aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/sem_ch5.adb
blob: e6d34c30c0ba6fc1d45aa25e1059e58e6f420065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ C H 5                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2022, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Aspects;        use Aspects;
with Atree;          use Atree;
with Checks;         use Checks;
with Debug;          use Debug;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Errout;         use Errout;
with Expander;       use Expander;
with Exp_Ch6;        use Exp_Ch6;
with Exp_Tss;        use Exp_Tss;
with Exp_Util;       use Exp_Util;
with Freeze;         use Freeze;
with Ghost;          use Ghost;
with Lib;            use Lib;
with Lib.Xref;       use Lib.Xref;
with Namet;          use Namet;
with Nlists;         use Nlists;
with Nmake;          use Nmake;
with Opt;            use Opt;
with Sem;            use Sem;
with Sem_Aux;        use Sem_Aux;
with Sem_Case;       use Sem_Case;
with Sem_Ch3;        use Sem_Ch3;
with Sem_Ch6;        use Sem_Ch6;
with Sem_Ch8;        use Sem_Ch8;
with Sem_Dim;        use Sem_Dim;
with Sem_Disp;       use Sem_Disp;
with Sem_Elab;       use Sem_Elab;
with Sem_Eval;       use Sem_Eval;
with Sem_Res;        use Sem_Res;
with Sem_Type;       use Sem_Type;
with Sem_Util;       use Sem_Util;
with Sem_Warn;       use Sem_Warn;
with Snames;         use Snames;
with Stand;          use Stand;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Targparm;       use Targparm;
with Tbuild;         use Tbuild;
with Ttypes;         use Ttypes;
with Uintp;          use Uintp;

package body Sem_Ch5 is

   Current_Assignment : Node_Id := Empty;
   --  This variable holds the node for an assignment that contains target
   --  names. The corresponding flag has been set by the parser, and when
   --  set the analysis of the RHS must be done with all expansion disabled,
   --  because the assignment is reanalyzed after expansion has replaced all
   --  occurrences of the target name appropriately.

   Unblocked_Exit_Count : Nat := 0;
   --  This variable is used when processing if statements, case statements,
   --  and block statements. It counts the number of exit points that are not
   --  blocked by unconditional transfer instructions: for IF and CASE, these
   --  are the branches of the conditional; for a block, they are the statement
   --  sequence of the block, and the statement sequences of any exception
   --  handlers that are part of the block. When processing is complete, if
   --  this count is zero, it means that control cannot fall through the IF,
   --  CASE or block statement. This is used for the generation of warning
   --  messages. This variable is recursively saved on entry to processing the
   --  construct, and restored on exit.

   function Has_Sec_Stack_Call (N : Node_Id) return Boolean;
   --  N is the node for an arbitrary construct. This function searches the
   --  construct N to see if any expressions within it contain function
   --  calls that use the secondary stack, returning True if any such call
   --  is found, and False otherwise.

   procedure Preanalyze_Range (R_Copy : Node_Id);
   --  Determine expected type of range or domain of iteration of Ada 2012
   --  loop by analyzing separate copy. Do the analysis and resolution of the
   --  copy of the bound(s) with expansion disabled, to prevent the generation
   --  of finalization actions. This prevents memory leaks when the bounds
   --  contain calls to functions returning controlled arrays or when the
   --  domain of iteration is a container.

   ------------------------
   -- Analyze_Assignment --
   ------------------------

   --  WARNING: This routine manages Ghost regions. Return statements must be
   --  replaced by gotos which jump to the end of the routine and restore the
   --  Ghost mode.

   procedure Analyze_Assignment (N : Node_Id) is
      Lhs : constant Node_Id := Name (N);
      Rhs : Node_Id          := Expression (N);

      procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
      --  N is the node for the left hand side of an assignment, and it is not
      --  a variable. This routine issues an appropriate diagnostic.

      function Is_Protected_Part_Of_Constituent
        (Nod : Node_Id) return Boolean;
      --  Determine whether arbitrary node Nod denotes a Part_Of constituent of
      --  a single protected type.

      procedure Kill_Lhs;
      --  This is called to kill current value settings of a simple variable
      --  on the left hand side. We call it if we find any error in analyzing
      --  the assignment, and at the end of processing before setting any new
      --  current values in place.

      procedure Set_Assignment_Type
        (Opnd      : Node_Id;
         Opnd_Type : in out Entity_Id);
      --  Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
      --  nominal subtype. This procedure is used to deal with cases where the
      --  nominal subtype must be replaced by the actual subtype.

      procedure Transform_BIP_Assignment (Typ : Entity_Id);
      function Should_Transform_BIP_Assignment
        (Typ : Entity_Id) return Boolean;
      --  If the right-hand side of an assignment statement is a build-in-place
      --  call we cannot build in place, so we insert a temp initialized with
      --  the call, and transform the assignment statement to copy the temp.
      --  Transform_BIP_Assignment does the transformation, and
      --  Should_Transform_BIP_Assignment determines whether we should.
      --  The same goes for qualified expressions and conversions whose
      --  operand is such a call.
      --
      --  This is only for nonlimited types; assignment statements are illegal
      --  for limited types, but are generated internally for aggregates and
      --  init procs. These limited-type are not really assignment statements
      --  -- conceptually, they are initializations, so should not be
      --  transformed.
      --
      --  Similarly, for nonlimited types, aggregates and init procs generate
      --  assignment statements that are really initializations. These are
      --  marked No_Ctrl_Actions.

      function Within_Function return Boolean;
      --  Determine whether the current scope is a function or appears within
      --  one.

      -------------------------------
      -- Diagnose_Non_Variable_Lhs --
      -------------------------------

      procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
      begin
         --  Not worth posting another error if left hand side already flagged
         --  as being illegal in some respect.

         if Error_Posted (N) then
            return;

         --  Some special bad cases of entity names

         elsif Is_Entity_Name (N) then
            declare
               Ent : constant Entity_Id := Entity (N);

            begin
               if Ekind (Ent) = E_Loop_Parameter
                 or else Is_Loop_Parameter (Ent)
               then
                  Error_Msg_N ("assignment to loop parameter not allowed", N);
                  return;

               elsif Ekind (Ent) = E_In_Parameter then
                  Error_Msg_N
                    ("assignment to IN mode parameter not allowed", N);
                  return;

               --  Renamings of protected private components are turned into
               --  constants when compiling a protected function. In the case
               --  of single protected types, the private component appears
               --  directly.

               elsif (Is_Prival (Ent) and then Within_Function)
                   or else Is_Protected_Component (Ent)
               then
                  Error_Msg_N
                    ("protected function cannot modify its protected object",
                     N);
                  return;
               end if;
            end;

         --  For indexed components, test prefix if it is in array. We do not
         --  want to recurse for cases where the prefix is a pointer, since we
         --  may get a message confusing the pointer and what it references.

         elsif Nkind (N) = N_Indexed_Component
           and then Is_Array_Type (Etype (Prefix (N)))
         then
            Diagnose_Non_Variable_Lhs (Prefix (N));
            return;

         --  Another special case for assignment to discriminant

         elsif Nkind (N) = N_Selected_Component then
            if Present (Entity (Selector_Name (N)))
              and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
            then
               Error_Msg_N ("assignment to discriminant not allowed", N);
               return;

            --  For selection from record, diagnose prefix, but note that again
            --  we only do this for a record, not e.g. for a pointer.

            elsif Is_Record_Type (Etype (Prefix (N))) then
               Diagnose_Non_Variable_Lhs (Prefix (N));
               return;
            end if;
         end if;

         --  If we fall through, we have no special message to issue

         Error_Msg_N ("left hand side of assignment must be a variable", N);
      end Diagnose_Non_Variable_Lhs;

      --------------------------------------
      -- Is_Protected_Part_Of_Constituent --
      --------------------------------------

      function Is_Protected_Part_Of_Constituent
        (Nod : Node_Id) return Boolean
      is
         Encap_Id : Entity_Id;
         Var_Id   : Entity_Id;

      begin
         --  Abstract states and variables may act as Part_Of constituents of
         --  single protected types, however only variables can be modified by
         --  an assignment.

         if Is_Entity_Name (Nod) then
            Var_Id := Entity (Nod);

            if Present (Var_Id) and then Ekind (Var_Id) = E_Variable then
               Encap_Id := Encapsulating_State (Var_Id);

               --  To qualify, the node must denote a reference to a variable
               --  whose encapsulating state is a single protected object.

               return
                 Present (Encap_Id)
                   and then Is_Single_Protected_Object (Encap_Id);
            end if;
         end if;

         return False;
      end Is_Protected_Part_Of_Constituent;

      --------------
      -- Kill_Lhs --
      --------------

      procedure Kill_Lhs is
      begin
         if Is_Entity_Name (Lhs) then
            declare
               Ent : constant Entity_Id := Entity (Lhs);
            begin
               if Present (Ent) then
                  Kill_Current_Values (Ent);
               end if;
            end;
         end if;
      end Kill_Lhs;

      -------------------------
      -- Set_Assignment_Type --
      -------------------------

      procedure Set_Assignment_Type
        (Opnd      : Node_Id;
         Opnd_Type : in out Entity_Id)
      is
         Decl : Node_Id;

      begin
         Require_Entity (Opnd);

         --  If the assignment operand is an in-out or out parameter, then we
         --  get the actual subtype (needed for the unconstrained case). If the
         --  operand is the actual in an entry declaration, then within the
         --  accept statement it is replaced with a local renaming, which may
         --  also have an actual subtype.

         if Is_Entity_Name (Opnd)
           and then (Ekind (Entity (Opnd)) in E_Out_Parameter
                                            | E_In_Out_Parameter
                                            | E_Generic_In_Out_Parameter
                      or else
                        (Ekind (Entity (Opnd)) = E_Variable
                          and then Nkind (Parent (Entity (Opnd))) =
                                     N_Object_Renaming_Declaration
                          and then Nkind (Parent (Parent (Entity (Opnd)))) =
                                     N_Accept_Statement))
         then
            Opnd_Type := Get_Actual_Subtype (Opnd);

         --  If assignment operand is a component reference, then we get the
         --  actual subtype of the component for the unconstrained case.

         elsif Nkind (Opnd) in N_Selected_Component | N_Explicit_Dereference
           and then not Is_Unchecked_Union (Opnd_Type)
         then
            Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);

            if Present (Decl) then
               Insert_Action (N, Decl);
               Mark_Rewrite_Insertion (Decl);
               Analyze (Decl);
               Opnd_Type := Defining_Identifier (Decl);
               Set_Etype (Opnd, Opnd_Type);
               Freeze_Itype (Opnd_Type, N);

            elsif Is_Constrained (Etype (Opnd)) then
               Opnd_Type := Etype (Opnd);
            end if;

         --  For slice, use the constrained subtype created for the slice

         elsif Nkind (Opnd) = N_Slice then
            Opnd_Type := Etype (Opnd);
         end if;
      end Set_Assignment_Type;

      -------------------------------------
      -- Should_Transform_BIP_Assignment --
      -------------------------------------

      function Should_Transform_BIP_Assignment
        (Typ : Entity_Id) return Boolean
      is
      begin
         if Expander_Active
           and then not Is_Limited_View (Typ)
           and then Is_Build_In_Place_Result_Type (Typ)
           and then not No_Ctrl_Actions (N)
         then
            --  This function is called early, before name resolution is
            --  complete, so we have to deal with things that might turn into
            --  function calls later. N_Function_Call and N_Op nodes are the
            --  obvious case. An N_Identifier or N_Expanded_Name is a
            --  parameterless function call if it denotes a function.
            --  Finally, an attribute reference can be a function call.

            declare
               Unqual_Rhs : constant Node_Id := Unqual_Conv (Rhs);
            begin
               case Nkind (Unqual_Rhs) is
                  when N_Function_Call
                     | N_Op
                  =>
                     return True;

                  when N_Expanded_Name
                     | N_Identifier
                  =>
                     return
                       Ekind (Entity (Unqual_Rhs)) in E_Function | E_Operator;

                  --  T'Input will turn into a call whose result type is T

                  when N_Attribute_Reference =>
                     return Attribute_Name (Unqual_Rhs) = Name_Input;

                  when others =>
                     return False;
               end case;
            end;
         else
            return False;
         end if;
      end Should_Transform_BIP_Assignment;

      ------------------------------
      -- Transform_BIP_Assignment --
      ------------------------------

      procedure Transform_BIP_Assignment (Typ : Entity_Id) is

         --  Tranform "X : [constant] T := F (...);" into:
         --
         --     Temp : constant T := F (...);
         --     X := Temp;

         Loc      : constant Source_Ptr := Sloc (N);
         Def_Id   : constant Entity_Id  := Make_Temporary (Loc, 'Y', Rhs);
         Obj_Decl : constant Node_Id    :=
                      Make_Object_Declaration (Loc,
                        Defining_Identifier => Def_Id,
                        Constant_Present    => True,
                        Object_Definition   => New_Occurrence_Of (Typ, Loc),
                        Expression          => Rhs,
                        Has_Init_Expression => True);

      begin
         Set_Etype (Def_Id, Typ);
         Set_Expression (N, New_Occurrence_Of (Def_Id, Loc));

         --  At this point, Rhs is no longer equal to Expression (N), so:

         Rhs := Expression (N);

         Insert_Action (N, Obj_Decl);
      end Transform_BIP_Assignment;

      ---------------------
      -- Within_Function --
      ---------------------

      function Within_Function return Boolean is
         Scop_Id : constant Entity_Id := Current_Scope;

      begin
         if Ekind (Scop_Id) = E_Function then
            return True;

         elsif Ekind (Enclosing_Dynamic_Scope (Scop_Id)) = E_Function then
            return True;
         end if;

         return False;
      end Within_Function;

      --  Local variables

      Saved_GM  : constant Ghost_Mode_Type := Ghost_Mode;
      Saved_IGR : constant Node_Id         := Ignored_Ghost_Region;
      --  Save the Ghost-related attributes to restore on exit

      T1 : Entity_Id;
      T2 : Entity_Id;

      Save_Full_Analysis : Boolean := False;
      --  Force initialization to facilitate static analysis

   --  Start of processing for Analyze_Assignment

   begin
      Mark_Coextensions (N, Rhs);

      --  Preserve relevant elaboration-related attributes of the context which
      --  are no longer available or very expensive to recompute once analysis,
      --  resolution, and expansion are over.

      Mark_Elaboration_Attributes
        (N_Id   => N,
         Checks => True,
         Modes  => True);

      --  An assignment statement is Ghost when the left hand side denotes a
      --  Ghost entity. Set the mode now to ensure that any nodes generated
      --  during analysis and expansion are properly marked as Ghost.

      Mark_And_Set_Ghost_Assignment (N);

      if Has_Target_Names (N) then
         pragma Assert (No (Current_Assignment));
         Current_Assignment := N;
         Expander_Mode_Save_And_Set (False);
         Save_Full_Analysis := Full_Analysis;
         Full_Analysis      := False;
      end if;

      Analyze (Lhs);
      Analyze (Rhs);

      --  Ensure that we never do an assignment on a variable marked as
      --  Is_Safe_To_Reevaluate.

      pragma Assert
        (not Is_Entity_Name (Lhs)
          or else Ekind (Entity (Lhs)) /= E_Variable
          or else not Is_Safe_To_Reevaluate (Entity (Lhs)));

      --  Start type analysis for assignment

      T1 := Etype (Lhs);

      --  In the most general case, both Lhs and Rhs can be overloaded, and we
      --  must compute the intersection of the possible types on each side.

      if Is_Overloaded (Lhs) then
         declare
            I  : Interp_Index;
            It : Interp;

         begin
            T1 := Any_Type;
            Get_First_Interp (Lhs, I, It);

            while Present (It.Typ) loop

               --  An indexed component with generalized indexing is always
               --  overloaded with the corresponding dereference. Discard the
               --  interpretation that yields a reference type, which is not
               --  assignable.

               if Nkind (Lhs) = N_Indexed_Component
                 and then Present (Generalized_Indexing (Lhs))
                 and then Has_Implicit_Dereference (It.Typ)
               then
                  null;

               --  This may be a call to a parameterless function through an
               --  implicit dereference, so discard interpretation as well.

               elsif Is_Entity_Name (Lhs)
                 and then Has_Implicit_Dereference (It.Typ)
               then
                  null;

               elsif Has_Compatible_Type (Rhs, It.Typ) then
                  if T1 = Any_Type then
                     T1 := It.Typ;
                  else
                     --  An explicit dereference is overloaded if the prefix
                     --  is. Try to remove the ambiguity on the prefix, the
                     --  error will be posted there if the ambiguity is real.

                     if Nkind (Lhs) = N_Explicit_Dereference then
                        declare
                           PI    : Interp_Index;
                           PI1   : Interp_Index := 0;
                           PIt   : Interp;
                           Found : Boolean;

                        begin
                           Found := False;
                           Get_First_Interp (Prefix (Lhs), PI, PIt);

                           while Present (PIt.Typ) loop
                              if Is_Access_Type (PIt.Typ)
                                and then Has_Compatible_Type
                                           (Rhs, Designated_Type (PIt.Typ))
                              then
                                 if Found then
                                    PIt :=
                                      Disambiguate (Prefix (Lhs),
                                        PI1, PI, Any_Type);

                                    if PIt = No_Interp then
                                       Error_Msg_N
                                         ("ambiguous left-hand side in "
                                          & "assignment", Lhs);
                                       exit;
                                    else
                                       Resolve (Prefix (Lhs), PIt.Typ);
                                    end if;

                                    exit;
                                 else
                                    Found := True;
                                    PI1 := PI;
                                 end if;
                              end if;

                              Get_Next_Interp (PI, PIt);
                           end loop;
                        end;

                     else
                        Error_Msg_N
                          ("ambiguous left-hand side in assignment", Lhs);
                        exit;
                     end if;
                  end if;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;

         if T1 = Any_Type then
            Error_Msg_N
              ("no valid types for left-hand side for assignment", Lhs);
            Kill_Lhs;
            goto Leave;
         end if;
      end if;

      --  Deal with build-in-place calls for nonlimited types. We don't do this
      --  later, because resolving the rhs tranforms it incorrectly for build-
      --  in-place.

      if Should_Transform_BIP_Assignment (Typ => T1) then

         --  In certain cases involving user-defined concatenation operators,
         --  we need to resolve the right-hand side before transforming the
         --  assignment.

         case Nkind (Unqual_Conv (Rhs)) is
            when N_Function_Call =>
               declare
                  Actual     : Node_Id :=
                    First (Parameter_Associations (Unqual_Conv (Rhs)));
                  Actual_Exp : Node_Id;

               begin
                  while Present (Actual) loop
                     if Nkind (Actual) = N_Parameter_Association then
                        Actual_Exp := Explicit_Actual_Parameter (Actual);
                     else
                        Actual_Exp := Actual;
                     end if;

                     if Nkind (Actual_Exp) = N_Op_Concat then
                        Resolve (Rhs, T1);
                        exit;
                     end if;

                     Next (Actual);
                  end loop;
               end;

            when N_Attribute_Reference
               | N_Expanded_Name
               | N_Identifier
               | N_Op
            =>
               null;

            when others =>
               raise Program_Error;
         end case;

         Transform_BIP_Assignment (Typ => T1);
      end if;

      pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));

      --  The resulting assignment type is T1, so now we will resolve the left
      --  hand side of the assignment using this determined type.

      Resolve (Lhs, T1);

      --  Cases where Lhs is not a variable. In an instance or an inlined body
      --  no need for further check because assignment was legal in template.

      if In_Inlined_Body then
         null;

      elsif not Is_Variable (Lhs) then

         --  Ada 2005 (AI-327): Check assignment to the attribute Priority of a
         --  protected object.

         declare
            Ent : Entity_Id;
            S   : Entity_Id;

         begin
            if Ada_Version >= Ada_2005 then

               --  Handle chains of renamings

               Ent := Lhs;
               while Nkind (Ent) in N_Has_Entity
                 and then Present (Entity (Ent))
                 and then Is_Object (Entity (Ent))
                 and then Present (Renamed_Object (Entity (Ent)))
               loop
                  Ent := Renamed_Object (Entity (Ent));
               end loop;

               if (Nkind (Ent) = N_Attribute_Reference
                    and then Attribute_Name (Ent) = Name_Priority)

                  --  Renamings of the attribute Priority applied to protected
                  --  objects have been previously expanded into calls to the
                  --  Get_Ceiling run-time subprogram.

                 or else Is_Expanded_Priority_Attribute (Ent)
               then
                  --  The enclosing subprogram cannot be a protected function

                  S := Current_Scope;
                  while not (Is_Subprogram (S)
                              and then Convention (S) = Convention_Protected)
                     and then S /= Standard_Standard
                  loop
                     S := Scope (S);
                  end loop;

                  if Ekind (S) = E_Function
                    and then Convention (S) = Convention_Protected
                  then
                     Error_Msg_N
                       ("protected function cannot modify its protected " &
                        "object",
                        Lhs);
                  end if;

                  --  Changes of the ceiling priority of the protected object
                  --  are only effective if the Ceiling_Locking policy is in
                  --  effect (AARM D.5.2 (5/2)).

                  if Locking_Policy /= 'C' then
                     Error_Msg_N
                       ("assignment to the attribute PRIORITY has no effect??",
                        Lhs);
                     Error_Msg_N
                       ("\since no Locking_Policy has been specified??", Lhs);
                  end if;

                  goto Leave;
               end if;
            end if;
         end;

         Diagnose_Non_Variable_Lhs (Lhs);
         goto Leave;

      --  Error of assigning to limited type. We do however allow this in
      --  certain cases where the front end generates the assignments.

      elsif Is_Limited_Type (T1)
        and then not Assignment_OK (Lhs)
        and then not Assignment_OK (Original_Node (Lhs))
      then
         --  CPP constructors can only be called in declarations

         if Is_CPP_Constructor_Call (Rhs) then
            Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
         else
            Error_Msg_N
              ("left hand of assignment must not be limited type", Lhs);
            Explain_Limited_Type (T1, Lhs);
         end if;

         goto Leave;

      --  A class-wide type may be a limited view. This illegal case is not
      --  caught by previous checks.

      elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
         Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
         goto Leave;

      --  Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
      --  abstract. This is only checked when the assignment Comes_From_Source,
      --  because in some cases the expander generates such assignments (such
      --  in the _assign operation for an abstract type).

      elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
         Error_Msg_N
           ("target of assignment operation must not be abstract", Lhs);
      end if;

      --  Variables which are Part_Of constituents of single protected types
      --  behave in similar fashion to protected components. Such variables
      --  cannot be modified by protected functions.

      if Is_Protected_Part_Of_Constituent (Lhs) and then Within_Function then
         Error_Msg_N
           ("protected function cannot modify its protected object", Lhs);
      end if;

      --  Resolution may have updated the subtype, in case the left-hand side
      --  is a private protected component. Use the correct subtype to avoid
      --  scoping issues in the back-end.

      T1 := Etype (Lhs);

      --  Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
      --  type. For example:

      --    limited with P;
      --    package Pkg is
      --      type Acc is access P.T;
      --    end Pkg;

      --    with Pkg; use Acc;
      --    procedure Example is
      --       A, B : Acc;
      --    begin
      --       A.all := B.all;  -- ERROR
      --    end Example;

      if Nkind (Lhs) = N_Explicit_Dereference
        and then Ekind (T1) = E_Incomplete_Type
      then
         Error_Msg_N ("invalid use of incomplete type", Lhs);
         Kill_Lhs;
         goto Leave;
      end if;

      --  Now we can complete the resolution of the right hand side

      Set_Assignment_Type (Lhs, T1);

      --  If the target of the assignment is an entity of a mutable type and
      --  the expression is a conditional expression, its alternatives can be
      --  of different subtypes of the nominal type of the LHS, so they must be
      --  resolved with the base type, given that their subtype may differ from
      --  that of the target mutable object.

      if Is_Entity_Name (Lhs)
        and then Is_Assignable (Entity (Lhs))
        and then Is_Composite_Type (T1)
        and then not Is_Constrained (Etype (Entity (Lhs)))
        and then Nkind (Rhs) in N_If_Expression | N_Case_Expression
      then
         Resolve (Rhs, Base_Type (T1));

      else
         Resolve (Rhs, T1);
      end if;

      --  This is the point at which we check for an unset reference

      Check_Unset_Reference (Rhs);
      Check_Unprotected_Access (Lhs, Rhs);

      --  Remaining steps are skipped if Rhs was syntactically in error

      if Rhs = Error then
         Kill_Lhs;
         goto Leave;
      end if;

      T2 := Etype (Rhs);

      if not Covers (T1, T2) then
         Wrong_Type (Rhs, Etype (Lhs));
         Kill_Lhs;
         goto Leave;
      end if;

      --  Ada 2005 (AI-326): In case of explicit dereference of incomplete
      --  types, use the non-limited view if available

      if Nkind (Rhs) = N_Explicit_Dereference
        and then Is_Tagged_Type (T2)
        and then Has_Non_Limited_View (T2)
      then
         T2 := Non_Limited_View (T2);
      end if;

      Set_Assignment_Type (Rhs, T2);

      if Total_Errors_Detected /= 0 then
         if No (T1) then
            T1 := Any_Type;
         end if;

         if No (T2) then
            T2 := Any_Type;
         end if;
      end if;

      if T1 = Any_Type or else T2 = Any_Type then
         Kill_Lhs;
         goto Leave;
      end if;

      --  If the rhs is class-wide or dynamically tagged, then require the lhs
      --  to be class-wide. The case where the rhs is a dynamically tagged call
      --  to a dispatching operation with a controlling access result is
      --  excluded from this check, since the target has an access type (and
      --  no tag propagation occurs in that case).

      if (Is_Class_Wide_Type (T2)
           or else (Is_Dynamically_Tagged (Rhs)
                     and then not Is_Access_Type (T1)))
        and then not Is_Class_Wide_Type (T1)
      then
         Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);

      elsif Is_Class_Wide_Type (T1)
        and then not Is_Class_Wide_Type (T2)
        and then not Is_Tag_Indeterminate (Rhs)
        and then not Is_Dynamically_Tagged (Rhs)
      then
         Error_Msg_N ("dynamically tagged expression required!", Rhs);
      end if;

      --  Propagate the tag from a class-wide target to the rhs when the rhs
      --  is a tag-indeterminate call.

      if Is_Tag_Indeterminate (Rhs) then
         if Is_Class_Wide_Type (T1) then
            Propagate_Tag (Lhs, Rhs);

         elsif Nkind (Rhs) = N_Function_Call
           and then Is_Entity_Name (Name (Rhs))
           and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
         then
            Error_Msg_N
              ("call to abstract function must be dispatching", Name (Rhs));

         elsif Nkind (Rhs) = N_Qualified_Expression
           and then Nkind (Expression (Rhs)) = N_Function_Call
              and then Is_Entity_Name (Name (Expression (Rhs)))
              and then
                Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
         then
            Error_Msg_N
              ("call to abstract function must be dispatching",
                Name (Expression (Rhs)));
         end if;
      end if;

      --  Ada 2005 (AI-385): When the lhs type is an anonymous access type,
      --  apply an implicit conversion of the rhs to that type to force
      --  appropriate static and run-time accessibility checks. This applies
      --  as well to anonymous access-to-subprogram types that are component
      --  subtypes or formal parameters.

      if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
         if Is_Local_Anonymous_Access (T1)
           or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type

           --  Handle assignment to an Ada 2012 stand-alone object
           --  of an anonymous access type.

           or else (Ekind (T1) = E_Anonymous_Access_Type
                     and then Nkind (Associated_Node_For_Itype (T1)) =
                                                       N_Object_Declaration)

         then
            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
            Analyze_And_Resolve (Rhs, T1);
         end if;
      end if;

      --  Ada 2005 (AI-231): Assignment to not null variable

      if Ada_Version >= Ada_2005
        and then Can_Never_Be_Null (T1)
        and then not Assignment_OK (Lhs)
      then
         --  Case where we know the right hand side is null

         if Known_Null (Rhs) then
            Apply_Compile_Time_Constraint_Error
              (N      => Rhs,
               Msg    =>
                 "(Ada 2005) NULL not allowed in null-excluding objects??",
               Reason => CE_Null_Not_Allowed);

            --  We still mark this as a possible modification, that's necessary
            --  to reset Is_True_Constant, and desirable for xref purposes.

            Note_Possible_Modification (Lhs, Sure => True);
            goto Leave;

         --  If we know the right hand side is non-null, then we convert to the
         --  target type, since we don't need a run time check in that case.

         elsif not Can_Never_Be_Null (T2) then
            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
            Analyze_And_Resolve (Rhs, T1);
         end if;
      end if;

      if Is_Scalar_Type (T1) then
         declare

            function Omit_Range_Check_For_Streaming return Boolean;
            --  Return True if this assignment statement is the expansion of
            --  a Some_Scalar_Type'Read procedure call such that all conditions
            --  of 13.3.2(35)'s "no check is made" rule are met.

            ------------------------------------
            -- Omit_Range_Check_For_Streaming --
            ------------------------------------

            function Omit_Range_Check_For_Streaming return Boolean is
            begin
               --  Have we got an implicitly generated assignment to a
               --  component of a composite object? If not, return False.

               if Comes_From_Source (N)
                 or else Serious_Errors_Detected > 0
                 or else Nkind (Lhs)
                           not in N_Selected_Component | N_Indexed_Component
               then
                  return False;
               end if;

               declare
                  Pref : constant Node_Id := Prefix (Lhs);
               begin
                  --  Are we in the implicitly-defined Read subprogram
                  --  for a composite type, reading the value of a scalar
                  --  component from the stream? If not, return False.

                  if Nkind (Pref) /= N_Identifier
                    or else not Is_TSS (Scope (Entity (Pref)), TSS_Stream_Read)
                  then
                     return False;
                  end if;

                  --  Return False if Default_Value or Default_Component_Value
                  --  aspect applies.

                  if Has_Default_Aspect (Etype (Lhs))
                    or else Has_Default_Aspect (Etype (Pref))
                  then
                     return False;

                  --  Are we assigning to a record component (as opposed to
                  --  an array component)?

                  elsif Nkind (Lhs) = N_Selected_Component then

                     --  Are we assigning to a nondiscriminant component
                     --  that lacks a default initial value expression?
                     --  If so, return True.

                     declare
                        Comp_Id : constant Entity_Id :=
                          Original_Record_Component
                            (Entity (Selector_Name (Lhs)));
                     begin
                        if Ekind (Comp_Id) = E_Component
                          and then Nkind (Parent (Comp_Id))
                                     = N_Component_Declaration
                          and then
                            not Present (Expression (Parent (Comp_Id)))
                        then
                           return True;
                        end if;
                        return False;
                     end;

                  --  We are assigning to a component of an array
                  --  (and we tested for both Default_Value and
                  --  Default_Component_Value above), so return True.

                  else
                     pragma Assert (Nkind (Lhs) = N_Indexed_Component);
                     return True;
                  end if;
               end;
            end Omit_Range_Check_For_Streaming;

         begin
            if not Omit_Range_Check_For_Streaming then
               Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
            end if;
         end;

      --  For array types, verify that lengths match. If the right hand side
      --  is a function call that has been inlined, the assignment has been
      --  rewritten as a block, and the constraint check will be applied to the
      --  assignment within the block.

      elsif Is_Array_Type (T1)
        and then (Nkind (Rhs) /= N_Type_Conversion
                   or else Is_Constrained (Etype (Rhs)))
        and then (Nkind (Rhs) /= N_Function_Call
                   or else Nkind (N) /= N_Block_Statement)
      then
         --  Assignment verifies that the length of the Lhs and Rhs are equal,
         --  but of course the indexes do not have to match. If the right-hand
         --  side is a type conversion to an unconstrained type, a length check
         --  is performed on the expression itself during expansion. In rare
         --  cases, the redundant length check is computed on an index type
         --  with a different representation, triggering incorrect code in the
         --  back end.

         Apply_Length_Check_On_Assignment (Rhs, Etype (Lhs), Lhs);

      else
         --  Discriminant checks are applied in the course of expansion

         null;
      end if;

      --  Note: modifications of the Lhs may only be recorded after
      --  checks have been applied.

      Note_Possible_Modification (Lhs, Sure => True);

      --  ??? a real accessibility check is needed when ???

      --  Post warning for redundant assignment or variable to itself

      if Warn_On_Redundant_Constructs

         --  We only warn for source constructs

         and then Comes_From_Source (N)

         --  Where the object is the same on both sides

         and then Same_Object (Lhs, Rhs)

         --  But exclude the case where the right side was an operation that
         --  got rewritten (e.g. JUNK + K, where K was known to be zero). We
         --  don't want to warn in such a case, since it is reasonable to write
         --  such expressions especially when K is defined symbolically in some
         --  other package.

        and then Nkind (Original_Node (Rhs)) not in N_Op
      then
         if Nkind (Lhs) in N_Has_Entity then
            Error_Msg_NE -- CODEFIX
              ("?r?useless assignment of & to itself!", N, Entity (Lhs));
         else
            Error_Msg_N -- CODEFIX
              ("?r?useless assignment of object to itself!", N);
         end if;
      end if;

      --  Check for non-allowed composite assignment

      if not Support_Composite_Assign_On_Target
        and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
        and then (not Has_Size_Clause (T1)
                   or else Esize (T1) > Ttypes.System_Max_Integer_Size)
      then
         Error_Msg_CRT ("composite assignment", N);
      end if;

      --  Check elaboration warning for left side if not in elab code

      if Legacy_Elaboration_Checks
        and not In_Subprogram_Or_Concurrent_Unit
      then
         Check_Elab_Assign (Lhs);
      end if;

      --  Save the scenario for later examination by the ABE Processing phase

      Record_Elaboration_Scenario (N);

      --  Set Referenced_As_LHS if appropriate. We only set this flag if the
      --  assignment is a source assignment in the extended main source unit.
      --  We are not interested in any reference information outside this
      --  context, or in compiler generated assignment statements.

      if Comes_From_Source (N)
        and then In_Extended_Main_Source_Unit (Lhs)
      then
         Set_Referenced_Modified (Lhs, Out_Param => False);
      end if;

      --  RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
      --  one of its ancestors) requires an invariant check. Apply check only
      --  if expression comes from source, otherwise it will be applied when
      --  value is assigned to source entity. This is not done in GNATprove
      --  mode, as GNATprove handles invariant checks itself.

      if Nkind (Lhs) = N_Type_Conversion
        and then Has_Invariants (Etype (Expression (Lhs)))
        and then Comes_From_Source (Expression (Lhs))
        and then not GNATprove_Mode
      then
         Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
      end if;

      --  Final step. If left side is an entity, then we may be able to reset
      --  the current tracked values to new safe values. We only have something
      --  to do if the left side is an entity name, and expansion has not
      --  modified the node into something other than an assignment, and of
      --  course we only capture values if it is safe to do so.

      if Is_Entity_Name (Lhs)
        and then Nkind (N) = N_Assignment_Statement
      then
         declare
            Ent : constant Entity_Id := Entity (Lhs);

         begin
            if Safe_To_Capture_Value (N, Ent) then

               --  If simple variable on left side, warn if this assignment
               --  blots out another one (rendering it useless). We only do
               --  this for source assignments, otherwise we can generate bogus
               --  warnings when an assignment is rewritten as another
               --  assignment, and gets tied up with itself.

               --  We also omit the warning if the RHS includes target names,
               --  that is to say the Ada 2022 "@" that denotes an instance of
               --  the LHS, which indicates that the current value is being
               --  used. Note that this implicit reference to the entity on
               --  the RHS is not treated as a source reference.

               --  There may have been a previous reference to a component of
               --  the variable, which in general removes the Last_Assignment
               --  field of the variable to indicate a relevant use of the
               --  previous assignment. However, if the assignment is to a
               --  subcomponent the reference may not have registered, because
               --  it is not possible to determine whether the context is an
               --  assignment. In those cases we generate a Deferred_Reference,
               --  to be used at the end of compilation to generate the right
               --  kind of reference, and we suppress a potential warning for
               --  a useless assignment, which might be premature. This may
               --  lose a warning in rare cases, but seems preferable to a
               --  misleading warning.

               if Warn_On_Modified_Unread
                 and then Is_Assignable (Ent)
                 and then Comes_From_Source (N)
                 and then In_Extended_Main_Source_Unit (Ent)
                 and then not Has_Deferred_Reference (Ent)
                 and then not Has_Target_Names (N)
               then
                  Warn_On_Useless_Assignment (Ent, N);
               end if;

               --  If we are assigning an access type and the left side is an
               --  entity, then make sure that the Is_Known_[Non_]Null flags
               --  properly reflect the state of the entity after assignment.

               if Is_Access_Type (T1) then
                  if Known_Non_Null (Rhs) then
                     Set_Is_Known_Non_Null (Ent, True);

                  elsif Known_Null (Rhs)
                    and then not Can_Never_Be_Null (Ent)
                  then
                     Set_Is_Known_Null (Ent, True);

                  else
                     Set_Is_Known_Null (Ent, False);

                     if not Can_Never_Be_Null (Ent) then
                        Set_Is_Known_Non_Null (Ent, False);
                     end if;
                  end if;

               --  For discrete types, we may be able to set the current value
               --  if the value is known at compile time.

               elsif Is_Discrete_Type (T1)
                 and then Compile_Time_Known_Value (Rhs)
               then
                  Set_Current_Value (Ent, Rhs);
               else
                  Set_Current_Value (Ent, Empty);
               end if;

            --  If not safe to capture values, kill them

            else
               Kill_Lhs;
            end if;
         end;
      end if;

      --  If assigning to an object in whole or in part, note location of
      --  assignment in case no one references value. We only do this for
      --  source assignments, otherwise we can generate bogus warnings when an
      --  assignment is rewritten as another assignment, and gets tied up with
      --  itself.

      declare
         Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
      begin
         if Present (Ent)
           and then Safe_To_Capture_Value (N, Ent)
           and then Nkind (N) = N_Assignment_Statement
           and then Warn_On_Modified_Unread
           and then Is_Assignable (Ent)
           and then Comes_From_Source (N)
           and then In_Extended_Main_Source_Unit (Ent)
         then
            Set_Last_Assignment (Ent, Lhs);
         end if;
      end;

      Analyze_Dimension (N);

   <<Leave>>
      Restore_Ghost_Region (Saved_GM, Saved_IGR);

      --  If the right-hand side contains target names, expansion has been
      --  disabled to prevent expansion that might move target names out of
      --  the context of the assignment statement. Restore the expander mode
      --  now so that assignment statement can be properly expanded.

      if Nkind (N) = N_Assignment_Statement then
         if Has_Target_Names (N) then
            Expander_Mode_Restore;
            Full_Analysis := Save_Full_Analysis;
            Current_Assignment := Empty;
         end if;

         pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
      end if;
   end Analyze_Assignment;

   -----------------------------
   -- Analyze_Block_Statement --
   -----------------------------

   procedure Analyze_Block_Statement (N : Node_Id) is
      procedure Install_Return_Entities (Scop : Entity_Id);
      --  Install all entities of return statement scope Scop in the visibility
      --  chain except for the return object since its entity is reused in a
      --  renaming.

      -----------------------------
      -- Install_Return_Entities --
      -----------------------------

      procedure Install_Return_Entities (Scop : Entity_Id) is
         Id : Entity_Id;

      begin
         Id := First_Entity (Scop);
         while Present (Id) loop

            --  Do not install the return object

            if Ekind (Id) not in E_Constant | E_Variable
              or else not Is_Return_Object (Id)
            then
               Install_Entity (Id);
            end if;

            Next_Entity (Id);
         end loop;
      end Install_Return_Entities;

      --  Local constants and variables

      Decls : constant List_Id := Declarations (N);
      Id    : constant Node_Id := Identifier (N);
      HSS   : constant Node_Id := Handled_Statement_Sequence (N);

      Is_BIP_Return_Statement : Boolean;

   --  Start of processing for Analyze_Block_Statement

   begin
      --  If no handled statement sequence is present, things are really messed
      --  up, and we just return immediately (defence against previous errors).

      if No (HSS) then
         Check_Error_Detected;
         return;
      end if;

      --  Detect whether the block is actually a rewritten return statement of
      --  a build-in-place function.

      Is_BIP_Return_Statement :=
        Present (Id)
          and then Present (Entity (Id))
          and then Ekind (Entity (Id)) = E_Return_Statement
          and then Is_Build_In_Place_Function
                     (Return_Applies_To (Entity (Id)));

      --  Normal processing with HSS present

      declare
         EH  : constant List_Id := Exception_Handlers (HSS);
         Ent : Entity_Id        := Empty;
         S   : Entity_Id;

         Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
         --  Recursively save value of this global, will be restored on exit

      begin
         --  Initialize unblocked exit count for statements of begin block
         --  plus one for each exception handler that is present.

         Unblocked_Exit_Count := 1;

         if Present (EH) then
            Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
         end if;

         --  If a label is present analyze it and mark it as referenced

         if Present (Id) then
            Analyze (Id);
            Ent := Entity (Id);

            --  An error defense. If we have an identifier, but no entity, then
            --  something is wrong. If previous errors, then just remove the
            --  identifier and continue, otherwise raise an exception.

            if No (Ent) then
               Check_Error_Detected;
               Set_Identifier (N, Empty);

            else
               if Ekind (Ent) = E_Label then
                  Reinit_Field_To_Zero (Ent, F_Enclosing_Scope);
               end if;

               Mutate_Ekind (Ent, E_Block);
               Generate_Reference (Ent, N, ' ');
               Generate_Definition (Ent);

               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Ent), N);
               end if;
            end if;
         end if;

         --  If no entity set, create a label entity

         if No (Ent) then
            Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
            Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
            Set_Parent (Ent, N);
         end if;

         Set_Etype (Ent, Standard_Void_Type);
         Set_Block_Node (Ent, Identifier (N));
         Push_Scope (Ent);

         --  The block served as an extended return statement. Ensure that any
         --  entities created during the analysis and expansion of the return
         --  object declaration are once again visible.

         if Is_BIP_Return_Statement then
            Install_Return_Entities (Ent);
         end if;

         if Present (Decls) then
            Analyze_Declarations (Decls);
            Check_Completion;
            Inspect_Deferred_Constant_Completion (Decls);
         end if;

         Analyze (HSS);
         Process_End_Label (HSS, 'e', Ent);

         --  If exception handlers are present, then we indicate that enclosing
         --  scopes contain a block with handlers. We only need to mark non-
         --  generic scopes.

         if Present (EH) then
            S := Scope (Ent);
            loop
               Set_Has_Nested_Block_With_Handler (S);
               exit when Is_Overloadable (S)
                 or else Ekind (S) = E_Package
                 or else Is_Generic_Unit (S);
               S := Scope (S);
            end loop;
         end if;

         Check_References (Ent);
         Update_Use_Clause_Chain;
         End_Scope;

         if Unblocked_Exit_Count = 0 then
            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
            Check_Unreachable_Code (N);
         else
            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         end if;
      end;
   end Analyze_Block_Statement;

   --------------------------------
   -- Analyze_Compound_Statement --
   --------------------------------

   procedure Analyze_Compound_Statement (N : Node_Id) is
   begin
      Analyze_List (Actions (N));
   end Analyze_Compound_Statement;

   ----------------------------
   -- Analyze_Case_Statement --
   ----------------------------

   procedure Analyze_Case_Statement (N : Node_Id) is
      Exp : constant Node_Id := Expression (N);

      Statements_Analyzed : Boolean := False;
      --  Set True if at least some statement sequences get analyzed. If False
      --  on exit, means we had a serious error that prevented full analysis of
      --  the case statement, and as a result it is not a good idea to output
      --  warning messages about unreachable code.

      Is_General_Case_Statement : Boolean := False;
      --  Set True (later) if type of case expression is not discrete

      procedure Non_Static_Choice_Error (Choice : Node_Id);
      --  Error routine invoked by the generic instantiation below when the
      --  case statement has a non static choice.

      procedure Process_Statements (Alternative : Node_Id);
      --  Analyzes the statements associated with a case alternative. Needed
      --  by instantiation below.

      package Analyze_Case_Choices is new
        Generic_Analyze_Choices
          (Process_Associated_Node   => Process_Statements);
      use Analyze_Case_Choices;
      --  Instantiation of the generic choice analysis package

      package Check_Case_Choices is new
        Generic_Check_Choices
          (Process_Empty_Choice      => No_OP,
           Process_Non_Static_Choice => Non_Static_Choice_Error,
           Process_Associated_Node   => No_OP);
      use Check_Case_Choices;
      --  Instantiation of the generic choice processing package

      -----------------------------
      -- Non_Static_Choice_Error --
      -----------------------------

      procedure Non_Static_Choice_Error (Choice : Node_Id) is
      begin
         Flag_Non_Static_Expr
           ("choice given in case statement is not static!", Choice);
      end Non_Static_Choice_Error;

      ------------------------
      -- Process_Statements --
      ------------------------

      procedure Process_Statements (Alternative : Node_Id) is
         Choices : constant List_Id := Discrete_Choices (Alternative);
         Ent     : Entity_Id;

      begin
         if Is_General_Case_Statement then
            return;
            --  Processing deferred in this case; decls associated with
            --  pattern match bindings don't exist yet.
         end if;

         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
         Statements_Analyzed := True;

         --  An interesting optimization. If the case statement expression
         --  is a simple entity, then we can set the current value within an
         --  alternative if the alternative has one possible value.

         --    case N is
         --      when 1      => alpha
         --      when 2 | 3  => beta
         --      when others => gamma

         --  Here we know that N is initially 1 within alpha, but for beta and
         --  gamma, we do not know anything more about the initial value.

         if Is_Entity_Name (Exp) then
            Ent := Entity (Exp);

            if Is_Object (Ent) then
               if List_Length (Choices) = 1
                 and then Nkind (First (Choices)) in N_Subexpr
                 and then Compile_Time_Known_Value (First (Choices))
               then
                  Set_Current_Value (Entity (Exp), First (Choices));
               end if;

               Analyze_Statements (Statements (Alternative));

               --  After analyzing the case, set the current value to empty
               --  since we won't know what it is for the next alternative
               --  (unless reset by this same circuit), or after the case.

               Set_Current_Value (Entity (Exp), Empty);
               return;
            end if;
         end if;

         --  Case where expression is not an entity name of an object

         Analyze_Statements (Statements (Alternative));
      end Process_Statements;

      --  Local variables

      Exp_Type  : Entity_Id;
      Exp_Btype : Entity_Id;

      Others_Present : Boolean;
      --  Indicates if Others was present

      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
      --  Recursively save value of this global, will be restored on exit

   --  Start of processing for Analyze_Case_Statement

   begin
      Analyze (Exp);

      --  The expression must be of any discrete type. In rare cases, the
      --  expander constructs a case statement whose expression has a private
      --  type whose full view is discrete. This can happen when generating
      --  a stream operation for a variant type after the type is frozen,
      --  when the partial of view of the type of the discriminant is private.
      --  In that case, use the full view to analyze case alternatives.

      if not Is_Overloaded (Exp)
        and then not Comes_From_Source (N)
        and then Is_Private_Type (Etype (Exp))
        and then Present (Full_View (Etype (Exp)))
        and then Is_Discrete_Type (Full_View (Etype (Exp)))
      then
         Resolve (Exp);
         Exp_Type := Full_View (Etype (Exp));

      --  For Ada, overloading might be ok because subsequently filtering
      --  out non-discretes may resolve the ambiguity.
      --  But GNAT extensions allow casing on non-discretes.

      elsif Extensions_Allowed and then Is_Overloaded (Exp) then

         --  It would be nice if we could generate all the right error
         --  messages by calling "Resolve (Exp, Any_Type);" in the
         --  same way that they are generated a few lines below by the
         --  call "Analyze_And_Resolve (Exp, Any_Discrete);".
         --  Unfortunately, Any_Type and Any_Discrete are not treated
         --  consistently (specifically, by Sem_Type.Covers), so that
         --  doesn't work.

         Error_Msg_N
           ("selecting expression of general case statement is ambiguous",
            Exp);
         return;

      --  Check for a GNAT-extension "general" case statement (i.e., one where
      --  the type of the selecting expression is not discrete).

      elsif Extensions_Allowed
         and then not Is_Discrete_Type (Etype (Exp))
      then
         Resolve (Exp, Etype (Exp));
         Exp_Type := Etype (Exp);
         Is_General_Case_Statement := True;
      else
         Analyze_And_Resolve (Exp, Any_Discrete);
         Exp_Type := Etype (Exp);
      end if;

      Check_Unset_Reference (Exp);
      Exp_Btype := Base_Type (Exp_Type);

      --  The expression must be of a discrete type which must be determinable
      --  independently of the context in which the expression occurs, but
      --  using the fact that the expression must be of a discrete type.
      --  Moreover, the type this expression must not be a character literal
      --  (which is always ambiguous) or, for Ada-83, a generic formal type.

      --  If error already reported by Resolve, nothing more to do

      if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
         return;

      elsif Exp_Btype = Any_Character then
         Error_Msg_N
           ("character literal as case expression is ambiguous", Exp);
         return;

      elsif Ada_Version = Ada_83
        and then (Is_Generic_Type (Exp_Btype)
                   or else Is_Generic_Type (Root_Type (Exp_Btype)))
      then
         Error_Msg_N
           ("(Ada 83) case expression cannot be of a generic type", Exp);
         return;

      elsif not Extensions_Allowed
        and then not Is_Discrete_Type (Exp_Type)
      then
         Error_Msg_N
           ("expression in case statement must be of a discrete_Type", Exp);
         return;
      end if;

      --  If the case expression is a formal object of mode in out, then treat
      --  it as having a nonstatic subtype by forcing use of the base type
      --  (which has to get passed to Check_Case_Choices below). Also use base
      --  type when the case expression is parenthesized.

      if Paren_Count (Exp) > 0
        or else (Is_Entity_Name (Exp)
                  and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
      then
         Exp_Type := Exp_Btype;
      end if;

      --  Call instantiated procedures to analyze and check discrete choices

      Unblocked_Exit_Count := 0;

      Analyze_Choices (Alternatives (N), Exp_Type);
      Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);

      if Is_General_Case_Statement then
         --  Work normally done in Process_Statements was deferred; do that
         --  deferred work now that Check_Choices has had a chance to create
         --  any needed pattern-match-binding declarations.
         declare
            Alt : Node_Id := First (Alternatives (N));
         begin
            while Present (Alt) loop
               Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
               Analyze_Statements (Statements (Alt));
               Next (Alt);
            end loop;
         end;
      end if;

      if Exp_Type = Universal_Integer and then not Others_Present then
         Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
      end if;

      --  If all our exits were blocked by unconditional transfers of control,
      --  then the entire CASE statement acts as an unconditional transfer of
      --  control, so treat it like one, and check unreachable code. Skip this
      --  test if we had serious errors preventing any statement analysis.

      if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         Check_Unreachable_Code (N);
      else
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
      end if;

      --  If the expander is active it will detect the case of a statically
      --  determined single alternative and remove warnings for the case, but
      --  if we are not doing expansion, that circuit won't be active. Here we
      --  duplicate the effect of removing warnings in the same way, so that
      --  we will get the same set of warnings in -gnatc mode.

      if not Expander_Active
        and then Compile_Time_Known_Value (Expression (N))
        and then Serious_Errors_Detected = 0
      then
         declare
            Chosen : constant Node_Id := Find_Static_Alternative (N);
            Alt    : Node_Id;

         begin
            Alt := First (Alternatives (N));
            while Present (Alt) loop
               if Alt /= Chosen then
                  Remove_Warning_Messages (Statements (Alt));
               end if;

               Next (Alt);
            end loop;
         end;
      end if;
   end Analyze_Case_Statement;

   ----------------------------
   -- Analyze_Exit_Statement --
   ----------------------------

   --  If the exit includes a name, it must be the name of a currently open
   --  loop. Otherwise there must be an innermost open loop on the stack, to
   --  which the statement implicitly refers.

   --  Additionally, in SPARK mode:

   --    The exit can only name the closest enclosing loop;

   --    An exit with a when clause must be directly contained in a loop;

   --    An exit without a when clause must be directly contained in an
   --    if-statement with no elsif or else, which is itself directly contained
   --    in a loop. The exit must be the last statement in the if-statement.

   procedure Analyze_Exit_Statement (N : Node_Id) is
      Target   : constant Node_Id := Name (N);
      Cond     : constant Node_Id := Condition (N);
      Scope_Id : Entity_Id := Empty;  -- initialize to prevent warning
      U_Name   : Entity_Id;
      Kind     : Entity_Kind;

   begin
      if No (Cond) then
         Check_Unreachable_Code (N);
      end if;

      if Present (Target) then
         Analyze (Target);
         U_Name := Entity (Target);

         if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
            Error_Msg_N ("invalid loop name in exit statement", N);
            return;

         else
            Set_Has_Exit (U_Name);
         end if;

      else
         U_Name := Empty;
      end if;

      for J in reverse 0 .. Scope_Stack.Last loop
         Scope_Id := Scope_Stack.Table (J).Entity;
         Kind := Ekind (Scope_Id);

         if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
            Set_Has_Exit (Scope_Id);
            exit;

         elsif Kind = E_Block
           or else Kind = E_Loop
           or else Kind = E_Return_Statement
         then
            null;

         else
            Error_Msg_N
              ("cannot exit from program unit or accept statement", N);
            return;
         end if;
      end loop;

      --  Verify that if present the condition is a Boolean expression

      if Present (Cond) then
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
      end if;

      --  Chain exit statement to associated loop entity

      Set_Next_Exit_Statement  (N, First_Exit_Statement (Scope_Id));
      Set_First_Exit_Statement (Scope_Id, N);

      --  Since the exit may take us out of a loop, any previous assignment
      --  statement is not useless, so clear last assignment indications. It
      --  is OK to keep other current values, since if the exit statement
      --  does not exit, then the current values are still valid.

      Kill_Current_Values (Last_Assignment_Only => True);
   end Analyze_Exit_Statement;

   ----------------------------
   -- Analyze_Goto_Statement --
   ----------------------------

   procedure Analyze_Goto_Statement (N : Node_Id) is
      Label       : constant Node_Id := Name (N);
      Scope_Id    : Entity_Id;
      Label_Scope : Entity_Id;
      Label_Ent   : Entity_Id;

   begin
      --  Actual semantic checks

      Check_Unreachable_Code (N);
      Kill_Current_Values (Last_Assignment_Only => True);

      Analyze (Label);
      Label_Ent := Entity (Label);

      --  Ignore previous error

      if Label_Ent = Any_Id then
         Check_Error_Detected;
         return;

      --  We just have a label as the target of a goto

      elsif Ekind (Label_Ent) /= E_Label then
         Error_Msg_N ("target of goto statement must be a label", Label);
         return;

      --  Check that the target of the goto is reachable according to Ada
      --  scoping rules. Note: the special gotos we generate for optimizing
      --  local handling of exceptions would violate these rules, but we mark
      --  such gotos as analyzed when built, so this code is never entered.

      elsif not Reachable (Label_Ent) then
         Error_Msg_N ("target of goto statement is not reachable", Label);
         return;
      end if;

      --  Here if goto passes initial validity checks

      Label_Scope := Enclosing_Scope (Label_Ent);

      for J in reverse 0 .. Scope_Stack.Last loop
         Scope_Id := Scope_Stack.Table (J).Entity;

         if Label_Scope = Scope_Id
           or else Ekind (Scope_Id) not in
                     E_Block | E_Loop | E_Return_Statement
         then
            if Scope_Id /= Label_Scope then
               Error_Msg_N
                 ("cannot exit from program unit or accept statement", N);
            end if;

            return;
         end if;
      end loop;

      raise Program_Error;
   end Analyze_Goto_Statement;

   ---------------------------------
   -- Analyze_Goto_When_Statement --
   ---------------------------------

   procedure Analyze_Goto_When_Statement (N : Node_Id) is
   begin
      --  Verify the condition is a Boolean expression

      Analyze_And_Resolve (Condition (N), Any_Boolean);
      Check_Unset_Reference (Condition (N));
   end Analyze_Goto_When_Statement;

   --------------------------
   -- Analyze_If_Statement --
   --------------------------

   --  A special complication arises in the analysis of if statements

   --  The expander has circuitry to completely delete code that it can tell
   --  will not be executed (as a result of compile time known conditions). In
   --  the analyzer, we ensure that code that will be deleted in this manner
   --  is analyzed but not expanded. This is obviously more efficient, but
   --  more significantly, difficulties arise if code is expanded and then
   --  eliminated (e.g. exception table entries disappear). Similarly, itypes
   --  generated in deleted code must be frozen from start, because the nodes
   --  on which they depend will not be available at the freeze point.

   procedure Analyze_If_Statement (N : Node_Id) is
      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
      --  Recursively save value of this global, will be restored on exit

      Save_In_Deleted_Code : Boolean := In_Deleted_Code;

      Del : Boolean := False;
      --  This flag gets set True if a True condition has been found, which
      --  means that remaining ELSE/ELSIF parts are deleted.

      procedure Analyze_Cond_Then (Cnode : Node_Id);
      --  This is applied to either the N_If_Statement node itself or to an
      --  N_Elsif_Part node. It deals with analyzing the condition and the THEN
      --  statements associated with it.

      -----------------------
      -- Analyze_Cond_Then --
      -----------------------

      procedure Analyze_Cond_Then (Cnode : Node_Id) is
         Cond : constant Node_Id := Condition (Cnode);
         Tstm : constant List_Id := Then_Statements (Cnode);

      begin
         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
         Set_Current_Value_Condition (Cnode);

         --  If already deleting, then just analyze then statements

         if Del then
            Analyze_Statements (Tstm);

         --  Compile time known value, not deleting yet

         elsif Compile_Time_Known_Value (Cond) then
            Save_In_Deleted_Code := In_Deleted_Code;

            --  If condition is True, then analyze the THEN statements and set
            --  no expansion for ELSE and ELSIF parts.

            if Is_True (Expr_Value (Cond)) then
               Analyze_Statements (Tstm);
               Del := True;
               Expander_Mode_Save_And_Set (False);
               In_Deleted_Code := True;

            --  If condition is False, analyze THEN with expansion off

            else pragma Assert (Is_False (Expr_Value (Cond)));
               Expander_Mode_Save_And_Set (False);
               In_Deleted_Code := True;
               Analyze_Statements (Tstm);
               Expander_Mode_Restore;
               In_Deleted_Code := Save_In_Deleted_Code;
            end if;

         --  Not known at compile time, not deleting, normal analysis

         else
            Analyze_Statements (Tstm);
         end if;
      end Analyze_Cond_Then;

      --  Local variables

      E : Node_Id;
      --  For iterating over elsif parts

   --  Start of processing for Analyze_If_Statement

   begin
      --  Initialize exit count for else statements. If there is no else part,
      --  this count will stay non-zero reflecting the fact that the uncovered
      --  else case is an unblocked exit.

      Unblocked_Exit_Count := 1;
      Analyze_Cond_Then (N);

      --  Now to analyze the elsif parts if any are present

      if Present (Elsif_Parts (N)) then
         E := First (Elsif_Parts (N));
         while Present (E) loop
            Analyze_Cond_Then (E);
            Next (E);
         end loop;
      end if;

      if Present (Else_Statements (N)) then
         Analyze_Statements (Else_Statements (N));
      end if;

      --  If all our exits were blocked by unconditional transfers of control,
      --  then the entire IF statement acts as an unconditional transfer of
      --  control, so treat it like one, and check unreachable code.

      if Unblocked_Exit_Count = 0 then
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         Check_Unreachable_Code (N);
      else
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
      end if;

      if Del then
         Expander_Mode_Restore;
         In_Deleted_Code := Save_In_Deleted_Code;
      end if;

      if not Expander_Active
        and then Compile_Time_Known_Value (Condition (N))
        and then Serious_Errors_Detected = 0
      then
         if Is_True (Expr_Value (Condition (N))) then
            Remove_Warning_Messages (Else_Statements (N));

            if Present (Elsif_Parts (N)) then
               E := First (Elsif_Parts (N));
               while Present (E) loop
                  Remove_Warning_Messages (Then_Statements (E));
                  Next (E);
               end loop;
            end if;

         else
            Remove_Warning_Messages (Then_Statements (N));
         end if;
      end if;

      --  Warn on redundant if statement that has no effect

      --  Note, we could also check empty ELSIF parts ???

      if Warn_On_Redundant_Constructs

        --  If statement must be from source

        and then Comes_From_Source (N)

        --  Condition must not have obvious side effect

        and then Has_No_Obvious_Side_Effects (Condition (N))

        --  No elsif parts of else part

        and then No (Elsif_Parts (N))
        and then No (Else_Statements (N))

        --  Then must be a single null statement

        and then List_Length (Then_Statements (N)) = 1
      then
         --  Go to original node, since we may have rewritten something as
         --  a null statement (e.g. a case we could figure the outcome of).

         declare
            T : constant Node_Id := First (Then_Statements (N));
            S : constant Node_Id := Original_Node (T);

         begin
            if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
               Error_Msg_N ("if statement has no effect?r?", N);
            end if;
         end;
      end if;
   end Analyze_If_Statement;

   ----------------------------------------
   -- Analyze_Implicit_Label_Declaration --
   ----------------------------------------

   --  An implicit label declaration is generated in the innermost enclosing
   --  declarative part. This is done for labels, and block and loop names.

   --  Note: any changes in this routine may need to be reflected in
   --  Analyze_Label_Entity.

   procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
      Id : constant Node_Id := Defining_Identifier (N);
   begin
      Enter_Name          (Id);
      Mutate_Ekind        (Id, E_Label);
      Set_Etype           (Id, Standard_Void_Type);
      Set_Enclosing_Scope (Id, Current_Scope);
   end Analyze_Implicit_Label_Declaration;

   ------------------------------
   -- Analyze_Iteration_Scheme --
   ------------------------------

   procedure Analyze_Iteration_Scheme (N : Node_Id) is
      Cond      : Node_Id;
      Iter_Spec : Node_Id;
      Loop_Spec : Node_Id;

   begin
      --  For an infinite loop, there is no iteration scheme

      if No (N) then
         return;
      end if;

      Cond      := Condition (N);
      Iter_Spec := Iterator_Specification (N);
      Loop_Spec := Loop_Parameter_Specification (N);

      if Present (Cond) then
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
         Set_Current_Value_Condition (N);

      elsif Present (Iter_Spec) then
         Analyze_Iterator_Specification (Iter_Spec);

      else
         Analyze_Loop_Parameter_Specification (Loop_Spec);
      end if;
   end Analyze_Iteration_Scheme;

   ------------------------------------
   -- Analyze_Iterator_Specification --
   ------------------------------------

   procedure Analyze_Iterator_Specification (N : Node_Id) is
      Def_Id    : constant Node_Id    := Defining_Identifier (N);
      Iter_Name : constant Node_Id    := Name (N);
      Loc       : constant Source_Ptr := Sloc (N);
      Subt      : constant Node_Id    := Subtype_Indication (N);

      Bas : Entity_Id := Empty;  -- initialize to prevent warning
      Typ : Entity_Id;

      procedure Check_Reverse_Iteration (Typ : Entity_Id);
      --  For an iteration over a container, if the loop carries the Reverse
      --  indicator, verify that the container type has an Iterate aspect that
      --  implements the reversible iterator interface.

      procedure Check_Subtype_Definition (Comp_Type : Entity_Id);
      --  If a subtype indication is present, verify that it is consistent
      --  with the component type of the array or container name.
      --  In Ada 2022, the subtype indication may be an access definition,
      --  if the array or container has elements of an anonymous access type.

      function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
      --  For containers with Iterator and related aspects, the cursor is
      --  obtained by locating an entity with the proper name in the scope
      --  of the type.

      -----------------------------
      -- Check_Reverse_Iteration --
      -----------------------------

      procedure Check_Reverse_Iteration (Typ : Entity_Id) is
      begin
         if Reverse_Present (N) then
            if Is_Array_Type (Typ)
              or else Is_Reversible_Iterator (Typ)
              or else
                (Present (Find_Aspect (Typ, Aspect_Iterable))
                  and then
                    Present
                      (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
            then
               null;
            else
               Error_Msg_N
                 ("container type does not support reverse iteration", N);
            end if;
         end if;
      end Check_Reverse_Iteration;

      -------------------------------
      --  Check_Subtype_Definition --
      -------------------------------

      procedure Check_Subtype_Definition (Comp_Type : Entity_Id) is
      begin
         if not Present (Subt) then
            return;
         end if;

         if Is_Anonymous_Access_Type (Entity (Subt)) then
            if not Is_Anonymous_Access_Type (Comp_Type) then
               Error_Msg_NE
                 ("component type& is not an anonymous access",
                  Subt, Comp_Type);

            elsif not Conforming_Types
                (Designated_Type (Entity (Subt)),
                 Designated_Type (Comp_Type),
                 Fully_Conformant)
            then
               Error_Msg_NE
                 ("subtype indication does not match component type&",
                  Subt, Comp_Type);
            end if;

         elsif Present (Subt)
           and then (not Covers (Base_Type (Bas), Comp_Type)
                      or else not Subtypes_Statically_Match (Bas, Comp_Type))
         then
            if Is_Array_Type (Typ) then
               Error_Msg_NE
                 ("subtype indication does not match component type&",
                  Subt, Comp_Type);
            else
               Error_Msg_NE
                 ("subtype indication does not match element type&",
                  Subt, Comp_Type);
            end if;
         end if;
      end Check_Subtype_Definition;

      ---------------------
      -- Get_Cursor_Type --
      ---------------------

      function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
         Ent : Entity_Id;

      begin
         --  If iterator type is derived, the cursor is declared in the scope
         --  of the parent type.

         if Is_Derived_Type (Typ) then
            Ent := First_Entity (Scope (Etype (Typ)));
         else
            Ent := First_Entity (Scope (Typ));
         end if;

         while Present (Ent) loop
            exit when Chars (Ent) = Name_Cursor;
            Next_Entity (Ent);
         end loop;

         if No (Ent) then
            return Any_Type;
         end if;

         --  The cursor is the target of generated assignments in the
         --  loop, and cannot have a limited type.

         if Is_Limited_Type (Etype (Ent)) then
            Error_Msg_N ("cursor type cannot be limited", N);
         end if;

         return Etype (Ent);
      end Get_Cursor_Type;

   --   Start of processing for Analyze_Iterator_Specification

   begin
      Enter_Name (Def_Id);

      --  AI12-0151 specifies that when the subtype indication is present, it
      --  must statically match the type of the array or container element.
      --  To simplify this check, we introduce a subtype declaration with the
      --  given subtype indication when it carries a constraint, and rewrite
      --  the original as a reference to the created subtype entity.

      if Present (Subt) then
         if Nkind (Subt) = N_Subtype_Indication then
            declare
               S    : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
               Decl : constant Node_Id :=
                        Make_Subtype_Declaration (Loc,
                          Defining_Identifier => S,
                          Subtype_Indication  => New_Copy_Tree (Subt));
            begin
               Insert_Action (N, Decl);
               Analyze (Decl);
               Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
            end;

         --  Ada 2022: the subtype definition may be for an anonymous
         --  access type.

         elsif Nkind (Subt) = N_Access_Definition then
            declare
               S    : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
               Decl : Node_Id;
            begin
               if Present (Subtype_Mark (Subt)) then
                  Decl :=
                    Make_Full_Type_Declaration (Loc,
                      Defining_Identifier => S,
                      Type_Definition     =>
                        Make_Access_To_Object_Definition (Loc,
                          All_Present        => True,
                          Subtype_Indication =>
                            New_Copy_Tree (Subtype_Mark (Subt))));

               else
                  Decl :=
                    Make_Full_Type_Declaration (Loc,
                      Defining_Identifier => S,
                      Type_Definition  =>
                        New_Copy_Tree
                          (Access_To_Subprogram_Definition (Subt)));
               end if;

               Insert_Before (Parent (Parent (N)), Decl);
               Analyze (Decl);
               Freeze_Before (First (Statements (Parent (Parent (N)))), S);
               Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
            end;
         else
            Analyze (Subt);
         end if;

         --  Save entity of subtype indication for subsequent check

         Bas := Entity (Subt);
      end if;

      Preanalyze_Range (Iter_Name);

      --  If the domain of iteration is a function call, make sure the function
      --  itself is frozen. This is an issue if this is a local expression
      --  function.

      if Nkind (Iter_Name) = N_Function_Call
        and then Is_Entity_Name (Name (Iter_Name))
        and then Full_Analysis
        and then (In_Assertion_Expr = 0 or else Assertions_Enabled)
      then
         Freeze_Before (N, Entity (Name (Iter_Name)));
      end if;

      --  Set the kind of the loop variable, which is not visible within the
      --  iterator name.

      Mutate_Ekind (Def_Id, E_Variable);

      --  Provide a link between the iterator variable and the container, for
      --  subsequent use in cross-reference and modification information.

      if Of_Present (N) then
         Set_Related_Expression (Def_Id, Iter_Name);

         --  For a container, the iterator is specified through the aspect

         if not Is_Array_Type (Etype (Iter_Name)) then
            declare
               Iterator : constant Entity_Id :=
                            Find_Value_Of_Aspect
                              (Etype (Iter_Name), Aspect_Default_Iterator);

               I  : Interp_Index;
               It : Interp;

            begin
               --  The domain of iteration must implement either the RM
               --  iterator interface, or the SPARK Iterable aspect.

               if No (Iterator) then
                  if No (Find_Aspect (Etype (Iter_Name), Aspect_Iterable)) then
                     Error_Msg_NE
                       ("cannot iterate over&",
                        N, Base_Type (Etype (Iter_Name)));
                     return;
                  end if;

               elsif not Is_Overloaded (Iterator) then
                  Check_Reverse_Iteration (Etype (Iterator));

               --  If Iterator is overloaded, use reversible iterator if one is
               --  available.

               elsif Is_Overloaded (Iterator) then
                  Get_First_Interp (Iterator, I, It);
                  while Present (It.Nam) loop
                     if Ekind (It.Nam) = E_Function
                       and then Is_Reversible_Iterator (Etype (It.Nam))
                     then
                        Set_Etype (Iterator, It.Typ);
                        Set_Entity (Iterator, It.Nam);
                        exit;
                     end if;

                     Get_Next_Interp (I, It);
                  end loop;

                  Check_Reverse_Iteration (Etype (Iterator));
               end if;
            end;
         end if;
      end if;

      --  If the domain of iteration is an expression, create a declaration for
      --  it, so that finalization actions are introduced outside of the loop.
      --  The declaration must be a renaming (both in GNAT and GNATprove
      --  modes), because the body of the loop may assign to elements.

      if not Is_Entity_Name (Iter_Name)

        --  When the context is a quantified expression, the renaming
        --  declaration is delayed until the expansion phase if we are
        --  doing expansion.

        and then (Nkind (Parent (N)) /= N_Quantified_Expression
                   or else (Operating_Mode = Check_Semantics
                            and then not GNATprove_Mode))

        --  Do not perform this expansion when expansion is disabled, where the
        --  temporary may hide the transformation of a selected component into
        --  a prefixed function call, and references need to see the original
        --  expression.

        and then (Expander_Active or GNATprove_Mode)
      then
         declare
            Id    : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
            Decl  : Node_Id;
            Act_S : Node_Id;

         begin

            --  If the domain of iteration is an array component that depends
            --  on a discriminant, create actual subtype for it. Preanalysis
            --  does not generate the actual subtype of a selected component.

            if Nkind (Iter_Name) = N_Selected_Component
              and then Is_Array_Type (Etype (Iter_Name))
            then
               Act_S :=
                 Build_Actual_Subtype_Of_Component
                   (Etype (Selector_Name (Iter_Name)), Iter_Name);
               Insert_Action (N, Act_S);

               if Present (Act_S) then
                  Typ := Defining_Identifier (Act_S);
               else
                  Typ := Etype (Iter_Name);
               end if;

            else
               Typ := Etype (Iter_Name);

               --  Verify that the expression produces an iterator

               if not Of_Present (N) and then not Is_Iterator (Typ)
                 and then not Is_Array_Type (Typ)
                 and then No (Find_Aspect (Typ, Aspect_Iterable))
               then
                  Error_Msg_N
                    ("expect object that implements iterator interface",
                     Iter_Name);
               end if;
            end if;

            --  Protect against malformed iterator

            if Typ = Any_Type then
               Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
               return;
            end if;

            if not Of_Present (N) then
               Check_Reverse_Iteration (Typ);
            end if;

            --  For an element iteration over a slice, we must complete
            --  the resolution and expansion of the slice bounds. These
            --  can be arbitrary expressions, and the preanalysis that
            --  was performed in preparation for the iteration may have
            --  generated an itype whose bounds must be fully expanded.
            --  We set the parent node to provide a proper insertion
            --  point for generated actions, if any.

            if Nkind (Iter_Name) = N_Slice
              and then Nkind (Discrete_Range (Iter_Name)) = N_Range
              and then not Analyzed (Discrete_Range (Iter_Name))
            then
               declare
                  Indx : constant Node_Id :=
                     Entity (First_Index (Etype (Iter_Name)));
               begin
                  Set_Parent (Indx, Iter_Name);
                  Resolve (Scalar_Range (Indx), Etype (Indx));
               end;
            end if;

            --  The name in the renaming declaration may be a function call.
            --  Indicate that it does not come from source, to suppress
            --  spurious warnings on renamings of parameterless functions,
            --  a common enough idiom in user-defined iterators.

            Decl :=
              Make_Object_Renaming_Declaration (Loc,
                Defining_Identifier => Id,
                Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
                Name                =>
                  New_Copy_Tree (Iter_Name, New_Sloc => Loc));

            Insert_Actions (Parent (Parent (N)), New_List (Decl));
            Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
            Analyze (Name (N));
            Set_Etype (Id, Typ);
            Set_Etype (Name (N), Typ);
         end;

      --  Container is an entity or an array with uncontrolled components, or
      --  else it is a container iterator given by a function call, typically
      --  called Iterate in the case of predefined containers, even though
      --  Iterate is not a reserved name. What matters is that the return type
      --  of the function is an iterator type.

      elsif Is_Entity_Name (Iter_Name) then
         Analyze (Iter_Name);

         if Nkind (Iter_Name) = N_Function_Call then
            declare
               C  : constant Node_Id := Name (Iter_Name);
               I  : Interp_Index;
               It : Interp;

            begin
               if not Is_Overloaded (Iter_Name) then
                  Resolve (Iter_Name, Etype (C));

               else
                  Get_First_Interp (C, I, It);
                  while It.Typ /= Empty loop
                     if Reverse_Present (N) then
                        if Is_Reversible_Iterator (It.Typ) then
                           Resolve (Iter_Name, It.Typ);
                           exit;
                        end if;

                     elsif Is_Iterator (It.Typ) then
                        Resolve (Iter_Name, It.Typ);
                        exit;
                     end if;

                     Get_Next_Interp (I, It);
                  end loop;
               end if;
            end;

         --  Domain of iteration is not overloaded

         else
            Resolve (Iter_Name);
         end if;

         if not Of_Present (N) then
            Check_Reverse_Iteration (Etype (Iter_Name));
         end if;
      end if;

      --  Get base type of container, for proper retrieval of Cursor type
      --  and primitive operations.

      Typ := Base_Type (Etype (Iter_Name));

      if Is_Array_Type (Typ) then
         if Of_Present (N) then
            Set_Etype (Def_Id, Component_Type (Typ));

            --  The loop variable is aliased if the array components are
            --  aliased. Likewise for the independent aspect.

            Set_Is_Aliased     (Def_Id, Has_Aliased_Components     (Typ));
            Set_Is_Independent (Def_Id, Has_Independent_Components (Typ));

            --  AI12-0047 stipulates that the domain (array or container)
            --  cannot be a component that depends on a discriminant if the
            --  enclosing object is mutable, to prevent a modification of the
            --  domain of iteration in the course of an iteration.

            --  If the object is an expression it has been captured in a
            --  temporary, so examine original node.

            if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
              and then Is_Dependent_Component_Of_Mutable_Object
                         (Original_Node (Iter_Name))
            then
               Error_Msg_N
                 ("iterable name cannot be a discriminant-dependent "
                  & "component of a mutable object", N);
            end if;

            Check_Subtype_Definition (Component_Type (Typ));

         --  Here we have a missing Range attribute

         else
            Error_Msg_N
              ("missing Range attribute in iteration over an array", N);

            --  In Ada 2012 mode, this may be an attempt at an iterator

            if Ada_Version >= Ada_2012 then
               Error_Msg_NE
                 ("\if& is meant to designate an element of the array, use OF",
                  N, Def_Id);
            end if;

            --  Prevent cascaded errors

            Mutate_Ekind (Def_Id, E_Loop_Parameter);
            Set_Etype (Def_Id, Etype (First_Index (Typ)));
         end if;

         --  Check for type error in iterator

      elsif Typ = Any_Type then
         return;

      --  Iteration over a container

      else
         Mutate_Ekind (Def_Id, E_Loop_Parameter);
         Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));

         --  OF present

         if Of_Present (N) then
            if Has_Aspect (Typ, Aspect_Iterable) then
               declare
                  Elt : constant Entity_Id :=
                          Get_Iterable_Type_Primitive (Typ, Name_Element);
               begin
                  if No (Elt) then
                     Error_Msg_N
                       ("missing Element primitive for iteration", N);
                  else
                     Set_Etype (Def_Id, Etype (Elt));
                     Check_Reverse_Iteration (Typ);
                  end if;
               end;

               Check_Subtype_Definition (Etype (Def_Id));

            --  For a predefined container, the type of the loop variable is
            --  the Iterator_Element aspect of the container type.

            else
               declare
                  Element        : constant Entity_Id :=
                                     Find_Value_Of_Aspect
                                       (Typ, Aspect_Iterator_Element);
                  Iterator       : constant Entity_Id :=
                                     Find_Value_Of_Aspect
                                       (Typ, Aspect_Default_Iterator);
                  Orig_Iter_Name : constant Node_Id :=
                                     Original_Node (Iter_Name);
                  Cursor_Type    : Entity_Id;

               begin
                  if No (Element) then
                     Error_Msg_NE ("cannot iterate over&", N, Typ);
                     return;

                  else
                     Set_Etype (Def_Id, Entity (Element));
                     Cursor_Type := Get_Cursor_Type (Typ);
                     pragma Assert (Present (Cursor_Type));

                     Check_Subtype_Definition (Etype (Def_Id));

                     --  If the container has a variable indexing aspect, the
                     --  element is a variable and is modifiable in the loop.

                     if Has_Aspect (Typ, Aspect_Variable_Indexing) then
                        Mutate_Ekind (Def_Id, E_Variable);
                     end if;

                     --  If the container is a constant, iterating over it
                     --  requires a Constant_Indexing operation.

                     if not Is_Variable (Iter_Name)
                       and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
                     then
                        Error_Msg_N
                          ("iteration over constant container require "
                           & "constant_indexing aspect", N);

                     --  The Iterate function may have an in_out parameter,
                     --  and a constant container is thus illegal.

                     elsif Present (Iterator)
                       and then Ekind (Entity (Iterator)) = E_Function
                       and then Ekind (First_Formal (Entity (Iterator))) /=
                                  E_In_Parameter
                       and then not Is_Variable (Iter_Name)
                     then
                        Error_Msg_N ("variable container expected", N);
                     end if;

                     --  Detect a case where the iterator denotes a component
                     --  of a mutable object which depends on a discriminant.
                     --  Note that the iterator may denote a function call in
                     --  qualified form, in which case this check should not
                     --  be performed.

                     if Nkind (Orig_Iter_Name) = N_Selected_Component
                       and then
                         Present (Entity (Selector_Name (Orig_Iter_Name)))
                       and then
                         Ekind (Entity (Selector_Name (Orig_Iter_Name))) in
                           E_Component | E_Discriminant
                       and then Is_Dependent_Component_Of_Mutable_Object
                                  (Orig_Iter_Name)
                     then
                        Error_Msg_N
                          ("container cannot be a discriminant-dependent "
                           & "component of a mutable object", N);
                     end if;
                  end if;
               end;
            end if;

         --  IN iterator, domain is a range, a call to Iterate function,
         --  or an object/actual parameter of an iterator type.

         else
            --  If the type of the name is class-wide and its root type is a
            --  derived type, the primitive operations (First, Next, etc.) are
            --  those inherited by its specific type. Calls to these primitives
            --  will be dispatching.

            if Is_Class_Wide_Type (Typ)
              and then Is_Derived_Type (Etype (Typ))
            then
               Typ := Etype (Typ);
            end if;

            --  For an iteration of the form IN, the name must denote an
            --  iterator, typically the result of a call to Iterate. Give a
            --  useful error message when the name is a container by itself.

            --  The type may be a formal container type, which has to have
            --  an Iterable aspect detailing the required primitives.

            if Is_Entity_Name (Original_Node (Name (N)))
              and then not Is_Iterator (Typ)
            then
               if Has_Aspect (Typ, Aspect_Iterable) then
                  null;

               elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
                  Error_Msg_NE
                    ("cannot iterate over&", Name (N), Typ);
               else
                  Error_Msg_N
                    ("name must be an iterator, not a container", Name (N));
               end if;

               if Has_Aspect (Typ, Aspect_Iterable) then
                  null;
               else
                  Error_Msg_NE
                    ("\to iterate directly over the elements of a container, "
                     & "write `of &`", Name (N), Original_Node (Name (N)));

                  --  No point in continuing analysis of iterator spec

                  return;
               end if;
            end if;

            --  If the name is a call (typically prefixed) to some Iterate
            --  function, it has been rewritten as an object declaration.
            --  If that object is a selected component, verify that it is not
            --  a component of an unconstrained mutable object.

            if Nkind (Iter_Name) = N_Identifier
              or else (not Expander_Active and Comes_From_Source (Iter_Name))
            then
               declare
                  Orig_Node : constant Node_Id   := Original_Node (Iter_Name);
                  Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
                  Obj       : Node_Id;

               begin
                  if Iter_Kind = N_Selected_Component then
                     Obj  := Prefix (Orig_Node);

                  elsif Iter_Kind = N_Function_Call then
                     Obj  := First_Actual (Orig_Node);

                  --  If neither, the name comes from source

                  else
                     Obj := Iter_Name;
                  end if;

                  if Nkind (Obj) = N_Selected_Component
                    and then Is_Dependent_Component_Of_Mutable_Object (Obj)
                  then
                     Error_Msg_N
                       ("container cannot be a discriminant-dependent "
                        & "component of a mutable object", N);
                  end if;
               end;
            end if;

            --  The result type of Iterate function is the classwide type of
            --  the interface parent. We need the specific Cursor type defined
            --  in the container package. We obtain it by name for a predefined
            --  container, or through the Iterable aspect for a formal one.

            if Has_Aspect (Typ, Aspect_Iterable) then
               Set_Etype (Def_Id,
                 Get_Cursor_Type
                   (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
                    Typ));

            else
               Set_Etype (Def_Id, Get_Cursor_Type (Typ));
               Check_Reverse_Iteration (Etype (Iter_Name));
            end if;

         end if;
      end if;

      if Present (Iterator_Filter (N)) then
         --  Preanalyze the filter. Expansion will take place when enclosing
         --  loop is expanded.

         Preanalyze_And_Resolve (Iterator_Filter (N), Standard_Boolean);
      end if;
   end Analyze_Iterator_Specification;

   -------------------
   -- Analyze_Label --
   -------------------

   --  Note: the semantic work required for analyzing labels (setting them as
   --  reachable) was done in a prepass through the statements in the block,
   --  so that forward gotos would be properly handled. See Analyze_Statements
   --  for further details. The only processing required here is to deal with
   --  optimizations that depend on an assumption of sequential control flow,
   --  since of course the occurrence of a label breaks this assumption.

   procedure Analyze_Label (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      Kill_Current_Values;
   end Analyze_Label;

   --------------------------
   -- Analyze_Label_Entity --
   --------------------------

   procedure Analyze_Label_Entity (E : Entity_Id) is
   begin
      Mutate_Ekind        (E, E_Label);
      Set_Etype           (E, Standard_Void_Type);
      Set_Enclosing_Scope (E, Current_Scope);
      Set_Reachable       (E, True);
   end Analyze_Label_Entity;

   ------------------------------------------
   -- Analyze_Loop_Parameter_Specification --
   ------------------------------------------

   procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
      Loop_Nod : constant Node_Id := Parent (Parent (N));

      procedure Check_Controlled_Array_Attribute (DS : Node_Id);
      --  If the bounds are given by a 'Range reference on a function call
      --  that returns a controlled array, introduce an explicit declaration
      --  to capture the bounds, so that the function result can be finalized
      --  in timely fashion.

      procedure Check_Predicate_Use (T : Entity_Id);
      --  Diagnose Attempt to iterate through non-static predicate. Note that
      --  a type with inherited predicates may have both static and dynamic
      --  forms. In this case it is not sufficient to check the static
      --  predicate function only, look for a dynamic predicate aspect as well.

      procedure Process_Bounds (R : Node_Id);
      --  If the iteration is given by a range, create temporaries and
      --  assignment statements block to capture the bounds and perform
      --  required finalization actions in case a bound includes a function
      --  call that uses the temporary stack. We first preanalyze a copy of
      --  the range in order to determine the expected type, and analyze and
      --  resolve the original bounds.

      --------------------------------------
      -- Check_Controlled_Array_Attribute --
      --------------------------------------

      procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
      begin
         if Nkind (DS) = N_Attribute_Reference
           and then Is_Entity_Name (Prefix (DS))
           and then Ekind (Entity (Prefix (DS))) = E_Function
           and then Is_Array_Type (Etype (Entity (Prefix (DS))))
           and then
             Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
           and then Expander_Active
         then
            declare
               Loc  : constant Source_Ptr := Sloc (N);
               Arr  : constant Entity_Id := Etype (Entity (Prefix (DS)));
               Indx : constant Entity_Id :=
                        Base_Type (Etype (First_Index (Arr)));
               Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
               Decl : Node_Id;

            begin
               Decl :=
                 Make_Subtype_Declaration (Loc,
                   Defining_Identifier => Subt,
                   Subtype_Indication  =>
                      Make_Subtype_Indication (Loc,
                        Subtype_Mark => New_Occurrence_Of (Indx, Loc),
                        Constraint   =>
                          Make_Range_Constraint (Loc, Relocate_Node (DS))));
               Insert_Before (Loop_Nod, Decl);
               Analyze (Decl);

               Rewrite (DS,
                 Make_Attribute_Reference (Loc,
                   Prefix         => New_Occurrence_Of (Subt, Loc),
                   Attribute_Name => Attribute_Name (DS)));

               Analyze (DS);
            end;
         end if;
      end Check_Controlled_Array_Attribute;

      -------------------------
      -- Check_Predicate_Use --
      -------------------------

      procedure Check_Predicate_Use (T : Entity_Id) is
      begin
         --  A predicated subtype is illegal in loops and related constructs
         --  if the predicate is not static, or if it is a non-static subtype
         --  of a statically predicated subtype.

         if Is_Discrete_Type (T)
           and then Has_Predicates (T)
           and then (not Has_Static_Predicate (T)
                      or else not Is_Static_Subtype (T)
                      or else Has_Dynamic_Predicate_Aspect (T))
         then
            --  Seems a confusing message for the case of a static predicate
            --  with a non-static subtype???

            Bad_Predicated_Subtype_Use
              ("cannot use subtype& with non-static predicate for loop "
               & "iteration", Discrete_Subtype_Definition (N),
               T, Suggest_Static => True);

         elsif Inside_A_Generic
           and then Is_Generic_Formal (T)
           and then Is_Discrete_Type (T)
         then
            Set_No_Dynamic_Predicate_On_Actual (T);
         end if;
      end Check_Predicate_Use;

      --------------------
      -- Process_Bounds --
      --------------------

      procedure Process_Bounds (R : Node_Id) is
         Loc : constant Source_Ptr := Sloc (N);

         function One_Bound
           (Original_Bound : Node_Id;
            Analyzed_Bound : Node_Id;
            Typ            : Entity_Id) return Node_Id;
         --  Capture value of bound and return captured value

         ---------------
         -- One_Bound --
         ---------------

         function One_Bound
           (Original_Bound : Node_Id;
            Analyzed_Bound : Node_Id;
            Typ            : Entity_Id) return Node_Id
         is
            Assign : Node_Id;
            Decl   : Node_Id;
            Id     : Entity_Id;

         begin
            --  If the bound is a constant or an object, no need for a separate
            --  declaration. If the bound is the result of previous expansion
            --  it is already analyzed and should not be modified. Note that
            --  the Bound will be resolved later, if needed, as part of the
            --  call to Make_Index (literal bounds may need to be resolved to
            --  type Integer).

            if Analyzed (Original_Bound) then
               return Original_Bound;

            elsif Nkind (Analyzed_Bound) in
                    N_Integer_Literal | N_Character_Literal
              or else Is_Entity_Name (Analyzed_Bound)
            then
               Analyze_And_Resolve (Original_Bound, Typ);
               return Original_Bound;

            elsif Inside_Class_Condition_Preanalysis then
               Analyze_And_Resolve (Original_Bound, Typ);
               return Original_Bound;
            end if;

            --  Normally, the best approach is simply to generate a constant
            --  declaration that captures the bound. However, there is a nasty
            --  case where this is wrong. If the bound is complex, and has a
            --  possible use of the secondary stack, we need to generate a
            --  separate assignment statement to ensure the creation of a block
            --  which will release the secondary stack.

            --  We prefer the constant declaration, since it leaves us with a
            --  proper trace of the value, useful in optimizations that get rid
            --  of junk range checks.

            if not Has_Sec_Stack_Call (Analyzed_Bound) then
               Analyze_And_Resolve (Original_Bound, Typ);

               --  Ensure that the bound is valid. This check should not be
               --  generated when the range belongs to a quantified expression
               --  as the construct is still not expanded into its final form.

               if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
                 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
               then
                  Ensure_Valid (Original_Bound);
               end if;

               Force_Evaluation (Original_Bound);
               return Original_Bound;
            end if;

            Id := Make_Temporary (Loc, 'R', Original_Bound);

            --  Here we make a declaration with a separate assignment
            --  statement, and insert before loop header.

            Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => Id,
                Object_Definition   => New_Occurrence_Of (Typ, Loc));

            Assign :=
              Make_Assignment_Statement (Loc,
                Name        => New_Occurrence_Of (Id, Loc),
                Expression  => Relocate_Node (Original_Bound));

            Insert_Actions (Loop_Nod, New_List (Decl, Assign));

            --  Now that this temporary variable is initialized we decorate it
            --  as safe-to-reevaluate to inform to the backend that no further
            --  asignment will be issued and hence it can be handled as side
            --  effect free. Note that this decoration must be done when the
            --  assignment has been analyzed because otherwise it will be
            --  rejected (see Analyze_Assignment).

            Set_Is_Safe_To_Reevaluate (Id);

            Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));

            if Nkind (Assign) = N_Assignment_Statement then
               return Expression (Assign);
            else
               return Original_Bound;
            end if;
         end One_Bound;

         Hi     : constant Node_Id := High_Bound (R);
         Lo     : constant Node_Id := Low_Bound  (R);
         R_Copy : constant Node_Id := New_Copy_Tree (R);
         New_Hi : Node_Id;
         New_Lo : Node_Id;
         Typ    : Entity_Id;

      --  Start of processing for Process_Bounds

      begin
         Set_Parent (R_Copy, Parent (R));
         Preanalyze_Range (R_Copy);
         Typ := Etype (R_Copy);

         --  If the type of the discrete range is Universal_Integer, then the
         --  bound's type must be resolved to Integer, and any object used to
         --  hold the bound must also have type Integer, unless the literal
         --  bounds are constant-folded expressions with a user-defined type.

         if Typ = Universal_Integer then
            if Nkind (Lo) = N_Integer_Literal
              and then Present (Etype (Lo))
              and then Scope (Etype (Lo)) /= Standard_Standard
            then
               Typ := Etype (Lo);

            elsif Nkind (Hi) = N_Integer_Literal
              and then Present (Etype (Hi))
              and then Scope (Etype (Hi)) /= Standard_Standard
            then
               Typ := Etype (Hi);

            else
               Typ := Standard_Integer;
            end if;
         end if;

         Set_Etype (R, Typ);

         New_Lo := One_Bound (Lo, Low_Bound  (R_Copy), Typ);
         New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);

         --  Propagate staticness to loop range itself, in case the
         --  corresponding subtype is static.

         if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
            Rewrite (Low_Bound (R), New_Copy (New_Lo));
         end if;

         if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
            Rewrite (High_Bound (R), New_Copy (New_Hi));
         end if;
      end Process_Bounds;

      --  Local variables

      DS : constant Node_Id   := Discrete_Subtype_Definition (N);
      Id : constant Entity_Id := Defining_Identifier (N);

      DS_Copy : Node_Id;

   --  Start of processing for Analyze_Loop_Parameter_Specification

   begin
      Enter_Name (Id);

      --  We always consider the loop variable to be referenced, since the loop
      --  may be used just for counting purposes.

      Generate_Reference (Id, N, ' ');

      --  Check for the case of loop variable hiding a local variable (used
      --  later on to give a nice warning if the hidden variable is never
      --  assigned).

      declare
         H : constant Entity_Id := Homonym (Id);
      begin
         if Present (H)
           and then Ekind (H) = E_Variable
           and then Is_Discrete_Type (Etype (H))
           and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
         then
            Set_Hiding_Loop_Variable (H, Id);
         end if;
      end;

      --  Analyze the subtype definition and create temporaries for the bounds.
      --  Do not evaluate the range when preanalyzing a quantified expression
      --  because bounds expressed as function calls with side effects will be
      --  incorrectly replicated.

      if Nkind (DS) = N_Range
        and then Expander_Active
        and then Nkind (Parent (N)) /= N_Quantified_Expression
      then
         Process_Bounds (DS);

      --  Either the expander not active or the range of iteration is a subtype
      --  indication, an entity, or a function call that yields an aggregate or
      --  a container.

      else
         DS_Copy := New_Copy_Tree (DS);
         Set_Parent (DS_Copy, Parent (DS));
         Preanalyze_Range (DS_Copy);

         --  Ada 2012: If the domain of iteration is:

         --  a)  a function call,
         --  b)  an identifier that is not a type,
         --  c)  an attribute reference 'Old (within a postcondition),
         --  d)  an unchecked conversion or a qualified expression with
         --      the proper iterator type.

         --  then it is an iteration over a container. It was classified as
         --  a loop specification by the parser, and must be rewritten now
         --  to activate container iteration. The last case will occur within
         --  an expanded inlined call, where the expansion wraps an actual in
         --  an unchecked conversion when needed. The expression of the
         --  conversion is always an object.

         if Nkind (DS_Copy) = N_Function_Call

           or else (Is_Entity_Name (DS_Copy)
                     and then not Is_Type (Entity (DS_Copy)))

           or else (Nkind (DS_Copy) = N_Attribute_Reference
                     and then Attribute_Name (DS_Copy) in
                                Name_Loop_Entry | Name_Old)

           or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)

           or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
           or else (Nkind (DS_Copy) = N_Qualified_Expression
                     and then Is_Iterator (Etype (DS_Copy)))
         then
            --  This is an iterator specification. Rewrite it as such and
            --  analyze it to capture function calls that may require
            --  finalization actions.

            declare
               I_Spec : constant Node_Id :=
                          Make_Iterator_Specification (Sloc (N),
                            Defining_Identifier => Relocate_Node (Id),
                            Name                => DS_Copy,
                            Subtype_Indication  => Empty,
                            Reverse_Present     => Reverse_Present (N));
               Scheme : constant Node_Id := Parent (N);

            begin
               Set_Iterator_Specification (Scheme, I_Spec);
               Set_Loop_Parameter_Specification (Scheme, Empty);
               Set_Iterator_Filter (I_Spec,
                 Relocate_Node (Iterator_Filter (N)));

               Analyze_Iterator_Specification (I_Spec);

               --  In a generic context, analyze the original domain of
               --  iteration, for name capture.

               if not Expander_Active then
                  Analyze (DS);
               end if;

               --  Set kind of loop parameter, which may be used in the
               --  subsequent analysis of the condition in a quantified
               --  expression.

               Mutate_Ekind (Id, E_Loop_Parameter);
               return;
            end;

         --  Domain of iteration is not a function call, and is side-effect
         --  free.

         else
            --  A quantified expression that appears in a pre/post condition
            --  is preanalyzed several times. If the range is given by an
            --  attribute reference it is rewritten as a range, and this is
            --  done even with expansion disabled. If the type is already set
            --  do not reanalyze, because a range with static bounds may be
            --  typed Integer by default.

            if Nkind (Parent (N)) = N_Quantified_Expression
              and then Present (Etype (DS))
            then
               null;
            else
               Analyze (DS);
            end if;
         end if;
      end if;

      if DS = Error then
         return;
      end if;

      --  Some additional checks if we are iterating through a type

      if Is_Entity_Name (DS)
        and then Present (Entity (DS))
        and then Is_Type (Entity (DS))
      then
         --  The subtype indication may denote the completion of an incomplete
         --  type declaration.

         if Ekind (Entity (DS)) = E_Incomplete_Type then
            Set_Entity (DS, Get_Full_View (Entity (DS)));
            Set_Etype  (DS, Entity (DS));
         end if;

         Check_Predicate_Use (Entity (DS));
      end if;

      --  Error if not discrete type

      if not Is_Discrete_Type (Etype (DS)) then
         Wrong_Type (DS, Any_Discrete);
         Set_Etype (DS, Any_Type);
      end if;

      Check_Controlled_Array_Attribute (DS);

      if Nkind (DS) = N_Subtype_Indication then
         Check_Predicate_Use (Entity (Subtype_Mark (DS)));
      end if;

      if Nkind (DS) not in N_Raise_xxx_Error then
         Make_Index (DS, N);
      end if;

      Mutate_Ekind (Id, E_Loop_Parameter);

      --  A quantified expression which appears in a pre- or post-condition may
      --  be analyzed multiple times. The analysis of the range creates several
      --  itypes which reside in different scopes depending on whether the pre-
      --  or post-condition has been expanded. Update the type of the loop
      --  variable to reflect the proper itype at each stage of analysis.

      --  Loop_Nod might not be present when we are preanalyzing a class-wide
      --  pre/postcondition since preanalysis occurs in a place unrelated to
      --  the actual code and the quantified expression may be the outermost
      --  expression of the class-wide condition.

      if No (Etype (Id))
        or else Etype (Id) = Any_Type
        or else
          (Present (Etype (Id))
            and then Is_Itype (Etype (Id))
            and then Present (Loop_Nod)
            and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
            and then Nkind (Original_Node (Parent (Loop_Nod))) =
                                                   N_Quantified_Expression)
      then
         Set_Etype (Id, Etype (DS));
      end if;

      --  Treat a range as an implicit reference to the type, to inhibit
      --  spurious warnings.

      Generate_Reference (Base_Type (Etype (DS)), N, ' ');
      Set_Is_Known_Valid (Id, True);

      --  The loop is not a declarative part, so the loop variable must be
      --  frozen explicitly. Do not freeze while preanalyzing a quantified
      --  expression because the freeze node will not be inserted into the
      --  tree due to flag Is_Spec_Expression being set.

      if Nkind (Parent (N)) /= N_Quantified_Expression then
         declare
            Flist : constant List_Id := Freeze_Entity (Id, N);
         begin
            if Is_Non_Empty_List (Flist) then
               Insert_Actions (N, Flist);
            end if;
         end;
      end if;

      --  Case where we have a range or a subtype, get type bounds

      if Nkind (DS) in N_Range | N_Subtype_Indication
        and then not Error_Posted (DS)
        and then Etype (DS) /= Any_Type
        and then Is_Discrete_Type (Etype (DS))
      then
         declare
            L          : Node_Id;
            H          : Node_Id;
            Null_Range : Boolean := False;

         begin
            if Nkind (DS) = N_Range then
               L := Low_Bound  (DS);
               H := High_Bound (DS);
            else
               L :=
                 Type_Low_Bound  (Underlying_Type (Etype (Subtype_Mark (DS))));
               H :=
                 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
            end if;

            --  Check for null or possibly null range and issue warning. We
            --  suppress such messages in generic templates and instances,
            --  because in practice they tend to be dubious in these cases. The
            --  check applies as well to rewritten array element loops where a
            --  null range may be detected statically.

            if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
               if Compile_Time_Compare (L, H, Assume_Valid => False) = GT then
                  --  Since we know the range of the loop is always null,
                  --  set the appropriate flag to remove the loop entirely
                  --  during expansion.

                  Set_Is_Null_Loop (Loop_Nod);
                  Null_Range := True;
               end if;

               --  Suppress the warning if inside a generic template or
               --  instance, since in practice they tend to be dubious in these
               --  cases since they can result from intended parameterization.

               if not Inside_A_Generic and then not In_Instance then

                  --  Specialize msg if invalid values could make the loop
                  --  non-null after all.

                  if Null_Range then
                     if Comes_From_Source (N) then
                        Error_Msg_N
                          ("??loop range is null, loop will not execute", DS);
                     end if;

                  --  Here is where the loop could execute because of
                  --  invalid values, so issue appropriate message.

                  elsif Comes_From_Source (N) then
                     Error_Msg_N
                       ("??loop range may be null, loop may not execute",
                        DS);
                     Error_Msg_N
                       ("??can only execute if invalid values are present",
                        DS);
                  end if;
               end if;

               --  In either case, suppress warnings in the body of the loop,
               --  since it is likely that these warnings will be inappropriate
               --  if the loop never actually executes, which is likely.

               Set_Suppress_Loop_Warnings (Loop_Nod);

               --  The other case for a warning is a reverse loop where the
               --  upper bound is the integer literal zero or one, and the
               --  lower bound may exceed this value.

               --  For example, we have

               --     for J in reverse N .. 1 loop

               --  In practice, this is very likely to be a case of reversing
               --  the bounds incorrectly in the range.

            elsif Reverse_Present (N)
              and then Nkind (Original_Node (H)) = N_Integer_Literal
              and then
                (Intval (Original_Node (H)) = Uint_0
                  or else
                 Intval (Original_Node (H)) = Uint_1)
            then
               --  Lower bound may in fact be known and known not to exceed
               --  upper bound (e.g. reverse 0 .. 1) and that's OK.

               if Compile_Time_Known_Value (L)
                 and then Expr_Value (L) <= Expr_Value (H)
               then
                  null;

               --  Otherwise warning is warranted

               else
                  Error_Msg_N ("??loop range may be null", DS);
                  Error_Msg_N ("\??bounds may be wrong way round", DS);
               end if;
            end if;

            --  Check if either bound is known to be outside the range of the
            --  loop parameter type, this is e.g. the case of a loop from
            --  20..X where the type is 1..19.

            --  Such a loop is dubious since either it raises CE or it executes
            --  zero times, and that cannot be useful!

            if Etype (DS) /= Any_Type
              and then not Error_Posted (DS)
              and then Nkind (DS) = N_Subtype_Indication
              and then Nkind (Constraint (DS)) = N_Range_Constraint
            then
               declare
                  LLo : constant Node_Id :=
                          Low_Bound  (Range_Expression (Constraint (DS)));
                  LHi : constant Node_Id :=
                          High_Bound (Range_Expression (Constraint (DS)));

                  Bad_Bound : Node_Id := Empty;
                  --  Suspicious loop bound

               begin
                  --  At this stage L, H are the bounds of the type, and LLo
                  --  Lhi are the low bound and high bound of the loop.

                  if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
                       or else
                     Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
                  then
                     Bad_Bound := LLo;
                  end if;

                  if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
                       or else
                     Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
                  then
                     Bad_Bound := LHi;
                  end if;

                  if Present (Bad_Bound) then
                     Error_Msg_N
                       ("suspicious loop bound out of range of "
                        & "loop subtype??", Bad_Bound);
                     Error_Msg_N
                       ("\loop executes zero times or raises "
                        & "Constraint_Error??", Bad_Bound);
                  end if;

                  if Compile_Time_Compare (LLo, LHi, Assume_Valid => False)
                    = GT
                  then
                     Error_Msg_N ("??constrained range is null",
                       Constraint (DS));

                     --  Additional constraints on modular types can be
                     --  confusing, add more information.

                     if Ekind (Etype (DS)) = E_Modular_Integer_Subtype then
                        Error_Msg_Uint_1 := Intval (LLo);
                        Error_Msg_Uint_2 := Intval (LHi);
                        Error_Msg_NE ("\iterator has modular type &, " &
                          "so the loop has bounds ^ ..^",
                          Constraint (DS),
                          Subtype_Mark (DS));
                     end if;

                     Set_Is_Null_Loop (Loop_Nod);
                     Null_Range := True;

                     --  Suppress other warnings about the body of the loop, as
                     --  it will never execute.
                     Set_Suppress_Loop_Warnings (Loop_Nod);
                  end if;
               end;
            end if;

         --  This declare block is about warnings, if we get an exception while
         --  testing for warnings, we simply abandon the attempt silently. This
         --  most likely occurs as the result of a previous error, but might
         --  just be an obscure case we have missed. In either case, not giving
         --  the warning is perfectly acceptable.

         exception
            when others =>
               --  With debug flag K we will get an exception unless an error
               --  has already occurred (useful for debugging).

               if Debug_Flag_K then
                  Check_Error_Detected;
               end if;
         end;
      end if;

      if Present (Iterator_Filter (N)) then
         Analyze_And_Resolve (Iterator_Filter (N), Standard_Boolean);
      end if;

      --  A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
      --  This check is relevant only when SPARK_Mode is on as it is not a
      --  standard Ada legality check.

      if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
         Error_Msg_N ("loop parameter cannot be volatile", Id);
      end if;
   end Analyze_Loop_Parameter_Specification;

   ----------------------------
   -- Analyze_Loop_Statement --
   ----------------------------

   procedure Analyze_Loop_Statement (N : Node_Id) is

      --  The following exception is raised by routine Prepare_Loop_Statement
      --  to avoid further analysis of a transformed loop.

      procedure Prepare_Loop_Statement
        (Iter            : Node_Id;
         Stop_Processing : out Boolean);
      --  Determine whether loop statement N with iteration scheme Iter must be
      --  transformed prior to analysis, and if so, perform it.
      --  If Stop_Processing is set to True, should stop further processing.

      ----------------------------
      -- Prepare_Loop_Statement --
      ----------------------------

      procedure Prepare_Loop_Statement
        (Iter            : Node_Id;
         Stop_Processing : out Boolean)
      is
         function Has_Sec_Stack_Default_Iterator
           (Cont_Typ : Entity_Id) return Boolean;
         pragma Inline (Has_Sec_Stack_Default_Iterator);
         --  Determine whether container type Cont_Typ has a default iterator
         --  that requires secondary stack management.

         function Is_Sec_Stack_Iteration_Primitive
           (Cont_Typ      : Entity_Id;
            Iter_Prim_Nam : Name_Id) return Boolean;
         pragma Inline (Is_Sec_Stack_Iteration_Primitive);
         --  Determine whether container type Cont_Typ has an iteration routine
         --  described by its name Iter_Prim_Nam that requires secondary stack
         --  management.

         function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean;
         pragma Inline (Is_Wrapped_In_Block);
         --  Determine whether arbitrary statement Stmt is the sole statement
         --  wrapped within some block, excluding pragmas.

         procedure Prepare_Iterator_Loop
           (Iter_Spec       : Node_Id;
            Stop_Processing : out Boolean);
         pragma Inline (Prepare_Iterator_Loop);
         --  Prepare an iterator loop with iteration specification Iter_Spec
         --  for transformation if needed.
         --  If Stop_Processing is set to True, should stop further processing.

         procedure Prepare_Param_Spec_Loop
           (Param_Spec      : Node_Id;
            Stop_Processing : out Boolean);
         pragma Inline (Prepare_Param_Spec_Loop);
         --  Prepare a discrete loop with parameter specification Param_Spec
         --  for transformation if needed.
         --  If Stop_Processing is set to True, should stop further processing.

         procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean);
         pragma Inline (Wrap_Loop_Statement);
         --  Wrap loop statement N within a block. Flag Manage_Sec_Stack must
         --  be set when the block must mark and release the secondary stack.
         --  Should stop further processing after calling this procedure.

         ------------------------------------
         -- Has_Sec_Stack_Default_Iterator --
         ------------------------------------

         function Has_Sec_Stack_Default_Iterator
           (Cont_Typ : Entity_Id) return Boolean
         is
            Def_Iter : constant Node_Id :=
                         Find_Value_Of_Aspect
                           (Cont_Typ, Aspect_Default_Iterator);
         begin
            return
              Present (Def_Iter)
                and then Present (Etype (Def_Iter))
                and then Requires_Transient_Scope (Etype (Def_Iter));
         end Has_Sec_Stack_Default_Iterator;

         --------------------------------------
         -- Is_Sec_Stack_Iteration_Primitive --
         --------------------------------------

         function Is_Sec_Stack_Iteration_Primitive
           (Cont_Typ      : Entity_Id;
            Iter_Prim_Nam : Name_Id) return Boolean
         is
            Iter_Prim : constant Entity_Id :=
                          Get_Iterable_Type_Primitive
                            (Cont_Typ, Iter_Prim_Nam);
         begin
            return
              Present (Iter_Prim)
                and then Requires_Transient_Scope (Etype (Iter_Prim));
         end Is_Sec_Stack_Iteration_Primitive;

         -------------------------
         -- Is_Wrapped_In_Block --
         -------------------------

         function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean is
            Blk_HSS  : Node_Id;
            Blk_Id   : Entity_Id;
            Blk_Stmt : Node_Id;

         begin
            Blk_Id := Current_Scope;

            --  The current context is a block. Inspect the statements of the
            --  block to determine whether it wraps Stmt.

            if Ekind (Blk_Id) = E_Block
              and then Present (Block_Node (Blk_Id))
            then
               Blk_HSS :=
                 Handled_Statement_Sequence (Parent (Block_Node (Blk_Id)));

               --  Skip leading pragmas introduced for invariant and predicate
               --  checks.

               Blk_Stmt := First (Statements (Blk_HSS));
               while Present (Blk_Stmt)
                 and then Nkind (Blk_Stmt) = N_Pragma
               loop
                  Next (Blk_Stmt);
               end loop;

               return Blk_Stmt = Stmt and then No (Next (Blk_Stmt));
            end if;

            return False;
         end Is_Wrapped_In_Block;

         ---------------------------
         -- Prepare_Iterator_Loop --
         ---------------------------

         procedure Prepare_Iterator_Loop
           (Iter_Spec       : Node_Id;
            Stop_Processing : out Boolean)
         is
            Cont_Typ : Entity_Id;
            Nam      : Node_Id;
            Nam_Copy : Node_Id;

         begin
            Stop_Processing := False;

            --  The iterator specification has syntactic errors. Transform the
            --  loop into an infinite loop in order to safely perform at least
            --  some minor analysis. This check must come first.

            if Error_Posted (Iter_Spec) then
               Set_Iteration_Scheme (N, Empty);
               Analyze (N);
               Stop_Processing := True;

            --  Nothing to do when the loop is already wrapped in a block

            elsif Is_Wrapped_In_Block (N) then
               null;

            --  Otherwise the iterator loop traverses an array or a container
            --  and appears in the form
            --
            --    for Def_Id in [reverse] Iterator_Name loop
            --    for Def_Id [: Subtyp_Indic] of [reverse] Iterable_Name loop

            else
               --  Prepare a copy of the iterated name for preanalysis. The
               --  copy is semi inserted into the tree by setting its Parent
               --  pointer.

               Nam      := Name (Iter_Spec);
               Nam_Copy := New_Copy_Tree (Nam);
               Set_Parent (Nam_Copy, Parent (Nam));

               --  Determine what the loop is iterating on

               Preanalyze_Range (Nam_Copy);
               Cont_Typ := Etype (Nam_Copy);

               --  The iterator loop is traversing an array. This case does not
               --  require any transformation.

               if Is_Array_Type (Cont_Typ) then
                  null;

               --  Otherwise unconditionally wrap the loop statement within
               --  a block. The expansion of iterator loops may relocate the
               --  iterator outside the loop, thus "leaking" its entity into
               --  the enclosing scope. Wrapping the loop statement allows
               --  for multiple iterator loops using the same iterator name
               --  to coexist within the same scope.
               --
               --  The block must manage the secondary stack when the iterator
               --  loop is traversing a container using either
               --
               --    * A default iterator obtained on the secondary stack
               --
               --    * Call to Iterate where the iterator is returned on the
               --      secondary stack.
               --
               --    * Combination of First, Next, and Has_Element where the
               --      first two return a cursor on the secondary stack.

               else
                  Wrap_Loop_Statement
                    (Manage_Sec_Stack =>
                       Has_Sec_Stack_Default_Iterator (Cont_Typ)
                         or else Has_Sec_Stack_Call (Nam_Copy)
                         or else Is_Sec_Stack_Iteration_Primitive
                                   (Cont_Typ, Name_First)
                         or else Is_Sec_Stack_Iteration_Primitive
                                   (Cont_Typ, Name_Next));
                  Stop_Processing := True;
               end if;
            end if;
         end Prepare_Iterator_Loop;

         -----------------------------
         -- Prepare_Param_Spec_Loop --
         -----------------------------

         procedure Prepare_Param_Spec_Loop
           (Param_Spec      : Node_Id;
            Stop_Processing : out Boolean)
         is
            High     : Node_Id;
            Low      : Node_Id;
            Rng      : Node_Id;
            Rng_Copy : Node_Id;
            Rng_Typ  : Entity_Id;

         begin
            Stop_Processing := False;
            Rng := Discrete_Subtype_Definition (Param_Spec);

            --  Nothing to do when the loop is already wrapped in a block

            if Is_Wrapped_In_Block (N) then
               null;

            --  The parameter specification appears in the form
            --
            --    for Def_Id in Subtype_Mark Constraint loop

            elsif Nkind (Rng) = N_Subtype_Indication
              and then Nkind (Range_Expression (Constraint (Rng))) = N_Range
            then
               Rng := Range_Expression (Constraint (Rng));

               --  Preanalyze the bounds of the range constraint, setting
               --  parent fields to associate the copied bounds with the range,
               --  allowing proper tree climbing during preanalysis.

               Low  := New_Copy_Tree (Low_Bound  (Rng));
               High := New_Copy_Tree (High_Bound (Rng));

               Set_Parent (Low, Rng);
               Set_Parent (High, Rng);

               Preanalyze (Low);
               Preanalyze (High);

               --  The bounds contain at least one function call that returns
               --  on the secondary stack. Note that the loop must be wrapped
               --  only when such a call exists.

               if Has_Sec_Stack_Call (Low) or else Has_Sec_Stack_Call (High)
               then
                  Wrap_Loop_Statement (Manage_Sec_Stack => True);
                  Stop_Processing := True;
               end if;

            --  Otherwise the parameter specification appears in the form
            --
            --    for Def_Id in Range loop

            else
               --  Prepare a copy of the discrete range for preanalysis. The
               --  copy is semi inserted into the tree by setting its Parent
               --  pointer.

               Rng_Copy := New_Copy_Tree (Rng);
               Set_Parent (Rng_Copy, Parent (Rng));

               --  Determine what the loop is iterating on

               Preanalyze_Range (Rng_Copy);
               Rng_Typ := Etype (Rng_Copy);

               --  Wrap the loop statement within a block in order to manage
               --  the secondary stack when the discrete range is
               --
               --    * Either a Forward_Iterator or a Reverse_Iterator
               --
               --    * Function call whose return type requires finalization
               --      actions.

               --  ??? it is unclear why using Has_Sec_Stack_Call directly on
               --  the discrete range causes the freeze node of an itype to be
               --  in the wrong scope in complex assertion expressions.

               if Is_Iterator (Rng_Typ)
                 or else (Nkind (Rng_Copy) = N_Function_Call
                           and then Needs_Finalization (Rng_Typ))
               then
                  Wrap_Loop_Statement (Manage_Sec_Stack => True);
                  Stop_Processing := True;
               end if;
            end if;
         end Prepare_Param_Spec_Loop;

         -------------------------
         -- Wrap_Loop_Statement --
         -------------------------

         procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean) is
            Loc : constant Source_Ptr := Sloc (N);

            Blk    : Node_Id;
            Blk_Id : Entity_Id;

         begin
            Blk :=
              Make_Block_Statement (Loc,
                Declarations               => New_List,
                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc,
                    Statements => New_List (Relocate_Node (N))));

            Add_Block_Identifier (Blk, Blk_Id);
            Set_Uses_Sec_Stack (Blk_Id, Manage_Sec_Stack);

            Rewrite (N, Blk);
            Analyze (N);
         end Wrap_Loop_Statement;

         --  Local variables

         Iter_Spec  : constant Node_Id := Iterator_Specification (Iter);
         Param_Spec : constant Node_Id := Loop_Parameter_Specification (Iter);

      --  Start of processing for Prepare_Loop_Statement

      begin
         Stop_Processing := False;

         if Present (Iter_Spec) then
            Prepare_Iterator_Loop (Iter_Spec, Stop_Processing);

         elsif Present (Param_Spec) then
            Prepare_Param_Spec_Loop (Param_Spec, Stop_Processing);
         end if;
      end Prepare_Loop_Statement;

      --  Local declarations

      Id   : constant Node_Id := Identifier (N);
      Iter : constant Node_Id := Iteration_Scheme (N);
      Loc  : constant Source_Ptr := Sloc (N);
      Ent  : Entity_Id;
      Stmt : Node_Id;

   --  Start of processing for Analyze_Loop_Statement

   begin
      if Present (Id) then

         --  Make name visible, e.g. for use in exit statements. Loop labels
         --  are always considered to be referenced.

         Analyze (Id);
         Ent := Entity (Id);

         --  Guard against serious error (typically, a scope mismatch when
         --  semantic analysis is requested) by creating loop entity to
         --  continue analysis.

         if No (Ent) then
            if Total_Errors_Detected /= 0 then
               Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
            else
               raise Program_Error;
            end if;

         --  Verify that the loop name is hot hidden by an unrelated
         --  declaration in an inner scope.

         elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
            Error_Msg_Sloc := Sloc (Ent);
            Error_Msg_N ("implicit label declaration for & is hidden#", Id);

            if Present (Homonym (Ent))
              and then Ekind (Homonym (Ent)) = E_Label
            then
               Set_Entity (Id, Ent);
               Mutate_Ekind (Ent, E_Loop);
            end if;

         else
            Generate_Reference (Ent, N, ' ');
            Generate_Definition (Ent);

            --  If we found a label, mark its type. If not, ignore it, since it
            --  means we have a conflicting declaration, which would already
            --  have been diagnosed at declaration time. Set Label_Construct
            --  of the implicit label declaration, which is not created by the
            --  parser for generic units.

            if Ekind (Ent) = E_Label then
               Reinit_Field_To_Zero (Ent, F_Enclosing_Scope);
               Reinit_Field_To_Zero (Ent, F_Reachable);
               Mutate_Ekind (Ent, E_Loop);

               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Ent), N);
               end if;
            end if;
         end if;

      --  Case of no identifier present. Create one and attach it to the
      --  loop statement for use as a scope and as a reference for later
      --  expansions. Indicate that the label does not come from source,
      --  and attach it to the loop statement so it is part of the tree,
      --  even without a full declaration.

      else
         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
         Set_Etype  (Ent, Standard_Void_Type);
         Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
         Set_Parent (Ent, N);
         Set_Has_Created_Identifier (N);
      end if;

      --  Determine whether the loop statement must be transformed prior to
      --  analysis, and if so, perform it. This early modification is needed
      --  when:
      --
      --    * The loop has an erroneous iteration scheme. In this case the
      --      loop is converted into an infinite loop in order to perform
      --      minor analysis.
      --
      --    * The loop is an Ada 2012 iterator loop. In this case the loop is
      --      wrapped within a block to provide a local scope for the iterator.
      --      If the iterator specification requires the secondary stack in any
      --      way, the block is marked in order to manage it.
      --
      --    * The loop is using a parameter specification where the discrete
      --      range requires the secondary stack. In this case the loop is
      --      wrapped within a block in order to manage the secondary stack.

      if Present (Iter) then
         declare
            Stop_Processing : Boolean;
         begin
            Prepare_Loop_Statement (Iter, Stop_Processing);

            if Stop_Processing then
               return;
            end if;
         end;
      end if;

      --  Kill current values on entry to loop, since statements in the body of
      --  the loop may have been executed before the loop is entered. Similarly
      --  we kill values after the loop, since we do not know that the body of
      --  the loop was executed.

      Kill_Current_Values;
      Push_Scope (Ent);
      Analyze_Iteration_Scheme (Iter);

      --  Check for following case which merits a warning if the type E of is
      --  a multi-dimensional array (and no explicit subscript ranges present).

      --      for J in E'Range
      --         for K in E'Range

      if Present (Iter)
        and then Present (Loop_Parameter_Specification (Iter))
      then
         declare
            LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
            DSD : constant Node_Id :=
                    Original_Node (Discrete_Subtype_Definition (LPS));
         begin
            if Nkind (DSD) = N_Attribute_Reference
              and then Attribute_Name (DSD) = Name_Range
              and then No (Expressions (DSD))
            then
               declare
                  Typ : constant Entity_Id := Etype (Prefix (DSD));
               begin
                  if Is_Array_Type (Typ)
                    and then Number_Dimensions (Typ) > 1
                    and then Nkind (Parent (N)) = N_Loop_Statement
                    and then Present (Iteration_Scheme (Parent (N)))
                  then
                     declare
                        OIter : constant Node_Id :=
                          Iteration_Scheme (Parent (N));
                        OLPS  : constant Node_Id :=
                          Loop_Parameter_Specification (OIter);
                        ODSD  : constant Node_Id :=
                          Original_Node (Discrete_Subtype_Definition (OLPS));
                     begin
                        if Nkind (ODSD) = N_Attribute_Reference
                          and then Attribute_Name (ODSD) = Name_Range
                          and then No (Expressions (ODSD))
                          and then Etype (Prefix (ODSD)) = Typ
                        then
                           Error_Msg_Sloc := Sloc (ODSD);
                           Error_Msg_N
                             ("inner range same as outer range#??", DSD);
                        end if;
                     end;
                  end if;
               end;
            end if;
         end;
      end if;

      --  Analyze the statements of the body except in the case of an Ada 2012
      --  iterator with the expander active. In this case the expander will do
      --  a rewrite of the loop into a while loop. We will then analyze the
      --  loop body when we analyze this while loop.

      --  We need to do this delay because if the container is for indefinite
      --  types the actual subtype of the components will only be determined
      --  when the cursor declaration is analyzed.

      --  If the expander is not active then we want to analyze the loop body
      --  now even in the Ada 2012 iterator case, since the rewriting will not
      --  be done. Insert the loop variable in the current scope, if not done
      --  when analysing the iteration scheme. Set its kind properly to detect
      --  improper uses in the loop body.

      --  In GNATprove mode, we do one of the above depending on the kind of
      --  loop. If it is an iterator over an array, then we do not analyze the
      --  loop now. We will analyze it after it has been rewritten by the
      --  special SPARK expansion which is activated in GNATprove mode. We need
      --  to do this so that other expansions that should occur in GNATprove
      --  mode take into account the specificities of the rewritten loop, in
      --  particular the introduction of a renaming (which needs to be
      --  expanded).

      --  In other cases in GNATprove mode then we want to analyze the loop
      --  body now, since no rewriting will occur. Within a generic the
      --  GNATprove mode is irrelevant, we must analyze the generic for
      --  non-local name capture.

      if Present (Iter)
        and then Present (Iterator_Specification (Iter))
      then
         if GNATprove_Mode
           and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
           and then not Inside_A_Generic
         then
            null;

         elsif not Expander_Active then
            declare
               I_Spec : constant Node_Id   := Iterator_Specification (Iter);
               Id     : constant Entity_Id := Defining_Identifier (I_Spec);

            begin
               if Scope (Id) /= Current_Scope then
                  Enter_Name (Id);
               end if;

               --  In an element iterator, the loop parameter is a variable if
               --  the domain of iteration (container or array) is a variable.

               if not Of_Present (I_Spec)
                 or else not Is_Variable (Name (I_Spec))
               then
                  Mutate_Ekind (Id, E_Loop_Parameter);
               end if;
            end;

            Analyze_Statements (Statements (N));
         end if;

      else
         --  Pre-Ada2012 for-loops and while loops

         Analyze_Statements (Statements (N));
      end if;

      --  If the loop has no side effects, mark it for removal.

      if Side_Effect_Free_Loop (N) then
         Set_Is_Null_Loop (N);
      end if;

      --  When the iteration scheme of a loop contains attribute 'Loop_Entry,
      --  the loop is transformed into a conditional block. Retrieve the loop.

      Stmt := N;

      if Subject_To_Loop_Entry_Attributes (Stmt) then
         Stmt := Find_Loop_In_Conditional_Block (Stmt);
      end if;

      --  Finish up processing for the loop. We kill all current values, since
      --  in general we don't know if the statements in the loop have been
      --  executed. We could do a bit better than this with a loop that we
      --  know will execute at least once, but it's not worth the trouble and
      --  the front end is not in the business of flow tracing.

      Process_End_Label (Stmt, 'e', Ent);
      End_Scope;
      Kill_Current_Values;

      --  Check for infinite loop. Skip check for generated code, since it
      --  justs waste time and makes debugging the routine called harder.

      --  Note that we have to wait till the body of the loop is fully analyzed
      --  before making this call, since Check_Infinite_Loop_Warning relies on
      --  being able to use semantic visibility information to find references.

      if Comes_From_Source (Stmt) then
         Check_Infinite_Loop_Warning (Stmt);
      end if;

      --  Code after loop is unreachable if the loop has no WHILE or FOR and
      --  contains no EXIT statements within the body of the loop.

      if No (Iter) and then not Has_Exit (Ent) then
         Check_Unreachable_Code (Stmt);
      end if;
   end Analyze_Loop_Statement;

   ----------------------------
   -- Analyze_Null_Statement --
   ----------------------------

   --  Note: the semantics of the null statement is implemented by a single
   --  null statement, too bad everything isn't as simple as this.

   procedure Analyze_Null_Statement (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      null;
   end Analyze_Null_Statement;

   -------------------------
   -- Analyze_Target_Name --
   -------------------------

   procedure Analyze_Target_Name (N : Node_Id) is
      procedure Report_Error;
      --  Complain about illegal use of target_name and rewrite it into unknown
      --  identifier.

      ------------------
      -- Report_Error --
      ------------------

      procedure Report_Error is
      begin
         Error_Msg_N
           ("must appear in the right-hand side of an assignment statement",
             N);
         Rewrite (N, New_Occurrence_Of (Any_Id, Sloc (N)));
      end Report_Error;

   --  Start of processing for Analyze_Target_Name

   begin
      --  A target name has the type of the left-hand side of the enclosing
      --  assignment.

      --  First, verify that the context is the right-hand side of an
      --  assignment statement.

      if No (Current_Assignment) then
         Report_Error;
         return;
      end if;

      declare
         Current : Node_Id := N;
         Context : Node_Id := Parent (N);
      begin
         while Present (Context) loop

            --  Check if target_name appears in the expression of the enclosing
            --  assignment.

            if Nkind (Context) = N_Assignment_Statement then
               if Current = Expression (Context) then
                  pragma Assert (Context = Current_Assignment);
                  Set_Etype (N, Etype (Name (Current_Assignment)));
               else
                  Report_Error;
               end if;
               return;

            --  Prevent the search from going too far

            elsif Is_Body_Or_Package_Declaration (Context) then
               Report_Error;
               return;
            end if;

            Current := Context;
            Context := Parent (Context);
         end loop;

         Report_Error;
      end;
   end Analyze_Target_Name;

   ------------------------
   -- Analyze_Statements --
   ------------------------

   procedure Analyze_Statements (L : List_Id) is
      Lab : Entity_Id;
      S   : Node_Id;

   begin
      --  The labels declared in the statement list are reachable from
      --  statements in the list. We do this as a prepass so that any goto
      --  statement will be properly flagged if its target is not reachable.
      --  This is not required, but is nice behavior.

      S := First (L);
      while Present (S) loop
         if Nkind (S) = N_Label then
            Analyze (Identifier (S));
            Lab := Entity (Identifier (S));

            --  If we found a label mark it as reachable

            if Ekind (Lab) = E_Label then
               Generate_Definition (Lab);
               Set_Reachable (Lab);

               if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Lab), S);
               end if;

            --  If we failed to find a label, it means the implicit declaration
            --  of the label was hidden. A for-loop parameter can do this to
            --  a label with the same name inside the loop, since the implicit
            --  label declaration is in the innermost enclosing body or block
            --  statement.

            else
               Error_Msg_Sloc := Sloc (Lab);
               Error_Msg_N
                 ("implicit label declaration for & is hidden#",
                  Identifier (S));
            end if;
         end if;

         Next (S);
      end loop;

      --  Perform semantic analysis on all statements

      Conditional_Statements_Begin;

      S := First (L);
      while Present (S) loop
         Analyze (S);

         --  Remove dimension in all statements

         Remove_Dimension_In_Statement (S);
         Next (S);
      end loop;

      Conditional_Statements_End;

      --  Make labels unreachable. Visibility is not sufficient, because labels
      --  in one if-branch for example are not reachable from the other branch,
      --  even though their declarations are in the enclosing declarative part.

      S := First (L);
      while Present (S) loop
         if Nkind (S) = N_Label
           and then Ekind (Entity (Identifier (S))) = E_Label
         then
            Set_Reachable (Entity (Identifier (S)), False);
         end if;

         Next (S);
      end loop;
   end Analyze_Statements;

   ----------------------------
   -- Check_Unreachable_Code --
   ----------------------------

   procedure Check_Unreachable_Code (N : Node_Id) is
      Error_Node : Node_Id;
      Nxt        : Node_Id;
      P          : Node_Id;

   begin
      if Is_List_Member (N) and then Comes_From_Source (N) then
         Nxt := Original_Node (Next (N));

         --  Skip past pragmas

         while Nkind (Nxt) = N_Pragma loop
            Nxt := Original_Node (Next (Nxt));
         end loop;

         --  If a label follows us, then we never have dead code, since someone
         --  could branch to the label, so we just ignore it.

         if Nkind (Nxt) = N_Label then
            return;

         --  Otherwise see if we have a real statement following us

         elsif Present (Nxt)
           and then Comes_From_Source (Nxt)
           and then Is_Statement (Nxt)
         then
            --  Special very annoying exception. If we have a return that
            --  follows a raise, then we allow it without a warning, since
            --  the Ada RM annoyingly requires a useless return here.

            if Nkind (Original_Node (N)) /= N_Raise_Statement
              or else Nkind (Nxt) /= N_Simple_Return_Statement
            then
               --  The rather strange shenanigans with the warning message
               --  here reflects the fact that Kill_Dead_Code is very good at
               --  removing warnings in deleted code, and this is one warning
               --  we would prefer NOT to have removed.

               Error_Node := Nxt;

               --  If we have unreachable code, analyze and remove the
               --  unreachable code, since it is useless and we don't want
               --  to generate junk warnings.

               --  We skip this step if we are not in code generation mode
               --  or CodePeer mode.

               --  This is the one case where we remove dead code in the
               --  semantics as opposed to the expander, and we do not want
               --  to remove code if we are not in code generation mode, since
               --  this messes up the tree or loses useful information for
               --  CodePeer.

               --  Note that one might react by moving the whole circuit to
               --  exp_ch5, but then we lose the warning in -gnatc mode.

               if Operating_Mode = Generate_Code
                 and then not CodePeer_Mode
               then
                  loop
                     Nxt := Next (N);

                     --  Quit deleting when we have nothing more to delete
                     --  or if we hit a label (since someone could transfer
                     --  control to a label, so we should not delete it).

                     exit when No (Nxt) or else Nkind (Nxt) = N_Label;

                     --  Statement/declaration is to be deleted

                     Analyze (Nxt);
                     Remove (Nxt);
                     Kill_Dead_Code (Nxt);
                  end loop;
               end if;

               Error_Msg
                 ("??unreachable code!", Sloc (Error_Node), Error_Node);
            end if;

         --  If the unconditional transfer of control instruction is the
         --  last statement of a sequence, then see if our parent is one of
         --  the constructs for which we count unblocked exits, and if so,
         --  adjust the count.

         else
            P := Parent (N);

            --  Statements in THEN part or ELSE part of IF statement

            if Nkind (P) = N_If_Statement then
               null;

            --  Statements in ELSIF part of an IF statement

            elsif Nkind (P) = N_Elsif_Part then
               P := Parent (P);
               pragma Assert (Nkind (P) = N_If_Statement);

            --  Statements in CASE statement alternative

            elsif Nkind (P) = N_Case_Statement_Alternative then
               P := Parent (P);
               pragma Assert (Nkind (P) = N_Case_Statement);

            --  Statements in body of block

            elsif Nkind (P) = N_Handled_Sequence_Of_Statements
              and then Nkind (Parent (P)) = N_Block_Statement
            then
               --  The original loop is now placed inside a block statement
               --  due to the expansion of attribute 'Loop_Entry. Return as
               --  this is not a "real" block for the purposes of exit
               --  counting.

               if Nkind (N) = N_Loop_Statement
                 and then Subject_To_Loop_Entry_Attributes (N)
               then
                  return;
               end if;

            --  Statements in exception handler in a block

            elsif Nkind (P) = N_Exception_Handler
              and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
              and then Nkind (Parent (Parent (P))) = N_Block_Statement
            then
               null;

            --  None of these cases, so return

            else
               return;
            end if;

            --  This was one of the cases we are looking for (i.e. the parent
            --  construct was IF, CASE or block) so decrement count.

            Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
         end if;
      end if;
   end Check_Unreachable_Code;

   ------------------------
   -- Has_Sec_Stack_Call --
   ------------------------

   function Has_Sec_Stack_Call (N : Node_Id) return Boolean is
      function Check_Call (N : Node_Id) return Traverse_Result;
      --  Check if N is a function call which uses the secondary stack

      ----------------
      -- Check_Call --
      ----------------

      function Check_Call (N : Node_Id) return Traverse_Result is
         Nam  : Node_Id;
         Subp : Entity_Id;
         Typ  : Entity_Id;

      begin
         if Nkind (N) = N_Function_Call then
            Nam := Name (N);

            --  Obtain the subprogram being invoked

            loop
               if Nkind (Nam) = N_Explicit_Dereference then
                  Nam := Prefix (Nam);

               elsif Nkind (Nam) = N_Selected_Component then
                  Nam := Selector_Name (Nam);

               else
                  exit;
               end if;
            end loop;

            Subp := Entity (Nam);

            if Present (Subp) then
               Typ := Etype (Subp);

               if Requires_Transient_Scope (Typ) then
                  return Abandon;

               elsif Sec_Stack_Needed_For_Return (Subp) then
                  return Abandon;
               end if;
            end if;
         end if;

         --  Continue traversing the tree

         return OK;
      end Check_Call;

      function Check_Calls is new Traverse_Func (Check_Call);

   --  Start of processing for Has_Sec_Stack_Call

   begin
      return Check_Calls (N) = Abandon;
   end Has_Sec_Stack_Call;

   ----------------------
   -- Preanalyze_Range --
   ----------------------

   procedure Preanalyze_Range (R_Copy : Node_Id) is
      Save_Analysis : constant Boolean := Full_Analysis;
      Typ           : Entity_Id;

   begin
      Full_Analysis := False;
      Expander_Mode_Save_And_Set (False);

      --  In addition to the above we must explicitly suppress the generation
      --  of freeze nodes that might otherwise be generated during resolution
      --  of the range (e.g. if given by an attribute that will freeze its
      --  prefix).

      Set_Must_Not_Freeze (R_Copy);

      if Nkind (R_Copy) = N_Attribute_Reference then
         Set_Must_Not_Freeze (Prefix (R_Copy));
      end if;

      Analyze (R_Copy);

      if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then

         --  Apply preference rules for range of predefined integer types, or
         --  check for array or iterable construct for "of" iterator, or
         --  diagnose true ambiguity.

         declare
            I     : Interp_Index;
            It    : Interp;
            Found : Entity_Id := Empty;

         begin
            Get_First_Interp (R_Copy, I, It);
            while Present (It.Typ) loop
               if Is_Discrete_Type (It.Typ) then
                  if No (Found) then
                     Found := It.Typ;
                  else
                     if Scope (Found) = Standard_Standard then
                        null;

                     elsif Scope (It.Typ) = Standard_Standard then
                        Found := It.Typ;

                     else
                        --  Both of them are user-defined

                        Error_Msg_N
                          ("ambiguous bounds in range of iteration", R_Copy);
                        Error_Msg_N ("\possible interpretations:", R_Copy);
                        Error_Msg_NE ("\\}", R_Copy, Found);
                        Error_Msg_NE ("\\}", R_Copy, It.Typ);
                        exit;
                     end if;
                  end if;

               elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
                 and then Of_Present (Parent (R_Copy))
               then
                  if Is_Array_Type (It.Typ)
                    or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
                    or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
                    or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
                  then
                     if No (Found) then
                        Found := It.Typ;
                        Set_Etype (R_Copy, It.Typ);

                     else
                        Error_Msg_N ("ambiguous domain of iteration", R_Copy);
                     end if;
                  end if;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end;
      end if;

      --  Subtype mark in iteration scheme

      if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
         null;

      --  Expression in range, or Ada 2012 iterator

      elsif Nkind (R_Copy) in N_Subexpr then
         Resolve (R_Copy);
         Typ := Etype (R_Copy);

         if Is_Discrete_Type (Typ) then
            null;

         --  Check that the resulting object is an iterable container

         elsif Has_Aspect (Typ, Aspect_Iterator_Element)
           or else Has_Aspect (Typ, Aspect_Constant_Indexing)
           or else Has_Aspect (Typ, Aspect_Variable_Indexing)
         then
            null;

         --  The expression may yield an implicit reference to an iterable
         --  container. Insert explicit dereference so that proper type is
         --  visible in the loop.

         elsif Has_Implicit_Dereference (Etype (R_Copy)) then
            Build_Explicit_Dereference
              (R_Copy, Get_Reference_Discriminant (Etype (R_Copy)));
         end if;
      end if;

      Expander_Mode_Restore;
      Full_Analysis := Save_Analysis;
   end Preanalyze_Range;

end Sem_Ch5;