1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 2 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Einfo.Utils; use Einfo.Utils;
with Ghost; use Ghost;
with Namet; use Namet;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem_Ch8; use Sem_Ch8;
with Sem_Dim; use Sem_Dim;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Stand; use Stand;
with Uintp; use Uintp;
package body Sem_Ch2 is
-------------------------------
-- Analyze_Character_Literal --
-------------------------------
procedure Analyze_Character_Literal (N : Node_Id) is
begin
-- The type is eventually inherited from the context. If expansion
-- has already established the proper type, do not modify it.
if No (Etype (N)) then
Set_Etype (N, Any_Character);
end if;
Set_Is_Static_Expression (N);
if Comes_From_Source (N)
and then not In_Character_Range (UI_To_CC (Char_Literal_Value (N)))
then
Check_Restriction (No_Wide_Characters, N);
end if;
end Analyze_Character_Literal;
------------------------
-- Analyze_Identifier --
------------------------
procedure Analyze_Identifier (N : Node_Id) is
begin
-- Ignore call if prior errors, and identifier has no name, since
-- this is the result of some kind of previous error generating a
-- junk identifier.
if not Is_Valid_Name (Chars (N)) and then Total_Errors_Detected /= 0 then
return;
else
Find_Direct_Name (N);
end if;
-- A Ghost entity must appear in a specific context. Only do this
-- checking on non-overloaded expressions, as otherwise we need to
-- wait for resolution, and the checking is done in Resolve_Entity_Name.
if Nkind (N) in N_Expanded_Name | N_Identifier
and then Present (Entity (N))
and then Is_Ghost_Entity (Entity (N))
and then not Is_Overloaded (N)
then
Check_Ghost_Context (Entity (N), N);
end if;
Analyze_Dimension (N);
end Analyze_Identifier;
-----------------------------
-- Analyze_Integer_Literal --
-----------------------------
procedure Analyze_Integer_Literal (N : Node_Id) is
begin
-- As a lexical element, an integer literal has type Universal_Integer,
-- i.e., is compatible with any integer type. This is semantically
-- consistent and simplifies type checking and subsequent constant
-- folding when needed. An exception is caused by 64-bit modular types,
-- whose upper bound is not representable in a nonstatic context that
-- will use 64-bit integers at run time. For such cases, we need to
-- preserve the information that the analyzed literal has that modular
-- type. For simplicity, we preserve the information for all integer
-- literals that result from a modular operation. This happens after
-- prior analysis (or construction) of the literal, and after type
-- checking and resolution.
if No (Etype (N)) or else not Is_Modular_Integer_Type (Etype (N)) then
Set_Etype (N, Universal_Integer);
end if;
Set_Is_Static_Expression (N);
end Analyze_Integer_Literal;
--------------------------
-- Analyze_Real_Literal --
--------------------------
procedure Analyze_Real_Literal (N : Node_Id) is
begin
Set_Etype (N, Universal_Real);
Set_Is_Static_Expression (N);
end Analyze_Real_Literal;
----------------------------
-- Analyze_String_Literal --
----------------------------
procedure Analyze_String_Literal (N : Node_Id) is
begin
-- The type is eventually inherited from the context. If expansion
-- has already established the proper type, do not modify it.
if No (Etype (N)) then
Set_Etype (N, Any_String);
end if;
-- String literals are static in Ada 95. Note that if the subtype
-- turns out to be non-static, then the Is_Static_Expression flag
-- will be reset in Eval_String_Literal.
if Ada_Version >= Ada_95 then
Set_Is_Static_Expression (N);
end if;
if Comes_From_Source (N) and then Has_Wide_Character (N) then
Check_Restriction (No_Wide_Characters, N);
end if;
end Analyze_String_Literal;
end Sem_Ch2;
|