aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/sem_eval.adb
blob: f88a00aa380364c0d1c9e07f1d2f33f26635c6ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ E V A L                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2023, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Aspects;        use Aspects;
with Atree;          use Atree;
with Checks;         use Checks;
with Debug;          use Debug;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Elists;         use Elists;
with Errout;         use Errout;
with Eval_Fat;       use Eval_Fat;
with Exp_Util;       use Exp_Util;
with Freeze;         use Freeze;
with Lib;            use Lib;
with Namet;          use Namet;
with Nmake;          use Nmake;
with Nlists;         use Nlists;
with Opt;            use Opt;
with Par_SCO;        use Par_SCO;
with Rtsfind;        use Rtsfind;
with Sem;            use Sem;
with Sem_Aggr;       use Sem_Aggr;
with Sem_Aux;        use Sem_Aux;
with Sem_Cat;        use Sem_Cat;
with Sem_Ch3;        use Sem_Ch3;
with Sem_Ch6;        use Sem_Ch6;
with Sem_Ch8;        use Sem_Ch8;
with Sem_Elab;       use Sem_Elab;
with Sem_Res;        use Sem_Res;
with Sem_Util;       use Sem_Util;
with Sem_Type;       use Sem_Type;
with Sem_Warn;       use Sem_Warn;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Snames;         use Snames;
with Stand;          use Stand;
with Stringt;        use Stringt;
with Tbuild;         use Tbuild;
with Warnsw;         use Warnsw;

package body Sem_Eval is

   -----------------------------------------
   -- Handling of Compile Time Evaluation --
   -----------------------------------------

   --  The compile time evaluation of expressions is distributed over several
   --  Eval_xxx procedures. These procedures are called immediately after
   --  a subexpression is resolved and is therefore accomplished in a bottom
   --  up fashion. The flags are synthesized using the following approach.

   --    Is_Static_Expression is determined by following the rules in
   --    RM-4.9. This involves testing the Is_Static_Expression flag of
   --    the operands in many cases.

   --    Raises_Constraint_Error is usually set if any of the operands have
   --    the flag set or if an attempt to compute the value of the current
   --    expression results in Constraint_Error.

   --  The general approach is as follows. First compute Is_Static_Expression.
   --  If the node is not static, then the flag is left off in the node and
   --  we are all done. Otherwise for a static node, we test if any of the
   --  operands will raise Constraint_Error, and if so, propagate the flag
   --  Raises_Constraint_Error to the result node and we are done (since the
   --  error was already posted at a lower level).

   --  For the case of a static node whose operands do not raise constraint
   --  error, we attempt to evaluate the node. If this evaluation succeeds,
   --  then the node is replaced by the result of this computation. If the
   --  evaluation raises Constraint_Error, then we rewrite the node with
   --  Apply_Compile_Time_Constraint_Error to raise the exception and also
   --  to post appropriate error messages.

   ----------------
   -- Local Data --
   ----------------

   type Bits is array (Nat range <>) of Boolean;
   --  Used to convert unsigned (modular) values for folding logical ops

   --  The following declarations are used to maintain a cache of nodes that
   --  have compile-time-known values. The cache is maintained only for
   --  discrete types (the most common case), and is populated by calls to
   --  Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
   --  since it is possible for the status to change (in particular it is
   --  possible for a node to get replaced by a Constraint_Error node).

   CV_Bits : constant := 5;
   --  Number of low order bits of Node_Id value used to reference entries
   --  in the cache table.

   CV_Cache_Size : constant Nat := 2 ** CV_Bits;
   --  Size of cache for compile time values

   subtype CV_Range is Nat range 0 .. CV_Cache_Size;

   type CV_Entry is record
      N : Node_Id'Base;
      --  We use 'Base here, in case we want to add a predicate to Node_Id
      V : Uint;
   end record;

   type Match_Result is (Match, No_Match, Non_Static);
   --  Result returned from functions that test for a matching result. If the
   --  operands are not OK_Static then Non_Static will be returned. Otherwise
   --  Match/No_Match is returned depending on whether the match succeeds.

   type CV_Cache_Array is array (CV_Range) of CV_Entry;

   CV_Cache : CV_Cache_Array;
   --  This is the actual cache, with entries consisting of node/value pairs,
   --  and the impossible value Node_High_Bound used for unset entries.

   type Range_Membership is (In_Range, Out_Of_Range, Unknown);
   --  Range membership may either be statically known to be in range or out
   --  of range, or not statically known. Used for Test_In_Range below.

   Checking_For_Potentially_Static_Expression : Boolean := False;
   --  Global flag that is set True during Analyze_Static_Expression_Function
   --  in order to verify that the result expression of a static expression
   --  function is a potentially static function (see RM2022 6.8(5.3)).

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Check_Non_Static_Context_For_Overflow
     (N      : Node_Id;
      Stat   : Boolean;
      Result : Uint);
   --  For a signed integer type, check non-static overflow in Result when
   --  Stat is False. This applies also inside inlined code, where the static
   --  property may be an effect of the inlining, which should not be allowed
   --  to remove run-time checks (whether during compilation, or even more
   --  crucially in the special inlining-for-proof in GNATprove mode).

   function Choice_Matches
     (Expr   : Node_Id;
      Choice : Node_Id) return Match_Result;
   --  Determines whether given value Expr matches the given Choice. The Expr
   --  can be of discrete, real, or string type and must be a compile time
   --  known value (it is an error to make the call if these conditions are
   --  not met). The choice can be a range, subtype name, subtype indication,
   --  or expression. The returned result is Non_Static if Choice is not
   --  OK_Static, otherwise either Match or No_Match is returned depending
   --  on whether Choice matches Expr. This is used for case expression
   --  alternatives, and also for membership tests. In each case, more
   --  possibilities are tested than the syntax allows (e.g. membership allows
   --  subtype indications and non-discrete types, and case allows an OTHERS
   --  choice), but it does not matter, since we have already done a full
   --  semantic and syntax check of the construct, so the extra possibilities
   --  just will not arise for correct expressions.
   --
   --  Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
   --  a reference to a type, one of whose bounds raises Constraint_Error, then
   --  it also sets the Raises_Constraint_Error flag on the Choice itself.

   function Choices_Match
     (Expr    : Node_Id;
      Choices : List_Id) return Match_Result;
   --  This function applies Choice_Matches to each element of Choices. If the
   --  result is No_Match, then it continues and checks the next element. If
   --  the result is Match or Non_Static, this result is immediately given
   --  as the result without checking the rest of the list. Expr can be of
   --  discrete, real, or string type and must be a compile-time-known value
   --  (it is an error to make the call if these conditions are not met).

   procedure Eval_Intrinsic_Call (N : Node_Id; E : Entity_Id);
   --  Evaluate a call N to an intrinsic subprogram E.

   function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
   --  Check whether an arithmetic operation with universal operands which is a
   --  rewritten function call with an explicit scope indication is ambiguous:
   --  P."+" (1, 2) will be ambiguous if there is more than one visible numeric
   --  type declared in P and the context does not impose a type on the result
   --  (e.g. in the expression of a type conversion). If ambiguous, emit an
   --  error and return Empty, else return the result type of the operator.

   procedure Fold_Dummy (N : Node_Id; Typ : Entity_Id);
   --  Rewrite N as a constant dummy value in the relevant type if possible.

   procedure Fold_Shift
     (N          : Node_Id;
      Left       : Node_Id;
      Right      : Node_Id;
      Op         : Node_Kind;
      Static     : Boolean := False;
      Check_Elab : Boolean := False);
   --  Rewrite N as the result of evaluating Left <shift op> Right if possible.
   --  Op represents the shift operation.
   --  Static indicates whether the resulting node should be marked static.
   --  Check_Elab indicates whether checks for elaboration calls should be
   --  inserted when relevant.

   function From_Bits (B : Bits; T : Entity_Id) return Uint;
   --  Converts a bit string of length B'Length to a Uint value to be used for
   --  a target of type T, which is a modular type. This procedure includes the
   --  necessary reduction by the modulus in the case of a nonbinary modulus
   --  (for a binary modulus, the bit string is the right length any way so all
   --  is well).

   function Get_String_Val (N : Node_Id) return Node_Id;
   --  Given a tree node for a folded string or character value, returns the
   --  corresponding string literal or character literal (one of the two must
   --  be available, or the operand would not have been marked as foldable in
   --  the earlier analysis of the operation).

   function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
   --  Given a choice (from a case expression or membership test), returns
   --  True if the choice is static and does not raise a Constraint_Error.

   function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
   --  Given a choice list (from a case expression or membership test), return
   --  True if all choices are static in the sense of Is_OK_Static_Choice.

   function Is_Static_Choice (Choice : Node_Id) return Boolean;
   --  Given a choice (from a case expression or membership test), returns
   --  True if the choice is static. No test is made for raising of constraint
   --  error, so this function is used only for legality tests.

   function Is_Static_Choice_List (Choices : List_Id) return Boolean;
   --  Given a choice list (from a case expression or membership test), return
   --  True if all choices are static in the sense of Is_Static_Choice.

   function Is_Static_Range (N : Node_Id) return Boolean;
   --  Determine if range is static, as defined in RM 4.9(26). The only allowed
   --  argument is an N_Range node (but note that the semantic analysis of
   --  equivalent range attribute references already turned them into the
   --  equivalent range). This differs from Is_OK_Static_Range (which is what
   --  must be used by clients) in that it does not care whether the bounds
   --  raise Constraint_Error or not. Used for checking whether expressions are
   --  static in the 4.9 sense (without worrying about exceptions).

   function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
   --  Bits represents the number of bits in an integer value to be computed
   --  (but the value has not been computed yet). If this value in Bits is
   --  reasonable, a result of True is returned, with the implication that the
   --  caller should go ahead and complete the calculation. If the value in
   --  Bits is unreasonably large, then an error is posted on node N, and
   --  False is returned (and the caller skips the proposed calculation).

   procedure Out_Of_Range (N : Node_Id);
   --  This procedure is called if it is determined that node N, which appears
   --  in a non-static context, is a compile-time-known value which is outside
   --  its range, i.e. the range of Etype. This is used in contexts where
   --  this is an illegality if N is static, and should generate a warning
   --  otherwise.

   function Real_Or_String_Static_Predicate_Matches
     (Val : Node_Id;
      Typ : Entity_Id) return Boolean;
   --  This is the function used to evaluate real or string static predicates.
   --  Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
   --  represents the value to be tested against the predicate. Typ is the
   --  type with the predicate, from which the predicate expression can be
   --  extracted. The result returned is True if the given value satisfies
   --  the predicate.

   procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
   --  N and Exp are nodes representing an expression, Exp is known to raise
   --  CE. N is rewritten in term of Exp in the optimal way.

   function String_Type_Len (Stype : Entity_Id) return Uint;
   --  Given a string type, determines the length of the index type, or, if
   --  this index type is non-static, the length of the base type of this index
   --  type. Note that if the string type is itself static, then the index type
   --  is static, so the second case applies only if the string type passed is
   --  non-static.

   function Test (Cond : Boolean) return Uint;
   pragma Inline (Test);
   --  This function simply returns the appropriate Boolean'Pos value
   --  corresponding to the value of Cond as a universal integer. It is
   --  used for producing the result of the static evaluation of the
   --  logical operators

   procedure Test_Expression_Is_Foldable
     (N    : Node_Id;
      Op1  : Node_Id;
      Stat : out Boolean;
      Fold : out Boolean);
   --  Tests to see if expression N whose single operand is Op1 is foldable,
   --  i.e. the operand value is known at compile time. If the operation is
   --  foldable, then Fold is True on return, and Stat indicates whether the
   --  result is static (i.e. the operand was static). Note that it is quite
   --  possible for Fold to be True, and Stat to be False, since there are
   --  cases in which we know the value of an operand even though it is not
   --  technically static (e.g. the static lower bound of a range whose upper
   --  bound is non-static).
   --
   --  If Stat is set False on return, then Test_Expression_Is_Foldable makes
   --  a call to Check_Non_Static_Context on the operand. If Fold is False on
   --  return, then all processing is complete, and the caller should return,
   --  since there is nothing else to do.
   --
   --  If Stat is set True on return, then Is_Static_Expression is also set
   --  true in node N. There are some cases where this is over-enthusiastic,
   --  e.g. in the two operand case below, for string comparison, the result is
   --  not static even though the two operands are static. In such cases, the
   --  caller must reset the Is_Static_Expression flag in N.
   --
   --  If Fold and Stat are both set to False then this routine performs also
   --  the following extra actions:
   --
   --    If either operand is Any_Type then propagate it to result to prevent
   --    cascaded errors.
   --
   --    If some operand raises Constraint_Error, then replace the node N
   --    with the raise Constraint_Error node. This replacement inherits the
   --    Is_Static_Expression flag from the operands.

   procedure Test_Expression_Is_Foldable
     (N        : Node_Id;
      Op1      : Node_Id;
      Op2      : Node_Id;
      Stat     : out Boolean;
      Fold     : out Boolean;
      CRT_Safe : Boolean := False);
   --  Same processing, except applies to an expression N with two operands
   --  Op1 and Op2. The result is static only if both operands are static. If
   --  CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
   --  for the tests that the two operands are known at compile time. See
   --  spec of this routine for further details.

   function Test_In_Range
     (N            : Node_Id;
      Typ          : Entity_Id;
      Assume_Valid : Boolean;
      Fixed_Int    : Boolean;
      Int_Real     : Boolean) return Range_Membership;
   --  Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
   --  or Out_Of_Range if it can be guaranteed at compile time that expression
   --  N is known to be in or out of range of the subtype Typ. If not compile
   --  time known, Unknown is returned. See documentation of Is_In_Range for
   --  complete description of parameters.

   procedure To_Bits (U : Uint; B : out Bits);
   --  Converts a Uint value to a bit string of length B'Length

   -----------------------------------------------
   -- Check_Expression_Against_Static_Predicate --
   -----------------------------------------------

   procedure Check_Expression_Against_Static_Predicate
     (Expr                    : Node_Id;
      Typ                     : Entity_Id;
      Static_Failure_Is_Error : Boolean := False)
   is
   begin
      --  Nothing to do if expression is not known at compile time, or the
      --  type has no static predicate set (will be the case for all non-scalar
      --  types, so no need to make a special test for that).

      if not (Has_Static_Predicate (Typ)
               and then Compile_Time_Known_Value (Expr))
      then
         return;
      end if;

      --  Here we have a static predicate (note that it could have arisen from
      --  an explicitly specified Dynamic_Predicate whose expression met the
      --  rules for being predicate-static). If the expression is known at
      --  compile time and obeys the predicate, then it is static and must be
      --  labeled as such, which matters e.g. for case statements. The original
      --  expression may be a type conversion of a variable with a known value,
      --  which might otherwise not be marked static.

      --  Case of real static predicate

      if Is_Real_Type (Typ) then
         if Real_Or_String_Static_Predicate_Matches
              (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
               Typ => Typ)
         then
            Set_Is_Static_Expression (Expr);
            return;
         end if;

      --  Case of string static predicate

      elsif Is_String_Type (Typ) then
         if Real_Or_String_Static_Predicate_Matches
              (Val => Expr_Value_S (Expr), Typ => Typ)
         then
            Set_Is_Static_Expression (Expr);
            return;
         end if;

      --  Case of discrete static predicate

      else
         pragma Assert (Is_Discrete_Type (Typ));

         --  If static predicate matches, nothing to do

         if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
            Set_Is_Static_Expression (Expr);
            return;
         end if;
      end if;

      --  Here we know that the predicate will fail

      --  Special case of static expression failing a predicate (other than one
      --  that was explicitly specified with a Dynamic_Predicate aspect). If
      --  the expression comes from a qualified_expression or type_conversion
      --  this is an error (Static_Failure_Is_Error); otherwise we only issue
      --  a warning and the expression is no longer considered static.

      if Is_Static_Expression (Expr)
        and then not Has_Dynamic_Predicate_Aspect (Typ)
        and then not Has_Ghost_Predicate_Aspect (Typ)
      then
         if Static_Failure_Is_Error then
            Error_Msg_NE
              ("static expression fails static predicate check on &",
               Expr, Typ);

         else
            Error_Msg_NE
              ("??static expression fails static predicate check on &",
               Expr, Typ);
            Error_Msg_N
              ("\??expression is no longer considered static", Expr);

            Set_Is_Static_Expression (Expr, False);
         end if;

      --  In all other cases, this is just a warning that a test will fail.
      --  It does not matter if the expression is static or not, or if the
      --  predicate comes from a dynamic predicate aspect or not.

      else
         Error_Msg_NE
           ("??expression fails predicate check on &", Expr, Typ);

         --  Force a check here, which is potentially a redundant check, but
         --  this ensures a check will be done in cases where the expression
         --  is folded, and since this is definitely a failure, extra checks
         --  are OK.

         if Predicate_Enabled (Typ) then
            Insert_Action (Expr,
              Make_Predicate_Check
                (Typ, Duplicate_Subexpr (Expr)), Suppress => All_Checks);
         end if;
      end if;
   end Check_Expression_Against_Static_Predicate;

   ------------------------------
   -- Check_Non_Static_Context --
   ------------------------------

   procedure Check_Non_Static_Context (N : Node_Id) is
      T         : constant Entity_Id := Etype (N);
      Checks_On : constant Boolean   :=
                    not Index_Checks_Suppressed (T)
                      and not Range_Checks_Suppressed (T);

   begin
      --  Ignore cases of non-scalar types, error types, or universal real
      --  types that have no usable bounds.

      if T = Any_Type
        or else not Is_Scalar_Type (T)
        or else T = Universal_Fixed
        or else T = Universal_Real
      then
         return;
      end if;

      --  At this stage we have a scalar type. If we have an expression that
      --  raises CE, then we already issued a warning or error msg so there is
      --  nothing more to be done in this routine.

      if Raises_Constraint_Error (N) then
         return;
      end if;

      --  Now we have a scalar type which is not marked as raising a constraint
      --  error exception. The main purpose of this routine is to deal with
      --  static expressions appearing in a non-static context. That means
      --  that if we do not have a static expression then there is not much
      --  to do. The one case that we deal with here is that if we have a
      --  floating-point value that is out of range, then we post a warning
      --  that an infinity will result.

      if not Is_Static_Expression (N) then
         if Is_Floating_Point_Type (T) then
            if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
               Error_Msg_N
                 ("??float value out of range, infinity will be generated", N);

            --  The literal may be the result of constant-folding of a non-
            --  static subexpression of a larger expression (e.g. a conversion
            --  of a non-static variable whose value happens to be known). At
            --  this point we must reduce the value of the subexpression to a
            --  machine number (RM 4.9 (38/2)).

            elsif Nkind (N) = N_Real_Literal
              and then Nkind (Parent (N)) in N_Subexpr
            then
               Rewrite (N, New_Copy (N));
               Set_Realval (N, Machine_Number (Base_Type (T), Realval (N), N));
               Set_Is_Machine_Number (N);
            end if;
         end if;

         return;
      end if;

      --  Here we have the case of outer level static expression of scalar
      --  type, where the processing of this procedure is needed.

      --  For real types, this is where we convert the value to a machine
      --  number (see RM 4.9(38)). Also see ACVC test C490001. We should only
      --  need to do this if the parent is a constant declaration, since in
      --  other cases, gigi should do the necessary conversion correctly, but
      --  experimentation shows that this is not the case on all machines, in
      --  particular if we do not convert all literals to machine values in
      --  non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
      --  and SGI/Irix.

      --  This conversion is always done by GNATprove on real literals in
      --  non-static expressions, by calling Check_Non_Static_Context from
      --  gnat2why, as GNATprove cannot do the conversion later contrary
      --  to gigi. The frontend computes the information about which
      --  expressions are static, which is used by gnat2why to call
      --  Check_Non_Static_Context on exactly those real literals that are
      --  not subexpressions of static expressions.

      if Nkind (N) = N_Real_Literal
        and then not Is_Machine_Number (N)
        and then not Is_Generic_Type (Etype (N))
        and then Etype (N) /= Universal_Real
      then
         --  Check that value is in bounds before converting to machine
         --  number, so as not to lose case where value overflows in the
         --  least significant bit or less. See B490001.

         if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
            Out_Of_Range (N);
            return;
         end if;

         --  Note: we have to copy the node, to avoid problems with conformance
         --  of very similar numbers (see ACVC tests B4A010C and B63103A).

         Rewrite (N, New_Copy (N));

         if not Is_Floating_Point_Type (T) then
            Set_Realval
              (N, Corresponding_Integer_Value (N) * Small_Value (T));

         elsif not UR_Is_Zero (Realval (N)) then
            Set_Realval (N, Machine_Number (Base_Type (T), Realval (N), N));
            Set_Is_Machine_Number (N);
         end if;

      end if;

      --  Check for out of range universal integer. This is a non-static
      --  context, so the integer value must be in range of the runtime
      --  representation of universal integers.

      --  We do this only within an expression, because that is the only
      --  case in which non-static universal integer values can occur, and
      --  furthermore, Check_Non_Static_Context is currently (incorrectly???)
      --  called in contexts like the expression of a number declaration where
      --  we certainly want to allow out of range values.

      --  We inhibit the warning when expansion is disabled, because the
      --  preanalysis of a range of a 64-bit modular type may appear to
      --  violate the constraint on non-static Universal_Integer. If there
      --  is a true overflow it will be diagnosed during full analysis.

      if Etype (N) = Universal_Integer
        and then Nkind (N) = N_Integer_Literal
        and then Nkind (Parent (N)) in N_Subexpr
        and then Expander_Active
        and then
          (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
             or else
           Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
      then
         Apply_Compile_Time_Constraint_Error
           (N, "non-static universal integer value out of range<<",
            CE_Range_Check_Failed);

      --  Check out of range of base type

      elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
         Out_Of_Range (N);

      --  Give a warning or error on the value outside the subtype. A warning
      --  is omitted if the expression appears in a range that could be null
      --  (warnings are handled elsewhere for this case).

      elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
         if Is_In_Range (N, T, Assume_Valid => True) then
            null;

         elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
            --  Ignore out of range values for System.Priority in CodePeer
            --  mode since the actual target compiler may provide a wider
            --  range.

            if CodePeer_Mode and then Is_RTE (T, RE_Priority) then
               Set_Do_Range_Check (N, False);

            --  Determine if the out-of-range violation constitutes a warning
            --  or an error based on context, according to RM 4.9 (34/3).

            elsif Nkind (Original_Node (N)) in
                    N_Type_Conversion | N_Qualified_Expression
              and then Comes_From_Source (Original_Node (N))
            then
               Apply_Compile_Time_Constraint_Error
                 (N, "value not in range of}", CE_Range_Check_Failed);
            else
               Apply_Compile_Time_Constraint_Error
                 (N, "value not in range of}<<", CE_Range_Check_Failed);
            end if;

         elsif Checks_On then
            Enable_Range_Check (N);

         else
            Set_Do_Range_Check (N, False);
         end if;
      end if;
   end Check_Non_Static_Context;

   -------------------------------------------
   -- Check_Non_Static_Context_For_Overflow --
   -------------------------------------------

   procedure Check_Non_Static_Context_For_Overflow
     (N      : Node_Id;
      Stat   : Boolean;
      Result : Uint)
   is
   begin
      if (not Stat or else In_Inlined_Body)
        and then Is_Signed_Integer_Type (Etype (N))
      then
         declare
            BT : constant Entity_Id := Base_Type (Etype (N));
            Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
            Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
         begin
            if Result < Lo or else Result > Hi then
               Apply_Compile_Time_Constraint_Error
                 (N, "value not in range of }??",
                  CE_Overflow_Check_Failed,
                  Ent => BT);
            end if;
         end;
      end if;
   end Check_Non_Static_Context_For_Overflow;

   ---------------------------------
   -- Check_String_Literal_Length --
   ---------------------------------

   procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
   begin
      if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
         if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
         then
            Apply_Compile_Time_Constraint_Error
              (N, "string length wrong for}??",
               CE_Length_Check_Failed,
               Ent => Ttype,
               Typ => Ttype);
         end if;
      end if;
   end Check_String_Literal_Length;

   --------------------------------------------
   -- Checking_Potentially_Static_Expression --
   --------------------------------------------

   function Checking_Potentially_Static_Expression return Boolean is
   begin
      return Checking_For_Potentially_Static_Expression;
   end Checking_Potentially_Static_Expression;

   --------------------
   -- Choice_Matches --
   --------------------

   function Choice_Matches
     (Expr   : Node_Id;
      Choice : Node_Id) return Match_Result
   is
      Etyp : constant Entity_Id := Etype (Expr);
      Val  : Uint;
      ValR : Ureal;
      ValS : Node_Id;

   begin
      pragma Assert (Compile_Time_Known_Value (Expr));
      pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));

      if not Is_OK_Static_Choice (Choice) then
         Set_Raises_Constraint_Error (Choice);
         return Non_Static;

      --  When the choice denotes a subtype with a static predictate, check the
      --  expression against the predicate values. Different procedures apply
      --  to discrete and non-discrete types.

      elsif (Nkind (Choice) = N_Subtype_Indication
              or else (Is_Entity_Name (Choice)
                        and then Is_Type (Entity (Choice))))
        and then Has_Predicates (Etype (Choice))
        and then Has_Static_Predicate (Etype (Choice))
      then
         if Is_Discrete_Type (Etype (Choice)) then
            return
              Choices_Match
                (Expr, Static_Discrete_Predicate (Etype (Choice)));

         elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
         then
            return Match;

         else
            return No_Match;
         end if;

      --  Discrete type case only

      elsif Is_Discrete_Type (Etyp) then
         Val := Expr_Value (Expr);

         if Nkind (Choice) = N_Range then
            if Val >= Expr_Value (Low_Bound (Choice))
                 and then
               Val <= Expr_Value (High_Bound (Choice))
            then
               return Match;
            else
               return No_Match;
            end if;

         elsif Nkind (Choice) = N_Subtype_Indication
           or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
         then
            if Val >= Expr_Value (Type_Low_Bound  (Etype (Choice)))
                 and then
               Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
            then
               return Match;
            else
               return No_Match;
            end if;

         elsif Nkind (Choice) = N_Others_Choice then
            return Match;

         else
            if Val = Expr_Value (Choice) then
               return Match;
            else
               return No_Match;
            end if;
         end if;

      --  Real type case

      elsif Is_Real_Type (Etyp) then
         ValR := Expr_Value_R (Expr);

         if Nkind (Choice) = N_Range then
            if ValR >= Expr_Value_R (Low_Bound  (Choice))
                 and then
               ValR <= Expr_Value_R (High_Bound (Choice))
            then
               return Match;
            else
               return No_Match;
            end if;

         elsif Nkind (Choice) = N_Subtype_Indication
           or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
         then
            if ValR >= Expr_Value_R (Type_Low_Bound  (Etype (Choice)))
                 and then
               ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
            then
               return Match;
            else
               return No_Match;
            end if;

         else
            if ValR = Expr_Value_R (Choice) then
               return Match;
            else
               return No_Match;
            end if;
         end if;

      --  String type cases

      else
         pragma Assert (Is_String_Type (Etyp));
         ValS := Expr_Value_S (Expr);

         if Nkind (Choice) = N_Subtype_Indication
           or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
         then
            if not Is_Constrained (Etype (Choice)) then
               return Match;

            else
               declare
                  Typlen : constant Uint :=
                             String_Type_Len (Etype (Choice));
                  Strlen : constant Uint :=
                             UI_From_Int (String_Length (Strval (ValS)));
               begin
                  if Typlen = Strlen then
                     return Match;
                  else
                     return No_Match;
                  end if;
               end;
            end if;

         else
            if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
            then
               return Match;
            else
               return No_Match;
            end if;
         end if;
      end if;
   end Choice_Matches;

   -------------------
   -- Choices_Match --
   -------------------

   function Choices_Match
     (Expr    : Node_Id;
      Choices : List_Id) return Match_Result
   is
      Choice : Node_Id;
      Result : Match_Result;

   begin
      Choice := First (Choices);
      while Present (Choice) loop
         Result := Choice_Matches (Expr, Choice);

         if Result /= No_Match then
            return Result;
         end if;

         Next (Choice);
      end loop;

      return No_Match;
   end Choices_Match;

   --------------------------
   -- Compile_Time_Compare --
   --------------------------

   function Compile_Time_Compare
     (L, R         : Node_Id;
      Assume_Valid : Boolean) return Compare_Result
   is
      Discard : aliased Uint;
   begin
      return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
   end Compile_Time_Compare;

   function Compile_Time_Compare
     (L, R         : Node_Id;
      Diff         : access Uint;
      Assume_Valid : Boolean;
      Rec          : Boolean := False) return Compare_Result
   is
      Ltyp : Entity_Id := Etype (L);
      Rtyp : Entity_Id := Etype (R);

      Discard : aliased Uint;

      procedure Compare_Decompose
        (N : Node_Id;
         R : out Node_Id;
         V : out Uint);
      --  This procedure decomposes the node N into an expression node and a
      --  signed offset, so that the value of N is equal to the value of R plus
      --  the value V (which may be negative). If no such decomposition is
      --  possible, then on return R is a copy of N, and V is set to zero.

      function Compare_Fixup (N : Node_Id) return Node_Id;
      --  This function deals with replacing 'Last and 'First references with
      --  their corresponding type bounds, which we then can compare. The
      --  argument is the original node, the result is the identity, unless we
      --  have a 'Last/'First reference in which case the value returned is the
      --  appropriate type bound.

      function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
      --  Even if the context does not assume that values are valid, some
      --  simple cases can be recognized.

      function Is_Same_Value (L, R : Node_Id) return Boolean;
      --  Returns True iff L and R represent expressions that definitely have
      --  identical (but not necessarily compile-time-known) values Indeed the
      --  caller is expected to have already dealt with the cases of compile
      --  time known values, so these are not tested here.

      -----------------------
      -- Compare_Decompose --
      -----------------------

      procedure Compare_Decompose
        (N : Node_Id;
         R : out Node_Id;
         V : out Uint)
      is
      begin
         if Nkind (N) = N_Op_Add
           and then Nkind (Right_Opnd (N)) = N_Integer_Literal
         then
            R := Left_Opnd (N);
            V := Intval (Right_Opnd (N));
            return;

         elsif Nkind (N) = N_Op_Subtract
           and then Nkind (Right_Opnd (N)) = N_Integer_Literal
         then
            R := Left_Opnd (N);
            V := UI_Negate (Intval (Right_Opnd (N)));
            return;

         elsif Nkind (N) = N_Attribute_Reference then
            if Attribute_Name (N) = Name_Succ then
               R := First (Expressions (N));
               V := Uint_1;
               return;

            elsif Attribute_Name (N) = Name_Pred then
               R := First (Expressions (N));
               V := Uint_Minus_1;
               return;
            end if;
         end if;

         R := N;
         V := Uint_0;
      end Compare_Decompose;

      -------------------
      -- Compare_Fixup --
      -------------------

      function Compare_Fixup (N : Node_Id) return Node_Id is
         Indx : Node_Id;
         Xtyp : Entity_Id;
         Subs : Nat;

      begin
         --  Fixup only required for First/Last attribute reference

         if Nkind (N) = N_Attribute_Reference
           and then Attribute_Name (N) in Name_First | Name_Last
         then
            Xtyp := Etype (Prefix (N));

            --  If we have no type, then just abandon the attempt to do
            --  a fixup, this is probably the result of some other error.

            if No (Xtyp) then
               return N;
            end if;

            --  Dereference an access type

            if Is_Access_Type (Xtyp) then
               Xtyp := Designated_Type (Xtyp);
            end if;

            --  If we don't have an array type at this stage, something is
            --  peculiar, e.g. another error, and we abandon the attempt at
            --  a fixup.

            if not Is_Array_Type (Xtyp) then
               return N;
            end if;

            --  Ignore unconstrained array, since bounds are not meaningful

            if not Is_Constrained (Xtyp) then
               return N;
            end if;

            if Ekind (Xtyp) = E_String_Literal_Subtype then
               if Attribute_Name (N) = Name_First then
                  return String_Literal_Low_Bound (Xtyp);
               else
                  return
                    Make_Integer_Literal (Sloc (N),
                      Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
                                          String_Literal_Length (Xtyp));
               end if;
            end if;

            --  Find correct index type

            Indx := First_Index (Xtyp);

            if Present (Expressions (N)) then
               Subs := UI_To_Int (Expr_Value (First (Expressions (N))));

               for J in 2 .. Subs loop
                  Next_Index (Indx);
               end loop;
            end if;

            Xtyp := Etype (Indx);

            if Attribute_Name (N) = Name_First then
               return Type_Low_Bound (Xtyp);
            else
               return Type_High_Bound (Xtyp);
            end if;
         end if;

         return N;
      end Compare_Fixup;

      ----------------------------
      -- Is_Known_Valid_Operand --
      ----------------------------

      function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
      begin
         return (Is_Entity_Name (Opnd)
                  and then
                    (Is_Known_Valid (Entity (Opnd))
                      or else Ekind (Entity (Opnd)) = E_In_Parameter
                      or else
                        (Is_Object (Entity (Opnd))
                          and then Present (Current_Value (Entity (Opnd))))))
           or else Is_OK_Static_Expression (Opnd);
      end Is_Known_Valid_Operand;

      -------------------
      -- Is_Same_Value --
      -------------------

      function Is_Same_Value (L, R : Node_Id) return Boolean is
         Lf : constant Node_Id := Compare_Fixup (L);
         Rf : constant Node_Id := Compare_Fixup (R);

         function Is_Rewritten_Loop_Entry (N : Node_Id) return Boolean;
         --  An attribute reference to Loop_Entry may have been rewritten into
         --  its prefix as a way to avoid generating a constant for that
         --  attribute when the corresponding pragma is ignored. These nodes
         --  should be ignored when deciding if they can be equal to one
         --  another.

         function Is_Same_Subscript (L, R : List_Id) return Boolean;
         --  L, R are the Expressions values from two attribute nodes for First
         --  or Last attributes. Either may be set to No_List if no expressions
         --  are present (indicating subscript 1). The result is True if both
         --  expressions represent the same subscript (note one case is where
         --  one subscript is missing and the other is explicitly set to 1).

         -----------------------------
         -- Is_Rewritten_Loop_Entry --
         -----------------------------

         function Is_Rewritten_Loop_Entry (N : Node_Id) return Boolean is
            Orig_N : constant Node_Id := Original_Node (N);
         begin
            return Orig_N /= N
              and then Nkind (Orig_N) = N_Attribute_Reference
              and then Get_Attribute_Id (Attribute_Name (Orig_N)) =
                Attribute_Loop_Entry;
         end Is_Rewritten_Loop_Entry;

         -----------------------
         -- Is_Same_Subscript --
         -----------------------

         function Is_Same_Subscript (L, R : List_Id) return Boolean is
         begin
            if L = No_List then
               if R = No_List then
                  return True;
               else
                  return Expr_Value (First (R)) = Uint_1;
               end if;

            else
               if R = No_List then
                  return Expr_Value (First (L)) = Uint_1;
               else
                  return Expr_Value (First (L)) = Expr_Value (First (R));
               end if;
            end if;
         end Is_Same_Subscript;

      --  Start of processing for Is_Same_Value

      begin
         --  Loop_Entry nodes rewritten into their prefix inside ignored
         --  pragmas should never lead to a decision of equality.

         if Is_Rewritten_Loop_Entry (Lf)
           or else Is_Rewritten_Loop_Entry (Rf)
         then
            return False;

         --  Values are the same if they refer to the same entity and the
         --  entity is nonvolatile.

         elsif Nkind (Lf) in N_Identifier | N_Expanded_Name
           and then Nkind (Rf) in N_Identifier | N_Expanded_Name
           and then Entity (Lf) = Entity (Rf)

           --  If the entity is a discriminant, the two expressions may be
           --  bounds of components of objects of the same discriminated type.
           --  The values of the discriminants are not static, and therefore
           --  the result is unknown.

           and then Ekind (Entity (Lf)) /= E_Discriminant
           and then Present (Entity (Lf))

           --  This does not however apply to Float types, since we may have
           --  two NaN values and they should never compare equal.

           and then not Is_Floating_Point_Type (Etype (L))
           and then not Is_Volatile_Reference (L)
           and then not Is_Volatile_Reference (R)
         then
            return True;

         --  Or if they are compile-time-known and identical

         elsif Compile_Time_Known_Value (Lf)
                 and then
               Compile_Time_Known_Value (Rf)
           and then Expr_Value (Lf) = Expr_Value (Rf)
         then
            return True;

         --  False if Nkind of the two nodes is different for remaining cases

         elsif Nkind (Lf) /= Nkind (Rf) then
            return False;

         --  True if both 'First or 'Last values applying to the same entity
         --  (first and last don't change even if value does). Note that we
         --  need this even with the calls to Compare_Fixup, to handle the
         --  case of unconstrained array attributes where Compare_Fixup
         --  cannot find useful bounds.

         elsif Nkind (Lf) = N_Attribute_Reference
           and then Attribute_Name (Lf) = Attribute_Name (Rf)
           and then Attribute_Name (Lf) in Name_First | Name_Last
           and then Nkind (Prefix (Lf)) in N_Identifier | N_Expanded_Name
           and then Nkind (Prefix (Rf)) in N_Identifier | N_Expanded_Name
           and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
           and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
         then
            return True;

         --  True if the same selected component from the same record

         elsif Nkind (Lf) = N_Selected_Component
           and then Selector_Name (Lf) = Selector_Name (Rf)
           and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
         then
            return True;

         --  True if the same unary operator applied to the same operand

         elsif Nkind (Lf) in N_Unary_Op
           and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
         then
            return True;

         --  True if the same binary operator applied to the same operands

         elsif Nkind (Lf) in N_Binary_Op
           and then Is_Same_Value (Left_Opnd  (Lf), Left_Opnd  (Rf))
           and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
         then
            return True;

         --  All other cases, we can't tell, so return False

         else
            return False;
         end if;
      end Is_Same_Value;

   --  Start of processing for Compile_Time_Compare

   begin
      Diff.all := No_Uint;

      --  In preanalysis mode, always return Unknown unless the expression
      --  is static. It is too early to be thinking we know the result of a
      --  comparison, save that judgment for the full analysis. This is
      --  particularly important in the case of pre and postconditions, which
      --  otherwise can be prematurely collapsed into having True or False
      --  conditions when this is inappropriate.

      if not (Full_Analysis
               or else (Is_OK_Static_Expression (L)
                          and then
                        Is_OK_Static_Expression (R)))
      then
         return Unknown;
      end if;

      --  If either operand could raise Constraint_Error, then we cannot
      --  know the result at compile time (since CE may be raised).

      if not (Cannot_Raise_Constraint_Error (L)
                and then
              Cannot_Raise_Constraint_Error (R))
      then
         return Unknown;
      end if;

      --  Identical operands are most certainly equal

      if L = R then
         return EQ;
      end if;

      --  If expressions have no types, then do not attempt to determine if
      --  they are the same, since something funny is going on. One case in
      --  which this happens is during generic template analysis, when bounds
      --  are not fully analyzed.

      if No (Ltyp) or else No (Rtyp) then
         return Unknown;
      end if;

      --  These get reset to the base type for the case of entities where
      --  Is_Known_Valid is not set. This takes care of handling possible
      --  invalid representations using the value of the base type, in
      --  accordance with RM 13.9.1(10).

      Ltyp := Underlying_Type (Ltyp);
      Rtyp := Underlying_Type (Rtyp);

      --  Same rationale as above, but for Underlying_Type instead of Etype

      if No (Ltyp) or else No (Rtyp) then
         return Unknown;
      end if;

      --  We do not attempt comparisons for packed arrays represented as
      --  modular types, where the semantics of comparison is quite different.

      if Is_Packed_Array_Impl_Type (Ltyp)
        and then Is_Modular_Integer_Type (Ltyp)
      then
         return Unknown;

      --  For access types, the only time we know the result at compile time
      --  (apart from identical operands, which we handled already) is if we
      --  know one operand is null and the other is not, or both operands are
      --  known null.

      elsif Is_Access_Type (Ltyp) then
         if Known_Null (L) then
            if Known_Null (R) then
               return EQ;
            elsif Known_Non_Null (R) then
               return NE;
            else
               return Unknown;
            end if;

         elsif Known_Non_Null (L) and then Known_Null (R) then
            return NE;

         else
            return Unknown;
         end if;

      --  Case where comparison involves two compile-time-known values

      elsif Compile_Time_Known_Value (L)
              and then
            Compile_Time_Known_Value (R)
      then
         --  For the floating-point case, we have to be a little careful, since
         --  at compile time we are dealing with universal exact values, but at
         --  runtime, these will be in non-exact target form. That's why the
         --  returned results are LE and GE below instead of LT and GT.

         if Is_Floating_Point_Type (Ltyp)
              or else
            Is_Floating_Point_Type (Rtyp)
         then
            declare
               Lo : constant Ureal := Expr_Value_R (L);
               Hi : constant Ureal := Expr_Value_R (R);
            begin
               if Lo < Hi then
                  return LE;
               elsif Lo = Hi then
                  return EQ;
               else
                  return GE;
               end if;
            end;

         --  For string types, we have two string literals and we proceed to
         --  compare them using the Ada style dictionary string comparison.

         elsif not Is_Scalar_Type (Ltyp) then
            declare
               Lstring : constant String_Id := Strval (Expr_Value_S (L));
               Rstring : constant String_Id := Strval (Expr_Value_S (R));
               Llen    : constant Nat       := String_Length (Lstring);
               Rlen    : constant Nat       := String_Length (Rstring);

            begin
               for J in 1 .. Nat'Min (Llen, Rlen) loop
                  declare
                     LC : constant Char_Code := Get_String_Char (Lstring, J);
                     RC : constant Char_Code := Get_String_Char (Rstring, J);
                  begin
                     if LC < RC then
                        return LT;
                     elsif LC > RC then
                        return GT;
                     end if;
                  end;
               end loop;

               if Llen < Rlen then
                  return LT;
               elsif Llen > Rlen then
                  return GT;
               else
                  return EQ;
               end if;
            end;

         --  For remaining scalar cases we know exactly (note that this does
         --  include the fixed-point case, where we know the run time integer
         --  values now).

         else
            declare
               Lo : constant Uint := Expr_Value (L);
               Hi : constant Uint := Expr_Value (R);
            begin
               if Lo < Hi then
                  Diff.all := Hi - Lo;
                  return LT;
               elsif Lo = Hi then
                  return EQ;
               else
                  Diff.all := Lo - Hi;
                  return GT;
               end if;
            end;
         end if;

      --  Cases where at least one operand is not known at compile time

      else
         --  Remaining checks apply only for discrete types

         if not Is_Discrete_Type (Ltyp)
              or else
            not Is_Discrete_Type (Rtyp)
         then
            return Unknown;
         end if;

         --  Defend against generic types, or actually any expressions that
         --  contain a reference to a generic type from within a generic
         --  template. We don't want to do any range analysis of such
         --  expressions for two reasons. First, the bounds of a generic type
         --  itself are junk and cannot be used for any kind of analysis.
         --  Second, we may have a case where the range at run time is indeed
         --  known, but we don't want to do compile time analysis in the
         --  template based on that range since in an instance the value may be
         --  static, and able to be elaborated without reference to the bounds
         --  of types involved. As an example, consider:

         --     (F'Pos (F'Last) + 1) > Integer'Last

         --  The expression on the left side of > is Universal_Integer and thus
         --  acquires the type Integer for evaluation at run time, and at run
         --  time it is true that this condition is always False, but within
         --  an instance F may be a type with a static range greater than the
         --  range of Integer, and the expression statically evaluates to True.

         if References_Generic_Formal_Type (L)
              or else
            References_Generic_Formal_Type (R)
         then
            return Unknown;
         end if;

         --  Replace types by base types for the case of values which are not
         --  known to have valid representations. This takes care of properly
         --  dealing with invalid representations.

         if not Assume_Valid then
            if not (Is_Entity_Name (L)
                     and then (Is_Known_Valid (Entity (L))
                                or else Assume_No_Invalid_Values))
            then
               Ltyp := Underlying_Type (Base_Type (Ltyp));
            end if;

            if not (Is_Entity_Name (R)
                     and then (Is_Known_Valid (Entity (R))
                                or else Assume_No_Invalid_Values))
            then
               Rtyp := Underlying_Type (Base_Type (Rtyp));
            end if;
         end if;

         --  First attempt is to decompose the expressions to extract a
         --  constant offset resulting from the use of any of the forms:

         --     expr + literal
         --     expr - literal
         --     typ'Succ (expr)
         --     typ'Pred (expr)

         --  Then we see if the two expressions are the same value, and if so
         --  the result is obtained by comparing the offsets.

         --  Note: the reason we do this test first is that it returns only
         --  decisive results (with diff set), where other tests, like the
         --  range test, may not be as so decisive. Consider for example
         --  J .. J + 1. This code can conclude LT with a difference of 1,
         --  even if the range of J is not known.

         declare
            Lnode : Node_Id;
            Loffs : Uint;
            Rnode : Node_Id;
            Roffs : Uint;

         begin
            Compare_Decompose (L, Lnode, Loffs);
            Compare_Decompose (R, Rnode, Roffs);

            if Is_Same_Value (Lnode, Rnode) then
               if Loffs = Roffs then
                  return EQ;
               end if;

               --  When the offsets are not equal, we can go farther only if
               --  the types are not modular (e.g. X < X + 1 is False if X is
               --  the largest number).

               if not Is_Modular_Integer_Type (Ltyp)
                 and then not Is_Modular_Integer_Type (Rtyp)
               then
                  if Loffs < Roffs then
                     Diff.all := Roffs - Loffs;
                     return LT;
                  else
                     Diff.all := Loffs - Roffs;
                     return GT;
                  end if;
               end if;
            end if;
         end;

         --  Next, try range analysis and see if operand ranges are disjoint

         declare
            LOK, ROK : Boolean;
            LLo, LHi : Uint;
            RLo, RHi : Uint;

            Single : Boolean;
            --  True if each range is a single point

         begin
            Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
            Determine_Range (R, ROK, RLo, RHi, Assume_Valid);

            if LOK and ROK then
               Single := LLo = LHi and then RLo = RHi;

               if LHi < RLo then
                  if Single and Assume_Valid then
                     Diff.all := RLo - LLo;
                  end if;

                  return LT;

               elsif RHi < LLo then
                  if Single and Assume_Valid then
                     Diff.all := LLo - RLo;
                  end if;

                  return GT;

               elsif Single and then LLo = RLo then

                  --  If the range includes a single literal and we can assume
                  --  validity then the result is known even if an operand is
                  --  not static.

                  if Assume_Valid then
                     return EQ;
                  else
                     return Unknown;
                  end if;

               elsif LHi = RLo then
                  return LE;

               elsif RHi = LLo then
                  return GE;

               elsif not Is_Known_Valid_Operand (L)
                 and then not Assume_Valid
               then
                  if Is_Same_Value (L, R) then
                     return EQ;
                  else
                     return Unknown;
                  end if;
               end if;

            --  If the range of either operand cannot be determined, nothing
            --  further can be inferred.

            else
               return Unknown;
            end if;
         end;

         --  Here is where we check for comparisons against maximum bounds of
         --  types, where we know that no value can be outside the bounds of
         --  the subtype. Note that this routine is allowed to assume that all
         --  expressions are within their subtype bounds. Callers wishing to
         --  deal with possibly invalid values must in any case take special
         --  steps (e.g. conversions to larger types) to avoid this kind of
         --  optimization, which is always considered to be valid. We do not
         --  attempt this optimization with generic types, since the type
         --  bounds may not be meaningful in this case.

         --  We are in danger of an infinite recursion here. It does not seem
         --  useful to go more than one level deep, so the parameter Rec is
         --  used to protect ourselves against this infinite recursion.

         if not Rec then

            --  See if we can get a decisive check against one operand and a
            --  bound of the other operand (four possible tests here). Note
            --  that we avoid testing junk bounds of a generic type.

            if not Is_Generic_Type (Rtyp) then
               case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
                                          Discard'Access,
                                          Assume_Valid, Rec => True)
               is
                  when LT => return LT;
                  when LE => return LE;
                  when EQ => return LE;
                  when others => null;
               end case;

               case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
                                          Discard'Access,
                                          Assume_Valid, Rec => True)
               is
                  when GT => return GT;
                  when GE => return GE;
                  when EQ => return GE;
                  when others => null;
               end case;
            end if;

            if not Is_Generic_Type (Ltyp) then
               case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
                                          Discard'Access,
                                          Assume_Valid, Rec => True)
               is
                  when GT => return GT;
                  when GE => return GE;
                  when EQ => return GE;
                  when others => null;
               end case;

               case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
                                          Discard'Access,
                                          Assume_Valid, Rec => True)
               is
                  when LT => return LT;
                  when LE => return LE;
                  when EQ => return LE;
                  when others => null;
               end case;
            end if;
         end if;

         --  Next attempt is to see if we have an entity compared with a
         --  compile-time-known value, where there is a current value
         --  conditional for the entity which can tell us the result.

         declare
            Var : Node_Id;
            --  Entity variable (left operand)

            Val : Uint;
            --  Value (right operand)

            Inv : Boolean;
            --  If False, we have reversed the operands

            Op : Node_Kind;
            --  Comparison operator kind from Get_Current_Value_Condition call

            Opn : Node_Id;
            --  Value from Get_Current_Value_Condition call

            Opv : Uint;
            --  Value of Opn

            Result : Compare_Result;
            --  Known result before inversion

         begin
            if Is_Entity_Name (L)
              and then Compile_Time_Known_Value (R)
            then
               Var := L;
               Val := Expr_Value (R);
               Inv := False;

            elsif Is_Entity_Name (R)
              and then Compile_Time_Known_Value (L)
            then
               Var := R;
               Val := Expr_Value (L);
               Inv := True;

               --  That was the last chance at finding a compile time result

            else
               return Unknown;
            end if;

            Get_Current_Value_Condition (Var, Op, Opn);

            --  That was the last chance, so if we got nothing return

            if No (Opn) then
               return Unknown;
            end if;

            Opv := Expr_Value (Opn);

            --  We got a comparison, so we might have something interesting

            --  Convert LE to LT and GE to GT, just so we have fewer cases

            if Op = N_Op_Le then
               Op := N_Op_Lt;
               Opv := Opv + 1;

            elsif Op = N_Op_Ge then
               Op := N_Op_Gt;
               Opv := Opv - 1;
            end if;

            --  Deal with equality case

            if Op = N_Op_Eq then
               if Val = Opv then
                  Result := EQ;
               elsif Opv < Val then
                  Result := LT;
               else
                  Result := GT;
               end if;

            --  Deal with inequality case

            elsif Op = N_Op_Ne then
               if Val = Opv then
                  Result := NE;
               else
                  return Unknown;
               end if;

            --  Deal with greater than case

            elsif Op = N_Op_Gt then
               if Opv >= Val then
                  Result := GT;
               elsif Opv = Val - 1 then
                  Result := GE;
               else
                  return Unknown;
               end if;

            --  Deal with less than case

            else pragma Assert (Op = N_Op_Lt);
               if Opv <= Val then
                  Result := LT;
               elsif Opv = Val + 1 then
                  Result := LE;
               else
                  return Unknown;
               end if;
            end if;

            --  Deal with inverting result

            if Inv then
               case Result is
                  when GT     => return LT;
                  when GE     => return LE;
                  when LT     => return GT;
                  when LE     => return GE;
                  when others => return Result;
               end case;
            end if;

            return Result;
         end;
      end if;
   end Compile_Time_Compare;

   -------------------------------
   -- Compile_Time_Known_Bounds --
   -------------------------------

   function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
      Indx : Node_Id;
      Typ  : Entity_Id;

   begin
      if T = Any_Composite or else not Is_Array_Type (T) then
         return False;
      end if;

      Indx := First_Index (T);
      while Present (Indx) loop
         Typ := Underlying_Type (Etype (Indx));

         --  Never look at junk bounds of a generic type

         if Is_Generic_Type (Typ) then
            return False;
         end if;

         --  Otherwise check bounds for compile-time-known

         if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
            return False;
         elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
            return False;
         else
            Next_Index (Indx);
         end if;
      end loop;

      return True;
   end Compile_Time_Known_Bounds;

   ------------------------------
   -- Compile_Time_Known_Value --
   ------------------------------

   function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
      K      : constant Node_Kind := Nkind (Op);
      CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);

   begin
      --  Never known at compile time if bad type or raises Constraint_Error
      --  or empty (which can occur as a result of a previous error or in the
      --  case of e.g. an imported constant).

      if No (Op) then
         return False;

      elsif Op = Error
        or else Nkind (Op) not in N_Has_Etype
        or else Etype (Op) = Any_Type
        or else Raises_Constraint_Error (Op)
      then
         return False;
      end if;

      --  If we have an entity name, then see if it is the name of a constant
      --  and if so, test the corresponding constant value, or the name of an
      --  enumeration literal, which is always a constant.

      if Present (Etype (Op)) and then Is_Entity_Name (Op) then
         declare
            Ent : constant Entity_Id := Entity (Op);
            Val : Node_Id;

         begin
            --  Never known at compile time if it is a packed array value. We
            --  might want to try to evaluate these at compile time one day,
            --  but we do not make that attempt now.

            if Is_Packed_Array_Impl_Type (Etype (Op)) then
               return False;

            elsif Ekind (Ent) = E_Enumeration_Literal then
               return True;

            elsif Ekind (Ent) = E_Constant then
               Val := Constant_Value (Ent);

               if Present (Val) then

                  --  Guard against an illegal deferred constant whose full
                  --  view is initialized with a reference to itself. Treat
                  --  this case as a value not known at compile time.

                  if Is_Entity_Name (Val) and then Entity (Val) = Ent then
                     return False;
                  else
                     return Compile_Time_Known_Value (Val);
                  end if;

               --  Otherwise, the constant does not have a compile-time-known
               --  value.

               else
                  return False;
               end if;
            end if;
         end;

      --  We have a value, see if it is compile-time-known

      else
         --  Integer literals are worth storing in the cache

         if K = N_Integer_Literal then
            CV_Ent.N := Op;
            CV_Ent.V := Intval (Op);
            return True;

         --  Other literals and NULL are known at compile time

         elsif K in
           N_Character_Literal | N_Real_Literal | N_String_Literal | N_Null
         then
            return True;

         --  Evaluate static discriminants, to eliminate dead paths and
         --  redundant discriminant checks.

         elsif Is_Static_Discriminant_Component (Op) then
            return True;
         end if;
      end if;

      --  If we fall through, not known at compile time

      return False;

   --  If we get an exception while trying to do this test, then some error
   --  has occurred, and we simply say that the value is not known after all

   exception
      when others =>
         --  With debug flag K we will get an exception unless an error has
         --  already occurred (useful for debugging).

         if Debug_Flag_K then
            Check_Error_Detected;
         end if;

         return False;
   end Compile_Time_Known_Value;

   ---------------------------------------
   -- CRT_Safe_Compile_Time_Known_Value --
   ---------------------------------------

   function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
   begin
      if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
        and then not Is_OK_Static_Expression (Op)
      then
         return False;
      else
         return Compile_Time_Known_Value (Op);
      end if;
   end CRT_Safe_Compile_Time_Known_Value;

   -----------------
   -- Eval_Actual --
   -----------------

   --  This is only called for actuals of functions that are not predefined
   --  operators (which have already been rewritten as operators at this
   --  stage), so the call can never be folded, and all that needs doing for
   --  the actual is to do the check for a non-static context.

   procedure Eval_Actual (N : Node_Id) is
   begin
      Check_Non_Static_Context (N);
   end Eval_Actual;

   --------------------
   -- Eval_Allocator --
   --------------------

   --  Allocators are never static, so all we have to do is to do the
   --  check for a non-static context if an expression is present.

   procedure Eval_Allocator (N : Node_Id) is
      Expr : constant Node_Id := Expression (N);
   begin
      if Nkind (Expr) = N_Qualified_Expression then
         Check_Non_Static_Context (Expression (Expr));
      end if;
   end Eval_Allocator;

   ------------------------
   -- Eval_Arithmetic_Op --
   ------------------------

   --  Arithmetic operations are static functions, so the result is static
   --  if both operands are static (RM 4.9(7), 4.9(20)).

   procedure Eval_Arithmetic_Op (N : Node_Id) is
      Left  : constant Node_Id   := Left_Opnd (N);
      Right : constant Node_Id   := Right_Opnd (N);
      Ltype : constant Entity_Id := Etype (Left);
      Rtype : constant Entity_Id := Etype (Right);
      Otype : Entity_Id          := Empty;
      Stat  : Boolean;
      Fold  : Boolean;

   begin
      --  If not foldable we are done

      Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);

      if not Fold then
         return;
      end if;

      --  Otherwise attempt to fold

      if Is_Universal_Numeric_Type (Etype (Left))
           and then
         Is_Universal_Numeric_Type (Etype (Right))
      then
         Otype := Find_Universal_Operator_Type (N);
      end if;

      --  Fold for cases where both operands are of integer type

      if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
         declare
            Left_Int  : constant Uint := Expr_Value (Left);
            Right_Int : constant Uint := Expr_Value (Right);
            Result    : Uint;

         begin
            case Nkind (N) is
               when N_Op_Add =>
                  Result := Left_Int + Right_Int;

               when N_Op_Subtract =>
                  Result := Left_Int - Right_Int;

               when N_Op_Multiply =>
                  if OK_Bits
                       (N, UI_From_Int
                             (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
                  then
                     Result := Left_Int * Right_Int;
                  else
                     Result := Left_Int;
                  end if;

               when N_Op_Divide =>

                  --  The exception Constraint_Error is raised by integer
                  --  division, rem and mod if the right operand is zero.

                  if Right_Int = 0 then

                     --  When SPARK_Mode is On, force a warning instead of
                     --  an error in that case, as this likely corresponds
                     --  to deactivated code.

                     Apply_Compile_Time_Constraint_Error
                       (N, "division by zero", CE_Divide_By_Zero,
                        Loc  => Sloc (Right),
                        Warn => not Stat or SPARK_Mode = On);
                     return;

                  --  Otherwise we can do the division

                  else
                     Result := Left_Int / Right_Int;
                  end if;

               when N_Op_Mod =>

                  --  The exception Constraint_Error is raised by integer
                  --  division, rem and mod if the right operand is zero.

                  if Right_Int = 0 then

                     --  When SPARK_Mode is On, force a warning instead of
                     --  an error in that case, as this likely corresponds
                     --  to deactivated code.

                     Apply_Compile_Time_Constraint_Error
                       (N, "mod with zero divisor", CE_Divide_By_Zero,
                        Loc  => Sloc (Right),
                        Warn => not Stat or SPARK_Mode = On);
                     return;

                  else
                     Result := Left_Int mod Right_Int;
                  end if;

               when N_Op_Rem =>

                  --  The exception Constraint_Error is raised by integer
                  --  division, rem and mod if the right operand is zero.

                  if Right_Int = 0 then

                     --  When SPARK_Mode is On, force a warning instead of
                     --  an error in that case, as this likely corresponds
                     --  to deactivated code.

                     Apply_Compile_Time_Constraint_Error
                       (N, "rem with zero divisor", CE_Divide_By_Zero,
                        Loc  => Sloc (Right),
                        Warn => not Stat or SPARK_Mode = On);
                     return;

                  else
                     Result := Left_Int rem Right_Int;
                  end if;

               when others =>
                  raise Program_Error;
            end case;

            --  Adjust the result by the modulus if the type is a modular type

            if Is_Modular_Integer_Type (Ltype) then
               Result := Result mod Modulus (Ltype);
            end if;

            Check_Non_Static_Context_For_Overflow (N, Stat, Result);

            --  If we get here we can fold the result

            Fold_Uint (N, Result, Stat);
         end;

      --  Cases where at least one operand is a real. We handle the cases of
      --  both reals, or mixed/real integer cases (the latter happen only for
      --  divide and multiply, and the result is always real).

      elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
         declare
            Left_Real  : Ureal;
            Right_Real : Ureal;
            Result     : Ureal;

         begin
            if Is_Real_Type (Ltype) then
               Left_Real := Expr_Value_R (Left);
            else
               Left_Real := UR_From_Uint (Expr_Value (Left));
            end if;

            if Is_Real_Type (Rtype) then
               Right_Real := Expr_Value_R (Right);
            else
               Right_Real := UR_From_Uint (Expr_Value (Right));
            end if;

            if Nkind (N) = N_Op_Add then
               Result := Left_Real + Right_Real;

            elsif Nkind (N) = N_Op_Subtract then
               Result := Left_Real - Right_Real;

            elsif Nkind (N) = N_Op_Multiply then
               Result := Left_Real * Right_Real;

            else pragma Assert (Nkind (N) = N_Op_Divide);
               if UR_Is_Zero (Right_Real) then
                  Apply_Compile_Time_Constraint_Error
                    (N, "division by zero", CE_Divide_By_Zero,
                     Loc => Sloc (Right));
                  return;
               end if;

               Result := Left_Real / Right_Real;
            end if;

            Fold_Ureal (N, Result, Stat);
         end;
      end if;

      --  If the operator was resolved to a specific type, make sure that type
      --  is frozen even if the expression is folded into a literal (which has
      --  a universal type).

      if Present (Otype) then
         Freeze_Before (N, Otype);
      end if;
   end Eval_Arithmetic_Op;

   ----------------------------
   -- Eval_Character_Literal --
   ----------------------------

   --  Nothing to be done

   procedure Eval_Character_Literal (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      null;
   end Eval_Character_Literal;

   ---------------
   -- Eval_Call --
   ---------------

   --  Static function calls are either calls to predefined operators
   --  with static arguments, or calls to functions that rename a literal.
   --  Only the latter case is handled here, predefined operators are
   --  constant-folded elsewhere.

   --  If the function is itself inherited the literal of the parent type must
   --  be explicitly converted to the return type of the function.

   procedure Eval_Call (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);
      Lit : Entity_Id;

   begin
      if Nkind (N) = N_Function_Call
        and then No (Parameter_Associations (N))
        and then Is_Entity_Name (Name (N))
        and then Present (Alias (Entity (Name (N))))
        and then Is_Enumeration_Type (Base_Type (Typ))
      then
         Lit := Ultimate_Alias (Entity (Name (N)));

         if Ekind (Lit) = E_Enumeration_Literal then
            if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
               Rewrite
                 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
            else
               Rewrite (N, New_Occurrence_Of (Lit, Loc));
            end if;

            Resolve (N, Typ);
         end if;

      elsif Nkind (N) = N_Function_Call
        and then Is_Entity_Name (Name (N))
        and then Is_Intrinsic_Subprogram (Entity (Name (N)))
      then
         Eval_Intrinsic_Call (N, Entity (Name (N)));

      --  Ada 2022 (AI12-0075): If checking for potentially static expressions
      --  is enabled and we have a call to a static function, substitute a
      --  static value for the call, to allow folding the expression. This
      --  supports checking the requirement of RM 6.8(5.3/5) in
      --  Analyze_Expression_Function.

      elsif Checking_Potentially_Static_Expression
        and then Is_Static_Function_Call (N)
      then
         Fold_Dummy (N, Typ);
      end if;
   end Eval_Call;

   --------------------------
   -- Eval_Case_Expression --
   --------------------------

   --  A conditional expression is static if all its conditions and dependent
   --  expressions are static. Note that we do not care if the dependent
   --  expressions raise CE, except for the one that will be selected.

   procedure Eval_Case_Expression (N : Node_Id) is
      Alt    : Node_Id;
      Choice : Node_Id;

   begin
      Set_Is_Static_Expression (N, False);

      if Error_Posted (Expression (N))
        or else not Is_Static_Expression (Expression (N))
      then
         Check_Non_Static_Context (Expression (N));
         return;
      end if;

      --  First loop, make sure all the alternatives are static expressions
      --  none of which raise Constraint_Error. We make the Constraint_Error
      --  check because part of the legality condition for a correct static
      --  case expression is that the cases are covered, like any other case
      --  expression. And we can't do that if any of the conditions raise an
      --  exception, so we don't even try to evaluate if that is the case.

      Alt := First (Alternatives (N));
      while Present (Alt) loop

         --  The expression must be static, but we don't care at this stage
         --  if it raises Constraint_Error (the alternative might not match,
         --  in which case the expression is statically unevaluated anyway).

         if not Is_Static_Expression (Expression (Alt)) then
            Check_Non_Static_Context (Expression (Alt));
            return;
         end if;

         --  The choices of a case always have to be static, and cannot raise
         --  an exception. If this condition is not met, then the expression
         --  is plain illegal, so just abandon evaluation attempts. No need
         --  to check non-static context when we have something illegal anyway.

         if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
            return;
         end if;

         Next (Alt);
      end loop;

      --  OK, if the above loop gets through it means that all choices are OK
      --  static (don't raise exceptions), so the whole case is static, and we
      --  can find the matching alternative.

      Set_Is_Static_Expression (N);

      --  Now to deal with propagating a possible Constraint_Error

      --  If the selecting expression raises CE, propagate and we are done

      if Raises_Constraint_Error (Expression (N)) then
         Set_Raises_Constraint_Error (N);

      --  Otherwise we need to check the alternatives to find the matching
      --  one. CE's in other than the matching one are not relevant. But we
      --  do need to check the matching one. Unlike the first loop, we do not
      --  have to go all the way through, when we find the matching one, quit.

      else
         Alt := First (Alternatives (N));
         Search : loop

            --  We must find a match among the alternatives. If not, this must
            --  be due to other errors, so just ignore, leaving as non-static.

            if No (Alt) then
               Set_Is_Static_Expression (N, False);
               return;
            end if;

            --  Otherwise loop through choices of this alternative

            Choice := First (Discrete_Choices (Alt));
            while Present (Choice) loop

               --  If we find a matching choice, then the Expression of this
               --  alternative replaces N (Raises_Constraint_Error flag is
               --  included, so we don't have to special case that).

               if Choice_Matches (Expression (N), Choice) = Match then
                  Rewrite (N, Relocate_Node (Expression (Alt)));
                  return;
               end if;

               Next (Choice);
            end loop;

            Next (Alt);
         end loop Search;
      end if;
   end Eval_Case_Expression;

   ------------------------
   -- Eval_Concatenation --
   ------------------------

   --  Concatenation is a static function, so the result is static if both
   --  operands are static (RM 4.9(7), 4.9(21)).

   procedure Eval_Concatenation (N : Node_Id) is
      Left  : constant Node_Id   := Left_Opnd (N);
      Right : constant Node_Id   := Right_Opnd (N);
      C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
      Stat  : Boolean;
      Fold  : Boolean;

   begin
      --  Concatenation is never static in Ada 83, so if Ada 83 check operand
      --  non-static context.

      if Ada_Version = Ada_83
        and then Comes_From_Source (N)
      then
         Check_Non_Static_Context (Left);
         Check_Non_Static_Context (Right);
         return;
      end if;

      --  If not foldable we are done. In principle concatenation that yields
      --  any string type is static (i.e. an array type of character types).
      --  However, character types can include enumeration literals, and
      --  concatenation in that case cannot be described by a literal, so we
      --  only consider the operation static if the result is an array of
      --  (a descendant of) a predefined character type.

      Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);

      if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
         Set_Is_Static_Expression (N, False);
         return;
      end if;

      --  Compile time string concatenation

      --  ??? Note that operands that are aggregates can be marked as static,
      --  so we should attempt at a later stage to fold concatenations with
      --  such aggregates.

      declare
         Left_Str   : constant Node_Id := Get_String_Val (Left);
         Left_Len   : Nat;
         Right_Str  : constant Node_Id := Get_String_Val (Right);
         Folded_Val : String_Id        := No_String;

      begin
         --  Establish new string literal, and store left operand. We make
         --  sure to use the special Start_String that takes an operand if
         --  the left operand is a string literal. Since this is optimized
         --  in the case where that is the most recently created string
         --  literal, we ensure efficient time/space behavior for the
         --  case of a concatenation of a series of string literals.

         if Nkind (Left_Str) = N_String_Literal then
            Left_Len := String_Length (Strval (Left_Str));

            --  If the left operand is the empty string, and the right operand
            --  is a string literal (the case of "" & "..."), the result is the
            --  value of the right operand. This optimization is important when
            --  Is_Folded_In_Parser, to avoid copying an enormous right
            --  operand.

            if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
               Folded_Val := Strval (Right_Str);
            else
               Start_String (Strval (Left_Str));
            end if;

         else
            Start_String;
            Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
            Left_Len := 1;
         end if;

         --  Now append the characters of the right operand, unless we
         --  optimized the "" & "..." case above.

         if Nkind (Right_Str) = N_String_Literal then
            if Left_Len /= 0 then
               Store_String_Chars (Strval (Right_Str));
               Folded_Val := End_String;
            end if;
         else
            Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
            Folded_Val := End_String;
         end if;

         Set_Is_Static_Expression (N, Stat);

         --  If left operand is the empty string, the result is the
         --  right operand, including its bounds if anomalous.

         if Left_Len = 0
           and then Is_Array_Type (Etype (Right))
           and then Etype (Right) /= Any_String
         then
            Set_Etype (N, Etype (Right));
         end if;

         Fold_Str (N, Folded_Val, Static => Stat);
      end;
   end Eval_Concatenation;

   ----------------------
   -- Eval_Entity_Name --
   ----------------------

   --  This procedure is used for identifiers and expanded names other than
   --  named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
   --  static if they denote a static constant (RM 4.9(6)) or if the name
   --  denotes an enumeration literal (RM 4.9(22)).

   procedure Eval_Entity_Name (N : Node_Id) is
      Def_Id : constant Entity_Id := Entity (N);
      Val    : Node_Id;

   begin
      --  Enumeration literals are always considered to be constants
      --  and cannot raise Constraint_Error (RM 4.9(22)).

      if Ekind (Def_Id) = E_Enumeration_Literal then
         Set_Is_Static_Expression (N);
         return;

      --  A name is static if it denotes a static constant (RM 4.9(5)), and
      --  we also copy Raise_Constraint_Error. Notice that even if non-static,
      --  it does not violate 10.2.1(8) here, since this is not a variable.

      elsif Ekind (Def_Id) = E_Constant then

         --  Deferred constants must always be treated as nonstatic outside the
         --  scope of their full view.

         if Present (Full_View (Def_Id))
           and then not In_Open_Scopes (Scope (Def_Id))
         then
            Val := Empty;
         else
            Val := Constant_Value (Def_Id);
         end if;

         if Present (Val) then
            Set_Is_Static_Expression
              (N, Is_Static_Expression (Val)
                    and then Is_Static_Subtype (Etype (Def_Id)));
            Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));

            if not Is_Static_Expression (N)
              and then not Is_Generic_Type (Etype (N))
            then
               Validate_Static_Object_Name (N);
            end if;

            --  Mark constant condition in SCOs

            if Generate_SCO
              and then Comes_From_Source (N)
              and then Is_Boolean_Type (Etype (Def_Id))
              and then Compile_Time_Known_Value (N)
            then
               Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
            end if;

            return;
         end if;

      --  Ada 2022 (AI12-0075): If checking for potentially static expressions
      --  is enabled and we have a reference to a formal parameter of mode in,
      --  substitute a static value for the reference, to allow folding the
      --  expression. This supports checking the requirement of RM 6.8(5.3/5)
      --  in Analyze_Expression_Function.

      elsif Ekind (Def_Id) = E_In_Parameter
        and then Checking_Potentially_Static_Expression
        and then Is_Static_Function (Scope (Def_Id))
      then
         Fold_Dummy (N, Etype (Def_Id));
      end if;

      --  Fall through if the name is not static

      Validate_Static_Object_Name (N);
   end Eval_Entity_Name;

   ------------------------
   -- Eval_If_Expression --
   ------------------------

   --  We can fold to a static expression if the condition and both dependent
   --  expressions are static. Otherwise, the only required processing is to do
   --  the check for non-static context for the then and else expressions.

   procedure Eval_If_Expression (N : Node_Id) is
      Condition  : constant Node_Id := First (Expressions (N));
      Then_Expr  : constant Node_Id := Next (Condition);
      Else_Expr  : constant Node_Id := Next (Then_Expr);
      Result     : Node_Id;
      Non_Result : Node_Id;

      Rstat : constant Boolean :=
                Is_Static_Expression (Condition)
                  and then
                Is_Static_Expression (Then_Expr)
                  and then
                Is_Static_Expression (Else_Expr);
      --  True if result is static

   begin
      --  If result not static, nothing to do, otherwise set static result

      if not Rstat then
         return;
      else
         Set_Is_Static_Expression (N);
      end if;

      --  If any operand is Any_Type, just propagate to result and do not try
      --  to fold, this prevents cascaded errors.

      if Etype (Condition) = Any_Type or else
         Etype (Then_Expr) = Any_Type or else
         Etype (Else_Expr) = Any_Type
      then
         Set_Etype (N, Any_Type);
         Set_Is_Static_Expression (N, False);
         return;
      end if;

      --  If condition raises Constraint_Error then we have already signaled
      --  an error, and we just propagate to the result and do not fold.

      if Raises_Constraint_Error (Condition) then
         Set_Raises_Constraint_Error (N);
         return;
      end if;

      --  Static case where we can fold. Note that we don't try to fold cases
      --  where the condition is known at compile time, but the result is
      --  non-static. This avoids possible cases of infinite recursion where
      --  the expander puts in a redundant test and we remove it. Instead we
      --  deal with these cases in the expander.

      --  Select result operand

      if Is_True (Expr_Value (Condition)) then
         Result     := Then_Expr;
         Non_Result := Else_Expr;
      else
         Result     := Else_Expr;
         Non_Result := Then_Expr;
      end if;

      --  Note that it does not matter if the non-result operand raises a
      --  Constraint_Error, but if the result raises Constraint_Error then we
      --  replace the node with a raise Constraint_Error. This will properly
      --  propagate Raises_Constraint_Error since this flag is set in Result.

      if Raises_Constraint_Error (Result) then
         Rewrite_In_Raise_CE (N, Result);
         Check_Non_Static_Context (Non_Result);

      --  Otherwise the result operand replaces the original node

      else
         Rewrite (N, Relocate_Node (Result));
         Set_Is_Static_Expression (N);
      end if;
   end Eval_If_Expression;

   ----------------------------
   -- Eval_Indexed_Component --
   ----------------------------

   --  Indexed components are never static, so we need to perform the check
   --  for non-static context on the index values. Then, we check if the
   --  value can be obtained at compile time, even though it is non-static.

   procedure Eval_Indexed_Component (N : Node_Id) is
      Expr : Node_Id;

   begin
      --  Check for non-static context on index values

      Expr := First (Expressions (N));
      while Present (Expr) loop
         Check_Non_Static_Context (Expr);
         Next (Expr);
      end loop;

      --  If the indexed component appears in an object renaming declaration
      --  then we do not want to try to evaluate it, since in this case we
      --  need the identity of the array element.

      if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
         return;

      --  Similarly if the indexed component appears as the prefix of an
      --  attribute we don't want to evaluate it, because at least for
      --  some cases of attributes we need the identify (e.g. Access, Size).

      elsif Nkind (Parent (N)) = N_Attribute_Reference then
         return;
      end if;

      --  Note: there are other cases, such as the left side of an assignment,
      --  or an OUT parameter for a call, where the replacement results in the
      --  illegal use of a constant, But these cases are illegal in the first
      --  place, so the replacement, though silly, is harmless.

      --  Now see if this is a constant array reference

      if List_Length (Expressions (N)) = 1
        and then Is_Entity_Name (Prefix (N))
        and then Ekind (Entity (Prefix (N))) = E_Constant
        and then Present (Constant_Value (Entity (Prefix (N))))
      then
         declare
            Loc : constant Source_Ptr := Sloc (N);
            Arr : constant Node_Id    := Constant_Value (Entity (Prefix (N)));
            Sub : constant Node_Id    := First (Expressions (N));

            Atyp : Entity_Id;
            --  Type of array

            Lin : Nat;
            --  Linear one's origin subscript value for array reference

            Lbd : Node_Id;
            --  Lower bound of the first array index

            Elm : Node_Id;
            --  Value from constant array

         begin
            Atyp := Etype (Arr);

            if Is_Access_Type (Atyp) then
               Atyp := Designated_Type (Atyp);
            end if;

            --  If we have an array type (we should have but perhaps there are
            --  error cases where this is not the case), then see if we can do
            --  a constant evaluation of the array reference.

            if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
               if Ekind (Atyp) = E_String_Literal_Subtype then
                  Lbd := String_Literal_Low_Bound (Atyp);
               else
                  Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
               end if;

               if Compile_Time_Known_Value (Sub)
                 and then Nkind (Arr) = N_Aggregate
                 and then Compile_Time_Known_Value (Lbd)
                 and then Is_Discrete_Type (Component_Type (Atyp))
               then
                  Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;

                  if List_Length (Expressions (Arr)) >= Lin then
                     Elm := Pick (Expressions (Arr), Lin);

                     --  If the resulting expression is compile-time-known,
                     --  then we can rewrite the indexed component with this
                     --  value, being sure to mark the result as non-static.
                     --  We also reset the Sloc, in case this generates an
                     --  error later on (e.g. 136'Access).

                     if Compile_Time_Known_Value (Elm) then
                        Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
                        Set_Is_Static_Expression (N, False);
                        Set_Sloc (N, Loc);
                     end if;
                  end if;

               --  We can also constant-fold if the prefix is a string literal.
               --  This will be useful in an instantiation or an inlining.

               elsif Compile_Time_Known_Value (Sub)
                 and then Nkind (Arr) = N_String_Literal
                 and then Compile_Time_Known_Value (Lbd)
                 and then Expr_Value (Lbd) = 1
                 and then Expr_Value (Sub) <=
                   String_Literal_Length (Etype (Arr))
               then
                  declare
                     C : constant Char_Code :=
                           Get_String_Char (Strval (Arr),
                             UI_To_Int (Expr_Value (Sub)));
                  begin
                     Set_Character_Literal_Name (C);

                     Elm :=
                       Make_Character_Literal (Loc,
                         Chars              => Name_Find,
                         Char_Literal_Value => UI_From_CC (C));
                     Set_Etype (Elm, Component_Type (Atyp));
                     Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
                     Set_Is_Static_Expression (N, False);
                  end;
               end if;
            end if;
         end;
      end if;
   end Eval_Indexed_Component;

   --------------------------
   -- Eval_Integer_Literal --
   --------------------------

   --  Numeric literals are static (RM 4.9(1)), and have already been marked
   --  as static by the analyzer. The reason we did it that early is to allow
   --  the possibility of turning off the Is_Static_Expression flag after
   --  analysis, but before resolution, when integer literals are generated in
   --  the expander that do not correspond to static expressions.

   procedure Eval_Integer_Literal (N : Node_Id) is
      function In_Any_Integer_Context (K : Node_Kind) return Boolean;
      --  If the literal is resolved with a specific type in a context where
      --  the expected type is Any_Integer, there are no range checks on the
      --  literal. By the time the literal is evaluated, it carries the type
      --  imposed by the enclosing expression, and we must recover the context
      --  to determine that Any_Integer is meant.

      ----------------------------
      -- In_Any_Integer_Context --
      ----------------------------

      function In_Any_Integer_Context (K : Node_Kind) return Boolean is
      begin
         --  Any_Integer also appears in digits specifications for real types,
         --  but those have bounds smaller that those of any integer base type,
         --  so we can safely ignore these cases.

         return K in N_Attribute_Definition_Clause
                   | N_Modular_Type_Definition
                   | N_Number_Declaration
                   | N_Signed_Integer_Type_Definition;
      end In_Any_Integer_Context;

      --  Local variables

      PK  : constant Node_Kind := Nkind (Parent (N));
      Typ : constant Entity_Id := Etype (N);

   --  Start of processing for Eval_Integer_Literal

   begin
      --  If the literal appears in a non-expression context, then it is
      --  certainly appearing in a non-static context, so check it. This is
      --  actually a redundant check, since Check_Non_Static_Context would
      --  check it, but it seems worthwhile to optimize out the call.

      --  Additionally, when the literal appears within an if or case
      --  expression it must be checked as well. However, due to the literal
      --  appearing within a conditional statement, expansion greatly changes
      --  the nature of its context and performing some of the checks within
      --  Check_Non_Static_Context on an expanded literal may lead to spurious
      --  and misleading warnings.

      if (PK not in N_Case_Expression_Alternative | N_Subexpr
           or else (PK in N_Case_Expression_Alternative | N_If_Expression
                     and then
                    Comes_From_Source (N)))
        and then not In_Any_Integer_Context (PK)
      then
         Check_Non_Static_Context (N);
      end if;

      --  Modular integer literals must be in their base range

      if Is_Modular_Integer_Type (Typ)
        and then Is_Out_Of_Range (N, Base_Type (Typ), Assume_Valid => True)
      then
         Out_Of_Range (N);
      end if;
   end Eval_Integer_Literal;

   -------------------------
   -- Eval_Intrinsic_Call --
   -------------------------

   procedure Eval_Intrinsic_Call (N : Node_Id; E : Entity_Id) is

      procedure Eval_Shift (N : Node_Id; E : Entity_Id; Op : Node_Kind);
      --  Evaluate an intrinsic shift call N on the given subprogram E.
      --  Op is the kind for the shift node.

      ----------------
      -- Eval_Shift --
      ----------------

      procedure Eval_Shift (N : Node_Id; E : Entity_Id; Op : Node_Kind) is
         Left   : constant Node_Id := First_Actual (N);
         Right  : constant Node_Id := Next_Actual (Left);
         Static : constant Boolean := Is_Static_Function (E);

      begin
         if Static then
            if Checking_Potentially_Static_Expression then
               Fold_Dummy (N, Etype (N));
               return;
            end if;
         end if;

         Fold_Shift
           (N, Left, Right, Op, Static => Static, Check_Elab => not Static);
      end Eval_Shift;

      Nam : Name_Id;

   begin
      --  Nothing to do if the intrinsic is handled by the back end.

      if Present (Interface_Name (E)) then
         return;
      end if;

      --  Intrinsic calls as part of a static function is a (core)
      --  language extension.

      if Checking_Potentially_Static_Expression
        and then not Core_Extensions_Allowed
      then
         return;
      end if;

      --  If we have a renaming, expand the call to the original operation,
      --  which must itself be intrinsic, since renaming requires matching
      --  conventions and this has already been checked.

      if Present (Alias (E)) then
         Eval_Intrinsic_Call (N, Alias (E));
         return;
      end if;

      --  If the intrinsic subprogram is generic, gets its original name

      if Present (Parent (E))
        and then Present (Generic_Parent (Parent (E)))
      then
         Nam := Chars (Generic_Parent (Parent (E)));
      else
         Nam := Chars (E);
      end if;

      case Nam is
         when Name_Shift_Left  =>
            Eval_Shift (N, E, N_Op_Shift_Left);
         when Name_Shift_Right =>
            Eval_Shift (N, E, N_Op_Shift_Right);
         when Name_Shift_Right_Arithmetic =>
            Eval_Shift (N, E, N_Op_Shift_Right_Arithmetic);
         when others           =>
            null;
      end case;
   end Eval_Intrinsic_Call;

   ---------------------
   -- Eval_Logical_Op --
   ---------------------

   --  Logical operations are static functions, so the result is potentially
   --  static if both operands are potentially static (RM 4.9(7), 4.9(20)).

   procedure Eval_Logical_Op (N : Node_Id) is
      Left      : constant Node_Id := Left_Opnd (N);
      Right     : constant Node_Id := Right_Opnd (N);
      Left_Int  : Uint := No_Uint;
      Right_Int : Uint := No_Uint;
      Stat      : Boolean;
      Fold      : Boolean;

   begin
      --  If not foldable we are done

      Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);

      if not Fold then
         return;
      end if;

      --  Compile time evaluation of logical operation

      if Is_Modular_Integer_Type (Etype (N)) then
         Left_Int  := Expr_Value (Left);
         Right_Int := Expr_Value (Right);

         declare
            Left_Bits  : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
            Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);

         begin
            To_Bits (Left_Int, Left_Bits);
            To_Bits (Right_Int, Right_Bits);

            --  Note: should really be able to use array ops instead of
            --  these loops, but they break the build with a cryptic error
            --  during the bind of gnat1 likely due to a wrong computation
            --  of a date or checksum.

            if Nkind (N) = N_Op_And then
               for J in Left_Bits'Range loop
                  Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
               end loop;

            elsif Nkind (N) = N_Op_Or then
               for J in Left_Bits'Range loop
                  Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
               end loop;

            else
               pragma Assert (Nkind (N) = N_Op_Xor);

               for J in Left_Bits'Range loop
                  Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
               end loop;
            end if;

            Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
         end;

      else
         pragma Assert (Is_Boolean_Type (Etype (N)));

         if Compile_Time_Known_Value (Left)
           and then Compile_Time_Known_Value (Right)
         then
            Right_Int := Expr_Value (Right);
            Left_Int  := Expr_Value (Left);
         end if;

         if Nkind (N) = N_Op_And then

            --  If Left or Right are not compile time known values it means
            --  that the result is always False as per
            --  Test_Expression_Is_Foldable.
            --  Note that in this case, both Right_Int and Left_Int are set
            --  to No_Uint, so need to test for both.

            if No (Right_Int) then
               Fold_Uint (N, Uint_0, Stat);
            else
               Fold_Uint (N,
                 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
            end if;
         elsif Nkind (N) = N_Op_Or then

            --  If Left or Right are not compile time known values it means
            --  that the result is always True. as per
            --  Test_Expression_Is_Foldable.
            --  Note that in this case, both Right_Int and Left_Int are set
            --  to No_Uint, so need to test for both.

            if No (Right_Int) then
               Fold_Uint (N, Uint_1, Stat);
            else
               Fold_Uint (N,
                 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
            end if;
         else
            pragma Assert (Nkind (N) = N_Op_Xor);
            Fold_Uint (N,
              Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
         end if;
      end if;
   end Eval_Logical_Op;

   ------------------------
   -- Eval_Membership_Op --
   ------------------------

   --  A membership test is potentially static if the expression is static, and
   --  the range is a potentially static range, or is a subtype mark denoting a
   --  static subtype (RM 4.9(12)).

   procedure Eval_Membership_Op (N : Node_Id) is
      Alts   : constant List_Id := Alternatives (N);
      Choice : constant Node_Id := Right_Opnd (N);
      Expr   : constant Node_Id := Left_Opnd (N);
      Result : Match_Result;

   begin
      --  Ignore if error in either operand, except to make sure that Any_Type
      --  is properly propagated to avoid junk cascaded errors.

      if Etype (Expr) = Any_Type
        or else (Present (Choice) and then Etype (Choice) = Any_Type)
      then
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  If left operand non-static, then nothing to do

      if not Is_Static_Expression (Expr) then
         return;
      end if;

      --  If choice is non-static, left operand is in non-static context

      if (Present (Choice) and then not Is_Static_Choice (Choice))
        or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
      then
         Check_Non_Static_Context (Expr);
         return;
      end if;

      --  Otherwise we definitely have a static expression

      Set_Is_Static_Expression (N);

      --  If left operand raises Constraint_Error, propagate and we are done

      if Raises_Constraint_Error (Expr) then
         Set_Raises_Constraint_Error (N, True);

      --  See if we match

      else
         if Present (Choice) then
            Result := Choice_Matches (Expr, Choice);
         else
            Result := Choices_Match (Expr, Alts);
         end if;

         --  If result is Non_Static, it means that we raise Constraint_Error,
         --  since we already tested that the operands were themselves static.

         if Result = Non_Static then
            Set_Raises_Constraint_Error (N);

         --  Otherwise we have our result (flipped if NOT IN case)

         else
            Fold_Uint
              (N, Test (Result = Match xor Nkind (N) = N_Not_In), True);
            Warn_On_Known_Condition (N);
         end if;
      end if;
   end Eval_Membership_Op;

   ------------------------
   -- Eval_Named_Integer --
   ------------------------

   procedure Eval_Named_Integer (N : Node_Id) is
   begin
      Fold_Uint (N,
        Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
   end Eval_Named_Integer;

   ---------------------
   -- Eval_Named_Real --
   ---------------------

   procedure Eval_Named_Real (N : Node_Id) is
   begin
      Fold_Ureal (N,
        Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
   end Eval_Named_Real;

   -------------------
   -- Eval_Op_Expon --
   -------------------

   --  Exponentiation is a static functions, so the result is potentially
   --  static if both operands are potentially static (RM 4.9(7), 4.9(20)).

   procedure Eval_Op_Expon (N : Node_Id) is
      Left  : constant Node_Id := Left_Opnd (N);
      Right : constant Node_Id := Right_Opnd (N);
      Stat  : Boolean;
      Fold  : Boolean;

   begin
      --  If not foldable we are done

      Test_Expression_Is_Foldable
        (N, Left, Right, Stat, Fold, CRT_Safe => True);

      --  Return if not foldable

      if not Fold then
         return;
      end if;

      if Configurable_Run_Time_Mode and not Stat then
         return;
      end if;

      --  Fold exponentiation operation

      declare
         Right_Int : constant Uint := Expr_Value (Right);

      begin
         --  Integer case

         if Is_Integer_Type (Etype (Left)) then
            declare
               Left_Int : constant Uint := Expr_Value (Left);
               Result   : Uint;

            begin
               --  Exponentiation of an integer raises Constraint_Error for a
               --  negative exponent (RM 4.5.6).

               if Right_Int < 0 then
                  Apply_Compile_Time_Constraint_Error
                    (N, "integer exponent negative", CE_Range_Check_Failed,
                     Warn => not Stat);
                  return;

               else
                  if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
                     Result := Left_Int ** Right_Int;
                  else
                     Result := Left_Int;
                  end if;

                  if Is_Modular_Integer_Type (Etype (N)) then
                     Result := Result mod Modulus (Etype (N));
                  end if;

                  Check_Non_Static_Context_For_Overflow (N, Stat, Result);

                  Fold_Uint (N, Result, Stat);
               end if;
            end;

         --  Real case

         else
            declare
               Left_Real : constant Ureal := Expr_Value_R (Left);

            begin
               --  Cannot have a zero base with a negative exponent

               if UR_Is_Zero (Left_Real) then

                  if Right_Int < 0 then
                     Apply_Compile_Time_Constraint_Error
                       (N, "zero ** negative integer", CE_Range_Check_Failed,
                        Warn => not Stat);
                     return;
                  else
                     Fold_Ureal (N, Ureal_0, Stat);
                  end if;

               else
                  Fold_Ureal (N, Left_Real ** Right_Int, Stat);
               end if;
            end;
         end if;
      end;
   end Eval_Op_Expon;

   -----------------
   -- Eval_Op_Not --
   -----------------

   --  The not operation is a static function, so the result is potentially
   --  static if the operand is potentially static (RM 4.9(7), 4.9(20)).

   procedure Eval_Op_Not (N : Node_Id) is
      Right : constant Node_Id := Right_Opnd (N);
      Stat  : Boolean;
      Fold  : Boolean;

   begin
      --  If not foldable we are done

      Test_Expression_Is_Foldable (N, Right, Stat, Fold);

      if not Fold then
         return;
      end if;

      --  Fold not operation

      declare
         Rint : constant Uint      := Expr_Value (Right);
         Typ  : constant Entity_Id := Etype (N);

      begin
         --  Negation is equivalent to subtracting from the modulus minus one.
         --  For a binary modulus this is equivalent to the ones-complement of
         --  the original value. For a nonbinary modulus this is an arbitrary
         --  but consistent definition.

         if Is_Modular_Integer_Type (Typ) then
            Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
         else pragma Assert (Is_Boolean_Type (Typ));
            Fold_Uint (N, Test (not Is_True (Rint)), Stat);
         end if;

         Set_Is_Static_Expression (N, Stat);
      end;
   end Eval_Op_Not;

   -------------------------------
   -- Eval_Qualified_Expression --
   -------------------------------

   --  A qualified expression is potentially static if its subtype mark denotes
   --  a static subtype and its expression is potentially static (RM 4.9 (10)).

   procedure Eval_Qualified_Expression (N : Node_Id) is
      Operand     : constant Node_Id   := Expression (N);
      Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));

      Stat : Boolean;
      Fold : Boolean;
      Hex  : Boolean;

   begin
      --  Can only fold if target is string or scalar and subtype is static.
      --  Also, do not fold if our parent is an allocator (this is because the
      --  qualified expression is really part of the syntactic structure of an
      --  allocator, and we do not want to end up with something that
      --  corresponds to "new 1" where the 1 is the result of folding a
      --  qualified expression).

      if not Is_Static_Subtype (Target_Type)
        or else Nkind (Parent (N)) = N_Allocator
      then
         Check_Non_Static_Context (Operand);

         --  If operand is known to raise Constraint_Error, set the flag on the
         --  expression so it does not get optimized away.

         if Nkind (Operand) = N_Raise_Constraint_Error then
            Set_Raises_Constraint_Error (N);
         end if;

         return;

      --  Also return if a semantic error has been posted on the node, as we
      --  don't want to fold in that case (for GNATprove, the node might lead
      --  to Constraint_Error but won't have been replaced with a raise node
      --  or marked as raising CE).

      elsif Error_Posted (N) then
         return;
      end if;

      --  If not foldable we are done

      Test_Expression_Is_Foldable (N, Operand, Stat, Fold);

      if not Fold then
         return;

      --  Don't try fold if target type has Constraint_Error bounds

      elsif not Is_OK_Static_Subtype (Target_Type) then
         Set_Raises_Constraint_Error (N);
         return;
      end if;

      --  Fold the result of qualification

      if Is_Discrete_Type (Target_Type) then

         --  Save Print_In_Hex indication

         Hex := Nkind (Operand) = N_Integer_Literal
                  and then Print_In_Hex (Operand);

         Fold_Uint (N, Expr_Value (Operand), Stat);

         --  Preserve Print_In_Hex indication

         if Hex and then Nkind (N) = N_Integer_Literal then
            Set_Print_In_Hex (N);
         end if;

      elsif Is_Real_Type (Target_Type) then
         Fold_Ureal (N, Expr_Value_R (Operand), Stat);

      else
         Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);

         if not Stat then
            Set_Is_Static_Expression (N, False);
         else
            Check_String_Literal_Length (N, Target_Type);
         end if;

         return;
      end if;

      --  The expression may be foldable but not static

      Set_Is_Static_Expression (N, Stat);

      if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
         Out_Of_Range (N);
      end if;
   end Eval_Qualified_Expression;

   -----------------------
   -- Eval_Real_Literal --
   -----------------------

   --  Numeric literals are static (RM 4.9(1)), and have already been marked
   --  as static by the analyzer. The reason we did it that early is to allow
   --  the possibility of turning off the Is_Static_Expression flag after
   --  analysis, but before resolution, when integer literals are generated
   --  in the expander that do not correspond to static expressions.

   procedure Eval_Real_Literal (N : Node_Id) is
      PK : constant Node_Kind := Nkind (Parent (N));

   begin
      --  If the literal appears in a non-expression context and not as part of
      --  a number declaration, then it is appearing in a non-static context,
      --  so check it.

      if PK not in N_Subexpr and then PK /= N_Number_Declaration then
         Check_Non_Static_Context (N);
      end if;
   end Eval_Real_Literal;

   ------------------------
   -- Eval_Relational_Op --
   ------------------------

   --  Relational operations are static functions, so the result is static if
   --  both operands are static (RM 4.9(7), 4.9(20)), except that up to Ada
   --  2012, for strings the result is never static, even if the operands are.
   --  The string case was relaxed in Ada 2022, see AI12-0201.

   --  However, for internally generated nodes, we allow string equality and
   --  inequality to be static. This is because we rewrite A in "ABC" as an
   --  equality test A = "ABC", and the former is definitely static.

   procedure Eval_Relational_Op (N : Node_Id) is
      Left  : constant Node_Id := Left_Opnd  (N);
      Right : constant Node_Id := Right_Opnd (N);

      procedure Decompose_Expr
        (Expr : Node_Id;
         Ent  : out Entity_Id;
         Kind : out Character;
         Cons : out Uint;
         Orig : Boolean := True);
      --  Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
      --  is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
      --  simple entity, and Cons is the value of K. If the expression is not
      --  of the required form, Ent is set to Empty.
      --
      --  Orig indicates whether Expr is the original expression to consider,
      --  or if we are handling a subexpression (e.g. recursive call to
      --  Decompose_Expr).

      procedure Fold_General_Op (Is_Static : Boolean);
      --  Attempt to fold arbitrary relational operator N. Flag Is_Static must
      --  be set when the operator denotes a static expression.

      procedure Fold_Static_Real_Op;
      --  Attempt to fold static real type relational operator N

      function Static_Length (Expr : Node_Id) return Uint;
      --  If Expr is an expression for a constrained array whose length is
      --  known at compile time, return the non-negative length, otherwise
      --  return -1.

      --------------------
      -- Decompose_Expr --
      --------------------

      procedure Decompose_Expr
        (Expr : Node_Id;
         Ent  : out Entity_Id;
         Kind : out Character;
         Cons : out Uint;
         Orig : Boolean := True)
      is
         Exp : Node_Id;

      begin
         --  Assume that the expression does not meet the expected form

         Cons := No_Uint;
         Ent  := Empty;
         Kind := '?';

         if Nkind (Expr) = N_Op_Add
           and then Compile_Time_Known_Value (Right_Opnd (Expr))
         then
            Exp  := Left_Opnd (Expr);
            Cons := Expr_Value (Right_Opnd (Expr));

         elsif Nkind (Expr) = N_Op_Subtract
           and then Compile_Time_Known_Value (Right_Opnd (Expr))
         then
            Exp  := Left_Opnd (Expr);
            Cons := -Expr_Value (Right_Opnd (Expr));

         --  If the bound is a constant created to remove side effects, recover
         --  the original expression to see if it has one of the recognizable
         --  forms.

         elsif Nkind (Expr) = N_Identifier
           and then not Comes_From_Source (Entity (Expr))
           and then Ekind (Entity (Expr)) = E_Constant
           and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
         then
            Exp := Expression (Parent (Entity (Expr)));
            Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);

            --  If original expression includes an entity, create a reference
            --  to it for use below.

            if Present (Ent) then
               Exp := New_Occurrence_Of (Ent, Sloc (Ent));
            else
               return;
            end if;

         else
            --  Only consider the case of X + 0 for a full expression, and
            --  not when recursing, otherwise we may end up with evaluating
            --  expressions not known at compile time to 0.

            if Orig then
               Exp  := Expr;
               Cons := Uint_0;
            else
               return;
            end if;
         end if;

         --  At this stage Exp is set to the potential X

         if Nkind (Exp) = N_Attribute_Reference then
            if Attribute_Name (Exp) = Name_First then
               Kind := 'F';
            elsif Attribute_Name (Exp) = Name_Last then
               Kind := 'L';
            else
               return;
            end if;

            Exp := Prefix (Exp);

         else
            Kind := 'E';
         end if;

         if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
            Ent := Entity (Exp);
         end if;
      end Decompose_Expr;

      ---------------------
      -- Fold_General_Op --
      ---------------------

      procedure Fold_General_Op (Is_Static : Boolean) is
         CR : constant Compare_Result :=
                Compile_Time_Compare (Left, Right, Assume_Valid => False);

         Result : Boolean;

      begin
         if CR = Unknown then
            return;
         end if;

         case Nkind (N) is
            when N_Op_Eq =>
               if CR = EQ then
                  Result := True;
               elsif CR = NE or else CR = GT or else CR = LT then
                  Result := False;
               else
                  return;
               end if;

            when N_Op_Ge =>
               if CR = GT or else CR = EQ or else CR = GE then
                  Result := True;
               elsif CR = LT then
                  Result := False;
               else
                  return;
               end if;

            when N_Op_Gt =>
               if CR = GT then
                  Result := True;
               elsif CR = EQ or else CR = LT or else CR = LE then
                  Result := False;
               else
                  return;
               end if;

            when N_Op_Le =>
               if CR = LT or else CR = EQ or else CR = LE then
                  Result := True;
               elsif CR = GT then
                  Result := False;
               else
                  return;
               end if;

            when N_Op_Lt =>
               if CR = LT then
                  Result := True;
               elsif CR = EQ or else CR = GT or else CR = GE then
                  Result := False;
               else
                  return;
               end if;

            when N_Op_Ne =>
               if CR = NE or else CR = GT or else CR = LT then
                  Result := True;
               elsif CR = EQ then
                  Result := False;
               else
                  return;
               end if;

            when others =>
               raise Program_Error;
         end case;

         --  Determine the potential outcome of the relation assuming the
         --  operands are valid and emit a warning when the relation yields
         --  True or False only in the presence of invalid values.

         Warn_On_Constant_Valid_Condition (N);

         Fold_Uint (N, Test (Result), Is_Static);
      end Fold_General_Op;

      -------------------------
      -- Fold_Static_Real_Op --
      -------------------------

      procedure Fold_Static_Real_Op is
         Left_Real  : constant Ureal := Expr_Value_R (Left);
         Right_Real : constant Ureal := Expr_Value_R (Right);
         Result     : Boolean;

      begin
         case Nkind (N) is
            when N_Op_Eq => Result := (Left_Real =  Right_Real);
            when N_Op_Ge => Result := (Left_Real >= Right_Real);
            when N_Op_Gt => Result := (Left_Real >  Right_Real);
            when N_Op_Le => Result := (Left_Real <= Right_Real);
            when N_Op_Lt => Result := (Left_Real <  Right_Real);
            when N_Op_Ne => Result := (Left_Real /= Right_Real);
            when others  => raise Program_Error;
         end case;

         Fold_Uint (N, Test (Result), True);
      end Fold_Static_Real_Op;

      -------------------
      -- Static_Length --
      -------------------

      function Static_Length (Expr : Node_Id) return Uint is
         Cons1 : Uint;
         Cons2 : Uint;
         Ent1  : Entity_Id;
         Ent2  : Entity_Id;
         Kind1 : Character;
         Kind2 : Character;
         Typ   : Entity_Id;

      begin
         --  First easy case string literal

         if Nkind (Expr) = N_String_Literal then
            return UI_From_Int (String_Length (Strval (Expr)));

         --  With frontend inlining as performed in GNATprove mode, a variable
         --  may be inserted that has a string literal subtype. Deal with this
         --  specially as for the previous case.

         elsif Ekind (Etype (Expr)) = E_String_Literal_Subtype then
            return String_Literal_Length (Etype (Expr));

         --  Second easy case, not constrained subtype, so no length

         elsif not Is_Constrained (Etype (Expr)) then
            return Uint_Minus_1;
         end if;

         --  General case

         Typ := Etype (First_Index (Etype (Expr)));

         --  The simple case, both bounds are known at compile time

         if Is_Discrete_Type (Typ)
           and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
           and then Compile_Time_Known_Value (Type_High_Bound (Typ))
         then
            return
              UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
                              Expr_Value (Type_Low_Bound  (Typ)) + 1);
         end if;

         --  A more complex case, where the bounds are of the form X [+/- K1]
         --  .. X [+/- K2]), where X is an expression that is either A'First or
         --  A'Last (with A an entity name), or X is an entity name, and the
         --  two X's are the same and K1 and K2 are known at compile time, in
         --  this case, the length can also be computed at compile time, even
         --  though the bounds are not known. A common case of this is e.g.
         --  (X'First .. X'First+5).

         Decompose_Expr
           (Original_Node (Type_Low_Bound  (Typ)), Ent1, Kind1, Cons1);
         Decompose_Expr
           (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);

         if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
            return Cons2 - Cons1 + 1;
         else
            return Uint_Minus_1;
         end if;
      end Static_Length;

      --  Local variables

      Left_Typ  : constant Entity_Id := Etype (Left);
      Right_Typ : constant Entity_Id := Etype (Right);
      Fold      : Boolean;
      Left_Len  : Uint;
      Op_Typ    : Entity_Id := Empty;
      Right_Len : Uint;

      Is_Static_Expression : Boolean;

   --  Start of processing for Eval_Relational_Op

   begin
      --  One special case to deal with first. If we can tell that the result
      --  will be false because the lengths of one or more index subtypes are
      --  compile-time known and different, then we can replace the entire
      --  result by False. We only do this for one-dimensional arrays, because
      --  the case of multidimensional arrays is rare and too much trouble. If
      --  one of the operands is an illegal aggregate, its type might still be
      --  an arbitrary composite type, so nothing to do.

      if Is_Array_Type (Left_Typ)
        and then Left_Typ /= Any_Composite
        and then Number_Dimensions (Left_Typ) = 1
        and then Nkind (N) in N_Op_Eq | N_Op_Ne
      then
         if Raises_Constraint_Error (Left)
              or else
            Raises_Constraint_Error (Right)
         then
            return;
         end if;

         --  OK, we have the case where we may be able to do this fold

         Left_Len  := Static_Length (Left);
         Right_Len := Static_Length (Right);

         if Left_Len /= Uint_Minus_1
           and then Right_Len /= Uint_Minus_1
           and then Left_Len /= Right_Len
         then
            --  AI12-0201: comparison of string is static in Ada 2022

            Fold_Uint
              (N,
               Test (Nkind (N) = N_Op_Ne),
               Static => Ada_Version >= Ada_2022
                           and then Is_String_Type (Left_Typ));
            Warn_On_Known_Condition (N);
            return;
         end if;
      end if;

      --  General case

      --  Initialize the value of Is_Static_Expression. The value of Fold
      --  returned by Test_Expression_Is_Foldable is not needed since, even
      --  when some operand is a variable, we can still perform the static
      --  evaluation of the expression in some cases (for example, for a
      --  variable of a subtype of Integer we statically know that any value
      --  stored in such variable is smaller than Integer'Last).

      Test_Expression_Is_Foldable
        (N, Left, Right, Is_Static_Expression, Fold);

      --  Comparisons of scalars can give static results.
      --  In addition starting with Ada 2022 (AI12-0201), comparison of strings
      --  can also give static results, and as noted above, we also allow for
      --  earlier Ada versions internally generated equality and inequality for
      --  strings.
      --  The Comes_From_Source test below isn't correct and will accept
      --  some cases that are illegal in Ada 2012 and before. Now that Ada
      --  2022 has relaxed the rules, this doesn't really matter.

      if Is_String_Type (Left_Typ) then
         if Ada_Version < Ada_2022
           and then (Comes_From_Source (N)
                      or else Nkind (N) not in N_Op_Eq | N_Op_Ne)
         then
            Is_Static_Expression := False;
            Set_Is_Static_Expression (N, False);
         end if;

      elsif not Is_Scalar_Type (Left_Typ) then
         Is_Static_Expression := False;
         Set_Is_Static_Expression (N, False);
      end if;

      --  For operators on universal numeric types called as functions with an
      --  explicit scope, determine appropriate specific numeric type, and
      --  diagnose possible ambiguity.

      if Is_Universal_Numeric_Type (Left_Typ)
           and then
         Is_Universal_Numeric_Type (Right_Typ)
      then
         Op_Typ := Find_Universal_Operator_Type (N);
      end if;

      --  Attempt to fold the relational operator

      if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
         Fold_Static_Real_Op;
      else
         Fold_General_Op (Is_Static_Expression);
      end if;

      --  For the case of a folded relational operator on a specific numeric
      --  type, freeze the operand type now.

      if Present (Op_Typ) then
         Freeze_Before (N, Op_Typ);
      end if;

      Warn_On_Known_Condition (N);
   end Eval_Relational_Op;

   -----------------------------
   -- Eval_Selected_Component --
   -----------------------------

   procedure Eval_Selected_Component (N : Node_Id) is
      Node : Node_Id;
      Comp : Node_Id;
      C    : Node_Id;
      Nam  : Name_Id;

   begin
      --  If an attribute reference or a LHS, nothing to do.
      --  Also do not fold if N is an [in] out subprogram parameter.
      --  Fold will perform the other relevant tests.

      if Nkind (Parent (N)) /= N_Attribute_Reference
        and then not Known_To_Be_Assigned (N)
        and then not Is_Actual_Out_Or_In_Out_Parameter (N)
      then
         --  Simplify a selected_component on an aggregate by extracting
         --  the field directly.

         Node := Unqualify (Prefix (N));

         if Nkind (Node) = N_Aggregate
           and then Compile_Time_Known_Aggregate (Node)
         then
            Comp := First (Component_Associations (Node));
            Nam  := Chars (Selector_Name (N));

            while Present (Comp) loop
               C := First (Choices (Comp));

               while Present (C) loop
                  if Chars (C) = Nam then
                     Rewrite (N, Relocate_Node (Expression (Comp)));
                     return;
                  end if;

                  Next (C);
               end loop;

               Next (Comp);
            end loop;
         else
            Fold (N);
         end if;
      end if;
   end Eval_Selected_Component;

   ----------------
   -- Eval_Shift --
   ----------------

   procedure Eval_Shift (N : Node_Id) is
   begin
      --  This procedure is only called for compiler generated code (e.g.
      --  packed arrays), so there is nothing to do except attempting to fold
      --  the expression.

      Fold_Shift (N, Left_Opnd (N), Right_Opnd (N), Nkind (N));
   end Eval_Shift;

   ------------------------
   -- Eval_Short_Circuit --
   ------------------------

   --  A short circuit operation is potentially static if both operands are
   --  potentially static (RM 4.9 (13)).

   procedure Eval_Short_Circuit (N : Node_Id) is
      Kind     : constant Node_Kind := Nkind (N);
      Left     : constant Node_Id   := Left_Opnd (N);
      Right    : constant Node_Id   := Right_Opnd (N);
      Left_Int : Uint;

      Rstat : constant Boolean :=
                Is_Static_Expression (Left)
                  and then
                Is_Static_Expression (Right);

   begin
      --  Short circuit operations are never static in Ada 83

      if Ada_Version = Ada_83 and then Comes_From_Source (N) then
         Check_Non_Static_Context (Left);
         Check_Non_Static_Context (Right);
         return;
      end if;

      --  Now look at the operands, we can't quite use the normal call to
      --  Test_Expression_Is_Foldable here because short circuit operations
      --  are a special case, they can still be foldable, even if the right
      --  operand raises Constraint_Error.

      --  If either operand is Any_Type, just propagate to result and do not
      --  try to fold, this prevents cascaded errors.

      if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
         Set_Etype (N, Any_Type);
         return;

      --  If left operand raises Constraint_Error, then replace node N with
      --  the raise Constraint_Error node, and we are obviously not foldable.
      --  Is_Static_Expression is set from the two operands in the normal way,
      --  and we check the right operand if it is in a non-static context.

      elsif Raises_Constraint_Error (Left) then
         if not Rstat then
            Check_Non_Static_Context (Right);
         end if;

         Rewrite_In_Raise_CE (N, Left);
         Set_Is_Static_Expression (N, Rstat);
         return;

      --  If the result is not static, then we won't in any case fold

      elsif not Rstat then
         Check_Non_Static_Context (Left);
         Check_Non_Static_Context (Right);
         return;
      end if;

      --  Here the result is static, note that, unlike the normal processing
      --  in Test_Expression_Is_Foldable, we did *not* check above to see if
      --  the right operand raises Constraint_Error, that's because it is not
      --  significant if the left operand is decisive.

      Set_Is_Static_Expression (N);

      --  It does not matter if the right operand raises Constraint_Error if
      --  it will not be evaluated. So deal specially with the cases where
      --  the right operand is not evaluated. Note that we will fold these
      --  cases even if the right operand is non-static, which is fine, but
      --  of course in these cases the result is not potentially static.

      Left_Int := Expr_Value (Left);

      if (Kind = N_And_Then and then Is_False (Left_Int))
           or else
         (Kind = N_Or_Else  and then Is_True  (Left_Int))
      then
         Fold_Uint (N, Left_Int, Rstat);
         return;
      end if;

      --  If first operand not decisive, then it does matter if the right
      --  operand raises Constraint_Error, since it will be evaluated, so
      --  we simply replace the node with the right operand. Note that this
      --  properly propagates Is_Static_Expression and Raises_Constraint_Error
      --  (both are set to True in Right).

      if Raises_Constraint_Error (Right) then
         Rewrite_In_Raise_CE (N, Right);
         Check_Non_Static_Context (Left);
         return;
      end if;

      --  Otherwise the result depends on the right operand

      Fold_Uint (N, Expr_Value (Right), Rstat);
      return;
   end Eval_Short_Circuit;

   ----------------
   -- Eval_Slice --
   ----------------

   --  Slices can never be static, so the only processing required is to check
   --  for non-static context if an explicit range is given.

   procedure Eval_Slice (N : Node_Id) is
      Drange : constant Node_Id := Discrete_Range (N);
      Name   : constant Node_Id := Prefix (N);

   begin
      if Nkind (Drange) = N_Range then
         Check_Non_Static_Context (Low_Bound (Drange));
         Check_Non_Static_Context (High_Bound (Drange));
      end if;

      --  A slice of the form A (subtype), when the subtype is the index of
      --  the type of A, is redundant, the slice can be replaced with A, and
      --  this is worth a warning.

      if Is_Entity_Name (Name) then
         declare
            E : constant Entity_Id := Entity (Name);
            T : constant Entity_Id := Etype (E);

         begin
            if Is_Object (E)
              and then Is_Array_Type (T)
              and then Is_Entity_Name (Drange)
            then
               if Is_Entity_Name (Original_Node (First_Index (T)))
                 and then Entity (Original_Node (First_Index (T)))
                    = Entity (Drange)
               then
                  if Warn_On_Redundant_Constructs then
                     Error_Msg_N ("redundant slice denotes whole array?r?", N);
                  end if;

                  --  The following might be a useful optimization???

                  --  Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
               end if;
            end if;
         end;
      end if;
   end Eval_Slice;

   -------------------------
   -- Eval_String_Literal --
   -------------------------

   procedure Eval_String_Literal (N : Node_Id) is
      Typ : constant Entity_Id := Etype (N);
      Bas : constant Entity_Id := Base_Type (Typ);
      Xtp : Entity_Id;
      Len : Nat;
      Lo  : Node_Id;

   begin
      --  Nothing to do if error type (handles cases like default expressions
      --  or generics where we have not yet fully resolved the type).

      if Bas = Any_Type or else Bas = Any_String then
         return;
      end if;

      --  String literals are static if the subtype is static (RM 4.9(2)), so
      --  reset the static expression flag (it was set unconditionally in
      --  Analyze_String_Literal) if the subtype is non-static. We tell if
      --  the subtype is static by looking at the lower bound.

      if Ekind (Typ) = E_String_Literal_Subtype then
         if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
            Set_Is_Static_Expression (N, False);
            return;
         end if;

      --  Here if Etype of string literal is normal Etype (not yet possible,
      --  but may be possible in future).

      elsif not Is_OK_Static_Expression
                  (Type_Low_Bound (Etype (First_Index (Typ))))
      then
         Set_Is_Static_Expression (N, False);
         return;
      end if;

      --  If original node was a type conversion, then result if non-static
      --  up to Ada 2012. AI12-0201 changes that with Ada 2022.

      if Nkind (Original_Node (N)) = N_Type_Conversion
        and then Ada_Version <= Ada_2012
      then
         Set_Is_Static_Expression (N, False);
         return;
      end if;

      --  Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
      --  if its bounds are outside the index base type and this index type is
      --  static. This can happen in only two ways. Either the string literal
      --  is too long, or it is null, and the lower bound is type'First. Either
      --  way it is the upper bound that is out of range of the index type.

      if Ada_Version >= Ada_95 then
         if Is_Standard_String_Type (Bas) then
            Xtp := Standard_Positive;
         else
            Xtp := Etype (First_Index (Bas));
         end if;

         if Ekind (Typ) = E_String_Literal_Subtype then
            Lo := String_Literal_Low_Bound (Typ);
         else
            Lo := Type_Low_Bound (Etype (First_Index (Typ)));
         end if;

         --  Check for string too long

         Len := String_Length (Strval (N));

         if Len > String_Type_Len (Bas) then

            --  Issue message. Note that this message is a warning if the
            --  string literal is not marked as static (happens in some cases
            --  of folding strings known at compile time, but not static).
            --  Furthermore in such cases, we reword the message, since there
            --  is no string literal in the source program.

            if Is_Static_Expression (N) then
               Apply_Compile_Time_Constraint_Error
                 (N, "string literal too long for}", CE_Length_Check_Failed,
                  Ent => Bas,
                  Typ => First_Subtype (Bas));
            else
               Apply_Compile_Time_Constraint_Error
                 (N, "string value too long for}", CE_Length_Check_Failed,
                  Ent  => Bas,
                  Typ  => First_Subtype (Bas),
                  Warn => True);
            end if;

         --  Test for null string not allowed

         elsif Len = 0
           and then not Is_Generic_Type (Xtp)
           and then
             Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
         then
            --  Same specialization of message

            if Is_Static_Expression (N) then
               Apply_Compile_Time_Constraint_Error
                 (N, "null string literal not allowed for}",
                  CE_Length_Check_Failed,
                  Ent => Bas,
                  Typ => First_Subtype (Bas));
            else
               Apply_Compile_Time_Constraint_Error
                 (N, "null string value not allowed for}",
                  CE_Length_Check_Failed,
                  Ent  => Bas,
                  Typ  => First_Subtype (Bas),
                  Warn => True);
            end if;
         end if;
      end if;
   end Eval_String_Literal;

   --------------------------
   -- Eval_Type_Conversion --
   --------------------------

   --  A type conversion is potentially static if its subtype mark is for a
   --  static scalar subtype, and its operand expression is potentially static
   --  (RM 4.9(10)).
   --  Also add support for static string types.

   procedure Eval_Type_Conversion (N : Node_Id) is
      Operand     : constant Node_Id   := Expression (N);
      Source_Type : constant Entity_Id := Etype (Operand);
      Target_Type : constant Entity_Id := Etype (N);

      function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
      --  Returns true if type T is an integer type, or if it is a fixed-point
      --  type to be treated as an integer (i.e. the flag Conversion_OK is set
      --  on the conversion node).

      function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
      --  Returns true if type T is a floating-point type, or if it is a
      --  fixed-point type that is not to be treated as an integer (i.e. the
      --  flag Conversion_OK is not set on the conversion node).

      ------------------------------
      -- To_Be_Treated_As_Integer --
      ------------------------------

      function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
      begin
         return
           Is_Integer_Type (T)
             or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
      end To_Be_Treated_As_Integer;

      ---------------------------
      -- To_Be_Treated_As_Real --
      ---------------------------

      function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
      begin
         return
           Is_Floating_Point_Type (T)
             or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
      end To_Be_Treated_As_Real;

      --  Local variables

      Fold : Boolean;
      Stat : Boolean;

   --  Start of processing for Eval_Type_Conversion

   begin
      --  Cannot fold if target type is non-static or if semantic error

      if not Is_Static_Subtype (Target_Type) then
         Check_Non_Static_Context (Operand);
         return;
      elsif Error_Posted (N) then
         return;
      end if;

      --  If not foldable we are done

      Test_Expression_Is_Foldable (N, Operand, Stat, Fold);

      if not Fold then
         return;

      --  Don't try fold if target type has Constraint_Error bounds

      elsif not Is_OK_Static_Subtype (Target_Type) then
         Set_Raises_Constraint_Error (N);
         return;
      end if;

      --  Remaining processing depends on operand types. Note that in the
      --  following type test, fixed-point counts as real unless the flag
      --  Conversion_OK is set, in which case it counts as integer.

      --  Fold conversion, case of string type. The result is static starting
      --  with Ada 2022 (AI12-0201).

      if Is_String_Type (Target_Type) then
         Fold_Str
           (N,
            Strval (Get_String_Val (Operand)),
            Static => Ada_Version >= Ada_2022);
         return;

      --  Fold conversion, case of integer target type

      elsif To_Be_Treated_As_Integer (Target_Type) then
         declare
            Result : Uint;

         begin
            --  Integer to integer conversion

            if To_Be_Treated_As_Integer (Source_Type) then
               Result := Expr_Value (Operand);

            --  Real to integer conversion

            elsif To_Be_Treated_As_Real (Source_Type) then
               Result := UR_To_Uint (Expr_Value_R (Operand));

            --  Enumeration to integer conversion, aka 'Enum_Rep

            else
               Result := Expr_Rep_Value (Operand);
            end if;

            --  If fixed-point type (Conversion_OK must be set), then the
            --  result is logically an integer, but we must replace the
            --  conversion with the corresponding real literal, since the
            --  type from a semantic point of view is still fixed-point.

            if Is_Fixed_Point_Type (Target_Type) then
               Fold_Ureal
                 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);

            --  Otherwise result is integer literal

            else
               Fold_Uint (N, Result, Stat);
            end if;
         end;

      --  Fold conversion, case of real target type

      elsif To_Be_Treated_As_Real (Target_Type) then
         declare
            Result : Ureal;

         begin
            if To_Be_Treated_As_Real (Source_Type) then
               Result := Expr_Value_R (Operand);
            else
               Result := UR_From_Uint (Expr_Value (Operand));
            end if;

            Fold_Ureal (N, Result, Stat);
         end;

      --  Enumeration types

      else
         Fold_Uint (N, Expr_Value (Operand), Stat);
      end if;

      --  If the target is a static floating-point subtype, then its bounds
      --  are machine numbers so we must consider the machine-rounded value.

      if Is_Floating_Point_Type (Target_Type)
        and then Nkind (N) = N_Real_Literal
        and then not Is_Machine_Number (N)
      then
         declare
            Lo   : constant Node_Id := Type_Low_Bound (Target_Type);
            Hi   : constant Node_Id := Type_High_Bound (Target_Type);
            Valr : constant Ureal   :=
                     Machine_Number (Target_Type, Expr_Value_R (N), N);
         begin
            if Valr < Expr_Value_R (Lo) or else Valr > Expr_Value_R (Hi) then
               Out_Of_Range (N);
            end if;
         end;

      elsif Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
         Out_Of_Range (N);
      end if;
   end Eval_Type_Conversion;

   -------------------
   -- Eval_Unary_Op --
   -------------------

   --  Predefined unary operators are static functions (RM 4.9(20)) and thus
   --  are potentially static if the operand is potentially static (RM 4.9(7)).

   procedure Eval_Unary_Op (N : Node_Id) is
      Right : constant Node_Id := Right_Opnd (N);
      Otype : Entity_Id := Empty;
      Stat  : Boolean;
      Fold  : Boolean;

   begin
      --  If not foldable we are done

      Test_Expression_Is_Foldable (N, Right, Stat, Fold);

      if not Fold then
         return;
      end if;

      if Is_Universal_Numeric_Type (Etype (Right)) then
         Otype := Find_Universal_Operator_Type (N);
      end if;

      --  Fold for integer case

      if Is_Integer_Type (Etype (N)) then
         declare
            Rint   : constant Uint := Expr_Value (Right);
            Result : Uint;

         begin
            --  In the case of modular unary plus and abs there is no need
            --  to adjust the result of the operation since if the original
            --  operand was in bounds the result will be in the bounds of the
            --  modular type. However, in the case of modular unary minus the
            --  result may go out of the bounds of the modular type and needs
            --  adjustment.

            if Nkind (N) = N_Op_Plus then
               Result := Rint;

            elsif Nkind (N) = N_Op_Minus then
               if Is_Modular_Integer_Type (Etype (N)) then
                  Result := (-Rint) mod Modulus (Etype (N));
               else
                  Result := (-Rint);
               end if;

            else
               pragma Assert (Nkind (N) = N_Op_Abs);
               Result := abs Rint;
            end if;

            Check_Non_Static_Context_For_Overflow (N, Stat, Result);

            Fold_Uint (N, Result, Stat);
         end;

      --  Fold for real case

      elsif Is_Real_Type (Etype (N)) then
         declare
            Rreal  : constant Ureal := Expr_Value_R (Right);
            Result : Ureal;

         begin
            if Nkind (N) = N_Op_Plus then
               Result := Rreal;
            elsif Nkind (N) = N_Op_Minus then
               Result := UR_Negate (Rreal);
            else
               pragma Assert (Nkind (N) = N_Op_Abs);
               Result := abs Rreal;
            end if;

            Fold_Ureal (N, Result, Stat);
         end;
      end if;

      --  If the operator was resolved to a specific type, make sure that type
      --  is frozen even if the expression is folded into a literal (which has
      --  a universal type).

      if Present (Otype) then
         Freeze_Before (N, Otype);
      end if;
   end Eval_Unary_Op;

   -------------------------------
   -- Eval_Unchecked_Conversion --
   -------------------------------

   --  Unchecked conversions can never be static, so the only required
   --  processing is to check for a non-static context for the operand.

   procedure Eval_Unchecked_Conversion (N : Node_Id) is
      Target_Type  : constant Entity_Id := Etype (N);
      Operand      : constant Node_Id   := Expression (N);
      Operand_Type : constant Entity_Id := Etype (Operand);

   begin
      Check_Non_Static_Context (Operand);

      --  If we have a conversion of a compile time known value to a target
      --  type and the value is in range of the target type, then we can simply
      --  replace the construct by an integer literal of the correct type. We
      --  only apply this to discrete types being converted. Possibly it may
      --  apply in other cases, but it is too much trouble to worry about.

      --  Note that we do not do this transformation if the Kill_Range_Check
      --  flag is set, since then the value may be outside the expected range.
      --  This happens in the Normalize_Scalars case.

      --  We also skip this if either the target or operand type is biased
      --  because in this case, the unchecked conversion is supposed to
      --  preserve the bit pattern, not the integer value.

      if Is_Integer_Type (Target_Type)
        and then not Has_Biased_Representation (Target_Type)
        and then Is_Discrete_Type (Operand_Type)
        and then not Has_Biased_Representation (Operand_Type)
        and then Compile_Time_Known_Value (Operand)
        and then not Kill_Range_Check (N)
      then
         declare
            Val : constant Uint := Expr_Rep_Value (Operand);

         begin
            if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
                 and then
               Compile_Time_Known_Value (Type_High_Bound (Target_Type))
                 and then
               Val >= Expr_Value (Type_Low_Bound (Target_Type))
                 and then
               Val <= Expr_Value (Type_High_Bound (Target_Type))
            then
               Rewrite (N, Make_Integer_Literal (Sloc (N), Val));

               --  If Address is the target type, just set the type to avoid a
               --  spurious type error on the literal when Address is a visible
               --  integer type.

               if Is_Descendant_Of_Address (Target_Type) then
                  Set_Etype (N, Target_Type);
               else
                  Analyze_And_Resolve (N, Target_Type);
               end if;

               return;
            end if;
         end;
      end if;
   end Eval_Unchecked_Conversion;

   --------------------
   -- Expr_Rep_Value --
   --------------------

   function Expr_Rep_Value (N : Node_Id) return Uint is
      Kind : constant Node_Kind := Nkind (N);
      Ent  : Entity_Id;

   begin
      if Is_Entity_Name (N) then
         Ent := Entity (N);

         --  An enumeration literal that was either in the source or created
         --  as a result of static evaluation.

         if Ekind (Ent) = E_Enumeration_Literal then
            return Enumeration_Rep (Ent);

         --  A user defined static constant

         else
            pragma Assert (Ekind (Ent) = E_Constant);
            return Expr_Rep_Value (Constant_Value (Ent));
         end if;

      --  An integer literal that was either in the source or created as a
      --  result of static evaluation.

      elsif Kind = N_Integer_Literal then
         return Intval (N);

      --  A real literal for a fixed-point type. This must be the fixed-point
      --  case, either the literal is of a fixed-point type, or it is a bound
      --  of a fixed-point type, with type universal real. In either case we
      --  obtain the desired value from Corresponding_Integer_Value.

      elsif Kind = N_Real_Literal then
         pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
         return Corresponding_Integer_Value (N);

      --  The NULL access value

      elsif Kind = N_Null then
         pragma Assert (Is_Access_Type (Underlying_Type (Etype (N)))
           or else Error_Posted (N));
         return Uint_0;

      --  Character literal

      elsif Kind = N_Character_Literal then
         Ent := Entity (N);

         --  Since Character literals of type Standard.Character don't have any
         --  defining character literals built for them, they do not have their
         --  Entity set, so just use their Char code. Otherwise for user-
         --  defined character literals use their Pos value as usual which is
         --  the same as the Rep value.

         if No (Ent) then
            return Char_Literal_Value (N);
         else
            return Enumeration_Rep (Ent);
         end if;

      --  Unchecked conversion, which can come from System'To_Address (X)
      --  where X is a static integer expression. Recursively evaluate X.

      elsif Kind = N_Unchecked_Type_Conversion then
         return Expr_Rep_Value (Expression (N));

      --  Static discriminant value

      elsif Is_Static_Discriminant_Component (N) then
         return Expr_Rep_Value
                  (Get_Discriminant_Value
                     (Entity (Selector_Name (N)),
                      Etype (Prefix (N)),
                      Discriminant_Constraint (Etype (Prefix (N)))));

      else
         raise Program_Error;
      end if;
   end Expr_Rep_Value;

   ----------------
   -- Expr_Value --
   ----------------

   function Expr_Value (N : Node_Id) return Uint is
      Kind   : constant Node_Kind := Nkind (N);
      CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
      Ent    : Entity_Id;
      Val    : Uint;

   begin
      --  If already in cache, then we know it's compile-time-known and we can
      --  return the value that was previously stored in the cache since
      --  compile-time-known values cannot change.

      if CV_Ent.N = N then
         return CV_Ent.V;
      end if;

      --  Otherwise proceed to test value

      if Is_Entity_Name (N) then
         Ent := Entity (N);

         --  An enumeration literal that was either in the source or created as
         --  a result of static evaluation.

         if Ekind (Ent) = E_Enumeration_Literal then
            Val := Enumeration_Pos (Ent);

         --  A user defined static constant

         else
            pragma Assert (Ekind (Ent) = E_Constant);
            Val := Expr_Value (Constant_Value (Ent));
         end if;

      --  An integer literal that was either in the source or created as a
      --  result of static evaluation.

      elsif Kind = N_Integer_Literal then
         Val := Intval (N);

      --  A real literal for a fixed-point type. This must be the fixed-point
      --  case, either the literal is of a fixed-point type, or it is a bound
      --  of a fixed-point type, with type universal real. In either case we
      --  obtain the desired value from Corresponding_Integer_Value.

      elsif Kind = N_Real_Literal then
         pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
         Val := Corresponding_Integer_Value (N);

      --  The NULL access value

      elsif Kind = N_Null then
         pragma Assert (Is_Access_Type (Underlying_Type (Etype (N)))
           or else Error_Posted (N));
         Val := Uint_0;

      --  Character literal

      elsif Kind = N_Character_Literal then
         Ent := Entity (N);

         --  Since Character literals of type Standard.Character don't
         --  have any defining character literals built for them, they
         --  do not have their Entity set, so just use their Char
         --  code. Otherwise for user-defined character literals use
         --  their Pos value as usual.

         if No (Ent) then
            Val := Char_Literal_Value (N);
         else
            Val := Enumeration_Pos (Ent);
         end if;

      --  Unchecked conversion, which can come from System'To_Address (X)
      --  where X is a static integer expression. Recursively evaluate X.

      elsif Kind = N_Unchecked_Type_Conversion then
         Val := Expr_Value (Expression (N));

      --  Static discriminant value

      elsif Is_Static_Discriminant_Component (N) then
         Val := Expr_Value
                  (Get_Discriminant_Value
                     (Entity (Selector_Name (N)),
                      Etype (Prefix (N)),
                      Discriminant_Constraint (Etype (Prefix (N)))));

      else
         raise Program_Error;
      end if;

      --  Come here with Val set to value to be returned, set cache

      CV_Ent.N := N;
      CV_Ent.V := Val;
      return Val;
   end Expr_Value;

   ------------------
   -- Expr_Value_E --
   ------------------

   function Expr_Value_E (N : Node_Id) return Entity_Id is
      Ent : constant Entity_Id := Entity (N);
   begin
      if Ekind (Ent) = E_Enumeration_Literal then
         return Ent;
      else
         pragma Assert (Ekind (Ent) = E_Constant);

         --  We may be dealing with a enumerated character type constant, so
         --  handle that case here.

         if Nkind (Constant_Value (Ent)) = N_Character_Literal then
            return Ent;
         else
            return Expr_Value_E (Constant_Value (Ent));
         end if;
      end if;
   end Expr_Value_E;

   ------------------
   -- Expr_Value_R --
   ------------------

   function Expr_Value_R (N : Node_Id) return Ureal is
      Kind : constant Node_Kind := Nkind (N);
      Ent  : Entity_Id;

   begin
      if Kind = N_Real_Literal then
         return Realval (N);

      elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
         Ent := Entity (N);
         pragma Assert (Ekind (Ent) = E_Constant);
         return Expr_Value_R (Constant_Value (Ent));

      elsif Kind = N_Integer_Literal then
         return UR_From_Uint (Expr_Value (N));

      --  Here, we have a node that cannot be interpreted as a compile time
      --  constant. That is definitely an error.

      else
         raise Program_Error;
      end if;
   end Expr_Value_R;

   ------------------
   -- Expr_Value_S --
   ------------------

   function Expr_Value_S (N : Node_Id) return Node_Id is
   begin
      if Nkind (N) = N_String_Literal then
         return N;
      else
         pragma Assert (Ekind (Entity (N)) = E_Constant);
         return Expr_Value_S (Constant_Value (Entity (N)));
      end if;
   end Expr_Value_S;

   ----------------------------------
   -- Find_Universal_Operator_Type --
   ----------------------------------

   function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
      PN     : constant Node_Id := Parent (N);
      Call   : constant Node_Id := Original_Node (N);
      Is_Int : constant Boolean := Is_Integer_Type (Etype (N));

      Is_Fix : constant Boolean :=
                 Nkind (N) in N_Binary_Op
                   and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
      --  A mixed-mode operation in this context indicates the presence of
      --  fixed-point type in the designated package.

      Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
      --  Case where N is a relational (or membership) operator (else it is an
      --  arithmetic one).

      In_Membership : constant Boolean :=
                        Nkind (PN) in N_Membership_Test
                          and then
                        Nkind (Right_Opnd (PN)) = N_Range
                          and then
                        Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
                          and then
                        Is_Universal_Numeric_Type
                          (Etype (Low_Bound (Right_Opnd (PN))))
                          and then
                        Is_Universal_Numeric_Type
                          (Etype (High_Bound (Right_Opnd (PN))));
      --  Case where N is part of a membership test with a universal range

      E      : Entity_Id;
      Pack   : Entity_Id;
      Typ1   : Entity_Id := Empty;
      Priv_E : Entity_Id;

      function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
      --  Check whether one operand is a mixed-mode operation that requires the
      --  presence of a fixed-point type. Given that all operands are universal
      --  and have been constant-folded, retrieve the original function call.

      ---------------------------
      -- Is_Mixed_Mode_Operand --
      ---------------------------

      function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
         Onod : constant Node_Id := Original_Node (Op);
      begin
         return Nkind (Onod) = N_Function_Call
           and then Present (Next_Actual (First_Actual (Onod)))
           and then Etype (First_Actual (Onod)) /=
                    Etype (Next_Actual (First_Actual (Onod)));
      end Is_Mixed_Mode_Operand;

   --  Start of processing for Find_Universal_Operator_Type

   begin
      if Nkind (Call) /= N_Function_Call
        or else Nkind (Name (Call)) /= N_Expanded_Name
      then
         return Empty;

      --  There are several cases where the context does not imply the type of
      --  the operands:
      --     - the universal expression appears in a type conversion;
      --     - the expression is a relational operator applied to universal
      --       operands;
      --     - the expression is a membership test with a universal operand
      --       and a range with universal bounds.

      elsif Nkind (Parent (N)) = N_Type_Conversion
        or else Is_Relational
        or else In_Membership
      then
         Pack := Entity (Prefix (Name (Call)));

         --  If the prefix is a package declared elsewhere, iterate over its
         --  visible entities, otherwise iterate over all declarations in the
         --  designated scope.

         if Ekind (Pack) = E_Package
           and then not In_Open_Scopes (Pack)
         then
            Priv_E := First_Private_Entity (Pack);
         else
            Priv_E := Empty;
         end if;

         Typ1 := Empty;
         E := First_Entity (Pack);
         while Present (E) and then E /= Priv_E loop
            if Is_Numeric_Type (E)
              and then Nkind (Parent (E)) /= N_Subtype_Declaration
              and then Comes_From_Source (E)
              and then Is_Integer_Type (E) = Is_Int
              and then (Nkind (N) in N_Unary_Op
                         or else Is_Relational
                         or else Is_Fixed_Point_Type (E) = Is_Fix)
            then
               if No (Typ1) then
                  Typ1 := E;

               --  Before emitting an error, check for the presence of a
               --  mixed-mode operation that specifies a fixed point type.

               elsif Is_Relational
                 and then
                   (Is_Mixed_Mode_Operand (Left_Opnd (N))
                     or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
                 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)

               then
                  if Is_Fixed_Point_Type (E) then
                     Typ1 := E;
                  end if;

               else
                  --  More than one type of the proper class declared in P

                  Error_Msg_N ("ambiguous operation", N);
                  Error_Msg_Sloc := Sloc (Typ1);
                  Error_Msg_N ("\possible interpretation (inherited)#", N);
                  Error_Msg_Sloc := Sloc (E);
                  Error_Msg_N ("\possible interpretation (inherited)#", N);
                  return Empty;
               end if;
            end if;

            Next_Entity (E);
         end loop;
      end if;

      return Typ1;
   end Find_Universal_Operator_Type;

   --------------------------
   -- Flag_Non_Static_Expr --
   --------------------------

   procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
   begin
      if Error_Posted (Expr) and then not All_Errors_Mode then
         return;
      else
         Error_Msg_F (Msg, Expr);
         Why_Not_Static (Expr);
      end if;
   end Flag_Non_Static_Expr;

   ----------
   -- Fold --
   ----------

   procedure Fold (N : Node_Id) is
      Typ : constant Entity_Id := Etype (N);
   begin
      --  If not known at compile time or if already a literal, nothing to do

      if Nkind (N) in N_Numeric_Or_String_Literal
        or else not Compile_Time_Known_Value (N)
      then
         null;

      elsif Is_Discrete_Type (Typ) then
         Fold_Uint (N, Expr_Value (N), Static => Is_Static_Expression (N));

      elsif Is_Real_Type (Typ) then
         Fold_Ureal (N, Expr_Value_R (N), Static => Is_Static_Expression (N));

      elsif Is_String_Type (Typ) then
         Fold_Str
           (N, Strval (Expr_Value_S (N)), Static => Is_Static_Expression (N));
      end if;
   end Fold;

   ----------------
   -- Fold_Dummy --
   ----------------

   procedure Fold_Dummy (N : Node_Id; Typ : Entity_Id) is
   begin
      if Is_Integer_Type (Typ) then
         Fold_Uint (N, Uint_1, Static => True);

      elsif Is_Real_Type (Typ) then
         Fold_Ureal (N, Ureal_1, Static => True);

      elsif Is_Enumeration_Type (Typ) then
         Fold_Uint
           (N,
            Expr_Value (Type_Low_Bound (Base_Type (Typ))),
            Static => True);

      elsif Is_String_Type (Typ) then
         Fold_Str
           (N,
            Strval (Make_String_Literal (Sloc (N), "")),
            Static => True);
      end if;
   end Fold_Dummy;

   ----------------
   -- Fold_Shift --
   ----------------

   procedure Fold_Shift
     (N          : Node_Id;
      Left       : Node_Id;
      Right      : Node_Id;
      Op         : Node_Kind;
      Static     : Boolean := False;
      Check_Elab : Boolean := False)
   is
      Typ : constant Entity_Id := Base_Type (Etype (Left));

      procedure Check_Elab_Call;
      --  Add checks related to calls in elaboration code

      ---------------------
      -- Check_Elab_Call --
      ---------------------

      procedure Check_Elab_Call is
      begin
         if Check_Elab then
            if Legacy_Elaboration_Checks then
               Check_Elab_Call (N);
            end if;

            Build_Call_Marker (N);
         end if;
      end Check_Elab_Call;

      Modulus, Val : Uint;

   begin
      if Compile_Time_Known_Value (Left)
        and then Compile_Time_Known_Value (Right)
      then
         pragma Assert (not Non_Binary_Modulus (Typ));

         if Op = N_Op_Shift_Left then
            Check_Elab_Call;

            if Is_Modular_Integer_Type (Typ) then
               Modulus := Einfo.Entities.Modulus (Typ);
            else
               Modulus := Uint_2 ** RM_Size (Typ);
            end if;

            --  Fold Shift_Left (X, Y) by computing
            --  (X * 2**Y) rem modulus [- Modulus]

            Val := (Expr_Value (Left) * (Uint_2 ** Expr_Value (Right)))
                     rem Modulus;

            if Is_Modular_Integer_Type (Typ)
              or else Val < Modulus / Uint_2
            then
               Fold_Uint (N, Val, Static => Static);
            else
               Fold_Uint (N, Val - Modulus, Static => Static);
            end if;

         elsif Op = N_Op_Shift_Right then
            Check_Elab_Call;

            --  X >> 0 is a no-op

            if Expr_Value (Right) = Uint_0 then
               Fold_Uint (N, Expr_Value (Left), Static => Static);
            else
               if Is_Modular_Integer_Type (Typ) then
                  Modulus := Einfo.Entities.Modulus (Typ);
               else
                  Modulus := Uint_2 ** RM_Size (Typ);
               end if;

               --  Fold X >> Y by computing (X [+ Modulus]) / 2**Y
               --  Note that after a Shift_Right operation (with Y > 0), the
               --  result is always positive, even if the original operand was
               --  negative.

               declare
                  M : Unat;
               begin
                  if Expr_Value (Left) >= Uint_0 then
                     M := Uint_0;
                  else
                     M := Modulus;
                  end if;

                  Fold_Uint
                    (N,
                     (Expr_Value (Left) + M) / (Uint_2 ** Expr_Value (Right)),
                     Static => Static);
               end;
            end if;
         elsif Op = N_Op_Shift_Right_Arithmetic then
            Check_Elab_Call;

            declare
               Two_Y : constant Uint := Uint_2 ** Expr_Value (Right);
            begin
               if Is_Modular_Integer_Type (Typ) then
                  Modulus := Einfo.Entities.Modulus (Typ);
               else
                  Modulus := Uint_2 ** RM_Size (Typ);
               end if;

               --  X / 2**Y if X if positive or a small enough modular integer

               if (Is_Modular_Integer_Type (Typ)
                    and then Expr_Value (Left) < Modulus / Uint_2)
                 or else
                   (not Is_Modular_Integer_Type (Typ)
                     and then Expr_Value (Left) >= 0)
               then
                  Fold_Uint (N, Expr_Value (Left) / Two_Y, Static => Static);

               --  -1 (aka all 1's) if Y is larger than the number of bits
               --  available or if X = -1.

               elsif Two_Y > Modulus
                 or else Expr_Value (Left) = Uint_Minus_1
               then
                  if Is_Modular_Integer_Type (Typ) then
                     Fold_Uint (N, Modulus - Uint_1, Static => Static);
                  else
                     Fold_Uint (N, Uint_Minus_1, Static => Static);
                  end if;

               --  Large modular integer, compute via multiply/divide the
               --  following: X >> Y + (1 << Y - 1) << (RM_Size - Y)

               elsif Is_Modular_Integer_Type (Typ) then
                  Fold_Uint
                    (N,
                     (Expr_Value (Left)) / Two_Y
                        + (Two_Y - Uint_1)
                          * Uint_2 ** (RM_Size (Typ) - Expr_Value (Right)),
                     Static => Static);

               --  Negative signed integer, compute via multiple/divide the
               --  following:
               --  (Modulus + X) >> Y + (1 << Y - 1) << (RM_Size - Y) - Modulus

               else
                  Fold_Uint
                    (N,
                     (Modulus + Expr_Value (Left)) / Two_Y
                        + (Two_Y - Uint_1)
                          * Uint_2 ** (RM_Size (Typ) - Expr_Value (Right))
                        - Modulus,
                     Static => Static);
               end if;
            end;
         end if;
      end if;
   end Fold_Shift;

   --------------
   -- Fold_Str --
   --------------

   procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);

   begin
      if Raises_Constraint_Error (N) then
         Set_Is_Static_Expression (N, Static);
         return;
      end if;

      Rewrite (N, Make_String_Literal (Loc, Strval => Val));

      --  We now have the literal with the right value, both the actual type
      --  and the expected type of this literal are taken from the expression
      --  that was evaluated. So now we do the Analyze and Resolve.

      --  Note that we have to reset Is_Static_Expression both after the
      --  analyze step (because Resolve will evaluate the literal, which
      --  will cause semantic errors if it is marked as static), and after
      --  the Resolve step (since Resolve in some cases resets this flag).

      Analyze (N);
      Set_Is_Static_Expression (N, Static);
      Set_Etype (N, Typ);
      Resolve (N);
      Set_Is_Static_Expression (N, Static);
   end Fold_Str;

   ---------------
   -- Fold_Uint --
   ---------------

   procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : Entity_Id  := Etype (N);
      Ent : Entity_Id;

   begin
      if Raises_Constraint_Error (N) then
         Set_Is_Static_Expression (N, Static);
         return;
      end if;

      --  If we are folding a named number, retain the entity in the literal
      --  in the original tree.

      if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
         Ent := Entity (N);
      else
         Ent := Empty;
      end if;

      if Is_Private_Type (Typ) then
         Typ := Full_View (Typ);
      end if;

      --  For a result of type integer, substitute an N_Integer_Literal node
      --  for the result of the compile time evaluation of the expression.
      --  Set a link to the original named number when not in a generic context
      --  for reference in the original tree.

      if Is_Integer_Type (Typ) then
         Rewrite (N, Make_Integer_Literal (Loc, Val));
         Set_Original_Entity (N, Ent);

      --  Otherwise we have an enumeration type, and we substitute either
      --  an N_Identifier or N_Character_Literal to represent the enumeration
      --  literal corresponding to the given value, which must always be in
      --  range, because appropriate tests have already been made for this.

      else pragma Assert (Is_Enumeration_Type (Typ));
         Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
      end if;

      --  We now have the literal with the right value, both the actual type
      --  and the expected type of this literal are taken from the expression
      --  that was evaluated. So now we do the Analyze and Resolve.

      --  Note that we have to reset Is_Static_Expression both after the
      --  analyze step (because Resolve will evaluate the literal, which
      --  will cause semantic errors if it is marked as static), and after
      --  the Resolve step (since Resolve in some cases sets this flag).

      Analyze (N);
      Set_Is_Static_Expression (N, Static);
      Set_Etype (N, Typ);
      Resolve (N);
      Set_Is_Static_Expression (N, Static);
   end Fold_Uint;

   ----------------
   -- Fold_Ureal --
   ----------------

   procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
      Loc : constant Source_Ptr := Sloc (N);
      Typ : constant Entity_Id  := Etype (N);
      Ent : Entity_Id;

   begin
      if Raises_Constraint_Error (N) then
         Set_Is_Static_Expression (N, Static);
         return;
      end if;

      --  If we are folding a named number, retain the entity in the literal
      --  in the original tree.

      if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
         Ent := Entity (N);
      else
         Ent := Empty;
      end if;

      Rewrite (N, Make_Real_Literal (Loc, Realval => Val));

      --  Set link to original named number

      Set_Original_Entity (N, Ent);

      --  We now have the literal with the right value, both the actual type
      --  and the expected type of this literal are taken from the expression
      --  that was evaluated. So now we do the Analyze and Resolve.

      --  Note that we have to reset Is_Static_Expression both after the
      --  analyze step (because Resolve will evaluate the literal, which
      --  will cause semantic errors if it is marked as static), and after
      --  the Resolve step (since Resolve in some cases sets this flag).

      --  We mark the node as analyzed so that its type is not erased by
      --  calling Analyze_Real_Literal.

      Analyze (N);
      Set_Is_Static_Expression (N, Static);
      Set_Etype (N, Typ);
      Resolve (N);
      Set_Analyzed (N);
      Set_Is_Static_Expression (N, Static);
   end Fold_Ureal;

   ---------------
   -- From_Bits --
   ---------------

   function From_Bits (B : Bits; T : Entity_Id) return Uint is
      V : Uint := Uint_0;

   begin
      for J in 0 .. B'Last loop
         if B (J) then
            V := V + 2 ** J;
         end if;
      end loop;

      if Non_Binary_Modulus (T) then
         V := V mod Modulus (T);
      end if;

      return V;
   end From_Bits;

   --------------------
   -- Get_String_Val --
   --------------------

   function Get_String_Val (N : Node_Id) return Node_Id is
   begin
      if Nkind (N) in N_String_Literal | N_Character_Literal then
         return N;
      else
         pragma Assert (Is_Entity_Name (N));
         return Get_String_Val (Constant_Value (Entity (N)));
      end if;
   end Get_String_Val;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize is
   begin
      CV_Cache := (others => (Node_High_Bound, Uint_0));
   end Initialize;

   --------------------
   -- In_Subrange_Of --
   --------------------

   function In_Subrange_Of
     (T1        : Entity_Id;
      T2        : Entity_Id;
      Fixed_Int : Boolean := False) return Boolean
   is
      L1 : Node_Id;
      H1 : Node_Id;

      L2 : Node_Id;
      H2 : Node_Id;

   begin
      if T1 = T2 or else Is_Subtype_Of (T1, T2) then
         return True;

      --  Never in range if both types are not scalar. Don't know if this can
      --  actually happen, but just in case.

      elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
         return False;

      --  If T1 has infinities but T2 doesn't have infinities, then T1 is
      --  definitely not compatible with T2.

      elsif Is_Floating_Point_Type (T1)
        and then Has_Infinities (T1)
        and then Is_Floating_Point_Type (T2)
        and then not Has_Infinities (T2)
      then
         return False;

      else
         L1 := Type_Low_Bound  (T1);
         H1 := Type_High_Bound (T1);

         L2 := Type_Low_Bound  (T2);
         H2 := Type_High_Bound (T2);

         --  Check bounds to see if comparison possible at compile time

         if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
              and then
            Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
         then
            return True;
         end if;

         --  If bounds not comparable at compile time, then the bounds of T2
         --  must be compile-time-known or we cannot answer the query.

         if not Compile_Time_Known_Value (L2)
           or else not Compile_Time_Known_Value (H2)
         then
            return False;
         end if;

         --  If the bounds of T1 are know at compile time then use these
         --  ones, otherwise use the bounds of the base type (which are of
         --  course always static).

         if not Compile_Time_Known_Value (L1) then
            L1 := Type_Low_Bound (Base_Type (T1));
         end if;

         if not Compile_Time_Known_Value (H1) then
            H1 := Type_High_Bound (Base_Type (T1));
         end if;

         --  Fixed point types should be considered as such only if
         --  flag Fixed_Int is set to False.

         if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
           or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
           or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
         then
            return
              Expr_Value_R (L2) <= Expr_Value_R (L1)
                and then
              Expr_Value_R (H2) >= Expr_Value_R (H1);

         else
            return
              Expr_Value (L2) <= Expr_Value (L1)
                and then
              Expr_Value (H2) >= Expr_Value (H1);

         end if;
      end if;

   --  If any exception occurs, it means that we have some bug in the compiler
   --  possibly triggered by a previous error, or by some unforeseen peculiar
   --  occurrence. However, this is only an optimization attempt, so there is
   --  really no point in crashing the compiler. Instead we just decide, too
   --  bad, we can't figure out the answer in this case after all.

   exception
      when others =>
         --  With debug flag K we will get an exception unless an error has
         --  already occurred (useful for debugging).

         if Debug_Flag_K then
            Check_Error_Detected;
         end if;

         return False;
   end In_Subrange_Of;

   -----------------
   -- Is_In_Range --
   -----------------

   function Is_In_Range
     (N            : Node_Id;
      Typ          : Entity_Id;
      Assume_Valid : Boolean := False;
      Fixed_Int    : Boolean := False;
      Int_Real     : Boolean := False) return Boolean
   is
   begin
      return
        Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
   end Is_In_Range;

   -------------------
   -- Is_Null_Range --
   -------------------

   function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
   begin
      if Compile_Time_Known_Value (Lo)
        and then Compile_Time_Known_Value (Hi)
      then
         declare
            Typ : Entity_Id := Etype (Lo);
         begin
            --  When called from the frontend, as part of the analysis of
            --  potentially static expressions, Typ will be the full view of a
            --  type with all the info needed to answer this query. When called
            --  from the backend, for example to know whether a range of a loop
            --  is null, Typ might be a private type and we need to explicitly
            --  switch to its corresponding full view to access the same info.

            if Is_Incomplete_Or_Private_Type (Typ)
              and then Present (Full_View (Typ))
            then
               Typ := Full_View (Typ);
            end if;

            if Is_Discrete_Type (Typ) then
               return Expr_Value (Lo) > Expr_Value (Hi);
            else pragma Assert (Is_Real_Type (Typ));
               return Expr_Value_R (Lo) > Expr_Value_R (Hi);
            end if;
         end;

      else
         return Compile_Time_Compare (Lo, Hi, Assume_Valid => False) = GT;
      end if;
   end Is_Null_Range;

   -------------------------
   -- Is_OK_Static_Choice --
   -------------------------

   function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
   begin
      --  Check various possibilities for choice

      --  Note: for membership tests, we test more cases than are possible
      --  (in particular subtype indication), but it doesn't matter because
      --  it just won't occur (we have already done a syntax check).

      if Nkind (Choice) = N_Others_Choice then
         return True;

      elsif Nkind (Choice) = N_Range then
         return Is_OK_Static_Range (Choice);

      elsif Nkind (Choice) = N_Subtype_Indication
        or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
      then
         return Is_OK_Static_Subtype (Etype (Choice));

      else
         return Is_OK_Static_Expression (Choice);
      end if;
   end Is_OK_Static_Choice;

   ------------------------------
   -- Is_OK_Static_Choice_List --
   ------------------------------

   function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
      Choice : Node_Id;

   begin
      if not Is_Static_Choice_List (Choices) then
         return False;
      end if;

      Choice := First (Choices);
      while Present (Choice) loop
         if not Is_OK_Static_Choice (Choice) then
            Set_Raises_Constraint_Error (Choice);
            return False;
         end if;

         Next (Choice);
      end loop;

      return True;
   end Is_OK_Static_Choice_List;

   -----------------------------
   -- Is_OK_Static_Expression --
   -----------------------------

   function Is_OK_Static_Expression (N : Node_Id) return Boolean is
   begin
      return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
   end Is_OK_Static_Expression;

   ------------------------
   -- Is_OK_Static_Range --
   ------------------------

   --  A static range is a range whose bounds are static expressions, or a
   --  Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
   --  We have already converted range attribute references, so we get the
   --  "or" part of this rule without needing a special test.

   function Is_OK_Static_Range (N : Node_Id) return Boolean is
   begin
      return Is_OK_Static_Expression (Low_Bound (N))
        and then Is_OK_Static_Expression (High_Bound (N));
   end Is_OK_Static_Range;

   --------------------------
   -- Is_OK_Static_Subtype --
   --------------------------

   --  Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
   --  neither bound raises Constraint_Error when evaluated.

   function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
      Base_T   : constant Entity_Id := Base_Type (Typ);
      Anc_Subt : Entity_Id;

   begin
      --  First a quick check on the non static subtype flag. As described
      --  in further detail in Einfo, this flag is not decisive in all cases,
      --  but if it is set, then the subtype is definitely non-static.

      if Is_Non_Static_Subtype (Typ) then
         return False;
      end if;

      --  Then, check if the subtype is strictly static. This takes care of
      --  checking for generics and predicates.

      if not Is_Static_Subtype (Typ) then
         return False;
      end if;

      --  String types

      if Is_String_Type (Typ) then
         return
           Ekind (Typ) = E_String_Literal_Subtype
             or else
               (Is_OK_Static_Subtype (Component_Type (Typ))
                 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));

      --  Scalar types

      elsif Is_Scalar_Type (Typ) then
         if Base_T = Typ then
            return True;

         else
            Anc_Subt := Ancestor_Subtype (Typ);

            if No (Anc_Subt) then
               Anc_Subt := Base_T;
            end if;

            --  Scalar_Range (Typ) might be an N_Subtype_Indication, so use
            --  Get_Type_{Low,High}_Bound.

            return     Is_OK_Static_Subtype (Anc_Subt)
              and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
              and then Is_OK_Static_Expression (Type_High_Bound (Typ));
         end if;

      --  Types other than string and scalar types are never static

      else
         return False;
      end if;
   end Is_OK_Static_Subtype;

   ---------------------
   -- Is_Out_Of_Range --
   ---------------------

   function Is_Out_Of_Range
     (N            : Node_Id;
      Typ          : Entity_Id;
      Assume_Valid : Boolean := False;
      Fixed_Int    : Boolean := False;
      Int_Real     : Boolean := False) return Boolean
   is
   begin
      return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
                                                               Out_Of_Range;
   end Is_Out_Of_Range;

   ----------------------
   -- Is_Static_Choice --
   ----------------------

   function Is_Static_Choice (Choice : Node_Id) return Boolean is
   begin
      --  Check various possibilities for choice

      --  Note: for membership tests, we test more cases than are possible
      --  (in particular subtype indication), but it doesn't matter because
      --  it just won't occur (we have already done a syntax check).

      if Nkind (Choice) = N_Others_Choice then
         return True;

      elsif Nkind (Choice) = N_Range then
         return Is_Static_Range (Choice);

      elsif Nkind (Choice) = N_Subtype_Indication
        or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
      then
         return Is_Static_Subtype (Etype (Choice));

      else
         return Is_Static_Expression (Choice);
      end if;
   end Is_Static_Choice;

   ---------------------------
   -- Is_Static_Choice_List --
   ---------------------------

   function Is_Static_Choice_List (Choices : List_Id) return Boolean is
      Choice : Node_Id;

   begin
      Choice := First (Choices);
      while Present (Choice) loop
         if not Is_Static_Choice (Choice) then
            return False;
         end if;

         Next (Choice);
      end loop;

      return True;
   end Is_Static_Choice_List;

   ---------------------
   -- Is_Static_Range --
   ---------------------

   --  A static range is a range whose bounds are static expressions, or a
   --  Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
   --  We have already converted range attribute references, so we get the
   --  "or" part of this rule without needing a special test.

   function Is_Static_Range (N : Node_Id) return Boolean is
   begin
      return Is_Static_Expression (Low_Bound  (N))
               and then
             Is_Static_Expression (High_Bound (N));
   end Is_Static_Range;

   -----------------------
   -- Is_Static_Subtype --
   -----------------------

   --  Determines if Typ is a static subtype as defined in (RM 4.9(26))

   function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
      Base_T   : constant Entity_Id := Base_Type (Typ);
      Anc_Subt : Entity_Id;

   begin
      --  First a quick check on the non static subtype flag. As described
      --  in further detail in Einfo, this flag is not decisive in all cases,
      --  but if it is set, then the subtype is definitely non-static.

      if Is_Non_Static_Subtype (Typ) then
         return False;
      end if;

      Anc_Subt := Ancestor_Subtype (Typ);

      if Anc_Subt = Empty then
         Anc_Subt := Base_T;
      end if;

      if Is_Generic_Type (Root_Type (Base_T))
        or else Is_Generic_Actual_Type (Base_T)
      then
         return False;

      --  If there is a non-static predicate for the type (declared or
      --  inherited) the expression is not static.

      elsif Has_Dynamic_Predicate_Aspect (Typ)
        or else (Is_Derived_Type (Typ)
                  and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
        or else Has_Ghost_Predicate_Aspect (Typ)
        or else (Is_Derived_Type (Typ)
                 and then Has_Aspect (Typ, Aspect_Ghost_Predicate))
        or else (Has_Aspect (Typ, Aspect_Predicate)
                  and then not Has_Static_Predicate (Typ))
      then
         return False;

      --  String types

      elsif Is_String_Type (Typ) then
         return
           Ekind (Typ) = E_String_Literal_Subtype
             or else (Is_Static_Subtype (Component_Type (Typ))
                       and then Is_Static_Subtype (Etype (First_Index (Typ))));

      --  Scalar types

      elsif Is_Scalar_Type (Typ) then
         if Base_T = Typ then
            return True;

         else
            return     Is_Static_Subtype (Anc_Subt)
              and then Is_Static_Expression (Type_Low_Bound (Typ))
              and then Is_Static_Expression (Type_High_Bound (Typ));
         end if;

      --  Types other than string and scalar types are never static

      else
         return False;
      end if;
   end Is_Static_Subtype;

   -------------------------------
   -- Is_Statically_Unevaluated --
   -------------------------------

   function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
      function Check_Case_Expr_Alternative
        (CEA : Node_Id) return Match_Result;
      --  We have a message emanating from the Expression of a case expression
      --  alternative. We examine this alternative, as follows:
      --
      --  If the selecting expression of the parent case is non-static, or
      --  if any of the discrete choices of the given case alternative are
      --  non-static or raise Constraint_Error, return Non_Static.
      --
      --  Otherwise check if the selecting expression matches any of the given
      --  discrete choices. If so, the alternative is executed and we return
      --  Match, otherwise, the alternative can never be executed, and so we
      --  return No_Match.

      ---------------------------------
      -- Check_Case_Expr_Alternative --
      ---------------------------------

      function Check_Case_Expr_Alternative
        (CEA : Node_Id) return Match_Result
      is
         Case_Exp : constant Node_Id := Parent (CEA);
         Choice   : Node_Id;
         Prev_CEA : Node_Id;

      begin
         pragma Assert (Nkind (Case_Exp) = N_Case_Expression);

         --  Check that selecting expression is static

         if not Is_OK_Static_Expression (Expression (Case_Exp)) then
            return Non_Static;
         end if;

         if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
            return Non_Static;
         end if;

         --  All choices are now known to be static. Now see if alternative
         --  matches one of the choices.

         Choice := First (Discrete_Choices (CEA));
         while Present (Choice) loop

            --  Check various possibilities for choice, returning Match if we
            --  find the selecting value matches any of the choices. Note that
            --  we know we are the last choice, so we don't have to keep going.

            if Nkind (Choice) = N_Others_Choice then

               --  Others choice is a bit annoying, it matches if none of the
               --  previous alternatives matches (note that we know we are the
               --  last alternative in this case, so we can just go backwards
               --  from us to see if any previous one matches).

               Prev_CEA := Prev (CEA);
               while Present (Prev_CEA) loop
                  if Check_Case_Expr_Alternative (Prev_CEA) = Match then
                     return No_Match;
                  end if;

                  Prev (Prev_CEA);
               end loop;

               return Match;

            --  Else we have a normal static choice

            elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
               return Match;
            end if;

            --  If we fall through, it means that the discrete choice did not
            --  match the selecting expression, so continue.

            Next (Choice);
         end loop;

         --  If we get through that loop then all choices were static, and none
         --  of them matched the selecting expression. So return No_Match.

         return No_Match;
      end Check_Case_Expr_Alternative;

      --  Local variables

      P      : Node_Id;
      OldP   : Node_Id;
      Choice : Node_Id;

   --  Start of processing for Is_Statically_Unevaluated

   begin
      --  The (32.x) references here are from RM section 4.9

      --  (32.1) An expression is statically unevaluated if it is part of ...

      --  This means we have to climb the tree looking for one of the cases

      P := Expr;
      loop
         OldP := P;
         P := Parent (P);

         --  (32.2) The right operand of a static short-circuit control form
         --  whose value is determined by its left operand.

         --  AND THEN with False as left operand

         if Nkind (P) = N_And_Then
           and then Compile_Time_Known_Value (Left_Opnd (P))
           and then Is_False (Expr_Value (Left_Opnd (P)))
         then
            return True;

         --  OR ELSE with True as left operand

         elsif Nkind (P) = N_Or_Else
           and then Compile_Time_Known_Value (Left_Opnd (P))
           and then Is_True (Expr_Value (Left_Opnd (P)))
         then
            return True;

         --  (32.3) A dependent_expression of an if_expression whose associated
         --  condition is static and equals False.

         elsif Nkind (P) = N_If_Expression then
            declare
               Cond : constant Node_Id := First (Expressions (P));
               Texp : constant Node_Id := Next (Cond);
               Fexp : constant Node_Id := Next (Texp);

            begin
               if Compile_Time_Known_Value (Cond) then

                  --  Condition is True and we are in the right operand

                  if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
                     return True;

                  --  Condition is False and we are in the left operand

                  elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
                     return True;
                  end if;
               end if;
            end;

         --  (32.4) A condition or dependent_expression of an if_expression
         --  where the condition corresponding to at least one preceding
         --  dependent_expression of the if_expression is static and equals
         --  True.

         --  This refers to cases like

         --    (if True then 1 elsif 1/0=2 then 2 else 3)

         --  But we expand elsif's out anyway, so the above looks like:

         --    (if True then 1 else (if 1/0=2 then 2 else 3))

         --  So for us this is caught by the above check for the 32.3 case.

         --  (32.5) A dependent_expression of a case_expression whose
         --  selecting_expression is static and whose value is not covered
         --  by the corresponding discrete_choice_list.

         elsif Nkind (P) = N_Case_Expression_Alternative then

            --  First, we have to be in the expression to suppress messages.
            --  If we are within one of the choices, we want the message.

            if OldP = Expression (P) then

               --  Statically unevaluated if alternative does not match

               if Check_Case_Expr_Alternative (P) = No_Match then
                  return True;
               end if;
            end if;

         --  (32.6) A choice_expression (or a simple_expression of a range
         --  that occurs as a membership_choice of a membership_choice_list)
         --  of a static membership test that is preceded in the enclosing
         --  membership_choice_list by another item whose individual
         --  membership test (see (RM 4.5.2)) statically yields True.

         elsif Nkind (P) in N_Membership_Test then

            --  Only possibly unevaluated if simple expression is static

            if not Is_OK_Static_Expression (Left_Opnd (P)) then
               null;

            --  All members of the choice list must be static

            elsif (Present (Right_Opnd (P))
                    and then not Is_OK_Static_Choice (Right_Opnd (P)))
              or else (Present (Alternatives (P))
                        and then
                          not Is_OK_Static_Choice_List (Alternatives (P)))
            then
               null;

            --  If expression is the one and only alternative, then it is
            --  definitely not statically unevaluated, so we only have to
            --  test the case where there are alternatives present.

            elsif Present (Alternatives (P)) then

               --  Look for previous matching Choice

               Choice := First (Alternatives (P));
               while Present (Choice) loop

                  --  If we reached us and no previous choices matched, this
                  --  is not the case where we are statically unevaluated.

                  exit when OldP = Choice;

                  --  If a previous choice matches, then that is the case where
                  --  we know our choice is statically unevaluated.

                  if Choice_Matches (Left_Opnd (P), Choice) = Match then
                     return True;
                  end if;

                  Next (Choice);
               end loop;

               --  If we fall through the loop, we were not one of the choices,
               --  we must have been the expression, so that is not covered by
               --  this rule, and we keep going.

               null;
            end if;
         end if;

         --  OK, not statically unevaluated at this level, see if we should
         --  keep climbing to look for a higher level reason.

         --  Special case for component association in aggregates, where
         --  we want to keep climbing up to the parent aggregate.

         if Nkind (P) = N_Component_Association
           and then Nkind (Parent (P)) = N_Aggregate
         then
            null;

         --  All done if not still within subexpression

         else
            exit when Nkind (P) not in N_Subexpr;
         end if;
      end loop;

      --  If we fall through the loop, not one of the cases covered!

      return False;
   end Is_Statically_Unevaluated;

   --------------------
   -- Machine_Number --
   --------------------

   --  Historical note: RM 4.9(38) originally specified biased rounding but
   --  this has been modified by AI-268 to prevent confusing differences in
   --  rounding between static and nonstatic expressions. This AI specifies
   --  that the effect of such rounding is implementation-dependent instead,
   --  and in GNAT we round to nearest even to match the run-time behavior.
   --  Note that this applies to floating-point literals, not fixed-point
   --  ones, even though their representation is also a universal real.

   function Machine_Number
     (Typ : Entity_Id;
      Val : Ureal;
      N   : Node_Id) return Ureal
   is
   begin
      return Machine (Typ, Val, Round_Even, N);
   end Machine_Number;

   --------------------
   -- Not_Null_Range --
   --------------------

   function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
   begin
      if Compile_Time_Known_Value (Lo)
        and then Compile_Time_Known_Value (Hi)
      then
         declare
            Typ : Entity_Id := Etype (Lo);
         begin
            --  When called from the frontend, as part of the analysis of
            --  potentially static expressions, Typ will be the full view of a
            --  type with all the info needed to answer this query. When called
            --  from the backend, for example to know whether a range of a loop
            --  is null, Typ might be a private type and we need to explicitly
            --  switch to its corresponding full view to access the same info.

            if Is_Incomplete_Or_Private_Type (Typ)
              and then Present (Full_View (Typ))
            then
               Typ := Full_View (Typ);
            end if;

            if Is_Discrete_Type (Typ) then
               return Expr_Value (Lo) <= Expr_Value (Hi);
            else pragma Assert (Is_Real_Type (Typ));
               return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
            end if;
         end;

      else
         return
           Compile_Time_Compare (Lo, Hi, Assume_Valid => False) in Compare_LE;
      end if;
   end Not_Null_Range;

   -------------
   -- OK_Bits --
   -------------

   function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
   begin
      --  We allow a maximum of 500,000 bits which seems a reasonable limit

      if Bits < 500_000 then
         return True;

      --  Error if this maximum is exceeded

      else
         Error_Msg_N ("static value too large, capacity exceeded", N);
         return False;
      end if;
   end OK_Bits;

   ------------------
   -- Out_Of_Range --
   ------------------

   procedure Out_Of_Range (N : Node_Id) is

      --  If the FE conjures up an expression that would normally be
      --  an illegal static expression (e.g., an integer literal with
      --  a value outside of its base subtype), we don't want to
      --  flag it as illegal; we only want a warning in such cases.

      function Force_Warning return Boolean is
        (if Comes_From_Source (Original_Node (N)) then False
         elsif Nkind (Original_Node (N)) = N_Type_Conversion then True
         else Is_Null_Array_Aggregate_High_Bound (N));
   begin
      --  If we have the static expression case, then this is an illegality
      --  in Ada 95 mode, except that in an instance, we never generate an
      --  error (if the error is legitimate, it was already diagnosed in the
      --  template).

      if Is_Static_Expression (N)
        and then not In_Instance
        and then not In_Inlined_Body
        and then Ada_Version >= Ada_95
      then
         --  No message if we are statically unevaluated

         if Is_Statically_Unevaluated (N) then
            null;

         --  The expression to compute the length of a packed array is attached
         --  to the array type itself, and deserves a separate message.

         elsif Nkind (Parent (N)) = N_Defining_Identifier
           and then Is_Array_Type (Parent (N))
           and then Present (Packed_Array_Impl_Type (Parent (N)))
           and then Present (First_Rep_Item (Parent (N)))
         then
            Error_Msg_N
             ("length of packed array must not exceed Integer''Last",
              First_Rep_Item (Parent (N)));
            Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));

         --  All cases except the special array case.
         --  No message if we are dealing with System.Priority values in
         --  CodePeer mode where the target runtime may have more priorities.

         elsif not CodePeer_Mode
           or else not Is_RTE (Etype (N), RE_Priority)
         then
            --  Determine if the out-of-range violation constitutes a warning
            --  or an error based on context, according to RM 4.9 (34/3).

            if Force_Warning then
               Apply_Compile_Time_Constraint_Error
                 (N, "value not in range of}??", CE_Range_Check_Failed);
            else
               Apply_Compile_Time_Constraint_Error
                 (N, "value not in range of}", CE_Range_Check_Failed);
            end if;
         end if;

      --  Here we generate a warning for the Ada 83 case, or when we are in an
      --  instance, or when we have a non-static expression case.

      else
         Apply_Compile_Time_Constraint_Error
           (N, "value not in range of}??", CE_Range_Check_Failed);
      end if;
   end Out_Of_Range;

   ---------------------------
   -- Predicates_Compatible --
   ---------------------------

   function Predicates_Compatible (T1, T2 : Entity_Id) return Boolean is

      function T2_Rep_Item_Applies_To_T1 (Nam : Name_Id) return Boolean;
      --  Return True if the rep item for Nam is either absent on T2 or also
      --  applies to T1.

      -------------------------------
      -- T2_Rep_Item_Applies_To_T1 --
      -------------------------------

      function T2_Rep_Item_Applies_To_T1 (Nam : Name_Id) return Boolean is
         Rep_Item : constant Node_Id := Get_Rep_Item (T2, Nam);

      begin
         return No (Rep_Item) or else Get_Rep_Item (T1, Nam) = Rep_Item;
      end T2_Rep_Item_Applies_To_T1;

   --  Start of processing for Predicates_Compatible

   begin
      if Ada_Version < Ada_2012 then
         return True;

      --  If T2 has no predicates, there is no compatibility issue

      elsif not Has_Predicates (T2) then
         return True;

      --  T2 has predicates, if T1 has none then we defer to the static check

      elsif not Has_Predicates (T1) then
         null;

      --  Both T2 and T1 have predicates, check that all predicates that apply
      --  to T2 apply also to T1 (RM 4.9.1(9/3)).

      elsif T2_Rep_Item_Applies_To_T1 (Name_Static_Predicate)
        and then T2_Rep_Item_Applies_To_T1 (Name_Dynamic_Predicate)
        and then T2_Rep_Item_Applies_To_T1 (Name_Predicate)
      then
         return True;
      end if;

      --  Implement the static check prescribed by RM 4.9.1(10/3)

      if Is_Static_Subtype (T1) and then Is_Static_Subtype (T2) then
         --  We just need to query Interval_Lists for discrete types

         if Is_Discrete_Type (T1) and then Is_Discrete_Type (T2) then
            declare
               Interval_List1 : constant Interval_Lists.Discrete_Interval_List
                 := Interval_Lists.Type_Intervals (T1);
               Interval_List2 : constant Interval_Lists.Discrete_Interval_List
                 := Interval_Lists.Type_Intervals (T2);
            begin
               return Interval_Lists.Is_Subset (Interval_List1, Interval_List2)
                 and then not (Has_Predicates (T1)
                                and then not Predicate_Checks_Suppressed (T2)
                                and then Predicate_Checks_Suppressed (T1));
            end;

         else
            --  ??? Need to implement Interval_Lists for real types

            return False;
         end if;

      --  If either subtype is not static, the predicates are not compatible

      else
         return False;
      end if;
   end Predicates_Compatible;

   ----------------------
   -- Predicates_Match --
   ----------------------

   function Predicates_Match (T1, T2 : Entity_Id) return Boolean is

      function Have_Same_Rep_Item (Nam : Name_Id) return Boolean;
      --  Return True if T1 and T2 have the same rep item for Nam

      ------------------------
      -- Have_Same_Rep_Item --
      ------------------------

      function Have_Same_Rep_Item (Nam : Name_Id) return Boolean is
      begin
         return Get_Rep_Item (T1, Nam) = Get_Rep_Item (T2, Nam);
      end Have_Same_Rep_Item;

   --  Start of processing for Predicates_Match

   begin
      if Ada_Version < Ada_2012 then
         return True;

      --  If T2 has no predicates, match if and only if T1 has none

      elsif not Has_Predicates (T2) then
         return not Has_Predicates (T1);

      --  T2 has predicates, no match if T1 has none

      elsif not Has_Predicates (T1) then
         return False;

      --  Both T2 and T1 have predicates, check that they all come
      --  from the same declarations.

      else
         return Have_Same_Rep_Item (Name_Static_Predicate)
           and then Have_Same_Rep_Item (Name_Dynamic_Predicate)
           and then Have_Same_Rep_Item (Name_Predicate);
      end if;
   end Predicates_Match;

   ---------------------------------------------
   -- Real_Or_String_Static_Predicate_Matches --
   ---------------------------------------------

   function Real_Or_String_Static_Predicate_Matches
     (Val : Node_Id;
      Typ : Entity_Id) return Boolean
   is
      Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
      --  The predicate expression from the type

      Pfun : constant Entity_Id := Predicate_Function (Typ);
      --  The entity for the predicate function

      Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
      --  The name of the formal of the predicate function. Occurrences of the
      --  type name in Expr have been rewritten as references to this formal,
      --  and it has a unique name, so we can identify references by this name.

      Copy : Node_Id;
      --  Copy of the predicate function tree

      function Process (N : Node_Id) return Traverse_Result;
      --  Function used to process nodes during the traversal in which we will
      --  find occurrences of the entity name, and replace such occurrences
      --  by a real literal with the value to be tested.

      procedure Traverse is new Traverse_Proc (Process);
      --  The actual traversal procedure

      -------------
      -- Process --
      -------------

      function Process (N : Node_Id) return Traverse_Result is
      begin
         if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
            declare
               Nod : constant Node_Id := New_Copy (Val);
            begin
               Set_Sloc (Nod, Sloc (N));
               Rewrite (N, Nod);
               return Skip;
            end;

         --  The predicate function may contain string-comparison operations
         --  that have been converted into calls to run-time array-comparison
         --  routines. To evaluate the predicate statically, we recover the
         --  original comparison operation and replace the occurrence of the
         --  formal by the static string value. The actuals of the generated
         --  call are of the form X'Address.

         elsif Nkind (N) in N_Op_Compare
           and then Nkind (Left_Opnd (N)) = N_Function_Call
         then
            declare
               C : constant Node_Id := Left_Opnd (N);
               F : constant Node_Id := First (Parameter_Associations (C));
               L : constant Node_Id := Prefix (F);
               R : constant Node_Id := Prefix (Next (F));

            begin
               --  If an operand is an entity name, it is the formal of the
               --  predicate function, so replace it with the string value.
               --  It may be either operand in the call. The other operand
               --  is a static string from the original predicate.

               if Is_Entity_Name (L) then
                  Rewrite (Left_Opnd (N),  New_Copy (Val));
                  Rewrite (Right_Opnd (N), New_Copy (R));

               else
                  Rewrite (Left_Opnd (N),  New_Copy (L));
                  Rewrite (Right_Opnd (N), New_Copy (Val));
               end if;

               return Skip;
            end;

         else
            return OK;
         end if;
      end Process;

   --  Start of processing for Real_Or_String_Static_Predicate_Matches

   begin
      --  First deal with special case of inherited predicate, where the
      --  predicate expression looks like:

      --     xxPredicate (typ (Ent)) and then Expr

      --  where Expr is the predicate expression for this level, and the
      --  left operand is the call to evaluate the inherited predicate.

      if Nkind (Expr) = N_And_Then
        and then Nkind (Left_Opnd (Expr)) = N_Function_Call
        and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
      then
         --  OK we have the inherited case, so make a call to evaluate the
         --  inherited predicate. If that fails, so do we!

         if not
           Real_Or_String_Static_Predicate_Matches
             (Val => Val,
              Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
         then
            return False;
         end if;

         --  Use the right operand for the continued processing

         Copy := Copy_Separate_Tree (Right_Opnd (Expr));

      --  Case where call to predicate function appears on its own (this means
      --  that the predicate at this level is just inherited from the parent).

      elsif Nkind (Expr) = N_Function_Call then
         declare
            Typ : constant Entity_Id :=
                    Etype (First_Formal (Entity (Name (Expr))));

         begin
            --  If the inherited predicate is not static, just ignore it. We
            --  can't go trying to evaluate a dynamic predicate as a static
            --  one!

            if Has_Dynamic_Predicate_Aspect (Typ)
              or else Has_Ghost_Predicate_Aspect (Typ)
            then
               return True;

            --  Otherwise inherited predicate is static, check for match

            else
               return Real_Or_String_Static_Predicate_Matches (Val, Typ);
            end if;
         end;

      --  If not just an inherited predicate, copy whole expression

      else
         Copy := Copy_Separate_Tree (Expr);
      end if;

      --  Now we replace occurrences of the entity by the value

      Traverse (Copy);

      --  And analyze the resulting static expression to see if it is True

      Analyze_And_Resolve (Copy, Standard_Boolean);
      return Is_True (Expr_Value (Copy));
   end Real_Or_String_Static_Predicate_Matches;

   -------------------------
   -- Rewrite_In_Raise_CE --
   -------------------------

   procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
      Stat : constant Boolean   := Is_Static_Expression (N);
      Typ  : constant Entity_Id := Etype (N);

   begin
      --  If we want to raise CE in the condition of a N_Raise_CE node, we
      --  can just clear the condition if the reason is appropriate. We do
      --  not do this operation if the parent has a reason other than range
      --  check failed, because otherwise we would change the reason.

      if Present (Parent (N))
        and then Nkind (Parent (N)) = N_Raise_Constraint_Error
        and then Reason (Parent (N)) =
                   UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
      then
         Set_Condition (Parent (N), Empty);

      --  Else build an explicit N_Raise_CE

      else
         if Nkind (Exp) = N_Raise_Constraint_Error then
            Rewrite (N,
              Make_Raise_Constraint_Error (Sloc (Exp),
                Reason => Reason (Exp)));
         else
            Rewrite (N,
              Make_Raise_Constraint_Error (Sloc (Exp),
                Reason => CE_Range_Check_Failed));
         end if;

         Set_Raises_Constraint_Error (N);
         Set_Etype (N, Typ);
      end if;

      --  Set proper flags in result

      Set_Raises_Constraint_Error (N, True);
      Set_Is_Static_Expression (N, Stat);
   end Rewrite_In_Raise_CE;

   ------------------------------------------------
   -- Set_Checking_Potentially_Static_Expression --
   ------------------------------------------------

   procedure Set_Checking_Potentially_Static_Expression (Value : Boolean) is
   begin
      --  Verify that we only start/stop checking for a potentially static
      --  expression and do not start or stop it twice in a row.

      pragma Assert (Checking_For_Potentially_Static_Expression /= Value);

      Checking_For_Potentially_Static_Expression := Value;
   end Set_Checking_Potentially_Static_Expression;

   ---------------------
   -- String_Type_Len --
   ---------------------

   function String_Type_Len (Stype : Entity_Id) return Uint is
      NT : constant Entity_Id := Etype (First_Index (Stype));
      T  : Entity_Id;

   begin
      if Is_OK_Static_Subtype (NT) then
         T := NT;
      else
         T := Base_Type (NT);
      end if;

      return Expr_Value (Type_High_Bound (T)) -
             Expr_Value (Type_Low_Bound (T)) + 1;
   end String_Type_Len;

   ------------------------------------
   -- Subtypes_Statically_Compatible --
   ------------------------------------

   function Subtypes_Statically_Compatible
     (T1                      : Entity_Id;
      T2                      : Entity_Id;
      Formal_Derived_Matching : Boolean := False) return Boolean
   is
   begin
      --  A type is always statically compatible with itself

      if T1 = T2 then
         return True;

      --  Not compatible if predicates are not compatible

      elsif not Predicates_Compatible (T1, T2) then
         return False;

      --  Scalar types

      elsif Is_Scalar_Type (T1) then

         --  Definitely compatible if we match

         if Subtypes_Statically_Match (T1, T2) then
            return True;

         --  A scalar subtype S1 is compatible with S2 if their bounds
         --  are static and compatible, even if S1 has dynamic predicates
         --  and is thus non-static. Predicate compatibility has been
         --  checked above.

         elsif not Is_Static_Range (Scalar_Range (T1))
                 or else not Is_Static_Range (Scalar_Range (T2))
         then
            return False;

         --  Base types must match, but we don't check that (should we???) but
         --  we do at least check that both types are real, or both types are
         --  not real.

         elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
            return False;

         --  Here we check the bounds

         else
            declare
               LB1 : constant Node_Id := Type_Low_Bound  (T1);
               HB1 : constant Node_Id := Type_High_Bound (T1);
               LB2 : constant Node_Id := Type_Low_Bound  (T2);
               HB2 : constant Node_Id := Type_High_Bound (T2);

            begin
               if Is_Real_Type (T1) then
                  return
                    Expr_Value_R (LB1) > Expr_Value_R (HB1)
                      or else
                        (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
                          and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));

               else
                  return
                    Expr_Value (LB1) > Expr_Value (HB1)
                      or else
                        (Expr_Value (LB2) <= Expr_Value (LB1)
                          and then Expr_Value (HB1) <= Expr_Value (HB2));
               end if;
            end;
         end if;

      --  Access types

      elsif Is_Access_Type (T1) then
         return
           (not Is_Constrained (T2)
             or else Subtypes_Statically_Match
                       (Designated_Type (T1), Designated_Type (T2)))
           and then not (Can_Never_Be_Null (T2)
                          and then not Can_Never_Be_Null (T1));

      --  Private types without discriminants can be handled specially.
      --  Predicate matching has been checked above.

      elsif Is_Private_Type (T1)
        and then not Has_Discriminants (T1)
      then
         return not Has_Discriminants (T2);

      --  All other cases

      else
         return
           (Is_Composite_Type (T1) and then not Is_Constrained (T2))
             or else Subtypes_Statically_Match
                       (T1, T2, Formal_Derived_Matching);
      end if;
   end Subtypes_Statically_Compatible;

   -------------------------------
   -- Subtypes_Statically_Match --
   -------------------------------

   --  Subtypes statically match if they have statically matching constraints
   --  (RM 4.9.1(2)). Constraints statically match if there are none, or if
   --  they are the same identical constraint, or if they are static and the
   --  values match (RM 4.9.1(1)).

   --  In addition, in GNAT, the object size (Esize) values of the types must
   --  match if they are set (unless checking an actual for a formal derived
   --  type). The use of 'Object_Size can cause this to be false even if the
   --  types would otherwise match in the Ada 95 RM sense, but this deviation
   --  is adopted by AI12-059 which introduces Object_Size in Ada 2022.

   function Subtypes_Statically_Match
     (T1                      : Entity_Id;
      T2                      : Entity_Id;
      Formal_Derived_Matching : Boolean := False) return Boolean
   is
   begin
      --  A type always statically matches itself

      if T1 = T2 then
         return True;

      --  No match if sizes different (from use of 'Object_Size). This test
      --  is excluded if Formal_Derived_Matching is True, as the base types
      --  can be different in that case and typically have different sizes.

      elsif not Formal_Derived_Matching
        and then Known_Static_Esize (T1)
        and then Known_Static_Esize (T2)
        and then Esize (T1) /= Esize (T2)
      then
         return False;

      --  No match if predicates do not match

      elsif not Predicates_Match (T1, T2) then
         return False;

      --  Scalar types

      elsif Is_Scalar_Type (T1) then

         --  Base types must be the same

         if Base_Type (T1) /= Base_Type (T2) then
            return False;
         end if;

         --  A constrained numeric subtype never matches an unconstrained
         --  subtype, i.e. both types must be constrained or unconstrained.

         --  To understand the requirement for this test, see RM 4.9.1(1).
         --  As is made clear in RM 3.5.4(11), type Integer, for example is
         --  a constrained subtype with constraint bounds matching the bounds
         --  of its corresponding unconstrained base type. In this situation,
         --  Integer and Integer'Base do not statically match, even though
         --  they have the same bounds.

         --  We only apply this test to types in Standard and types that appear
         --  in user programs. That way, we do not have to be too careful about
         --  setting Is_Constrained right for Itypes.

         if Is_Numeric_Type (T1)
           and then Is_Constrained (T1) /= Is_Constrained (T2)
           and then (Scope (T1) = Standard_Standard
                      or else Comes_From_Source (T1))
           and then (Scope (T2) = Standard_Standard
                      or else Comes_From_Source (T2))
         then
            return False;

         --  A generic scalar type does not statically match its base type
         --  (AI-311). In this case we make sure that the formals, which are
         --  first subtypes of their bases, are constrained.

         elsif Is_Generic_Type (T1)
           and then Is_Generic_Type (T2)
           and then Is_Constrained (T1) /= Is_Constrained (T2)
         then
            return False;
         end if;

         --  If there was an error in either range, then just assume the types
         --  statically match to avoid further junk errors.

         if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
           or else Error_Posted (Scalar_Range (T1))
           or else Error_Posted (Scalar_Range (T2))
         then
            return True;
         end if;

         --  Otherwise both types have bounds that can be compared

         declare
            LB1 : constant Node_Id := Type_Low_Bound  (T1);
            HB1 : constant Node_Id := Type_High_Bound (T1);
            LB2 : constant Node_Id := Type_Low_Bound  (T2);
            HB2 : constant Node_Id := Type_High_Bound (T2);

         begin
            --  If the bounds are the same tree node, then match (common case)

            if LB1 = LB2 and then HB1 = HB2 then
               return True;

            --  Otherwise bounds must be static and identical value

            else
               if not Is_OK_Static_Subtype (T1)
                    or else
                  not Is_OK_Static_Subtype (T2)
               then
                  return False;

               elsif Is_Real_Type (T1) then
                  return
                    Expr_Value_R (LB1) = Expr_Value_R (LB2)
                      and then
                    Expr_Value_R (HB1) = Expr_Value_R (HB2);

               else
                  return
                    Expr_Value (LB1) = Expr_Value (LB2)
                      and then
                    Expr_Value (HB1) = Expr_Value (HB2);
               end if;
            end if;
         end;

      --  Type with discriminants

      elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then

         --  Handle derivations of private subtypes. For example S1 statically
         --  matches the full view of T1 in the following example:

         --      type T1(<>) is new Root with private;
         --      subtype S1 is new T1;
         --      overriding proc P1 (P : S1);
         --    private
         --      type T1 (D : Disc) is new Root with ...

         if Ekind (T2) = E_Record_Subtype_With_Private
           and then not Has_Discriminants (T2)
           and then Partial_View_Has_Unknown_Discr (T1)
           and then Etype (T2) = T1
         then
            return True;

         elsif Ekind (T1) = E_Record_Subtype_With_Private
           and then not Has_Discriminants (T1)
           and then Partial_View_Has_Unknown_Discr (T2)
           and then Etype (T1) = T2
         then
            return True;

         --  Because of view exchanges in multiple instantiations, conformance
         --  checking might try to match a partial view of a type with no
         --  discriminants with a full view that has defaulted discriminants.
         --  In such a case, use the discriminant constraint of the full view,
         --  which must exist because we know that the two subtypes have the
         --  same base type.

         elsif Has_Discriminants (T1) /= Has_Discriminants (T2) then
            if In_Instance then
               if Is_Private_Type (T2)
                 and then Present (Full_View (T2))
                 and then Has_Discriminants (Full_View (T2))
               then
                  return Subtypes_Statically_Match (T1, Full_View (T2));

               elsif Is_Private_Type (T1)
                 and then Present (Full_View (T1))
                 and then Has_Discriminants (Full_View (T1))
               then
                  return Subtypes_Statically_Match (Full_View (T1), T2);

               else
                  return False;
               end if;
            else
               return False;
            end if;
         end if;

         declare

            function Original_Discriminant_Constraint
              (Typ : Entity_Id) return Elist_Id;
            --  Returns Typ's discriminant constraint, or if the constraint
            --  is inherited from an ancestor type, then climbs the parent
            --  types to locate and return the constraint farthest up the
            --  parent chain that Typ's constraint is ultimately inherited
            --  from (stopping before a parent that doesn't impose a constraint
            --  or a parent that has new discriminants). This ensures a proper
            --  result from the equality comparison of Elist_Ids below (as
            --  otherwise, derived types that inherit constraints may appear
            --  to be unequal, because each level of derivation can have its
            --  own copy of the constraint).

            function Original_Discriminant_Constraint
              (Typ : Entity_Id) return Elist_Id
            is
            begin
               if not Has_Discriminants (Typ) then
                  return No_Elist;

               --  If Typ is not a derived type, then directly return the
               --  its constraint.

               elsif not Is_Derived_Type (Typ) then
                  return Discriminant_Constraint (Typ);

               --  If the parent type doesn't have discriminants, doesn't
               --  have a constraint, or has new discriminants, then stop
               --  and return Typ's constraint.

               elsif not Has_Discriminants (Etype (Typ))

                 --  No constraint on the parent type

                 or else No (Discriminant_Constraint (Etype (Typ)))
                 or else Is_Empty_Elmt_List
                           (Discriminant_Constraint (Etype (Typ)))

                 --  The parent type defines new discriminants

                 or else
                   (Is_Base_Type (Etype (Typ))
                     and then Present (Discriminant_Specifications
                                         (Parent (Etype (Typ)))))
               then
                  return Discriminant_Constraint (Typ);

               --  Otherwise, make a recursive call on the parent type

               else
                  return Original_Discriminant_Constraint (Etype (Typ));
               end if;
            end Original_Discriminant_Constraint;

            --  Local variables

            DL1 : constant Elist_Id := Original_Discriminant_Constraint (T1);
            DL2 : constant Elist_Id := Original_Discriminant_Constraint (T2);

            DA1 : Elmt_Id;
            DA2 : Elmt_Id;

         begin
            if DL1 = DL2 then
               return True;
            elsif Is_Constrained (T1) /= Is_Constrained (T2) then
               return False;
            end if;

            --  Now loop through the discriminant constraints

            --  Note: the guard here seems necessary, since it is possible at
            --  least for DL1 to be No_Elist. Not clear this is reasonable ???

            if Present (DL1) and then Present (DL2) then
               DA1 := First_Elmt (DL1);
               DA2 := First_Elmt (DL2);
               while Present (DA1) loop
                  declare
                     Expr1 : constant Node_Id := Node (DA1);
                     Expr2 : constant Node_Id := Node (DA2);

                  begin
                     if not Is_OK_Static_Expression (Expr1)
                       or else not Is_OK_Static_Expression (Expr2)
                     then
                        return False;

                        --  If either expression raised a Constraint_Error,
                        --  consider the expressions as matching, since this
                        --  helps to prevent cascading errors.

                     elsif Raises_Constraint_Error (Expr1)
                       or else Raises_Constraint_Error (Expr2)
                     then
                        null;

                     elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
                        return False;
                     end if;
                  end;

                  Next_Elmt (DA1);
                  Next_Elmt (DA2);
               end loop;
            end if;
         end;

         return True;

      --  A definite type does not match an indefinite or classwide type.
      --  However, a generic type with unknown discriminants may be
      --  instantiated with a type with no discriminants, and conformance
      --  checking on an inherited operation may compare the actual with the
      --  subtype that renames it in the instance.

      elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
      then
         return
           Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);

      --  Array type

      elsif Is_Array_Type (T1) then

         --  If either subtype is unconstrained then both must be, and if both
         --  are unconstrained then no further checking is needed.

         if not Is_Constrained (T1) or else not Is_Constrained (T2) then
            return not (Is_Constrained (T1) or else Is_Constrained (T2));
         end if;

         --  Both subtypes are constrained, so check that the index subtypes
         --  statically match.

         declare
            Index1 : Node_Id := First_Index (T1);
            Index2 : Node_Id := First_Index (T2);

         begin
            while Present (Index1) loop
               if not
                 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
               then
                  return False;
               end if;

               Next_Index (Index1);
               Next_Index (Index2);
            end loop;

            return True;
         end;

      elsif Is_Access_Type (T1) then
         if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
            return False;

         elsif Ekind (T1) in E_Access_Subprogram_Type
                           | E_Anonymous_Access_Subprogram_Type
         then
            return
              Subtype_Conformant
                (Designated_Type (T1),
                 Designated_Type (T2));
         else
            return
              Subtypes_Statically_Match
                (Designated_Type (T1),
                 Designated_Type (T2))
              and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
         end if;

      --  All other types definitely match

      else
         return True;
      end if;
   end Subtypes_Statically_Match;

   ----------
   -- Test --
   ----------

   function Test (Cond : Boolean) return Uint is
   begin
      if Cond then
         return Uint_1;
      else
         return Uint_0;
      end if;
   end Test;

   ---------------------
   -- Test_Comparison --
   ---------------------

   procedure Test_Comparison
     (Op           : Node_Id;
      Assume_Valid : Boolean;
      True_Result  : out Boolean;
      False_Result : out Boolean)
   is
      Left     : constant Node_Id   := Left_Opnd (Op);
      Left_Typ : constant Entity_Id := Etype (Left);
      Orig_Op  : constant Node_Id   := Original_Node (Op);

      procedure Replacement_Warning (Msg : String);
      --  Emit a warning on a comparison that can be replaced by '='

      -------------------------
      -- Replacement_Warning --
      -------------------------

      procedure Replacement_Warning (Msg : String) is
      begin
         if Constant_Condition_Warnings
           and then Comes_From_Source (Orig_Op)
           and then Is_Integer_Type (Left_Typ)
           and then not Error_Posted (Op)
           and then not Has_Warnings_Off (Left_Typ)
           and then not In_Instance
         then
            Error_Msg_N (Msg, Op);
         end if;
      end Replacement_Warning;

      --  Local variables

      Res : constant Compare_Result :=
              Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);

   --  Start of processing for Test_Comparison

   begin
      case N_Op_Compare (Nkind (Op)) is
         when N_Op_Eq =>
            True_Result  := Res = EQ;
            False_Result := Res = LT or else Res = GT or else Res = NE;

         when N_Op_Ge =>
            True_Result  := Res in Compare_GE;
            False_Result := Res = LT;

            if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
               Replacement_Warning
                 ("can never be greater than, could replace by ""'=""?c?");
            end if;

         when N_Op_Gt =>
            True_Result  := Res = GT;
            False_Result := Res in Compare_LE;

         when N_Op_Le =>
            True_Result  := Res in Compare_LE;
            False_Result := Res = GT;

            if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
               Replacement_Warning
                 ("can never be less than, could replace by ""'=""?c?");
            end if;

         when N_Op_Lt =>
            True_Result  := Res = LT;
            False_Result := Res in Compare_GE;

         when N_Op_Ne =>
            True_Result  := Res = NE or else Res = GT or else Res = LT;
            False_Result := Res = EQ;
      end case;
   end Test_Comparison;

   ---------------------------------
   -- Test_Expression_Is_Foldable --
   ---------------------------------

   --  One operand case

   procedure Test_Expression_Is_Foldable
     (N    : Node_Id;
      Op1  : Node_Id;
      Stat : out Boolean;
      Fold : out Boolean)
   is
   begin
      Stat := False;
      Fold := False;

      if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
         return;
      end if;

      --  If operand is Any_Type, just propagate to result and do not
      --  try to fold, this prevents cascaded errors.

      if Etype (Op1) = Any_Type then
         Set_Etype (N, Any_Type);
         return;

      --  If operand raises Constraint_Error, then replace node N with the
      --  raise Constraint_Error node, and we are obviously not foldable.
      --  Note that this replacement inherits the Is_Static_Expression flag
      --  from the operand.

      elsif Raises_Constraint_Error (Op1) then
         Rewrite_In_Raise_CE (N, Op1);
         return;

      --  If the operand is not static, then the result is not static, and
      --  all we have to do is to check the operand since it is now known
      --  to appear in a non-static context.

      elsif not Is_Static_Expression (Op1) then
         Check_Non_Static_Context (Op1);
         Fold := Compile_Time_Known_Value (Op1);
         return;

      --   An expression of a formal modular type is not foldable because
      --   the modulus is unknown.

      elsif Is_Modular_Integer_Type (Etype (Op1))
        and then Is_Generic_Type (Etype (Op1))
      then
         Check_Non_Static_Context (Op1);
         return;

      --  Here we have the case of an operand whose type is OK, which is
      --  static, and which does not raise Constraint_Error, we can fold.

      else
         Set_Is_Static_Expression (N);
         Fold := True;
         Stat := True;
      end if;
   end Test_Expression_Is_Foldable;

   --  Two operand case

   procedure Test_Expression_Is_Foldable
     (N        : Node_Id;
      Op1      : Node_Id;
      Op2      : Node_Id;
      Stat     : out Boolean;
      Fold     : out Boolean;
      CRT_Safe : Boolean := False)
   is
      Rstat : constant Boolean := Is_Static_Expression (Op1)
                                    and then
                                  Is_Static_Expression (Op2);

   begin
      Stat := False;
      Fold := False;

      --  Inhibit folding if -gnatd.f flag set

      if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
         return;
      end if;

      --  If either operand is Any_Type, just propagate to result and
      --  do not try to fold, this prevents cascaded errors.

      if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
         Set_Etype (N, Any_Type);
         return;

      --  If left operand raises Constraint_Error, then replace node N with the
      --  Raise_Constraint_Error node, and we are obviously not foldable.
      --  Is_Static_Expression is set from the two operands in the normal way,
      --  and we check the right operand if it is in a non-static context.

      elsif Raises_Constraint_Error (Op1) then
         if not Rstat then
            Check_Non_Static_Context (Op2);
         end if;

         Rewrite_In_Raise_CE (N, Op1);
         Set_Is_Static_Expression (N, Rstat);
         return;

      --  Similar processing for the case of the right operand. Note that we
      --  don't use this routine for the short-circuit case, so we do not have
      --  to worry about that special case here.

      elsif Raises_Constraint_Error (Op2) then
         if not Rstat then
            Check_Non_Static_Context (Op1);
         end if;

         Rewrite_In_Raise_CE (N, Op2);
         Set_Is_Static_Expression (N, Rstat);
         return;

      --  Exclude expressions of a generic modular type, as above

      elsif Is_Modular_Integer_Type (Etype (Op1))
        and then Is_Generic_Type (Etype (Op1))
      then
         Check_Non_Static_Context (Op1);
         return;

      --  If result is not static, then check non-static contexts on operands
      --  since one of them may be static and the other one may not be static.

      elsif not Rstat then
         Check_Non_Static_Context (Op1);
         Check_Non_Static_Context (Op2);

         if CRT_Safe then
            Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
                      and then CRT_Safe_Compile_Time_Known_Value (Op2);
         else
            Fold := Compile_Time_Known_Value (Op1)
                      and then Compile_Time_Known_Value (Op2);
         end if;

         if not Fold
           and then not Is_Modular_Integer_Type (Etype (N))
         then
            case Nkind (N) is
               when N_Op_And =>

                  --  (False and XXX) = (XXX and False) = False

                  Fold :=
                    (Compile_Time_Known_Value (Op1)
                       and then Is_False (Expr_Value (Op1))
                       and then Side_Effect_Free (Op2))
                      or else (Compile_Time_Known_Value (Op2)
                                and then Is_False (Expr_Value (Op2))
                                and then Side_Effect_Free (Op1));

               when N_Op_Or =>

                  --  (True and XXX) = (XXX and True) = True

                  Fold :=
                    (Compile_Time_Known_Value (Op1)
                       and then Is_True (Expr_Value (Op1))
                       and then Side_Effect_Free (Op2))
                      or else (Compile_Time_Known_Value (Op2)
                                and then Is_True (Expr_Value (Op2))
                                and then Side_Effect_Free (Op1));

               when others => null;
            end case;
         end if;

         return;

      --  Else result is static and foldable. Both operands are static, and
      --  neither raises Constraint_Error, so we can definitely fold.

      else
         Set_Is_Static_Expression (N);
         Fold := True;
         Stat := True;
         return;
      end if;
   end Test_Expression_Is_Foldable;

   -------------------
   -- Test_In_Range --
   -------------------

   function Test_In_Range
     (N            : Node_Id;
      Typ          : Entity_Id;
      Assume_Valid : Boolean;
      Fixed_Int    : Boolean;
      Int_Real     : Boolean) return Range_Membership
   is
      Val  : Uint;
      Valr : Ureal;

      pragma Warnings (Off, Assume_Valid);
      --  For now Assume_Valid is unreferenced since the current implementation
      --  always returns Unknown if N is not a compile-time-known value, but we
      --  keep the parameter to allow for future enhancements in which we try
      --  to get the information in the variable case as well.

   begin
      --  If an error was posted on expression, then return Unknown, we do not
      --  want cascaded errors based on some false analysis of a junk node.

      if Error_Posted (N) then
         return Unknown;

      --  Expression that raises Constraint_Error is an odd case. We certainly
      --  do not want to consider it to be in range. It might make sense to
      --  consider it always out of range, but this causes incorrect error
      --  messages about static expressions out of range. So we just return
      --  Unknown, which is always safe.

      elsif Raises_Constraint_Error (N) then
         return Unknown;

      --  Universal types have no range limits, so always in range

      elsif Is_Universal_Numeric_Type (Typ) then
         return In_Range;

      --  Never known if not scalar type. Don't know if this can actually
      --  happen, but our spec allows it, so we must check.

      elsif not Is_Scalar_Type (Typ) then
         return Unknown;

      --  Never known if this is a generic type, since the bounds of generic
      --  types are junk. Note that if we only checked for static expressions
      --  (instead of compile-time-known values) below, we would not need this
      --  check, because values of a generic type can never be static, but they
      --  can be known at compile time.

      elsif Is_Generic_Type (Typ) then
         return Unknown;

      --  Case of a known compile time value, where we can check if it is in
      --  the bounds of the given type.

      elsif Compile_Time_Known_Value (N) then
         declare
            Lo       : constant Node_Id := Type_Low_Bound (Typ);
            Hi       : constant Node_Id := Type_High_Bound (Typ);
            LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
            HB_Known : constant Boolean := Compile_Time_Known_Value (Hi);

         begin
            --  Fixed point types should be considered as such only if flag
            --  Fixed_Int is set to False.

            if Is_Floating_Point_Type (Typ)
              or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
              or else Int_Real
            then
               Valr := Expr_Value_R (N);

               if LB_Known and HB_Known then
                  if Valr >= Expr_Value_R (Lo)
                       and then
                     Valr <= Expr_Value_R (Hi)
                  then
                     return In_Range;
                  else
                     return Out_Of_Range;
                  end if;

               elsif (LB_Known and then Valr < Expr_Value_R (Lo))
                       or else
                     (HB_Known and then Valr > Expr_Value_R (Hi))
               then
                  return Out_Of_Range;

               else
                  return Unknown;
               end if;

            else
               Val := Expr_Value (N);

               if LB_Known and HB_Known then
                  if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
                  then
                     return In_Range;
                  else
                     return Out_Of_Range;
                  end if;

               elsif (LB_Known and then Val < Expr_Value (Lo))
                       or else
                     (HB_Known and then Val > Expr_Value (Hi))
               then
                  return Out_Of_Range;

               else
                  return Unknown;
               end if;
            end if;
         end;

      --  Here for value not known at compile time. Case of expression subtype
      --  is Typ or is a subtype of Typ, and we can assume expression is valid.
      --  In this case we know it is in range without knowing its value.

      elsif Assume_Valid
        and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
      then
         return In_Range;

      --  Another special case. For signed integer types, if the target type
      --  has Is_Known_Valid set, and the source type does not have a larger
      --  size, then the source value must be in range. We exclude biased
      --  types, because they bizarrely can generate out of range values.

      elsif Is_Signed_Integer_Type (Etype (N))
        and then Is_Known_Valid (Typ)
        and then Esize (Etype (N)) <= Esize (Typ)
        and then not Has_Biased_Representation (Etype (N))
      then
         return In_Range;

      --  For all other cases, result is unknown

      else
         return Unknown;
      end if;
   end Test_In_Range;

   --------------
   -- To_Bits --
   --------------

   procedure To_Bits (U : Uint; B : out Bits) is
   begin
      for J in 0 .. B'Last loop
         B (J) := (U / (2 ** J)) mod 2 /= 0;
      end loop;
   end To_Bits;

   --------------------
   -- Why_Not_Static --
   --------------------

   procedure Why_Not_Static (Expr : Node_Id) is
      N   : constant Node_Id := Original_Node (Expr);
      Typ : Entity_Id        := Empty;
      E   : Entity_Id;
      Alt : Node_Id;
      Exp : Node_Id;

      procedure Why_Not_Static_List (L : List_Id);
      --  A version that can be called on a list of expressions. Finds all
      --  non-static violations in any element of the list.

      -------------------------
      -- Why_Not_Static_List --
      -------------------------

      procedure Why_Not_Static_List (L : List_Id) is
         N : Node_Id;
      begin
         N := First (L);
         while Present (N) loop
            Why_Not_Static (N);
            Next (N);
         end loop;
      end Why_Not_Static_List;

   --  Start of processing for Why_Not_Static

   begin
      --  Ignore call on error or empty node

      if No (Expr) or else Nkind (Expr) = N_Error then
         return;
      end if;

      --  Preprocessing for sub expressions

      if Nkind (Expr) in N_Subexpr then

         --  Nothing to do if expression is static

         if Is_OK_Static_Expression (Expr) then
            return;
         end if;

         --  Test for Constraint_Error raised

         if Raises_Constraint_Error (Expr) then

            --  Special case membership to find out which piece to flag

            if Nkind (N) in N_Membership_Test then
               if Raises_Constraint_Error (Left_Opnd (N)) then
                  Why_Not_Static (Left_Opnd (N));
                  return;

               elsif Present (Right_Opnd (N))
                 and then Raises_Constraint_Error (Right_Opnd (N))
               then
                  Why_Not_Static (Right_Opnd (N));
                  return;

               else
                  pragma Assert (Present (Alternatives (N)));

                  Alt := First (Alternatives (N));
                  while Present (Alt) loop
                     if Raises_Constraint_Error (Alt) then
                        Why_Not_Static (Alt);
                        return;
                     else
                        Next (Alt);
                     end if;
                  end loop;
               end if;

            --  Special case a range to find out which bound to flag

            elsif Nkind (N) = N_Range then
               if Raises_Constraint_Error (Low_Bound (N)) then
                  Why_Not_Static (Low_Bound (N));
                  return;

               elsif Raises_Constraint_Error (High_Bound (N)) then
                  Why_Not_Static (High_Bound (N));
                  return;
               end if;

            --  Special case attribute to see which part to flag

            elsif Nkind (N) = N_Attribute_Reference then
               if Raises_Constraint_Error (Prefix (N)) then
                  Why_Not_Static (Prefix (N));
                  return;
               end if;

               Exp := First (Expressions (N));
               while Present (Exp) loop
                  if Raises_Constraint_Error (Exp) then
                     Why_Not_Static (Exp);
                     return;
                  end if;

                  Next (Exp);
               end loop;

            --  Special case a subtype name

            elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
               Error_Msg_NE
                 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
               return;
            end if;

            --  End of special cases

            Error_Msg_N
              ("!expression raises exception, cannot be static (RM 4.9(34))",
               N);
            return;
         end if;

         --  If no type, then something is pretty wrong, so ignore

         Typ := Etype (Expr);

         if No (Typ) then
            return;
         end if;

         --  Type must be scalar or string type (but allow Bignum, since this
         --  is really a scalar type from our point of view in this diagnosis).

         if not Is_Scalar_Type (Typ)
           and then not Is_String_Type (Typ)
           and then not Is_RTE (Typ, RE_Bignum)
         then
            Error_Msg_N
              ("!static expression must have scalar or string type " &
               "(RM 4.9(2))", N);
            return;
         end if;
      end if;

      --  If we got through those checks, test particular node kind

      case Nkind (N) is

         --  Entity name

         when N_Expanded_Name
            | N_Identifier
            | N_Operator_Symbol
         =>
            E := Entity (N);

            if Is_Named_Number (E) then
               null;

            elsif Ekind (E) = E_Constant then

               --  One case we can give a better message is when we have a
               --  string literal created by concatenating an aggregate with
               --  an others expression.

               Entity_Case : declare
                  CV : constant Node_Id := Constant_Value (E);
                  CO : constant Node_Id := Original_Node (CV);

                  function Is_Aggregate (N : Node_Id) return Boolean;
                  --  See if node N came from an others aggregate, if so
                  --  return True and set Error_Msg_Sloc to aggregate.

                  ------------------
                  -- Is_Aggregate --
                  ------------------

                  function Is_Aggregate (N : Node_Id) return Boolean is
                  begin
                     if Nkind (Original_Node (N)) = N_Aggregate then
                        Error_Msg_Sloc := Sloc (Original_Node (N));
                        return True;

                     elsif Is_Entity_Name (N)
                       and then Ekind (Entity (N)) = E_Constant
                       and then
                         Nkind (Original_Node (Constant_Value (Entity (N)))) =
                                                                  N_Aggregate
                     then
                        Error_Msg_Sloc :=
                          Sloc (Original_Node (Constant_Value (Entity (N))));
                        return True;

                     else
                        return False;
                     end if;
                  end Is_Aggregate;

               --  Start of processing for Entity_Case

               begin
                  if Is_Aggregate (CV)
                    or else (Nkind (CO) = N_Op_Concat
                              and then (Is_Aggregate (Left_Opnd (CO))
                                          or else
                                        Is_Aggregate (Right_Opnd (CO))))
                  then
                     Error_Msg_N ("!aggregate (#) is never static", N);

                  elsif No (CV) or else not Is_Static_Expression (CV) then
                     Error_Msg_NE
                       ("!& is not a static constant (RM 4.9(5))", N, E);
                  end if;
               end Entity_Case;

            elsif Is_Type (E) then
               Error_Msg_NE
                 ("!& is not a static subtype (RM 4.9(26))", N, E);

            elsif E /= Any_Id then
               Error_Msg_NE
                 ("!& is not static constant or named number "
                  & "(RM 4.9(5))", N, E);
            end if;

         --  Binary operator

         when N_Binary_Op
            | N_Membership_Test
            | N_Short_Circuit
         =>
            if Nkind (N) in N_Op_Shift then
               Error_Msg_N
                 ("!shift functions are never static (RM 4.9(6,18))", N);
            else
               Why_Not_Static (Left_Opnd (N));
               Why_Not_Static (Right_Opnd (N));
            end if;

         --  Unary operator

         when N_Unary_Op =>
            Why_Not_Static (Right_Opnd (N));

         --  Attribute reference

         when N_Attribute_Reference =>
            Why_Not_Static_List (Expressions (N));

            E := Etype (Prefix (N));

            if E = Standard_Void_Type then
               return;
            end if;

            --  Special case non-scalar'Size since this is a common error

            if Attribute_Name (N) = Name_Size then
               Error_Msg_N
                 ("!size attribute is only static for static scalar type "
                  & "(RM 4.9(7,8))", N);

            --  Flag array cases

            elsif Is_Array_Type (E) then
               if Attribute_Name (N)
                    not in Name_First | Name_Last | Name_Length
               then
                  Error_Msg_N
                    ("!static array attribute must be Length, First, or Last "
                     & "(RM 4.9(8))", N);

               --  Since we know the expression is not-static (we already
               --  tested for this, must mean array is not static).

               else
                  Error_Msg_N
                    ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
               end if;

               return;

            --  Special case generic types, since again this is a common source
            --  of confusion.

            elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
               Error_Msg_N
                 ("!attribute of generic type is never static "
                  & "(RM 4.9(7,8))", N);

            elsif Is_OK_Static_Subtype (E) then
               null;

            elsif Is_Scalar_Type (E) then
               Error_Msg_N
                 ("!prefix type for attribute is not static scalar subtype "
                  & "(RM 4.9(7))", N);

            else
               Error_Msg_N
                 ("!static attribute must apply to array/scalar type "
                  & "(RM 4.9(7,8))", N);
            end if;

         --  String literal

         when N_String_Literal =>
            Error_Msg_N
              ("!subtype of string literal is non-static (RM 4.9(4))", N);

         --  Explicit dereference

         when N_Explicit_Dereference =>
            Error_Msg_N
              ("!explicit dereference is never static (RM 4.9)", N);

         --  Function call

         when N_Function_Call =>
            Why_Not_Static_List (Parameter_Associations (N));

            --  Complain about non-static function call unless we have Bignum
            --  which means that the underlying expression is really some
            --  scalar arithmetic operation.

            if not Is_RTE (Typ, RE_Bignum) then
               Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
            end if;

         --  Parameter assocation (test actual parameter)

         when N_Parameter_Association =>
            Why_Not_Static (Explicit_Actual_Parameter (N));

         --  Indexed component

         when N_Indexed_Component =>
            Error_Msg_N ("!indexed component is never static (RM 4.9)", N);

         --  Procedure call

         when N_Procedure_Call_Statement =>
            Error_Msg_N ("!procedure call is never static (RM 4.9)", N);

         --  Qualified expression (test expression)

         when N_Qualified_Expression =>
            Why_Not_Static (Expression (N));

         --  Aggregate

         when N_Aggregate
            | N_Extension_Aggregate
         =>
            Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);

         --  Range

         when N_Range =>
            Why_Not_Static (Low_Bound (N));
            Why_Not_Static (High_Bound (N));

         --  Range constraint, test range expression

         when N_Range_Constraint =>
            Why_Not_Static (Range_Expression (N));

         --  Subtype indication, test constraint

         when N_Subtype_Indication =>
            Why_Not_Static (Constraint (N));

         --  Selected component

         when N_Selected_Component =>
            Error_Msg_N ("!selected component is never static (RM 4.9)", N);

         --  Slice

         when N_Slice =>
            Error_Msg_N ("!slice is never static (RM 4.9)", N);

         when N_Type_Conversion =>
            Why_Not_Static (Expression (N));

            if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
              or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
            then
               Error_Msg_N
                 ("!static conversion requires static scalar subtype result "
                  & "(RM 4.9(9))", N);
            end if;

         --  Unchecked type conversion

         when N_Unchecked_Type_Conversion =>
            Error_Msg_N
              ("!unchecked type conversion is never static (RM 4.9)", N);

         --  All other cases, no reason to give

         when others =>
            null;
      end case;
   end Why_Not_Static;

end Sem_Eval;