry. Traverse selectors if there are
-- nested selected components.
--------------
-- Is_Entry --
--------------
function Is_Entry (Nam : Node_Id) return Boolean is
begin
if Nkind (Nam) = N_Selected_Component then
return Is_Entry (Selector_Name (Nam));
end if;
return Ekind (Entity (Nam)) = E_Entry;
end Is_Entry;
-- Start of processing for Is_Renamed_Entry
begin
if Present (Alias (Proc_Nam)) then
Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
end if;
-- Look for a rewritten subprogram renaming declaration
if Nkind (Subp_Decl) = N_Subprogram_Declaration
and then Present (Original_Node (Subp_Decl))
then
Orig_Node := Original_Node (Subp_Decl);
end if;
-- The rewritten subprogram is actually an entry
if Present (Orig_Node)
and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
and then Is_Entry (Name (Orig_Node))
then
return True;
end if;
return False;
end Is_Renamed_Entry;
----------------------------
-- Is_Reversible_Iterator --
----------------------------
function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
begin
if Is_Class_Wide_Type (Typ)
and then Chars (Etype (Typ)) = Name_Reversible_Iterator
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Etype (Typ))))
then
return True;
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
return False;
else
Collect_Interfaces (Typ, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
if Chars (Iface) = Name_Reversible_Iterator
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Iface)))
then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
end if;
return False;
end Is_Reversible_Iterator;
----------------------
-- Is_Selector_Name --
----------------------
function Is_Selector_Name (N : Node_Id) return Boolean is
begin
if not Is_List_Member (N) then
declare
P : constant Node_Id := Parent (N);
begin
return Nkind_In (P, N_Expanded_Name,
N_Generic_Association,
N_Parameter_Association,
N_Selected_Component)
and then Selector_Name (P) = N;
end;
else
declare
L : constant List_Id := List_Containing (N);
P : constant Node_Id := Parent (L);
begin
return (Nkind (P) = N_Discriminant_Association
and then Selector_Names (P) = L)
or else
(Nkind (P) = N_Component_Association
and then Choices (P) = L);
end;
end if;
end Is_Selector_Name;
----------------------------------
-- Is_SPARK_Initialization_Expr --
----------------------------------
function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean is
Is_Ok : Boolean;
Expr : Node_Id;
Comp_Assn : Node_Id;
Orig_N : constant Node_Id := Original_Node (N);
begin
Is_Ok := True;
if not Comes_From_Source (Orig_N) then
goto Done;
end if;
pragma Assert (Nkind (Orig_N) in N_Subexpr);
case Nkind (Orig_N) is
when N_Character_Literal |
N_Integer_Literal |
N_Real_Literal |
N_String_Literal =>
null;
when N_Identifier |
N_Expanded_Name =>
if Is_Entity_Name (Orig_N)
and then Present (Entity (Orig_N)) -- needed in some cases
then
case Ekind (Entity (Orig_N)) is
when E_Constant |
E_Enumeration_Literal |
E_Named_Integer |
E_Named_Real =>
null;
when others =>
if Is_Type (Entity (Orig_N)) then
null;
else
Is_Ok := False;
end if;
end case;
end if;
when N_Qualified_Expression |
N_Type_Conversion =>
Is_Ok := Is_SPARK_Initialization_Expr (Expression (Orig_N));
when N_Unary_Op =>
Is_Ok := Is_SPARK_Initialization_Expr (Right_Opnd (Orig_N));
when N_Binary_Op |
N_Short_Circuit |
N_Membership_Test =>
Is_Ok := Is_SPARK_Initialization_Expr (Left_Opnd (Orig_N))
and then
Is_SPARK_Initialization_Expr (Right_Opnd (Orig_N));
when N_Aggregate |
N_Extension_Aggregate =>
if Nkind (Orig_N) = N_Extension_Aggregate then
Is_Ok := Is_SPARK_Initialization_Expr (Ancestor_Part (Orig_N));
end if;
Expr := First (Expressions (Orig_N));
while Present (Expr) loop
if not Is_SPARK_Initialization_Expr (Expr) then
Is_Ok := False;
goto Done;
end if;
Next (Expr);
end loop;
Comp_Assn := First (Component_Associations (Orig_N));
while Present (Comp_Assn) loop
Expr := Expression (Comp_Assn);
if Present (Expr) -- needed for box association
and then not Is_SPARK_Initialization_Expr (Expr)
then
Is_Ok := False;
goto Done;
end if;
Next (Comp_Assn);
end loop;
when N_Attribute_Reference =>
if Nkind (Prefix (Orig_N)) in N_Subexpr then
Is_Ok := Is_SPARK_Initialization_Expr (Prefix (Orig_N));
end if;
Expr := First (Expressions (Orig_N));
while Present (Expr) loop
if not Is_SPARK_Initialization_Expr (Expr) then
Is_Ok := False;
goto Done;
end if;
Next (Expr);
end loop;
-- Selected components might be expanded named not yet resolved, so
-- default on the safe side. (Eg on sparklex.ads)
when N_Selected_Component =>
null;
when others =>
Is_Ok := False;
end case;
<<Done>>
return Is_Ok;
end Is_SPARK_Initialization_Expr;
-------------------------------
-- Is_SPARK_Object_Reference --
-------------------------------
function Is_SPARK_Object_Reference (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Present (Entity (N))
and then
(Ekind_In (Entity (N), E_Constant, E_Variable)
or else Ekind (Entity (N)) in Formal_Kind);
else
case Nkind (N) is
when N_Selected_Component =>
return Is_SPARK_Object_Reference (Prefix (N));
when others =>
return False;
end case;
end if;
end Is_SPARK_Object_Reference;
------------------
-- Is_Statement --
------------------
function Is_Statement (N : Node_Id) return Boolean is
begin
return
Nkind (N) in N_Statement_Other_Than_Procedure_Call
or else Nkind (N) = N_Procedure_Call_Statement;
end Is_Statement;
--------------------------------------------------
-- Is_Subprogram_Stub_Without_Prior_Declaration --
--------------------------------------------------
function Is_Subprogram_Stub_Without_Prior_Declaration
(N : Node_Id) return Boolean
is
begin
-- A subprogram stub without prior declaration serves as declaration for
-- the actual subprogram body. As such, it has an attached defining
-- entity of E_[Generic_]Function or E_[Generic_]Procedure.
return Nkind (N) = N_Subprogram_Body_Stub
and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
end Is_Subprogram_Stub_Without_Prior_Declaration;
---------------------------------
-- Is_Synchronized_Tagged_Type --
---------------------------------
function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
Kind : constant Entity_Kind := Ekind (Base_Type (E));
begin
-- A task or protected type derived from an interface is a tagged type.
-- Such a tagged type is called a synchronized tagged type, as are
-- synchronized interfaces and private extensions whose declaration
-- includes the reserved word synchronized.
return (Is_Tagged_Type (E)
and then (Kind = E_Task_Type
or else Kind = E_Protected_Type))
or else
(Is_Interface (E)
and then Is_Synchronized_Interface (E))
or else
(Ekind (E) = E_Record_Type_With_Private
and then Nkind (Parent (E)) = N_Private_Extension_Declaration
and then (Synchronized_Present (Parent (E))
or else Is_Synchronized_Interface (Etype (E))));
end Is_Synchronized_Tagged_Type;
-----------------
-- Is_Transfer --
-----------------
function Is_Transfer (N : Node_Id) return Boolean is
Kind : constant Node_Kind := Nkind (N);
begin
if Kind = N_Simple_Return_Statement
or else
Kind = N_Extended_Return_Statement
or else
Kind = N_Goto_Statement
or else
Kind = N_Raise_Statement
or else
Kind = N_Requeue_Statement
then
return True;
elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
and then No (Condition (N))
then
return True;
elsif Kind = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (N))
and then Present (Entity (Name (N)))
and then No_Return (Entity (Name (N)))
then
return True;
elsif Nkind (Original_Node (N)) = N_Raise_Statement then
return True;
else
return False;
end if;
end Is_Transfer;
-------------
-- Is_True --
-------------
function Is_True (U : Uint) return Boolean is
begin
return (U /= 0);
end Is_True;
--------------------------------------
-- Is_Unchecked_Conversion_Instance --
--------------------------------------
function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
Gen_Par : Entity_Id;
begin
-- Look for a function whose generic parent is the predefined intrinsic
-- function Unchecked_Conversion.
if Ekind (Id) = E_Function then
Gen_Par := Generic_Parent (Parent (Id));
return
Present (Gen_Par)
and then Chars (Gen_Par) = Name_Unchecked_Conversion
and then Is_Intrinsic_Subprogram (Gen_Par)
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Gen_Par)));
end if;
return False;
end Is_Unchecked_Conversion_Instance;
-------------------------------
-- Is_Universal_Numeric_Type --
-------------------------------
function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
begin
return T = Universal_Integer or else T = Universal_Real;
end Is_Universal_Numeric_Type;
-------------------
-- Is_Value_Type --
-------------------
function Is_Value_Type (T : Entity_Id) return Boolean is
begin
return VM_Target = CLI_Target
and then Nkind (T) in N_Has_Chars
and then Chars (T) /= No_Name
and then Get_Name_String (Chars (T)) = "valuetype";
end Is_Value_Type;
----------------------------
-- Is_Variable_Size_Array --
----------------------------
function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
Idx : Node_Id;
begin
pragma Assert (Is_Array_Type (E));
-- Check if some index is initialized with a non-constant value
Idx := First_Index (E);
while Present (Idx) loop
if Nkind (Idx) = N_Range then
if not Is_Constant_Bound (Low_Bound (Idx))
or else not Is_Constant_Bound (High_Bound (Idx))
then
return True;
end if;
end if;
Idx := Next_Index (Idx);
end loop;
return False;
end Is_Variable_Size_Array;
-----------------------------
-- Is_Variable_Size_Record --
-----------------------------
function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
Comp : Entity_Id;
Comp_Typ : Entity_Id;
begin
pragma Assert (Is_Record_Type (E));
Comp := First_Entity (E);
while Present (Comp) loop
Comp_Typ := Etype (Comp);
-- Recursive call if the record type has discriminants
if Is_Record_Type (Comp_Typ)
and then Has_Discriminants (Comp_Typ)
and then Is_Variable_Size_Record (Comp_Typ)
then
return True;
elsif Is_Array_Type (Comp_Typ)
and then Is_Variable_Size_Array (Comp_Typ)
then
return True;
end if;
Next_Entity (Comp);
end loop;
return False;
end Is_Variable_Size_Record;
-----------------
-- Is_Variable --
-----------------
function Is_Variable
(N : Node_Id;
Use_Original_Node : Boolean := True) return Boolean
is
Orig_Node : Node_Id;
function In_Protected_Function (E : Entity_Id) return Boolean;
-- Within a protected function, the private components of the enclosing
-- protected type are constants. A function nested within a (protected)
-- procedure is not itself protected. Within the body of a protected
-- function the current instance of the protected type is a constant.
function Is_Variable_Prefix (P : Node_Id) return Boolean;
-- Prefixes can involve implicit dereferences, in which case we must
-- test for the case of a reference of a constant access type, which can
-- can never be a variable.
---------------------------
-- In_Protected_Function --
---------------------------
function In_Protected_Function (E : Entity_Id) return Boolean is
Prot : Entity_Id;
S : Entity_Id;
begin
-- E is the current instance of a type
if Is_Type (E) then
Prot := E;
-- E is an object
else
Prot := Scope (E);
end if;
if not Is_Protected_Type (Prot) then
return False;
else
S := Current_Scope;
while Present (S) and then S /= Prot loop
if Ekind (S) = E_Function and then Scope (S) = Prot then
return True;
end if;
S := Scope (S);
end loop;
return False;
end if;
end In_Protected_Function;
------------------------
-- Is_Variable_Prefix --
------------------------
function Is_Variable_Prefix (P : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (P)) then
return not Is_Access_Constant (Root_Type (Etype (P)));
-- For the case of an indexed component whose prefix has a packed
-- array type, the prefix has been rewritten into a type conversion.
-- Determine variable-ness from the converted expression.
elsif Nkind (P) = N_Type_Conversion
and then not Comes_From_Source (P)
and then Is_Array_Type (Etype (P))
and then Is_Packed (Etype (P))
then
return Is_Variable (Expression (P));
else
return Is_Variable (P);
end if;
end Is_Variable_Prefix;
-- Start of processing for Is_Variable
begin
-- Check if we perform the test on the original node since this may be a
-- test of syntactic categories which must not be disturbed by whatever
-- rewriting might have occurred. For example, an aggregate, which is
-- certainly NOT a variable, could be turned into a variable by
-- expansion.
if Use_Original_Node then
Orig_Node := Original_Node (N);
else
Orig_Node := N;
end if;
-- Definitely OK if Assignment_OK is set. Since this is something that
-- only gets set for expanded nodes, the test is on N, not Orig_Node.
if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
return True;
-- Normally we go to the original node, but there is one exception where
-- we use the rewritten node, namely when it is an explicit dereference.
-- The generated code may rewrite a prefix which is an access type with
-- an explicit dereference. The dereference is a variable, even though
-- the original node may not be (since it could be a constant of the
-- access type).
-- In Ada 2005 we have a further case to consider: the prefix may be a
-- function call given in prefix notation. The original node appears to
-- be a selected component, but we need to examine the call.
elsif Nkind (N) = N_Explicit_Dereference
and then Nkind (Orig_Node) /= N_Explicit_Dereference
and then Present (Etype (Orig_Node))
and then Is_Access_Type (Etype (Orig_Node))
then
-- Note that if the prefix is an explicit dereference that does not
-- come from source, we must check for a rewritten function call in
-- prefixed notation before other forms of rewriting, to prevent a
-- compiler crash.
return
(Nkind (Orig_Node) = N_Function_Call
and then not Is_Access_Constant (Etype (Prefix (N))))
or else
Is_Variable_Prefix (Original_Node (Prefix (N)));
-- in Ada 2012, the dereference may have been added for a type with
-- a declared implicit dereference aspect.
elsif Nkind (N) = N_Explicit_Dereference
and then Present (Etype (Orig_Node))
and then Ada_Version >= Ada_2012
and then Has_Implicit_Dereference (Etype (Orig_Node))
then
return True;
-- A function call is never a variable
elsif Nkind (N) = N_Function_Call then
return False;
-- All remaining checks use the original node
elsif Is_Entity_Name (Orig_Node)
and then Present (Entity (Orig_Node))
then
declare
E : constant Entity_Id := Entity (Orig_Node);
K : constant Entity_Kind := Ekind (E);
begin
return (K = E_Variable
and then Nkind (Parent (E)) /= N_Exception_Handler)
or else (K = E_Component
and then not In_Protected_Function (E))
or else K = E_Out_Parameter
or else K = E_In_Out_Parameter
or else K = E_Generic_In_Out_Parameter
-- Current instance of type. If this is a protected type, check
-- we are not within the body of one of its protected functions.
or else (Is_Type (E)
and then In_Open_Scopes (E)
and then not In_Protected_Function (E))
or else (Is_Incomplete_Or_Private_Type (E)
and then In_Open_Scopes (Full_View (E)));
end;
else
case Nkind (Orig_Node) is
when N_Indexed_Component | N_Slice =>
return Is_Variable_Prefix (Prefix (Orig_Node));
when N_Selected_Component =>
return (Is_Variable (Selector_Name (Orig_Node))
and then Is_Variable_Prefix (Prefix (Orig_Node)))
or else
(Nkind (N) = N_Expanded_Name
and then Scope (Entity (N)) = Entity (Prefix (N)));
-- For an explicit dereference, the type of the prefix cannot
-- be an access to constant or an access to subprogram.
when N_Explicit_Dereference =>
declare
Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
begin
return Is_Access_Type (Typ)
and then not Is_Access_Constant (Root_Type (Typ))
and then Ekind (Typ) /= E_Access_Subprogram_Type;
end;
-- The type conversion is the case where we do not deal with the
-- context dependent special case of an actual parameter. Thus
-- the type conversion is only considered a variable for the
-- purposes of this routine if the target type is tagged. However,
-- a type conversion is considered to be a variable if it does not
-- come from source (this deals for example with the conversions
-- of expressions to their actual subtypes).
when N_Type_Conversion =>
return Is_Variable (Expression (Orig_Node))
and then
(not Comes_From_Source (Orig_Node)
or else
(Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
and then
Is_Tagged_Type (Etype (Expression (Orig_Node)))));
-- GNAT allows an unchecked type conversion as a variable. This
-- only affects the generation of internal expanded code, since
-- calls to instantiations of Unchecked_Conversion are never
-- considered variables (since they are function calls).
when N_Unchecked_Type_Conversion =>
return Is_Variable (Expression (Orig_Node));
when others =>
return False;
end case;
end if;
end Is_Variable;
---------------------------
-- Is_Visibly_Controlled --
---------------------------
function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
Root : constant Entity_Id := Root_Type (T);
begin
return Chars (Scope (Root)) = Name_Finalization
and then Chars (Scope (Scope (Root))) = Name_Ada
and then Scope (Scope (Scope (Root))) = Standard_Standard;
end Is_Visibly_Controlled;
------------------------
-- Is_Volatile_Object --
------------------------
function Is_Volatile_Object (N : Node_Id) return Boolean is
function Is_Volatile_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
-- Determines if given object has volatile components
------------------------
-- Is_Volatile_Prefix --
------------------------
function Is_Volatile_Prefix (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Access_Type (Typ) then
declare
Dtyp : constant Entity_Id := Designated_Type (Typ);
begin
return Is_Volatile (Dtyp)
or else Has_Volatile_Components (Dtyp);
end;
else
return Object_Has_Volatile_Components (N);
end if;
end Is_Volatile_Prefix;
------------------------------------
-- Object_Has_Volatile_Components --
------------------------------------
function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Volatile (Typ)
or else Has_Volatile_Components (Typ)
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Volatile_Components (Entity (N))
or else Is_Volatile (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Volatile_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Volatile_Components;
-- Start of processing for Is_Volatile_Object
begin
if Nkind (N) = N_Defining_Identifier then
return Is_Volatile (N) or else Is_Volatile (Etype (N));
elsif Nkind (N) = N_Expanded_Name then
return Is_Volatile_Object (Entity (N));
elsif Is_Volatile (Etype (N))
or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
then
return True;
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
and then Is_Volatile_Prefix (Prefix (N))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Volatile (Entity (Selector_Name (N)))
then
return True;
else
return False;
end if;
end Is_Volatile_Object;
---------------------------
-- Itype_Has_Declaration --
---------------------------
function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
begin
pragma Assert (Is_Itype (Id));
return Present (Parent (Id))
and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
N_Subtype_Declaration)
and then Defining_Entity (Parent (Id)) = Id;
end Itype_Has_Declaration;
-------------------------
-- Kill_Current_Values --
-------------------------
procedure Kill_Current_Values
(Ent : Entity_Id;
Last_Assignment_Only : Boolean := False)
is
begin
if Is_Assignable (Ent) then
Set_Last_Assignment (Ent, Empty);
end if;
if Is_Object (Ent) then
if not Last_Assignment_Only then
Kill_Checks (Ent);
Set_Current_Value (Ent, Empty);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
Set_Is_Known_Null (Ent, False);
-- Reset Is_Known_Valid unless type is always valid, or if we have
-- a loop parameter (loop parameters are always valid, since their
-- bounds are defined by the bounds given in the loop header).
if not Is_Known_Valid (Etype (Ent))
and then Ekind (Ent) /= E_Loop_Parameter
then
Set_Is_Known_Valid (Ent, False);
end if;
end if;
end if;
end Kill_Current_Values;
procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
S : Entity_Id;
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
-- Clear current value for entity E and all entities chained to E
------------------------------------------
-- Kill_Current_Values_For_Entity_Chain --
------------------------------------------
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
Ent : Entity_Id;
begin
Ent := E;
while Present (Ent) loop
Kill_Current_Values (Ent, Last_Assignment_Only);
Next_Entity (Ent);
end loop;
end Kill_Current_Values_For_Entity_Chain;
-- Start of processing for Kill_Current_Values
begin
-- Kill all saved checks, a special case of killing saved values
if not Last_Assignment_Only then
Kill_All_Checks;
end if;
-- Loop through relevant scopes, which includes the current scope and
-- any parent scopes if the current scope is a block or a package.
S := Current_Scope;
Scope_Loop : loop
-- Clear current values of all entities in current scope
Kill_Current_Values_For_Entity_Chain (First_Entity (S));
-- If scope is a package, also clear current values of all private
-- entities in the scope.
if Is_Package_Or_Generic_Package (S)
or else Is_Concurrent_Type (S)
then
Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
end if;
-- If this is a not a subprogram, deal with parents
if not Is_Subprogram (S) then
S := Scope (S);
exit Scope_Loop when S = Standard_Standard;
else
exit Scope_Loop;
end if;
end loop Scope_Loop;
end Kill_Current_Values;
--------------------------
-- Kill_Size_Check_Code --
--------------------------
procedure Kill_Size_Check_Code (E : Entity_Id) is
begin
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Present (Size_Check_Code (E))
then
Remove (Size_Check_Code (E));
Set_Size_Check_Code (E, Empty);
end if;
end Kill_Size_Check_Code;
--------------------------
-- Known_To_Be_Assigned --
--------------------------
function Known_To_Be_Assigned (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Function call arguments are never lvalues
when N_Function_Call =>
return False;
-- Positional parameter for procedure or accept call
when N_Procedure_Call_Statement |
N_Accept_Statement
=>
declare
Proc : Entity_Id;
Form : Entity_Id;
Act : Node_Id;
begin
Proc := Get_Subprogram_Entity (P);
if No (Proc) then
return False;
end if;
-- If we are not a list member, something is strange, so
-- be conservative and return False.
if not Is_List_Member (N) then
return False;
end if;
-- We are going to find the right formal by stepping forward
-- through the formals, as we step backwards in the actuals.
Form := First_Formal (Proc);
Act := N;
loop
-- If no formal, something is weird, so be conservative
-- and return False.
if No (Form) then
return False;
end if;
Prev (Act);
exit when No (Act);
Next_Formal (Form);
end loop;
return Ekind (Form) /= E_In_Parameter;
end;
-- Named parameter for procedure or accept call
when N_Parameter_Association =>
declare
Proc : Entity_Id;
Form : Entity_Id;
begin
Proc := Get_Subprogram_Entity (Parent (P));
if No (Proc) then
return False;
end if;
-- Loop through formals to find the one that matches
Form := First_Formal (Proc);
loop
-- If no matching formal, that's peculiar, some kind of
-- previous error, so return False to be conservative.
-- Actually this also happens in legal code in the case
-- where P is a parameter association for an Extra_Formal???
if No (Form) then
return False;
end if;
-- Else test for match
if Chars (Form) = Chars (Selector_Name (P)) then
return Ekind (Form) /= E_In_Parameter;
end if;
Next_Formal (Form);
end loop;
end;
-- Test for appearing in a conversion that itself appears
-- in an lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return Known_To_Be_Assigned (P);
-- All other references are definitely not known to be modifications
when others =>
return False;
end case;
end Known_To_Be_Assigned;
---------------------------
-- Last_Source_Statement --
---------------------------
function Last_Source_Statement (HSS : Node_Id) return Node_Id is
N : Node_Id;
begin
N := Last (Statements (HSS));
while Present (N) loop
exit when Comes_From_Source (N);
Prev (N);
end loop;
return N;
end Last_Source_Statement;
----------------------------------
-- Matching_Static_Array_Bounds --
----------------------------------
function Matching_Static_Array_Bounds
(L_Typ : Node_Id;
R_Typ : Node_Id) return Boolean
is
L_Ndims : constant Nat := Number_Dimensions (L_Typ);
R_Ndims : constant Nat := Number_Dimensions (R_Typ);
L_Index : Node_Id;
R_Index : Node_Id;
L_Low : Node_Id;
L_High : Node_Id;
L_Len : Uint;
R_Low : Node_Id;
R_High : Node_Id;
R_Len : Uint;
begin
if L_Ndims /= R_Ndims then
return False;
end if;
-- Unconstrained types do not have static bounds
if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
return False;
end if;
-- First treat specially the first dimension, as the lower bound and
-- length of string literals are not stored like those of arrays.
if Ekind (L_Typ) = E_String_Literal_Subtype then
L_Low := String_Literal_Low_Bound (L_Typ);
L_Len := String_Literal_Length (L_Typ);
else
L_Index := First_Index (L_Typ);
Get_Index_Bounds (L_Index, L_Low, L_High);
if Is_OK_Static_Expression (L_Low)
and then
Is_OK_Static_Expression (L_High)
then
if Expr_Value (L_High) < Expr_Value (L_Low) then
L_Len := Uint_0;
else
L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
end if;
else
return False;
end if;
end if;
if Ekind (R_Typ) = E_String_Literal_Subtype then
R_Low := String_Literal_Low_Bound (R_Typ);
R_Len := String_Literal_Length (R_Typ);
else
R_Index := First_Index (R_Typ);
Get_Index_Bounds (R_Index, R_Low, R_High);
if Is_OK_Static_Expression (R_Low)
and then
Is_OK_Static_Expression (R_High)
then
if Expr_Value (R_High) < Expr_Value (R_Low) then
R_Len := Uint_0;
else
R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
end if;
else
return False;
end if;
end if;
if (Is_OK_Static_Expression (L_Low)
and then
Is_OK_Static_Expression (R_Low))
and then Expr_Value (L_Low) = Expr_Value (R_Low)
and then L_Len = R_Len
then
null;
else
return False;
end if;
-- Then treat all other dimensions
for Indx in 2 .. L_Ndims loop
Next (L_Index);
Next (R_Index);
Get_Index_Bounds (L_Index, L_Low, L_High);
Get_Index_Bounds (R_Index, R_Low, R_High);
if (Is_OK_Static_Expression (L_Low) and then
Is_OK_Static_Expression (L_High) and then
Is_OK_Static_Expression (R_Low) and then
Is_OK_Static_Expression (R_High))
and then (Expr_Value (L_Low) = Expr_Value (R_Low)
and then
Expr_Value (L_High) = Expr_Value (R_High))
then
null;
else
return False;
end if;
end loop;
-- If we fall through the loop, all indexes matched
return True;
end Matching_Static_Array_Bounds;
-------------------
-- May_Be_Lvalue --
-------------------
function May_Be_Lvalue (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Test prefix of component or attribute. Note that the prefix of an
-- explicit or implicit dereference cannot be an l-value.
when N_Attribute_Reference =>
return N = Prefix (P)
and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
-- For an expanded name, the name is an lvalue if the expanded name
-- is an lvalue, but the prefix is never an lvalue, since it is just
-- the scope where the name is found.
when N_Expanded_Name =>
if N = Prefix (P) then
return May_Be_Lvalue (P);
else
return False;
end if;
-- For a selected component A.B, A is certainly an lvalue if A.B is.
-- B is a little interesting, if we have A.B := 3, there is some
-- discussion as to whether B is an lvalue or not, we choose to say
-- it is. Note however that A is not an lvalue if it is of an access
-- type since this is an implicit dereference.
when N_Selected_Component =>
if N = Prefix (P)
and then Present (Etype (N))
and then Is_Access_Type (Etype (N))
then
return False;
else
return May_Be_Lvalue (P);
end if;
-- For an indexed component or slice, the index or slice bounds is
-- never an lvalue. The prefix is an lvalue if the indexed component
-- or slice is an lvalue, except if it is an access type, where we
-- have an implicit dereference.
when N_Indexed_Component | N_Slice =>
if N /= Prefix (P)
or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
then
return False;
else
return May_Be_Lvalue (P);
end if;
-- Prefix of a reference is an lvalue if the reference is an lvalue
when N_Reference =>
return May_Be_Lvalue (P);
-- Prefix of explicit dereference is never an lvalue
when N_Explicit_Dereference =>
return False;
-- Positional parameter for subprogram, entry, or accept call.
-- In older versions of Ada function call arguments are never
-- lvalues. In Ada 2012 functions can have in-out parameters.
when N_Subprogram_Call |
N_Entry_Call_Statement |
N_Accept_Statement
=>
if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
return False;
end if;
-- The following mechanism is clumsy and fragile. A single flag
-- set in Resolve_Actuals would be preferable ???
declare
Proc : Entity_Id;
Form : Entity_Id;
Act : Node_Id;
begin
Proc := Get_Subprogram_Entity (P);
if No (Proc) then
return True;
end if;
-- If we are not a list member, something is strange, so be
-- conservative and return True.
if not Is_List_Member (N) then
return True;
end if;
-- We are going to find the right formal by stepping forward
-- through the formals, as we step backwards in the actuals.
Form := First_Formal (Proc);
Act := N;
loop
-- If no formal, something is weird, so be conservative and
-- return True.
if No (Form) then
return True;
end if;
Prev (Act);
exit when No (Act);
Next_Formal (Form);
end loop;
return Ekind (Form) /= E_In_Parameter;
end;
-- Named parameter for procedure or accept call
when N_Parameter_Association =>
declare
Proc : Entity_Id;
Form : Entity_Id;
begin
Proc := Get_Subprogram_Entity (Parent (P));
if No (Proc) then
return True;
end if;
-- Loop through formals to find the one that matches
Form := First_Formal (Proc);
loop
-- If no matching formal, that's peculiar, some kind of
-- previous error, so return True to be conservative.
-- Actually happens with legal code for an unresolved call
-- where we may get the wrong homonym???
if No (Form) then
return True;
end if;
-- Else test for match
if Chars (Form) = Chars (Selector_Name (P)) then
return Ekind (Form) /= E_In_Parameter;
end if;
Next_Formal (Form);
end loop;
end;
-- Test for appearing in a conversion that itself appears in an
-- lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return May_Be_Lvalue (P);
-- Test for appearance in object renaming declaration
when N_Object_Renaming_Declaration =>
return True;
-- All other references are definitely not lvalues
when others =>
return False;
end case;
end May_Be_Lvalue;
-----------------------
-- Mark_Coextensions --
-----------------------
procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
Is_Dynamic : Boolean;
-- Indicates whether the context causes nested coextensions to be
-- dynamic or static
function Mark_Allocator (N : Node_Id) return Traverse_Result;
-- Recognize an allocator node and label it as a dynamic coextension
--------------------
-- Mark_Allocator --
--------------------
function Mark_Allocator (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Allocator then
if Is_Dynamic then
Set_Is_Dynamic_Coextension (N);
-- If the allocator expression is potentially dynamic, it may
-- be expanded out of order and require dynamic allocation
-- anyway, so we treat the coextension itself as dynamic.
-- Potential optimization ???
elsif Nkind (Expression (N)) = N_Qualified_Expression
and then Nkind (Expression (Expression (N))) = N_Op_Concat
then
Set_Is_Dynamic_Coextension (N);
else
Set_Is_Static_Coextension (N);
end if;
end if;
return OK;
end Mark_Allocator;
procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
-- Start of processing Mark_Coextensions
begin
case Nkind (Context_Nod) is
-- Comment here ???
when N_Assignment_Statement =>
Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
-- An allocator that is a component of a returned aggregate
-- must be dynamic.
when N_Simple_Return_Statement =>
declare
Expr : constant Node_Id := Expression (Context_Nod);
begin
Is_Dynamic :=
Nkind (Expr) = N_Allocator
or else
(Nkind (Expr) = N_Qualified_Expression
and then Nkind (Expression (Expr)) = N_Aggregate);
end;
-- An alloctor within an object declaration in an extended return
-- statement is of necessity dynamic.
when N_Object_Declaration =>
Is_Dynamic := Nkind (Root_Nod) = N_Allocator
or else
Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
-- This routine should not be called for constructs which may not
-- contain coextensions.
when others =>
raise Program_Error;
end case;
Mark_Allocators (Root_Nod);
end Mark_Coextensions;
-----------------
-- Must_Inline --
-----------------
function Must_Inline (Subp : Entity_Id) return Boolean is
begin
return
(Optimization_Level = 0
-- AAMP and VM targets have no support for inlining in the backend.
-- Hence we do as much inlining as possible in the front end.
or else AAMP_On_Target
or else VM_Target /= No_VM)
and then Has_Pragma_Inline (Subp)
and then (Has_Pragma_Inline_Always (Subp) or else Front_End_Inlining);
end Must_Inline;
----------------------
-- Needs_One_Actual --
----------------------
function Needs_One_Actual (E : Entity_Id) return Boolean is
Formal : Entity_Id;
begin
-- Ada 2005 or later, and formals present
if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
Formal := Next_Formal (First_Formal (E));
while Present (Formal) loop
if No (Default_Value (Formal)) then
return False;
end if;
Next_Formal (Formal);
end loop;
return True;
-- Ada 83/95 or no formals
else
return False;
end if;
end Needs_One_Actual;
------------------------
-- New_Copy_List_Tree --
------------------------
function New_Copy_List_Tree (List : List_Id) return List_Id is
NL : List_Id;
E : Node_Id;
begin
if List = No_List then
return No_List;
else
NL := New_List;
E := First (List);
while Present (E) loop
Append (New_Copy_Tree (E), NL);
E := Next (E);
end loop;
return NL;
end if;
end New_Copy_List_Tree;
-------------------
-- New_Copy_Tree --
-------------------
use Atree.Unchecked_Access;
use Atree_Private_Part;
-- Our approach here requires a two pass traversal of the tree. The
-- first pass visits all nodes that eventually will be copied looking
-- for defining Itypes. If any defining Itypes are found, then they are
-- copied, and an entry is added to the replacement map. In the second
-- phase, the tree is copied, using the replacement map to replace any
-- Itype references within the copied tree.
-- The following hash tables are used if the Map supplied has more
-- than hash threshold entries to speed up access to the map. If
-- there are fewer entries, then the map is searched sequentially
-- (because setting up a hash table for only a few entries takes
-- more time than it saves.
function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
-- Hash function used for hash operations
-------------------
-- New_Copy_Hash --
-------------------
function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
begin
return Nat (E) mod (NCT_Header_Num'Last + 1);
end New_Copy_Hash;
---------------
-- NCT_Assoc --
---------------
-- The hash table NCT_Assoc associates old entities in the table
-- with their corresponding new entities (i.e. the pairs of entries
-- presented in the original Map argument are Key-Element pairs).
package NCT_Assoc is new Simple_HTable (
Header_Num => NCT_Header_Num,
Element => Entity_Id,
No_Element => Empty,
Key => Entity_Id,
Hash => New_Copy_Hash,
Equal => Types."=");
---------------------
-- NCT_Itype_Assoc --
---------------------
-- The hash table NCT_Itype_Assoc contains entries only for those
-- old nodes which have a non-empty Associated_Node_For_Itype set.
-- The key is the associated node, and the element is the new node
-- itself (NOT the associated node for the new node).
package NCT_Itype_Assoc is new Simple_HTable (
Header_Num => NCT_Header_Num,
Element => Entity_Id,
No_Element => Empty,
Key => Entity_Id,
Hash => New_Copy_Hash,
Equal => Types."=");
-- Start of processing for New_Copy_Tree function
function New_Copy_Tree
(Source : Node_Id;
Map : Elist_Id := No_Elist;
New_Sloc : Source_Ptr := No_Location;
New_Scope : Entity_Id := Empty) return Node_Id
is
Actual_Map : Elist_Id := Map;
-- This is the actual map for the copy. It is initialized with the
-- given elements, and then enlarged as required for Itypes that are
-- copied during the first phase of the copy operation. The visit
-- procedures add elements to this map as Itypes are encountered.
-- The reason we cannot use Map directly, is that it may well be
-- (and normally is) initialized to No_Elist, and if we have mapped
-- entities, we have to reset it to point to a real Elist.
function Assoc (N : Node_Or_Entity_Id) return Node_Id;
-- Called during second phase to map entities into their corresponding
-- copies using Actual_Map. If the argument is not an entity, or is not
-- in Actual_Map, then it is returned unchanged.
procedure Build_NCT_Hash_Tables;
-- Builds hash tables (number of elements >= threshold value)
function Copy_Elist_With_Replacement
(Old_Elist : Elist_Id) return Elist_Id;
-- Called during second phase to copy element list doing replacements
procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
-- Called during the second phase to process a copied Itype. The actual
-- copy happened during the first phase (so that we could make the entry
-- in the mapping), but we still have to deal with the descendents of
-- the copied Itype and copy them where necessary.
function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
-- Called during second phase to copy list doing replacements
function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
-- Called during second phase to copy node doing replacements
procedure Visit_Elist (E : Elist_Id);
-- Called during first phase to visit all elements of an Elist
procedure Visit_Field (F : Union_Id; N : Node_Id);
-- Visit a single field, recursing to call Visit_Node or Visit_List
-- if the field is a syntactic descendent of the current node (i.e.
-- its parent is Node N).
procedure Visit_Itype (Old_Itype : Entity_Id);
-- Called during first phase to visit subsidiary fields of a defining
-- Itype, and also create a copy and make an entry in the replacement
-- map for the new copy.
procedure Visit_List (L : List_Id);
-- Called during first phase to visit all elements of a List
procedure Visit_Node (N : Node_Or_Entity_Id);
-- Called during first phase to visit a node and all its subtrees
-----------
-- Assoc --
-----------
function Assoc (N : Node_Or_Entity_Id) return Node_Id is
E : Elmt_Id;
Ent : Entity_Id;
begin
if not Has_Extension (N) or else No (Actual_Map) then
return N;
elsif NCT_Hash_Tables_Used then
Ent := NCT_Assoc.Get (Entity_Id (N));
if Present (Ent) then
return Ent;
else
return N;
end if;
-- No hash table used, do serial search
else
E := First_Elmt (Actual_Map);
while Present (E) loop
if Node (E) = N then
return Node (Next_Elmt (E));
else
E := Next_Elmt (Next_Elmt (E));
end if;
end loop;
end if;
return N;
end Assoc;
---------------------------
-- Build_NCT_Hash_Tables --
---------------------------
procedure Build_NCT_Hash_Tables is
Elmt : Elmt_Id;
Ent : Entity_Id;
begin
if NCT_Hash_Table_Setup then
NCT_Assoc.Reset;
NCT_Itype_Assoc.Reset;
end if;
Elmt := First_Elmt (Actual_Map);
while Present (Elmt) loop
Ent := Node (Elmt);
-- Get new entity, and associate old and new
Next_Elmt (Elmt);
NCT_Assoc.Set (Ent, Node (Elmt));
if Is_Type (Ent) then
declare
Anode : constant Entity_Id :=
Associated_Node_For_Itype (Ent);
begin
if Present (Anode) then
-- Enter a link between the associated node of the
-- old Itype and the new Itype, for updating later
-- when node is copied.
NCT_Itype_Assoc.Set (Anode, Node (Elmt));
end if;
end;
end if;
Next_Elmt (Elmt);
end loop;
NCT_Hash_Tables_Used := True;
NCT_Hash_Table_Setup := True;
end Build_NCT_Hash_Tables;
---------------------------------
-- Copy_Elist_With_Replacement --
---------------------------------
function Copy_Elist_With_Replacement
(Old_Elist : Elist_Id) return Elist_Id
is
M : Elmt_Id;
New_Elist : Elist_Id;
begin
if No (Old_Elist) then
return No_Elist;
else
New_Elist := New_Elmt_List;
M := First_Elmt (Old_Elist);
while Present (M) loop
Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
Next_Elmt (M);
end loop;
end if;
return New_Elist;
end Copy_Elist_With_Replacement;
---------------------------------
-- Copy_Itype_With_Replacement --
---------------------------------
-- This routine exactly parallels its phase one analog Visit_Itype,
procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
begin
-- Translate Next_Entity, Scope and Etype fields, in case they
-- reference entities that have been mapped into copies.
Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
if Present (New_Scope) then
Set_Scope (New_Itype, New_Scope);
else
Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
end if;
-- Copy referenced fields
if Is_Discrete_Type (New_Itype) then
Set_Scalar_Range (New_Itype,
Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
elsif Has_Discriminants (Base_Type (New_Itype)) then
Set_Discriminant_Constraint (New_Itype,
Copy_Elist_With_Replacement
(Discriminant_Constraint (New_Itype)));
elsif Is_Array_Type (New_Itype) then
if Present (First_Index (New_Itype)) then
Set_First_Index (New_Itype,
First (Copy_List_With_Replacement
(List_Containing (First_Index (New_Itype)))));
end if;
if Is_Packed (New_Itype) then
Set_Packed_Array_Impl_Type (New_Itype,
Copy_Node_With_Replacement
(Packed_Array_Impl_Type (New_Itype)));
end if;
end if;
end Copy_Itype_With_Replacement;
--------------------------------
-- Copy_List_With_Replacement --
--------------------------------
function Copy_List_With_Replacement
(Old_List : List_Id) return List_Id
is
New_List : List_Id;
E : Node_Id;
begin
if Old_List = No_List then
return No_List;
else
New_List := Empty_List;
E := First (Old_List);
while Present (E) loop
Append (Copy_Node_With_Replacement (E), New_List);
Next (E);
end loop;
return New_List;
end if;
end Copy_List_With_Replacement;
--------------------------------
-- Copy_Node_With_Replacement --
--------------------------------
function Copy_Node_With_Replacement
(Old_Node : Node_Id) return Node_Id
is
New_Node : Node_Id;
procedure Adjust_Named_Associations
(Old_Node : Node_Id;
New_Node : Node_Id);
-- If a call node has named associations, these are chained through
-- the First_Named_Actual, Next_Named_Actual links. These must be
-- propagated separately to the new parameter list, because these
-- are not syntactic fields.
function Copy_Field_With_Replacement
(Field : Union_Id) return Union_Id;
-- Given Field, which is a field of Old_Node, return a copy of it
-- if it is a syntactic field (i.e. its parent is Node), setting
-- the parent of the copy to poit to New_Node. Otherwise returns
-- the field (possibly mapped if it is an entity).
-------------------------------
-- Adjust_Named_Associations --
-------------------------------
procedure Adjust_Named_Associations
(Old_Node : Node_Id;
New_Node : Node_Id)
is
Old_E : Node_Id;
New_E : Node_Id;
Old_Next : Node_Id;
New_Next : Node_Id;
begin
Old_E := First (Parameter_Associations (Old_Node));
New_E := First (Parameter_Associations (New_Node));
while Present (Old_E) loop
if Nkind (Old_E) = N_Parameter_Association
and then Present (Next_Named_Actual (Old_E))
then
if First_Named_Actual (Old_Node)
= Explicit_Actual_Parameter (Old_E)
then
Set_First_Named_Actual
(New_Node, Explicit_Actual_Parameter (New_E));
end if;
-- Now scan parameter list from the beginning,to locate
-- next named actual, which can be out of order.
Old_Next := First (Parameter_Associations (Old_Node));
New_Next := First (Parameter_Associations (New_Node));
while Nkind (Old_Next) /= N_Parameter_Association
or else Explicit_Actual_Parameter (Old_Next)
/= Next_Named_Actual (Old_E)
loop
Next (Old_Next);
Next (New_Next);
end loop;
Set_Next_Named_Actual
(New_E, Explicit_Actual_Parameter (New_Next));
end if;
Next (Old_E);
Next (New_E);
end loop;
end Adjust_Named_Associations;
---------------------------------
-- Copy_Field_With_Replacement --
---------------------------------
function Copy_Field_With_Replacement
(Field : Union_Id) return Union_Id
is
begin
if Field = Union_Id (Empty) then
return Field;
elsif Field in Node_Range then
declare
Old_N : constant Node_Id := Node_Id (Field);
New_N : Node_Id;
begin
-- If syntactic field, as indicated by the parent pointer
-- being set, then copy the referenced node recursively.
if Parent (Old_N) = Old_Node then
New_N := Copy_Node_With_Replacement (Old_N);
if New_N /= Old_N then
Set_Parent (New_N, New_Node);
end if;
-- For semantic fields, update possible entity reference
-- from the replacement map.
else
New_N := Assoc (Old_N);
end if;
return Union_Id (New_N);
end;
elsif Field in List_Range then
declare
Old_L : constant List_Id := List_Id (Field);
New_L : List_Id;
begin
-- If syntactic field, as indicated by the parent pointer,
-- then recursively copy the entire referenced list.
if Parent (Old_L) = Old_Node then
New_L := Copy_List_With_Replacement (Old_L);
Set_Parent (New_L, New_Node);
-- For semantic list, just returned unchanged
else
New_L := Old_L;
end if;
return Union_Id (New_L);
end;
-- Anything other than a list or a node is returned unchanged
else
return Field;
end if;
end Copy_Field_With_Replacement;
-- Start of processing for Copy_Node_With_Replacement
begin
if Old_Node <= Empty_Or_Error then
return Old_Node;
elsif Has_Extension (Old_Node) then
return Assoc (Old_Node);
else
New_Node := New_Copy (Old_Node);
-- If the node we are copying is the associated node of a
-- previously copied Itype, then adjust the associated node
-- of the copy of that Itype accordingly.
if Present (Actual_Map) then
declare
E : Elmt_Id;
Ent : Entity_Id;
begin
-- Case of hash table used
if NCT_Hash_Tables_Used then
Ent := NCT_Itype_Assoc.Get (Old_Node);
if Present (Ent) then
Set_Associated_Node_For_Itype (Ent, New_Node);
end if;
-- Case of no hash table used
else
E := First_Elmt (Actual_Map);
while Present (E) loop
if Is_Itype (Node (E))
and then
Old_Node = Associated_Node_For_Itype (Node (E))
then
Set_Associated_Node_For_Itype
(Node (Next_Elmt (E)), New_Node);
end if;
E := Next_Elmt (Next_Elmt (E));
end loop;
end if;
end;
end if;
-- Recursively copy descendents
Set_Field1
(New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
Set_Field2
(New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
Set_Field3
(New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
Set_Field4
(New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
Set_Field5
(New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
-- Adjust Sloc of new node if necessary
if New_Sloc /= No_Location then
Set_Sloc (New_Node, New_Sloc);
-- If we adjust the Sloc, then we are essentially making
-- a completely new node, so the Comes_From_Source flag
-- should be reset to the proper default value.
Nodes.Table (New_Node).Comes_From_Source :=
Default_Node.Comes_From_Source;
end if;
-- If the node is call and has named associations,
-- set the corresponding links in the copy.
if (Nkind (Old_Node) = N_Function_Call
or else Nkind (Old_Node) = N_Entry_Call_Statement
or else
Nkind (Old_Node) = N_Procedure_Call_Statement)
and then Present (First_Named_Actual (Old_Node))
then
Adjust_Named_Associations (Old_Node, New_Node);
end if;
-- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
-- The replacement mechanism applies to entities, and is not used
-- here. Eventually we may need a more general graph-copying
-- routine. For now, do a sequential search to find desired node.
if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
and then Present (First_Real_Statement (Old_Node))
then
declare
Old_F : constant Node_Id := First_Real_Statement (Old_Node);
N1, N2 : Node_Id;
begin
N1 := First (Statements (Old_Node));
N2 := First (Statements (New_Node));
while N1 /= Old_F loop
Next (N1);
Next (N2);
end loop;
Set_First_Real_Statement (New_Node, N2);
end;
end if;
end if;
-- All done, return copied node
return New_Node;
end Copy_Node_With_Replacement;
-----------------
-- Visit_Elist --
-----------------
procedure Visit_Elist (E : Elist_Id) is
Elmt : Elmt_Id;
begin
if Present (E) then
Elmt := First_Elmt (E);
while Elmt /= No_Elmt loop
Visit_Node (Node (Elmt));
Next_Elmt (Elmt);
end loop;
end if;
end Visit_Elist;
-----------------
-- Visit_Field --
-----------------
procedure Visit_Field (F : Union_Id; N : Node_Id) is
begin
if F = Union_Id (Empty) then
return;
elsif F in Node_Range then
-- Copy node if it is syntactic, i.e. its parent pointer is
-- set to point to the field that referenced it (certain
-- Itypes will also meet this criterion, which is fine, since
-- these are clearly Itypes that do need to be copied, since
-- we are copying their parent.)
if Parent (Node_Id (F)) = N then
Visit_Node (Node_Id (F));
return;
-- Another case, if we are pointing to an Itype, then we want
-- to copy it if its associated node is somewhere in the tree
-- being copied.
-- Note: the exclusion of self-referential copies is just an
-- optimization, since the search of the already copied list
-- would catch it, but it is a common case (Etype pointing
-- to itself for an Itype that is a base type).
elsif Has_Extension (Node_Id (F))
and then Is_Itype (Entity_Id (F))
and then Node_Id (F) /= N
then
declare
P : Node_Id;
begin
P := Associated_Node_For_Itype (Node_Id (F));
while Present (P) loop
if P = Source then
Visit_Node (Node_Id (F));
return;
else
P := Parent (P);
end if;
end loop;
-- An Itype whose parent is not being copied definitely
-- should NOT be copied, since it does not belong in any
-- sense to the copied subtree.
return;
end;
end if;
elsif F in List_Range and then Parent (List_Id (F)) = N then
Visit_List (List_Id (F));
return;
end if;
end Visit_Field;
-----------------
-- Visit_Itype --
-----------------
procedure Visit_Itype (Old_Itype : Entity_Id) is
New_Itype : Entity_Id;
E : Elmt_Id;
Ent : Entity_Id;
begin
-- Itypes that describe the designated type of access to subprograms
-- have the structure of subprogram declarations, with signatures,
-- etc. Either we duplicate the signatures completely, or choose to
-- share such itypes, which is fine because their elaboration will
-- have no side effects.
if Ekind (Old_Itype) = E_Subprogram_Type then
return;
end if;
New_Itype := New_Copy (Old_Itype);
-- The new Itype has all the attributes of the old one, and
-- we just copy the contents of the entity. However, the back-end
-- needs different names for debugging purposes, so we create a
-- new internal name for it in all cases.
Set_Chars (New_Itype, New_Internal_Name ('T'));
-- If our associated node is an entity that has already been copied,
-- then set the associated node of the copy to point to the right
-- copy. If we have copied an Itype that is itself the associated
-- node of some previously copied Itype, then we set the right
-- pointer in the other direction.
if Present (Actual_Map) then
-- Case of hash tables used
if NCT_Hash_Tables_Used then
Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
if Present (Ent) then
Set_Associated_Node_For_Itype (New_Itype, Ent);
end if;
Ent := NCT_Itype_Assoc.Get (Old_Itype);
if Present (Ent) then
Set_Associated_Node_For_Itype (Ent, New_Itype);
-- If the hash table has no association for this Itype and
-- its associated node, enter one now.
else
NCT_Itype_Assoc.Set
(Associated_Node_For_Itype (Old_Itype), New_Itype);
end if;
-- Case of hash tables not used
else
E := First_Elmt (Actual_Map);
while Present (E) loop
if Associated_Node_For_Itype (Old_Itype) = Node (E) then
Set_Associated_Node_For_Itype
(New_Itype, Node (Next_Elmt (E)));
end if;
if Is_Type (Node (E))
and then Old_Itype = Associated_Node_For_Itype (Node (E))
then
Set_Associated_Node_For_Itype
(Node (Next_Elmt (E)), New_Itype);
end if;
E := Next_Elmt (Next_Elmt (E));
end loop;
end if;
end if;
if Present (Freeze_Node (New_Itype)) then
Set_Is_Frozen (New_Itype, False);
Set_Freeze_Node (New_Itype, Empty);
end if;
-- Add new association to map
if No (Actual_Map) then
Actual_Map := New_Elmt_List;
end if;
Append_Elmt (Old_Itype, Actual_Map);
Append_Elmt (New_Itype, Actual_Map);
if NCT_Hash_Tables_Used then
NCT_Assoc.Set (Old_Itype, New_Itype);
else
NCT_Table_Entries := NCT_Table_Entries + 1;
if NCT_Table_Entries > NCT_Hash_Threshold then
Build_NCT_Hash_Tables;
end if;
end if;
-- If a record subtype is simply copied, the entity list will be
-- shared. Thus cloned_Subtype must be set to indicate the sharing.
if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
Set_Cloned_Subtype (New_Itype, Old_Itype);
end if;
-- Visit descendents that eventually get copied
Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
if Is_Discrete_Type (Old_Itype) then
Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
elsif Has_Discriminants (Base_Type (Old_Itype)) then
-- ??? This should involve call to Visit_Field
Visit_Elist (Discriminant_Constraint (Old_Itype));
elsif Is_Array_Type (Old_Itype) then
if Present (First_Index (Old_Itype)) then
Visit_Field (Union_Id (List_Containing
(First_Index (Old_Itype))),
Old_Itype);
end if;
if Is_Packed (Old_Itype) then
Visit_Field (Union_Id (Packed_Array_Impl_Type (Old_Itype)),
Old_Itype);
end if;
end if;
end Visit_Itype;
----------------
-- Visit_List --
----------------
procedure Visit_List (L : List_Id) is
N : Node_Id;
begin
if L /= No_List then
N := First (L);
while Present (N) loop
Visit_Node (N);
Next (N);
end loop;
end if;
end Visit_List;
----------------
-- Visit_Node --
----------------
procedure Visit_Node (N : Node_Or_Entity_Id) is
-- Start of processing for Visit_Node
begin
-- Handle case of an Itype, which must be copied
if Has_Extension (N) and then Is_Itype (N) then
-- Nothing to do if already in the list. This can happen with an
-- Itype entity that appears more than once in the tree.
-- Note that we do not want to visit descendents in this case.
-- Test for already in list when hash table is used
if NCT_Hash_Tables_Used then
if Present (NCT_Assoc.Get (Entity_Id (N))) then
return;
end if;
-- Test for already in list when hash table not used
else
declare
E : Elmt_Id;
begin
if Present (Actual_Map) then
E := First_Elmt (Actual_Map);
while Present (E) loop
if Node (E) = N then
return;
else
E := Next_Elmt (Next_Elmt (E));
end if;
end loop;
end if;
end;
end if;
Visit_Itype (N);
end if;
-- Visit descendents
Visit_Field (Field1 (N), N);
Visit_Field (Field2 (N), N);
Visit_Field (Field3 (N), N);
Visit_Field (Field4 (N), N);
Visit_Field (Field5 (N), N);
end Visit_Node;
-- Start of processing for New_Copy_Tree
begin
Actual_Map := Map;
-- See if we should use hash table
if No (Actual_Map) then
NCT_Hash_Tables_Used := False;
else
declare
Elmt : Elmt_Id;
begin
NCT_Table_Entries := 0;
Elmt := First_Elmt (Actual_Map);
while Present (Elmt) loop
NCT_Table_Entries := NCT_Table_Entries + 1;
Next_Elmt (Elmt);
Next_Elmt (Elmt);
end loop;
if NCT_Table_Entries > NCT_Hash_Threshold then
Build_NCT_Hash_Tables;
else
NCT_Hash_Tables_Used := False;
end if;
end;
end if;
-- Hash table set up if required, now start phase one by visiting
-- top node (we will recursively visit the descendents).
Visit_Node (Source);
-- Now the second phase of the copy can start. First we process
-- all the mapped entities, copying their descendents.
if Present (Actual_Map) then
declare
Elmt : Elmt_Id;
New_Itype : Entity_Id;
begin
Elmt := First_Elmt (Actual_Map);
while Present (Elmt) loop
Next_Elmt (Elmt);
New_Itype := Node (Elmt);
Copy_Itype_With_Replacement (New_Itype);
Next_Elmt (Elmt);
end loop;
end;
end if;
-- Now we can copy the actual tree
return Copy_Node_With_Replacement (Source);
end New_Copy_Tree;
-------------------------
-- New_External_Entity --
-------------------------
function New_External_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Related_Id : Entity_Id;
Suffix : Character;
Suffix_Index : Nat := 0;
Prefix : Character := ' ') return Entity_Id
is
N : constant Entity_Id :=
Make_Defining_Identifier (Sloc_Value,
New_External_Name
(Chars (Related_Id), Suffix, Suffix_Index, Prefix));
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
Set_Public_Status (N);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_External_Entity;
-------------------------
-- New_Internal_Entity --
-------------------------
function New_Internal_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Id_Char : Character) return Entity_Id
is
N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_Internal_Entity;
-----------------
-- Next_Actual --
-----------------
function Next_Actual (Actual_Id : Node_Id) return Node_Id is
N : Node_Id;
begin
-- If we are pointing at a positional parameter, it is a member of a
-- node list (the list of parameters), and the next parameter is the
-- next node on the list, unless we hit a parameter association, then
-- we shift to using the chain whose head is the First_Named_Actual in
-- the parent, and then is threaded using the Next_Named_Actual of the
-- Parameter_Association. All this fiddling is because the original node
-- list is in the textual call order, and what we need is the
-- declaration order.
if Is_List_Member (Actual_Id) then
N := Next (Actual_Id);
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Parent (Actual_Id));
else
return N;
end if;
else
return Next_Named_Actual (Parent (Actual_Id));
end if;
end Next_Actual;
procedure Next_Actual (Actual_Id : in out Node_Id) is
begin
Actual_Id := Next_Actual (Actual_Id);
end Next_Actual;
-----------------------
-- Normalize_Actuals --
-----------------------
-- Chain actuals according to formals of subprogram. If there are no named
-- associations, the chain is simply the list of Parameter Associations,
-- since the order is the same as the declaration order. If there are named
-- associations, then the First_Named_Actual field in the N_Function_Call
-- or N_Procedure_Call_Statement node points to the Parameter_Association
-- node for the parameter that comes first in declaration order. The
-- remaining named parameters are then chained in declaration order using
-- Next_Named_Actual.
-- This routine also verifies that the number of actuals is compatible with
-- the number and default values of formals, but performs no type checking
-- (type checking is done by the caller).
-- If the matching succeeds, Success is set to True and the caller proceeds
-- with type-checking. If the match is unsuccessful, then Success is set to
-- False, and the caller attempts a different interpretation, if there is
-- one.
-- If the flag Report is on, the call is not overloaded, and a failure to
-- match can be reported here, rather than in the caller.
procedure Normalize_Actuals
(N : Node_Id;
S : Entity_Id;
Report : Boolean;
Success : out Boolean)
is
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id := Empty;
Formal : Entity_Id;
Last : Node_Id := Empty;
First_Named : Node_Id := Empty;
Found : Boolean;
Formals_To_Match : Integer := 0;
Actuals_To_Match : Integer := 0;
procedure Chain (A : Node_Id);
-- Add named actual at the proper place in the list, using the
-- Next_Named_Actual link.
function Reporting return Boolean;
-- Determines if an error is to be reported. To report an error, we
-- need Report to be True, and also we do not report errors caused
-- by calls to init procs that occur within other init procs. Such
-- errors must always be cascaded errors, since if all the types are
-- declared correctly, the compiler will certainly build decent calls.
-----------
-- Chain --
-----------
procedure Chain (A : Node_Id) is
begin
if No (Last) then
-- Call node points to first actual in list
Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
else
Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
end if;
Last := A;
Set_Next_Named_Actual (Last, Empty);
end Chain;
---------------
-- Reporting --
---------------
function Reporting return Boolean is
begin
if not Report then
return False;
elsif not Within_Init_Proc then
return True;
elsif Is_Init_Proc (Entity (Name (N))) then
return False;
else
return True;
end if;
end Reporting;
-- Start of processing for Normalize_Actuals
begin
if Is_Access_Type (S) then
-- The name in the call is a function call that returns an access
-- to subprogram. The designated type has the list of formals.
Formal := First_Formal (Designated_Type (S));
else
Formal := First_Formal (S);
end if;
while Present (Formal) loop
Formals_To_Match := Formals_To_Match + 1;
Next_Formal (Formal);
end loop;
-- Find if there is a named association, and verify that no positional
-- associations appear after named ones.
if Present (Actuals) then
Actual := First (Actuals);
end if;
while Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
loop
Actuals_To_Match := Actuals_To_Match + 1;
Next (Actual);
end loop;
if No (Actual) and Actuals_To_Match = Formals_To_Match then
-- Most common case: positional notation, no defaults
Success := True;
return;
elsif Actuals_To_Match > Formals_To_Match then
-- Too many actuals: will not work
if Reporting then
if Is_Entity_Name (Name (N)) then
Error_Msg_N ("too many arguments in call to&", Name (N));
else
Error_Msg_N ("too many arguments in call", N);
end if;
end if;
Success := False;
return;
end if;
First_Named := Actual;
while Present (Actual) loop
if Nkind (Actual) /= N_Parameter_Association then
Error_Msg_N
("positional parameters not allowed after named ones", Actual);
Success := False;
return;
else
Actuals_To_Match := Actuals_To_Match + 1;
end if;
Next (Actual);
end loop;
if Present (Actuals) then
Actual := First (Actuals);
end if;
Formal := First_Formal (S);
while Present (Formal) loop
-- Match the formals in order. If the corresponding actual is
-- positional, nothing to do. Else scan the list of named actuals
-- to find the one with the right name.
if Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
then
Next (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
else
-- For named parameters, search the list of actuals to find
-- one that matches the next formal name.
Actual := First_Named;
Found := False;
while Present (Actual) loop
if Chars (Selector_Name (Actual)) = Chars (Formal) then
Found := True;
Chain (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
exit;
end if;
Next (Actual);
end loop;
if not Found then
if Ekind (Formal) /= E_In_Parameter
or else No (Default_Value (Formal))
then
if Reporting then
if (Comes_From_Source (S)
or else Sloc (S) = Standard_Location)
and then Is_Overloadable (S)
then
if No (Actuals)
and then
Nkind_In (Parent (N), N_Procedure_Call_Statement,
N_Function_Call,
N_Parameter_Association)
and then Ekind (S) /= E_Function
then
Set_Etype (N, Etype (S));
else
Error_Msg_Name_1 := Chars (S);
Error_Msg_Sloc := Sloc (S);
Error_Msg_NE
("missing argument for parameter & " &
"in call to % declared #", N, Formal);
end if;
elsif Is_Overloadable (S) then
Error_Msg_Name_1 := Chars (S);
-- Point to type derivation that generated the
-- operation.
Error_Msg_Sloc := Sloc (Parent (S));
Error_Msg_NE
("missing argument for parameter & " &
"in call to % (inherited) #", N, Formal);
else
Error_Msg_NE
("missing argument for parameter &", N, Formal);
end if;
end if;
Success := False;
return;
else
Formals_To_Match := Formals_To_Match - 1;
end if;
end if;
end if;
Next_Formal (Formal);
end loop;
if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
Success := True;
return;
else
if Reporting then
-- Find some superfluous named actual that did not get
-- attached to the list of associations.
Actual := First (Actuals);
while Present (Actual) loop
if Nkind (Actual) = N_Parameter_Association
and then Actual /= Last
and then No (Next_Named_Actual (Actual))
then
Error_Msg_N ("unmatched actual & in call",
Selector_Name (Actual));
exit;
end if;
Next (Actual);
end loop;
end if;
Success := False;
return;
end if;
end Normalize_Actuals;
--------------------------------
-- Note_Possible_Modification --
--------------------------------
procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
Modification_Comes_From_Source : constant Boolean :=
Comes_From_Source (Parent (N));
Ent : Entity_Id;
Exp : Node_Id;
begin
-- Loop to find referenced entity, if there is one
Exp := N;
loop
Ent := Empty;
if Is_Entity_Name (Exp) then
Ent := Entity (Exp);
-- If the entity is missing, it is an undeclared identifier,
-- and there is nothing to annotate.
if No (Ent) then
return;
end if;
elsif Nkind (Exp) = N_Explicit_Dereference then
declare
P : constant Node_Id := Prefix (Exp);
begin
-- In formal verification mode, keep track of all reads and
-- writes through explicit dereferences.
if GNATprove_Mode then
SPARK_Specific.Generate_Dereference (N, 'm');
end if;
if Nkind (P) = N_Selected_Component
and then Present (Entry_Formal (Entity (Selector_Name (P))))
then
-- Case of a reference to an entry formal
Ent := Entry_Formal (Entity (Selector_Name (P)));
elsif Nkind (P) = N_Identifier
and then Nkind (Parent (Entity (P))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (P))))
and then Nkind (Expression (Parent (Entity (P)))) =
N_Reference
then
-- Case of a reference to a value on which side effects have
-- been removed.
Exp := Prefix (Expression (Parent (Entity (P))));
goto Continue;
else
return;
end if;
end;
elsif Nkind_In (Exp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Exp := Expression (Exp);
goto Continue;
elsif Nkind_In (Exp, N_Slice,
N_Indexed_Component,
N_Selected_Component)
then
-- Special check, if the prefix is an access type, then return
-- since we are modifying the thing pointed to, not the prefix.
-- When we are expanding, most usually the prefix is replaced
-- by an explicit dereference, and this test is not needed, but
-- in some cases (notably -gnatc mode and generics) when we do
-- not do full expansion, we need this special test.
if Is_Access_Type (Etype (Prefix (Exp))) then
return;
-- Otherwise go to prefix and keep going
else
Exp := Prefix (Exp);
goto Continue;
end if;
-- All other cases, not a modification
else
return;
end if;
-- Now look for entity being referenced
if Present (Ent) then
if Is_Object (Ent) then
if Comes_From_Source (Exp)
or else Modification_Comes_From_Source
then
-- Give warning if pragma unmodified given and we are
-- sure this is a modification.
if Has_Pragma_Unmodified (Ent) and then Sure then
Error_Msg_NE
("??pragma Unmodified given for &!", N, Ent);
end if;
Set_Never_Set_In_Source (Ent, False);
end if;
Set_Is_True_Constant (Ent, False);
Set_Current_Value (Ent, Empty);
Set_Is_Known_Null (Ent, False);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
-- Follow renaming chain
if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
and then Present (Renamed_Object (Ent))
then
Exp := Renamed_Object (Ent);
-- If the entity is the loop variable in an iteration over
-- a container, retrieve container expression to indicate
-- possible modificastion.
if Present (Related_Expression (Ent))
and then Nkind (Parent (Related_Expression (Ent))) =
N_Iterator_Specification
then
Exp := Original_Node (Related_Expression (Ent));
end if;
goto Continue;
-- The expression may be the renaming of a subcomponent of an
-- array or container. The assignment to the subcomponent is
-- a modification of the container.
elsif Comes_From_Source (Original_Node (Exp))
and then Nkind_In (Original_Node (Exp), N_Selected_Component,
N_Indexed_Component)
then
Exp := Prefix (Original_Node (Exp));
goto Continue;
end if;
-- Generate a reference only if the assignment comes from
-- source. This excludes, for example, calls to a dispatching
-- assignment operation when the left-hand side is tagged. In
-- GNATprove mode, we need those references also on generated
-- code, as these are used to compute the local effects of
-- subprograms.
if Modification_Comes_From_Source or GNATprove_Mode then
Generate_Reference (Ent, Exp, 'm');
-- If the target of the assignment is the bound variable
-- in an iterator, indicate that the corresponding array
-- or container is also modified.
if Ada_Version >= Ada_2012
and then Nkind (Parent (Ent)) = N_Iterator_Specification
then
declare
Domain : constant Node_Id := Name (Parent (Ent));
begin
-- TBD : in the full version of the construct, the
-- domain of iteration can be given by an expression.
if Is_Entity_Name (Domain) then
Generate_Reference (Entity (Domain), Exp, 'm');
Set_Is_True_Constant (Entity (Domain), False);
Set_Never_Set_In_Source (Entity (Domain), False);
end if;
end;
end if;
end if;
Check_Nested_Access (Ent);
end if;
Kill_Checks (Ent);
-- If we are sure this is a modification from source, and we know
-- this modifies a constant, then give an appropriate warning.
if Overlays_Constant (Ent)
and then Modification_Comes_From_Source
and then Sure
then
declare
A : constant Node_Id := Address_Clause (Ent);
begin
if Present (A) then
declare
Exp : constant Node_Id := Expression (A);
begin
if Nkind (Exp) = N_Attribute_Reference
and then Attribute_Name (Exp) = Name_Address
and then Is_Entity_Name (Prefix (Exp))
then
Error_Msg_Sloc := Sloc (A);
Error_Msg_NE
("constant& may be modified via address "
& "clause#??", N, Entity (Prefix (Exp)));
end if;
end;
end if;
end;
end if;
return;
end if;
<<Continue>>
null;
end loop;
end Note_Possible_Modification;
-------------------------
-- Object_Access_Level --
-------------------------
-- Returns the static accessibility level of the view denoted by Obj. Note
-- that the value returned is the result of a call to Scope_Depth. Only
-- scope depths associated with dynamic scopes can actually be returned.
-- Since only relative levels matter for accessibility checking, the fact
-- that the distance between successive levels of accessibility is not
-- always one is immaterial (invariant: if level(E2) is deeper than
-- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
function Object_Access_Level (Obj : Node_Id) return Uint is
function Is_Interface_Conversion (N : Node_Id) return Boolean;
-- Determine whether N is a construct of the form
-- Some_Type (Operand._tag'Address)
-- This construct appears in the context of dispatching calls.
function Reference_To (Obj : Node_Id) return Node_Id;
-- An explicit dereference is created when removing side-effects from
-- expressions for constraint checking purposes. In this case a local
-- access type is created for it. The correct access level is that of
-- the original source node. We detect this case by noting that the
-- prefix of the dereference is created by an object declaration whose
-- initial expression is a reference.
-----------------------------
-- Is_Interface_Conversion --
-----------------------------
function Is_Interface_Conversion (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Unchecked_Type_Conversion
and then Nkind (Expression (N)) = N_Attribute_Reference
and then Attribute_Name (Expression (N)) = Name_Address;
end Is_Interface_Conversion;
------------------
-- Reference_To --
------------------
function Reference_To (Obj : Node_Id) return Node_Id is
Pref : constant Node_Id := Prefix (Obj);
begin
if Is_Entity_Name (Pref)
and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (Pref))))
and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
then
return (Prefix (Expression (Parent (Entity (Pref)))));
else
return Empty;
end if;
end Reference_To;
-- Local variables
E : Entity_Id;
-- Start of processing for Object_Access_Level
begin
if Nkind (Obj) = N_Defining_Identifier
or else Is_Entity_Name (Obj)
then
if Nkind (Obj) = N_Defining_Identifier then
E := Obj;
else
E := Entity (Obj);
end if;
if Is_Prival (E) then
E := Prival_Link (E);
end if;
-- If E is a type then it denotes a current instance. For this case
-- we add one to the normal accessibility level of the type to ensure
-- that current instances are treated as always being deeper than
-- than the level of any visible named access type (see 3.10.2(21)).
if Is_Type (E) then
return Type_Access_Level (E) + 1;
elsif Present (Renamed_Object (E)) then
return Object_Access_Level (Renamed_Object (E));
-- Similarly, if E is a component of the current instance of a
-- protected type, any instance of it is assumed to be at a deeper
-- level than the type. For a protected object (whose type is an
-- anonymous protected type) its components are at the same level
-- as the type itself.
elsif not Is_Overloadable (E)
and then Ekind (Scope (E)) = E_Protected_Type
and then Comes_From_Source (Scope (E))
then
return Type_Access_Level (Scope (E)) + 1;
else
-- Aliased formals take their access level from the point of call.
-- This is smaller than the level of the subprogram itself.
if Is_Formal (E) and then Is_Aliased (E) then
return Type_Access_Level (Etype (E));
else
return Scope_Depth (Enclosing_Dynamic_Scope (E));
end if;
end if;
elsif Nkind (Obj) = N_Selected_Component then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Indexed_Component then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Explicit_Dereference then
-- If the prefix is a selected access discriminant then we make a
-- recursive call on the prefix, which will in turn check the level
-- of the prefix object of the selected discriminant.
if Nkind (Prefix (Obj)) = N_Selected_Component
and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
and then
Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
then
return Object_Access_Level (Prefix (Obj));
-- Detect an interface conversion in the context of a dispatching
-- call. Use the original form of the conversion to find the access
-- level of the operand.
elsif Is_Interface (Etype (Obj))
and then Is_Interface_Conversion (Prefix (Obj))
and then Nkind (Original_Node (Obj)) = N_Type_Conversion
then
return Object_Access_Level (Original_Node (Obj));
elsif not Comes_From_Source (Obj) then
declare
Ref : constant Node_Id := Reference_To (Obj);
begin
if Present (Ref) then
return Object_Access_Level (Ref);
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
end;
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
return Object_Access_Level (Expression (Obj));
elsif Nkind (Obj) = N_Function_Call then
-- Function results are objects, so we get either the access level of
-- the function or, in the case of an indirect call, the level of the
-- access-to-subprogram type. (This code is used for Ada 95, but it
-- looks wrong, because it seems that we should be checking the level
-- of the call itself, even for Ada 95. However, using the Ada 2005
-- version of the code causes regressions in several tests that are
-- compiled with -gnat95. ???)
if Ada_Version < Ada_2005 then
if Is_Entity_Name (Name (Obj)) then
return Subprogram_Access_Level (Entity (Name (Obj)));
else
return Type_Access_Level (Etype (Prefix (Name (Obj))));
end if;
-- For Ada 2005, the level of the result object of a function call is
-- defined to be the level of the call's innermost enclosing master.
-- We determine that by querying the depth of the innermost enclosing
-- dynamic scope.
else
Return_Master_Scope_Depth_Of_Call : declare
function Innermost_Master_Scope_Depth
(N : Node_Id) return Uint;
-- Returns the scope depth of the given node's innermost
-- enclosing dynamic scope (effectively the accessibility
-- level of the innermost enclosing master).
----------------------------------
-- Innermost_Master_Scope_Depth --
----------------------------------
function Innermost_Master_Scope_Depth
(N : Node_Id) return Uint
is
Node_Par : Node_Id := Parent (N);
begin
-- Locate the nearest enclosing node (by traversing Parents)
-- that Defining_Entity can be applied to, and return the
-- depth of that entity's nearest enclosing dynamic scope.
while Present (Node_Par) loop
case Nkind (Node_Par) is
when N_Component_Declaration |
N_Entry_Declaration |
N_Formal_Object_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Incomplete_Type_Declaration |
N_Loop_Parameter_Specification |
N_Object_Declaration |
N_Protected_Type_Declaration |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Subtype_Declaration |
N_Function_Specification |
N_Procedure_Specification |
N_Task_Type_Declaration |
N_Body_Stub |
N_Generic_Instantiation |
N_Proper_Body |
N_Implicit_Label_Declaration |
N_Package_Declaration |
N_Single_Task_Declaration |
N_Subprogram_Declaration |
N_Generic_Declaration |
N_Renaming_Declaration |
N_Block_Statement |
N_Formal_Subprogram_Declaration |
N_Abstract_Subprogram_Declaration |
N_Entry_Body |
N_Exception_Declaration |
N_Formal_Package_Declaration |
N_Number_Declaration |
N_Package_Specification |
N_Parameter_Specification |
N_Single_Protected_Declaration |
N_Subunit =>
return Scope_Depth
(Nearest_Dynamic_Scope
(Defining_Entity (Node_Par)));
when others =>
null;
end case;
Node_Par := Parent (Node_Par);
end loop;
pragma Assert (False);
-- Should never reach the following return
return Scope_Depth (Current_Scope) + 1;
end Innermost_Master_Scope_Depth;
-- Start of processing for Return_Master_Scope_Depth_Of_Call
begin
return Innermost_Master_Scope_Depth (Obj);
end Return_Master_Scope_Depth_Of_Call;
end if;
-- For convenience we handle qualified expressions, even though they
-- aren't technically object names.
elsif Nkind (Obj) = N_Qualified_Expression then
return Object_Access_Level (Expression (Obj));
-- Ditto for aggregates. They have the level of the temporary that
-- will hold their value.
elsif Nkind (Obj) = N_Aggregate then
return Object_Access_Level (Current_Scope);
-- Otherwise return the scope level of Standard. (If there are cases
-- that fall through to this point they will be treated as having
-- global accessibility for now. ???)
else
return Scope_Depth (Standard_Standard);
end if;
end Object_Access_Level;
--------------------------
-- Original_Aspect_Name --
--------------------------
function Original_Aspect_Name (N : Node_Id) return Name_Id is
Pras : Node_Id;
Name : Name_Id;
begin
pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
Pras := N;
if Is_Rewrite_Substitution (Pras)
and then Nkind (Original_Node (Pras)) = N_Pragma
then
Pras := Original_Node (Pras);
end if;
-- Case where we came from aspect specication
if Nkind (Pras) = N_Pragma and then From_Aspect_Specification (Pras) then
Pras := Corresponding_Aspect (Pras);
end if;
-- Get name from aspect or pragma
if Nkind (Pras) = N_Pragma then
Name := Pragma_Name (Pras);
else
Name := Chars (Identifier (Pras));
end if;
-- Deal with 'Class
if Class_Present (Pras) then
case Name is
-- Names that need converting to special _xxx form
when Name_Pre |
Name_Pre_Class =>
Name := Name_uPre;
when Name_Post |
Name_Post_Class =>
Name := Name_uPost;
when Name_Invariant =>
Name := Name_uInvariant;
when Name_Type_Invariant |
Name_Type_Invariant_Class =>
Name := Name_uType_Invariant;
-- Nothing to do for other cases (e.g. a Check that derived
-- from Pre_Class and has the flag set). Also we do nothing
-- if the name is already in special _xxx form.
when others =>
null;
end case;
end if;
return Name;
end Original_Aspect_Name;
--------------------------------------
-- Original_Corresponding_Operation --
--------------------------------------
function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
is
Typ : constant Entity_Id := Find_Dispatching_Type (S);
begin
-- If S is an inherited primitive S2 the original corresponding
-- operation of S is the original corresponding operation of S2
if Present (Alias (S))
and then Find_Dispatching_Type (Alias (S)) /= Typ
then
return Original_Corresponding_Operation (Alias (S));
-- If S overrides an inherited subprogram S2 the original corresponding
-- operation of S is the original corresponding operation of S2
elsif Present (Overridden_Operation (S)) then
return Original_Corresponding_Operation (Overridden_Operation (S));
-- otherwise it is S itself
else
return S;
end if;
end Original_Corresponding_Operation;
----------------------------------
-- Predicate_Tests_On_Arguments --
----------------------------------
function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
begin
-- Always test predicates on indirect call
if Ekind (Subp) = E_Subprogram_Type then
return True;
-- Do not test predicates on call to generated default Finalize, since
-- we are not interested in whether something we are finalizing (and
-- typically destroying) satisfies its predicates.
elsif Chars (Subp) = Name_Finalize
and then not Comes_From_Source (Subp)
then
return False;
-- Do not test predicates on any internally generated routines
elsif Is_Internal_Name (Chars (Subp)) then
return False;
-- Do not test predicates on call to Init_Proc, since if needed the
-- predicate test will occur at some other point.
elsif Is_Init_Proc (Subp) then
return False;
-- Do not test predicates on call to predicate function, since this
-- would cause infinite recursion.
elsif Ekind (Subp) = E_Function
and then (Is_Predicate_Function (Subp)
or else
Is_Predicate_Function_M (Subp))
then
return False;
-- For now, no other exceptions
else
return True;
end if;
end Predicate_Tests_On_Arguments;
-----------------------
-- Private_Component --
-----------------------
function Private_Component (Type_Id : Entity_Id) return Entity_Id is
Ancestor : constant Entity_Id := Base_Type (Type_Id);
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id;
-- Recursive function that does the work, and checks against circular
-- definition for each subcomponent type.
----------------------
-- Trace_Components --
----------------------
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id
is
Btype : constant Entity_Id := Base_Type (T);
Component : Entity_Id;
P : Entity_Id;
Candidate : Entity_Id := Empty;
begin
if Check and then Btype = Ancestor then
Error_Msg_N ("circular type definition", Type_Id);
return Any_Type;
end if;
if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
if Present (Full_View (Btype))
and then Is_Record_Type (Full_View (Btype))
and then not Is_Frozen (Btype)
then
-- To indicate that the ancestor depends on a private type, the
-- current Btype is sufficient. However, to check for circular
-- definition we must recurse on the full view.
Candidate := Trace_Components (Full_View (Btype), True);
if Candidate = Any_Type then
return Any_Type;
else
return Btype;
end if;
else
return Btype;
end if;
elsif Is_Array_Type (Btype) then
return Trace_Components (Component_Type (Btype), True);
elsif Is_Record_Type (Btype) then
Component := First_Entity (Btype);
while Present (Component)
and then Comes_From_Source (Component)
loop
-- Skip anonymous types generated by constrained components
if not Is_Type (Component) then
P := Trace_Components (Etype (Component), True);
if Present (P) then
if P = Any_Type then
return P;
else
Candidate := P;
end if;
end if;
end if;
Next_Entity (Component);
end loop;
return Candidate;
else
return Empty;
end if;
end Trace_Components;
-- Start of processing for Private_Component
begin
return Trace_Components (Type_Id, False);
end Private_Component;
---------------------------
-- Primitive_Names_Match --
---------------------------
function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
function Non_Internal_Name (E : Entity_Id) return Name_Id;
-- Given an internal name, returns the corresponding non-internal name
------------------------
-- Non_Internal_Name --
------------------------
function Non_Internal_Name (E : Entity_Id) return Name_Id is
begin
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end Non_Internal_Name;
-- Start of processing for Primitive_Names_Match
begin
pragma Assert (Present (E1) and then Present (E2));
return Chars (E1) = Chars (E2)
or else
(not Is_Internal_Name (Chars (E1))
and then Is_Internal_Name (Chars (E2))
and then Non_Internal_Name (E2) = Chars (E1))
or else
(not Is_Internal_Name (Chars (E2))
and then Is_Internal_Name (Chars (E1))
and then Non_Internal_Name (E1) = Chars (E2))
or else
(Is_Predefined_Dispatching_Operation (E1)
and then Is_Predefined_Dispatching_Operation (E2)
and then Same_TSS (E1, E2))
or else
(Is_Init_Proc (E1) and then Is_Init_Proc (E2));
end Primitive_Names_Match;
-----------------------
-- Process_End_Label --
-----------------------
procedure Process_End_Label
(N : Node_Id;
Typ : Character;
Ent : Entity_Id)
is
Loc : Source_Ptr;
Nam : Node_Id;
Scop : Entity_Id;
Label_Ref : Boolean;
-- Set True if reference to end label itself is required
Endl : Node_Id;
-- Gets set to the operator symbol or identifier that references the
-- entity Ent. For the child unit case, this is the identifier from the
-- designator. For other cases, this is simply Endl.
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
-- N is an identifier node that appears as a parent unit reference in
-- the case where Ent is a child unit. This procedure generates an
-- appropriate cross-reference entry. E is the corresponding entity.
-------------------------
-- Generate_Parent_Ref --
-------------------------
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
begin
-- If names do not match, something weird, skip reference
if Chars (E) = Chars (N) then
-- Generate the reference. We do NOT consider this as a reference
-- for unreferenced symbol purposes.
Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
if Style_Check then
Style.Check_Identifier (N, E);
end if;
end if;
end Generate_Parent_Ref;
-- Start of processing for Process_End_Label
begin
-- If no node, ignore. This happens in some error situations, and
-- also for some internally generated structures where no end label
-- references are required in any case.
if No (N) then
return;
end if;
-- Nothing to do if no End_Label, happens for internally generated
-- constructs where we don't want an end label reference anyway. Also
-- nothing to do if Endl is a string literal, which means there was
-- some prior error (bad operator symbol)
Endl := End_Label (N);
if No (Endl) or else Nkind (Endl) = N_String_Literal then
return;
end if;
-- Reference node is not in extended main source unit
if not In_Extended_Main_Source_Unit (N) then
-- Generally we do not collect references except for the extended
-- main source unit. The one exception is the 'e' entry for a
-- package spec, where it is useful for a client to have the
-- ending information to define scopes.
if Typ /= 'e' then
return;
else
Label_Ref := False;
-- For this case, we can ignore any parent references, but we
-- need the package name itself for the 'e' entry.
if Nkind (Endl) = N_Designator then
Endl := Identifier (Endl);
end if;
end if;
-- Reference is in extended main source unit
else
Label_Ref := True;
-- For designator, generate references for the parent entries
if Nkind (Endl) = N_Designator then
-- Generate references for the prefix if the END line comes from
-- source (otherwise we do not need these references) We climb the
-- scope stack to find the expected entities.
if Comes_From_Source (Endl) then
Nam := Name (Endl);
Scop := Current_Scope;
while Nkind (Nam) = N_Selected_Component loop
Scop := Scope (Scop);
exit when No (Scop);
Generate_Parent_Ref (Selector_Name (Nam), Scop);
Nam := Prefix (Nam);
end loop;
if Present (Scop) then
Generate_Parent_Ref (Nam, Scope (Scop));
end if;
end if;
Endl := Identifier (Endl);
end if;
end if;
-- If the end label is not for the given entity, then either we have
-- some previous error, or this is a generic instantiation for which
-- we do not need to make a cross-reference in this case anyway. In
-- either case we simply ignore the call.
if Chars (Ent) /= Chars (Endl) then
return;
end if;
-- If label was really there, then generate a normal reference and then
-- adjust the location in the end label to point past the name (which
-- should almost always be the semicolon).
Loc := Sloc (Endl);
if Comes_From_Source (Endl) then
-- If a label reference is required, then do the style check and
-- generate an l-type cross-reference entry for the label
if Label_Ref then
if Style_Check then
Style.Check_Identifier (Endl, Ent);
end if;
Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
end if;
-- Set the location to point past the label (normally this will
-- mean the semicolon immediately following the label). This is
-- done for the sake of the 'e' or 't' entry generated below.
Get_Decoded_Name_String (Chars (Endl));
Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
else
-- In SPARK mode, no missing label is allowed for packages and
-- subprogram bodies. Detect those cases by testing whether
-- Process_End_Label was called for a body (Typ = 't') or a package.
if Restriction_Check_Required (SPARK_05)
and then (Typ = 't' or else Ekind (Ent) = E_Package)
then
Error_Msg_Node_1 := Endl;
Check_SPARK_Restriction ("`END &` required", Endl, Force => True);
end if;
end if;
-- Now generate the e/t reference
Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
-- Restore Sloc, in case modified above, since we have an identifier
-- and the normal Sloc should be left set in the tree.
Set_Sloc (Endl, Loc);
end Process_End_Label;
----------------
-- Referenced --
----------------
function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
Seen : Boolean := False;
function Is_Reference (N : Node_Id) return Traverse_Result;
-- Determine whether node N denotes a reference to Id. If this is the
-- case, set global flag Seen to True and stop the traversal.
------------------
-- Is_Reference --
------------------
function Is_Reference (N : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (N)
and then Present (Entity (N))
and then Entity (N) = Id
then
Seen := True;
return Abandon;
else
return OK;
end if;
end Is_Reference;
procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
-- Start of processing for Referenced
begin
Inspect_Expression (Expr);
return Seen;
end Referenced;
------------------------------------
-- References_Generic_Formal_Type --
------------------------------------
function References_Generic_Formal_Type (N : Node_Id) return Boolean is
function Process (N : Node_Id) return Traverse_Result;
-- Process one node in search for generic formal type
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) in N_Has_Entity then
declare
E : constant Entity_Id := Entity (N);
begin
if Present (E) then
if Is_Generic_Type (E) then
return Abandon;
elsif Present (Etype (E))
and then Is_Generic_Type (Etype (E))
then
return Abandon;
end if;
end if;
end;
end if;
return Atree.OK;
end Process;
function Traverse is new Traverse_Func (Process);
-- Traverse tree to look for generic type
begin
if Inside_A_Generic then
return Traverse (N) = Abandon;
else
return False;
end if;
end References_Generic_Formal_Type;
--------------------
-- Remove_Homonym --
--------------------
procedure Remove_Homonym (E : Entity_Id) is
Prev : Entity_Id := Empty;
H : Entity_Id;
begin
if E = Current_Entity (E) then
if Present (Homonym (E)) then
Set_Current_Entity (Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Empty);
end if;
else
H := Current_Entity (E);
while Present (H) and then H /= E loop
Prev := H;
H := Homonym (H);
end loop;
-- If E is not on the homonym chain, nothing to do
if Present (H) then
Set_Homonym (Prev, Homonym (E));
end if;
end if;
end Remove_Homonym;
---------------------
-- Rep_To_Pos_Flag --
---------------------
function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
begin
return New_Occurrence_Of
(Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
end Rep_To_Pos_Flag;
--------------------
-- Require_Entity --
--------------------
procedure Require_Entity (N : Node_Id) is
begin
if Is_Entity_Name (N) and then No (Entity (N)) then
if Total_Errors_Detected /= 0 then
Set_Entity (N, Any_Id);
else
raise Program_Error;
end if;
end if;
end Require_Entity;
-------------------------------
-- Requires_State_Refinement --
-------------------------------
function Requires_State_Refinement
(Spec_Id : Entity_Id;
Body_Id : Entity_Id) return Boolean
is
function Mode_Is_Off (Prag : Node_Id) return Boolean;
-- Given pragma SPARK_Mode, determine whether the mode is Off
-----------------
-- Mode_Is_Off --
-----------------
function Mode_Is_Off (Prag : Node_Id) return Boolean is
Mode : Node_Id;
begin
-- The default SPARK mode is On
if No (Prag) then
return False;
end if;
Mode := Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
-- Then the pragma lacks an argument, the default mode is On
if No (Mode) then
return False;
else
return Chars (Mode) = Name_Off;
end if;
end Mode_Is_Off;
-- Start of processing for Requires_State_Refinement
begin
-- A package that does not define at least one abstract state cannot
-- possibly require refinement.
if No (Abstract_States (Spec_Id)) then
return False;
-- The package instroduces a single null state which does not merit
-- refinement.
elsif Has_Null_Abstract_State (Spec_Id) then
return False;
-- Check whether the package body is subject to pragma SPARK_Mode. If
-- it is and the mode is Off, the package body is considered to be in
-- regular Ada and does not require refinement.
elsif Mode_Is_Off (SPARK_Pragma (Body_Id)) then
return False;
-- The body's SPARK_Mode may be inherited from a similar pragma that
-- appears in the private declarations of the spec. The pragma we are
-- interested appears as the second entry in SPARK_Pragma.
elsif Present (SPARK_Pragma (Spec_Id))
and then Mode_Is_Off (Next_Pragma (SPARK_Pragma (Spec_Id)))
then
return False;
-- The spec defines at least one abstract state and the body has no way
-- of circumventing the refinement.
else
return True;
end if;
end Requires_State_Refinement;
------------------------------
-- Requires_Transient_Scope --
------------------------------
-- A transient scope is required when variable-sized temporaries are
-- allocated in the primary or secondary stack, or when finalization
-- actions must be generated before the next instruction.
function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (Id);
-- Start of processing for Requires_Transient_Scope
begin
-- This is a private type which is not completed yet. This can only
-- happen in a default expression (of a formal parameter or of a
-- record component). Do not expand transient scope in this case
if No (Typ) then
return False;
-- Do not expand transient scope for non-existent procedure return
elsif Typ = Standard_Void_Type then
return False;
-- Elementary types do not require a transient scope
elsif Is_Elementary_Type (Typ) then
return False;
-- Generally, indefinite subtypes require a transient scope, since the
-- back end cannot generate temporaries, since this is not a valid type
-- for declaring an object. It might be possible to relax this in the
-- future, e.g. by declaring the maximum possible space for the type.
elsif Is_Indefinite_Subtype (Typ) then
return True;
-- Functions returning tagged types may dispatch on result so their
-- returned value is allocated on the secondary stack. Controlled
-- type temporaries need finalization.
elsif Is_Tagged_Type (Typ)
or else Has_Controlled_Component (Typ)
then
return not Is_Value_Type (Typ);
-- Record type
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Requires_Transient_Scope (Etype (Comp))
then
return True;
else
Next_Entity (Comp);
end if;
end loop;
end;
return False;
-- String literal types never require transient scope
elsif Ekind (Typ) = E_String_Literal_Subtype then
return False;
-- Array type. Note that we already know that this is a constrained
-- array, since unconstrained arrays will fail the indefinite test.
elsif Is_Array_Type (Typ) then
-- If component type requires a transient scope, the array does too
if Requires_Transient_Scope (Component_Type (Typ)) then
return True;
-- Otherwise, we only need a transient scope if the size depends on
-- the value of one or more discriminants.
else
return Size_Depends_On_Discriminant (Typ);
end if;
-- All other cases do not require a transient scope
else
return False;
end if;
end Requires_Transient_Scope;
--------------------------
-- Reset_Analyzed_Flags --
--------------------------
procedure Reset_Analyzed_Flags (N : Node_Id) is
function Clear_Analyzed (N : Node_Id) return Traverse_Result;
-- Function used to reset Analyzed flags in tree. Note that we do
-- not reset Analyzed flags in entities, since there is no need to
-- reanalyze entities, and indeed, it is wrong to do so, since it
-- can result in generating auxiliary stuff more than once.
--------------------
-- Clear_Analyzed --
--------------------
function Clear_Analyzed (N : Node_Id) return Traverse_Result is
begin
if not Has_Extension (N) then
Set_Analyzed (N, False);
end if;
return OK;
end Clear_Analyzed;
procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
-- Start of processing for Reset_Analyzed_Flags
begin
Reset_Analyzed (N);
end Reset_Analyzed_Flags;
------------------------
-- Restore_SPARK_Mode --
------------------------
procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type) is
begin
SPARK_Mode := Mode;
end Restore_SPARK_Mode;
--------------------------------
-- Returns_Unconstrained_Type --
--------------------------------
function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
begin
return Ekind (Subp) = E_Function
and then not Is_Scalar_Type (Etype (Subp))
and then not Is_Access_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp));
end Returns_Unconstrained_Type;
----------------------------
-- Root_Type_Of_Full_View --
----------------------------
function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
Rtyp : constant Entity_Id := Root_Type (T);
begin
-- The root type of the full view may itself be a private type. Keep
-- looking for the ultimate derivation parent.
if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
return Root_Type_Of_Full_View (Full_View (Rtyp));
else
return Rtyp;
end if;
end Root_Type_Of_Full_View;
---------------------------
-- Safe_To_Capture_Value --
---------------------------
function Safe_To_Capture_Value
(N : Node_Id;
Ent : Entity_Id;
Cond : Boolean := False) return Boolean
is
begin
-- The only entities for which we track constant values are variables
-- which are not renamings, constants, out parameters, and in out
-- parameters, so check if we have this case.
-- Note: it may seem odd to track constant values for constants, but in
-- fact this routine is used for other purposes than simply capturing
-- the value. In particular, the setting of Known[_Non]_Null.
if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
or else
Ekind (Ent) = E_Constant
or else
Ekind (Ent) = E_Out_Parameter
or else
Ekind (Ent) = E_In_Out_Parameter
then
null;
-- For conditionals, we also allow loop parameters and all formals,
-- including in parameters.
elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
null;
-- For all other cases, not just unsafe, but impossible to capture
-- Current_Value, since the above are the only entities which have
-- Current_Value fields.
else
return False;
end if;
-- Skip if volatile or aliased, since funny things might be going on in
-- these cases which we cannot necessarily track. Also skip any variable
-- for which an address clause is given, or whose address is taken. Also
-- never capture value of library level variables (an attempt to do so
-- can occur in the case of package elaboration code).
if Treat_As_Volatile (Ent)
or else Is_Aliased (Ent)
or else Present (Address_Clause (Ent))
or else Address_Taken (Ent)
or else (Is_Library_Level_Entity (Ent)
and then Ekind (Ent) = E_Variable)
then
return False;
end if;
-- OK, all above conditions are met. We also require that the scope of
-- the reference be the same as the scope of the entity, not counting
-- packages and blocks and loops.
declare
E_Scope : constant Entity_Id := Scope (Ent);
R_Scope : Entity_Id;
begin
R_Scope := Current_Scope;
while R_Scope /= Standard_Standard loop
exit when R_Scope = E_Scope;
if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
return False;
else
R_Scope := Scope (R_Scope);
end if;
end loop;
end;
-- We also require that the reference does not appear in a context
-- where it is not sure to be executed (i.e. a conditional context
-- or an exception handler). We skip this if Cond is True, since the
-- capturing of values from conditional tests handles this ok.
if Cond then
return True;
end if;
declare
Desc : Node_Id;
P : Node_Id;
begin
Desc := N;
-- Seems dubious that case expressions are not handled here ???
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_If_Statement
or else Nkind (P) = N_Case_Statement
or else (Nkind (P) in N_Short_Circuit
and then Desc = Right_Opnd (P))
or else (Nkind (P) = N_If_Expression
and then Desc /= First (Expressions (P)))
or else Nkind (P) = N_Exception_Handler
or else Nkind (P) = N_Selective_Accept
or else Nkind (P) = N_Conditional_Entry_Call
or else Nkind (P) = N_Timed_Entry_Call
or else Nkind (P) = N_Asynchronous_Select
then
return False;
else
Desc := P;
P := Parent (P);
-- A special Ada 2012 case: the original node may be part
-- of the else_actions of a conditional expression, in which
-- case it might not have been expanded yet, and appears in
-- a non-syntactic list of actions. In that case it is clearly
-- not safe to save a value.
if No (P)
and then Is_List_Member (Desc)
and then No (Parent (List_Containing (Desc)))
then
return False;
end if;
end if;
end loop;
end;
-- OK, looks safe to set value
return True;
end Safe_To_Capture_Value;
---------------
-- Same_Name --
---------------
function Same_Name (N1, N2 : Node_Id) return Boolean is
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
then
return Chars (N1) = Chars (N2);
elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
then
return Same_Name (Selector_Name (N1), Selector_Name (N2))
and then Same_Name (Prefix (N1), Prefix (N2));
else
return False;
end if;
end Same_Name;
-----------------
-- Same_Object --
-----------------
function Same_Object (Node1, Node2 : Node_Id) return Boolean is
N1 : constant Node_Id := Original_Node (Node1);
N2 : constant Node_Id := Original_Node (Node2);
-- We do the tests on original nodes, since we are most interested
-- in the original source, not any expansion that got in the way.
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
-- First case, both are entities with same entity
if K1 in N_Has_Entity and then K2 in N_Has_Entity then
declare
EN1 : constant Entity_Id := Entity (N1);
EN2 : constant Entity_Id := Entity (N2);
begin
if Present (EN1) and then Present (EN2)
and then (Ekind_In (EN1, E_Variable, E_Constant)
or else Is_Formal (EN1))
and then EN1 = EN2
then
return True;
end if;
end;
end if;
-- Second case, selected component with same selector, same record
if K1 = N_Selected_Component
and then K2 = N_Selected_Component
and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
then
return Same_Object (Prefix (N1), Prefix (N2));
-- Third case, indexed component with same subscripts, same array
elsif K1 = N_Indexed_Component
and then K2 = N_Indexed_Component
and then Same_Object (Prefix (N1), Prefix (N2))
then
declare
E1, E2 : Node_Id;
begin
E1 := First (Expressions (N1));
E2 := First (Expressions (N2));
while Present (E1) loop
if not Same_Value (E1, E2) then
return False;
else
Next (E1);
Next (E2);
end if;
end loop;
return True;
end;
-- Fourth case, slice of same array with same bounds
elsif K1 = N_Slice
and then K2 = N_Slice
and then Nkind (Discrete_Range (N1)) = N_Range
and then Nkind (Discrete_Range (N2)) = N_Range
and then Same_Value (Low_Bound (Discrete_Range (N1)),
Low_Bound (Discrete_Range (N2)))
and then Same_Value (High_Bound (Discrete_Range (N1)),
High_Bound (Discrete_Range (N2)))
then
return Same_Name (Prefix (N1), Prefix (N2));
-- All other cases, not clearly the same object
else
return False;
end if;
end Same_Object;
---------------
-- Same_Type --
---------------
function Same_Type (T1, T2 : Entity_Id) return Boolean is
begin
if T1 = T2 then
return True;
elsif not Is_Constrained (T1)
and then not Is_Constrained (T2)
and then Base_Type (T1) = Base_Type (T2)
then
return True;
-- For now don't bother with case of identical constraints, to be
-- fiddled with later on perhaps (this is only used for optimization
-- purposes, so it is not critical to do a best possible job)
else
return False;
end if;
end Same_Type;
----------------
-- Same_Value --
----------------
function Same_Value (Node1, Node2 : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Node1)
and then Compile_Time_Known_Value (Node2)
and then Expr_Value (Node1) = Expr_Value (Node2)
then
return True;
elsif Same_Object (Node1, Node2) then
return True;
else
return False;
end if;
end Same_Value;
-----------------------------
-- Save_SPARK_Mode_And_Set --
-----------------------------
procedure Save_SPARK_Mode_And_Set
(Context : Entity_Id;
Mode : out SPARK_Mode_Type)
is
begin
-- Save the current mode in effect
Mode := SPARK_Mode;
-- Do not consider illegal or partially decorated constructs
if Ekind (Context) = E_Void or else Error_Posted (Context) then
null;
elsif Present (SPARK_Pragma (Context)) then
SPARK_Mode := Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Context));
end if;
end Save_SPARK_Mode_And_Set;
-------------------------
-- Scalar_Part_Present --
-------------------------
function Scalar_Part_Present (T : Entity_Id) return Boolean is
C : Entity_Id;
begin
if Is_Scalar_Type (T) then
return True;
elsif Is_Array_Type (T) then
return Scalar_Part_Present (Component_Type (T));
elsif Is_Record_Type (T) or else Has_Discriminants (T) then
C := First_Component_Or_Discriminant (T);
while Present (C) loop
if Scalar_Part_Present (Etype (C)) then
return True;
else
Next_Component_Or_Discriminant (C);
end if;
end loop;
end if;
return False;
end Scalar_Part_Present;
------------------------
-- Scope_Is_Transient --
------------------------
function Scope_Is_Transient return Boolean is
begin
return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
end Scope_Is_Transient;
------------------
-- Scope_Within --
------------------
function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope1;
while Scop /= Standard_Standard loop
Scop := Scope (Scop);
if Scop = Scope2 then
return True;
end if;
end loop;
return False;
end Scope_Within;
--------------------------
-- Scope_Within_Or_Same --
--------------------------
function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope1;
while Scop /= Standard_Standard loop
if Scop = Scope2 then
return True;
else
Scop := Scope (Scop);
end if;
end loop;
return False;
end Scope_Within_Or_Same;
--------------------
-- Set_Convention --
--------------------
procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
begin
Basic_Set_Convention (E, Val);
if Is_Type (E)
and then Is_Access_Subprogram_Type (Base_Type (E))
and then Has_Foreign_Convention (E)
then
Set_Can_Use_Internal_Rep (E, False);
end if;
-- If E is an object or component, and the type of E is an anonymous
-- access type with no convention set, then also set the convention of
-- the anonymous access type. We do not do this for anonymous protected
-- types, since protected types always have the default convention.
if Present (Etype (E))
and then (Is_Object (E)
or else Ekind (E) = E_Component
-- Allow E_Void (happens for pragma Convention appearing
-- in the middle of a record applying to a component)
or else Ekind (E) = E_Void)
then
declare
Typ : constant Entity_Id := Etype (E);
begin
if Ekind_In (Typ, E_Anonymous_Access_Type,
E_Anonymous_Access_Subprogram_Type)
and then not Has_Convention_Pragma (Typ)
then
Basic_Set_Convention (Typ, Val);
Set_Has_Convention_Pragma (Typ);
-- And for the access subprogram type, deal similarly with the
-- designated E_Subprogram_Type if it is also internal (which
-- it always is?)
if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
declare
Dtype : constant Entity_Id := Designated_Type (Typ);
begin
if Ekind (Dtype) = E_Subprogram_Type
and then Is_Itype (Dtype)
and then not Has_Convention_Pragma (Dtype)
then
Basic_Set_Convention (Dtype, Val);
Set_Has_Convention_Pragma (Dtype);
end if;
end;
end if;
end if;
end;
end if;
end Set_Convention;
------------------------
-- Set_Current_Entity --
------------------------
-- The given entity is to be set as the currently visible definition of its
-- associated name (i.e. the Node_Id associated with its name). All we have
-- to do is to get the name from the identifier, and then set the
-- associated Node_Id to point to the given entity.
procedure Set_Current_Entity (E : Entity_Id) is
begin
Set_Name_Entity_Id (Chars (E), E);
end Set_Current_Entity;
---------------------------
-- Set_Debug_Info_Needed --
---------------------------
procedure Set_Debug_Info_Needed (T : Entity_Id) is
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
-- Used to set debug info in a related node if not set already
--------------------------------------
-- Set_Debug_Info_Needed_If_Not_Set --
--------------------------------------
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
begin
if Present (E) and then not Needs_Debug_Info (E) then
Set_Debug_Info_Needed (E);
-- For a private type, indicate that the full view also needs
-- debug information.
if Is_Type (E)
and then Is_Private_Type (E)
and then Present (Full_View (E))
then
Set_Debug_Info_Needed (Full_View (E));
end if;
end if;
end Set_Debug_Info_Needed_If_Not_Set;
-- Start of processing for Set_Debug_Info_Needed
begin
-- Nothing to do if argument is Empty or has Debug_Info_Off set, which
-- indicates that Debug_Info_Needed is never required for the entity.
if No (T)
or else Debug_Info_Off (T)
then
return;
end if;
-- Set flag in entity itself. Note that we will go through the following
-- circuitry even if the flag is already set on T. That's intentional,
-- it makes sure that the flag will be set in subsidiary entities.
Set_Needs_Debug_Info (T);
-- Set flag on subsidiary entities if not set already
if Is_Object (T) then
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
elsif Is_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
if Is_Record_Type (T) then
declare
Ent : Entity_Id := First_Entity (T);
begin
while Present (Ent) loop
Set_Debug_Info_Needed_If_Not_Set (Ent);
Next_Entity (Ent);
end loop;
end;
-- For a class wide subtype, we also need debug information
-- for the equivalent type.
if Ekind (T) = E_Class_Wide_Subtype then
Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
end if;
elsif Is_Array_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
declare
Indx : Node_Id := First_Index (T);
begin
while Present (Indx) loop
Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
Indx := Next_Index (Indx);
end loop;
end;
-- For a packed array type, we also need debug information for
-- the type used to represent the packed array. Conversely, we
-- also need it for the former if we need it for the latter.
if Is_Packed (T) then
Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
end if;
if Is_Packed_Array_Impl_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
end if;
elsif Is_Access_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
elsif Is_Private_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
elsif Is_Protected_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
elsif Is_Scalar_Type (T) then
-- If the subrange bounds are materialized by dedicated constant
-- objects, also include them in the debug info to make sure the
-- debugger can properly use them.
if Present (Scalar_Range (T))
and then Nkind (Scalar_Range (T)) = N_Range
then
declare
Low_Bnd : constant Node_Id := Type_Low_Bound (T);
High_Bnd : constant Node_Id := Type_High_Bound (T);
begin
if Is_Entity_Name (Low_Bnd) then
Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
end if;
if Is_Entity_Name (High_Bnd) then
Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
end if;
end;
end if;
end if;
end if;
end Set_Debug_Info_Needed;
----------------------------
-- Set_Entity_With_Checks --
----------------------------
procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
Val_Actual : Entity_Id;
Nod : Node_Id;
Post_Node : Node_Id;
begin
-- Unconditionally set the entity
Set_Entity (N, Val);
-- The node to post on is the selector in the case of an expanded name,
-- and otherwise the node itself.
if Nkind (N) = N_Expanded_Name then
Post_Node := Selector_Name (N);
else
Post_Node := N;
end if;
-- Check for violation of No_Fixed_IO
if Restriction_Check_Required (No_Fixed_IO)
and then
((RTU_Loaded (Ada_Text_IO)
and then (Is_RTE (Val, RE_Decimal_IO)
or else
Is_RTE (Val, RE_Fixed_IO)))
or else
(RTU_Loaded (Ada_Wide_Text_IO)
and then (Is_RTE (Val, RO_WT_Decimal_IO)
or else
Is_RTE (Val, RO_WT_Fixed_IO)))
or else
(RTU_Loaded (Ada_Wide_Wide_Text_IO)
and then (Is_RTE (Val, RO_WW_Decimal_IO)
or else
Is_RTE (Val, RO_WW_Fixed_IO))))
-- A special extra check, don't complain about a reference from within
-- the Ada.Interrupts package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Fixed_IO, Post_Node);
end if;
-- Remaining checks are only done on source nodes. Note that we test
-- for violation of No_Fixed_IO even on non-source nodes, because the
-- cases for checking violations of this restriction are instantiations
-- where the reference in the instance has Comes_From_Source False.
if not Comes_From_Source (N) then
return;
end if;
-- Check for violation of No_Abort_Statements, which is triggered by
-- call to Ada.Task_Identification.Abort_Task.
if Restriction_Check_Required (No_Abort_Statements)
and then (Is_RTE (Val, RE_Abort_Task))
-- A special extra check, don't complain about a reference from within
-- the Ada.Task_Identification package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Abort_Statements, Post_Node);
end if;
if Val = Standard_Long_Long_Integer then
Check_Restriction (No_Long_Long_Integers, Post_Node);
end if;
-- Check for violation of No_Dynamic_Attachment
if Restriction_Check_Required (No_Dynamic_Attachment)
and then RTU_Loaded (Ada_Interrupts)
and then (Is_RTE (Val, RE_Is_Reserved) or else
Is_RTE (Val, RE_Is_Attached) or else
Is_RTE (Val, RE_Current_Handler) or else
Is_RTE (Val, RE_Attach_Handler) or else
Is_RTE (Val, RE_Exchange_Handler) or else
Is_RTE (Val, RE_Detach_Handler) or else
Is_RTE (Val, RE_Reference))
-- A special extra check, don't complain about a reference from within
-- the Ada.Interrupts package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Dynamic_Attachment, Post_Node);
end if;
-- Check for No_Implementation_Identifiers
if Restriction_Check_Required (No_Implementation_Identifiers) then
-- We have an implementation defined entity if it is marked as
-- implementation defined, or is defined in a package marked as
-- implementation defined. However, library packages themselves
-- are excluded (we don't want to flag Interfaces itself, just
-- the entities within it).
if (Is_Implementation_Defined (Val)
or else
Is_Implementation_Defined (Scope (Val)))
and then not (Ekind_In (Val, E_Package, E_Generic_Package)
and then Is_Library_Level_Entity (Val))
then
Check_Restriction (No_Implementation_Identifiers, Post_Node);
end if;
end if;
-- Do the style check
if Style_Check
and then not Suppress_Style_Checks (Val)
and then not In_Instance
then
if Nkind (N) = N_Identifier then
Nod := N;
elsif Nkind (N) = N_Expanded_Name then
Nod := Selector_Name (N);
else
return;
end if;
-- A special situation arises for derived operations, where we want
-- to do the check against the parent (since the Sloc of the derived
-- operation points to the derived type declaration itself).
Val_Actual := Val;
while not Comes_From_Source (Val_Actual)
and then Nkind (Val_Actual) in N_Entity
and then (Ekind (Val_Actual) = E_Enumeration_Literal
or else Is_Subprogram (Val_Actual)
or else Is_Generic_Subprogram (Val_Actual))
and then Present (Alias (Val_Actual))
loop
Val_Actual := Alias (Val_Actual);
end loop;
-- Renaming declarations for generic actuals do not come from source,
-- and have a different name from that of the entity they rename, so
-- there is no style check to perform here.
if Chars (Nod) = Chars (Val_Actual) then
Style.Check_Identifier (Nod, Val_Actual);
end if;
end if;
Set_Entity (N, Val);
end Set_Entity_With_Checks;
------------------------
-- Set_Name_Entity_Id --
------------------------
procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
begin
Set_Name_Table_Info (Id, Int (Val));
end Set_Name_Entity_Id;
---------------------
-- Set_Next_Actual --
---------------------
procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
begin
if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
end if;
end Set_Next_Actual;
----------------------------------
-- Set_Optimize_Alignment_Flags --
----------------------------------
procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
begin
if Optimize_Alignment = 'S' then
Set_Optimize_Alignment_Space (E);
elsif Optimize_Alignment = 'T' then
Set_Optimize_Alignment_Time (E);
end if;
end Set_Optimize_Alignment_Flags;
-----------------------
-- Set_Public_Status --
-----------------------
procedure Set_Public_Status (Id : Entity_Id) is
S : constant Entity_Id := Current_Scope;
function Within_HSS_Or_If (E : Entity_Id) return Boolean;
-- Determines if E is defined within handled statement sequence or
-- an if statement, returns True if so, False otherwise.
----------------------
-- Within_HSS_Or_If --
----------------------
function Within_HSS_Or_If (E : Entity_Id) return Boolean is
N : Node_Id;
begin
N := Declaration_Node (E);
loop
N := Parent (N);
if No (N) then
return False;
elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
N_If_Statement)
then
return True;
end if;
end loop;
end Within_HSS_Or_If;
-- Start of processing for Set_Public_Status
begin
-- Everything in the scope of Standard is public
if S = Standard_Standard then
Set_Is_Public (Id);
-- Entity is definitely not public if enclosing scope is not public
elsif not Is_Public (S) then
return;
-- An object or function declaration that occurs in a handled sequence
-- of statements or within an if statement is the declaration for a
-- temporary object or local subprogram generated by the expander. It
-- never needs to be made public and furthermore, making it public can
-- cause back end problems.
elsif Nkind_In (Parent (Id), N_Object_Declaration,
N_Function_Specification)
and then Within_HSS_Or_If (Id)
then
return;
-- Entities in public packages or records are public
elsif Ekind (S) = E_Package or Is_Record_Type (S) then
Set_Is_Public (Id);
-- The bounds of an entry family declaration can generate object
-- declarations that are visible to the back-end, e.g. in the
-- the declaration of a composite type that contains tasks.
elsif Is_Concurrent_Type (S)
and then not Has_Completion (S)
and then Nkind (Parent (Id)) = N_Object_Declaration
then
Set_Is_Public (Id);
end if;
end Set_Public_Status;
-----------------------------
-- Set_Referenced_Modified --
-----------------------------
procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
Pref : Node_Id;
begin
-- Deal with indexed or selected component where prefix is modified
if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
Pref := Prefix (N);
-- If prefix is access type, then it is the designated object that is
-- being modified, which means we have no entity to set the flag on.
if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
return;
-- Otherwise chase the prefix
else
Set_Referenced_Modified (Pref, Out_Param);
end if;
-- Otherwise see if we have an entity name (only other case to process)
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
Set_Referenced_As_LHS (Entity (N), not Out_Param);
Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
end if;
end Set_Referenced_Modified;
----------------------------
-- Set_Scope_Is_Transient --
----------------------------
procedure Set_Scope_Is_Transient (V : Boolean := True) is
begin
Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
end Set_Scope_Is_Transient;
-------------------
-- Set_Size_Info --
-------------------
procedure Set_Size_Info (T1, T2 : Entity_Id) is
begin
-- We copy Esize, but not RM_Size, since in general RM_Size is
-- subtype specific and does not get inherited by all subtypes.
Set_Esize (T1, Esize (T2));
Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
if Is_Discrete_Or_Fixed_Point_Type (T1)
and then
Is_Discrete_Or_Fixed_Point_Type (T2)
then
Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
end if;
Set_Alignment (T1, Alignment (T2));
end Set_Size_Info;
--------------------
-- Static_Boolean --
--------------------
function Static_Boolean (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Standard_Boolean);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_OK_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static boolean expression required here", N);
return No_Uint;
end if;
end Static_Boolean;
--------------------
-- Static_Integer --
--------------------
function Static_Integer (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Any_Integer);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_OK_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static integer expression required here", N);
return No_Uint;
end if;
end Static_Integer;
--------------------------
-- Statically_Different --
--------------------------
function Statically_Different (E1, E2 : Node_Id) return Boolean is
R1 : constant Node_Id := Get_Referenced_Object (E1);
R2 : constant Node_Id := Get_Referenced_Object (E2);
begin
return Is_Entity_Name (R1)
and then Is_Entity_Name (R2)
and then Entity (R1) /= Entity (R2)
and then not Is_Formal (Entity (R1))
and then not Is_Formal (Entity (R2));
end Statically_Different;
--------------------------------------
-- Subject_To_Loop_Entry_Attributes --
--------------------------------------
function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
Stmt : Node_Id;
begin
Stmt := N;
-- The expansion mechanism transform a loop subject to at least one
-- 'Loop_Entry attribute into a conditional block. Infinite loops lack
-- the conditional part.
if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
and then Nkind (Original_Node (N)) = N_Loop_Statement
then
Stmt := Original_Node (N);
end if;
return
Nkind (Stmt) = N_Loop_Statement
and then Present (Identifier (Stmt))
and then Present (Entity (Identifier (Stmt)))
and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
end Subject_To_Loop_Entry_Attributes;
-----------------------------
-- Subprogram_Access_Level --
-----------------------------
function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
begin
if Present (Alias (Subp)) then
return Subprogram_Access_Level (Alias (Subp));
else
return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
end if;
end Subprogram_Access_Level;
-------------------------------
-- Support_Atomic_Primitives --
-------------------------------
function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
Size : Int;
begin
-- Verify the alignment of Typ is known
if not Known_Alignment (Typ) then
return False;
end if;
if Known_Static_Esize (Typ) then
Size := UI_To_Int (Esize (Typ));
-- If the Esize (Object_Size) is unknown at compile time, look at the
-- RM_Size (Value_Size) which may have been set by an explicit rep item.
elsif Known_Static_RM_Size (Typ) then
Size := UI_To_Int (RM_Size (Typ));
-- Otherwise, the size is considered to be unknown.
else
return False;
end if;
-- Check that the size of the component is 8, 16, 32 or 64 bits and that
-- Typ is properly aligned.
case Size is
when 8 | 16 | 32 | 64 =>
return Size = UI_To_Int (Alignment (Typ)) * 8;
when others =>
return False;
end case;
end Support_Atomic_Primitives;
-----------------
-- Trace_Scope --
-----------------
procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
begin
if Debug_Flag_W then
for J in 0 .. Scope_Stack.Last loop
Write_Str (" ");
end loop;
Write_Str (Msg);
Write_Name (Chars (E));
Write_Str (" from ");
Write_Location (Sloc (N));
Write_Eol;
end if;
end Trace_Scope;
-----------------------
-- Transfer_Entities --
-----------------------
procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
Ent : Entity_Id := First_Entity (From);
begin
if No (Ent) then
return;
end if;
if (Last_Entity (To)) = Empty then
Set_First_Entity (To, Ent);
else
Set_Next_Entity (Last_Entity (To), Ent);
end if;
Set_Last_Entity (To, Last_Entity (From));
while Present (Ent) loop
Set_Scope (Ent, To);
if not Is_Public (Ent) then
Set_Public_Status (Ent);
if Is_Public (Ent) and then Ekind (Ent) = E_Record_Subtype then
-- The components of the propagated Itype must also be public
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Ent);
while Present (Comp) loop
Set_Is_Public (Comp);
Next_Entity (Comp);
end loop;
end;
end if;
end if;
Next_Entity (Ent);
end loop;
Set_First_Entity (From, Empty);
Set_Last_Entity (From, Empty);
end Transfer_Entities;
-----------------------
-- Type_Access_Level --
-----------------------
function Type_Access_Level (Typ : Entity_Id) return Uint is
Btyp : Entity_Id;
begin
Btyp := Base_Type (Typ);
-- Ada 2005 (AI-230): For most cases of anonymous access types, we
-- simply use the level where the type is declared. This is true for
-- stand-alone object declarations, and for anonymous access types
-- associated with components the level is the same as that of the
-- enclosing composite type. However, special treatment is needed for
-- the cases of access parameters, return objects of an anonymous access
-- type, and, in Ada 95, access discriminants of limited types.
if Is_Access_Type (Btyp) then
if Ekind (Btyp) = E_Anonymous_Access_Type then
-- If the type is a nonlocal anonymous access type (such as for
-- an access parameter) we treat it as being declared at the
-- library level to ensure that names such as X.all'access don't
-- fail static accessibility checks.
if not Is_Local_Anonymous_Access (Typ) then
return Scope_Depth (Standard_Standard);
-- If this is a return object, the accessibility level is that of
-- the result subtype of the enclosing function. The test here is
-- little complicated, because we have to account for extended
-- return statements that have been rewritten as blocks, in which
-- case we have to find and the Is_Return_Object attribute of the
-- itype's associated object. It would be nice to find a way to
-- simplify this test, but it doesn't seem worthwhile to add a new
-- flag just for purposes of this test. ???
elsif Ekind (Scope (Btyp)) = E_Return_Statement
or else
(Is_Itype (Btyp)
and then Nkind (Associated_Node_For_Itype (Btyp)) =
N_Object_Declaration
and then Is_Return_Object
(Defining_Identifier
(Associated_Node_For_Itype (Btyp))))
then
declare
Scop : Entity_Id;
begin
Scop := Scope (Scope (Btyp));
while Present (Scop) loop
exit when Ekind (Scop) = E_Function;
Scop := Scope (Scop);
end loop;
-- Treat the return object's type as having the level of the
-- function's result subtype (as per RM05-6.5(5.3/2)).
return Type_Access_Level (Etype (Scop));
end;
end if;
end if;
Btyp := Root_Type (Btyp);
-- The accessibility level of anonymous access types associated with
-- discriminants is that of the current instance of the type, and
-- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
-- AI-402: access discriminants have accessibility based on the
-- object rather than the type in Ada 2005, so the above paragraph
-- doesn't apply.
-- ??? Needs completion with rules from AI-416
if Ada_Version <= Ada_95
and then Ekind (Typ) = E_Anonymous_Access_Type
and then Present (Associated_Node_For_Itype (Typ))
and then Nkind (Associated_Node_For_Itype (Typ)) =
N_Discriminant_Specification
then
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
end if;
end if;
-- Return library level for a generic formal type. This is done because
-- RM(10.3.2) says that "The statically deeper relationship does not
-- apply to ... a descendant of a generic formal type". Rather than
-- checking at each point where a static accessibility check is
-- performed to see if we are dealing with a formal type, this rule is
-- implemented by having Type_Access_Level and Deepest_Type_Access_Level
-- return extreme values for a formal type; Deepest_Type_Access_Level
-- returns Int'Last. By calling the appropriate function from among the
-- two, we ensure that the static accessibility check will pass if we
-- happen to run into a formal type. More specifically, we should call
-- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
-- call occurs as part of a static accessibility check and the error
-- case is the case where the type's level is too shallow (as opposed
-- to too deep).
if Is_Generic_Type (Root_Type (Btyp)) then
return Scope_Depth (Standard_Standard);
end if;
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
end Type_Access_Level;
------------------------------------
-- Type_Without_Stream_Operation --
------------------------------------
function Type_Without_Stream_Operation
(T : Entity_Id;
Op : TSS_Name_Type := TSS_Null) return Entity_Id
is
BT : constant Entity_Id := Base_Type (T);
Op_Missing : Boolean;
begin
if not Restriction_Active (No_Default_Stream_Attributes) then
return Empty;
end if;
if Is_Elementary_Type (T) then
if Op = TSS_Null then
Op_Missing :=
No (TSS (BT, TSS_Stream_Read))
or else No (TSS (BT, TSS_Stream_Write));
else
Op_Missing := No (TSS (BT, Op));
end if;
if Op_Missing then
return T;
else
return Empty;
end if;
elsif Is_Array_Type (T) then
return Type_Without_Stream_Operation (Component_Type (T), Op);
elsif Is_Record_Type (T) then
declare
Comp : Entity_Id;
C_Typ : Entity_Id;
begin
Comp := First_Component (T);
while Present (Comp) loop
C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
if Present (C_Typ) then
return C_Typ;
end if;
Next_Component (Comp);
end loop;
return Empty;
end;
elsif Is_Private_Type (T) and then Present (Full_View (T)) then
return Type_Without_Stream_Operation (Full_View (T), Op);
else
return Empty;
end if;
end Type_Without_Stream_Operation;
----------------------------
-- Unique_Defining_Entity --
----------------------------
function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
begin
return Unique_Entity (Defining_Entity (N));
end Unique_Defining_Entity;
-------------------
-- Unique_Entity --
-------------------
function Unique_Entity (E : Entity_Id) return Entity_Id is
U : Entity_Id := E;
P : Node_Id;
begin
case Ekind (E) is
when E_Constant =>
if Present (Full_View (E)) then
U := Full_View (E);
end if;
when Type_Kind =>
if Present (Full_View (E)) then
U := Full_View (E);
end if;
when E_Package_Body =>
P := Parent (E);
if Nkind (P) = N_Defining_Program_Unit_Name then
P := Parent (P);
end if;
U := Corresponding_Spec (P);
when E_Subprogram_Body =>
P := Parent (E);
if Nkind (P) = N_Defining_Program_Unit_Name then
P := Parent (P);
end if;
P := Parent (P);
if Nkind (P) = N_Subprogram_Body_Stub then
if Present (Library_Unit (P)) then
-- Get to the function or procedure (generic) entity through
-- the body entity.
U :=
Unique_Entity (Defining_Entity (Get_Body_From_Stub (P)));
end if;
else
U := Corresponding_Spec (P);
end if;
when Formal_Kind =>
if Present (Spec_Entity (E)) then
U := Spec_Entity (E);
end if;
when others =>
null;
end case;
return U;
end Unique_Entity;
-----------------
-- Unique_Name --
-----------------
function Unique_Name (E : Entity_Id) return String is
-- Names of E_Subprogram_Body or E_Package_Body entities are not
-- reliable, as they may not include the overloading suffix. Instead,
-- when looking for the name of E or one of its enclosing scope, we get
-- the name of the corresponding Unique_Entity.
function Get_Scoped_Name (E : Entity_Id) return String;
-- Return the name of E prefixed by all the names of the scopes to which
-- E belongs, except for Standard.
---------------------
-- Get_Scoped_Name --
---------------------
function Get_Scoped_Name (E : Entity_Id) return String is
Name : constant String := Get_Name_String (Chars (E));
begin
if Has_Fully_Qualified_Name (E)
or else Scope (E) = Standard_Standard
then
return Name;
else
return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
end if;
end Get_Scoped_Name;
-- Start of processing for Unique_Name
begin
if E = Standard_Standard then
return Get_Name_String (Name_Standard);
elsif Scope (E) = Standard_Standard
and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
then
return Get_Name_String (Name_Standard) & "__" &
Get_Name_String (Chars (E));
elsif Ekind (E) = E_Enumeration_Literal then
return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
else
return Get_Scoped_Name (Unique_Entity (E));
end if;
end Unique_Name;
---------------------
-- Unit_Is_Visible --
---------------------
function Unit_Is_Visible (U : Entity_Id) return Boolean is
Curr : constant Node_Id := Cunit (Current_Sem_Unit);
Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
-- For a child unit, check whether unit appears in a with_clause
-- of a parent.
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
-- Scan the context clause of one compilation unit looking for a
-- with_clause for the unit in question.
----------------------------
-- Unit_In_Parent_Context --
----------------------------
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
begin
if Unit_In_Context (Par_Unit) then
return True;
elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
else
return False;
end if;
end Unit_In_Parent_Context;
---------------------
-- Unit_In_Context --
---------------------
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
Clause : Node_Id;
begin
Clause := First (Context_Items (Comp_Unit));
while Present (Clause) loop
if Nkind (Clause) = N_With_Clause then
if Library_Unit (Clause) = U then
return True;
-- The with_clause may denote a renaming of the unit we are
-- looking for, eg. Text_IO which renames Ada.Text_IO.
elsif
Renamed_Entity (Entity (Name (Clause))) =
Defining_Entity (Unit (U))
then
return True;
end if;
end if;
Next (Clause);
end loop;
return False;
end Unit_In_Context;
-- Start of processing for Unit_Is_Visible
begin
-- The currrent unit is directly visible
if Curr = U then
return True;
elsif Unit_In_Context (Curr) then
return True;
-- If the current unit is a body, check the context of the spec
elsif Nkind (Unit (Curr)) = N_Package_Body
or else
(Nkind (Unit (Curr)) = N_Subprogram_Body
and then not Acts_As_Spec (Unit (Curr)))
then
if Unit_In_Context (Library_Unit (Curr)) then
return True;
end if;
end if;
-- If the spec is a child unit, examine the parents
if Is_Child_Unit (Curr_Entity) then
if Nkind (Unit (Curr)) in N_Unit_Body then
return
Unit_In_Parent_Context
(Parent_Spec (Unit (Library_Unit (Curr))));
else
return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
end if;
else
return False;
end if;
end Unit_Is_Visible;
------------------------------
-- Universal_Interpretation --
------------------------------
function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
Index : Interp_Index;
It : Interp;
begin
-- The argument may be a formal parameter of an operator or subprogram
-- with multiple interpretations, or else an expression for an actual.
if Nkind (Opnd) = N_Defining_Identifier
or else not Is_Overloaded (Opnd)
then
if Etype (Opnd) = Universal_Integer
or else Etype (Opnd) = Universal_Real
then
return Etype (Opnd);
else
return Empty;
end if;
else
Get_First_Interp (Opnd, Index, It);
while Present (It.Typ) loop
if It.Typ = Universal_Integer
or else It.Typ = Universal_Real
then
return It.Typ;
end if;
Get_Next_Interp (Index, It);
end loop;
return Empty;
end if;
end Universal_Interpretation;
---------------
-- Unqualify --
---------------
function Unqualify (Expr : Node_Id) return Node_Id is
begin
-- Recurse to handle unlikely case of multiple levels of qualification
if Nkind (Expr) = N_Qualified_Expression then
return Unqualify (Expression (Expr));
-- Normal case, not a qualified expression
else
return Expr;
end if;
end Unqualify;
-----------------------
-- Visible_Ancestors --
-----------------------
function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
List_1 : Elist_Id;
List_2 : Elist_Id;
Elmt : Elmt_Id;
begin
pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
-- Collect all the parents and progenitors of Typ. If the full-view of
-- private parents and progenitors is available then it is used to
-- generate the list of visible ancestors; otherwise their partial
-- view is added to the resulting list.
Collect_Parents
(T => Typ,
List => List_1,
Use_Full_View => True);
Collect_Interfaces
(T => Typ,
Ifaces_List => List_2,
Exclude_Parents => True,
Use_Full_View => True);
-- Join the two lists. Avoid duplications because an interface may
-- simultaneously be parent and progenitor of a type.
Elmt := First_Elmt (List_2);
while Present (Elmt) loop
Append_Unique_Elmt (Node (Elmt), List_1);
Next_Elmt (Elmt);
end loop;
return List_1;
end Visible_Ancestors;
----------------------
-- Within_Init_Proc --
----------------------
function Within_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while not Is_Overloadable (S) loop
if S = Standard_Standard then
return False;
else
S := Scope (S);
end if;
end loop;
return Is_Init_Proc (S);
end Within_Init_Proc;
------------------
-- Within_Scope --
------------------
function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
SE : Entity_Id;
begin
SE := Scope (E);
loop
if SE = S then
return True;
elsif SE = Standard_Standard then
return False;
else
SE := Scope (SE);
end if;
end loop;
end Within_Scope;
----------------
-- Wrong_Type --
----------------
procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
Matching_Field : Entity_Id;
-- Entity to give a more precise suggestion on how to write a one-
-- element positional aggregate.
function Has_One_Matching_Field return Boolean;
-- Determines if Expec_Type is a record type with a single component or
-- discriminant whose type matches the found type or is one dimensional
-- array whose component type matches the found type. In the case of
-- one discriminant, we ignore the variant parts. That's not accurate,
-- but good enough for the warning.
----------------------------
-- Has_One_Matching_Field --
----------------------------
function Has_One_Matching_Field return Boolean is
E : Entity_Id;
begin
Matching_Field := Empty;
if Is_Array_Type (Expec_Type)
and then Number_Dimensions (Expec_Type) = 1
and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
then
-- Use type name if available. This excludes multidimensional
-- arrays and anonymous arrays.
if Comes_From_Source (Expec_Type) then
Matching_Field := Expec_Type;
-- For an assignment, use name of target
elsif Nkind (Parent (Expr)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (Expr)))
then
Matching_Field := Entity (Name (Parent (Expr)));
end if;
return True;
elsif not Is_Record_Type (Expec_Type) then
return False;
else
E := First_Entity (Expec_Type);
loop
if No (E) then
return False;
elsif not Ekind_In (E, E_Discriminant, E_Component)
or else Nam_In (Chars (E), Name_uTag, Name_uParent)
then
Next_Entity (E);
else
exit;
end if;
end loop;
if not Covers (Etype (E), Found_Type) then
return False;
elsif Present (Next_Entity (E))
and then (Ekind (E) = E_Component
or else Ekind (Next_Entity (E)) = E_Discriminant)
then
return False;
else
Matching_Field := E;
return True;
end if;
end if;
end Has_One_Matching_Field;
-- Start of processing for Wrong_Type
begin
-- Don't output message if either type is Any_Type, or if a message
-- has already been posted for this node. We need to do the latter
-- check explicitly (it is ordinarily done in Errout), because we
-- are using ! to force the output of the error messages.
if Expec_Type = Any_Type
or else Found_Type = Any_Type
or else Error_Posted (Expr)
then
return;
-- If one of the types is a Taft-Amendment type and the other it its
-- completion, it must be an illegal use of a TAT in the spec, for
-- which an error was already emitted. Avoid cascaded errors.
elsif Is_Incomplete_Type (Expec_Type)
and then Has_Completion_In_Body (Expec_Type)
and then Full_View (Expec_Type) = Etype (Expr)
then
return;
elsif Is_Incomplete_Type (Etype (Expr))
and then Has_Completion_In_Body (Etype (Expr))
and then Full_View (Etype (Expr)) = Expec_Type
then
return;
-- In an instance, there is an ongoing problem with completion of
-- type derived from private types. Their structure is what Gigi
-- expects, but the Etype is the parent type rather than the
-- derived private type itself. Do not flag error in this case. The
-- private completion is an entity without a parent, like an Itype.
-- Similarly, full and partial views may be incorrect in the instance.
-- There is no simple way to insure that it is consistent ???
-- A similar view discrepancy can happen in an inlined body, for the
-- same reason: inserted body may be outside of the original package
-- and only partial views are visible at the point of insertion.
elsif In_Instance or else In_Inlined_Body then
if Etype (Etype (Expr)) = Etype (Expected_Type)
and then
(Has_Private_Declaration (Expected_Type)
or else Has_Private_Declaration (Etype (Expr)))
and then No (Parent (Expected_Type))
then
return;
elsif Nkind (Parent (Expr)) = N_Qualified_Expression
and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
then
return;
elsif Is_Private_Type (Expected_Type)
and then Present (Full_View (Expected_Type))
and then Covers (Full_View (Expected_Type), Etype (Expr))
then
return;
end if;
end if;
-- An interesting special check. If the expression is parenthesized
-- and its type corresponds to the type of the sole component of the
-- expected record type, or to the component type of the expected one
-- dimensional array type, then assume we have a bad aggregate attempt.
if Nkind (Expr) in N_Subexpr
and then Paren_Count (Expr) /= 0
and then Has_One_Matching_Field
then
Error_Msg_N ("positional aggregate cannot have one component", Expr);
if Present (Matching_Field) then
if Is_Array_Type (Expec_Type) then
Error_Msg_NE
("\write instead `&''First ='> ...`", Expr, Matching_Field);
else
Error_Msg_NE
("\write instead `& ='> ...`", Expr, Matching_Field);
end if;
end if;
-- Another special check, if we are looking for a pool-specific access
-- type and we found an E_Access_Attribute_Type, then we have the case
-- of an Access attribute being used in a context which needs a pool-
-- specific type, which is never allowed. The one extra check we make
-- is that the expected designated type covers the Found_Type.
elsif Is_Access_Type (Expec_Type)
and then Ekind (Found_Type) = E_Access_Attribute_Type
and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
and then Covers
(Designated_Type (Expec_Type), Designated_Type (Found_Type))
then
Error_Msg_N -- CODEFIX
("result must be general access type!", Expr);
Error_Msg_NE -- CODEFIX
("add ALL to }!", Expr, Expec_Type);
-- Another special check, if the expected type is an integer type,
-- but the expression is of type System.Address, and the parent is
-- an addition or subtraction operation whose left operand is the
-- expression in question and whose right operand is of an integral
-- type, then this is an attempt at address arithmetic, so give
-- appropriate message.
elsif Is_Integer_Type (Expec_Type)
and then Is_RTE (Found_Type, RE_Address)
and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
and then Expr = Left_Opnd (Parent (Expr))
and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
then
Error_Msg_N
("address arithmetic not predefined in package System",
Parent (Expr));
Error_Msg_N
("\possible missing with/use of System.Storage_Elements",
Parent (Expr));
return;
-- If the expected type is an anonymous access type, as for access
-- parameters and discriminants, the error is on the designated types.
elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
if Comes_From_Source (Expec_Type) then
Error_Msg_NE ("expected}!", Expr, Expec_Type);
else
Error_Msg_NE
("expected an access type with designated}",
Expr, Designated_Type (Expec_Type));
end if;
if Is_Access_Type (Found_Type)
and then not Comes_From_Source (Found_Type)
then
Error_Msg_NE
("\\found an access type with designated}!",
Expr, Designated_Type (Found_Type));
else
if From_Limited_With (Found_Type) then
Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
Error_Msg_Qual_Level := 99;
Error_Msg_NE -- CODEFIX
("\\missing `WITH &;", Expr, Scope (Found_Type));
Error_Msg_Qual_Level := 0;
else
Error_Msg_NE ("found}!", Expr, Found_Type);
end if;
end if;
-- Normal case of one type found, some other type expected
else
-- If the names of the two types are the same, see if some number
-- of levels of qualification will help. Don't try more than three
-- levels, and if we get to standard, it's no use (and probably
-- represents an error in the compiler) Also do not bother with
-- internal scope names.
declare
Expec_Scope : Entity_Id;
Found_Scope : Entity_Id;
begin
Expec_Scope := Expec_Type;
Found_Scope := Found_Type;
for Levels in Int range 0 .. 3 loop
if Chars (Expec_Scope) /= Chars (Found_Scope) then
Error_Msg_Qual_Level := Levels;
exit;
end if;
Expec_Scope := Scope (Expec_Scope);
Found_Scope := Scope (Found_Scope);
exit when Expec_Scope = Standard_Standard
or else Found_Scope = Standard_Standard
or else not Comes_From_Source (Expec_Scope)
or else not Comes_From_Source (Found_Scope);
end loop;
end;
if Is_Record_Type (Expec_Type)
and then Present (Corresponding_Remote_Type (Expec_Type))
then
Error_Msg_NE ("expected}!", Expr,
Corresponding_Remote_Type (Expec_Type));
else
Error_Msg_NE ("expected}!", Expr, Expec_Type);
end if;
if Is_Entity_Name (Expr)
and then Is_Package_Or_Generic_Package (Entity (Expr))
then
Error_Msg_N ("\\found package name!", Expr);
elsif Is_Entity_Name (Expr)
and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
then
if Ekind (Expec_Type) = E_Access_Subprogram_Type then
Error_Msg_N
("found procedure name, possibly missing Access attribute!",
Expr);
else
Error_Msg_N
("\\found procedure name instead of function!", Expr);
end if;
elsif Nkind (Expr) = N_Function_Call
and then Ekind (Expec_Type) = E_Access_Subprogram_Type
and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
and then No (Parameter_Associations (Expr))
then
Error_Msg_N
("found function name, possibly missing Access attribute!",
Expr);
-- Catch common error: a prefix or infix operator which is not
-- directly visible because the type isn't.
elsif Nkind (Expr) in N_Op
and then Is_Overloaded (Expr)
and then not Is_Immediately_Visible (Expec_Type)
and then not Is_Potentially_Use_Visible (Expec_Type)
and then not In_Use (Expec_Type)
and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
then
Error_Msg_N
("operator of the type is not directly visible!", Expr);
elsif Ekind (Found_Type) = E_Void
and then Present (Parent (Found_Type))
and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
then
Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
else
Error_Msg_NE ("\\found}!", Expr, Found_Type);
end if;
-- A special check for cases like M1 and M2 = 0 where M1 and M2 are
-- of the same modular type, and (M1 and M2) = 0 was intended.
if Expec_Type = Standard_Boolean
and then Is_Modular_Integer_Type (Found_Type)
and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
then
declare
Op : constant Node_Id := Right_Opnd (Parent (Expr));
L : constant Node_Id := Left_Opnd (Op);
R : constant Node_Id := Right_Opnd (Op);
begin
-- The case for the message is when the left operand of the
-- comparison is the same modular type, or when it is an
-- integer literal (or other universal integer expression),
-- which would have been typed as the modular type if the
-- parens had been there.
if (Etype (L) = Found_Type
or else
Etype (L) = Universal_Integer)
and then Is_Integer_Type (Etype (R))
then
Error_Msg_N
("\\possible missing parens for modular operation", Expr);
end if;
end;
end if;
-- Reset error message qualification indication
Error_Msg_Qual_Level := 0;
end if;
end Wrong_Type;
end Sem_Util;
|