aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/sem_res.adb
blob: 06619cb9aebed766735bd04dcf09a23ecf88ef56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ R E S                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2010, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;    use Atree;
with Checks;   use Checks;
with Debug;    use Debug;
with Debug_A;  use Debug_A;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Expander; use Expander;
with Exp_Disp; use Exp_Disp;
with Exp_Ch6;  use Exp_Ch6;
with Exp_Ch7;  use Exp_Ch7;
with Exp_Tss;  use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname;    use Fname;
with Freeze;   use Freeze;
with Itypes;   use Itypes;
with Lib;      use Lib;
with Lib.Xref; use Lib.Xref;
with Namet;    use Namet;
with Nmake;    use Nmake;
with Nlists;   use Nlists;
with Opt;      use Opt;
with Output;   use Output;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Aggr; use Sem_Aggr;
with Sem_Attr; use Sem_Attr;
with Sem_Cat;  use Sem_Cat;
with Sem_Ch4;  use Sem_Ch4;
with Sem_Ch6;  use Sem_Ch6;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Intr; use Sem_Intr;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinfo;    use Sinfo;
with Snames;   use Snames;
with Stand;    use Stand;
with Stringt;  use Stringt;
with Style;    use Style;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;
with Urealp;   use Urealp;

package body Sem_Res is

   -----------------------
   -- Local Subprograms --
   -----------------------

   --  Second pass (top-down) type checking and overload resolution procedures
   --  Typ is the type required by context. These procedures propagate the
   --  type information recursively to the descendants of N. If the node
   --  is not overloaded, its Etype is established in the first pass. If
   --  overloaded,  the Resolve routines set the correct type. For arith.
   --  operators, the Etype is the base type of the context.

   --  Note that Resolve_Attribute is separated off in Sem_Attr

   procedure Check_Discriminant_Use (N : Node_Id);
   --  Enforce the restrictions on the use of discriminants when constraining
   --  a component of a discriminated type (record or concurrent type).

   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
   --  Given a node for an operator associated with type T, check that
   --  the operator is visible. Operators all of whose operands are
   --  universal must be checked for visibility during resolution
   --  because their type is not determinable based on their operands.

   procedure Check_Fully_Declared_Prefix
     (Typ  : Entity_Id;
      Pref : Node_Id);
   --  Check that the type of the prefix of a dereference is not incomplete

   function Check_Infinite_Recursion (N : Node_Id) return Boolean;
   --  Given a call node, N, which is known to occur immediately within the
   --  subprogram being called, determines whether it is a detectable case of
   --  an infinite recursion, and if so, outputs appropriate messages. Returns
   --  True if an infinite recursion is detected, and False otherwise.

   procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
   --  If the type of the object being initialized uses the secondary stack
   --  directly or indirectly, create a transient scope for the call to the
   --  init proc. This is because we do not create transient scopes for the
   --  initialization of individual components within the init proc itself.
   --  Could be optimized away perhaps?

   procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
   --  N is the node for a logical operator. If the operator is predefined, and
   --  the root type of the operands is Standard.Boolean, then a check is made
   --  for restriction No_Direct_Boolean_Operators. This procedure also handles
   --  the style check for Style_Check_Boolean_And_Or.

   function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
   --  Determine whether E is an access type declared by an access
   --  declaration, and not an (anonymous) allocator type.

   function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
   --  Utility to check whether the entity for an operator is a predefined
   --  operator, in which case the expression is left as an operator in the
   --  tree (else it is rewritten into a call). An instance of an intrinsic
   --  conversion operation may be given an operator name, but is not treated
   --  like an operator. Note that an operator that is an imported back-end
   --  builtin has convention Intrinsic, but is expected to be rewritten into
   --  a call, so such an operator is not treated as predefined by this
   --  predicate.

   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
   --  If a default expression in entry call N depends on the discriminants
   --  of the task, it must be replaced with a reference to the discriminant
   --  of the task being called.

   procedure Resolve_Op_Concat_Arg
     (N       : Node_Id;
      Arg     : Node_Id;
      Typ     : Entity_Id;
      Is_Comp : Boolean);
   --  Internal procedure for Resolve_Op_Concat to resolve one operand of
   --  concatenation operator.  The operand is either of the array type or of
   --  the component type. If the operand is an aggregate, and the component
   --  type is composite, this is ambiguous if component type has aggregates.

   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
   --  Does the first part of the work of Resolve_Op_Concat

   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
   --  Does the "rest" of the work of Resolve_Op_Concat, after the left operand
   --  has been resolved. See Resolve_Op_Concat for details.

   procedure Resolve_Allocator                 (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Arithmetic_Op             (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Call                      (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Case_Expression           (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Character_Literal         (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Comparison_Op             (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Conditional_Expression    (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Entity_Name               (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Equality_Op               (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Explicit_Dereference      (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Expression_With_Actions   (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Indexed_Component         (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Integer_Literal           (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Logical_Op                (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Membership_Op             (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Null                      (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Operator_Symbol           (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Op_Concat                 (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Op_Expon                  (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Op_Not                    (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Qualified_Expression      (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Range                     (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Real_Literal              (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Reference                 (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Selected_Component        (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Shift                     (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Short_Circuit             (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Slice                     (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_String_Literal            (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Subprogram_Info           (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Type_Conversion           (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Unary_Op                  (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Unchecked_Expression      (N : Node_Id; Typ : Entity_Id);
   procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);

   function Operator_Kind
     (Op_Name   : Name_Id;
      Is_Binary : Boolean) return Node_Kind;
   --  Utility to map the name of an operator into the corresponding Node. Used
   --  by other node rewriting procedures.

   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
   --  Resolve actuals of call, and add default expressions for missing ones.
   --  N is the Node_Id for the subprogram call, and Nam is the entity of the
   --  called subprogram.

   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
   --  Called from Resolve_Call, when the prefix denotes an entry or element
   --  of entry family. Actuals are resolved as for subprograms, and the node
   --  is rebuilt as an entry call. Also called for protected operations. Typ
   --  is the context type, which is used when the operation is a protected
   --  function with no arguments, and the return value is indexed.

   procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
   --  A call to a user-defined intrinsic operator is rewritten as a call
   --  to the corresponding predefined operator, with suitable conversions.
   --  Note that this applies only for intrinsic operators that denote
   --  predefined operators, not operators that are intrinsic imports of
   --  back-end builtins.

   procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
   --  Ditto, for unary operators (arithmetic ones and "not" on signed
   --  integer types for VMS).

   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
   --  If an operator node resolves to a call to a user-defined operator,
   --  rewrite the node as a function call.

   procedure Make_Call_Into_Operator
     (N     : Node_Id;
      Typ   : Entity_Id;
      Op_Id : Entity_Id);
   --  Inverse transformation: if an operator is given in functional notation,
   --  then after resolving the node, transform into an operator node, so
   --  that operands are resolved properly. Recall that predefined operators
   --  do not have a full signature and special resolution rules apply.

   procedure Rewrite_Renamed_Operator
     (N   : Node_Id;
      Op  : Entity_Id;
      Typ : Entity_Id);
   --  An operator can rename another, e.g. in  an instantiation. In that
   --  case, the proper operator node must be constructed and resolved.

   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
   --  The String_Literal_Subtype is built for all strings that are not
   --  operands of a static concatenation operation. If the argument is
   --  not a N_String_Literal node, then the call has no effect.

   procedure Set_Slice_Subtype (N : Node_Id);
   --  Build subtype of array type, with the range specified by the slice

   procedure Simplify_Type_Conversion (N : Node_Id);
   --  Called after N has been resolved and evaluated, but before range checks
   --  have been applied. Currently simplifies a combination of floating-point
   --  to integer conversion and Truncation attribute.

   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
   --  A universal_fixed expression in an universal context is unambiguous
   --  if there is only one applicable fixed point type. Determining whether
   --  there is only one requires a search over all visible entities, and
   --  happens only in very pathological cases (see 6115-006).

   function Valid_Conversion
     (N       : Node_Id;
      Target  : Entity_Id;
      Operand : Node_Id) return Boolean;
   --  Verify legality rules given in 4.6 (8-23). Target is the target
   --  type of the conversion, which may be an implicit conversion of
   --  an actual parameter to an anonymous access type (in which case
   --  N denotes the actual parameter and N = Operand).

   -------------------------
   -- Ambiguous_Character --
   -------------------------

   procedure Ambiguous_Character (C : Node_Id) is
      E : Entity_Id;

   begin
      if Nkind (C) = N_Character_Literal then
         Error_Msg_N ("ambiguous character literal", C);

         --  First the ones in Standard

         Error_Msg_N ("\\possible interpretation: Character!", C);
         Error_Msg_N ("\\possible interpretation: Wide_Character!", C);

         --  Include Wide_Wide_Character in Ada 2005 mode

         if Ada_Version >= Ada_05 then
            Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
         end if;

         --  Now any other types that match

         E := Current_Entity (C);
         while Present (E) loop
            Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
            E := Homonym (E);
         end loop;
      end if;
   end Ambiguous_Character;

   -------------------------
   -- Analyze_And_Resolve --
   -------------------------

   procedure Analyze_And_Resolve (N : Node_Id) is
   begin
      Analyze (N);
      Resolve (N);
   end Analyze_And_Resolve;

   procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
   begin
      Analyze (N);
      Resolve (N, Typ);
   end Analyze_And_Resolve;

   --  Version withs check(s) suppressed

   procedure Analyze_And_Resolve
     (N        : Node_Id;
      Typ      : Entity_Id;
      Suppress : Check_Id)
   is
      Scop : constant Entity_Id := Current_Scope;

   begin
      if Suppress = All_Checks then
         declare
            Svg : constant Suppress_Array := Scope_Suppress;
         begin
            Scope_Suppress := (others => True);
            Analyze_And_Resolve (N, Typ);
            Scope_Suppress := Svg;
         end;

      else
         declare
            Svg : constant Boolean := Scope_Suppress (Suppress);

         begin
            Scope_Suppress (Suppress) := True;
            Analyze_And_Resolve (N, Typ);
            Scope_Suppress (Suppress) := Svg;
         end;
      end if;

      if Current_Scope /= Scop
        and then Scope_Is_Transient
      then
         --  This can only happen if a transient scope was created
         --  for an inner expression, which will be removed upon
         --  completion of the analysis of an enclosing construct.
         --  The transient scope must have the suppress status of
         --  the enclosing environment, not of this Analyze call.

         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
           Scope_Suppress;
      end if;
   end Analyze_And_Resolve;

   procedure Analyze_And_Resolve
     (N        : Node_Id;
      Suppress : Check_Id)
   is
      Scop : constant Entity_Id := Current_Scope;

   begin
      if Suppress = All_Checks then
         declare
            Svg : constant Suppress_Array := Scope_Suppress;
         begin
            Scope_Suppress := (others => True);
            Analyze_And_Resolve (N);
            Scope_Suppress := Svg;
         end;

      else
         declare
            Svg : constant Boolean := Scope_Suppress (Suppress);

         begin
            Scope_Suppress (Suppress) := True;
            Analyze_And_Resolve (N);
            Scope_Suppress (Suppress) := Svg;
         end;
      end if;

      if Current_Scope /= Scop
        and then Scope_Is_Transient
      then
         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
           Scope_Suppress;
      end if;
   end Analyze_And_Resolve;

   ----------------------------
   -- Check_Discriminant_Use --
   ----------------------------

   procedure Check_Discriminant_Use (N : Node_Id) is
      PN   : constant Node_Id   := Parent (N);
      Disc : constant Entity_Id := Entity (N);
      P    : Node_Id;
      D    : Node_Id;

   begin
      --  Any use in a spec-expression is legal

      if In_Spec_Expression then
         null;

      elsif Nkind (PN) = N_Range then

         --  Discriminant cannot be used to constrain a scalar type

         P := Parent (PN);

         if Nkind (P) = N_Range_Constraint
           and then Nkind (Parent (P)) = N_Subtype_Indication
           and then Nkind (Parent (Parent (P))) = N_Component_Definition
         then
            Error_Msg_N ("discriminant cannot constrain scalar type", N);

         elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then

            --  The following check catches the unusual case where
            --  a discriminant appears within an index constraint
            --  that is part of a larger expression within a constraint
            --  on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
            --  For now we only check case of record components, and
            --  note that a similar check should also apply in the
            --  case of discriminant constraints below. ???

            --  Note that the check for N_Subtype_Declaration below is to
            --  detect the valid use of discriminants in the constraints of a
            --  subtype declaration when this subtype declaration appears
            --  inside the scope of a record type (which is syntactically
            --  illegal, but which may be created as part of derived type
            --  processing for records). See Sem_Ch3.Build_Derived_Record_Type
            --  for more info.

            if Ekind (Current_Scope) = E_Record_Type
              and then Scope (Disc) = Current_Scope
              and then not
                (Nkind (Parent (P)) = N_Subtype_Indication
                  and then
                    Nkind_In (Parent (Parent (P)), N_Component_Definition,
                                                   N_Subtype_Declaration)
                  and then Paren_Count (N) = 0)
            then
               Error_Msg_N
                 ("discriminant must appear alone in component constraint", N);
               return;
            end if;

            --   Detect a common error:

            --   type R (D : Positive := 100) is record
            --     Name : String (1 .. D);
            --   end record;

            --  The default value causes an object of type R to be allocated
            --  with room for Positive'Last characters. The RM does not mandate
            --  the allocation of the maximum size, but that is what GNAT does
            --  so we should warn the programmer that there is a problem.

            Check_Large : declare
               SI : Node_Id;
               T  : Entity_Id;
               TB : Node_Id;
               CB : Entity_Id;

               function Large_Storage_Type (T : Entity_Id) return Boolean;
               --  Return True if type T has a large enough range that
               --  any array whose index type covered the whole range of
               --  the type would likely raise Storage_Error.

               ------------------------
               -- Large_Storage_Type --
               ------------------------

               function Large_Storage_Type (T : Entity_Id) return Boolean is
               begin
                  --  The type is considered large if its bounds are known at
                  --  compile time and if it requires at least as many bits as
                  --  a Positive to store the possible values.

                  return Compile_Time_Known_Value (Type_Low_Bound (T))
                    and then Compile_Time_Known_Value (Type_High_Bound (T))
                    and then
                      Minimum_Size (T, Biased => True) >=
                        RM_Size (Standard_Positive);
               end Large_Storage_Type;

            --  Start of processing for Check_Large

            begin
               --  Check that the Disc has a large range

               if not Large_Storage_Type (Etype (Disc)) then
                  goto No_Danger;
               end if;

               --  If the enclosing type is limited, we allocate only the
               --  default value, not the maximum, and there is no need for
               --  a warning.

               if Is_Limited_Type (Scope (Disc)) then
                  goto No_Danger;
               end if;

               --  Check that it is the high bound

               if N /= High_Bound (PN)
                 or else No (Discriminant_Default_Value (Disc))
               then
                  goto No_Danger;
               end if;

               --  Check the array allows a large range at this bound.
               --  First find the array

               SI := Parent (P);

               if Nkind (SI) /= N_Subtype_Indication then
                  goto No_Danger;
               end if;

               T := Entity (Subtype_Mark (SI));

               if not Is_Array_Type (T) then
                  goto No_Danger;
               end if;

               --  Next, find the dimension

               TB := First_Index (T);
               CB := First (Constraints (P));
               while True
                 and then Present (TB)
                 and then Present (CB)
                 and then CB /= PN
               loop
                  Next_Index (TB);
                  Next (CB);
               end loop;

               if CB /= PN then
                  goto No_Danger;
               end if;

               --  Now, check the dimension has a large range

               if not Large_Storage_Type (Etype (TB)) then
                  goto No_Danger;
               end if;

               --  Warn about the danger

               Error_Msg_N
                 ("?creation of & object may raise Storage_Error!",
                  Scope (Disc));

               <<No_Danger>>
                  null;

            end Check_Large;
         end if;

      --  Legal case is in index or discriminant constraint

      elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
                          N_Discriminant_Association)
      then
         if Paren_Count (N) > 0 then
            Error_Msg_N
              ("discriminant in constraint must appear alone",  N);

         elsif Nkind (N) = N_Expanded_Name
           and then Comes_From_Source (N)
         then
            Error_Msg_N
              ("discriminant must appear alone as a direct name", N);
         end if;

         return;

      --  Otherwise, context is an expression. It should not be within
      --  (i.e. a subexpression of) a constraint for a component.

      else
         D := PN;
         P := Parent (PN);
         while not Nkind_In (P, N_Component_Declaration,
                                N_Subtype_Indication,
                                N_Entry_Declaration)
         loop
            D := P;
            P := Parent (P);
            exit when No (P);
         end loop;

         --  If the discriminant is used in an expression that is a bound
         --  of a scalar type, an Itype is created and the bounds are attached
         --  to its range,  not to the original subtype indication. Such use
         --  is of course a double fault.

         if (Nkind (P) = N_Subtype_Indication
              and then Nkind_In (Parent (P), N_Component_Definition,
                                             N_Derived_Type_Definition)
              and then D = Constraint (P))

         --  The constraint itself may be given by a subtype indication,
         --  rather than by a more common discrete range.

           or else (Nkind (P) = N_Subtype_Indication
                      and then
                    Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
           or else Nkind (P) = N_Entry_Declaration
           or else Nkind (D) = N_Defining_Identifier
         then
            Error_Msg_N
              ("discriminant in constraint must appear alone",  N);
         end if;
      end if;
   end Check_Discriminant_Use;

   --------------------------------
   -- Check_For_Visible_Operator --
   --------------------------------

   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
   begin
      if Is_Invisible_Operator (N, T) then
         Error_Msg_NE -- CODEFIX
           ("operator for} is not directly visible!", N, First_Subtype (T));
         Error_Msg_N -- CODEFIX
           ("use clause would make operation legal!", N);
      end if;
   end Check_For_Visible_Operator;

   ----------------------------------
   --  Check_Fully_Declared_Prefix --
   ----------------------------------

   procedure Check_Fully_Declared_Prefix
     (Typ  : Entity_Id;
      Pref : Node_Id)
   is
   begin
      --  Check that the designated type of the prefix of a dereference is
      --  not an incomplete type. This cannot be done unconditionally, because
      --  dereferences of private types are legal in default expressions. This
      --  case is taken care of in Check_Fully_Declared, called below. There
      --  are also 2005 cases where it is legal for the prefix to be unfrozen.

      --  This consideration also applies to similar checks for allocators,
      --  qualified expressions, and type conversions.

      --  An additional exception concerns other per-object expressions that
      --  are not directly related to component declarations, in particular
      --  representation pragmas for tasks. These will be per-object
      --  expressions if they depend on discriminants or some global entity.
      --  If the task has access discriminants, the designated type may be
      --  incomplete at the point the expression is resolved. This resolution
      --  takes place within the body of the initialization procedure, where
      --  the discriminant is replaced by its discriminal.

      if Is_Entity_Name (Pref)
        and then Ekind (Entity (Pref)) = E_In_Parameter
      then
         null;

      --  Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
      --  are handled by Analyze_Access_Attribute, Analyze_Assignment,
      --  Analyze_Object_Renaming, and Freeze_Entity.

      elsif Ada_Version >= Ada_05
        and then Is_Entity_Name (Pref)
        and then Is_Access_Type (Etype (Pref))
        and then Ekind (Directly_Designated_Type (Etype (Pref))) =
                                                       E_Incomplete_Type
        and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
      then
         null;
      else
         Check_Fully_Declared (Typ, Parent (Pref));
      end if;
   end Check_Fully_Declared_Prefix;

   ------------------------------
   -- Check_Infinite_Recursion --
   ------------------------------

   function Check_Infinite_Recursion (N : Node_Id) return Boolean is
      P : Node_Id;
      C : Node_Id;

      function Same_Argument_List return Boolean;
      --  Check whether list of actuals is identical to list of formals
      --  of called function (which is also the enclosing scope).

      ------------------------
      -- Same_Argument_List --
      ------------------------

      function Same_Argument_List return Boolean is
         A    : Node_Id;
         F    : Entity_Id;
         Subp : Entity_Id;

      begin
         if not Is_Entity_Name (Name (N)) then
            return False;
         else
            Subp := Entity (Name (N));
         end if;

         F := First_Formal (Subp);
         A := First_Actual (N);
         while Present (F) and then Present (A) loop
            if not Is_Entity_Name (A)
              or else Entity (A) /= F
            then
               return False;
            end if;

            Next_Actual (A);
            Next_Formal (F);
         end loop;

         return True;
      end Same_Argument_List;

   --  Start of processing for Check_Infinite_Recursion

   begin
      --  Special case, if this is a procedure call and is a call to the
      --  current procedure with the same argument list, then this is for
      --  sure an infinite recursion and we insert a call to raise SE.

      if Is_List_Member (N)
        and then List_Length (List_Containing (N)) = 1
        and then Same_Argument_List
      then
         declare
            P : constant Node_Id := Parent (N);
         begin
            if Nkind (P) = N_Handled_Sequence_Of_Statements
              and then Nkind (Parent (P)) = N_Subprogram_Body
              and then Is_Empty_List (Declarations (Parent (P)))
            then
               Error_Msg_N ("!?infinite recursion", N);
               Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
               Insert_Action (N,
                 Make_Raise_Storage_Error (Sloc (N),
                   Reason => SE_Infinite_Recursion));
               return True;
            end if;
         end;
      end if;

      --  If not that special case, search up tree, quitting if we reach a
      --  construct (e.g. a conditional) that tells us that this is not a
      --  case for an infinite recursion warning.

      C := N;
      loop
         P := Parent (C);

         --  If no parent, then we were not inside a subprogram, this can for
         --  example happen when processing certain pragmas in a spec. Just
         --  return False in this case.

         if No (P) then
            return False;
         end if;

         --  Done if we get to subprogram body, this is definitely an infinite
         --  recursion case if we did not find anything to stop us.

         exit when Nkind (P) = N_Subprogram_Body;

         --  If appearing in conditional, result is false

         if Nkind_In (P, N_Or_Else,
                         N_And_Then,
                         N_If_Statement,
                         N_Case_Statement)
         then
            return False;

         elsif Nkind (P) = N_Handled_Sequence_Of_Statements
           and then C /= First (Statements (P))
         then
            --  If the call is the expression of a return statement and the
            --  actuals are identical to the formals, it's worth a warning.
            --  However, we skip this if there is an immediately preceding
            --  raise statement, since the call is never executed.

            --  Furthermore, this corresponds to a common idiom:

            --    function F (L : Thing) return Boolean is
            --    begin
            --       raise Program_Error;
            --       return F (L);
            --    end F;

            --  for generating a stub function

            if Nkind (Parent (N)) = N_Simple_Return_Statement
              and then Same_Argument_List
            then
               exit when not Is_List_Member (Parent (N));

               --  OK, return statement is in a statement list, look for raise

               declare
                  Nod : Node_Id;

               begin
                  --  Skip past N_Freeze_Entity nodes generated by expansion

                  Nod := Prev (Parent (N));
                  while Present (Nod)
                    and then Nkind (Nod) = N_Freeze_Entity
                  loop
                     Prev (Nod);
                  end loop;

                  --  If no raise statement, give warning

                  exit when Nkind (Nod) /= N_Raise_Statement
                    and then
                      (Nkind (Nod) not in N_Raise_xxx_Error
                         or else Present (Condition (Nod)));
               end;
            end if;

            return False;

         else
            C := P;
         end if;
      end loop;

      Error_Msg_N ("!?possible infinite recursion", N);
      Error_Msg_N ("\!?Storage_Error may be raised at run time", N);

      return True;
   end Check_Infinite_Recursion;

   -------------------------------
   -- Check_Initialization_Call --
   -------------------------------

   procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
      Typ : constant Entity_Id := Etype (First_Formal (Nam));

      function Uses_SS (T : Entity_Id) return Boolean;
      --  Check whether the creation of an object of the type will involve
      --  use of the secondary stack. If T is a record type, this is true
      --  if the expression for some component uses the secondary stack, e.g.
      --  through a call to a function that returns an unconstrained value.
      --  False if T is controlled, because cleanups occur elsewhere.

      -------------
      -- Uses_SS --
      -------------

      function Uses_SS (T : Entity_Id) return Boolean is
         Comp      : Entity_Id;
         Expr      : Node_Id;
         Full_Type : Entity_Id := Underlying_Type (T);

      begin
         --  Normally we want to use the underlying type, but if it's not set
         --  then continue with T.

         if not Present (Full_Type) then
            Full_Type := T;
         end if;

         if Is_Controlled (Full_Type) then
            return False;

         elsif Is_Array_Type (Full_Type) then
            return Uses_SS (Component_Type (Full_Type));

         elsif Is_Record_Type (Full_Type) then
            Comp := First_Component (Full_Type);
            while Present (Comp) loop
               if Ekind (Comp) = E_Component
                 and then Nkind (Parent (Comp)) = N_Component_Declaration
               then
                  --  The expression for a dynamic component may be rewritten
                  --  as a dereference, so retrieve original node.

                  Expr := Original_Node (Expression (Parent (Comp)));

                  --  Return True if the expression is a call to a function
                  --  (including an attribute function such as Image) with
                  --  a result that requires a transient scope.

                  if (Nkind (Expr) = N_Function_Call
                       or else (Nkind (Expr) = N_Attribute_Reference
                                 and then Present (Expressions (Expr))))
                    and then Requires_Transient_Scope (Etype (Expr))
                  then
                     return True;

                  elsif Uses_SS (Etype (Comp)) then
                     return True;
                  end if;
               end if;

               Next_Component (Comp);
            end loop;

            return False;

         else
            return False;
         end if;
      end Uses_SS;

   --  Start of processing for Check_Initialization_Call

   begin
      --  Establish a transient scope if the type needs it

      if Uses_SS (Typ) then
         Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
      end if;
   end Check_Initialization_Call;

   ---------------------------------------
   -- Check_No_Direct_Boolean_Operators --
   ---------------------------------------

   procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
   begin
      if Scope (Entity (N)) = Standard_Standard
        and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
      then
         --  Restriction only applies to original source code

         if Comes_From_Source (N) then
            Check_Restriction (No_Direct_Boolean_Operators, N);
         end if;
      end if;

      if Style_Check then
         Check_Boolean_Operator (N);
      end if;
   end Check_No_Direct_Boolean_Operators;

   ------------------------------
   -- Check_Parameterless_Call --
   ------------------------------

   procedure Check_Parameterless_Call (N : Node_Id) is
      Nam : Node_Id;

      function Prefix_Is_Access_Subp return Boolean;
      --  If the prefix is of an access_to_subprogram type, the node must be
      --  rewritten as a call. Ditto if the prefix is overloaded and all its
      --  interpretations are access to subprograms.

      ---------------------------
      -- Prefix_Is_Access_Subp --
      ---------------------------

      function Prefix_Is_Access_Subp return Boolean is
         I   : Interp_Index;
         It  : Interp;

      begin
         if not Is_Overloaded (N) then
            return
              Ekind (Etype (N)) = E_Subprogram_Type
                and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
         else
            Get_First_Interp (N, I, It);
            while Present (It.Typ) loop
               if Ekind (It.Typ) /= E_Subprogram_Type
                 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
               then
                  return False;
               end if;

               Get_Next_Interp (I, It);
            end loop;

            return True;
         end if;
      end Prefix_Is_Access_Subp;

   --  Start of processing for Check_Parameterless_Call

   begin
      --  Defend against junk stuff if errors already detected

      if Total_Errors_Detected /= 0 then
         if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
            return;
         elsif Nkind (N) in N_Has_Chars
           and then Chars (N) in Error_Name_Or_No_Name
         then
            return;
         end if;

         Require_Entity (N);
      end if;

      --  If the context expects a value, and the name is a procedure, this is
      --  most likely a missing 'Access. Don't try to resolve the parameterless
      --  call, error will be caught when the outer call is analyzed.

      if Is_Entity_Name (N)
        and then Ekind (Entity (N)) = E_Procedure
        and then not Is_Overloaded (N)
        and then
         Nkind_In (Parent (N), N_Parameter_Association,
                               N_Function_Call,
                               N_Procedure_Call_Statement)
      then
         return;
      end if;

      --  Rewrite as call if overloadable entity that is (or could be, in the
      --  overloaded case) a function call. If we know for sure that the entity
      --  is an enumeration literal, we do not rewrite it.

      if (Is_Entity_Name (N)
            and then Is_Overloadable (Entity (N))
            and then (Ekind (Entity (N)) /= E_Enumeration_Literal
                       or else Is_Overloaded (N)))

      --  Rewrite as call if it is an explicit dereference of an expression of
      --  a subprogram access type, and the subprogram type is not that of a
      --  procedure or entry.

      or else
        (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)

      --  Rewrite as call if it is a selected component which is a function,
      --  this is the case of a call to a protected function (which may be
      --  overloaded with other protected operations).

      or else
        (Nkind (N) = N_Selected_Component
          and then (Ekind (Entity (Selector_Name (N))) = E_Function
                     or else
                       (Ekind_In (Entity (Selector_Name (N)), E_Entry,
                                                              E_Procedure)
                         and then Is_Overloaded (Selector_Name (N)))))

      --  If one of the above three conditions is met, rewrite as call.
      --  Apply the rewriting only once.

      then
         if Nkind (Parent (N)) /= N_Function_Call
           or else N /= Name (Parent (N))
         then
            Nam := New_Copy (N);

            --  If overloaded, overload set belongs to new copy

            Save_Interps (N, Nam);

            --  Change node to parameterless function call (note that the
            --  Parameter_Associations associations field is left set to Empty,
            --  its normal default value since there are no parameters)

            Change_Node (N, N_Function_Call);
            Set_Name (N, Nam);
            Set_Sloc (N, Sloc (Nam));
            Analyze_Call (N);
         end if;

      elsif Nkind (N) = N_Parameter_Association then
         Check_Parameterless_Call (Explicit_Actual_Parameter (N));
      end if;
   end Check_Parameterless_Call;

   -----------------------------
   -- Is_Definite_Access_Type --
   -----------------------------

   function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
      Btyp : constant Entity_Id := Base_Type (E);
   begin
      return Ekind (Btyp) = E_Access_Type
        or else (Ekind (Btyp) = E_Access_Subprogram_Type
                  and then Comes_From_Source (Btyp));
   end Is_Definite_Access_Type;

   ----------------------
   -- Is_Predefined_Op --
   ----------------------

   function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
   begin
      --  Predefined operators are intrinsic subprograms

      if not Is_Intrinsic_Subprogram (Nam) then
         return False;
      end if;

      --  A call to a back-end builtin is never a predefined operator

      if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
         return False;
      end if;

      return not Is_Generic_Instance (Nam)
        and then Chars (Nam) in Any_Operator_Name
        and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
   end Is_Predefined_Op;

   -----------------------------
   -- Make_Call_Into_Operator --
   -----------------------------

   procedure Make_Call_Into_Operator
     (N     : Node_Id;
      Typ   : Entity_Id;
      Op_Id : Entity_Id)
   is
      Op_Name   : constant Name_Id := Chars (Op_Id);
      Act1      : Node_Id := First_Actual (N);
      Act2      : Node_Id := Next_Actual (Act1);
      Error     : Boolean := False;
      Func      : constant Entity_Id := Entity (Name (N));
      Is_Binary : constant Boolean   := Present (Act2);
      Op_Node   : Node_Id;
      Opnd_Type : Entity_Id;
      Orig_Type : Entity_Id := Empty;
      Pack      : Entity_Id;

      type Kind_Test is access function (E : Entity_Id) return Boolean;

      function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
      --  If the operand is not universal, and the operator is given by a
      --  expanded name, verify that the operand has an interpretation with
      --  a type defined in the given scope of the operator.

      function Type_In_P (Test : Kind_Test) return Entity_Id;
      --  Find a type of the given class in the package Pack that contains
      --  the operator.

      ---------------------------
      -- Operand_Type_In_Scope --
      ---------------------------

      function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
         Nod : constant Node_Id := Right_Opnd (Op_Node);
         I   : Interp_Index;
         It  : Interp;

      begin
         if not Is_Overloaded (Nod) then
            return Scope (Base_Type (Etype (Nod))) = S;

         else
            Get_First_Interp (Nod, I, It);
            while Present (It.Typ) loop
               if Scope (Base_Type (It.Typ)) = S then
                  return True;
               end if;

               Get_Next_Interp (I, It);
            end loop;

            return False;
         end if;
      end Operand_Type_In_Scope;

      ---------------
      -- Type_In_P --
      ---------------

      function Type_In_P (Test : Kind_Test) return Entity_Id is
         E : Entity_Id;

         function In_Decl return Boolean;
         --  Verify that node is not part of the type declaration for the
         --  candidate type, which would otherwise be invisible.

         -------------
         -- In_Decl --
         -------------

         function In_Decl return Boolean is
            Decl_Node : constant Node_Id := Parent (E);
            N2        : Node_Id;

         begin
            N2 := N;

            if Etype (E) = Any_Type then
               return True;

            elsif No (Decl_Node) then
               return False;

            else
               while Present (N2)
                 and then Nkind (N2) /= N_Compilation_Unit
               loop
                  if N2 = Decl_Node then
                     return True;
                  else
                     N2 := Parent (N2);
                  end if;
               end loop;

               return False;
            end if;
         end In_Decl;

      --  Start of processing for Type_In_P

      begin
         --  If the context type is declared in the prefix package, this
         --  is the desired base type.

         if Scope (Base_Type (Typ)) = Pack
           and then Test (Typ)
         then
            return Base_Type (Typ);

         else
            E := First_Entity (Pack);
            while Present (E) loop
               if Test (E)
                 and then not In_Decl
               then
                  return E;
               end if;

               Next_Entity (E);
            end loop;

            return Empty;
         end if;
      end Type_In_P;

   --  Start of processing for Make_Call_Into_Operator

   begin
      Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));

      --  Binary operator

      if Is_Binary then
         Set_Left_Opnd  (Op_Node, Relocate_Node (Act1));
         Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
         Save_Interps (Act1, Left_Opnd  (Op_Node));
         Save_Interps (Act2, Right_Opnd (Op_Node));
         Act1 := Left_Opnd (Op_Node);
         Act2 := Right_Opnd (Op_Node);

      --  Unary operator

      else
         Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
         Save_Interps (Act1, Right_Opnd (Op_Node));
         Act1 := Right_Opnd (Op_Node);
      end if;

      --  If the operator is denoted by an expanded name, and the prefix is
      --  not Standard, but the operator is a predefined one whose scope is
      --  Standard, then this is an implicit_operator, inserted as an
      --  interpretation by the procedure of the same name. This procedure
      --  overestimates the presence of implicit operators, because it does
      --  not examine the type of the operands. Verify now that the operand
      --  type appears in the given scope. If right operand is universal,
      --  check the other operand. In the case of concatenation, either
      --  argument can be the component type, so check the type of the result.
      --  If both arguments are literals, look for a type of the right kind
      --  defined in the given scope. This elaborate nonsense is brought to
      --  you courtesy of b33302a. The type itself must be frozen, so we must
      --  find the type of the proper class in the given scope.

      --  A final wrinkle is the multiplication operator for fixed point types,
      --  which is defined in Standard only, and not in the scope of the
      --  fixed_point type itself.

      if Nkind (Name (N)) = N_Expanded_Name then
         Pack := Entity (Prefix (Name (N)));

         --  If the entity being called is defined in the given package, it is
         --  a renaming of a predefined operator, and known to be legal.

         if Scope (Entity (Name (N))) = Pack
            and then Pack /= Standard_Standard
         then
            null;

         --  Visibility does not need to be checked in an instance: if the
         --  operator was not visible in the generic it has been diagnosed
         --  already, else there is an implicit copy of it in the instance.

         elsif In_Instance then
            null;

         elsif (Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide)
           and then Is_Fixed_Point_Type (Etype (Left_Opnd  (Op_Node)))
           and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
         then
            if Pack /= Standard_Standard then
               Error := True;
            end if;

         --  Ada 2005, AI-420: Predefined equality on Universal_Access is
         --  available.

         elsif Ada_Version >= Ada_05
           and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
           and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
         then
            null;

         else
            Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));

            if Op_Name = Name_Op_Concat then
               Opnd_Type := Base_Type (Typ);

            elsif (Scope (Opnd_Type) = Standard_Standard
                     and then Is_Binary)
              or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
                        and then Is_Binary
                        and then not Comes_From_Source (Opnd_Type))
            then
               Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
            end if;

            if Scope (Opnd_Type) = Standard_Standard then

               --  Verify that the scope contains a type that corresponds to
               --  the given literal. Optimize the case where Pack is Standard.

               if Pack /= Standard_Standard then

                  if Opnd_Type = Universal_Integer then
                     Orig_Type := Type_In_P (Is_Integer_Type'Access);

                  elsif Opnd_Type = Universal_Real then
                     Orig_Type := Type_In_P (Is_Real_Type'Access);

                  elsif Opnd_Type = Any_String then
                     Orig_Type := Type_In_P (Is_String_Type'Access);

                  elsif Opnd_Type = Any_Access then
                     Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);

                  elsif Opnd_Type = Any_Composite then
                     Orig_Type := Type_In_P (Is_Composite_Type'Access);

                     if Present (Orig_Type) then
                        if Has_Private_Component (Orig_Type) then
                           Orig_Type := Empty;
                        else
                           Set_Etype (Act1, Orig_Type);

                           if Is_Binary then
                              Set_Etype (Act2, Orig_Type);
                           end if;
                        end if;
                     end if;

                  else
                     Orig_Type := Empty;
                  end if;

                  Error := No (Orig_Type);
               end if;

            elsif Ekind (Opnd_Type) = E_Allocator_Type
               and then No (Type_In_P (Is_Definite_Access_Type'Access))
            then
               Error := True;

            --  If the type is defined elsewhere, and the operator is not
            --  defined in the given scope (by a renaming declaration, e.g.)
            --  then this is an error as well. If an extension of System is
            --  present, and the type may be defined there, Pack must be
            --  System itself.

            elsif Scope (Opnd_Type) /= Pack
              and then Scope (Op_Id) /= Pack
              and then (No (System_Aux_Id)
                         or else Scope (Opnd_Type) /= System_Aux_Id
                         or else Pack /= Scope (System_Aux_Id))
            then
               if not Is_Overloaded (Right_Opnd (Op_Node)) then
                  Error := True;
               else
                  Error := not Operand_Type_In_Scope (Pack);
               end if;

            elsif Pack = Standard_Standard
              and then not Operand_Type_In_Scope (Standard_Standard)
            then
               Error := True;
            end if;
         end if;

         if Error then
            Error_Msg_Node_2 := Pack;
            Error_Msg_NE
              ("& not declared in&", N, Selector_Name (Name (N)));
            Set_Etype (N, Any_Type);
            return;

         --  Detect a mismatch between the context type and the result type
         --  in the named package, which is otherwise not detected if the
         --  operands are universal. Check is only needed if source entity is
         --  an operator, not a function that renames an operator.

         elsif Nkind (Parent (N)) /= N_Type_Conversion
           and then Ekind (Entity (Name (N))) = E_Operator
           and then Is_Numeric_Type (Typ)
           and then not Is_Universal_Numeric_Type (Typ)
           and then Scope (Base_Type (Typ)) /= Pack
           and then not In_Instance
         then
            if Is_Fixed_Point_Type (Typ)
              and then (Op_Name = Name_Op_Multiply
                          or else
                        Op_Name = Name_Op_Divide)
            then
               --  Already checked above

               null;

            else
               --  Note: we go to First_Subtype here to ensure the message
               --  has the proper source type name (Typ may be an anonymous
               --  base type).
               --  Could we use Wrong_Type here??? (this would require setting
               --  Etype (N) to the actual type found where Typ was expected).

               Error_Msg_NE ("expect type&", N, First_Subtype (Typ));
            end if;
         end if;
      end if;

      Set_Chars  (Op_Node, Op_Name);

      if not Is_Private_Type (Etype (N)) then
         Set_Etype (Op_Node, Base_Type (Etype (N)));
      else
         Set_Etype (Op_Node, Etype (N));
      end if;

      --  If this is a call to a function that renames a predefined equality,
      --  the renaming declaration provides a type that must be used to
      --  resolve the operands. This must be done now because resolution of
      --  the equality node will not resolve any remaining ambiguity, and it
      --  assumes that the first operand is not overloaded.

      if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
        and then Ekind (Func) = E_Function
        and then Is_Overloaded (Act1)
      then
         Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
         Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
      end if;

      Set_Entity (Op_Node, Op_Id);
      Generate_Reference (Op_Id, N, ' ');

      --  Do rewrite setting Comes_From_Source on the result if the original
      --  call came from source. Although it is not strictly the case that the
      --  operator as such comes from the source, logically it corresponds
      --  exactly to the function call in the source, so it should be marked
      --  this way (e.g. to make sure that validity checks work fine).

      declare
         CS : constant Boolean := Comes_From_Source (N);
      begin
         Rewrite (N, Op_Node);
         Set_Comes_From_Source (N, CS);
      end;

      --  If this is an arithmetic operator and the result type is private,
      --  the operands and the result must be wrapped in conversion to
      --  expose the underlying numeric type and expand the proper checks,
      --  e.g. on division.

      if Is_Private_Type (Typ) then
         case Nkind (N) is
            when N_Op_Add  | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
            N_Op_Expon     | N_Op_Mod      | N_Op_Rem      =>
               Resolve_Intrinsic_Operator (N, Typ);

            when N_Op_Plus | N_Op_Minus    | N_Op_Abs      =>
               Resolve_Intrinsic_Unary_Operator (N, Typ);

            when others =>
               Resolve (N, Typ);
         end case;
      else
         Resolve (N, Typ);
      end if;
   end Make_Call_Into_Operator;

   -------------------
   -- Operator_Kind --
   -------------------

   function Operator_Kind
     (Op_Name   : Name_Id;
      Is_Binary : Boolean) return Node_Kind
   is
      Kind : Node_Kind;

   begin
      if Is_Binary then
         if    Op_Name =  Name_Op_And      then
            Kind := N_Op_And;
         elsif Op_Name =  Name_Op_Or       then
            Kind := N_Op_Or;
         elsif Op_Name =  Name_Op_Xor      then
            Kind := N_Op_Xor;
         elsif Op_Name =  Name_Op_Eq       then
            Kind := N_Op_Eq;
         elsif Op_Name =  Name_Op_Ne       then
            Kind := N_Op_Ne;
         elsif Op_Name =  Name_Op_Lt       then
            Kind := N_Op_Lt;
         elsif Op_Name =  Name_Op_Le       then
            Kind := N_Op_Le;
         elsif Op_Name =  Name_Op_Gt       then
            Kind := N_Op_Gt;
         elsif Op_Name =  Name_Op_Ge       then
            Kind := N_Op_Ge;
         elsif Op_Name =  Name_Op_Add      then
            Kind := N_Op_Add;
         elsif Op_Name =  Name_Op_Subtract then
            Kind := N_Op_Subtract;
         elsif Op_Name =  Name_Op_Concat   then
            Kind := N_Op_Concat;
         elsif Op_Name =  Name_Op_Multiply then
            Kind := N_Op_Multiply;
         elsif Op_Name =  Name_Op_Divide   then
            Kind := N_Op_Divide;
         elsif Op_Name =  Name_Op_Mod      then
            Kind := N_Op_Mod;
         elsif Op_Name =  Name_Op_Rem      then
            Kind := N_Op_Rem;
         elsif Op_Name =  Name_Op_Expon    then
            Kind := N_Op_Expon;
         else
            raise Program_Error;
         end if;

      --  Unary operators

      else
         if    Op_Name =  Name_Op_Add      then
            Kind := N_Op_Plus;
         elsif Op_Name =  Name_Op_Subtract then
            Kind := N_Op_Minus;
         elsif Op_Name =  Name_Op_Abs      then
            Kind := N_Op_Abs;
         elsif Op_Name =  Name_Op_Not      then
            Kind := N_Op_Not;
         else
            raise Program_Error;
         end if;
      end if;

      return Kind;
   end Operator_Kind;

   ----------------------------
   -- Preanalyze_And_Resolve --
   ----------------------------

   procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
      Save_Full_Analysis : constant Boolean := Full_Analysis;

   begin
      Full_Analysis := False;
      Expander_Mode_Save_And_Set (False);

      --  We suppress all checks for this analysis, since the checks will
      --  be applied properly, and in the right location, when the default
      --  expression is reanalyzed and reexpanded later on.

      Analyze_And_Resolve (N, T, Suppress => All_Checks);

      Expander_Mode_Restore;
      Full_Analysis := Save_Full_Analysis;
   end Preanalyze_And_Resolve;

   --  Version without context type

   procedure Preanalyze_And_Resolve (N : Node_Id) is
      Save_Full_Analysis : constant Boolean := Full_Analysis;

   begin
      Full_Analysis := False;
      Expander_Mode_Save_And_Set (False);

      Analyze (N);
      Resolve (N, Etype (N), Suppress => All_Checks);

      Expander_Mode_Restore;
      Full_Analysis := Save_Full_Analysis;
   end Preanalyze_And_Resolve;

   ----------------------------------
   -- Replace_Actual_Discriminants --
   ----------------------------------

   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Tsk : Node_Id := Empty;

      function Process_Discr (Nod : Node_Id) return Traverse_Result;

      -------------------
      -- Process_Discr --
      -------------------

      function Process_Discr (Nod : Node_Id) return Traverse_Result is
         Ent : Entity_Id;

      begin
         if Nkind (Nod) = N_Identifier then
            Ent := Entity (Nod);

            if Present (Ent)
              and then Ekind (Ent) = E_Discriminant
            then
               Rewrite (Nod,
                 Make_Selected_Component (Loc,
                   Prefix        => New_Copy_Tree (Tsk, New_Sloc => Loc),
                   Selector_Name => Make_Identifier (Loc, Chars (Ent))));

               Set_Etype (Nod, Etype (Ent));
            end if;

         end if;

         return OK;
      end Process_Discr;

      procedure Replace_Discrs is new Traverse_Proc (Process_Discr);

   --  Start of processing for Replace_Actual_Discriminants

   begin
      if not Expander_Active then
         return;
      end if;

      if Nkind (Name (N)) = N_Selected_Component then
         Tsk := Prefix (Name (N));

      elsif Nkind (Name (N)) = N_Indexed_Component then
         Tsk := Prefix (Prefix (Name (N)));
      end if;

      if No (Tsk) then
         return;
      else
         Replace_Discrs (Default);
      end if;
   end Replace_Actual_Discriminants;

   -------------
   -- Resolve --
   -------------

   procedure Resolve (N : Node_Id; Typ : Entity_Id) is
      Ambiguous : Boolean   := False;
      Ctx_Type  : Entity_Id := Typ;
      Expr_Type : Entity_Id := Empty; -- prevent junk warning
      Err_Type  : Entity_Id := Empty;
      Found     : Boolean   := False;
      From_Lib  : Boolean;
      I         : Interp_Index;
      I1        : Interp_Index := 0;  -- prevent junk warning
      It        : Interp;
      It1       : Interp;
      Seen      : Entity_Id := Empty; -- prevent junk warning

      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
      --  Determine whether a node comes from a predefined library unit or
      --  Standard.

      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
      --  Try and fix up a literal so that it matches its expected type. New
      --  literals are manufactured if necessary to avoid cascaded errors.

      procedure Report_Ambiguous_Argument;
      --  Additional diagnostics when an ambiguous call has an ambiguous
      --  argument (typically a controlling actual).

      procedure Resolution_Failed;
      --  Called when attempt at resolving current expression fails

      ------------------------------------
      -- Comes_From_Predefined_Lib_Unit --
      -------------------------------------

      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
      begin
         return
           Sloc (Nod) = Standard_Location
             or else Is_Predefined_File_Name (Unit_File_Name (
                       Get_Source_Unit (Sloc (Nod))));
      end Comes_From_Predefined_Lib_Unit;

      --------------------
      -- Patch_Up_Value --
      --------------------

      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
      begin
         if Nkind (N) = N_Integer_Literal
           and then Is_Real_Type (Typ)
         then
            Rewrite (N,
              Make_Real_Literal (Sloc (N),
                Realval => UR_From_Uint (Intval (N))));
            Set_Etype (N, Universal_Real);
            Set_Is_Static_Expression (N);

         elsif Nkind (N) = N_Real_Literal
           and then Is_Integer_Type (Typ)
         then
            Rewrite (N,
              Make_Integer_Literal (Sloc (N),
                Intval => UR_To_Uint (Realval (N))));
            Set_Etype (N, Universal_Integer);
            Set_Is_Static_Expression (N);

         elsif Nkind (N) = N_String_Literal
           and then Is_Character_Type (Typ)
         then
            Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
            Rewrite (N,
              Make_Character_Literal (Sloc (N),
                Chars => Name_Find,
                Char_Literal_Value =>
                  UI_From_Int (Character'Pos ('A'))));
            Set_Etype (N, Any_Character);
            Set_Is_Static_Expression (N);

         elsif Nkind (N) /= N_String_Literal
           and then Is_String_Type (Typ)
         then
            Rewrite (N,
              Make_String_Literal (Sloc (N),
                Strval => End_String));

         elsif Nkind (N) = N_Range then
            Patch_Up_Value (Low_Bound (N), Typ);
            Patch_Up_Value (High_Bound (N), Typ);
         end if;
      end Patch_Up_Value;

      -------------------------------
      -- Report_Ambiguous_Argument --
      -------------------------------

      procedure Report_Ambiguous_Argument is
         Arg : constant Node_Id := First (Parameter_Associations (N));
         I   : Interp_Index;
         It  : Interp;

      begin
         if Nkind (Arg) = N_Function_Call
           and then Is_Entity_Name (Name (Arg))
           and then Is_Overloaded (Name (Arg))
         then
            Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));

            --  Could use comments on what is going on here ???

            Get_First_Interp (Name (Arg), I, It);
            while Present (It.Nam) loop
               Error_Msg_Sloc := Sloc (It.Nam);

               if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
                  Error_Msg_N ("interpretation (inherited) #!", Arg);
               else
                  Error_Msg_N ("interpretation #!", Arg);
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end if;
      end Report_Ambiguous_Argument;

      -----------------------
      -- Resolution_Failed --
      -----------------------

      procedure Resolution_Failed is
      begin
         Patch_Up_Value (N, Typ);
         Set_Etype (N, Typ);
         Debug_A_Exit ("resolving  ", N, " (done, resolution failed)");
         Set_Is_Overloaded (N, False);

         --  The caller will return without calling the expander, so we need
         --  to set the analyzed flag. Note that it is fine to set Analyzed
         --  to True even if we are in the middle of a shallow analysis,
         --  (see the spec of sem for more details) since this is an error
         --  situation anyway, and there is no point in repeating the
         --  analysis later (indeed it won't work to repeat it later, since
         --  we haven't got a clear resolution of which entity is being
         --  referenced.)

         Set_Analyzed (N, True);
         return;
      end Resolution_Failed;

   --  Start of processing for Resolve

   begin
      if N = Error then
         return;
      end if;

      --  Access attribute on remote subprogram cannot be used for
      --  a non-remote access-to-subprogram type.

      if Nkind (N) = N_Attribute_Reference
        and then (Attribute_Name (N) = Name_Access
                    or else Attribute_Name (N) = Name_Unrestricted_Access
                    or else Attribute_Name (N) = Name_Unchecked_Access)
        and then Comes_From_Source (N)
        and then Is_Entity_Name (Prefix (N))
        and then Is_Subprogram (Entity (Prefix (N)))
        and then Is_Remote_Call_Interface (Entity (Prefix (N)))
        and then not Is_Remote_Access_To_Subprogram_Type (Typ)
      then
         Error_Msg_N
           ("prefix must statically denote a non-remote subprogram", N);
      end if;

      From_Lib := Comes_From_Predefined_Lib_Unit (N);

      --  If the context is a Remote_Access_To_Subprogram, access attributes
      --  must be resolved with the corresponding fat pointer. There is no need
      --  to check for the attribute name since the return type of an
      --  attribute is never a remote type.

      if Nkind (N) = N_Attribute_Reference
        and then Comes_From_Source (N)
        and then (Is_Remote_Call_Interface (Typ)
                    or else Is_Remote_Types (Typ))
      then
         declare
            Attr      : constant Attribute_Id :=
                          Get_Attribute_Id (Attribute_Name (N));
            Pref      : constant Node_Id      := Prefix (N);
            Decl      : Node_Id;
            Spec      : Node_Id;
            Is_Remote : Boolean := True;

         begin
            --  Check that Typ is a remote access-to-subprogram type

            if Is_Remote_Access_To_Subprogram_Type (Typ) then

               --  Prefix (N) must statically denote a remote subprogram
               --  declared in a package specification.

               if Attr = Attribute_Access then
                  Decl := Unit_Declaration_Node (Entity (Pref));

                  if Nkind (Decl) = N_Subprogram_Body then
                     Spec := Corresponding_Spec (Decl);

                     if not No (Spec) then
                        Decl := Unit_Declaration_Node (Spec);
                     end if;
                  end if;

                  Spec := Parent (Decl);

                  if not Is_Entity_Name (Prefix (N))
                    or else Nkind (Spec) /= N_Package_Specification
                    or else
                      not Is_Remote_Call_Interface (Defining_Entity (Spec))
                  then
                     Is_Remote := False;
                     Error_Msg_N
                       ("prefix must statically denote a remote subprogram ",
                        N);
                  end if;
               end if;

               --   If we are generating code for a distributed program.
               --   perform semantic checks against the corresponding
               --   remote entities.

               if (Attr = Attribute_Access
                    or else Attr = Attribute_Unchecked_Access
                    or else Attr = Attribute_Unrestricted_Access)
                 and then Expander_Active
                 and then Get_PCS_Name /= Name_No_DSA
               then
                  Check_Subtype_Conformant
                    (New_Id  => Entity (Prefix (N)),
                     Old_Id  => Designated_Type
                       (Corresponding_Remote_Type (Typ)),
                     Err_Loc => N);

                  if Is_Remote then
                     Process_Remote_AST_Attribute (N, Typ);
                  end if;
               end if;
            end if;
         end;
      end if;

      Debug_A_Entry ("resolving  ", N);

      if Comes_From_Source (N) then
         if Is_Fixed_Point_Type (Typ) then
            Check_Restriction (No_Fixed_Point, N);

         elsif Is_Floating_Point_Type (Typ)
           and then Typ /= Universal_Real
           and then Typ /= Any_Real
         then
            Check_Restriction (No_Floating_Point, N);
         end if;
      end if;

      --  Return if already analyzed

      if Analyzed (N) then
         Debug_A_Exit ("resolving  ", N, "  (done, already analyzed)");
         return;

      --  Return if type = Any_Type (previous error encountered)

      elsif Etype (N) = Any_Type then
         Debug_A_Exit ("resolving  ", N, "  (done, Etype = Any_Type)");
         return;
      end if;

      Check_Parameterless_Call (N);

      --  If not overloaded, then we know the type, and all that needs doing
      --  is to check that this type is compatible with the context.

      if not Is_Overloaded (N) then
         Found := Covers (Typ, Etype (N));
         Expr_Type := Etype (N);

      --  In the overloaded case, we must select the interpretation that
      --  is compatible with the context (i.e. the type passed to Resolve)

      else
         --  Loop through possible interpretations

         Get_First_Interp (N, I, It);
         Interp_Loop : while Present (It.Typ) loop

            --  We are only interested in interpretations that are compatible
            --  with the expected type, any other interpretations are ignored.

            if not Covers (Typ, It.Typ) then
               if Debug_Flag_V then
                  Write_Str ("    interpretation incompatible with context");
                  Write_Eol;
               end if;

            else
               --  Skip the current interpretation if it is disabled by an
               --  abstract operator. This action is performed only when the
               --  type against which we are resolving is the same as the
               --  type of the interpretation.

               if Ada_Version >= Ada_05
                 and then It.Typ = Typ
                 and then Typ /= Universal_Integer
                 and then Typ /= Universal_Real
                 and then Present (It.Abstract_Op)
               then
                  goto Continue;
               end if;

               --  First matching interpretation

               if not Found then
                  Found := True;
                  I1    := I;
                  Seen  := It.Nam;
                  Expr_Type := It.Typ;

               --  Matching interpretation that is not the first, maybe an
               --  error, but there are some cases where preference rules are
               --  used to choose between the two possibilities. These and
               --  some more obscure cases are handled in Disambiguate.

               else
                  --  If the current statement is part of a predefined library
                  --  unit, then all interpretations which come from user level
                  --  packages should not be considered.

                  if From_Lib
                    and then not Comes_From_Predefined_Lib_Unit (It.Nam)
                  then
                     goto Continue;
                  end if;

                  Error_Msg_Sloc := Sloc (Seen);
                  It1 := Disambiguate (N, I1, I, Typ);

                  --  Disambiguation has succeeded. Skip the remaining
                  --  interpretations.

                  if It1 /= No_Interp then
                     Seen := It1.Nam;
                     Expr_Type := It1.Typ;

                     while Present (It.Typ) loop
                        Get_Next_Interp (I, It);
                     end loop;

                  else
                     --  Before we issue an ambiguity complaint, check for
                     --  the case of a subprogram call where at least one
                     --  of the arguments is Any_Type, and if so, suppress
                     --  the message, since it is a cascaded error.

                     if Nkind_In (N, N_Function_Call,
                                     N_Procedure_Call_Statement)
                     then
                        declare
                           A : Node_Id;
                           E : Node_Id;

                        begin
                           A := First_Actual (N);
                           while Present (A) loop
                              E := A;

                              if Nkind (E) = N_Parameter_Association then
                                 E := Explicit_Actual_Parameter (E);
                              end if;

                              if Etype (E) = Any_Type then
                                 if Debug_Flag_V then
                                    Write_Str ("Any_Type in call");
                                    Write_Eol;
                                 end if;

                                 exit Interp_Loop;
                              end if;

                              Next_Actual (A);
                           end loop;
                        end;

                     elsif Nkind (N) in N_Binary_Op
                       and then (Etype (Left_Opnd (N)) = Any_Type
                                  or else Etype (Right_Opnd (N)) = Any_Type)
                     then
                        exit Interp_Loop;

                     elsif Nkind (N) in  N_Unary_Op
                       and then Etype (Right_Opnd (N)) = Any_Type
                     then
                        exit Interp_Loop;
                     end if;

                     --  Not that special case, so issue message using the
                     --  flag Ambiguous to control printing of the header
                     --  message only at the start of an ambiguous set.

                     if not Ambiguous then
                        if Nkind (N) = N_Function_Call
                          and then Nkind (Name (N)) = N_Explicit_Dereference
                        then
                           Error_Msg_N
                             ("ambiguous expression "
                               & "(cannot resolve indirect call)!", N);
                        else
                           Error_Msg_NE -- CODEFIX
                             ("ambiguous expression (cannot resolve&)!",
                              N, It.Nam);
                        end if;

                        Ambiguous := True;

                        if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
                           Error_Msg_N
                             ("\\possible interpretation (inherited)#!", N);
                        else
                           Error_Msg_N -- CODEFIX
                             ("\\possible interpretation#!", N);
                        end if;

                        if Nkind_In
                             (N, N_Procedure_Call_Statement, N_Function_Call)
                          and then Present (Parameter_Associations (N))
                        then
                           Report_Ambiguous_Argument;
                        end if;
                     end if;

                     Error_Msg_Sloc := Sloc (It.Nam);

                     --  By default, the error message refers to the candidate
                     --  interpretation. But if it is a predefined operator, it
                     --  is implicitly declared at the declaration of the type
                     --  of the operand. Recover the sloc of that declaration
                     --  for the error message.

                     if Nkind (N) in N_Op
                       and then Scope (It.Nam) = Standard_Standard
                       and then not Is_Overloaded (Right_Opnd (N))
                       and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
                                                             Standard_Standard
                     then
                        Err_Type := First_Subtype (Etype (Right_Opnd (N)));

                        if Comes_From_Source (Err_Type)
                          and then Present (Parent (Err_Type))
                        then
                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
                        end if;

                     elsif Nkind (N) in N_Binary_Op
                       and then Scope (It.Nam) = Standard_Standard
                       and then not Is_Overloaded (Left_Opnd (N))
                       and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
                                                             Standard_Standard
                     then
                        Err_Type := First_Subtype (Etype (Left_Opnd (N)));

                        if Comes_From_Source (Err_Type)
                          and then Present (Parent (Err_Type))
                        then
                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
                        end if;

                     --  If this is an indirect call, use the subprogram_type
                     --  in the message, to have a meaningful location.
                     --  Also indicate if this is an inherited operation,
                     --  created by a type declaration.

                     elsif Nkind (N) = N_Function_Call
                       and then Nkind (Name (N)) = N_Explicit_Dereference
                       and then Is_Type (It.Nam)
                     then
                        Err_Type := It.Nam;
                        Error_Msg_Sloc :=
                          Sloc (Associated_Node_For_Itype (Err_Type));
                     else
                        Err_Type := Empty;
                     end if;

                     if Nkind (N) in N_Op
                       and then Scope (It.Nam) = Standard_Standard
                       and then Present (Err_Type)
                     then
                        --  Special-case the message for universal_fixed
                        --  operators, which are not declared with the type
                        --  of the operand, but appear forever in Standard.

                        if  It.Typ = Universal_Fixed
                          and then Scope (It.Nam) = Standard_Standard
                        then
                           Error_Msg_N
                             ("\\possible interpretation as " &
                                "universal_fixed operation " &
                                  "(RM 4.5.5 (19))", N);
                        else
                           Error_Msg_N
                             ("\\possible interpretation (predefined)#!", N);
                        end if;

                     elsif
                       Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
                     then
                        Error_Msg_N
                          ("\\possible interpretation (inherited)#!", N);
                     else
                        Error_Msg_N -- CODEFIX
                          ("\\possible interpretation#!", N);
                     end if;

                  end if;
               end if;

               --  We have a matching interpretation, Expr_Type is the type
               --  from this interpretation, and Seen is the entity.

               --  For an operator, just set the entity name. The type will be
               --  set by the specific operator resolution routine.

               if Nkind (N) in N_Op then
                  Set_Entity (N, Seen);
                  Generate_Reference (Seen, N);

               elsif Nkind (N) = N_Case_Expression then
                  Set_Etype (N, Expr_Type);

               elsif Nkind (N) = N_Character_Literal then
                  Set_Etype (N, Expr_Type);

               elsif Nkind (N) = N_Conditional_Expression then
                  Set_Etype (N, Expr_Type);

               --  For an explicit dereference, attribute reference, range,
               --  short-circuit form (which is not an operator node), or call
               --  with a name that is an explicit dereference, there is
               --  nothing to be done at this point.

               elsif Nkind_In (N, N_Explicit_Dereference,
                                  N_Attribute_Reference,
                                  N_And_Then,
                                  N_Indexed_Component,
                                  N_Or_Else,
                                  N_Range,
                                  N_Selected_Component,
                                  N_Slice)
                 or else Nkind (Name (N)) = N_Explicit_Dereference
               then
                  null;

               --  For procedure or function calls, set the type of the name,
               --  and also the entity pointer for the prefix.

               elsif Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
                 and then (Is_Entity_Name (Name (N))
                            or else Nkind (Name (N)) = N_Operator_Symbol)
               then
                  Set_Etype  (Name (N), Expr_Type);
                  Set_Entity (Name (N), Seen);
                  Generate_Reference (Seen, Name (N));

               elsif Nkind (N) = N_Function_Call
                 and then Nkind (Name (N)) = N_Selected_Component
               then
                  Set_Etype (Name (N), Expr_Type);
                  Set_Entity (Selector_Name (Name (N)), Seen);
                  Generate_Reference (Seen, Selector_Name (Name (N)));

               --  For all other cases, just set the type of the Name

               else
                  Set_Etype (Name (N), Expr_Type);
               end if;

            end if;

            <<Continue>>

            --  Move to next interpretation

            exit Interp_Loop when No (It.Typ);

            Get_Next_Interp (I, It);
         end loop Interp_Loop;
      end if;

      --  At this stage Found indicates whether or not an acceptable
      --  interpretation exists. If not, then we have an error, except that if
      --  the context is Any_Type as a result of some other error, then we
      --  suppress the error report.

      if not Found then
         if Typ /= Any_Type then

            --  If type we are looking for is Void, then this is the procedure
            --  call case, and the error is simply that what we gave is not a
            --  procedure name (we think of procedure calls as expressions with
            --  types internally, but the user doesn't think of them this way!)

            if Typ = Standard_Void_Type then

               --  Special case message if function used as a procedure

               if Nkind (N) = N_Procedure_Call_Statement
                 and then Is_Entity_Name (Name (N))
                 and then Ekind (Entity (Name (N))) = E_Function
               then
                  Error_Msg_NE
                    ("cannot use function & in a procedure call",
                     Name (N), Entity (Name (N)));

               --  Otherwise give general message (not clear what cases this
               --  covers, but no harm in providing for them!)

               else
                  Error_Msg_N ("expect procedure name in procedure call", N);
               end if;

               Found := True;

            --  Otherwise we do have a subexpression with the wrong type

            --  Check for the case of an allocator which uses an access type
            --  instead of the designated type. This is a common error and we
            --  specialize the message, posting an error on the operand of the
            --  allocator, complaining that we expected the designated type of
            --  the allocator.

            elsif Nkind (N) = N_Allocator
              and then Ekind (Typ) in Access_Kind
              and then Ekind (Etype (N)) in Access_Kind
              and then Designated_Type (Etype (N)) = Typ
            then
               Wrong_Type (Expression (N), Designated_Type (Typ));
               Found := True;

            --  Check for view mismatch on Null in instances, for which the
            --  view-swapping mechanism has no identifier.

            elsif (In_Instance or else In_Inlined_Body)
              and then (Nkind (N) = N_Null)
              and then Is_Private_Type (Typ)
              and then Is_Access_Type (Full_View (Typ))
            then
               Resolve (N, Full_View (Typ));
               Set_Etype (N, Typ);
               return;

            --  Check for an aggregate. Sometimes we can get bogus aggregates
            --  from misuse of parentheses, and we are about to complain about
            --  the aggregate without even looking inside it.

            --  Instead, if we have an aggregate of type Any_Composite, then
            --  analyze and resolve the component fields, and then only issue
            --  another message if we get no errors doing this (otherwise
            --  assume that the errors in the aggregate caused the problem).

            elsif Nkind (N) = N_Aggregate
              and then Etype (N) = Any_Composite
            then
               --  Disable expansion in any case. If there is a type mismatch
               --  it may be fatal to try to expand the aggregate. The flag
               --  would otherwise be set to false when the error is posted.

               Expander_Active := False;

               declare
                  procedure Check_Aggr (Aggr : Node_Id);
                  --  Check one aggregate, and set Found to True if we have a
                  --  definite error in any of its elements

                  procedure Check_Elmt (Aelmt : Node_Id);
                  --  Check one element of aggregate and set Found to True if
                  --  we definitely have an error in the element.

                  ----------------
                  -- Check_Aggr --
                  ----------------

                  procedure Check_Aggr (Aggr : Node_Id) is
                     Elmt : Node_Id;

                  begin
                     if Present (Expressions (Aggr)) then
                        Elmt := First (Expressions (Aggr));
                        while Present (Elmt) loop
                           Check_Elmt (Elmt);
                           Next (Elmt);
                        end loop;
                     end if;

                     if Present (Component_Associations (Aggr)) then
                        Elmt := First (Component_Associations (Aggr));
                        while Present (Elmt) loop

                           --  If this is a default-initialized component, then
                           --  there is nothing to check. The box will be
                           --  replaced by the appropriate call during late
                           --  expansion.

                           if not Box_Present (Elmt) then
                              Check_Elmt (Expression (Elmt));
                           end if;

                           Next (Elmt);
                        end loop;
                     end if;
                  end Check_Aggr;

                  ----------------
                  -- Check_Elmt --
                  ----------------

                  procedure Check_Elmt (Aelmt : Node_Id) is
                  begin
                     --  If we have a nested aggregate, go inside it (to
                     --  attempt a naked analyze-resolve of the aggregate
                     --  can cause undesirable cascaded errors). Do not
                     --  resolve expression if it needs a type from context,
                     --  as for integer * fixed expression.

                     if Nkind (Aelmt) = N_Aggregate then
                        Check_Aggr (Aelmt);

                     else
                        Analyze (Aelmt);

                        if not Is_Overloaded (Aelmt)
                          and then Etype (Aelmt) /= Any_Fixed
                        then
                           Resolve (Aelmt);
                        end if;

                        if Etype (Aelmt) = Any_Type then
                           Found := True;
                        end if;
                     end if;
                  end Check_Elmt;

               begin
                  Check_Aggr (N);
               end;
            end if;

            --  If an error message was issued already, Found got reset
            --  to True, so if it is still False, issue the standard
            --  Wrong_Type message.

            if not Found then
               if Is_Overloaded (N)
                 and then Nkind (N) = N_Function_Call
               then
                  declare
                     Subp_Name : Node_Id;
                  begin
                     if Is_Entity_Name (Name (N)) then
                        Subp_Name := Name (N);

                     elsif Nkind (Name (N)) = N_Selected_Component then

                        --  Protected operation: retrieve operation name

                        Subp_Name := Selector_Name (Name (N));
                     else
                        raise Program_Error;
                     end if;

                     Error_Msg_Node_2 := Typ;
                     Error_Msg_NE ("no visible interpretation of&" &
                       " matches expected type&", N, Subp_Name);
                  end;

                  if All_Errors_Mode then
                     declare
                        Index : Interp_Index;
                        It    : Interp;

                     begin
                        Error_Msg_N ("\\possible interpretations:", N);

                        Get_First_Interp (Name (N), Index, It);
                        while Present (It.Nam) loop
                           Error_Msg_Sloc := Sloc (It.Nam);
                           Error_Msg_Node_2 := It.Nam;
                           Error_Msg_NE
                             ("\\  type& for & declared#", N, It.Typ);
                           Get_Next_Interp (Index, It);
                        end loop;
                     end;

                  else
                     Error_Msg_N ("\use -gnatf for details", N);
                  end if;
               else
                  Wrong_Type (N, Typ);
               end if;
            end if;
         end if;

         Resolution_Failed;
         return;

      --  Test if we have more than one interpretation for the context

      elsif Ambiguous then
         Resolution_Failed;
         return;

      --  Here we have an acceptable interpretation for the context

      else
         --  Propagate type information and normalize tree for various
         --  predefined operations. If the context only imposes a class of
         --  types, rather than a specific type, propagate the actual type
         --  downward.

         if Typ = Any_Integer
           or else Typ = Any_Boolean
           or else Typ = Any_Modular
           or else Typ = Any_Real
           or else Typ = Any_Discrete
         then
            Ctx_Type := Expr_Type;

            --  Any_Fixed is legal in a real context only if a specific
            --  fixed point type is imposed. If Norman Cohen can be
            --  confused by this, it deserves a separate message.

            if Typ = Any_Real
              and then Expr_Type = Any_Fixed
            then
               Error_Msg_N ("illegal context for mixed mode operation", N);
               Set_Etype (N, Universal_Real);
               Ctx_Type := Universal_Real;
            end if;
         end if;

         --  A user-defined operator is transformed into a function call at
         --  this point, so that further processing knows that operators are
         --  really operators (i.e. are predefined operators). User-defined
         --  operators that are intrinsic are just renamings of the predefined
         --  ones, and need not be turned into calls either, but if they rename
         --  a different operator, we must transform the node accordingly.
         --  Instantiations of Unchecked_Conversion are intrinsic but are
         --  treated as functions, even if given an operator designator.

         if Nkind (N) in N_Op
           and then Present (Entity (N))
           and then Ekind (Entity (N)) /= E_Operator
         then

            if not Is_Predefined_Op (Entity (N)) then
               Rewrite_Operator_As_Call (N, Entity (N));

            elsif Present (Alias (Entity (N)))
              and then
                Nkind (Parent (Parent (Entity (N)))) =
                                    N_Subprogram_Renaming_Declaration
            then
               Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);

               --  If the node is rewritten, it will be fully resolved in
               --  Rewrite_Renamed_Operator.

               if Analyzed (N) then
                  return;
               end if;
            end if;
         end if;

         case N_Subexpr'(Nkind (N)) is

            when N_Aggregate => Resolve_Aggregate                (N, Ctx_Type);

            when N_Allocator => Resolve_Allocator                (N, Ctx_Type);

            when N_Short_Circuit
                             => Resolve_Short_Circuit            (N, Ctx_Type);

            when N_Attribute_Reference
                             => Resolve_Attribute                (N, Ctx_Type);

            when N_Case_Expression
                             => Resolve_Case_Expression          (N, Ctx_Type);

            when N_Character_Literal
                             => Resolve_Character_Literal        (N, Ctx_Type);

            when N_Conditional_Expression
                             => Resolve_Conditional_Expression   (N, Ctx_Type);

            when N_Expanded_Name
                             => Resolve_Entity_Name              (N, Ctx_Type);

            when N_Explicit_Dereference
                             => Resolve_Explicit_Dereference     (N, Ctx_Type);

            when N_Expression_With_Actions
                             => Resolve_Expression_With_Actions  (N, Ctx_Type);

            when N_Extension_Aggregate
                             => Resolve_Extension_Aggregate      (N, Ctx_Type);

            when N_Function_Call
                             => Resolve_Call                     (N, Ctx_Type);

            when N_Identifier
                             => Resolve_Entity_Name              (N, Ctx_Type);

            when N_Indexed_Component
                             => Resolve_Indexed_Component        (N, Ctx_Type);

            when N_Integer_Literal
                             => Resolve_Integer_Literal          (N, Ctx_Type);

            when N_Membership_Test
                             => Resolve_Membership_Op            (N, Ctx_Type);

            when N_Null      => Resolve_Null                     (N, Ctx_Type);

            when N_Op_And | N_Op_Or | N_Op_Xor
                             => Resolve_Logical_Op               (N, Ctx_Type);

            when N_Op_Eq | N_Op_Ne
                             => Resolve_Equality_Op              (N, Ctx_Type);

            when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
                             => Resolve_Comparison_Op            (N, Ctx_Type);

            when N_Op_Not    => Resolve_Op_Not                   (N, Ctx_Type);

            when N_Op_Add    | N_Op_Subtract | N_Op_Multiply |
                 N_Op_Divide | N_Op_Mod      | N_Op_Rem

                             => Resolve_Arithmetic_Op            (N, Ctx_Type);

            when N_Op_Concat => Resolve_Op_Concat                (N, Ctx_Type);

            when N_Op_Expon  => Resolve_Op_Expon                 (N, Ctx_Type);

            when N_Op_Plus | N_Op_Minus  | N_Op_Abs
                             => Resolve_Unary_Op                 (N, Ctx_Type);

            when N_Op_Shift  => Resolve_Shift                    (N, Ctx_Type);

            when N_Procedure_Call_Statement
                             => Resolve_Call                     (N, Ctx_Type);

            when N_Operator_Symbol
                             => Resolve_Operator_Symbol          (N, Ctx_Type);

            when N_Qualified_Expression
                             => Resolve_Qualified_Expression     (N, Ctx_Type);

            when N_Raise_xxx_Error
                             => Set_Etype (N, Ctx_Type);

            when N_Range     => Resolve_Range                    (N, Ctx_Type);

            when N_Real_Literal
                             => Resolve_Real_Literal             (N, Ctx_Type);

            when N_Reference => Resolve_Reference                (N, Ctx_Type);

            when N_Selected_Component
                             => Resolve_Selected_Component       (N, Ctx_Type);

            when N_Slice     => Resolve_Slice                    (N, Ctx_Type);

            when N_String_Literal
                             => Resolve_String_Literal           (N, Ctx_Type);

            when N_Subprogram_Info
                             => Resolve_Subprogram_Info          (N, Ctx_Type);

            when N_Type_Conversion
                             => Resolve_Type_Conversion          (N, Ctx_Type);

            when N_Unchecked_Expression =>
               Resolve_Unchecked_Expression                      (N, Ctx_Type);

            when N_Unchecked_Type_Conversion =>
               Resolve_Unchecked_Type_Conversion                 (N, Ctx_Type);
         end case;

         --  If the subexpression was replaced by a non-subexpression, then
         --  all we do is to expand it. The only legitimate case we know of
         --  is converting procedure call statement to entry call statements,
         --  but there may be others, so we are making this test general.

         if Nkind (N) not in N_Subexpr then
            Debug_A_Exit ("resolving  ", N, "  (done)");
            Expand (N);
            return;
         end if;

         --  The expression is definitely NOT overloaded at this point, so
         --  we reset the Is_Overloaded flag to avoid any confusion when
         --  reanalyzing the node.

         Set_Is_Overloaded (N, False);

         --  Freeze expression type, entity if it is a name, and designated
         --  type if it is an allocator (RM 13.14(10,11,13)).

         --  Now that the resolution of the type of the node is complete,
         --  and we did not detect an error, we can expand this node. We
         --  skip the expand call if we are in a default expression, see
         --  section "Handling of Default Expressions" in Sem spec.

         Debug_A_Exit ("resolving  ", N, "  (done)");

         --  We unconditionally freeze the expression, even if we are in
         --  default expression mode (the Freeze_Expression routine tests
         --  this flag and only freezes static types if it is set).

         Freeze_Expression (N);

         --  Now we can do the expansion

         Expand (N);
      end if;
   end Resolve;

   -------------
   -- Resolve --
   -------------

   --  Version with check(s) suppressed

   procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
   begin
      if Suppress = All_Checks then
         declare
            Svg : constant Suppress_Array := Scope_Suppress;
         begin
            Scope_Suppress := (others => True);
            Resolve (N, Typ);
            Scope_Suppress := Svg;
         end;

      else
         declare
            Svg : constant Boolean := Scope_Suppress (Suppress);
         begin
            Scope_Suppress (Suppress) := True;
            Resolve (N, Typ);
            Scope_Suppress (Suppress) := Svg;
         end;
      end if;
   end Resolve;

   -------------
   -- Resolve --
   -------------

   --  Version with implicit type

   procedure Resolve (N : Node_Id) is
   begin
      Resolve (N, Etype (N));
   end Resolve;

   ---------------------
   -- Resolve_Actuals --
   ---------------------

   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
      Loc    : constant Source_Ptr := Sloc (N);
      A      : Node_Id;
      F      : Entity_Id;
      A_Typ  : Entity_Id;
      F_Typ  : Entity_Id;
      Prev   : Node_Id := Empty;
      Orig_A : Node_Id;

      procedure Check_Argument_Order;
      --  Performs a check for the case where the actuals are all simple
      --  identifiers that correspond to the formal names, but in the wrong
      --  order, which is considered suspicious and cause for a warning.

      procedure Check_Prefixed_Call;
      --  If the original node is an overloaded call in prefix notation,
      --  insert an 'Access or a dereference as needed over the first actual.
      --  Try_Object_Operation has already verified that there is a valid
      --  interpretation, but the form of the actual can only be determined
      --  once the primitive operation is identified.

      procedure Insert_Default;
      --  If the actual is missing in a call, insert in the actuals list
      --  an instance of the default expression. The insertion is always
      --  a named association.

      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
      --  Check whether T1 and T2, or their full views, are derived from a
      --  common type. Used to enforce the restrictions on array conversions
      --  of AI95-00246.

      function Static_Concatenation (N : Node_Id) return Boolean;
      --  Predicate to determine whether an actual that is a concatenation
      --  will be evaluated statically and does not need a transient scope.
      --  This must be determined before the actual is resolved and expanded
      --  because if needed the transient scope must be introduced earlier.

      --------------------------
      -- Check_Argument_Order --
      --------------------------

      procedure Check_Argument_Order is
      begin
         --  Nothing to do if no parameters, or original node is neither a
         --  function call nor a procedure call statement (happens in the
         --  operator-transformed-to-function call case), or the call does
         --  not come from source, or this warning is off.

         if not Warn_On_Parameter_Order
           or else
             No (Parameter_Associations (N))
           or else
             not Nkind_In (Original_Node (N), N_Procedure_Call_Statement,
                                              N_Function_Call)
           or else
             not Comes_From_Source (N)
         then
            return;
         end if;

         declare
            Nargs : constant Nat := List_Length (Parameter_Associations (N));

         begin
            --  Nothing to do if only one parameter

            if Nargs < 2 then
               return;
            end if;

            --  Here if at least two arguments

            declare
               Actuals : array (1 .. Nargs) of Node_Id;
               Actual  : Node_Id;
               Formal  : Node_Id;

               Wrong_Order : Boolean := False;
               --  Set True if an out of order case is found

            begin
               --  Collect identifier names of actuals, fail if any actual is
               --  not a simple identifier, and record max length of name.

               Actual := First (Parameter_Associations (N));
               for J in Actuals'Range loop
                  if Nkind (Actual) /= N_Identifier then
                     return;
                  else
                     Actuals (J) := Actual;
                     Next (Actual);
                  end if;
               end loop;

               --  If we got this far, all actuals are identifiers and the list
               --  of their names is stored in the Actuals array.

               Formal := First_Formal (Nam);
               for J in Actuals'Range loop

                  --  If we ran out of formals, that's odd, probably an error
                  --  which will be detected elsewhere, but abandon the search.

                  if No (Formal) then
                     return;
                  end if;

                  --  If name matches and is in order OK

                  if Chars (Formal) = Chars (Actuals (J)) then
                     null;

                  else
                     --  If no match, see if it is elsewhere in list and if so
                     --  flag potential wrong order if type is compatible.

                     for K in Actuals'Range loop
                        if Chars (Formal) = Chars (Actuals (K))
                          and then
                            Has_Compatible_Type (Actuals (K), Etype (Formal))
                        then
                           Wrong_Order := True;
                           goto Continue;
                        end if;
                     end loop;

                     --  No match

                     return;
                  end if;

                  <<Continue>> Next_Formal (Formal);
               end loop;

               --  If Formals left over, also probably an error, skip warning

               if Present (Formal) then
                  return;
               end if;

               --  Here we give the warning if something was out of order

               if Wrong_Order then
                  Error_Msg_N
                    ("actuals for this call may be in wrong order?", N);
               end if;
            end;
         end;
      end Check_Argument_Order;

      -------------------------
      -- Check_Prefixed_Call --
      -------------------------

      procedure Check_Prefixed_Call is
         Act    : constant Node_Id   := First_Actual (N);
         A_Type : constant Entity_Id := Etype (Act);
         F_Type : constant Entity_Id := Etype (First_Formal (Nam));
         Orig   : constant Node_Id := Original_Node (N);
         New_A  : Node_Id;

      begin
         --  Check whether the call is a prefixed call, with or without
         --  additional actuals.

         if Nkind (Orig) = N_Selected_Component
           or else
             (Nkind (Orig) = N_Indexed_Component
               and then Nkind (Prefix (Orig)) = N_Selected_Component
               and then Is_Entity_Name (Prefix (Prefix (Orig)))
               and then Is_Entity_Name (Act)
               and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
         then
            if Is_Access_Type (A_Type)
              and then not Is_Access_Type (F_Type)
            then
               --  Introduce dereference on object in prefix

               New_A :=
                 Make_Explicit_Dereference (Sloc (Act),
                   Prefix => Relocate_Node (Act));
               Rewrite (Act, New_A);
               Analyze (Act);

            elsif Is_Access_Type (F_Type)
              and then not Is_Access_Type (A_Type)
            then
               --  Introduce an implicit 'Access in prefix

               if not Is_Aliased_View (Act) then
                  Error_Msg_NE
                    ("object in prefixed call to& must be aliased"
                         & " (RM-2005 4.3.1 (13))",
                    Prefix (Act), Nam);
               end if;

               Rewrite (Act,
                 Make_Attribute_Reference (Loc,
                   Attribute_Name => Name_Access,
                   Prefix         => Relocate_Node (Act)));
            end if;

            Analyze (Act);
         end if;
      end Check_Prefixed_Call;

      --------------------
      -- Insert_Default --
      --------------------

      procedure Insert_Default is
         Actval : Node_Id;
         Assoc  : Node_Id;

      begin
         --  Missing argument in call, nothing to insert

         if No (Default_Value (F)) then
            return;

         else
            --  Note that we do a full New_Copy_Tree, so that any associated
            --  Itypes are properly copied. This may not be needed any more,
            --  but it does no harm as a safety measure! Defaults of a generic
            --  formal may be out of bounds of the corresponding actual (see
            --  cc1311b) and an additional check may be required.

            Actval :=
              New_Copy_Tree
                (Default_Value (F),
                 New_Scope => Current_Scope,
                 New_Sloc  => Loc);

            if Is_Concurrent_Type (Scope (Nam))
              and then Has_Discriminants (Scope (Nam))
            then
               Replace_Actual_Discriminants (N, Actval);
            end if;

            if Is_Overloadable (Nam)
              and then Present (Alias (Nam))
            then
               if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
                 and then not Is_Tagged_Type (Etype (F))
               then
                  --  If default is a real literal, do not introduce a
                  --  conversion whose effect may depend on the run-time
                  --  size of universal real.

                  if Nkind (Actval) = N_Real_Literal then
                     Set_Etype (Actval, Base_Type (Etype (F)));
                  else
                     Actval := Unchecked_Convert_To (Etype (F), Actval);
                  end if;
               end if;

               if Is_Scalar_Type (Etype (F)) then
                  Enable_Range_Check (Actval);
               end if;

               Set_Parent (Actval, N);

               --  Resolve aggregates with their base type, to avoid scope
               --  anomalies: the subtype was first built in the subprogram
               --  declaration, and the current call may be nested.

               if Nkind (Actval) = N_Aggregate then
                  Analyze_And_Resolve (Actval, Etype (F));
               else
                  Analyze_And_Resolve (Actval, Etype (Actval));
               end if;

            else
               Set_Parent (Actval, N);

               --  See note above concerning aggregates

               if Nkind (Actval) = N_Aggregate
                 and then Has_Discriminants (Etype (Actval))
               then
                  Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));

               --  Resolve entities with their own type, which may differ
               --  from the type of a reference in a generic context (the
               --  view swapping mechanism did not anticipate the re-analysis
               --  of default values in calls).

               elsif Is_Entity_Name (Actval) then
                  Analyze_And_Resolve (Actval, Etype (Entity (Actval)));

               else
                  Analyze_And_Resolve (Actval, Etype (Actval));
               end if;
            end if;

            --  If default is a tag indeterminate function call, propagate
            --  tag to obtain proper dispatching.

            if Is_Controlling_Formal (F)
              and then Nkind (Default_Value (F)) = N_Function_Call
            then
               Set_Is_Controlling_Actual (Actval);
            end if;

         end if;

         --  If the default expression raises constraint error, then just
         --  silently replace it with an N_Raise_Constraint_Error node,
         --  since we already gave the warning on the subprogram spec.

         if Raises_Constraint_Error (Actval) then
            Rewrite (Actval,
              Make_Raise_Constraint_Error (Loc,
                Reason => CE_Range_Check_Failed));
            Set_Raises_Constraint_Error (Actval);
            Set_Etype (Actval, Etype (F));
         end if;

         Assoc :=
           Make_Parameter_Association (Loc,
             Explicit_Actual_Parameter => Actval,
             Selector_Name => Make_Identifier (Loc, Chars (F)));

         --  Case of insertion is first named actual

         if No (Prev) or else
            Nkind (Parent (Prev)) /= N_Parameter_Association
         then
            Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
            Set_First_Named_Actual (N, Actval);

            if No (Prev) then
               if No (Parameter_Associations (N)) then
                  Set_Parameter_Associations (N, New_List (Assoc));
               else
                  Append (Assoc, Parameter_Associations (N));
               end if;

            else
               Insert_After (Prev, Assoc);
            end if;

         --  Case of insertion is not first named actual

         else
            Set_Next_Named_Actual
              (Assoc, Next_Named_Actual (Parent (Prev)));
            Set_Next_Named_Actual (Parent (Prev), Actval);
            Append (Assoc, Parameter_Associations (N));
         end if;

         Mark_Rewrite_Insertion (Assoc);
         Mark_Rewrite_Insertion (Actval);

         Prev := Actval;
      end Insert_Default;

      -------------------
      -- Same_Ancestor --
      -------------------

      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
         FT1 : Entity_Id := T1;
         FT2 : Entity_Id := T2;

      begin
         if Is_Private_Type (T1)
           and then Present (Full_View (T1))
         then
            FT1 := Full_View (T1);
         end if;

         if Is_Private_Type (T2)
           and then Present (Full_View (T2))
         then
            FT2 := Full_View (T2);
         end if;

         return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
      end Same_Ancestor;

      --------------------------
      -- Static_Concatenation --
      --------------------------

      function Static_Concatenation (N : Node_Id) return Boolean is
      begin
         case Nkind (N) is
            when N_String_Literal =>
               return True;

            when N_Op_Concat =>

               --  Concatenation is static when both operands are static
               --  and the concatenation operator is a predefined one.

               return Scope (Entity (N)) = Standard_Standard
                        and then
                      Static_Concatenation (Left_Opnd (N))
                        and then
                      Static_Concatenation (Right_Opnd (N));

            when others =>
               if Is_Entity_Name (N) then
                  declare
                     Ent : constant Entity_Id := Entity (N);
                  begin
                     return Ekind (Ent) = E_Constant
                              and then Present (Constant_Value (Ent))
                              and then
                                Is_Static_Expression (Constant_Value (Ent));
                  end;

               else
                  return False;
               end if;
         end case;
      end Static_Concatenation;

   --  Start of processing for Resolve_Actuals

   begin
      Check_Argument_Order;

      if Present (First_Actual (N)) then
         Check_Prefixed_Call;
      end if;

      A := First_Actual (N);
      F := First_Formal (Nam);
      while Present (F) loop
         if No (A) and then Needs_No_Actuals (Nam) then
            null;

         --  If we have an error in any actual or formal, indicated by a type
         --  of Any_Type, then abandon resolution attempt, and set result type
         --  to Any_Type.

         elsif (Present (A) and then Etype (A) = Any_Type)
           or else Etype (F) = Any_Type
         then
            Set_Etype (N, Any_Type);
            return;
         end if;

         --  Case where actual is present

         --  If the actual is an entity, generate a reference to it now. We
         --  do this before the actual is resolved, because a formal of some
         --  protected subprogram, or a task discriminant, will be rewritten
         --  during expansion, and the reference to the source entity may
         --  be lost.

         if Present (A)
           and then Is_Entity_Name (A)
           and then Comes_From_Source (N)
         then
            Orig_A := Entity (A);

            if Present (Orig_A) then
               if Is_Formal (Orig_A)
                 and then Ekind (F) /= E_In_Parameter
               then
                  Generate_Reference (Orig_A, A, 'm');
               elsif not Is_Overloaded (A) then
                  Generate_Reference (Orig_A, A);
               end if;
            end if;
         end if;

         if Present (A)
           and then (Nkind (Parent (A)) /= N_Parameter_Association
                       or else
                     Chars (Selector_Name (Parent (A))) = Chars (F))
         then
            --  If style checking mode on, check match of formal name

            if Style_Check then
               if Nkind (Parent (A)) = N_Parameter_Association then
                  Check_Identifier (Selector_Name (Parent (A)), F);
               end if;
            end if;

            --  If the formal is Out or In_Out, do not resolve and expand the
            --  conversion, because it is subsequently expanded into explicit
            --  temporaries and assignments. However, the object of the
            --  conversion can be resolved. An exception is the case of tagged
            --  type conversion with a class-wide actual. In that case we want
            --  the tag check to occur and no temporary will be needed (no
            --  representation change can occur) and the parameter is passed by
            --  reference, so we go ahead and resolve the type conversion.
            --  Another exception is the case of reference to component or
            --  subcomponent of a bit-packed array, in which case we want to
            --  defer expansion to the point the in and out assignments are
            --  performed.

            if Ekind (F) /= E_In_Parameter
              and then Nkind (A) = N_Type_Conversion
              and then not Is_Class_Wide_Type (Etype (Expression (A)))
            then
               if Ekind (F) = E_In_Out_Parameter
                 and then Is_Array_Type (Etype (F))
               then
                  if Has_Aliased_Components (Etype (Expression (A)))
                    /= Has_Aliased_Components (Etype (F))
                  then

                     --  In a view conversion, the conversion must be legal in
                     --  both directions, and thus both component types must be
                     --  aliased, or neither (4.6 (8)).

                     --  The additional rule 4.6 (24.9.2) seems unduly
                     --  restrictive: the privacy requirement should not apply
                     --  to generic types, and should be checked in an
                     --  instance. ARG query is in order ???

                     Error_Msg_N
                       ("both component types in a view conversion must be"
                         & " aliased, or neither", A);

                  elsif
                     not Same_Ancestor (Etype (F), Etype (Expression (A)))
                  then
                     if Is_By_Reference_Type (Etype (F))
                        or else Is_By_Reference_Type (Etype (Expression (A)))
                     then
                        Error_Msg_N
                          ("view conversion between unrelated by reference " &
                           "array types not allowed (\'A'I-00246)", A);
                     else
                        declare
                           Comp_Type : constant Entity_Id :=
                                         Component_Type
                                           (Etype (Expression (A)));
                        begin
                           if Comes_From_Source (A)
                             and then Ada_Version >= Ada_05
                             and then
                               ((Is_Private_Type (Comp_Type)
                                   and then not Is_Generic_Type (Comp_Type))
                                 or else Is_Tagged_Type (Comp_Type)
                                 or else Is_Volatile (Comp_Type))
                           then
                              Error_Msg_N
                                ("component type of a view conversion cannot"
                                   & " be private, tagged, or volatile"
                                   & " (RM 4.6 (24))",
                                   Expression (A));
                           end if;
                        end;
                     end if;
                  end if;
               end if;

               if (Conversion_OK (A)
                     or else Valid_Conversion (A, Etype (A), Expression (A)))
                 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
               then
                  Resolve (Expression (A));
               end if;

            --  If the actual is a function call that returns a limited
            --  unconstrained object that needs finalization, create a
            --  transient scope for it, so that it can receive the proper
            --  finalization list.

            elsif Nkind (A) = N_Function_Call
              and then Is_Limited_Record (Etype (F))
              and then not Is_Constrained (Etype (F))
              and then Expander_Active
              and then
                (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
            then
               Establish_Transient_Scope (A, False);

            --  A small optimization: if one of the actuals is a concatenation
            --  create a block around a procedure call to recover stack space.
            --  This alleviates stack usage when several procedure calls in
            --  the same statement list use concatenation. We do not perform
            --  this wrapping for code statements, where the argument is a
            --  static string, and we want to preserve warnings involving
            --  sequences of such statements.

            elsif Nkind (A) = N_Op_Concat
              and then Nkind (N) = N_Procedure_Call_Statement
              and then Expander_Active
              and then
                not (Is_Intrinsic_Subprogram (Nam)
                      and then Chars (Nam) = Name_Asm)
              and then not Static_Concatenation (A)
            then
               Establish_Transient_Scope (A, False);
               Resolve (A, Etype (F));

            else
               if Nkind (A) = N_Type_Conversion
                 and then Is_Array_Type (Etype (F))
                 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
                 and then
                  (Is_Limited_Type (Etype (F))
                     or else Is_Limited_Type (Etype (Expression (A))))
               then
                  Error_Msg_N
                    ("conversion between unrelated limited array types " &
                     "not allowed (\A\I-00246)", A);

                  if Is_Limited_Type (Etype (F)) then
                     Explain_Limited_Type (Etype (F), A);
                  end if;

                  if Is_Limited_Type (Etype (Expression (A))) then
                     Explain_Limited_Type (Etype (Expression (A)), A);
                  end if;
               end if;

               --  (Ada 2005: AI-251): If the actual is an allocator whose
               --  directly designated type is a class-wide interface, we build
               --  an anonymous access type to use it as the type of the
               --  allocator. Later, when the subprogram call is expanded, if
               --  the interface has a secondary dispatch table the expander
               --  will add a type conversion to force the correct displacement
               --  of the pointer.

               if Nkind (A) = N_Allocator then
                  declare
                     DDT : constant Entity_Id :=
                             Directly_Designated_Type (Base_Type (Etype (F)));

                     New_Itype : Entity_Id;

                  begin
                     if Is_Class_Wide_Type (DDT)
                       and then Is_Interface (DDT)
                     then
                        New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
                        Set_Etype (New_Itype, Etype (A));
                        Set_Directly_Designated_Type (New_Itype,
                          Directly_Designated_Type (Etype (A)));
                        Set_Etype (A, New_Itype);
                     end if;

                     --  Ada 2005, AI-162:If the actual is an allocator, the
                     --  innermost enclosing statement is the master of the
                     --  created object. This needs to be done with expansion
                     --  enabled only, otherwise the transient scope will not
                     --  be removed in the expansion of the wrapped construct.

                     if (Is_Controlled (DDT) or else Has_Task (DDT))
                       and then Expander_Active
                     then
                        Establish_Transient_Scope (A, False);
                     end if;
                  end;
               end if;

               --  (Ada 2005): The call may be to a primitive operation of
               --   a tagged synchronized type, declared outside of the type.
               --   In this case the controlling actual must be converted to
               --   its corresponding record type, which is the formal type.
               --   The actual may be a subtype, either because of a constraint
               --   or because it is a generic actual, so use base type to
               --   locate concurrent type.

               A_Typ := Base_Type (Etype (A));
               F_Typ := Base_Type (Etype (F));

               declare
                  Full_A_Typ : Entity_Id;

               begin
                  if Present (Full_View (A_Typ)) then
                     Full_A_Typ := Base_Type (Full_View (A_Typ));
                  else
                     Full_A_Typ := A_Typ;
                  end if;

                  --  Tagged synchronized type (case 1): the actual is a
                  --  concurrent type

                  if Is_Concurrent_Type (A_Typ)
                    and then Corresponding_Record_Type (A_Typ) = F_Typ
                  then
                     Rewrite (A,
                       Unchecked_Convert_To
                         (Corresponding_Record_Type (A_Typ), A));
                     Resolve (A, Etype (F));

                  --  Tagged synchronized type (case 2): the formal is a
                  --  concurrent type

                  elsif Ekind (Full_A_Typ) = E_Record_Type
                    and then Present
                               (Corresponding_Concurrent_Type (Full_A_Typ))
                    and then Is_Concurrent_Type (F_Typ)
                    and then Present (Corresponding_Record_Type (F_Typ))
                    and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
                  then
                     Resolve (A, Corresponding_Record_Type (F_Typ));

                  --  Common case

                  else
                     Resolve (A, Etype (F));
                  end if;
               end;
            end if;

            A_Typ := Etype (A);
            F_Typ := Etype (F);

            --  For mode IN, if actual is an entity, and the type of the formal
            --  has warnings suppressed, then we reset Never_Set_In_Source for
            --  the calling entity. The reason for this is to catch cases like
            --  GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
            --  uses trickery to modify an IN parameter.

            if Ekind (F) = E_In_Parameter
              and then Is_Entity_Name (A)
              and then Present (Entity (A))
              and then Ekind (Entity (A)) = E_Variable
              and then Has_Warnings_Off (F_Typ)
            then
               Set_Never_Set_In_Source (Entity (A), False);
            end if;

            --  Perform error checks for IN and IN OUT parameters

            if Ekind (F) /= E_Out_Parameter then

               --  Check unset reference. For scalar parameters, it is clearly
               --  wrong to pass an uninitialized value as either an IN or
               --  IN-OUT parameter. For composites, it is also clearly an
               --  error to pass a completely uninitialized value as an IN
               --  parameter, but the case of IN OUT is trickier. We prefer
               --  not to give a warning here. For example, suppose there is
               --  a routine that sets some component of a record to False.
               --  It is perfectly reasonable to make this IN-OUT and allow
               --  either initialized or uninitialized records to be passed
               --  in this case.

               --  For partially initialized composite values, we also avoid
               --  warnings, since it is quite likely that we are passing a
               --  partially initialized value and only the initialized fields
               --  will in fact be read in the subprogram.

               if Is_Scalar_Type (A_Typ)
                 or else (Ekind (F) = E_In_Parameter
                            and then not Is_Partially_Initialized_Type (A_Typ))
               then
                  Check_Unset_Reference (A);
               end if;

               --  In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
               --  actual to a nested call, since this is case of reading an
               --  out parameter, which is not allowed.

               if Ada_Version = Ada_83
                 and then Is_Entity_Name (A)
                 and then Ekind (Entity (A)) = E_Out_Parameter
               then
                  Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
               end if;
            end if;

            --  Case of OUT or IN OUT parameter

            if Ekind (F) /= E_In_Parameter then

               --  For an Out parameter, check for useless assignment. Note
               --  that we can't set Last_Assignment this early, because we may
               --  kill current values in Resolve_Call, and that call would
               --  clobber the Last_Assignment field.

               --  Note: call Warn_On_Useless_Assignment before doing the check
               --  below for Is_OK_Variable_For_Out_Formal so that the setting
               --  of Referenced_As_LHS/Referenced_As_Out_Formal properly
               --  reflects the last assignment, not this one!

               if Ekind (F) = E_Out_Parameter then
                  if Warn_On_Modified_As_Out_Parameter (F)
                    and then Is_Entity_Name (A)
                    and then Present (Entity (A))
                    and then Comes_From_Source (N)
                  then
                     Warn_On_Useless_Assignment (Entity (A), A);
                  end if;
               end if;

               --  Validate the form of the actual. Note that the call to
               --  Is_OK_Variable_For_Out_Formal generates the required
               --  reference in this case.

               if not Is_OK_Variable_For_Out_Formal (A) then
                  Error_Msg_NE ("actual for& must be a variable", A, F);
               end if;

               --  What's the following about???

               if Is_Entity_Name (A) then
                  Kill_Checks (Entity (A));
               else
                  Kill_All_Checks;
               end if;
            end if;

            if Etype (A) = Any_Type then
               Set_Etype (N, Any_Type);
               return;
            end if;

            --  Apply appropriate range checks for in, out, and in-out
            --  parameters. Out and in-out parameters also need a separate
            --  check, if there is a type conversion, to make sure the return
            --  value meets the constraints of the variable before the
            --  conversion.

            --  Gigi looks at the check flag and uses the appropriate types.
            --  For now since one flag is used there is an optimization which
            --  might not be done in the In Out case since Gigi does not do
            --  any analysis. More thought required about this ???

            if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
               if Is_Scalar_Type (Etype (A)) then
                  Apply_Scalar_Range_Check (A, F_Typ);

               elsif Is_Array_Type (Etype (A)) then
                  Apply_Length_Check (A, F_Typ);

               elsif Is_Record_Type (F_Typ)
                 and then Has_Discriminants (F_Typ)
                 and then Is_Constrained (F_Typ)
                 and then (not Is_Derived_Type (F_Typ)
                             or else Comes_From_Source (Nam))
               then
                  Apply_Discriminant_Check (A, F_Typ);

               elsif Is_Access_Type (F_Typ)
                 and then Is_Array_Type (Designated_Type (F_Typ))
                 and then Is_Constrained (Designated_Type (F_Typ))
               then
                  Apply_Length_Check (A, F_Typ);

               elsif Is_Access_Type (F_Typ)
                 and then Has_Discriminants (Designated_Type (F_Typ))
                 and then Is_Constrained (Designated_Type (F_Typ))
               then
                  Apply_Discriminant_Check (A, F_Typ);

               else
                  Apply_Range_Check (A, F_Typ);
               end if;

               --  Ada 2005 (AI-231)

               if Ada_Version >= Ada_05
                 and then Is_Access_Type (F_Typ)
                 and then Can_Never_Be_Null (F_Typ)
                 and then Known_Null (A)
               then
                  Apply_Compile_Time_Constraint_Error
                    (N      => A,
                     Msg    => "(Ada 2005) null not allowed in "
                               & "null-excluding formal?",
                     Reason => CE_Null_Not_Allowed);
               end if;
            end if;

            if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
               if Nkind (A) = N_Type_Conversion then
                  if Is_Scalar_Type (A_Typ) then
                     Apply_Scalar_Range_Check
                       (Expression (A), Etype (Expression (A)), A_Typ);
                  else
                     Apply_Range_Check
                       (Expression (A), Etype (Expression (A)), A_Typ);
                  end if;

               else
                  if Is_Scalar_Type (F_Typ) then
                     Apply_Scalar_Range_Check (A, A_Typ, F_Typ);

                  elsif Is_Array_Type (F_Typ)
                    and then Ekind (F) = E_Out_Parameter
                  then
                     Apply_Length_Check (A, F_Typ);

                  else
                     Apply_Range_Check (A, A_Typ, F_Typ);
                  end if;
               end if;
            end if;

            --  An actual associated with an access parameter is implicitly
            --  converted to the anonymous access type of the formal and must
            --  satisfy the legality checks for access conversions.

            if Ekind (F_Typ) = E_Anonymous_Access_Type then
               if not Valid_Conversion (A, F_Typ, A) then
                  Error_Msg_N
                    ("invalid implicit conversion for access parameter", A);
               end if;
            end if;

            --  Check bad case of atomic/volatile argument (RM C.6(12))

            if Is_By_Reference_Type (Etype (F))
              and then Comes_From_Source (N)
            then
               if Is_Atomic_Object (A)
                 and then not Is_Atomic (Etype (F))
               then
                  Error_Msg_N
                    ("cannot pass atomic argument to non-atomic formal",
                     N);

               elsif Is_Volatile_Object (A)
                 and then not Is_Volatile (Etype (F))
               then
                  Error_Msg_N
                    ("cannot pass volatile argument to non-volatile formal",
                     N);
               end if;
            end if;

            --  Check that subprograms don't have improper controlling
            --  arguments (RM 3.9.2 (9)).

            --  A primitive operation may have an access parameter of an
            --  incomplete tagged type, but a dispatching call is illegal
            --  if the type is still incomplete.

            if Is_Controlling_Formal (F) then
               Set_Is_Controlling_Actual (A);

               if Ekind (Etype (F)) = E_Anonymous_Access_Type then
                  declare
                     Desig : constant Entity_Id := Designated_Type (Etype (F));
                  begin
                     if Ekind (Desig) = E_Incomplete_Type
                       and then No (Full_View (Desig))
                       and then No (Non_Limited_View (Desig))
                     then
                        Error_Msg_NE
                          ("premature use of incomplete type& " &
                           "in dispatching call", A, Desig);
                     end if;
                  end;
               end if;

            elsif Nkind (A) = N_Explicit_Dereference then
               Validate_Remote_Access_To_Class_Wide_Type (A);
            end if;

            if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
              and then not Is_Class_Wide_Type (F_Typ)
              and then not Is_Controlling_Formal (F)
            then
               Error_Msg_N ("class-wide argument not allowed here!", A);

               if Is_Subprogram (Nam)
                 and then Comes_From_Source (Nam)
               then
                  Error_Msg_Node_2 := F_Typ;
                  Error_Msg_NE
                    ("& is not a dispatching operation of &!", A, Nam);
               end if;

            elsif Is_Access_Type (A_Typ)
              and then Is_Access_Type (F_Typ)
              and then Ekind (F_Typ) /= E_Access_Subprogram_Type
              and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
              and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
                         or else (Nkind (A) = N_Attribute_Reference
                                   and then
                                     Is_Class_Wide_Type (Etype (Prefix (A)))))
              and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
              and then not Is_Controlling_Formal (F)

              --  Disable these checks for call to imported C++ subprograms

              and then not
                (Is_Entity_Name (Name (N))
                  and then Is_Imported (Entity (Name (N)))
                  and then Convention (Entity (Name (N))) = Convention_CPP)
            then
               Error_Msg_N
                 ("access to class-wide argument not allowed here!", A);

               if Is_Subprogram (Nam)
                 and then Comes_From_Source (Nam)
               then
                  Error_Msg_Node_2 := Designated_Type (F_Typ);
                  Error_Msg_NE
                    ("& is not a dispatching operation of &!", A, Nam);
               end if;
            end if;

            Eval_Actual (A);

            --  If it is a named association, treat the selector_name as
            --  a proper identifier, and mark the corresponding entity.

            if Nkind (Parent (A)) = N_Parameter_Association then
               Set_Entity (Selector_Name (Parent (A)), F);
               Generate_Reference (F, Selector_Name (Parent (A)));
               Set_Etype (Selector_Name (Parent (A)), F_Typ);
               Generate_Reference (F_Typ, N, ' ');
            end if;

            Prev := A;

            if Ekind (F) /= E_Out_Parameter then
               Check_Unset_Reference (A);
            end if;

            Next_Actual (A);

         --  Case where actual is not present

         else
            Insert_Default;
         end if;

         Next_Formal (F);
      end loop;
   end Resolve_Actuals;

   -----------------------
   -- Resolve_Allocator --
   -----------------------

   procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
      E        : constant Node_Id := Expression (N);
      Subtyp   : Entity_Id;
      Discrim  : Entity_Id;
      Constr   : Node_Id;
      Aggr     : Node_Id;
      Assoc    : Node_Id := Empty;
      Disc_Exp : Node_Id;

      procedure Check_Allocator_Discrim_Accessibility
        (Disc_Exp  : Node_Id;
         Alloc_Typ : Entity_Id);
      --  Check that accessibility level associated with an access discriminant
      --  initialized in an allocator by the expression Disc_Exp is not deeper
      --  than the level of the allocator type Alloc_Typ. An error message is
      --  issued if this condition is violated. Specialized checks are done for
      --  the cases of a constraint expression which is an access attribute or
      --  an access discriminant.

      function In_Dispatching_Context return Boolean;
      --  If the allocator is an actual in a call, it is allowed to be class-
      --  wide when the context is not because it is a controlling actual.

      procedure Propagate_Coextensions (Root : Node_Id);
      --  Propagate all nested coextensions which are located one nesting
      --  level down the tree to the node Root. Example:
      --
      --    Top_Record
      --       Level_1_Coextension
      --          Level_2_Coextension
      --
      --  The algorithm is paired with delay actions done by the Expander. In
      --  the above example, assume all coextensions are controlled types.
      --  The cycle of analysis, resolution and expansion will yield:
      --
      --  1) Analyze Top_Record
      --  2) Analyze Level_1_Coextension
      --  3) Analyze Level_2_Coextension
      --  4) Resolve Level_2_Coextension. The allocator is marked as a
      --       coextension.
      --  5) Expand Level_2_Coextension. A temporary variable Temp_1 is
      --       generated to capture the allocated object. Temp_1 is attached
      --       to the coextension chain of Level_2_Coextension.
      --  6) Resolve Level_1_Coextension. The allocator is marked as a
      --       coextension. A forward tree traversal is performed which finds
      --       Level_2_Coextension's list and copies its contents into its
      --       own list.
      --  7) Expand Level_1_Coextension. A temporary variable Temp_2 is
      --       generated to capture the allocated object. Temp_2 is attached
      --       to the coextension chain of Level_1_Coextension. Currently, the
      --       contents of the list are [Temp_2, Temp_1].
      --  8) Resolve Top_Record. A forward tree traversal is performed which
      --       finds Level_1_Coextension's list and copies its contents into
      --       its own list.
      --  9) Expand Top_Record. Generate finalization calls for Temp_1 and
      --       Temp_2 and attach them to Top_Record's finalization list.

      -------------------------------------------
      -- Check_Allocator_Discrim_Accessibility --
      -------------------------------------------

      procedure Check_Allocator_Discrim_Accessibility
        (Disc_Exp  : Node_Id;
         Alloc_Typ : Entity_Id)
      is
      begin
         if Type_Access_Level (Etype (Disc_Exp)) >
            Type_Access_Level (Alloc_Typ)
         then
            Error_Msg_N
              ("operand type has deeper level than allocator type", Disc_Exp);

         --  When the expression is an Access attribute the level of the prefix
         --  object must not be deeper than that of the allocator's type.

         elsif Nkind (Disc_Exp) = N_Attribute_Reference
           and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
                      = Attribute_Access
           and then Object_Access_Level (Prefix (Disc_Exp))
                      > Type_Access_Level (Alloc_Typ)
         then
            Error_Msg_N
              ("prefix of attribute has deeper level than allocator type",
               Disc_Exp);

         --  When the expression is an access discriminant the check is against
         --  the level of the prefix object.

         elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
           and then Nkind (Disc_Exp) = N_Selected_Component
           and then Object_Access_Level (Prefix (Disc_Exp))
                      > Type_Access_Level (Alloc_Typ)
         then
            Error_Msg_N
              ("access discriminant has deeper level than allocator type",
               Disc_Exp);

         --  All other cases are legal

         else
            null;
         end if;
      end Check_Allocator_Discrim_Accessibility;

      ----------------------------
      -- In_Dispatching_Context --
      ----------------------------

      function In_Dispatching_Context return Boolean is
         Par : constant Node_Id := Parent (N);
      begin
         return Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
           and then Is_Entity_Name (Name (Par))
           and then Is_Dispatching_Operation (Entity (Name (Par)));
      end In_Dispatching_Context;

      ----------------------------
      -- Propagate_Coextensions --
      ----------------------------

      procedure Propagate_Coextensions (Root : Node_Id) is

         procedure Copy_List (From : Elist_Id; To : Elist_Id);
         --  Copy the contents of list From into list To, preserving the
         --  order of elements.

         function Process_Allocator (Nod : Node_Id) return Traverse_Result;
         --  Recognize an allocator or a rewritten allocator node and add it
         --  along with its nested coextensions to the list of Root.

         ---------------
         -- Copy_List --
         ---------------

         procedure Copy_List (From : Elist_Id; To : Elist_Id) is
            From_Elmt : Elmt_Id;
         begin
            From_Elmt := First_Elmt (From);
            while Present (From_Elmt) loop
               Append_Elmt (Node (From_Elmt), To);
               Next_Elmt (From_Elmt);
            end loop;
         end Copy_List;

         -----------------------
         -- Process_Allocator --
         -----------------------

         function Process_Allocator (Nod : Node_Id) return Traverse_Result is
            Orig_Nod : Node_Id := Nod;

         begin
            --  This is a possible rewritten subtype indication allocator. Any
            --  nested coextensions will appear as discriminant constraints.

            if Nkind (Nod) = N_Identifier
              and then Present (Original_Node (Nod))
              and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
            then
               declare
                  Discr      : Node_Id;
                  Discr_Elmt : Elmt_Id;

               begin
                  if Is_Record_Type (Entity (Nod)) then
                     Discr_Elmt :=
                       First_Elmt (Discriminant_Constraint (Entity (Nod)));
                     while Present (Discr_Elmt) loop
                        Discr := Node (Discr_Elmt);

                        if Nkind (Discr) = N_Identifier
                          and then Present (Original_Node (Discr))
                          and then Nkind (Original_Node (Discr)) = N_Allocator
                          and then Present (Coextensions (
                                     Original_Node (Discr)))
                        then
                           if No (Coextensions (Root)) then
                              Set_Coextensions (Root, New_Elmt_List);
                           end if;

                           Copy_List
                             (From => Coextensions (Original_Node (Discr)),
                              To   => Coextensions (Root));
                        end if;

                        Next_Elmt (Discr_Elmt);
                     end loop;

                     --  There is no need to continue the traversal of this
                     --  subtree since all the information has already been
                     --  propagated.

                     return Skip;
                  end if;
               end;

            --  Case of either a stand alone allocator or a rewritten allocator
            --  with an aggregate.

            else
               if Present (Original_Node (Nod)) then
                  Orig_Nod := Original_Node (Nod);
               end if;

               if Nkind (Orig_Nod) = N_Allocator then

                  --  Propagate the list of nested coextensions to the Root
                  --  allocator. This is done through list copy since a single
                  --  allocator may have multiple coextensions. Do not touch
                  --  coextensions roots.

                  if not Is_Coextension_Root (Orig_Nod)
                    and then Present (Coextensions (Orig_Nod))
                  then
                     if No (Coextensions (Root)) then
                        Set_Coextensions (Root, New_Elmt_List);
                     end if;

                     Copy_List
                       (From => Coextensions (Orig_Nod),
                        To   => Coextensions (Root));
                  end if;

                  --  There is no need to continue the traversal of this
                  --  subtree since all the information has already been
                  --  propagated.

                  return Skip;
               end if;
            end if;

            --  Keep on traversing, looking for the next allocator

            return OK;
         end Process_Allocator;

         procedure Process_Allocators is
           new Traverse_Proc (Process_Allocator);

      --  Start of processing for Propagate_Coextensions

      begin
         Process_Allocators (Expression (Root));
      end Propagate_Coextensions;

   --  Start of processing for Resolve_Allocator

   begin
      --  Replace general access with specific type

      if Ekind (Etype (N)) = E_Allocator_Type then
         Set_Etype (N, Base_Type (Typ));
      end if;

      if Is_Abstract_Type (Typ) then
         Error_Msg_N ("type of allocator cannot be abstract",  N);
      end if;

      --  For qualified expression, resolve the expression using the
      --  given subtype (nothing to do for type mark, subtype indication)

      if Nkind (E) = N_Qualified_Expression then
         if Is_Class_Wide_Type (Etype (E))
           and then not Is_Class_Wide_Type (Designated_Type (Typ))
           and then not In_Dispatching_Context
         then
            Error_Msg_N
              ("class-wide allocator not allowed for this access type", N);
         end if;

         Resolve (Expression (E), Etype (E));
         Check_Unset_Reference (Expression (E));

         --  A qualified expression requires an exact match of the type,
         --  class-wide matching is not allowed.

         if (Is_Class_Wide_Type (Etype (Expression (E)))
                 or else Is_Class_Wide_Type (Etype (E)))
           and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
         then
            Wrong_Type (Expression (E), Etype (E));
         end if;

         --  A special accessibility check is needed for allocators that
         --  constrain access discriminants. The level of the type of the
         --  expression used to constrain an access discriminant cannot be
         --  deeper than the type of the allocator (in contrast to access
         --  parameters, where the level of the actual can be arbitrary).

         --  We can't use Valid_Conversion to perform this check because
         --  in general the type of the allocator is unrelated to the type
         --  of the access discriminant.

         if Ekind (Typ) /= E_Anonymous_Access_Type
           or else Is_Local_Anonymous_Access (Typ)
         then
            Subtyp := Entity (Subtype_Mark (E));

            Aggr := Original_Node (Expression (E));

            if Has_Discriminants (Subtyp)
              and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
            then
               Discrim := First_Discriminant (Base_Type (Subtyp));

               --  Get the first component expression of the aggregate

               if Present (Expressions (Aggr)) then
                  Disc_Exp := First (Expressions (Aggr));

               elsif Present (Component_Associations (Aggr)) then
                  Assoc := First (Component_Associations (Aggr));

                  if Present (Assoc) then
                     Disc_Exp := Expression (Assoc);
                  else
                     Disc_Exp := Empty;
                  end if;

               else
                  Disc_Exp := Empty;
               end if;

               while Present (Discrim) and then Present (Disc_Exp) loop
                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
                  end if;

                  Next_Discriminant (Discrim);

                  if Present (Discrim) then
                     if Present (Assoc) then
                        Next (Assoc);
                        Disc_Exp := Expression (Assoc);

                     elsif Present (Next (Disc_Exp)) then
                        Next (Disc_Exp);

                     else
                        Assoc := First (Component_Associations (Aggr));

                        if Present (Assoc) then
                           Disc_Exp := Expression (Assoc);
                        else
                           Disc_Exp := Empty;
                        end if;
                     end if;
                  end if;
               end loop;
            end if;
         end if;

      --  For a subtype mark or subtype indication, freeze the subtype

      else
         Freeze_Expression (E);

         if Is_Access_Constant (Typ) and then not No_Initialization (N) then
            Error_Msg_N
              ("initialization required for access-to-constant allocator", N);
         end if;

         --  A special accessibility check is needed for allocators that
         --  constrain access discriminants. The level of the type of the
         --  expression used to constrain an access discriminant cannot be
         --  deeper than the type of the allocator (in contrast to access
         --  parameters, where the level of the actual can be arbitrary).
         --  We can't use Valid_Conversion to perform this check because
         --  in general the type of the allocator is unrelated to the type
         --  of the access discriminant.

         if Nkind (Original_Node (E)) = N_Subtype_Indication
           and then (Ekind (Typ) /= E_Anonymous_Access_Type
                      or else Is_Local_Anonymous_Access (Typ))
         then
            Subtyp := Entity (Subtype_Mark (Original_Node (E)));

            if Has_Discriminants (Subtyp) then
               Discrim := First_Discriminant (Base_Type (Subtyp));
               Constr := First (Constraints (Constraint (Original_Node (E))));
               while Present (Discrim) and then Present (Constr) loop
                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
                     if Nkind (Constr) = N_Discriminant_Association then
                        Disc_Exp := Original_Node (Expression (Constr));
                     else
                        Disc_Exp := Original_Node (Constr);
                     end if;

                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
                  end if;

                  Next_Discriminant (Discrim);
                  Next (Constr);
               end loop;
            end if;
         end if;
      end if;

      --  Ada 2005 (AI-344): A class-wide allocator requires an accessibility
      --  check that the level of the type of the created object is not deeper
      --  than the level of the allocator's access type, since extensions can
      --  now occur at deeper levels than their ancestor types. This is a
      --  static accessibility level check; a run-time check is also needed in
      --  the case of an initialized allocator with a class-wide argument (see
      --  Expand_Allocator_Expression).

      if Ada_Version >= Ada_05
        and then Is_Class_Wide_Type (Designated_Type (Typ))
      then
         declare
            Exp_Typ : Entity_Id;

         begin
            if Nkind (E) = N_Qualified_Expression then
               Exp_Typ := Etype (E);
            elsif Nkind (E) = N_Subtype_Indication then
               Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
            else
               Exp_Typ := Entity (E);
            end if;

            if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
               if In_Instance_Body then
                  Error_Msg_N ("?type in allocator has deeper level than" &
                               " designated class-wide type", E);
                  Error_Msg_N ("\?Program_Error will be raised at run time",
                               E);
                  Rewrite (N,
                    Make_Raise_Program_Error (Sloc (N),
                      Reason => PE_Accessibility_Check_Failed));
                  Set_Etype (N, Typ);

               --  Do not apply Ada 2005 accessibility checks on a class-wide
               --  allocator if the type given in the allocator is a formal
               --  type. A run-time check will be performed in the instance.

               elsif not Is_Generic_Type (Exp_Typ) then
                  Error_Msg_N ("type in allocator has deeper level than" &
                               " designated class-wide type", E);
               end if;
            end if;
         end;
      end if;

      --  Check for allocation from an empty storage pool

      if No_Pool_Assigned (Typ) then
         declare
            Loc : constant Source_Ptr := Sloc (N);
         begin
            Error_Msg_N ("?allocation from empty storage pool!", N);
            Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
            Insert_Action (N,
              Make_Raise_Storage_Error (Loc,
                Reason => SE_Empty_Storage_Pool));
         end;

      --  If the context is an unchecked conversion, as may happen within
      --  an inlined subprogram, the allocator is being resolved with its
      --  own anonymous type. In that case, if the target type has a specific
      --  storage pool, it must be inherited explicitly by the allocator type.

      elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
        and then No (Associated_Storage_Pool (Typ))
      then
         Set_Associated_Storage_Pool
           (Typ, Associated_Storage_Pool (Etype (Parent (N))));
      end if;

      --  An erroneous allocator may be rewritten as a raise Program_Error
      --  statement.

      if Nkind (N) = N_Allocator then

         --  An anonymous access discriminant is the definition of a
         --  coextension.

         if Ekind (Typ) = E_Anonymous_Access_Type
           and then Nkind (Associated_Node_For_Itype (Typ)) =
                      N_Discriminant_Specification
         then
            --  Avoid marking an allocator as a dynamic coextension if it is
            --  within a static construct.

            if not Is_Static_Coextension (N) then
               Set_Is_Dynamic_Coextension (N);
            end if;

         --  Cleanup for potential static coextensions

         else
            Set_Is_Dynamic_Coextension (N, False);
            Set_Is_Static_Coextension  (N, False);
         end if;

         --  There is no need to propagate any nested coextensions if they
         --  are marked as static since they will be rewritten on the spot.

         if not Is_Static_Coextension (N) then
            Propagate_Coextensions (N);
         end if;
      end if;
   end Resolve_Allocator;

   ---------------------------
   -- Resolve_Arithmetic_Op --
   ---------------------------

   --  Used for resolving all arithmetic operators except exponentiation

   procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
      L   : constant Node_Id := Left_Opnd (N);
      R   : constant Node_Id := Right_Opnd (N);
      TL  : constant Entity_Id := Base_Type (Etype (L));
      TR  : constant Entity_Id := Base_Type (Etype (R));
      T   : Entity_Id;
      Rop : Node_Id;

      B_Typ : constant Entity_Id := Base_Type (Typ);
      --  We do the resolution using the base type, because intermediate values
      --  in expressions always are of the base type, not a subtype of it.

      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
      --  Returns True if N is in a context that expects "any real type"

      function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
      --  Return True iff given type is Integer or universal real/integer

      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
      --  Choose type of integer literal in fixed-point operation to conform
      --  to available fixed-point type. T is the type of the other operand,
      --  which is needed to determine the expected type of N.

      procedure Set_Operand_Type (N : Node_Id);
      --  Set operand type to T if universal

      -------------------------------
      -- Expected_Type_Is_Any_Real --
      -------------------------------

      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
      begin
         --  N is the expression after "delta" in a fixed_point_definition;
         --  see RM-3.5.9(6):

         return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
                                      N_Decimal_Fixed_Point_Definition,

         --  N is one of the bounds in a real_range_specification;
         --  see RM-3.5.7(5):

                                      N_Real_Range_Specification,

         --  N is the expression of a delta_constraint;
         --  see RM-J.3(3):

                                      N_Delta_Constraint);
      end Expected_Type_Is_Any_Real;

      -----------------------------
      -- Is_Integer_Or_Universal --
      -----------------------------

      function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
         T     : Entity_Id;
         Index : Interp_Index;
         It    : Interp;

      begin
         if not Is_Overloaded (N) then
            T := Etype (N);
            return Base_Type (T) = Base_Type (Standard_Integer)
              or else T = Universal_Integer
              or else T = Universal_Real;
         else
            Get_First_Interp (N, Index, It);
            while Present (It.Typ) loop
               if Base_Type (It.Typ) = Base_Type (Standard_Integer)
                 or else It.Typ = Universal_Integer
                 or else It.Typ = Universal_Real
               then
                  return True;
               end if;

               Get_Next_Interp (Index, It);
            end loop;
         end if;

         return False;
      end Is_Integer_Or_Universal;

      ----------------------------
      -- Set_Mixed_Mode_Operand --
      ----------------------------

      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
         Index : Interp_Index;
         It    : Interp;

      begin
         if Universal_Interpretation (N) = Universal_Integer then

            --  A universal integer literal is resolved as standard integer
            --  except in the case of a fixed-point result, where we leave it
            --  as universal (to be handled by Exp_Fixd later on)

            if Is_Fixed_Point_Type (T) then
               Resolve (N, Universal_Integer);
            else
               Resolve (N, Standard_Integer);
            end if;

         elsif Universal_Interpretation (N) = Universal_Real
           and then (T = Base_Type (Standard_Integer)
                      or else T = Universal_Integer
                      or else T = Universal_Real)
         then
            --  A universal real can appear in a fixed-type context. We resolve
            --  the literal with that context, even though this might raise an
            --  exception prematurely (the other operand may be zero).

            Resolve (N, B_Typ);

         elsif Etype (N) = Base_Type (Standard_Integer)
           and then T = Universal_Real
           and then Is_Overloaded (N)
         then
            --  Integer arg in mixed-mode operation. Resolve with universal
            --  type, in case preference rule must be applied.

            Resolve (N, Universal_Integer);

         elsif Etype (N) = T
           and then B_Typ /= Universal_Fixed
         then
            --  Not a mixed-mode operation, resolve with context

            Resolve (N, B_Typ);

         elsif Etype (N) = Any_Fixed then

            --  N may itself be a mixed-mode operation, so use context type

            Resolve (N, B_Typ);

         elsif Is_Fixed_Point_Type (T)
           and then B_Typ = Universal_Fixed
           and then Is_Overloaded (N)
         then
            --  Must be (fixed * fixed) operation, operand must have one
            --  compatible interpretation.

            Resolve (N, Any_Fixed);

         elsif Is_Fixed_Point_Type (B_Typ)
           and then (T = Universal_Real
                      or else Is_Fixed_Point_Type (T))
           and then Is_Overloaded (N)
         then
            --  C * F(X) in a fixed context, where C is a real literal or a
            --  fixed-point expression. F must have either a fixed type
            --  interpretation or an integer interpretation, but not both.

            Get_First_Interp (N, Index, It);
            while Present (It.Typ) loop
               if Base_Type (It.Typ) = Base_Type (Standard_Integer) then

                  if Analyzed (N) then
                     Error_Msg_N ("ambiguous operand in fixed operation", N);
                  else
                     Resolve (N, Standard_Integer);
                  end if;

               elsif Is_Fixed_Point_Type (It.Typ) then

                  if Analyzed (N) then
                     Error_Msg_N ("ambiguous operand in fixed operation", N);
                  else
                     Resolve (N, It.Typ);
                  end if;
               end if;

               Get_Next_Interp (Index, It);
            end loop;

            --  Reanalyze the literal with the fixed type of the context. If
            --  context is Universal_Fixed, we are within a conversion, leave
            --  the literal as a universal real because there is no usable
            --  fixed type, and the target of the conversion plays no role in
            --  the resolution.

            declare
               Op2 : Node_Id;
               T2  : Entity_Id;

            begin
               if N = L then
                  Op2 := R;
               else
                  Op2 := L;
               end if;

               if B_Typ = Universal_Fixed
                  and then Nkind (Op2) = N_Real_Literal
               then
                  T2 := Universal_Real;
               else
                  T2 := B_Typ;
               end if;

               Set_Analyzed (Op2, False);
               Resolve (Op2, T2);
            end;

         else
            Resolve (N);
         end if;
      end Set_Mixed_Mode_Operand;

      ----------------------
      -- Set_Operand_Type --
      ----------------------

      procedure Set_Operand_Type (N : Node_Id) is
      begin
         if Etype (N) = Universal_Integer
           or else Etype (N) = Universal_Real
         then
            Set_Etype (N, T);
         end if;
      end Set_Operand_Type;

   --  Start of processing for Resolve_Arithmetic_Op

   begin
      if Comes_From_Source (N)
        and then Ekind (Entity (N)) = E_Function
        and then Is_Imported (Entity (N))
        and then Is_Intrinsic_Subprogram (Entity (N))
      then
         Resolve_Intrinsic_Operator (N, Typ);
         return;

      --  Special-case for mixed-mode universal expressions or fixed point
      --  type operation: each argument is resolved separately. The same
      --  treatment is required if one of the operands of a fixed point
      --  operation is universal real, since in this case we don't do a
      --  conversion to a specific fixed-point type (instead the expander
      --  takes care of the case).

      elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
        and then Present (Universal_Interpretation (L))
        and then Present (Universal_Interpretation (R))
      then
         Resolve (L, Universal_Interpretation (L));
         Resolve (R, Universal_Interpretation (R));
         Set_Etype (N, B_Typ);

      elsif (B_Typ = Universal_Real
              or else Etype (N) = Universal_Fixed
              or else (Etype (N) = Any_Fixed
                        and then Is_Fixed_Point_Type (B_Typ))
              or else (Is_Fixed_Point_Type (B_Typ)
                        and then (Is_Integer_Or_Universal (L)
                                   or else
                                  Is_Integer_Or_Universal (R))))
        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
      then
         if TL = Universal_Integer or else TR = Universal_Integer then
            Check_For_Visible_Operator (N, B_Typ);
         end if;

         --  If context is a fixed type and one operand is integer, the
         --  other is resolved with the type of the context.

         if Is_Fixed_Point_Type (B_Typ)
           and then (Base_Type (TL) = Base_Type (Standard_Integer)
                      or else TL = Universal_Integer)
         then
            Resolve (R, B_Typ);
            Resolve (L, TL);

         elsif Is_Fixed_Point_Type (B_Typ)
           and then (Base_Type (TR) = Base_Type (Standard_Integer)
                      or else TR = Universal_Integer)
         then
            Resolve (L, B_Typ);
            Resolve (R, TR);

         else
            Set_Mixed_Mode_Operand (L, TR);
            Set_Mixed_Mode_Operand (R, TL);
         end if;

         --  Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
         --  multiplying operators from being used when the expected type is
         --  also universal_fixed. Note that B_Typ will be Universal_Fixed in
         --  some cases where the expected type is actually Any_Real;
         --  Expected_Type_Is_Any_Real takes care of that case.

         if Etype (N) = Universal_Fixed
           or else Etype (N) = Any_Fixed
         then
            if B_Typ = Universal_Fixed
              and then not Expected_Type_Is_Any_Real (N)
              and then not Nkind_In (Parent (N), N_Type_Conversion,
                                                 N_Unchecked_Type_Conversion)
            then
               Error_Msg_N ("type cannot be determined from context!", N);
               Error_Msg_N ("\explicit conversion to result type required", N);

               Set_Etype (L, Any_Type);
               Set_Etype (R, Any_Type);

            else
               if Ada_Version = Ada_83
                 and then Etype (N) = Universal_Fixed
                 and then not
                   Nkind_In (Parent (N), N_Type_Conversion,
                                         N_Unchecked_Type_Conversion)
               then
                  Error_Msg_N
                    ("(Ada 83) fixed-point operation "
                     & "needs explicit conversion", N);
               end if;

               --  The expected type is "any real type" in contexts like
               --    type T is delta <universal_fixed-expression> ...
               --  in which case we need to set the type to Universal_Real
               --  so that static expression evaluation will work properly.

               if Expected_Type_Is_Any_Real (N) then
                  Set_Etype (N, Universal_Real);
               else
                  Set_Etype (N, B_Typ);
               end if;
            end if;

         elsif Is_Fixed_Point_Type (B_Typ)
           and then (Is_Integer_Or_Universal (L)
                       or else Nkind (L) = N_Real_Literal
                       or else Nkind (R) = N_Real_Literal
                       or else Is_Integer_Or_Universal (R))
         then
            Set_Etype (N, B_Typ);

         elsif Etype (N) = Any_Fixed then

            --  If no previous errors, this is only possible if one operand
            --  is overloaded and the context is universal. Resolve as such.

            Set_Etype (N, B_Typ);
         end if;

      else
         if (TL = Universal_Integer or else TL = Universal_Real)
              and then
            (TR = Universal_Integer or else TR = Universal_Real)
         then
            Check_For_Visible_Operator (N, B_Typ);
         end if;

         --  If the context is Universal_Fixed and the operands are also
         --  universal fixed, this is an error, unless there is only one
         --  applicable fixed_point type (usually Duration).

         if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
            T := Unique_Fixed_Point_Type (N);

            if T  = Any_Type then
               Set_Etype (N, T);
               return;
            else
               Resolve (L, T);
               Resolve (R, T);
            end if;

         else
            Resolve (L, B_Typ);
            Resolve (R, B_Typ);
         end if;

         --  If one of the arguments was resolved to a non-universal type.
         --  label the result of the operation itself with the same type.
         --  Do the same for the universal argument, if any.

         T := Intersect_Types (L, R);
         Set_Etype (N, Base_Type (T));
         Set_Operand_Type (L);
         Set_Operand_Type (R);
      end if;

      Generate_Operator_Reference (N, Typ);
      Eval_Arithmetic_Op (N);

      --  Set overflow and division checking bit. Much cleverer code needed
      --  here eventually and perhaps the Resolve routines should be separated
      --  for the various arithmetic operations, since they will need
      --  different processing. ???

      if Nkind (N) in N_Op then
         if not Overflow_Checks_Suppressed (Etype (N)) then
            Enable_Overflow_Check (N);
         end if;

         --  Give warning if explicit division by zero

         if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
           and then not Division_Checks_Suppressed (Etype (N))
         then
            Rop := Right_Opnd (N);

            if Compile_Time_Known_Value (Rop)
              and then ((Is_Integer_Type (Etype (Rop))
                           and then Expr_Value (Rop) = Uint_0)
                          or else
                        (Is_Real_Type (Etype (Rop))
                           and then Expr_Value_R (Rop) = Ureal_0))
            then
               --  Specialize the warning message according to the operation

               case Nkind (N) is
                  when N_Op_Divide =>
                     Apply_Compile_Time_Constraint_Error
                       (N, "division by zero?", CE_Divide_By_Zero,
                        Loc => Sloc (Right_Opnd (N)));

                  when N_Op_Rem =>
                     Apply_Compile_Time_Constraint_Error
                       (N, "rem with zero divisor?", CE_Divide_By_Zero,
                        Loc => Sloc (Right_Opnd (N)));

                  when N_Op_Mod =>
                     Apply_Compile_Time_Constraint_Error
                       (N, "mod with zero divisor?", CE_Divide_By_Zero,
                        Loc => Sloc (Right_Opnd (N)));

                  --  Division by zero can only happen with division, rem,
                  --  and mod operations.

                  when others =>
                     raise Program_Error;
               end case;

            --  Otherwise just set the flag to check at run time

            else
               Activate_Division_Check (N);
            end if;
         end if;

         --  If Restriction No_Implicit_Conditionals is active, then it is
         --  violated if either operand can be negative for mod, or for rem
         --  if both operands can be negative.

         if Restrictions.Set (No_Implicit_Conditionals)
           and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
         then
            declare
               Lo : Uint;
               Hi : Uint;
               OK : Boolean;

               LNeg : Boolean;
               RNeg : Boolean;
               --  Set if corresponding operand might be negative

            begin
               Determine_Range
                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
               LNeg := (not OK) or else Lo < 0;

               Determine_Range
                 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
               RNeg := (not OK) or else Lo < 0;

               --  Check if we will be generating conditionals. There are two
               --  cases where that can happen, first for REM, the only case
               --  is largest negative integer mod -1, where the division can
               --  overflow, but we still have to give the right result. The
               --  front end generates a test for this annoying case. Here we
               --  just test if both operands can be negative (that's what the
               --  expander does, so we match its logic here).

               --  The second case is mod where either operand can be negative.
               --  In this case, the back end has to generate additonal tests.

               if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
                    or else
                  (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
               then
                  Check_Restriction (No_Implicit_Conditionals, N);
               end if;
            end;
         end if;
      end if;

      Check_Unset_Reference (L);
      Check_Unset_Reference (R);
   end Resolve_Arithmetic_Op;

   ------------------
   -- Resolve_Call --
   ------------------

   procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
      Loc     : constant Source_Ptr := Sloc (N);
      Subp    : constant Node_Id    := Name (N);
      Nam     : Entity_Id;
      I       : Interp_Index;
      It      : Interp;
      Norm_OK : Boolean;
      Scop    : Entity_Id;
      Rtype   : Entity_Id;

      function Same_Or_Aliased_Subprograms
        (S : Entity_Id;
         E : Entity_Id) return Boolean;
      --  Returns True if the subprogram entity S is the same as E or else
      --  S is an alias of E.

      ---------------------------------
      -- Same_Or_Aliased_Subprograms --
      ---------------------------------

      function Same_Or_Aliased_Subprograms
        (S : Entity_Id;
         E : Entity_Id) return Boolean
      is
         Subp_Alias : constant Entity_Id := Alias (S);
      begin
         return S = E
           or else (Present (Subp_Alias) and then Subp_Alias = E);
      end Same_Or_Aliased_Subprograms;

   --  Start of processing for Resolve_Call

   begin
      --  The context imposes a unique interpretation with type Typ on a
      --  procedure or function call. Find the entity of the subprogram that
      --  yields the expected type, and propagate the corresponding formal
      --  constraints on the actuals. The caller has established that an
      --  interpretation exists, and emitted an error if not unique.

      --  First deal with the case of a call to an access-to-subprogram,
      --  dereference made explicit in Analyze_Call.

      if Ekind (Etype (Subp)) = E_Subprogram_Type then
         if not Is_Overloaded (Subp) then
            Nam := Etype (Subp);

         else
            --  Find the interpretation whose type (a subprogram type) has a
            --  return type that is compatible with the context. Analysis of
            --  the node has established that one exists.

            Nam := Empty;

            Get_First_Interp (Subp,  I, It);
            while Present (It.Typ) loop
               if Covers (Typ, Etype (It.Typ)) then
                  Nam := It.Typ;
                  exit;
               end if;

               Get_Next_Interp (I, It);
            end loop;

            if No (Nam) then
               raise Program_Error;
            end if;
         end if;

         --  If the prefix is not an entity, then resolve it

         if not Is_Entity_Name (Subp) then
            Resolve (Subp, Nam);
         end if;

         --  For an indirect call, we always invalidate checks, since we do not
         --  know whether the subprogram is local or global. Yes we could do
         --  better here, e.g. by knowing that there are no local subprograms,
         --  but it does not seem worth the effort. Similarly, we kill all
         --  knowledge of current constant values.

         Kill_Current_Values;

      --  If this is a procedure call which is really an entry call, do
      --  the conversion of the procedure call to an entry call. Protected
      --  operations use the same circuitry because the name in the call
      --  can be an arbitrary expression with special resolution rules.

      elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
        or else (Is_Entity_Name (Subp)
                  and then Ekind (Entity (Subp)) = E_Entry)
      then
         Resolve_Entry_Call (N, Typ);
         Check_Elab_Call (N);

         --  Kill checks and constant values, as above for indirect case
         --  Who knows what happens when another task is activated?

         Kill_Current_Values;
         return;

      --  Normal subprogram call with name established in Resolve

      elsif not (Is_Type (Entity (Subp))) then
         Nam := Entity (Subp);
         Set_Entity_With_Style_Check (Subp, Nam);

      --  Otherwise we must have the case of an overloaded call

      else
         pragma Assert (Is_Overloaded (Subp));

         --  Initialize Nam to prevent warning (we know it will be assigned
         --  in the loop below, but the compiler does not know that).

         Nam := Empty;

         Get_First_Interp (Subp,  I, It);
         while Present (It.Typ) loop
            if Covers (Typ, It.Typ) then
               Nam := It.Nam;
               Set_Entity_With_Style_Check (Subp, Nam);
               exit;
            end if;

            Get_Next_Interp (I, It);
         end loop;
      end if;

      if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
         and then not Is_Access_Subprogram_Type (Base_Type (Typ))
         and then Nkind (Subp) /= N_Explicit_Dereference
         and then Present (Parameter_Associations (N))
      then
         --  The prefix is a parameterless function call that returns an access
         --  to subprogram. If parameters are present in the current call, add
         --  add an explicit dereference. We use the base type here because
         --  within an instance these may be subtypes.

         --  The dereference is added either in Analyze_Call or here. Should
         --  be consolidated ???

         Set_Is_Overloaded (Subp, False);
         Set_Etype (Subp, Etype (Nam));
         Insert_Explicit_Dereference (Subp);
         Nam := Designated_Type (Etype (Nam));
         Resolve (Subp, Nam);
      end if;

      --  Check that a call to Current_Task does not occur in an entry body

      if Is_RTE (Nam, RE_Current_Task) then
         declare
            P : Node_Id;

         begin
            P := N;
            loop
               P := Parent (P);

               --  Exclude calls that occur within the default of a formal
               --  parameter of the entry, since those are evaluated outside
               --  of the body.

               exit when No (P) or else Nkind (P) = N_Parameter_Specification;

               if Nkind (P) = N_Entry_Body
                 or else (Nkind (P) = N_Subprogram_Body
                           and then Is_Entry_Barrier_Function (P))
               then
                  Rtype := Etype (N);
                  Error_Msg_NE
                    ("?& should not be used in entry body (RM C.7(17))",
                     N, Nam);
                  Error_Msg_NE
                    ("\Program_Error will be raised at run time?", N, Nam);
                  Rewrite (N,
                    Make_Raise_Program_Error (Loc,
                      Reason => PE_Current_Task_In_Entry_Body));
                  Set_Etype (N, Rtype);
                  return;
               end if;
            end loop;
         end;
      end if;

      --  Check that a procedure call does not occur in the context of the
      --  entry call statement of a conditional or timed entry call. Note that
      --  the case of a call to a subprogram renaming of an entry will also be
      --  rejected. The test for N not being an N_Entry_Call_Statement is
      --  defensive, covering the possibility that the processing of entry
      --  calls might reach this point due to later modifications of the code
      --  above.

      if Nkind (Parent (N)) = N_Entry_Call_Alternative
        and then Nkind (N) /= N_Entry_Call_Statement
        and then Entry_Call_Statement (Parent (N)) = N
      then
         if Ada_Version < Ada_05 then
            Error_Msg_N ("entry call required in select statement", N);

         --  Ada 2005 (AI-345): If a procedure_call_statement is used
         --  for a procedure_or_entry_call, the procedure_name or
         --  procedure_prefix of the procedure_call_statement shall denote
         --  an entry renamed by a procedure, or (a view of) a primitive
         --  subprogram of a limited interface whose first parameter is
         --  a controlling parameter.

         elsif Nkind (N) = N_Procedure_Call_Statement
           and then not Is_Renamed_Entry (Nam)
           and then not Is_Controlling_Limited_Procedure (Nam)
         then
            Error_Msg_N
             ("entry call or dispatching primitive of interface required", N);
         end if;
      end if;

      --  Check that this is not a call to a protected procedure or entry from
      --  within a protected function.

      if Ekind (Current_Scope) = E_Function
        and then Ekind (Scope (Current_Scope)) = E_Protected_Type
        and then Ekind (Nam) /= E_Function
        and then Scope (Nam) = Scope (Current_Scope)
      then
         Error_Msg_N ("within protected function, protected " &
           "object is constant", N);
         Error_Msg_N ("\cannot call operation that may modify it", N);
      end if;

      --  Freeze the subprogram name if not in a spec-expression. Note that we
      --  freeze procedure calls as well as function calls. Procedure calls are
      --  not frozen according to the rules (RM 13.14(14)) because it is
      --  impossible to have a procedure call to a non-frozen procedure in pure
      --  Ada, but in the code that we generate in the expander, this rule
      --  needs extending because we can generate procedure calls that need
      --  freezing.

      if Is_Entity_Name (Subp) and then not In_Spec_Expression then
         Freeze_Expression (Subp);
      end if;

      --  For a predefined operator, the type of the result is the type imposed
      --  by context, except for a predefined operation on universal fixed.
      --  Otherwise The type of the call is the type returned by the subprogram
      --  being called.

      if Is_Predefined_Op (Nam) then
         if Etype (N) /= Universal_Fixed then
            Set_Etype (N, Typ);
         end if;

      --  If the subprogram returns an array type, and the context requires the
      --  component type of that array type, the node is really an indexing of
      --  the parameterless call. Resolve as such. A pathological case occurs
      --  when the type of the component is an access to the array type. In
      --  this case the call is truly ambiguous.

      elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
        and then
          ((Is_Array_Type (Etype (Nam))
                   and then Covers (Typ, Component_Type (Etype (Nam))))
             or else (Is_Access_Type (Etype (Nam))
                        and then Is_Array_Type (Designated_Type (Etype (Nam)))
                        and then
                          Covers (Typ,
                            Component_Type (Designated_Type (Etype (Nam))))))
      then
         declare
            Index_Node : Node_Id;
            New_Subp   : Node_Id;
            Ret_Type   : constant Entity_Id := Etype (Nam);

         begin
            if Is_Access_Type (Ret_Type)
              and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
            then
               Error_Msg_N
                 ("cannot disambiguate function call and indexing", N);
            else
               New_Subp := Relocate_Node (Subp);
               Set_Entity (Subp, Nam);

               if (Is_Array_Type (Ret_Type)
                    and then Component_Type (Ret_Type) /= Any_Type)
                 or else
                  (Is_Access_Type (Ret_Type)
                    and then
                      Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
               then
                  if Needs_No_Actuals (Nam) then

                     --  Indexed call to a parameterless function

                     Index_Node :=
                       Make_Indexed_Component (Loc,
                         Prefix =>
                           Make_Function_Call (Loc,
                             Name => New_Subp),
                         Expressions => Parameter_Associations (N));
                  else
                     --  An Ada 2005 prefixed call to a primitive operation
                     --  whose first parameter is the prefix. This prefix was
                     --  prepended to the parameter list, which is actually a
                     --  list of indices. Remove the prefix in order to build
                     --  the proper indexed component.

                     Index_Node :=
                        Make_Indexed_Component (Loc,
                          Prefix =>
                            Make_Function_Call (Loc,
                               Name => New_Subp,
                               Parameter_Associations =>
                                 New_List
                                   (Remove_Head (Parameter_Associations (N)))),
                           Expressions => Parameter_Associations (N));
                  end if;

                  --  Preserve the parenthesis count of the node

                  Set_Paren_Count (Index_Node, Paren_Count (N));

                  --  Since we are correcting a node classification error made
                  --  by the parser, we call Replace rather than Rewrite.

                  Replace (N, Index_Node);

                  Set_Etype (Prefix (N), Ret_Type);
                  Set_Etype (N, Typ);
                  Resolve_Indexed_Component (N, Typ);
                  Check_Elab_Call (Prefix (N));
               end if;
            end if;

            return;
         end;

      else
         Set_Etype (N, Etype (Nam));
      end if;

      --  In the case where the call is to an overloaded subprogram, Analyze
      --  calls Normalize_Actuals once per overloaded subprogram. Therefore in
      --  such a case Normalize_Actuals needs to be called once more to order
      --  the actuals correctly. Otherwise the call will have the ordering
      --  given by the last overloaded subprogram whether this is the correct
      --  one being called or not.

      if Is_Overloaded (Subp) then
         Normalize_Actuals (N, Nam, False, Norm_OK);
         pragma Assert (Norm_OK);
      end if;

      --  In any case, call is fully resolved now. Reset Overload flag, to
      --  prevent subsequent overload resolution if node is analyzed again

      Set_Is_Overloaded (Subp, False);
      Set_Is_Overloaded (N, False);

      --  If we are calling the current subprogram from immediately within its
      --  body, then that is the case where we can sometimes detect cases of
      --  infinite recursion statically. Do not try this in case restriction
      --  No_Recursion is in effect anyway, and do it only for source calls.

      if Comes_From_Source (N) then
         Scop := Current_Scope;

         --  Issue warning for possible infinite recursion in the absence
         --  of the No_Recursion restriction.

         if Same_Or_Aliased_Subprograms (Nam, Scop)
           and then not Restriction_Active (No_Recursion)
           and then Check_Infinite_Recursion (N)
         then
            --  Here we detected and flagged an infinite recursion, so we do
            --  not need to test the case below for further warnings. Also if
            --  we now have a raise SE node, we are all done.

            if Nkind (N) = N_Raise_Storage_Error then
               return;
            end if;

         --  If call is to immediately containing subprogram, then check for
         --  the case of a possible run-time detectable infinite recursion.

         else
            Scope_Loop : while Scop /= Standard_Standard loop
               if Same_Or_Aliased_Subprograms (Nam, Scop) then

                  --  Although in general case, recursion is not statically
                  --  checkable, the case of calling an immediately containing
                  --  subprogram is easy to catch.

                  Check_Restriction (No_Recursion, N);

                  --  If the recursive call is to a parameterless subprogram,
                  --  then even if we can't statically detect infinite
                  --  recursion, this is pretty suspicious, and we output a
                  --  warning. Furthermore, we will try later to detect some
                  --  cases here at run time by expanding checking code (see
                  --  Detect_Infinite_Recursion in package Exp_Ch6).

                  --  If the recursive call is within a handler, do not emit a
                  --  warning, because this is a common idiom: loop until input
                  --  is correct, catch illegal input in handler and restart.

                  if No (First_Formal (Nam))
                    and then Etype (Nam) = Standard_Void_Type
                    and then not Error_Posted (N)
                    and then Nkind (Parent (N)) /= N_Exception_Handler
                  then
                     --  For the case of a procedure call. We give the message
                     --  only if the call is the first statement in a sequence
                     --  of statements, or if all previous statements are
                     --  simple assignments. This is simply a heuristic to
                     --  decrease false positives, without losing too many good
                     --  warnings. The idea is that these previous statements
                     --  may affect global variables the procedure depends on.

                     if Nkind (N) = N_Procedure_Call_Statement
                       and then Is_List_Member (N)
                     then
                        declare
                           P : Node_Id;
                        begin
                           P := Prev (N);
                           while Present (P) loop
                              if Nkind (P) /= N_Assignment_Statement then
                                 exit Scope_Loop;
                              end if;

                              Prev (P);
                           end loop;
                        end;
                     end if;

                     --  Do not give warning if we are in a conditional context

                     declare
                        K : constant Node_Kind := Nkind (Parent (N));
                     begin
                        if (K = N_Loop_Statement
                            and then Present (Iteration_Scheme (Parent (N))))
                          or else K = N_If_Statement
                          or else K = N_Elsif_Part
                          or else K = N_Case_Statement_Alternative
                        then
                           exit Scope_Loop;
                        end if;
                     end;

                     --  Here warning is to be issued

                     Set_Has_Recursive_Call (Nam);
                     Error_Msg_N
                       ("?possible infinite recursion!", N);
                     Error_Msg_N
                       ("\?Storage_Error may be raised at run time!", N);
                  end if;

                  exit Scope_Loop;
               end if;

               Scop := Scope (Scop);
            end loop Scope_Loop;
         end if;
      end if;

      --  If subprogram name is a predefined operator, it was given in
      --  functional notation. Replace call node with operator node, so
      --  that actuals can be resolved appropriately.

      if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
         Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
         return;

      elsif Present (Alias (Nam))
        and then Is_Predefined_Op (Alias (Nam))
      then
         Resolve_Actuals (N, Nam);
         Make_Call_Into_Operator (N, Typ, Alias (Nam));
         return;
      end if;

      --  Create a transient scope if the resulting type requires it

      --  There are several notable exceptions:

      --  a) In init procs, the transient scope overhead is not needed, and is
      --  even incorrect when the call is a nested initialization call for a
      --  component whose expansion may generate adjust calls. However, if the
      --  call is some other procedure call within an initialization procedure
      --  (for example a call to Create_Task in the init_proc of the task
      --  run-time record) a transient scope must be created around this call.

      --  b) Enumeration literal pseudo-calls need no transient scope

      --  c) Intrinsic subprograms (Unchecked_Conversion and source info
      --  functions) do not use the secondary stack even though the return
      --  type may be unconstrained.

      --  d) Calls to a build-in-place function, since such functions may
      --  allocate their result directly in a target object, and cases where
      --  the result does get allocated in the secondary stack are checked for
      --  within the specialized Exp_Ch6 procedures for expanding those
      --  build-in-place calls.

      --  e) If the subprogram is marked Inline_Always, then even if it returns
      --  an unconstrained type the call does not require use of the secondary
      --  stack. However, inlining will only take place if the body to inline
      --  is already present. It may not be available if e.g. the subprogram is
      --  declared in a child instance.

      --  If this is an initialization call for a type whose construction
      --  uses the secondary stack, and it is not a nested call to initialize
      --  a component, we do need to create a transient scope for it. We
      --  check for this by traversing the type in Check_Initialization_Call.

      if Is_Inlined (Nam)
        and then Has_Pragma_Inline_Always (Nam)
        and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
        and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
      then
         null;

      elsif Ekind (Nam) = E_Enumeration_Literal
        or else Is_Build_In_Place_Function (Nam)
        or else Is_Intrinsic_Subprogram (Nam)
      then
         null;

      elsif Expander_Active
        and then Is_Type (Etype (Nam))
        and then Requires_Transient_Scope (Etype (Nam))
        and then
          (not Within_Init_Proc
            or else
              (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
      then
         Establish_Transient_Scope (N, Sec_Stack => True);

         --  If the call appears within the bounds of a loop, it will
         --  be rewritten and reanalyzed, nothing left to do here.

         if Nkind (N) /= N_Function_Call then
            return;
         end if;

      elsif Is_Init_Proc (Nam)
        and then not Within_Init_Proc
      then
         Check_Initialization_Call (N, Nam);
      end if;

      --  A protected function cannot be called within the definition of the
      --  enclosing protected type.

      if Is_Protected_Type (Scope (Nam))
        and then In_Open_Scopes (Scope (Nam))
        and then not Has_Completion (Scope (Nam))
      then
         Error_Msg_NE
           ("& cannot be called before end of protected definition", N, Nam);
      end if;

      --  Propagate interpretation to actuals, and add default expressions
      --  where needed.

      if Present (First_Formal (Nam)) then
         Resolve_Actuals (N, Nam);

      --  Overloaded literals are rewritten as function calls, for purpose of
      --  resolution. After resolution, we can replace the call with the
      --  literal itself.

      elsif Ekind (Nam) = E_Enumeration_Literal then
         Copy_Node (Subp, N);
         Resolve_Entity_Name (N, Typ);

         --  Avoid validation, since it is a static function call

         Generate_Reference (Nam, Subp);
         return;
      end if;

      --  If the subprogram is not global, then kill all saved values and
      --  checks. This is a bit conservative, since in many cases we could do
      --  better, but it is not worth the effort. Similarly, we kill constant
      --  values. However we do not need to do this for internal entities
      --  (unless they are inherited user-defined subprograms), since they
      --  are not in the business of molesting local values.

      --  If the flag Suppress_Value_Tracking_On_Calls is set, then we also
      --  kill all checks and values for calls to global subprograms. This
      --  takes care of the case where an access to a local subprogram is
      --  taken, and could be passed directly or indirectly and then called
      --  from almost any context.

      --  Note: we do not do this step till after resolving the actuals. That
      --  way we still take advantage of the current value information while
      --  scanning the actuals.

      --  We suppress killing values if we are processing the nodes associated
      --  with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
      --  type kills all the values as part of analyzing the code that
      --  initializes the dispatch tables.

      if Inside_Freezing_Actions = 0
        and then (not Is_Library_Level_Entity (Nam)
                   or else Suppress_Value_Tracking_On_Call
                             (Nearest_Dynamic_Scope (Current_Scope)))
        and then (Comes_From_Source (Nam)
                   or else (Present (Alias (Nam))
                             and then Comes_From_Source (Alias (Nam))))
      then
         Kill_Current_Values;
      end if;

      --  If we are warning about unread OUT parameters, this is the place to
      --  set Last_Assignment for OUT and IN OUT parameters. We have to do this
      --  after the above call to Kill_Current_Values (since that call clears
      --  the Last_Assignment field of all local variables).

      if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
        and then Comes_From_Source (N)
        and then In_Extended_Main_Source_Unit (N)
      then
         declare
            F : Entity_Id;
            A : Node_Id;

         begin
            F := First_Formal (Nam);
            A := First_Actual (N);
            while Present (F) and then Present (A) loop
               if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
                 and then Warn_On_Modified_As_Out_Parameter (F)
                 and then Is_Entity_Name (A)
                 and then Present (Entity (A))
                 and then Comes_From_Source (N)
                 and then Safe_To_Capture_Value (N, Entity (A))
               then
                  Set_Last_Assignment (Entity (A), A);
               end if;

               Next_Formal (F);
               Next_Actual (A);
            end loop;
         end;
      end if;

      --  If the subprogram is a primitive operation, check whether or not
      --  it is a correct dispatching call.

      if Is_Overloadable (Nam)
        and then Is_Dispatching_Operation (Nam)
      then
         Check_Dispatching_Call (N);

      elsif Ekind (Nam) /= E_Subprogram_Type
        and then Is_Abstract_Subprogram (Nam)
        and then not In_Instance
      then
         Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
      end if;

      --  If this is a dispatching call, generate the appropriate reference,
      --  for better source navigation in GPS.

      if Is_Overloadable (Nam)
        and then Present (Controlling_Argument (N))
      then
         Generate_Reference (Nam, Subp, 'R');

      --  Normal case, not a dispatching call

      else
         Generate_Reference (Nam, Subp);
      end if;

      if Is_Intrinsic_Subprogram (Nam) then
         Check_Intrinsic_Call (N);
      end if;

      --  Check for violation of restriction No_Specific_Termination_Handlers
      --  and warn on a potentially blocking call to Abort_Task.

      if Is_RTE (Nam, RE_Set_Specific_Handler)
           or else
         Is_RTE (Nam, RE_Specific_Handler)
      then
         Check_Restriction (No_Specific_Termination_Handlers, N);

      elsif Is_RTE (Nam, RE_Abort_Task) then
         Check_Potentially_Blocking_Operation (N);
      end if;

      --  Issue an error for a call to an eliminated subprogram. We skip this
      --  in a spec expression, e.g. a call in a default parameter value, since
      --  we are not really doing a call at this time. That's important because
      --  the spec expression may itself belong to an eliminated subprogram.

      if not In_Spec_Expression then
         Check_For_Eliminated_Subprogram (Subp, Nam);
      end if;

      --  All done, evaluate call and deal with elaboration issues

      Eval_Call (N);
      Check_Elab_Call (N);
      Warn_On_Overlapping_Actuals (Nam, N);
   end Resolve_Call;

   -----------------------------
   -- Resolve_Case_Expression --
   -----------------------------

   procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
      Alt : Node_Id;

   begin
      Alt := First (Alternatives (N));
      while Present (Alt) loop
         Resolve (Expression (Alt), Typ);
         Next (Alt);
      end loop;

      Set_Etype (N, Typ);
      Eval_Case_Expression (N);
   end Resolve_Case_Expression;

   -------------------------------
   -- Resolve_Character_Literal --
   -------------------------------

   procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
      B_Typ : constant Entity_Id := Base_Type (Typ);
      C     : Entity_Id;

   begin
      --  Verify that the character does belong to the type of the context

      Set_Etype (N, B_Typ);
      Eval_Character_Literal (N);

      --  Wide_Wide_Character literals must always be defined, since the set
      --  of wide wide character literals is complete, i.e. if a character
      --  literal is accepted by the parser, then it is OK for wide wide
      --  character (out of range character literals are rejected).

      if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
         return;

      --  Always accept character literal for type Any_Character, which
      --  occurs in error situations and in comparisons of literals, both
      --  of which should accept all literals.

      elsif B_Typ = Any_Character then
         return;

      --  For Standard.Character or a type derived from it, check that
      --  the literal is in range

      elsif Root_Type (B_Typ) = Standard_Character then
         if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
            return;
         end if;

      --  For Standard.Wide_Character or a type derived from it, check
      --  that the literal is in range

      elsif Root_Type (B_Typ) = Standard_Wide_Character then
         if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
            return;
         end if;

      --  For Standard.Wide_Wide_Character or a type derived from it, we
      --  know the literal is in range, since the parser checked!

      elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
         return;

      --  If the entity is already set, this has already been resolved in a
      --  generic context, or comes from expansion. Nothing else to do.

      elsif Present (Entity (N)) then
         return;

      --  Otherwise we have a user defined character type, and we can use the
      --  standard visibility mechanisms to locate the referenced entity.

      else
         C := Current_Entity (N);
         while Present (C) loop
            if Etype (C) = B_Typ then
               Set_Entity_With_Style_Check (N, C);
               Generate_Reference (C, N);
               return;
            end if;

            C := Homonym (C);
         end loop;
      end if;

      --  If we fall through, then the literal does not match any of the
      --  entries of the enumeration type. This isn't just a constraint
      --  error situation, it is an illegality (see RM 4.2).

      Error_Msg_NE
        ("character not defined for }", N, First_Subtype (B_Typ));
   end Resolve_Character_Literal;

   ---------------------------
   -- Resolve_Comparison_Op --
   ---------------------------

   --  Context requires a boolean type, and plays no role in resolution.
   --  Processing identical to that for equality operators. The result
   --  type is the base type, which matters when pathological subtypes of
   --  booleans with limited ranges are used.

   procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
      L : constant Node_Id := Left_Opnd (N);
      R : constant Node_Id := Right_Opnd (N);
      T : Entity_Id;

   begin
      --  If this is an intrinsic operation which is not predefined, use the
      --  types of its declared arguments to resolve the possibly overloaded
      --  operands. Otherwise the operands are unambiguous and specify the
      --  expected type.

      if Scope (Entity (N)) /= Standard_Standard then
         T := Etype (First_Entity (Entity (N)));

      else
         T := Find_Unique_Type (L, R);

         if T = Any_Fixed then
            T := Unique_Fixed_Point_Type (L);
         end if;
      end if;

      Set_Etype (N, Base_Type (Typ));
      Generate_Reference (T, N, ' ');

      if T /= Any_Type then
         if T = Any_String    or else
            T = Any_Composite or else
            T = Any_Character
         then
            if T = Any_Character then
               Ambiguous_Character (L);
            else
               Error_Msg_N ("ambiguous operands for comparison", N);
            end if;

            Set_Etype (N, Any_Type);
            return;

         else
            Resolve (L, T);
            Resolve (R, T);
            Check_Unset_Reference (L);
            Check_Unset_Reference (R);
            Generate_Operator_Reference (N, T);
            Check_Low_Bound_Tested (N);
            Eval_Relational_Op (N);
         end if;
      end if;
   end Resolve_Comparison_Op;

   ------------------------------------
   -- Resolve_Conditional_Expression --
   ------------------------------------

   procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
      Condition : constant Node_Id := First (Expressions (N));
      Then_Expr : constant Node_Id := Next (Condition);
      Else_Expr : Node_Id := Next (Then_Expr);

   begin
      Resolve (Condition, Any_Boolean);
      Resolve (Then_Expr, Typ);

      --  If ELSE expression present, just resolve using the determined type

      if Present (Else_Expr) then
         Resolve (Else_Expr, Typ);

      --  If no ELSE expression is present, root type must be Standard.Boolean
      --  and we provide a Standard.True result converted to the appropriate
      --  Boolean type (in case it is a derived boolean type).

      elsif Root_Type (Typ) = Standard_Boolean then
         Else_Expr :=
           Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
         Analyze_And_Resolve (Else_Expr, Typ);
         Append_To (Expressions (N), Else_Expr);

      else
         Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
         Append_To (Expressions (N), Error);
      end if;

      Set_Etype (N, Typ);
      Eval_Conditional_Expression (N);
   end Resolve_Conditional_Expression;

   -----------------------------------------
   -- Resolve_Discrete_Subtype_Indication --
   -----------------------------------------

   procedure Resolve_Discrete_Subtype_Indication
     (N   : Node_Id;
      Typ : Entity_Id)
   is
      R : Node_Id;
      S : Entity_Id;

   begin
      Analyze (Subtype_Mark (N));
      S := Entity (Subtype_Mark (N));

      if Nkind (Constraint (N)) /= N_Range_Constraint then
         Error_Msg_N ("expect range constraint for discrete type", N);
         Set_Etype (N, Any_Type);

      else
         R := Range_Expression (Constraint (N));

         if R = Error then
            return;
         end if;

         Analyze (R);

         if Base_Type (S) /= Base_Type (Typ) then
            Error_Msg_NE
              ("expect subtype of }", N, First_Subtype (Typ));

            --  Rewrite the constraint as a range of Typ
            --  to allow compilation to proceed further.

            Set_Etype (N, Typ);
            Rewrite (Low_Bound (R),
              Make_Attribute_Reference (Sloc (Low_Bound (R)),
                Prefix =>         New_Occurrence_Of (Typ, Sloc (R)),
                Attribute_Name => Name_First));
            Rewrite (High_Bound (R),
              Make_Attribute_Reference (Sloc (High_Bound (R)),
                Prefix =>         New_Occurrence_Of (Typ, Sloc (R)),
                Attribute_Name => Name_First));

         else
            Resolve (R, Typ);
            Set_Etype (N, Etype (R));

            --  Additionally, we must check that the bounds are compatible
            --  with the given subtype, which might be different from the
            --  type of the context.

            Apply_Range_Check (R, S);

            --  ??? If the above check statically detects a Constraint_Error
            --  it replaces the offending bound(s) of the range R with a
            --  Constraint_Error node. When the itype which uses these bounds
            --  is frozen the resulting call to Duplicate_Subexpr generates
            --  a new temporary for the bounds.

            --  Unfortunately there are other itypes that are also made depend
            --  on these bounds, so when Duplicate_Subexpr is called they get
            --  a forward reference to the newly created temporaries and Gigi
            --  aborts on such forward references. This is probably sign of a
            --  more fundamental problem somewhere else in either the order of
            --  itype freezing or the way certain itypes are constructed.

            --  To get around this problem we call Remove_Side_Effects right
            --  away if either bounds of R are a Constraint_Error.

            declare
               L : constant Node_Id := Low_Bound (R);
               H : constant Node_Id := High_Bound (R);

            begin
               if Nkind (L) = N_Raise_Constraint_Error then
                  Remove_Side_Effects (L);
               end if;

               if Nkind (H) = N_Raise_Constraint_Error then
                  Remove_Side_Effects (H);
               end if;
            end;

            Check_Unset_Reference (Low_Bound  (R));
            Check_Unset_Reference (High_Bound (R));
         end if;
      end if;
   end Resolve_Discrete_Subtype_Indication;

   -------------------------
   -- Resolve_Entity_Name --
   -------------------------

   --  Used to resolve identifiers and expanded names

   procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
      E : constant Entity_Id := Entity (N);

   begin
      --  If garbage from errors, set to Any_Type and return

      if No (E) and then Total_Errors_Detected /= 0 then
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  Replace named numbers by corresponding literals. Note that this is
      --  the one case where Resolve_Entity_Name must reset the Etype, since
      --  it is currently marked as universal.

      if Ekind (E) = E_Named_Integer then
         Set_Etype (N, Typ);
         Eval_Named_Integer (N);

      elsif Ekind (E) = E_Named_Real then
         Set_Etype (N, Typ);
         Eval_Named_Real (N);

      --  For enumeration literals, we need to make sure that a proper style
      --  check is done, since such literals are overloaded, and thus we did
      --  not do a style check during the first phase of analysis.

      elsif Ekind (E) = E_Enumeration_Literal then
         Set_Entity_With_Style_Check (N, E);
         Eval_Entity_Name (N);

      --  Allow use of subtype only if it is a concurrent type where we are
      --  currently inside the body. This will eventually be expanded into a
      --  call to Self (for tasks) or _object (for protected objects). Any
      --  other use of a subtype is invalid.

      elsif Is_Type (E) then
         if Is_Concurrent_Type (E)
           and then In_Open_Scopes (E)
         then
            null;
         else
            Error_Msg_N
               ("invalid use of subtype mark in expression or call", N);
         end if;

      --  Check discriminant use if entity is discriminant in current scope,
      --  i.e. discriminant of record or concurrent type currently being
      --  analyzed. Uses in corresponding body are unrestricted.

      elsif Ekind (E) = E_Discriminant
        and then Scope (E) = Current_Scope
        and then not Has_Completion (Current_Scope)
      then
         Check_Discriminant_Use (N);

      --  A parameterless generic function cannot appear in a context that
      --  requires resolution.

      elsif Ekind (E) = E_Generic_Function then
         Error_Msg_N ("illegal use of generic function", N);

      elsif Ekind (E) = E_Out_Parameter
        and then Ada_Version = Ada_83
        and then (Nkind (Parent (N)) in N_Op
                    or else (Nkind (Parent (N)) = N_Assignment_Statement
                              and then N = Expression (Parent (N)))
                    or else Nkind (Parent (N)) = N_Explicit_Dereference)
      then
         Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);

      --  In all other cases, just do the possible static evaluation

      else
         --  A deferred constant that appears in an expression must have a
         --  completion, unless it has been removed by in-place expansion of
         --  an aggregate.

         if Ekind (E) = E_Constant
           and then Comes_From_Source (E)
           and then No (Constant_Value (E))
           and then Is_Frozen (Etype (E))
           and then not In_Spec_Expression
           and then not Is_Imported (E)
         then
            if No_Initialization (Parent (E))
              or else (Present (Full_View (E))
                        and then No_Initialization (Parent (Full_View (E))))
            then
               null;
            else
               Error_Msg_N (
                 "deferred constant is frozen before completion", N);
            end if;
         end if;

         Eval_Entity_Name (N);
      end if;
   end Resolve_Entity_Name;

   -------------------
   -- Resolve_Entry --
   -------------------

   procedure Resolve_Entry (Entry_Name : Node_Id) is
      Loc    : constant Source_Ptr := Sloc (Entry_Name);
      Nam    : Entity_Id;
      New_N  : Node_Id;
      S      : Entity_Id;
      Tsk    : Entity_Id;
      E_Name : Node_Id;
      Index  : Node_Id;

      function Actual_Index_Type (E : Entity_Id) return Entity_Id;
      --  If the bounds of the entry family being called depend on task
      --  discriminants, build a new index subtype where a discriminant is
      --  replaced with the value of the discriminant of the target task.
      --  The target task is the prefix of the entry name in the call.

      -----------------------
      -- Actual_Index_Type --
      -----------------------

      function Actual_Index_Type (E : Entity_Id) return Entity_Id is
         Typ   : constant Entity_Id := Entry_Index_Type (E);
         Tsk   : constant Entity_Id := Scope (E);
         Lo    : constant Node_Id   := Type_Low_Bound  (Typ);
         Hi    : constant Node_Id   := Type_High_Bound (Typ);
         New_T : Entity_Id;

         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
         --  If the bound is given by a discriminant, replace with a reference
         --  to the discriminant of the same name in the target task. If the
         --  entry name is the target of a requeue statement and the entry is
         --  in the current protected object, the bound to be used is the
         --  discriminal of the object (see Apply_Range_Checks for details of
         --  the transformation).

         -----------------------------
         -- Actual_Discriminant_Ref --
         -----------------------------

         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
            Typ : constant Entity_Id := Etype (Bound);
            Ref : Node_Id;

         begin
            Remove_Side_Effects (Bound);

            if not Is_Entity_Name (Bound)
              or else Ekind (Entity (Bound)) /= E_Discriminant
            then
               return Bound;

            elsif Is_Protected_Type (Tsk)
              and then In_Open_Scopes (Tsk)
              and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
            then
               --  Note: here Bound denotes a discriminant of the corresponding
               --  record type tskV, whose discriminal is a formal of the
               --  init-proc tskVIP. What we want is the body discriminal,
               --  which is associated to the discriminant of the original
               --  concurrent type tsk.

               return New_Occurrence_Of
                        (Find_Body_Discriminal (Entity (Bound)), Loc);

            else
               Ref :=
                 Make_Selected_Component (Loc,
                   Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
                   Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
               Analyze (Ref);
               Resolve (Ref, Typ);
               return Ref;
            end if;
         end Actual_Discriminant_Ref;

      --  Start of processing for Actual_Index_Type

      begin
         if not Has_Discriminants (Tsk)
           or else (not Is_Entity_Name (Lo)
                     and then
                    not Is_Entity_Name (Hi))
         then
            return Entry_Index_Type (E);

         else
            New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
            Set_Etype        (New_T, Base_Type (Typ));
            Set_Size_Info    (New_T, Typ);
            Set_RM_Size      (New_T, RM_Size (Typ));
            Set_Scalar_Range (New_T,
              Make_Range (Sloc (Entry_Name),
                Low_Bound  => Actual_Discriminant_Ref (Lo),
                High_Bound => Actual_Discriminant_Ref (Hi)));

            return New_T;
         end if;
      end Actual_Index_Type;

   --  Start of processing of Resolve_Entry

   begin
      --  Find name of entry being called, and resolve prefix of name
      --  with its own type. The prefix can be overloaded, and the name
      --  and signature of the entry must be taken into account.

      if Nkind (Entry_Name) = N_Indexed_Component then

         --  Case of dealing with entry family within the current tasks

         E_Name := Prefix (Entry_Name);

      else
         E_Name := Entry_Name;
      end if;

      if Is_Entity_Name (E_Name) then

         --  Entry call to an entry (or entry family) in the current task. This
         --  is legal even though the task will deadlock. Rewrite as call to
         --  current task.

         --  This can also be a call to an entry in an enclosing task. If this
         --  is a single task, we have to retrieve its name, because the scope
         --  of the entry is the task type, not the object. If the enclosing
         --  task is a task type, the identity of the task is given by its own
         --  self variable.

         --  Finally this can be a requeue on an entry of the same task or
         --  protected object.

         S := Scope (Entity (E_Name));

         for J in reverse 0 .. Scope_Stack.Last loop
            if Is_Task_Type (Scope_Stack.Table (J).Entity)
              and then not Comes_From_Source (S)
            then
               --  S is an enclosing task or protected object. The concurrent
               --  declaration has been converted into a type declaration, and
               --  the object itself has an object declaration that follows
               --  the type in the same declarative part.

               Tsk := Next_Entity (S);
               while Etype (Tsk) /= S loop
                  Next_Entity (Tsk);
               end loop;

               S := Tsk;
               exit;

            elsif S = Scope_Stack.Table (J).Entity then

               --  Call to current task. Will be transformed into call to Self

               exit;

            end if;
         end loop;

         New_N :=
           Make_Selected_Component (Loc,
             Prefix => New_Occurrence_Of (S, Loc),
             Selector_Name =>
               New_Occurrence_Of (Entity (E_Name), Loc));
         Rewrite (E_Name, New_N);
         Analyze (E_Name);

      elsif Nkind (Entry_Name) = N_Selected_Component
        and then Is_Overloaded (Prefix (Entry_Name))
      then
         --  Use the entry name (which must be unique at this point) to find
         --  the prefix that returns the corresponding task type or protected
         --  type.

         declare
            Pref : constant Node_Id := Prefix (Entry_Name);
            Ent  : constant Entity_Id :=  Entity (Selector_Name (Entry_Name));
            I    : Interp_Index;
            It   : Interp;

         begin
            Get_First_Interp (Pref, I, It);
            while Present (It.Typ) loop
               if Scope (Ent) = It.Typ then
                  Set_Etype (Pref, It.Typ);
                  exit;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;
      end if;

      if Nkind (Entry_Name) = N_Selected_Component then
         Resolve (Prefix (Entry_Name));

      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
         Resolve (Prefix (Prefix (Entry_Name)));
         Index :=  First (Expressions (Entry_Name));
         Resolve (Index, Entry_Index_Type (Nam));

         --  Up to this point the expression could have been the actual in a
         --  simple entry call, and be given by a named association.

         if Nkind (Index) = N_Parameter_Association then
            Error_Msg_N ("expect expression for entry index", Index);
         else
            Apply_Range_Check (Index, Actual_Index_Type (Nam));
         end if;
      end if;
   end Resolve_Entry;

   ------------------------
   -- Resolve_Entry_Call --
   ------------------------

   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
      Entry_Name  : constant Node_Id    := Name (N);
      Loc         : constant Source_Ptr := Sloc (Entry_Name);
      Actuals     : List_Id;
      First_Named : Node_Id;
      Nam         : Entity_Id;
      Norm_OK     : Boolean;
      Obj         : Node_Id;
      Was_Over    : Boolean;

   begin
      --  We kill all checks here, because it does not seem worth the effort to
      --  do anything better, an entry call is a big operation.

      Kill_All_Checks;

      --  Processing of the name is similar for entry calls and protected
      --  operation calls. Once the entity is determined, we can complete
      --  the resolution of the actuals.

      --  The selector may be overloaded, in the case of a protected object
      --  with overloaded functions. The type of the context is used for
      --  resolution.

      if Nkind (Entry_Name) = N_Selected_Component
        and then Is_Overloaded (Selector_Name (Entry_Name))
        and then Typ /= Standard_Void_Type
      then
         declare
            I  : Interp_Index;
            It : Interp;

         begin
            Get_First_Interp (Selector_Name (Entry_Name), I, It);
            while Present (It.Typ) loop
               if Covers (Typ, It.Typ) then
                  Set_Entity (Selector_Name (Entry_Name), It.Nam);
                  Set_Etype  (Entry_Name, It.Typ);

                  Generate_Reference (It.Typ, N, ' ');
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;
      end if;

      Resolve_Entry (Entry_Name);

      if Nkind (Entry_Name) = N_Selected_Component then

         --  Simple entry call

         Nam := Entity (Selector_Name (Entry_Name));
         Obj := Prefix (Entry_Name);
         Was_Over := Is_Overloaded (Selector_Name (Entry_Name));

      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);

         --  Call to member of entry family

         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
         Obj := Prefix (Prefix (Entry_Name));
         Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
      end if;

      --  We cannot in general check the maximum depth of protected entry
      --  calls at compile time. But we can tell that any protected entry
      --  call at all violates a specified nesting depth of zero.

      if Is_Protected_Type (Scope (Nam)) then
         Check_Restriction (Max_Entry_Queue_Length, N);
      end if;

      --  Use context type to disambiguate a protected function that can be
      --  called without actuals and that returns an array type, and where
      --  the argument list may be an indexing of the returned value.

      if Ekind (Nam) = E_Function
        and then Needs_No_Actuals (Nam)
        and then Present (Parameter_Associations (N))
        and then
          ((Is_Array_Type (Etype (Nam))
             and then Covers (Typ, Component_Type (Etype (Nam))))

            or else (Is_Access_Type (Etype (Nam))
                      and then Is_Array_Type (Designated_Type (Etype (Nam)))
                      and then Covers (Typ,
                        Component_Type (Designated_Type (Etype (Nam))))))
      then
         declare
            Index_Node : Node_Id;

         begin
            Index_Node :=
              Make_Indexed_Component (Loc,
                Prefix =>
                  Make_Function_Call (Loc,
                    Name => Relocate_Node (Entry_Name)),
                Expressions => Parameter_Associations (N));

            --  Since we are correcting a node classification error made by
            --  the parser, we call Replace rather than Rewrite.

            Replace (N, Index_Node);
            Set_Etype (Prefix (N), Etype (Nam));
            Set_Etype (N, Typ);
            Resolve_Indexed_Component (N, Typ);
            return;
         end;
      end if;

      --  The operation name may have been overloaded. Order the actuals
      --  according to the formals of the resolved entity, and set the
      --  return type to that of the operation.

      if Was_Over then
         Normalize_Actuals (N, Nam, False, Norm_OK);
         pragma Assert (Norm_OK);
         Set_Etype (N, Etype (Nam));
      end if;

      Resolve_Actuals (N, Nam);
      Generate_Reference (Nam, Entry_Name);

      if Ekind_In (Nam, E_Entry, E_Entry_Family) then
         Check_Potentially_Blocking_Operation (N);
      end if;

      --  Verify that a procedure call cannot masquerade as an entry
      --  call where an entry call is expected.

      if Ekind (Nam) = E_Procedure then
         if Nkind (Parent (N)) = N_Entry_Call_Alternative
           and then N = Entry_Call_Statement (Parent (N))
         then
            Error_Msg_N ("entry call required in select statement", N);

         elsif Nkind (Parent (N)) = N_Triggering_Alternative
           and then N = Triggering_Statement (Parent (N))
         then
            Error_Msg_N ("triggering statement cannot be procedure call", N);

         elsif Ekind (Scope (Nam)) = E_Task_Type
           and then not In_Open_Scopes (Scope (Nam))
         then
            Error_Msg_N ("task has no entry with this name", Entry_Name);
         end if;
      end if;

      --  After resolution, entry calls and protected procedure calls are
      --  changed into entry calls, for expansion. The structure of the node
      --  does not change, so it can safely be done in place. Protected
      --  function calls must keep their structure because they are
      --  subexpressions.

      if Ekind (Nam) /= E_Function then

         --  A protected operation that is not a function may modify the
         --  corresponding object, and cannot apply to a constant. If this
         --  is an internal call, the prefix is the type itself.

         if Is_Protected_Type (Scope (Nam))
           and then not Is_Variable (Obj)
           and then (not Is_Entity_Name (Obj)
                       or else not Is_Type (Entity (Obj)))
         then
            Error_Msg_N
              ("prefix of protected procedure or entry call must be variable",
               Entry_Name);
         end if;

         Actuals := Parameter_Associations (N);
         First_Named := First_Named_Actual (N);

         Rewrite (N,
           Make_Entry_Call_Statement (Loc,
             Name                   => Entry_Name,
             Parameter_Associations => Actuals));

         Set_First_Named_Actual (N, First_Named);
         Set_Analyzed (N, True);

      --  Protected functions can return on the secondary stack, in which
      --  case we must trigger the transient scope mechanism.

      elsif Expander_Active
        and then Requires_Transient_Scope (Etype (Nam))
      then
         Establish_Transient_Scope (N, Sec_Stack => True);
      end if;
   end Resolve_Entry_Call;

   -------------------------
   -- Resolve_Equality_Op --
   -------------------------

   --  Both arguments must have the same type, and the boolean context does
   --  not participate in the resolution. The first pass verifies that the
   --  interpretation is not ambiguous, and the type of the left argument is
   --  correctly set, or is Any_Type in case of ambiguity. If both arguments
   --  are strings or aggregates, allocators, or Null, they are ambiguous even
   --  though they carry a single (universal) type. Diagnose this case here.

   procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
      L : constant Node_Id   := Left_Opnd (N);
      R : constant Node_Id   := Right_Opnd (N);
      T : Entity_Id := Find_Unique_Type (L, R);

      function Find_Unique_Access_Type return Entity_Id;
      --  In the case of allocators, make a last-ditch attempt to find a single
      --  access type with the right designated type. This is semantically
      --  dubious, and of no interest to any real code, but c48008a makes it
      --  all worthwhile.

      -----------------------------
      -- Find_Unique_Access_Type --
      -----------------------------

      function Find_Unique_Access_Type return Entity_Id is
         Acc : Entity_Id;
         E   : Entity_Id;
         S   : Entity_Id;

      begin
         if Ekind (Etype (R)) =  E_Allocator_Type then
            Acc := Designated_Type (Etype (R));
         elsif Ekind (Etype (L)) =  E_Allocator_Type then
            Acc := Designated_Type (Etype (L));
         else
            return Empty;
         end if;

         S := Current_Scope;
         while S /= Standard_Standard loop
            E := First_Entity (S);
            while Present (E) loop
               if Is_Type (E)
                 and then Is_Access_Type (E)
                 and then Ekind (E) /= E_Allocator_Type
                 and then Designated_Type (E) = Base_Type (Acc)
               then
                  return E;
               end if;

               Next_Entity (E);
            end loop;

            S := Scope (S);
         end loop;

         return Empty;
      end Find_Unique_Access_Type;

   --  Start of processing for Resolve_Equality_Op

   begin
      Set_Etype (N, Base_Type (Typ));
      Generate_Reference (T, N, ' ');

      if T = Any_Fixed then
         T := Unique_Fixed_Point_Type (L);
      end if;

      if T /= Any_Type then
         if T = Any_String
           or else T = Any_Composite
           or else T = Any_Character
         then
            if T = Any_Character then
               Ambiguous_Character (L);
            else
               Error_Msg_N ("ambiguous operands for equality", N);
            end if;

            Set_Etype (N, Any_Type);
            return;

         elsif T = Any_Access
           or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
         then
            T := Find_Unique_Access_Type;

            if No (T) then
               Error_Msg_N ("ambiguous operands for equality", N);
               Set_Etype (N, Any_Type);
               return;
            end if;
         end if;

         Resolve (L, T);
         Resolve (R, T);

         --  If the unique type is a class-wide type then it will be expanded
         --  into a dispatching call to the predefined primitive. Therefore we
         --  check here for potential violation of such restriction.

         if Is_Class_Wide_Type (T) then
            Check_Restriction (No_Dispatching_Calls, N);
         end if;

         if Warn_On_Redundant_Constructs
           and then Comes_From_Source (N)
           and then Is_Entity_Name (R)
           and then Entity (R) = Standard_True
           and then Comes_From_Source (R)
         then
            Error_Msg_N -- CODEFIX
              ("?comparison with True is redundant!", R);
         end if;

         Check_Unset_Reference (L);
         Check_Unset_Reference (R);
         Generate_Operator_Reference (N, T);
         Check_Low_Bound_Tested (N);

         --  If this is an inequality, it may be the implicit inequality
         --  created for a user-defined operation, in which case the corres-
         --  ponding equality operation is not intrinsic, and the operation
         --  cannot be constant-folded. Else fold.

         if Nkind (N) = N_Op_Eq
           or else Comes_From_Source (Entity (N))
           or else Ekind (Entity (N)) = E_Operator
           or else Is_Intrinsic_Subprogram
             (Corresponding_Equality (Entity (N)))
         then
            Eval_Relational_Op (N);

         elsif Nkind (N) = N_Op_Ne
           and then Is_Abstract_Subprogram (Entity (N))
         then
            Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
         end if;

         --  Ada 2005: If one operand is an anonymous access type, convert the
         --  other operand to it, to ensure that the underlying types match in
         --  the back-end. Same for access_to_subprogram, and the conversion
         --  verifies that the types are subtype conformant.

         --  We apply the same conversion in the case one of the operands is a
         --  private subtype of the type of the other.

         --  Why the Expander_Active test here ???

         if Expander_Active
           and then
             (Ekind_In (T, E_Anonymous_Access_Type,
                           E_Anonymous_Access_Subprogram_Type)
               or else Is_Private_Type (T))
         then
            if Etype (L) /= T then
               Rewrite (L,
                 Make_Unchecked_Type_Conversion (Sloc (L),
                   Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
                   Expression   => Relocate_Node (L)));
               Analyze_And_Resolve (L, T);
            end if;

            if (Etype (R)) /= T then
               Rewrite (R,
                  Make_Unchecked_Type_Conversion (Sloc (R),
                    Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
                    Expression   => Relocate_Node (R)));
               Analyze_And_Resolve (R, T);
            end if;
         end if;
      end if;
   end Resolve_Equality_Op;

   ----------------------------------
   -- Resolve_Explicit_Dereference --
   ----------------------------------

   procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
      Loc   : constant Source_Ptr := Sloc (N);
      New_N : Node_Id;
      P     : constant Node_Id := Prefix (N);
      I     : Interp_Index;
      It    : Interp;

   begin
      Check_Fully_Declared_Prefix (Typ, P);

      if Is_Overloaded (P) then

         --  Use the context type to select the prefix that has the correct
         --  designated type.

         Get_First_Interp (P, I, It);
         while Present (It.Typ) loop
            exit when Is_Access_Type (It.Typ)
              and then Covers (Typ, Designated_Type (It.Typ));
            Get_Next_Interp (I, It);
         end loop;

         if Present (It.Typ) then
            Resolve (P, It.Typ);
         else
            --  If no interpretation covers the designated type of the prefix,
            --  this is the pathological case where not all implementations of
            --  the prefix allow the interpretation of the node as a call. Now
            --  that the expected type is known, Remove other interpretations
            --  from prefix, rewrite it as a call, and resolve again, so that
            --  the proper call node is generated.

            Get_First_Interp (P, I, It);
            while Present (It.Typ) loop
               if Ekind (It.Typ) /= E_Access_Subprogram_Type then
                  Remove_Interp (I);
               end if;

               Get_Next_Interp (I, It);
            end loop;

            New_N :=
              Make_Function_Call (Loc,
                Name =>
                  Make_Explicit_Dereference (Loc,
                    Prefix => P),
                Parameter_Associations => New_List);

            Save_Interps (N, New_N);
            Rewrite (N, New_N);
            Analyze_And_Resolve (N, Typ);
            return;
         end if;

         Set_Etype (N, Designated_Type (It.Typ));

      else
         Resolve (P);
      end if;

      if Is_Access_Type (Etype (P)) then
         Apply_Access_Check (N);
      end if;

      --  If the designated type is a packed unconstrained array type, and the
      --  explicit dereference is not in the context of an attribute reference,
      --  then we must compute and set the actual subtype, since it is needed
      --  by Gigi. The reason we exclude the attribute case is that this is
      --  handled fine by Gigi, and in fact we use such attributes to build the
      --  actual subtype. We also exclude generated code (which builds actual
      --  subtypes directly if they are needed).

      if Is_Array_Type (Etype (N))
        and then Is_Packed (Etype (N))
        and then not Is_Constrained (Etype (N))
        and then Nkind (Parent (N)) /= N_Attribute_Reference
        and then Comes_From_Source (N)
      then
         Set_Etype (N, Get_Actual_Subtype (N));
      end if;

      --  Note: No Eval processing is required for an explicit dereference,
      --  because such a name can never be static.

   end Resolve_Explicit_Dereference;

   -------------------------------------
   -- Resolve_Expression_With_Actions --
   -------------------------------------

   procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
   begin
      Set_Etype (N, Typ);
   end Resolve_Expression_With_Actions;

   -------------------------------
   -- Resolve_Indexed_Component --
   -------------------------------

   procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
      Name       : constant Node_Id := Prefix  (N);
      Expr       : Node_Id;
      Array_Type : Entity_Id := Empty; -- to prevent junk warning
      Index      : Node_Id;

   begin
      if Is_Overloaded (Name) then

         --  Use the context type to select the prefix that yields the correct
         --  component type.

         declare
            I     : Interp_Index;
            It    : Interp;
            I1    : Interp_Index := 0;
            P     : constant Node_Id := Prefix (N);
            Found : Boolean := False;

         begin
            Get_First_Interp (P, I, It);
            while Present (It.Typ) loop
               if (Is_Array_Type (It.Typ)
                     and then Covers (Typ, Component_Type (It.Typ)))
                 or else (Is_Access_Type (It.Typ)
                            and then Is_Array_Type (Designated_Type (It.Typ))
                            and then Covers
                              (Typ, Component_Type (Designated_Type (It.Typ))))
               then
                  if Found then
                     It := Disambiguate (P, I1, I, Any_Type);

                     if It = No_Interp then
                        Error_Msg_N ("ambiguous prefix for indexing",  N);
                        Set_Etype (N, Typ);
                        return;

                     else
                        Found := True;
                        Array_Type := It.Typ;
                        I1 := I;
                     end if;

                  else
                     Found := True;
                     Array_Type := It.Typ;
                     I1 := I;
                  end if;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;

      else
         Array_Type := Etype (Name);
      end if;

      Resolve (Name, Array_Type);
      Array_Type := Get_Actual_Subtype_If_Available (Name);

      --  If prefix is access type, dereference to get real array type.
      --  Note: we do not apply an access check because the expander always
      --  introduces an explicit dereference, and the check will happen there.

      if Is_Access_Type (Array_Type) then
         Array_Type := Designated_Type (Array_Type);
      end if;

      --  If name was overloaded, set component type correctly now
      --  If a misplaced call to an entry family (which has no index types)
      --  return. Error will be diagnosed from calling context.

      if Is_Array_Type (Array_Type) then
         Set_Etype (N, Component_Type (Array_Type));
      else
         return;
      end if;

      Index := First_Index (Array_Type);
      Expr  := First (Expressions (N));

      --  The prefix may have resolved to a string literal, in which case its
      --  etype has a special representation. This is only possible currently
      --  if the prefix is a static concatenation, written in functional
      --  notation.

      if Ekind (Array_Type) = E_String_Literal_Subtype then
         Resolve (Expr, Standard_Positive);

      else
         while Present (Index) and Present (Expr) loop
            Resolve (Expr, Etype (Index));
            Check_Unset_Reference (Expr);

            if Is_Scalar_Type (Etype (Expr)) then
               Apply_Scalar_Range_Check (Expr, Etype (Index));
            else
               Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
            end if;

            Next_Index (Index);
            Next (Expr);
         end loop;
      end if;

      --  Do not generate the warning on suspicious index if we are analyzing
      --  package Ada.Tags; otherwise we will report the warning with the
      --  Prims_Ptr field of the dispatch table.

      if Scope (Etype (Prefix (N))) = Standard_Standard
        or else not
          Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
                  Ada_Tags)
      then
         Warn_On_Suspicious_Index (Name, First (Expressions (N)));
         Eval_Indexed_Component (N);
      end if;

      --  If the array type is atomic, and is packed, and we are in a left side
      --  context, then this is worth a warning, since we have a situation
      --  where the access to the component may cause extra read/writes of
      --  the atomic array object, which could be considered unexpected.

      if Nkind (N) = N_Indexed_Component
        and then (Is_Atomic (Array_Type)
                   or else (Is_Entity_Name (Prefix (N))
                             and then Is_Atomic (Entity (Prefix (N)))))
        and then Is_Bit_Packed_Array (Array_Type)
        and then Is_LHS (N)
      then
         Error_Msg_N ("?assignment to component of packed atomic array",
                      Prefix (N));
         Error_Msg_N ("?\may cause unexpected accesses to atomic object",
                      Prefix (N));
      end if;
   end Resolve_Indexed_Component;

   -----------------------------
   -- Resolve_Integer_Literal --
   -----------------------------

   procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
   begin
      Set_Etype (N, Typ);
      Eval_Integer_Literal (N);
   end Resolve_Integer_Literal;

   --------------------------------
   -- Resolve_Intrinsic_Operator --
   --------------------------------

   procedure Resolve_Intrinsic_Operator  (N : Node_Id; Typ : Entity_Id) is
      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
      Op   : Entity_Id;
      Arg1 : Node_Id;
      Arg2 : Node_Id;

   begin
      --  We must preserve the original entity in a generic setting, so that
      --  the legality of the operation can be verified in an instance.

      if not Expander_Active then
         return;
      end if;

      Op := Entity (N);
      while Scope (Op) /= Standard_Standard loop
         Op := Homonym (Op);
         pragma Assert (Present (Op));
      end loop;

      Set_Entity (N, Op);
      Set_Is_Overloaded (N, False);

      --  If the operand type is private, rewrite with suitable conversions on
      --  the operands and the result, to expose the proper underlying numeric
      --  type.

      if Is_Private_Type (Typ) then
         Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd  (N));

         if Nkind (N) = N_Op_Expon then
            Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
         else
            Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
         end if;

         Save_Interps (Left_Opnd (N),  Expression (Arg1));
         Save_Interps (Right_Opnd (N), Expression (Arg2));

         Set_Left_Opnd  (N, Arg1);
         Set_Right_Opnd (N, Arg2);

         Set_Etype (N, Btyp);
         Rewrite (N, Unchecked_Convert_To (Typ, N));
         Resolve (N, Typ);

      elsif Typ /= Etype (Left_Opnd (N))
        or else Typ /= Etype (Right_Opnd (N))
      then
         --  Add explicit conversion where needed, and save interpretations in
         --  case operands are overloaded.

         Arg1 := Convert_To (Typ, Left_Opnd  (N));
         Arg2 := Convert_To (Typ, Right_Opnd (N));

         if Nkind (Arg1) = N_Type_Conversion then
            Save_Interps (Left_Opnd (N), Expression (Arg1));
         else
            Save_Interps (Left_Opnd (N), Arg1);
         end if;

         if Nkind (Arg2) = N_Type_Conversion then
            Save_Interps (Right_Opnd (N), Expression (Arg2));
         else
            Save_Interps (Right_Opnd (N), Arg2);
         end if;

         Rewrite (Left_Opnd  (N), Arg1);
         Rewrite (Right_Opnd (N), Arg2);
         Analyze (Arg1);
         Analyze (Arg2);
         Resolve_Arithmetic_Op (N, Typ);

      else
         Resolve_Arithmetic_Op (N, Typ);
      end if;
   end Resolve_Intrinsic_Operator;

   --------------------------------------
   -- Resolve_Intrinsic_Unary_Operator --
   --------------------------------------

   procedure Resolve_Intrinsic_Unary_Operator
     (N   : Node_Id;
      Typ : Entity_Id)
   is
      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
      Op   : Entity_Id;
      Arg2 : Node_Id;

   begin
      Op := Entity (N);
      while Scope (Op) /= Standard_Standard loop
         Op := Homonym (Op);
         pragma Assert (Present (Op));
      end loop;

      Set_Entity (N, Op);

      if Is_Private_Type (Typ) then
         Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
         Save_Interps (Right_Opnd (N), Expression (Arg2));

         Set_Right_Opnd (N, Arg2);

         Set_Etype (N, Btyp);
         Rewrite (N, Unchecked_Convert_To (Typ, N));
         Resolve (N, Typ);

      else
         Resolve_Unary_Op (N, Typ);
      end if;
   end Resolve_Intrinsic_Unary_Operator;

   ------------------------
   -- Resolve_Logical_Op --
   ------------------------

   procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
      B_Typ : Entity_Id;

   begin
      Check_No_Direct_Boolean_Operators (N);

      --  Predefined operations on scalar types yield the base type. On the
      --  other hand, logical operations on arrays yield the type of the
      --  arguments (and the context).

      if Is_Array_Type (Typ) then
         B_Typ := Typ;
      else
         B_Typ := Base_Type (Typ);
      end if;

      --  OK if this is a VMS-specific intrinsic operation

      if Is_VMS_Operator (Entity (N)) then
         null;

      --  The following test is required because the operands of the operation
      --  may be literals, in which case the resulting type appears to be
      --  compatible with a signed integer type, when in fact it is compatible
      --  only with modular types. If the context itself is universal, the
      --  operation is illegal.

      elsif not Valid_Boolean_Arg (Typ) then
         Error_Msg_N ("invalid context for logical operation", N);
         Set_Etype (N, Any_Type);
         return;

      elsif Typ = Any_Modular then
         Error_Msg_N
           ("no modular type available in this context", N);
         Set_Etype (N, Any_Type);
         return;
      elsif Is_Modular_Integer_Type (Typ)
        and then Etype (Left_Opnd (N)) = Universal_Integer
        and then Etype (Right_Opnd (N)) = Universal_Integer
      then
         Check_For_Visible_Operator (N, B_Typ);
      end if;

      Resolve (Left_Opnd (N), B_Typ);
      Resolve (Right_Opnd (N), B_Typ);

      Check_Unset_Reference (Left_Opnd  (N));
      Check_Unset_Reference (Right_Opnd (N));

      Set_Etype (N, B_Typ);
      Generate_Operator_Reference (N, B_Typ);
      Eval_Logical_Op (N);
   end Resolve_Logical_Op;

   ---------------------------
   -- Resolve_Membership_Op --
   ---------------------------

   --  The context can only be a boolean type, and does not determine
   --  the arguments. Arguments should be unambiguous, but the preference
   --  rule for universal types applies.

   procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
      pragma Warnings (Off, Typ);

      L : constant Node_Id := Left_Opnd  (N);
      R : constant Node_Id := Right_Opnd (N);
      T : Entity_Id;

      procedure Resolve_Set_Membership;
      --  Analysis has determined a unique type for the left operand.
      --  Use it to resolve the disjuncts.

      ----------------------------
      -- Resolve_Set_Membership --
      ----------------------------

      procedure Resolve_Set_Membership is
         Alt : Node_Id;

      begin
         Resolve (L, Etype (L));

         Alt := First (Alternatives (N));
         while Present (Alt) loop

            --  Alternative is an expression, a range
            --  or a subtype mark.

            if not Is_Entity_Name (Alt)
              or else not Is_Type (Entity (Alt))
            then
               Resolve (Alt, Etype (L));
            end if;

            Next (Alt);
         end loop;
      end Resolve_Set_Membership;

   --  Start of processing for Resolve_Membership_Op

   begin
      if L = Error or else R = Error then
         return;
      end if;

      if Present (Alternatives (N)) then
         Resolve_Set_Membership;
         return;

      elsif not Is_Overloaded (R)
        and then
          (Etype (R) = Universal_Integer or else
           Etype (R) = Universal_Real)
        and then Is_Overloaded (L)
      then
         T := Etype (R);

      --  Ada 2005 (AI-251): Support the following case:

      --      type I is interface;
      --      type T is tagged ...

      --      function Test (O : I'Class) is
      --      begin
      --         return O in T'Class.
      --      end Test;

      --  In this case we have nothing else to do. The membership test will be
      --  done at run-time.

      elsif Ada_Version >= Ada_05
        and then Is_Class_Wide_Type (Etype (L))
        and then Is_Interface (Etype (L))
        and then Is_Class_Wide_Type (Etype (R))
        and then not Is_Interface (Etype (R))
      then
         return;

      else
         T := Intersect_Types (L, R);
      end if;

      Resolve (L, T);
      Check_Unset_Reference (L);

      if Nkind (R) = N_Range
        and then not Is_Scalar_Type (T)
      then
         Error_Msg_N ("scalar type required for range", R);
      end if;

      if Is_Entity_Name (R) then
         Freeze_Expression (R);
      else
         Resolve (R, T);
         Check_Unset_Reference (R);
      end if;

      Eval_Membership_Op (N);
   end Resolve_Membership_Op;

   ------------------
   -- Resolve_Null --
   ------------------

   procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
      Loc : constant Source_Ptr := Sloc (N);

   begin
      --  Handle restriction against anonymous null access values This
      --  restriction can be turned off using -gnatdj.

      --  Ada 2005 (AI-231): Remove restriction

      if Ada_Version < Ada_05
        and then not Debug_Flag_J
        and then Ekind (Typ) = E_Anonymous_Access_Type
        and then Comes_From_Source (N)
      then
         --  In the common case of a call which uses an explicitly null value
         --  for an access parameter, give specialized error message.

         if Nkind_In (Parent (N), N_Procedure_Call_Statement,
                                  N_Function_Call)
         then
            Error_Msg_N
              ("null is not allowed as argument for an access parameter", N);

         --  Standard message for all other cases (are there any?)

         else
            Error_Msg_N
              ("null cannot be of an anonymous access type", N);
         end if;
      end if;

      --  Ada 2005 (AI-231): Generate the null-excluding check in case of
      --  assignment to a null-excluding object

      if Ada_Version >= Ada_05
        and then Can_Never_Be_Null (Typ)
        and then Nkind (Parent (N)) = N_Assignment_Statement
      then
         if not Inside_Init_Proc then
            Insert_Action
              (Compile_Time_Constraint_Error (N,
                 "(Ada 2005) null not allowed in null-excluding objects?"),
               Make_Raise_Constraint_Error (Loc,
                 Reason => CE_Access_Check_Failed));
         else
            Insert_Action (N,
              Make_Raise_Constraint_Error (Loc,
                Reason => CE_Access_Check_Failed));
         end if;
      end if;

      --  In a distributed context, null for a remote access to subprogram may
      --  need to be replaced with a special record aggregate. In this case,
      --  return after having done the transformation.

      if (Ekind (Typ) = E_Record_Type
           or else Is_Remote_Access_To_Subprogram_Type (Typ))
        and then Remote_AST_Null_Value (N, Typ)
      then
         return;
      end if;

      --  The null literal takes its type from the context

      Set_Etype (N, Typ);
   end Resolve_Null;

   -----------------------
   -- Resolve_Op_Concat --
   -----------------------

   procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is

      --  We wish to avoid deep recursion, because concatenations are often
      --  deeply nested, as in A&B&...&Z. Therefore, we walk down the left
      --  operands nonrecursively until we find something that is not a simple
      --  concatenation (A in this case). We resolve that, and then walk back
      --  up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
      --  to do the rest of the work at each level. The Parent pointers allow
      --  us to avoid recursion, and thus avoid running out of memory. See also
      --  Sem_Ch4.Analyze_Concatenation, where a similar approach is used.

      NN  : Node_Id := N;
      Op1 : Node_Id;

   begin
      --  The following code is equivalent to:

      --    Resolve_Op_Concat_First (NN, Typ);
      --    Resolve_Op_Concat_Arg (N, ...);
      --    Resolve_Op_Concat_Rest (N, Typ);

      --  where the Resolve_Op_Concat_Arg call recurses back here if the left
      --  operand is a concatenation.

      --  Walk down left operands

      loop
         Resolve_Op_Concat_First (NN, Typ);
         Op1 := Left_Opnd (NN);
         exit when not (Nkind (Op1) = N_Op_Concat
                         and then not Is_Array_Type (Component_Type (Typ))
                         and then Entity (Op1) = Entity (NN));
         NN := Op1;
      end loop;

      --  Now (given the above example) NN is A&B and Op1 is A

      --  First resolve Op1 ...

      Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd  (NN));

      --  ... then walk NN back up until we reach N (where we started), calling
      --  Resolve_Op_Concat_Rest along the way.

      loop
         Resolve_Op_Concat_Rest (NN, Typ);
         exit when NN = N;
         NN := Parent (NN);
      end loop;
   end Resolve_Op_Concat;

   ---------------------------
   -- Resolve_Op_Concat_Arg --
   ---------------------------

   procedure Resolve_Op_Concat_Arg
     (N       : Node_Id;
      Arg     : Node_Id;
      Typ     : Entity_Id;
      Is_Comp : Boolean)
   is
      Btyp : constant Entity_Id := Base_Type (Typ);

   begin
      if In_Instance then
         if Is_Comp
           or else (not Is_Overloaded (Arg)
                     and then Etype (Arg) /= Any_Composite
                     and then Covers (Component_Type (Typ), Etype (Arg)))
         then
            Resolve (Arg, Component_Type (Typ));
         else
            Resolve (Arg, Btyp);
         end if;

      elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
         if Nkind (Arg) = N_Aggregate
           and then Is_Composite_Type (Component_Type (Typ))
         then
            if Is_Private_Type (Component_Type (Typ)) then
               Resolve (Arg, Btyp);
            else
               Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
               Set_Etype (Arg, Any_Type);
            end if;

         else
            if Is_Overloaded (Arg)
              and then Has_Compatible_Type (Arg, Typ)
              and then Etype (Arg) /= Any_Type
            then
               declare
                  I    : Interp_Index;
                  It   : Interp;
                  Func : Entity_Id;

               begin
                  Get_First_Interp (Arg, I, It);
                  Func := It.Nam;
                  Get_Next_Interp (I, It);

                  --  Special-case the error message when the overloading is
                  --  caused by a function that yields an array and can be
                  --  called without parameters.

                  if It.Nam = Func then
                     Error_Msg_Sloc := Sloc (Func);
                     Error_Msg_N ("ambiguous call to function#", Arg);
                     Error_Msg_NE
                       ("\\interpretation as call yields&", Arg, Typ);
                     Error_Msg_NE
                       ("\\interpretation as indexing of call yields&",
                         Arg, Component_Type (Typ));

                  else
                     Error_Msg_N
                       ("ambiguous operand for concatenation!", Arg);
                     Get_First_Interp (Arg, I, It);
                     while Present (It.Nam) loop
                        Error_Msg_Sloc := Sloc (It.Nam);

                        if Base_Type (It.Typ) = Base_Type (Typ)
                          or else Base_Type (It.Typ) =
                            Base_Type (Component_Type (Typ))
                        then
                           Error_Msg_N -- CODEFIX
                             ("\\possible interpretation#", Arg);
                        end if;

                        Get_Next_Interp (I, It);
                     end loop;
                  end if;
               end;
            end if;

            Resolve (Arg, Component_Type (Typ));

            if Nkind (Arg) = N_String_Literal then
               Set_Etype (Arg, Component_Type (Typ));
            end if;

            if Arg = Left_Opnd (N) then
               Set_Is_Component_Left_Opnd (N);
            else
               Set_Is_Component_Right_Opnd (N);
            end if;
         end if;

      else
         Resolve (Arg, Btyp);
      end if;

      Check_Unset_Reference (Arg);
   end Resolve_Op_Concat_Arg;

   -----------------------------
   -- Resolve_Op_Concat_First --
   -----------------------------

   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
      Btyp : constant Entity_Id := Base_Type (Typ);
      Op1  : constant Node_Id := Left_Opnd (N);
      Op2  : constant Node_Id := Right_Opnd (N);

   begin
      --  The parser folds an enormous sequence of concatenations of string
      --  literals into "" & "...", where the Is_Folded_In_Parser flag is set
      --  in the right operand. If the expression resolves to a predefined "&"
      --  operator, all is well. Otherwise, the parser's folding is wrong, so
      --  we give an error. See P_Simple_Expression in Par.Ch4.

      if Nkind (Op2) = N_String_Literal
        and then Is_Folded_In_Parser (Op2)
        and then Ekind (Entity (N)) = E_Function
      then
         pragma Assert (Nkind (Op1) = N_String_Literal  --  should be ""
               and then String_Length (Strval (Op1)) = 0);
         Error_Msg_N ("too many user-defined concatenations", N);
         return;
      end if;

      Set_Etype (N, Btyp);

      if Is_Limited_Composite (Btyp) then
         Error_Msg_N ("concatenation not available for limited array", N);
         Explain_Limited_Type (Btyp, N);
      end if;
   end Resolve_Op_Concat_First;

   ----------------------------
   -- Resolve_Op_Concat_Rest --
   ----------------------------

   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
      Op1  : constant Node_Id := Left_Opnd (N);
      Op2  : constant Node_Id := Right_Opnd (N);

   begin
      Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd  (N));

      Generate_Operator_Reference (N, Typ);

      if Is_String_Type (Typ) then
         Eval_Concatenation (N);
      end if;

      --  If this is not a static concatenation, but the result is a string
      --  type (and not an array of strings) ensure that static string operands
      --  have their subtypes properly constructed.

      if Nkind (N) /= N_String_Literal
        and then Is_Character_Type (Component_Type (Typ))
      then
         Set_String_Literal_Subtype (Op1, Typ);
         Set_String_Literal_Subtype (Op2, Typ);
      end if;
   end Resolve_Op_Concat_Rest;

   ----------------------
   -- Resolve_Op_Expon --
   ----------------------

   procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
      B_Typ : constant Entity_Id := Base_Type (Typ);

   begin
      --  Catch attempts to do fixed-point exponentiation with universal
      --  operands, which is a case where the illegality is not caught during
      --  normal operator analysis.

      if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
         Error_Msg_N ("exponentiation not available for fixed point", N);
         return;
      end if;

      if Comes_From_Source (N)
        and then Ekind (Entity (N)) = E_Function
        and then Is_Imported (Entity (N))
        and then Is_Intrinsic_Subprogram (Entity (N))
      then
         Resolve_Intrinsic_Operator (N, Typ);
         return;
      end if;

      if Etype (Left_Opnd (N)) = Universal_Integer
        or else Etype (Left_Opnd (N)) = Universal_Real
      then
         Check_For_Visible_Operator (N, B_Typ);
      end if;

      --  We do the resolution using the base type, because intermediate values
      --  in expressions always are of the base type, not a subtype of it.

      Resolve (Left_Opnd (N), B_Typ);
      Resolve (Right_Opnd (N), Standard_Integer);

      Check_Unset_Reference (Left_Opnd  (N));
      Check_Unset_Reference (Right_Opnd (N));

      Set_Etype (N, B_Typ);
      Generate_Operator_Reference (N, B_Typ);
      Eval_Op_Expon (N);

      --  Set overflow checking bit. Much cleverer code needed here eventually
      --  and perhaps the Resolve routines should be separated for the various
      --  arithmetic operations, since they will need different processing. ???

      if Nkind (N) in N_Op then
         if not Overflow_Checks_Suppressed (Etype (N)) then
            Enable_Overflow_Check (N);
         end if;
      end if;
   end Resolve_Op_Expon;

   --------------------
   -- Resolve_Op_Not --
   --------------------

   procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
      B_Typ : Entity_Id;

      function Parent_Is_Boolean return Boolean;
      --  This function determines if the parent node is a boolean operator
      --  or operation (comparison op, membership test, or short circuit form)
      --  and the not in question is the left operand of this operation.
      --  Note that if the not is in parens, then false is returned.

      -----------------------
      -- Parent_Is_Boolean --
      -----------------------

      function Parent_Is_Boolean return Boolean is
      begin
         if Paren_Count (N) /= 0 then
            return False;

         else
            case Nkind (Parent (N)) is
               when N_Op_And   |
                    N_Op_Eq    |
                    N_Op_Ge    |
                    N_Op_Gt    |
                    N_Op_Le    |
                    N_Op_Lt    |
                    N_Op_Ne    |
                    N_Op_Or    |
                    N_Op_Xor   |
                    N_In       |
                    N_Not_In   |
                    N_And_Then |
                    N_Or_Else  =>

                  return Left_Opnd (Parent (N)) = N;

               when others =>
                  return False;
            end case;
         end if;
      end Parent_Is_Boolean;

   --  Start of processing for Resolve_Op_Not

   begin
      --  Predefined operations on scalar types yield the base type. On the
      --  other hand, logical operations on arrays yield the type of the
      --  arguments (and the context).

      if Is_Array_Type (Typ) then
         B_Typ := Typ;
      else
         B_Typ := Base_Type (Typ);
      end if;

      if Is_VMS_Operator (Entity (N)) then
         null;

      --  Straightforward case of incorrect arguments

      elsif not Valid_Boolean_Arg (Typ) then
         Error_Msg_N ("invalid operand type for operator&", N);
         Set_Etype (N, Any_Type);
         return;

      --  Special case of probable missing parens

      elsif Typ = Universal_Integer or else Typ = Any_Modular then
         if Parent_Is_Boolean then
            Error_Msg_N
              ("operand of not must be enclosed in parentheses",
               Right_Opnd (N));
         else
            Error_Msg_N
              ("no modular type available in this context", N);
         end if;

         Set_Etype (N, Any_Type);
         return;

      --  OK resolution of not

      else
         --  Warn if non-boolean types involved. This is a case like not a < b
         --  where a and b are modular, where we will get (not a) < b and most
         --  likely not (a < b) was intended.

         if Warn_On_Questionable_Missing_Parens
           and then not Is_Boolean_Type (Typ)
           and then Parent_Is_Boolean
         then
            Error_Msg_N ("?not expression should be parenthesized here!", N);
         end if;

         --  Warn on double negation if checking redundant constructs

         if Warn_On_Redundant_Constructs
           and then Comes_From_Source (N)
           and then Comes_From_Source (Right_Opnd (N))
           and then Root_Type (Typ) = Standard_Boolean
           and then Nkind (Right_Opnd (N)) = N_Op_Not
         then
            Error_Msg_N ("redundant double negation?", N);
         end if;

         --  Complete resolution and evaluation of NOT

         Resolve (Right_Opnd (N), B_Typ);
         Check_Unset_Reference (Right_Opnd (N));
         Set_Etype (N, B_Typ);
         Generate_Operator_Reference (N, B_Typ);
         Eval_Op_Not (N);
      end if;
   end Resolve_Op_Not;

   -----------------------------
   -- Resolve_Operator_Symbol --
   -----------------------------

   --  Nothing to be done, all resolved already

   procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
      pragma Warnings (Off, N);
      pragma Warnings (Off, Typ);

   begin
      null;
   end Resolve_Operator_Symbol;

   ----------------------------------
   -- Resolve_Qualified_Expression --
   ----------------------------------

   procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
      pragma Warnings (Off, Typ);

      Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
      Expr       : constant Node_Id   := Expression (N);

   begin
      Resolve (Expr, Target_Typ);

      --  A qualified expression requires an exact match of the type,
      --  class-wide matching is not allowed. However, if the qualifying
      --  type is specific and the expression has a class-wide type, it
      --  may still be okay, since it can be the result of the expansion
      --  of a call to a dispatching function, so we also have to check
      --  class-wideness of the type of the expression's original node.

      if (Is_Class_Wide_Type (Target_Typ)
           or else
             (Is_Class_Wide_Type (Etype (Expr))
               and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
        and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
      then
         Wrong_Type (Expr, Target_Typ);
      end if;

      --  If the target type is unconstrained, then we reset the type of
      --  the result from the type of the expression. For other cases, the
      --  actual subtype of the expression is the target type.

      if Is_Composite_Type (Target_Typ)
        and then not Is_Constrained (Target_Typ)
      then
         Set_Etype (N, Etype (Expr));
      end if;

      Eval_Qualified_Expression (N);
   end Resolve_Qualified_Expression;

   -------------------
   -- Resolve_Range --
   -------------------

   procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
      L : constant Node_Id := Low_Bound (N);
      H : constant Node_Id := High_Bound (N);

   begin
      Set_Etype (N, Typ);
      Resolve (L, Typ);
      Resolve (H, Typ);

      Check_Unset_Reference (L);
      Check_Unset_Reference (H);

      --  We have to check the bounds for being within the base range as
      --  required for a non-static context. Normally this is automatic and
      --  done as part of evaluating expressions, but the N_Range node is an
      --  exception, since in GNAT we consider this node to be a subexpression,
      --  even though in Ada it is not. The circuit in Sem_Eval could check for
      --  this, but that would put the test on the main evaluation path for
      --  expressions.

      Check_Non_Static_Context (L);
      Check_Non_Static_Context (H);

      --  Check for an ambiguous range over character literals. This will
      --  happen with a membership test involving only literals.

      if Typ = Any_Character then
         Ambiguous_Character (L);
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  If bounds are static, constant-fold them, so size computations
      --  are identical between front-end and back-end. Do not perform this
      --  transformation while analyzing generic units, as type information
      --  would then be lost when reanalyzing the constant node in the
      --  instance.

      if Is_Discrete_Type (Typ) and then Expander_Active then
         if Is_OK_Static_Expression (L) then
            Fold_Uint  (L, Expr_Value (L), Is_Static_Expression (L));
         end if;

         if Is_OK_Static_Expression (H) then
            Fold_Uint  (H, Expr_Value (H), Is_Static_Expression (H));
         end if;
      end if;
   end Resolve_Range;

   --------------------------
   -- Resolve_Real_Literal --
   --------------------------

   procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
      Actual_Typ : constant Entity_Id := Etype (N);

   begin
      --  Special processing for fixed-point literals to make sure that the
      --  value is an exact multiple of small where this is required. We
      --  skip this for the universal real case, and also for generic types.

      if Is_Fixed_Point_Type (Typ)
        and then Typ /= Universal_Fixed
        and then Typ /= Any_Fixed
        and then not Is_Generic_Type (Typ)
      then
         declare
            Val   : constant Ureal := Realval (N);
            Cintr : constant Ureal := Val / Small_Value (Typ);
            Cint  : constant Uint  := UR_Trunc (Cintr);
            Den   : constant Uint  := Norm_Den (Cintr);
            Stat  : Boolean;

         begin
            --  Case of literal is not an exact multiple of the Small

            if Den /= 1 then

               --  For a source program literal for a decimal fixed-point
               --  type, this is statically illegal (RM 4.9(36)).

               if Is_Decimal_Fixed_Point_Type (Typ)
                 and then Actual_Typ = Universal_Real
                 and then Comes_From_Source (N)
               then
                  Error_Msg_N ("value has extraneous low order digits", N);
               end if;

               --  Generate a warning if literal from source

               if Is_Static_Expression (N)
                 and then Warn_On_Bad_Fixed_Value
               then
                  Error_Msg_N
                    ("?static fixed-point value is not a multiple of Small!",
                     N);
               end if;

               --  Replace literal by a value that is the exact representation
               --  of a value of the type, i.e. a multiple of the small value,
               --  by truncation, since Machine_Rounds is false for all GNAT
               --  fixed-point types (RM 4.9(38)).

               Stat := Is_Static_Expression (N);
               Rewrite (N,
                 Make_Real_Literal (Sloc (N),
                   Realval => Small_Value (Typ) * Cint));

               Set_Is_Static_Expression (N, Stat);
            end if;

            --  In all cases, set the corresponding integer field

            Set_Corresponding_Integer_Value (N, Cint);
         end;
      end if;

      --  Now replace the actual type by the expected type as usual

      Set_Etype (N, Typ);
      Eval_Real_Literal (N);
   end Resolve_Real_Literal;

   -----------------------
   -- Resolve_Reference --
   -----------------------

   procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
      P : constant Node_Id := Prefix (N);

   begin
      --  Replace general access with specific type

      if Ekind (Etype (N)) = E_Allocator_Type then
         Set_Etype (N, Base_Type (Typ));
      end if;

      Resolve (P, Designated_Type (Etype (N)));

      --  If we are taking the reference of a volatile entity, then treat
      --  it as a potential modification of this entity. This is much too
      --  conservative, but is necessary because remove side effects can
      --  result in transformations of normal assignments into reference
      --  sequences that otherwise fail to notice the modification.

      if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
         Note_Possible_Modification (P, Sure => False);
      end if;
   end Resolve_Reference;

   --------------------------------
   -- Resolve_Selected_Component --
   --------------------------------

   procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
      Comp  : Entity_Id;
      Comp1 : Entity_Id        := Empty; -- prevent junk warning
      P     : constant Node_Id := Prefix  (N);
      S     : constant Node_Id := Selector_Name (N);
      T     : Entity_Id        := Etype (P);
      I     : Interp_Index;
      I1    : Interp_Index := 0; -- prevent junk warning
      It    : Interp;
      It1   : Interp;
      Found : Boolean;

      function Init_Component return Boolean;
      --  Check whether this is the initialization of a component within an
      --  init proc (by assignment or call to another init proc). If true,
      --  there is no need for a discriminant check.

      --------------------
      -- Init_Component --
      --------------------

      function Init_Component return Boolean is
      begin
         return Inside_Init_Proc
           and then Nkind (Prefix (N)) = N_Identifier
           and then Chars (Prefix (N)) = Name_uInit
           and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
      end Init_Component;

   --  Start of processing for Resolve_Selected_Component

   begin
      if Is_Overloaded (P) then

         --  Use the context type to select the prefix that has a selector
         --  of the correct name and type.

         Found := False;
         Get_First_Interp (P, I, It);

         Search : while Present (It.Typ) loop
            if Is_Access_Type (It.Typ) then
               T := Designated_Type (It.Typ);
            else
               T := It.Typ;
            end if;

            if Is_Record_Type (T) then

               --  The visible components of a class-wide type are those of
               --  the root type.

               if Is_Class_Wide_Type (T) then
                  T := Etype (T);
               end if;

               Comp := First_Entity (T);
               while Present (Comp) loop
                  if Chars (Comp) = Chars (S)
                    and then Covers (Etype (Comp), Typ)
                  then
                     if not Found then
                        Found := True;
                        I1  := I;
                        It1 := It;
                        Comp1 := Comp;

                     else
                        It := Disambiguate (P, I1, I, Any_Type);

                        if It = No_Interp then
                           Error_Msg_N
                             ("ambiguous prefix for selected component",  N);
                           Set_Etype (N, Typ);
                           return;

                        else
                           It1 := It;

                           --  There may be an implicit dereference. Retrieve
                           --  designated record type.

                           if Is_Access_Type (It1.Typ) then
                              T := Designated_Type (It1.Typ);
                           else
                              T := It1.Typ;
                           end if;

                           if Scope (Comp1) /= T then

                              --  Resolution chooses the new interpretation.
                              --  Find the component with the right name.

                              Comp1 := First_Entity (T);
                              while Present (Comp1)
                                and then Chars (Comp1) /= Chars (S)
                              loop
                                 Comp1 := Next_Entity (Comp1);
                              end loop;
                           end if;

                           exit Search;
                        end if;
                     end if;
                  end if;

                  Comp := Next_Entity (Comp);
               end loop;
            end if;

            Get_Next_Interp (I, It);
         end loop Search;

         Resolve (P, It1.Typ);
         Set_Etype (N, Typ);
         Set_Entity_With_Style_Check (S, Comp1);

      else
         --  Resolve prefix with its type

         Resolve (P, T);
      end if;

      --  Generate cross-reference. We needed to wait until full overloading
      --  resolution was complete to do this, since otherwise we can't tell if
      --  we are an lvalue or not.

      if May_Be_Lvalue (N) then
         Generate_Reference (Entity (S), S, 'm');
      else
         Generate_Reference (Entity (S), S, 'r');
      end if;

      --  If prefix is an access type, the node will be transformed into an
      --  explicit dereference during expansion. The type of the node is the
      --  designated type of that of the prefix.

      if Is_Access_Type (Etype (P)) then
         T := Designated_Type (Etype (P));
         Check_Fully_Declared_Prefix (T, P);
      else
         T := Etype (P);
      end if;

      if Has_Discriminants (T)
        and then Ekind_In (Entity (S), E_Component, E_Discriminant)
        and then Present (Original_Record_Component (Entity (S)))
        and then Ekind (Original_Record_Component (Entity (S))) = E_Component
        and then Present (Discriminant_Checking_Func
                           (Original_Record_Component (Entity (S))))
        and then not Discriminant_Checks_Suppressed (T)
        and then not Init_Component
      then
         Set_Do_Discriminant_Check (N);
      end if;

      if Ekind (Entity (S)) = E_Void then
         Error_Msg_N ("premature use of component", S);
      end if;

      --  If the prefix is a record conversion, this may be a renamed
      --  discriminant whose bounds differ from those of the original
      --  one, so we must ensure that a range check is performed.

      if Nkind (P) = N_Type_Conversion
        and then Ekind (Entity (S)) = E_Discriminant
        and then Is_Discrete_Type (Typ)
      then
         Set_Etype (N, Base_Type (Typ));
      end if;

      --  Note: No Eval processing is required, because the prefix is of a
      --  record type, or protected type, and neither can possibly be static.

      --  If the array type is atomic, and is packed, and we are in a left side
      --  context, then this is worth a warning, since we have a situation
      --  where the access to the component may cause extra read/writes of
      --  the atomic array object, which could be considered unexpected.

      if Nkind (N) = N_Selected_Component
        and then (Is_Atomic (T)
                   or else (Is_Entity_Name (Prefix (N))
                             and then Is_Atomic (Entity (Prefix (N)))))
        and then Is_Packed (T)
        and then Is_LHS (N)
      then
         Error_Msg_N ("?assignment to component of packed atomic record",
                      Prefix (N));
         Error_Msg_N ("?\may cause unexpected accesses to atomic object",
                      Prefix (N));
      end if;
   end Resolve_Selected_Component;

   -------------------
   -- Resolve_Shift --
   -------------------

   procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
      B_Typ : constant Entity_Id := Base_Type (Typ);
      L     : constant Node_Id   := Left_Opnd  (N);
      R     : constant Node_Id   := Right_Opnd (N);

   begin
      --  We do the resolution using the base type, because intermediate values
      --  in expressions always are of the base type, not a subtype of it.

      Resolve (L, B_Typ);
      Resolve (R, Standard_Natural);

      Check_Unset_Reference (L);
      Check_Unset_Reference (R);

      Set_Etype (N, B_Typ);
      Generate_Operator_Reference (N, B_Typ);
      Eval_Shift (N);
   end Resolve_Shift;

   ---------------------------
   -- Resolve_Short_Circuit --
   ---------------------------

   procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
      B_Typ : constant Entity_Id := Base_Type (Typ);
      L     : constant Node_Id   := Left_Opnd  (N);
      R     : constant Node_Id   := Right_Opnd (N);

   begin
      Resolve (L, B_Typ);
      Resolve (R, B_Typ);

      --  Check for issuing warning for always False assert/check, this happens
      --  when assertions are turned off, in which case the pragma Assert/Check
      --  was transformed into:

      --     if False and then <condition> then ...

      --  and we detect this pattern

      if Warn_On_Assertion_Failure
        and then Is_Entity_Name (R)
        and then Entity (R) = Standard_False
        and then Nkind (Parent (N)) = N_If_Statement
        and then Nkind (N) = N_And_Then
        and then Is_Entity_Name (L)
        and then Entity (L) = Standard_False
      then
         declare
            Orig : constant Node_Id := Original_Node (Parent (N));

         begin
            if Nkind (Orig) = N_Pragma
              and then Pragma_Name (Orig) = Name_Assert
            then
               --  Don't want to warn if original condition is explicit False

               declare
                  Expr : constant Node_Id :=
                           Original_Node
                             (Expression
                               (First (Pragma_Argument_Associations (Orig))));
               begin
                  if Is_Entity_Name (Expr)
                    and then Entity (Expr) = Standard_False
                  then
                     null;
                  else
                     --  Issue warning. We do not want the deletion of the
                     --  IF/AND-THEN to take this message with it. We achieve
                     --  this by making sure that the expanded code points to
                     --  the Sloc of the expression, not the original pragma.

                     Error_Msg_N
                       ("?assertion would fail at run-time!",
                        Expression
                          (First (Pragma_Argument_Associations (Orig))));
                  end if;
               end;

            --  Similar processing for Check pragma

            elsif Nkind (Orig) = N_Pragma
              and then Pragma_Name (Orig) = Name_Check
            then
               --  Don't want to warn if original condition is explicit False

               declare
                  Expr : constant Node_Id :=
                           Original_Node
                             (Expression
                                (Next (First
                                  (Pragma_Argument_Associations (Orig)))));
               begin
                  if Is_Entity_Name (Expr)
                    and then Entity (Expr) = Standard_False
                  then
                     null;
                  else
                     Error_Msg_N
                       ("?check would fail at run-time!",
                        Expression
                          (Last (Pragma_Argument_Associations (Orig))));
                  end if;
               end;
            end if;
         end;
      end if;

      --  Continue with processing of short circuit

      Check_Unset_Reference (L);
      Check_Unset_Reference (R);

      Set_Etype (N, B_Typ);
      Eval_Short_Circuit (N);
   end Resolve_Short_Circuit;

   -------------------
   -- Resolve_Slice --
   -------------------

   procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
      Name       : constant Node_Id := Prefix (N);
      Drange     : constant Node_Id := Discrete_Range (N);
      Array_Type : Entity_Id        := Empty;
      Index      : Node_Id;

   begin
      if Is_Overloaded (Name) then

         --  Use the context type to select the prefix that yields the correct
         --  array type.

         declare
            I      : Interp_Index;
            I1     : Interp_Index := 0;
            It     : Interp;
            P      : constant Node_Id := Prefix (N);
            Found  : Boolean := False;

         begin
            Get_First_Interp (P, I,  It);
            while Present (It.Typ) loop
               if (Is_Array_Type (It.Typ)
                    and then Covers (Typ,  It.Typ))
                 or else (Is_Access_Type (It.Typ)
                           and then Is_Array_Type (Designated_Type (It.Typ))
                           and then Covers (Typ, Designated_Type (It.Typ)))
               then
                  if Found then
                     It := Disambiguate (P, I1, I, Any_Type);

                     if It = No_Interp then
                        Error_Msg_N ("ambiguous prefix for slicing",  N);
                        Set_Etype (N, Typ);
                        return;
                     else
                        Found := True;
                        Array_Type := It.Typ;
                        I1 := I;
                     end if;
                  else
                     Found := True;
                     Array_Type := It.Typ;
                     I1 := I;
                  end if;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;

      else
         Array_Type := Etype (Name);
      end if;

      Resolve (Name, Array_Type);

      if Is_Access_Type (Array_Type) then
         Apply_Access_Check (N);
         Array_Type := Designated_Type (Array_Type);

         --  If the prefix is an access to an unconstrained array, we must use
         --  the actual subtype of the object to perform the index checks. The
         --  object denoted by the prefix is implicit in the node, so we build
         --  an explicit representation for it in order to compute the actual
         --  subtype.

         if not Is_Constrained (Array_Type) then
            Remove_Side_Effects (Prefix (N));

            declare
               Obj : constant Node_Id :=
                       Make_Explicit_Dereference (Sloc (N),
                         Prefix => New_Copy_Tree (Prefix (N)));
            begin
               Set_Etype (Obj, Array_Type);
               Set_Parent (Obj, Parent (N));
               Array_Type := Get_Actual_Subtype (Obj);
            end;
         end if;

      elsif Is_Entity_Name (Name)
        or else Nkind (Name) = N_Explicit_Dereference
        or else (Nkind (Name) = N_Function_Call
                  and then not Is_Constrained (Etype (Name)))
      then
         Array_Type := Get_Actual_Subtype (Name);

      --  If the name is a selected component that depends on discriminants,
      --  build an actual subtype for it. This can happen only when the name
      --  itself is overloaded; otherwise the actual subtype is created when
      --  the selected component is analyzed.

      elsif Nkind (Name) = N_Selected_Component
        and then Full_Analysis
        and then Depends_On_Discriminant (First_Index (Array_Type))
      then
         declare
            Act_Decl : constant Node_Id :=
                         Build_Actual_Subtype_Of_Component (Array_Type, Name);
         begin
            Insert_Action (N, Act_Decl);
            Array_Type := Defining_Identifier (Act_Decl);
         end;

      --  Maybe this should just be "else", instead of checking for the
      --  specific case of slice??? This is needed for the case where
      --  the prefix is an Image attribute, which gets expanded to a
      --  slice, and so has a constrained subtype which we want to use
      --  for the slice range check applied below (the range check won't
      --  get done if the unconstrained subtype of the 'Image is used).

      elsif Nkind (Name) = N_Slice then
         Array_Type := Etype (Name);
      end if;

      --  If name was overloaded, set slice type correctly now

      Set_Etype (N, Array_Type);

      --  If the range is specified by a subtype mark, no resolution is
      --  necessary. Else resolve the bounds, and apply needed checks.

      if not Is_Entity_Name (Drange) then
         Index := First_Index (Array_Type);
         Resolve (Drange, Base_Type (Etype (Index)));

         if Nkind (Drange) = N_Range

            --  Do not apply the range check to nodes associated with the
            --  frontend expansion of the dispatch table. We first check
            --  if Ada.Tags is already loaded to void the addition of an
            --  undesired dependence on such run-time unit.

           and then
             (not Tagged_Type_Expansion
               or else not
                 (RTU_Loaded (Ada_Tags)
                   and then Nkind (Prefix (N)) = N_Selected_Component
                   and then Present (Entity (Selector_Name (Prefix (N))))
                   and then Entity (Selector_Name (Prefix (N))) =
                                         RTE_Record_Component (RE_Prims_Ptr)))
         then
            Apply_Range_Check (Drange, Etype (Index));
         end if;
      end if;

      Set_Slice_Subtype (N);

      if Nkind (Drange) = N_Range then
         Warn_On_Suspicious_Index (Name, Low_Bound  (Drange));
         Warn_On_Suspicious_Index (Name, High_Bound (Drange));
      end if;

      Eval_Slice (N);
   end Resolve_Slice;

   ----------------------------
   -- Resolve_String_Literal --
   ----------------------------

   procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
      C_Typ      : constant Entity_Id  := Component_Type (Typ);
      R_Typ      : constant Entity_Id  := Root_Type (C_Typ);
      Loc        : constant Source_Ptr := Sloc (N);
      Str        : constant String_Id  := Strval (N);
      Strlen     : constant Nat        := String_Length (Str);
      Subtype_Id : Entity_Id;
      Need_Check : Boolean;

   begin
      --  For a string appearing in a concatenation, defer creation of the
      --  string_literal_subtype until the end of the resolution of the
      --  concatenation, because the literal may be constant-folded away. This
      --  is a useful optimization for long concatenation expressions.

      --  If the string is an aggregate built for a single character (which
      --  happens in a non-static context) or a is null string to which special
      --  checks may apply, we build the subtype. Wide strings must also get a
      --  string subtype if they come from a one character aggregate. Strings
      --  generated by attributes might be static, but it is often hard to
      --  determine whether the enclosing context is static, so we generate
      --  subtypes for them as well, thus losing some rarer optimizations ???
      --  Same for strings that come from a static conversion.

      Need_Check :=
        (Strlen = 0 and then Typ /= Standard_String)
          or else Nkind (Parent (N)) /= N_Op_Concat
          or else (N /= Left_Opnd (Parent (N))
                    and then N /= Right_Opnd (Parent (N)))
          or else ((Typ = Standard_Wide_String
                      or else Typ = Standard_Wide_Wide_String)
                    and then Nkind (Original_Node (N)) /= N_String_Literal);

      --  If the resolving type is itself a string literal subtype, we can just
      --  reuse it, since there is no point in creating another.

      if Ekind (Typ) = E_String_Literal_Subtype then
         Subtype_Id := Typ;

      elsif Nkind (Parent (N)) = N_Op_Concat
        and then not Need_Check
        and then not Nkind_In (Original_Node (N), N_Character_Literal,
                                                  N_Attribute_Reference,
                                                  N_Qualified_Expression,
                                                  N_Type_Conversion)
      then
         Subtype_Id := Typ;

      --  Otherwise we must create a string literal subtype. Note that the
      --  whole idea of string literal subtypes is simply to avoid the need
      --  for building a full fledged array subtype for each literal.

      else
         Set_String_Literal_Subtype (N, Typ);
         Subtype_Id := Etype (N);
      end if;

      if Nkind (Parent (N)) /= N_Op_Concat
        or else Need_Check
      then
         Set_Etype (N, Subtype_Id);
         Eval_String_Literal (N);
      end if;

      if Is_Limited_Composite (Typ)
        or else Is_Private_Composite (Typ)
      then
         Error_Msg_N ("string literal not available for private array", N);
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  The validity of a null string has been checked in the call to
      --  Eval_String_Literal.

      if Strlen = 0 then
         return;

      --  Always accept string literal with component type Any_Character, which
      --  occurs in error situations and in comparisons of literals, both of
      --  which should accept all literals.

      elsif R_Typ = Any_Character then
         return;

      --  If the type is bit-packed, then we always transform the string
      --  literal into a full fledged aggregate.

      elsif Is_Bit_Packed_Array (Typ) then
         null;

      --  Deal with cases of Wide_Wide_String, Wide_String, and String

      else
         --  For Standard.Wide_Wide_String, or any other type whose component
         --  type is Standard.Wide_Wide_Character, we know that all the
         --  characters in the string must be acceptable, since the parser
         --  accepted the characters as valid character literals.

         if R_Typ = Standard_Wide_Wide_Character then
            null;

         --  For the case of Standard.String, or any other type whose component
         --  type is Standard.Character, we must make sure that there are no
         --  wide characters in the string, i.e. that it is entirely composed
         --  of characters in range of type Character.

         --  If the string literal is the result of a static concatenation, the
         --  test has already been performed on the components, and need not be
         --  repeated.

         elsif R_Typ = Standard_Character
           and then Nkind (Original_Node (N)) /= N_Op_Concat
         then
            for J in 1 .. Strlen loop
               if not In_Character_Range (Get_String_Char (Str, J)) then

                  --  If we are out of range, post error. This is one of the
                  --  very few places that we place the flag in the middle of
                  --  a token, right under the offending wide character. Not
                  --  quite clear if this is right wrt wide character encoding
                  --  sequences, but it's only an error message!

                  Error_Msg
                    ("literal out of range of type Standard.Character",
                     Source_Ptr (Int (Loc) + J));
                  return;
               end if;
            end loop;

         --  For the case of Standard.Wide_String, or any other type whose
         --  component type is Standard.Wide_Character, we must make sure that
         --  there are no wide characters in the string, i.e. that it is
         --  entirely composed of characters in range of type Wide_Character.

         --  If the string literal is the result of a static concatenation,
         --  the test has already been performed on the components, and need
         --  not be repeated.

         elsif R_Typ = Standard_Wide_Character
           and then Nkind (Original_Node (N)) /= N_Op_Concat
         then
            for J in 1 .. Strlen loop
               if not In_Wide_Character_Range (Get_String_Char (Str, J)) then

                  --  If we are out of range, post error. This is one of the
                  --  very few places that we place the flag in the middle of
                  --  a token, right under the offending wide character.

                  --  This is not quite right, because characters in general
                  --  will take more than one character position ???

                  Error_Msg
                    ("literal out of range of type Standard.Wide_Character",
                     Source_Ptr (Int (Loc) + J));
                  return;
               end if;
            end loop;

         --  If the root type is not a standard character, then we will convert
         --  the string into an aggregate and will let the aggregate code do
         --  the checking. Standard Wide_Wide_Character is also OK here.

         else
            null;
         end if;

         --  See if the component type of the array corresponding to the string
         --  has compile time known bounds. If yes we can directly check
         --  whether the evaluation of the string will raise constraint error.
         --  Otherwise we need to transform the string literal into the
         --  corresponding character aggregate and let the aggregate
         --  code do the checking.

         if Is_Standard_Character_Type (R_Typ) then

            --  Check for the case of full range, where we are definitely OK

            if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
               return;
            end if;

            --  Here the range is not the complete base type range, so check

            declare
               Comp_Typ_Lo : constant Node_Id :=
                               Type_Low_Bound (Component_Type (Typ));
               Comp_Typ_Hi : constant Node_Id :=
                               Type_High_Bound (Component_Type (Typ));

               Char_Val : Uint;

            begin
               if Compile_Time_Known_Value (Comp_Typ_Lo)
                 and then Compile_Time_Known_Value (Comp_Typ_Hi)
               then
                  for J in 1 .. Strlen loop
                     Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));

                     if Char_Val < Expr_Value (Comp_Typ_Lo)
                       or else Char_Val > Expr_Value (Comp_Typ_Hi)
                     then
                        Apply_Compile_Time_Constraint_Error
                          (N, "character out of range?", CE_Range_Check_Failed,
                           Loc => Source_Ptr (Int (Loc) + J));
                     end if;
                  end loop;

                  return;
               end if;
            end;
         end if;
      end if;

      --  If we got here we meed to transform the string literal into the
      --  equivalent qualified positional array aggregate. This is rather
      --  heavy artillery for this situation, but it is hard work to avoid.

      declare
         Lits : constant List_Id    := New_List;
         P    : Source_Ptr := Loc + 1;
         C    : Char_Code;

      begin
         --  Build the character literals, we give them source locations that
         --  correspond to the string positions, which is a bit tricky given
         --  the possible presence of wide character escape sequences.

         for J in 1 .. Strlen loop
            C := Get_String_Char (Str, J);
            Set_Character_Literal_Name (C);

            Append_To (Lits,
              Make_Character_Literal (P,
                Chars              => Name_Find,
                Char_Literal_Value => UI_From_CC (C)));

            if In_Character_Range (C) then
               P := P + 1;

            --  Should we have a call to Skip_Wide here ???
            --  ???     else
            --             Skip_Wide (P);

            end if;
         end loop;

         Rewrite (N,
           Make_Qualified_Expression (Loc,
             Subtype_Mark => New_Reference_To (Typ, Loc),
             Expression   =>
               Make_Aggregate (Loc, Expressions => Lits)));

         Analyze_And_Resolve (N, Typ);
      end;
   end Resolve_String_Literal;

   -----------------------------
   -- Resolve_Subprogram_Info --
   -----------------------------

   procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
   begin
      Set_Etype (N, Typ);
   end Resolve_Subprogram_Info;

   -----------------------------
   -- Resolve_Type_Conversion --
   -----------------------------

   procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
      Conv_OK     : constant Boolean   := Conversion_OK (N);
      Operand     : constant Node_Id   := Expression (N);
      Operand_Typ : constant Entity_Id := Etype (Operand);
      Target_Typ  : constant Entity_Id := Etype (N);
      Rop         : Node_Id;
      Orig_N      : Node_Id;
      Orig_T      : Node_Id;

   begin
      if not Conv_OK
        and then not Valid_Conversion (N, Target_Typ, Operand)
      then
         return;
      end if;

      if Etype (Operand) = Any_Fixed then

         --  Mixed-mode operation involving a literal. Context must be a fixed
         --  type which is applied to the literal subsequently.

         if Is_Fixed_Point_Type (Typ) then
            Set_Etype (Operand, Universal_Real);

         elsif Is_Numeric_Type (Typ)
           and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
           and then (Etype (Right_Opnd (Operand)) = Universal_Real
                       or else
                     Etype (Left_Opnd  (Operand)) = Universal_Real)
         then
            --  Return if expression is ambiguous

            if Unique_Fixed_Point_Type (N) = Any_Type then
               return;

            --  If nothing else, the available fixed type is Duration

            else
               Set_Etype (Operand, Standard_Duration);
            end if;

            --  Resolve the real operand with largest available precision

            if Etype (Right_Opnd (Operand)) = Universal_Real then
               Rop := New_Copy_Tree (Right_Opnd (Operand));
            else
               Rop := New_Copy_Tree (Left_Opnd (Operand));
            end if;

            Resolve (Rop, Universal_Real);

            --  If the operand is a literal (it could be a non-static and
            --  illegal exponentiation) check whether the use of Duration
            --  is potentially inaccurate.

            if Nkind (Rop) = N_Real_Literal
              and then Realval (Rop) /= Ureal_0
              and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
            then
               Error_Msg_N
                 ("?universal real operand can only " &
                  "be interpreted as Duration!",
                  Rop);
               Error_Msg_N
                 ("\?precision will be lost in the conversion!", Rop);
            end if;

         elsif Is_Numeric_Type (Typ)
           and then Nkind (Operand) in N_Op
           and then Unique_Fixed_Point_Type (N) /= Any_Type
         then
            Set_Etype (Operand, Standard_Duration);

         else
            Error_Msg_N ("invalid context for mixed mode operation", N);
            Set_Etype (Operand, Any_Type);
            return;
         end if;
      end if;

      Resolve (Operand);

      --  Note: we do the Eval_Type_Conversion call before applying the
      --  required checks for a subtype conversion. This is important, since
      --  both are prepared under certain circumstances to change the type
      --  conversion to a constraint error node, but in the case of
      --  Eval_Type_Conversion this may reflect an illegality in the static
      --  case, and we would miss the illegality (getting only a warning
      --  message), if we applied the type conversion checks first.

      Eval_Type_Conversion (N);

      --  Even when evaluation is not possible, we may be able to simplify the
      --  conversion or its expression. This needs to be done before applying
      --  checks, since otherwise the checks may use the original expression
      --  and defeat the simplifications. This is specifically the case for
      --  elimination of the floating-point Truncation attribute in
      --  float-to-int conversions.

      Simplify_Type_Conversion (N);

      --  If after evaluation we still have a type conversion, then we may need
      --  to apply checks required for a subtype conversion.

      --  Skip these type conversion checks if universal fixed operands
      --  operands involved, since range checks are handled separately for
      --  these cases (in the appropriate Expand routines in unit Exp_Fixd).

      if Nkind (N) = N_Type_Conversion
        and then not Is_Generic_Type (Root_Type (Target_Typ))
        and then Target_Typ  /= Universal_Fixed
        and then Operand_Typ /= Universal_Fixed
      then
         Apply_Type_Conversion_Checks (N);
      end if;

      --  Issue warning for conversion of simple object to its own type. We
      --  have to test the original nodes, since they may have been rewritten
      --  by various optimizations.

      Orig_N := Original_Node (N);

      if Warn_On_Redundant_Constructs
        and then Comes_From_Source (Orig_N)
        and then Nkind (Orig_N) = N_Type_Conversion
        and then not In_Instance
      then
         Orig_N := Original_Node (Expression (Orig_N));
         Orig_T := Target_Typ;

         --  If the node is part of a larger expression, the Target_Type
         --  may not be the original type of the node if the context is a
         --  condition. Recover original type to see if conversion is needed.

         if Is_Boolean_Type (Orig_T)
          and then Nkind (Parent (N)) in N_Op
         then
            Orig_T := Etype (Parent (N));
         end if;

         if Is_Entity_Name (Orig_N)
           and then
             (Etype (Entity (Orig_N)) = Orig_T
                or else
                  (Ekind (Entity (Orig_N)) = E_Loop_Parameter
                    and then Covers (Orig_T, Etype (Entity (Orig_N)))))
         then
            --  One more check, do not give warning if the analyzed conversion
            --  has an expression with non-static bounds, and the bounds of the
            --  target are static. This avoids junk warnings in cases where the
            --  conversion is necessary to establish staticness, for example in
            --  a case statement.

            if not Is_OK_Static_Subtype (Operand_Typ)
              and then Is_OK_Static_Subtype (Target_Typ)
            then
               null;

            --  Here we give the redundant conversion warning

            else
               Error_Msg_Node_2 := Orig_T;
               Error_Msg_NE -- CODEFIX
                 ("?redundant conversion, & is of type &!",
                  N, Entity (Orig_N));
            end if;
         end if;
      end if;

      --  Ada 2005 (AI-251): Handle class-wide interface type conversions.
      --  No need to perform any interface conversion if the type of the
      --  expression coincides with the target type.

      if Ada_Version >= Ada_05
        and then Expander_Active
        and then Operand_Typ /= Target_Typ
      then
         declare
            Opnd   : Entity_Id := Operand_Typ;
            Target : Entity_Id := Target_Typ;

         begin
            if Is_Access_Type (Opnd) then
               Opnd := Designated_Type (Opnd);
            end if;

            if Is_Access_Type (Target_Typ) then
               Target := Designated_Type (Target);
            end if;

            if Opnd = Target then
               null;

            --  Conversion from interface type

            elsif Is_Interface (Opnd) then

               --  Ada 2005 (AI-217): Handle entities from limited views

               if From_With_Type (Opnd) then
                  Error_Msg_Qual_Level := 99;
                  Error_Msg_NE -- CODEFIX
                    ("missing WITH clause on package &", N,
                    Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
                  Error_Msg_N
                    ("type conversions require visibility of the full view",
                     N);

               elsif From_With_Type (Target)
                 and then not
                   (Is_Access_Type (Target_Typ)
                      and then Present (Non_Limited_View (Etype (Target))))
               then
                  Error_Msg_Qual_Level := 99;
                  Error_Msg_NE -- CODEFIX
                    ("missing WITH clause on package &", N,
                    Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
                  Error_Msg_N
                    ("type conversions require visibility of the full view",
                     N);

               else
                  Expand_Interface_Conversion (N, Is_Static => False);
               end if;

            --  Conversion to interface type

            elsif Is_Interface (Target) then

               --  Handle subtypes

               if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
                  Opnd := Etype (Opnd);
               end if;

               if not Interface_Present_In_Ancestor
                        (Typ   => Opnd,
                         Iface => Target)
               then
                  if Is_Class_Wide_Type (Opnd) then

                     --  The static analysis is not enough to know if the
                     --  interface is implemented or not. Hence we must pass
                     --  the work to the expander to generate code to evaluate
                     --  the conversion at run-time.

                     Expand_Interface_Conversion (N, Is_Static => False);

                  else
                     Error_Msg_Name_1 := Chars (Etype (Target));
                     Error_Msg_Name_2 := Chars (Opnd);
                     Error_Msg_N
                       ("wrong interface conversion (% is not a progenitor " &
                        "of %)", N);
                  end if;

               else
                  Expand_Interface_Conversion (N);
               end if;
            end if;
         end;
      end if;
   end Resolve_Type_Conversion;

   ----------------------
   -- Resolve_Unary_Op --
   ----------------------

   procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
      B_Typ : constant Entity_Id := Base_Type (Typ);
      R     : constant Node_Id   := Right_Opnd (N);
      OK    : Boolean;
      Lo    : Uint;
      Hi    : Uint;

   begin
      --  Deal with intrinsic unary operators

      if Comes_From_Source (N)
        and then Ekind (Entity (N)) = E_Function
        and then Is_Imported (Entity (N))
        and then Is_Intrinsic_Subprogram (Entity (N))
      then
         Resolve_Intrinsic_Unary_Operator (N, Typ);
         return;
      end if;

      --  Deal with universal cases

      if Etype (R) = Universal_Integer
           or else
         Etype (R) = Universal_Real
      then
         Check_For_Visible_Operator (N, B_Typ);
      end if;

      Set_Etype (N, B_Typ);
      Resolve (R, B_Typ);

      --  Generate warning for expressions like abs (x mod 2)

      if Warn_On_Redundant_Constructs
        and then Nkind (N) = N_Op_Abs
      then
         Determine_Range (Right_Opnd (N), OK, Lo, Hi);

         if OK and then Hi >= Lo and then Lo >= 0 then
            Error_Msg_N -- CODEFIX
             ("?abs applied to known non-negative value has no effect", N);
         end if;
      end if;

      --  Deal with reference generation

      Check_Unset_Reference (R);
      Generate_Operator_Reference (N, B_Typ);
      Eval_Unary_Op (N);

      --  Set overflow checking bit. Much cleverer code needed here eventually
      --  and perhaps the Resolve routines should be separated for the various
      --  arithmetic operations, since they will need different processing ???

      if Nkind (N) in N_Op then
         if not Overflow_Checks_Suppressed (Etype (N)) then
            Enable_Overflow_Check (N);
         end if;
      end if;

      --  Generate warning for expressions like -5 mod 3 for integers. No need
      --  to worry in the floating-point case, since parens do not affect the
      --  result so there is no point in giving in a warning.

      declare
         Norig : constant Node_Id := Original_Node (N);
         Rorig : Node_Id;
         Val   : Uint;
         HB    : Uint;
         LB    : Uint;
         Lval  : Uint;
         Opnd  : Node_Id;

      begin
         if Warn_On_Questionable_Missing_Parens
           and then Comes_From_Source (Norig)
           and then Is_Integer_Type (Typ)
           and then Nkind (Norig) = N_Op_Minus
         then
            Rorig := Original_Node (Right_Opnd (Norig));

            --  We are looking for cases where the right operand is not
            --  parenthesized, and is a binary operator, multiply, divide, or
            --  mod. These are the cases where the grouping can affect results.

            if Paren_Count (Rorig) = 0
              and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
            then
               --  For mod, we always give the warning, since the value is
               --  affected by the parenthesization (e.g. (-5) mod 315 /=
               --  -(5 mod 315)). But for the other cases, the only concern is
               --  overflow, e.g. for the case of 8 big signed (-(2 * 64)
               --  overflows, but (-2) * 64 does not). So we try to give the
               --  message only when overflow is possible.

               if Nkind (Rorig) /= N_Op_Mod
                 and then Compile_Time_Known_Value (R)
               then
                  Val := Expr_Value (R);

                  if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
                     HB := Expr_Value (Type_High_Bound (Typ));
                  else
                     HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
                  end if;

                  if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
                     LB := Expr_Value (Type_Low_Bound (Typ));
                  else
                     LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
                  end if;

                  --  Note that the test below is deliberately excluding the
                  --  largest negative number, since that is a potentially
                  --  troublesome case (e.g. -2 * x, where the result is the
                  --  largest negative integer has an overflow with 2 * x).

                  if Val > LB and then Val <= HB then
                     return;
                  end if;
               end if;

               --  For the multiplication case, the only case we have to worry
               --  about is when (-a)*b is exactly the largest negative number
               --  so that -(a*b) can cause overflow. This can only happen if
               --  a is a power of 2, and more generally if any operand is a
               --  constant that is not a power of 2, then the parentheses
               --  cannot affect whether overflow occurs. We only bother to
               --  test the left most operand

               --  Loop looking at left operands for one that has known value

               Opnd := Rorig;
               Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
                  if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
                     Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));

                     --  Operand value of 0 or 1 skips warning

                     if Lval <= 1 then
                        return;

                     --  Otherwise check power of 2, if power of 2, warn, if
                     --  anything else, skip warning.

                     else
                        while Lval /= 2 loop
                           if Lval mod 2 = 1 then
                              return;
                           else
                              Lval := Lval / 2;
                           end if;
                        end loop;

                        exit Opnd_Loop;
                     end if;
                  end if;

                  --  Keep looking at left operands

                  Opnd := Left_Opnd (Opnd);
               end loop Opnd_Loop;

               --  For rem or "/" we can only have a problematic situation
               --  if the divisor has a value of minus one or one. Otherwise
               --  overflow is impossible (divisor > 1) or we have a case of
               --  division by zero in any case.

               if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
                 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
                 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
               then
                  return;
               end if;

               --  If we fall through warning should be issued

               Error_Msg_N
                 ("?unary minus expression should be parenthesized here!", N);
            end if;
         end if;
      end;
   end Resolve_Unary_Op;

   ----------------------------------
   -- Resolve_Unchecked_Expression --
   ----------------------------------

   procedure Resolve_Unchecked_Expression
     (N   : Node_Id;
      Typ : Entity_Id)
   is
   begin
      Resolve (Expression (N), Typ, Suppress => All_Checks);
      Set_Etype (N, Typ);
   end Resolve_Unchecked_Expression;

   ---------------------------------------
   -- Resolve_Unchecked_Type_Conversion --
   ---------------------------------------

   procedure Resolve_Unchecked_Type_Conversion
     (N   : Node_Id;
      Typ : Entity_Id)
   is
      pragma Warnings (Off, Typ);

      Operand   : constant Node_Id   := Expression (N);
      Opnd_Type : constant Entity_Id := Etype (Operand);

   begin
      --  Resolve operand using its own type

      Resolve (Operand, Opnd_Type);
      Eval_Unchecked_Conversion (N);

   end Resolve_Unchecked_Type_Conversion;

   ------------------------------
   -- Rewrite_Operator_As_Call --
   ------------------------------

   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
      Loc     : constant Source_Ptr := Sloc (N);
      Actuals : constant List_Id    := New_List;
      New_N   : Node_Id;

   begin
      if Nkind (N) in  N_Binary_Op then
         Append (Left_Opnd (N), Actuals);
      end if;

      Append (Right_Opnd (N), Actuals);

      New_N :=
        Make_Function_Call (Sloc => Loc,
          Name => New_Occurrence_Of (Nam, Loc),
          Parameter_Associations => Actuals);

      Preserve_Comes_From_Source (New_N, N);
      Preserve_Comes_From_Source (Name (New_N), N);
      Rewrite (N, New_N);
      Set_Etype (N, Etype (Nam));
   end Rewrite_Operator_As_Call;

   ------------------------------
   -- Rewrite_Renamed_Operator --
   ------------------------------

   procedure Rewrite_Renamed_Operator
     (N   : Node_Id;
      Op  : Entity_Id;
      Typ : Entity_Id)
   is
      Nam       : constant Name_Id := Chars (Op);
      Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
      Op_Node   : Node_Id;

   begin
      --  Rewrite the operator node using the real operator, not its renaming.
      --  Exclude user-defined intrinsic operations of the same name, which are
      --  treated separately and rewritten as calls.

      if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
         Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
         Set_Chars      (Op_Node, Nam);
         Set_Etype      (Op_Node, Etype (N));
         Set_Entity     (Op_Node, Op);
         Set_Right_Opnd (Op_Node, Right_Opnd (N));

         --  Indicate that both the original entity and its renaming are
         --  referenced at this point.

         Generate_Reference (Entity (N), N);
         Generate_Reference (Op, N);

         if Is_Binary then
            Set_Left_Opnd  (Op_Node, Left_Opnd  (N));
         end if;

         Rewrite (N, Op_Node);

         --  If the context type is private, add the appropriate conversions
         --  so that the operator is applied to the full view. This is done
         --  in the routines that resolve intrinsic operators,

         if Is_Intrinsic_Subprogram (Op)
           and then Is_Private_Type (Typ)
         then
            case Nkind (N) is
               when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
                    N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
                  Resolve_Intrinsic_Operator (N, Typ);

               when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
                  Resolve_Intrinsic_Unary_Operator (N, Typ);

               when others =>
                  Resolve (N, Typ);
            end case;
         end if;

      elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then

         --  Operator renames a user-defined operator of the same name. Use
         --  the original operator in the node, which is the one that Gigi
         --  knows about.

         Set_Entity (N, Op);
         Set_Is_Overloaded (N, False);
      end if;
   end Rewrite_Renamed_Operator;

   -----------------------
   -- Set_Slice_Subtype --
   -----------------------

   --  Build an implicit subtype declaration to represent the type delivered
   --  by the slice. This is an abbreviated version of an array subtype. We
   --  define an index subtype for the slice, using either the subtype name
   --  or the discrete range of the slice. To be consistent with index usage
   --  elsewhere, we create a list header to hold the single index. This list
   --  is not otherwise attached to the syntax tree.

   procedure Set_Slice_Subtype (N : Node_Id) is
      Loc           : constant Source_Ptr := Sloc (N);
      Index_List    : constant List_Id    := New_List;
      Index         : Node_Id;
      Index_Subtype : Entity_Id;
      Index_Type    : Entity_Id;
      Slice_Subtype : Entity_Id;
      Drange        : constant Node_Id := Discrete_Range (N);

   begin
      if Is_Entity_Name (Drange) then
         Index_Subtype := Entity (Drange);

      else
         --  We force the evaluation of a range. This is definitely needed in
         --  the renamed case, and seems safer to do unconditionally. Note in
         --  any case that since we will create and insert an Itype referring
         --  to this range, we must make sure any side effect removal actions
         --  are inserted before the Itype definition.

         if Nkind (Drange) = N_Range then
            Force_Evaluation (Low_Bound (Drange));
            Force_Evaluation (High_Bound (Drange));
         end if;

         Index_Type := Base_Type (Etype (Drange));

         Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);

         --  Take a new copy of Drange (where bounds have been rewritten to
         --  reference side-effect-vree names). Using a separate tree ensures
         --  that further expansion (e.g while rewriting a slice assignment
         --  into a FOR loop) does not attempt to remove side effects on the
         --  bounds again (which would cause the bounds in the index subtype
         --  definition to refer to temporaries before they are defined) (the
         --  reason is that some names are considered side effect free here
         --  for the subtype, but not in the context of a loop iteration
         --  scheme).

         Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
         Set_Etype        (Index_Subtype, Index_Type);
         Set_Size_Info    (Index_Subtype, Index_Type);
         Set_RM_Size      (Index_Subtype, RM_Size (Index_Type));
      end if;

      Slice_Subtype := Create_Itype (E_Array_Subtype, N);

      Index := New_Occurrence_Of (Index_Subtype, Loc);
      Set_Etype (Index, Index_Subtype);
      Append (Index, Index_List);

      Set_First_Index    (Slice_Subtype, Index);
      Set_Etype          (Slice_Subtype, Base_Type (Etype (N)));
      Set_Is_Constrained (Slice_Subtype, True);

      Check_Compile_Time_Size (Slice_Subtype);

      --  The Etype of the existing Slice node is reset to this slice subtype.
      --  Its bounds are obtained from its first index.

      Set_Etype (N, Slice_Subtype);

      --  For packed slice subtypes, freeze immediately (except in the
      --  case of being in a "spec expression" where we never freeze
      --  when we first see the expression).

      if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
         Freeze_Itype (Slice_Subtype, N);

      --  For all other cases insert an itype reference in the slice's actions
      --  so that the itype is frozen at the proper place in the tree (i.e. at
      --  the point where actions for the slice are analyzed). Note that this
      --  is different from freezing the itype immediately, which might be
      --  premature (e.g. if the slice is within a transient scope).

      else
         Ensure_Defined (Typ => Slice_Subtype, N => N);
      end if;
   end Set_Slice_Subtype;

   --------------------------------
   -- Set_String_Literal_Subtype --
   --------------------------------

   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
      Loc        : constant Source_Ptr := Sloc (N);
      Low_Bound  : constant Node_Id :=
                     Type_Low_Bound (Etype (First_Index (Typ)));
      Subtype_Id : Entity_Id;

   begin
      if Nkind (N) /= N_String_Literal then
         return;
      end if;

      Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
      Set_String_Literal_Length (Subtype_Id, UI_From_Int
                                               (String_Length (Strval (N))));
      Set_Etype          (Subtype_Id, Base_Type (Typ));
      Set_Is_Constrained (Subtype_Id);
      Set_Etype          (N, Subtype_Id);

      if Is_OK_Static_Expression (Low_Bound) then

      --  The low bound is set from the low bound of the corresponding
      --  index type. Note that we do not store the high bound in the
      --  string literal subtype, but it can be deduced if necessary
      --  from the length and the low bound.

         Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);

      else
         Set_String_Literal_Low_Bound
           (Subtype_Id, Make_Integer_Literal (Loc, 1));
         Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);

         --  Build bona fide subtype for the string, and wrap it in an
         --  unchecked conversion, because the backend expects the
         --  String_Literal_Subtype to have a static lower bound.

         declare
            Index_List    : constant List_Id    := New_List;
            Index_Type    : constant Entity_Id := Etype (First_Index (Typ));
            High_Bound    : constant Node_Id :=
                               Make_Op_Add (Loc,
                                  Left_Opnd => New_Copy_Tree (Low_Bound),
                                  Right_Opnd =>
                                    Make_Integer_Literal (Loc,
                                      String_Length (Strval (N)) - 1));
            Array_Subtype : Entity_Id;
            Index_Subtype : Entity_Id;
            Drange        : Node_Id;
            Index         : Node_Id;

         begin
            Index_Subtype :=
              Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
            Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
            Set_Scalar_Range (Index_Subtype, Drange);
            Set_Parent (Drange, N);
            Analyze_And_Resolve (Drange, Index_Type);

            --  In the context, the Index_Type may already have a constraint,
            --  so use common base type on string subtype. The base type may
            --  be used when generating attributes of the string, for example
            --  in the context of a slice assignment.

            Set_Etype        (Index_Subtype, Base_Type (Index_Type));
            Set_Size_Info    (Index_Subtype, Index_Type);
            Set_RM_Size      (Index_Subtype, RM_Size (Index_Type));

            Array_Subtype := Create_Itype (E_Array_Subtype, N);

            Index := New_Occurrence_Of (Index_Subtype, Loc);
            Set_Etype (Index, Index_Subtype);
            Append (Index, Index_List);

            Set_First_Index    (Array_Subtype, Index);
            Set_Etype          (Array_Subtype, Base_Type (Typ));
            Set_Is_Constrained (Array_Subtype, True);

            Rewrite (N,
              Make_Unchecked_Type_Conversion (Loc,
                Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
                Expression => Relocate_Node (N)));
            Set_Etype (N, Array_Subtype);
         end;
      end if;
   end Set_String_Literal_Subtype;

   ------------------------------
   -- Simplify_Type_Conversion --
   ------------------------------

   procedure Simplify_Type_Conversion (N : Node_Id) is
   begin
      if Nkind (N) = N_Type_Conversion then
         declare
            Operand    : constant Node_Id   := Expression (N);
            Target_Typ : constant Entity_Id := Etype (N);
            Opnd_Typ   : constant Entity_Id := Etype (Operand);

         begin
            if Is_Floating_Point_Type (Opnd_Typ)
              and then
                (Is_Integer_Type (Target_Typ)
                   or else (Is_Fixed_Point_Type (Target_Typ)
                              and then Conversion_OK (N)))
              and then Nkind (Operand) = N_Attribute_Reference
              and then Attribute_Name (Operand) = Name_Truncation

            --  Special processing required if the conversion is the expression
            --  of a Truncation attribute reference. In this case we replace:

            --     ityp (ftyp'Truncation (x))

            --  by

            --     ityp (x)

            --  with the Float_Truncate flag set, which is more efficient

            then
               Rewrite (Operand,
                 Relocate_Node (First (Expressions (Operand))));
               Set_Float_Truncate (N, True);
            end if;
         end;
      end if;
   end Simplify_Type_Conversion;

   -----------------------------
   -- Unique_Fixed_Point_Type --
   -----------------------------

   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
      T1   : Entity_Id := Empty;
      T2   : Entity_Id;
      Item : Node_Id;
      Scop : Entity_Id;

      procedure Fixed_Point_Error;
      --  Give error messages for true ambiguity. Messages are posted on node
      --  N, and entities T1, T2 are the possible interpretations.

      -----------------------
      -- Fixed_Point_Error --
      -----------------------

      procedure Fixed_Point_Error is
      begin
         Error_Msg_N ("ambiguous universal_fixed_expression", N);
         Error_Msg_NE ("\\possible interpretation as}", N, T1);
         Error_Msg_NE ("\\possible interpretation as}", N, T2);
      end Fixed_Point_Error;

   --  Start of processing for Unique_Fixed_Point_Type

   begin
      --  The operations on Duration are visible, so Duration is always a
      --  possible interpretation.

      T1 := Standard_Duration;

      --  Look for fixed-point types in enclosing scopes

      Scop := Current_Scope;
      while Scop /= Standard_Standard loop
         T2 := First_Entity (Scop);
         while Present (T2) loop
            if Is_Fixed_Point_Type (T2)
              and then Current_Entity (T2) = T2
              and then Scope (Base_Type (T2)) = Scop
            then
               if Present (T1) then
                  Fixed_Point_Error;
                  return Any_Type;
               else
                  T1 := T2;
               end if;
            end if;

            Next_Entity (T2);
         end loop;

         Scop := Scope (Scop);
      end loop;

      --  Look for visible fixed type declarations in the context

      Item := First (Context_Items (Cunit (Current_Sem_Unit)));
      while Present (Item) loop
         if Nkind (Item) = N_With_Clause then
            Scop := Entity (Name (Item));
            T2 := First_Entity (Scop);
            while Present (T2) loop
               if Is_Fixed_Point_Type (T2)
                 and then Scope (Base_Type (T2)) = Scop
                 and then (Is_Potentially_Use_Visible (T2)
                             or else In_Use (T2))
               then
                  if Present (T1) then
                     Fixed_Point_Error;
                     return Any_Type;
                  else
                     T1 := T2;
                  end if;
               end if;

               Next_Entity (T2);
            end loop;
         end if;

         Next (Item);
      end loop;

      if Nkind (N) = N_Real_Literal then
         Error_Msg_NE ("?real literal interpreted as }!", N, T1);
      else
         Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
      end if;

      return T1;
   end Unique_Fixed_Point_Type;

   ----------------------
   -- Valid_Conversion --
   ----------------------

   function Valid_Conversion
     (N       : Node_Id;
      Target  : Entity_Id;
      Operand : Node_Id) return Boolean
   is
      Target_Type : constant Entity_Id := Base_Type (Target);
      Opnd_Type   : Entity_Id := Etype (Operand);

      function Conversion_Check
        (Valid : Boolean;
         Msg   : String) return Boolean;
      --  Little routine to post Msg if Valid is False, returns Valid value

      function Valid_Tagged_Conversion
        (Target_Type : Entity_Id;
         Opnd_Type   : Entity_Id) return Boolean;
      --  Specifically test for validity of tagged conversions

      function Valid_Array_Conversion return Boolean;
      --  Check index and component conformance, and accessibility levels
      --  if the component types are anonymous access types (Ada 2005)

      ----------------------
      -- Conversion_Check --
      ----------------------

      function Conversion_Check
        (Valid : Boolean;
         Msg   : String) return Boolean
      is
      begin
         if not Valid then
            Error_Msg_N (Msg, Operand);
         end if;

         return Valid;
      end Conversion_Check;

      ----------------------------
      -- Valid_Array_Conversion --
      ----------------------------

      function Valid_Array_Conversion return Boolean
      is
         Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
         Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);

         Opnd_Index      : Node_Id;
         Opnd_Index_Type : Entity_Id;

         Target_Comp_Type : constant Entity_Id :=
                              Component_Type (Target_Type);
         Target_Comp_Base : constant Entity_Id :=
                              Base_Type (Target_Comp_Type);

         Target_Index      : Node_Id;
         Target_Index_Type : Entity_Id;

      begin
         --  Error if wrong number of dimensions

         if
           Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
         then
            Error_Msg_N
              ("incompatible number of dimensions for conversion", Operand);
            return False;

         --  Number of dimensions matches

         else
            --  Loop through indexes of the two arrays

            Target_Index := First_Index (Target_Type);
            Opnd_Index   := First_Index (Opnd_Type);
            while Present (Target_Index) and then Present (Opnd_Index) loop
               Target_Index_Type := Etype (Target_Index);
               Opnd_Index_Type   := Etype (Opnd_Index);

               --  Error if index types are incompatible

               if not (Is_Integer_Type (Target_Index_Type)
                       and then Is_Integer_Type (Opnd_Index_Type))
                 and then (Root_Type (Target_Index_Type)
                           /= Root_Type (Opnd_Index_Type))
               then
                  Error_Msg_N
                    ("incompatible index types for array conversion",
                     Operand);
                  return False;
               end if;

               Next_Index (Target_Index);
               Next_Index (Opnd_Index);
            end loop;

            --  If component types have same base type, all set

            if Target_Comp_Base  = Opnd_Comp_Base then
               null;

               --  Here if base types of components are not the same. The only
               --  time this is allowed is if we have anonymous access types.

               --  The conversion of arrays of anonymous access types can lead
               --  to dangling pointers. AI-392 formalizes the accessibility
               --  checks that must be applied to such conversions to prevent
               --  out-of-scope references.

            elsif
              Ekind_In (Target_Comp_Base, E_Anonymous_Access_Type,
                                          E_Anonymous_Access_Subprogram_Type)
              and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
              and then
                Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
            then
               if Type_Access_Level (Target_Type) <
                   Type_Access_Level (Opnd_Type)
               then
                  if In_Instance_Body then
                     Error_Msg_N ("?source array type " &
                       "has deeper accessibility level than target", Operand);
                     Error_Msg_N ("\?Program_Error will be raised at run time",
                         Operand);
                     Rewrite (N,
                       Make_Raise_Program_Error (Sloc (N),
                         Reason => PE_Accessibility_Check_Failed));
                     Set_Etype (N, Target_Type);
                     return False;

                  --  Conversion not allowed because of accessibility levels

                  else
                     Error_Msg_N ("source array type " &
                       "has deeper accessibility level than target", Operand);
                     return False;
                  end if;
               else
                  null;
               end if;

            --  All other cases where component base types do not match

            else
               Error_Msg_N
                 ("incompatible component types for array conversion",
                  Operand);
               return False;
            end if;

            --  Check that component subtypes statically match. For numeric
            --  types this means that both must be either constrained or
            --  unconstrained. For enumeration types the bounds must match.
            --  All of this is checked in Subtypes_Statically_Match.

            if not Subtypes_Statically_Match
                            (Target_Comp_Type, Opnd_Comp_Type)
            then
               Error_Msg_N
                 ("component subtypes must statically match", Operand);
               return False;
            end if;
         end if;

         return True;
      end Valid_Array_Conversion;

      -----------------------------
      -- Valid_Tagged_Conversion --
      -----------------------------

      function Valid_Tagged_Conversion
        (Target_Type : Entity_Id;
         Opnd_Type   : Entity_Id) return Boolean
      is
      begin
         --  Upward conversions are allowed (RM 4.6(22))

         if Covers (Target_Type, Opnd_Type)
           or else Is_Ancestor (Target_Type, Opnd_Type)
         then
            return True;

         --  Downward conversion are allowed if the operand is class-wide
         --  (RM 4.6(23)).

         elsif Is_Class_Wide_Type (Opnd_Type)
           and then Covers (Opnd_Type, Target_Type)
         then
            return True;

         elsif Covers (Opnd_Type, Target_Type)
           or else Is_Ancestor (Opnd_Type, Target_Type)
         then
            return
              Conversion_Check (False,
                "downward conversion of tagged objects not allowed");

         --  Ada 2005 (AI-251): The conversion to/from interface types is
         --  always valid

         elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
            return True;

         --  If the operand is a class-wide type obtained through a limited_
         --  with clause, and the context includes the non-limited view, use
         --  it to determine whether the conversion is legal.

         elsif Is_Class_Wide_Type (Opnd_Type)
           and then From_With_Type (Opnd_Type)
           and then Present (Non_Limited_View (Etype (Opnd_Type)))
           and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
         then
            return True;

         elsif Is_Access_Type (Opnd_Type)
           and then Is_Interface (Directly_Designated_Type (Opnd_Type))
         then
            return True;

         else
            Error_Msg_NE
              ("invalid tagged conversion, not compatible with}",
               N, First_Subtype (Opnd_Type));
            return False;
         end if;
      end Valid_Tagged_Conversion;

   --  Start of processing for Valid_Conversion

   begin
      Check_Parameterless_Call (Operand);

      if Is_Overloaded (Operand) then
         declare
            I   : Interp_Index;
            I1  : Interp_Index;
            It  : Interp;
            It1 : Interp;
            N1  : Entity_Id;
            T1  : Entity_Id;

         begin
            --  Remove procedure calls, which syntactically cannot appear in
            --  this context, but which cannot be removed by type checking,
            --  because the context does not impose a type.

            --  When compiling for VMS, spurious ambiguities can be produced
            --  when arithmetic operations have a literal operand and return
            --  System.Address or a descendant of it. These ambiguities are
            --  otherwise resolved by the context, but for conversions there
            --  is no context type and the removal of the spurious operations
            --  must be done explicitly here.

            --  The node may be labelled overloaded, but still contain only
            --  one interpretation because others were discarded in previous
            --  filters. If this is the case, retain the single interpretation
            --  if legal.

            Get_First_Interp (Operand, I, It);
            Opnd_Type := It.Typ;
            Get_Next_Interp (I, It);

            if Present (It.Typ)
              and then Opnd_Type /= Standard_Void_Type
            then
               --  More than one candidate interpretation is available

               Get_First_Interp (Operand, I, It);
               while Present (It.Typ) loop
                  if It.Typ = Standard_Void_Type then
                     Remove_Interp (I);
                  end if;

                  if Present (System_Aux_Id)
                    and then Is_Descendent_Of_Address (It.Typ)
                  then
                     Remove_Interp (I);
                  end if;

                  Get_Next_Interp (I, It);
               end loop;
            end if;

            Get_First_Interp (Operand, I, It);
            I1  := I;
            It1 := It;

            if No (It.Typ) then
               Error_Msg_N ("illegal operand in conversion", Operand);
               return False;
            end if;

            Get_Next_Interp (I, It);

            if Present (It.Typ) then
               N1  := It1.Nam;
               T1  := It1.Typ;
               It1 :=  Disambiguate (Operand, I1, I, Any_Type);

               if It1 = No_Interp then
                  Error_Msg_N ("ambiguous operand in conversion", Operand);

                  --  If the interpretation involves a standard operator, use
                  --  the location of the type, which may be user-defined.

                  if Sloc (It.Nam) = Standard_Location then
                     Error_Msg_Sloc := Sloc (It.Typ);
                  else
                     Error_Msg_Sloc := Sloc (It.Nam);
                  end if;

                  Error_Msg_N -- CODEFIX
                    ("\\possible interpretation#!", Operand);

                  if Sloc (N1) = Standard_Location then
                     Error_Msg_Sloc := Sloc (T1);
                  else
                     Error_Msg_Sloc := Sloc (N1);
                  end if;

                  Error_Msg_N -- CODEFIX
                    ("\\possible interpretation#!", Operand);

                  return False;
               end if;
            end if;

            Set_Etype (Operand, It1.Typ);
            Opnd_Type := It1.Typ;
         end;
      end if;

      --  Numeric types

      if Is_Numeric_Type (Target_Type)  then

         --  A universal fixed expression can be converted to any numeric type

         if Opnd_Type = Universal_Fixed then
            return True;

         --  Also no need to check when in an instance or inlined body, because
         --  the legality has been established when the template was analyzed.
         --  Furthermore, numeric conversions may occur where only a private
         --  view of the operand type is visible at the instantiation point.
         --  This results in a spurious error if we check that the operand type
         --  is a numeric type.

         --  Note: in a previous version of this unit, the following tests were
         --  applied only for generated code (Comes_From_Source set to False),
         --  but in fact the test is required for source code as well, since
         --  this situation can arise in source code.

         elsif In_Instance or else In_Inlined_Body then
               return True;

         --  Otherwise we need the conversion check

         else
            return Conversion_Check
                    (Is_Numeric_Type (Opnd_Type),
                     "illegal operand for numeric conversion");
         end if;

      --  Array types

      elsif Is_Array_Type (Target_Type) then
         if not Is_Array_Type (Opnd_Type)
           or else Opnd_Type = Any_Composite
           or else Opnd_Type = Any_String
         then
            Error_Msg_N
              ("illegal operand for array conversion", Operand);
            return False;
         else
            return Valid_Array_Conversion;
         end if;

      --  Ada 2005 (AI-251): Anonymous access types where target references an
      --  interface type.

      elsif Ekind_In (Target_Type, E_General_Access_Type,
                                   E_Anonymous_Access_Type)
        and then Is_Interface (Directly_Designated_Type (Target_Type))
      then
         --  Check the static accessibility rule of 4.6(17). Note that the
         --  check is not enforced when within an instance body, since the
         --  RM requires such cases to be caught at run time.

         if Ekind (Target_Type) /= E_Anonymous_Access_Type then
            if Type_Access_Level (Opnd_Type) >
               Type_Access_Level (Target_Type)
            then
               --  In an instance, this is a run-time check, but one we know
               --  will fail, so generate an appropriate warning. The raise
               --  will be generated by Expand_N_Type_Conversion.

               if In_Instance_Body then
                  Error_Msg_N
                    ("?cannot convert local pointer to non-local access type",
                     Operand);
                  Error_Msg_N
                    ("\?Program_Error will be raised at run time", Operand);
               else
                  Error_Msg_N
                    ("cannot convert local pointer to non-local access type",
                     Operand);
                  return False;
               end if;

            --  Special accessibility checks are needed in the case of access
            --  discriminants declared for a limited type.

            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
              and then not Is_Local_Anonymous_Access (Opnd_Type)
            then
               --  When the operand is a selected access discriminant the check
               --  needs to be made against the level of the object denoted by
               --  the prefix of the selected name (Object_Access_Level handles
               --  checking the prefix of the operand for this case).

               if Nkind (Operand) = N_Selected_Component
                 and then Object_Access_Level (Operand) >
                          Type_Access_Level (Target_Type)
               then
                  --  In an instance, this is a run-time check, but one we know
                  --  will fail, so generate an appropriate warning. The raise
                  --  will be generated by Expand_N_Type_Conversion.

                  if In_Instance_Body then
                     Error_Msg_N
                       ("?cannot convert access discriminant to non-local" &
                        " access type", Operand);
                     Error_Msg_N
                       ("\?Program_Error will be raised at run time", Operand);
                  else
                     Error_Msg_N
                       ("cannot convert access discriminant to non-local" &
                        " access type", Operand);
                     return False;
                  end if;
               end if;

               --  The case of a reference to an access discriminant from
               --  within a limited type declaration (which will appear as
               --  a discriminal) is always illegal because the level of the
               --  discriminant is considered to be deeper than any (nameable)
               --  access type.

               if Is_Entity_Name (Operand)
                 and then not Is_Local_Anonymous_Access (Opnd_Type)
                 and then
                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
                 and then Present (Discriminal_Link (Entity (Operand)))
               then
                  Error_Msg_N
                    ("discriminant has deeper accessibility level than target",
                     Operand);
                  return False;
               end if;
            end if;
         end if;

         return True;

      --  General and anonymous access types

      elsif Ekind_In (Target_Type, E_General_Access_Type,
                                   E_Anonymous_Access_Type)
          and then
            Conversion_Check
              (Is_Access_Type (Opnd_Type)
                and then not
                  Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
                                       E_Access_Protected_Subprogram_Type),
               "must be an access-to-object type")
      then
         if Is_Access_Constant (Opnd_Type)
           and then not Is_Access_Constant (Target_Type)
         then
            Error_Msg_N
              ("access-to-constant operand type not allowed", Operand);
            return False;
         end if;

         --  Check the static accessibility rule of 4.6(17). Note that the
         --  check is not enforced when within an instance body, since the RM
         --  requires such cases to be caught at run time.

         if Ekind (Target_Type) /= E_Anonymous_Access_Type
           or else Is_Local_Anonymous_Access (Target_Type)
         then
            if Type_Access_Level (Opnd_Type)
              > Type_Access_Level (Target_Type)
            then
               --  In an instance, this is a run-time check, but one we know
               --  will fail, so generate an appropriate warning. The raise
               --  will be generated by Expand_N_Type_Conversion.

               if In_Instance_Body then
                  Error_Msg_N
                    ("?cannot convert local pointer to non-local access type",
                     Operand);
                  Error_Msg_N
                    ("\?Program_Error will be raised at run time", Operand);

               else
                  --  Avoid generation of spurious error message

                  if not Error_Posted (N) then
                     Error_Msg_N
                      ("cannot convert local pointer to non-local access type",
                       Operand);
                  end if;

                  return False;
               end if;

            --  Special accessibility checks are needed in the case of access
            --  discriminants declared for a limited type.

            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
              and then not Is_Local_Anonymous_Access (Opnd_Type)
            then
               --  When the operand is a selected access discriminant the check
               --  needs to be made against the level of the object denoted by
               --  the prefix of the selected name (Object_Access_Level handles
               --  checking the prefix of the operand for this case).

               if Nkind (Operand) = N_Selected_Component
                 and then Object_Access_Level (Operand) >
                          Type_Access_Level (Target_Type)
               then
                  --  In an instance, this is a run-time check, but one we know
                  --  will fail, so generate an appropriate warning. The raise
                  --  will be generated by Expand_N_Type_Conversion.

                  if In_Instance_Body then
                     Error_Msg_N
                       ("?cannot convert access discriminant to non-local" &
                        " access type", Operand);
                     Error_Msg_N
                       ("\?Program_Error will be raised at run time",
                        Operand);

                  else
                     Error_Msg_N
                       ("cannot convert access discriminant to non-local" &
                        " access type", Operand);
                     return False;
                  end if;
               end if;

               --  The case of a reference to an access discriminant from
               --  within a limited type declaration (which will appear as
               --  a discriminal) is always illegal because the level of the
               --  discriminant is considered to be deeper than any (nameable)
               --  access type.

               if Is_Entity_Name (Operand)
                 and then
                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
                 and then Present (Discriminal_Link (Entity (Operand)))
               then
                  Error_Msg_N
                    ("discriminant has deeper accessibility level than target",
                     Operand);
                  return False;
               end if;
            end if;
         end if;

         --  In the presence of limited_with clauses we have to use non-limited
         --  views, if available.

         Check_Limited : declare
            function Full_Designated_Type (T : Entity_Id) return Entity_Id;
            --  Helper function to handle limited views

            --------------------------
            -- Full_Designated_Type --
            --------------------------

            function Full_Designated_Type (T : Entity_Id) return Entity_Id is
               Desig : constant Entity_Id := Designated_Type (T);

            begin
               --  Handle the limited view of a type

               if Is_Incomplete_Type (Desig)
                 and then From_With_Type (Desig)
                 and then Present (Non_Limited_View (Desig))
               then
                  return Available_View (Desig);
               else
                  return Desig;
               end if;
            end Full_Designated_Type;

            --  Local Declarations

            Target : constant Entity_Id := Full_Designated_Type (Target_Type);
            Opnd   : constant Entity_Id := Full_Designated_Type (Opnd_Type);

            Same_Base : constant Boolean :=
                          Base_Type (Target) = Base_Type (Opnd);

         --  Start of processing for Check_Limited

         begin
            if Is_Tagged_Type (Target) then
               return Valid_Tagged_Conversion (Target, Opnd);

            else
               if not Same_Base then
                  Error_Msg_NE
                    ("target designated type not compatible with }",
                     N, Base_Type (Opnd));
                  return False;

               --  Ada 2005 AI-384: legality rule is symmetric in both
               --  designated types. The conversion is legal (with possible
               --  constraint check) if either designated type is
               --  unconstrained.

               elsif Subtypes_Statically_Match (Target, Opnd)
                 or else
                   (Has_Discriminants (Target)
                     and then
                      (not Is_Constrained (Opnd)
                        or else not Is_Constrained (Target)))
               then
                  --  Special case, if Value_Size has been used to make the
                  --  sizes different, the conversion is not allowed even
                  --  though the subtypes statically match.

                  if Known_Static_RM_Size (Target)
                    and then Known_Static_RM_Size (Opnd)
                    and then RM_Size (Target) /= RM_Size (Opnd)
                  then
                     Error_Msg_NE
                       ("target designated subtype not compatible with }",
                        N, Opnd);
                     Error_Msg_NE
                       ("\because sizes of the two designated subtypes differ",
                        N, Opnd);
                     return False;

                  --  Normal case where conversion is allowed

                  else
                     return True;
                  end if;

               else
                  Error_Msg_NE
                    ("target designated subtype not compatible with }",
                     N, Opnd);
                  return False;
               end if;
            end if;
         end Check_Limited;

      --  Access to subprogram types. If the operand is an access parameter,
      --  the type has a deeper accessibility that any master, and cannot
      --  be assigned. We must make an exception if the conversion is part
      --  of an assignment and the target is the return object of an extended
      --  return statement, because in that case the accessibility check
      --  takes place after the return.

      elsif Is_Access_Subprogram_Type (Target_Type)
        and then No (Corresponding_Remote_Type (Opnd_Type))
      then
         if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
           and then Is_Entity_Name (Operand)
           and then Ekind (Entity (Operand)) = E_In_Parameter
           and then
             (Nkind (Parent (N)) /= N_Assignment_Statement
               or else not Is_Entity_Name (Name (Parent (N)))
               or else not Is_Return_Object (Entity (Name (Parent (N)))))
         then
            Error_Msg_N
              ("illegal attempt to store anonymous access to subprogram",
               Operand);
            Error_Msg_N
              ("\value has deeper accessibility than any master " &
               "(RM 3.10.2 (13))",
               Operand);

            Error_Msg_NE
             ("\use named access type for& instead of access parameter",
               Operand, Entity (Operand));
         end if;

         --  Check that the designated types are subtype conformant

         Check_Subtype_Conformant (New_Id  => Designated_Type (Target_Type),
                                   Old_Id  => Designated_Type (Opnd_Type),
                                   Err_Loc => N);

         --  Check the static accessibility rule of 4.6(20)

         if Type_Access_Level (Opnd_Type) >
            Type_Access_Level (Target_Type)
         then
            Error_Msg_N
              ("operand type has deeper accessibility level than target",
               Operand);

         --  Check that if the operand type is declared in a generic body,
         --  then the target type must be declared within that same body
         --  (enforces last sentence of 4.6(20)).

         elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
            declare
               O_Gen : constant Node_Id :=
                         Enclosing_Generic_Body (Opnd_Type);

               T_Gen : Node_Id;

            begin
               T_Gen := Enclosing_Generic_Body (Target_Type);
               while Present (T_Gen) and then T_Gen /= O_Gen loop
                  T_Gen := Enclosing_Generic_Body (T_Gen);
               end loop;

               if T_Gen /= O_Gen then
                  Error_Msg_N
                    ("target type must be declared in same generic body"
                     & " as operand type", N);
               end if;
            end;
         end if;

         return True;

      --  Remote subprogram access types

      elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
        and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
      then
         --  It is valid to convert from one RAS type to another provided
         --  that their specification statically match.

         Check_Subtype_Conformant
           (New_Id  =>
              Designated_Type (Corresponding_Remote_Type (Target_Type)),
            Old_Id  =>
              Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
            Err_Loc =>
              N);
         return True;

      --  If both are tagged types, check legality of view conversions

      elsif Is_Tagged_Type (Target_Type)
        and then Is_Tagged_Type (Opnd_Type)
      then
         return Valid_Tagged_Conversion (Target_Type, Opnd_Type);

      --  Types derived from the same root type are convertible

      elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
         return True;

      --  In an instance or an inlined body, there may be inconsistent
      --  views of the same type, or of types derived from a common root.

      elsif (In_Instance or In_Inlined_Body)
        and then
          Root_Type (Underlying_Type (Target_Type)) =
          Root_Type (Underlying_Type (Opnd_Type))
      then
         return True;

      --  Special check for common access type error case

      elsif Ekind (Target_Type) = E_Access_Type
         and then Is_Access_Type (Opnd_Type)
      then
         Error_Msg_N ("target type must be general access type!", N);
         Error_Msg_NE -- CODEFIX
            ("add ALL to }!", N, Target_Type);
         return False;

      else
         Error_Msg_NE ("invalid conversion, not compatible with }",
           N, Opnd_Type);
         return False;
      end if;
   end Valid_Conversion;

end Sem_Res;