aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/sem_case.adb
blob: 0842f9412864c6797e037bf7c9983eb13c7fad5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ C A S E                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1996-2023, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;          use Atree;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Elists;         use Elists;
with Errout;         use Errout;
with Namet;          use Namet;
with Nlists;         use Nlists;
with Nmake;          use Nmake;
with Opt;            use Opt;
with Sem;            use Sem;
with Sem_Aux;        use Sem_Aux;
with Sem_Eval;       use Sem_Eval;
with Sem_Res;        use Sem_Res;
with Sem_Util;       use Sem_Util;
with Sem_Type;       use Sem_Type;
with Snames;         use Snames;
with Stand;          use Stand;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Stringt;        use Stringt;
with Table;
with Tbuild;         use Tbuild;
with Uintp;          use Uintp;
with Warnsw;         use Warnsw;

with Ada.Unchecked_Deallocation;

with GNAT.Heap_Sort_G;
with GNAT.Sets;

package body Sem_Case is

   type Choice_Bounds is record
     Lo   : Node_Id;
     Hi   : Node_Id;
     Node : Node_Id;
   end record;
   --  Represent one choice bounds entry with Lo and Hi values, Node points
   --  to the choice node itself.

   type Choice_Table_Type is array (Nat range <>) of Choice_Bounds;
   --  Table type used to sort the choices present in a case statement or
   --  record variant. The actual entries are stored in 1 .. Last, but we
   --  have a 0 entry for use in sorting.

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Check_Choice_Set
     (Choice_Table   : in out Choice_Table_Type;
      Bounds_Type    : Entity_Id;
      Subtyp         : Entity_Id;
      Others_Present : Boolean;
      Case_Node      : Node_Id);
   --  This is the procedure which verifies that a set of case alternatives
   --  or record variant choices has no duplicates, and covers the range
   --  specified by Bounds_Type. Choice_Table contains the discrete choices
   --  to check. These must start at position 1.
   --
   --  Furthermore Choice_Table (0) must exist. This element is used by
   --  the sorting algorithm as a temporary. Others_Present is a flag
   --  indicating whether or not an Others choice is present. Finally
   --  Msg_Sloc gives the source location of the construct containing the
   --  choices in the Choice_Table.
   --
   --  Bounds_Type is the type whose range must be covered by the alternatives
   --
   --  Subtyp is the subtype of the expression. If its bounds are nonstatic
   --  the alternatives must cover its base type.

   function Choice_Image (Value : Uint; Ctype : Entity_Id) return Name_Id;
   --  Given a Pos value of enumeration type Ctype, returns the name
   --  ID of an appropriate string to be used in error message output.

   function Has_Static_Discriminant_Constraint
     (Subtyp : Entity_Id) return Boolean;
   --  Returns True if the given subtype is subject to a discriminant
   --  constraint and at least one of the constraint values is nonstatic.

   package Composite_Case_Ops is

      Simplified_Composite_Coverage_Rules : constant Boolean := True;
      --  Indicates that, as a temporary stopgap, we implement
      --  simpler coverage-checking rules when casing on a
      --  composite selector:
      --     1) Require that an Others choice must be given, regardless
      --        of whether all possible values are covered explicitly.
      --     2) No legality checks regarding overlapping choices.

      function Box_Value_Required (Subtyp : Entity_Id) return Boolean;
      --  If result is True, then the only allowed value (in a choice
      --  aggregate) for a component of this (sub)type is a box. This rule
      --  means that such a component can be ignored in case alternative
      --  selection. This in turn implies that it is ok if the component
      --  type doesn't meet the usual restrictions, such as not being an
      --  access/task/protected type, since nobody is going to look
      --  at it.

      function Choice_Count (Alternatives : List_Id) return Nat;
      --  The sum of the number of choices for each alternative in the given
      --  list.

      function Normalized_Case_Expr_Type
        (Case_Statement : Node_Id) return Entity_Id;
      --  Usually returns the Etype of the selector expression of the
      --  case statement. However, in the case of a constrained composite
      --  subtype with a nonstatic constraint, returns the unconstrained
      --  base type.

      function Scalar_Part_Count (Subtyp : Entity_Id) return Nat;
      --  Given the composite type Subtyp of a case selector, returns the
      --  number of scalar parts in an object of this type. This is the
      --  dimensionality of the associated Cartesian product space.

      package Array_Case_Ops is
         function Array_Choice_Length (Choice : Node_Id) return Nat;
         --  Given a choice expression of an array type, returns its length.

         function Unconstrained_Array_Effective_Length
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat;
         --  If the nominal subtype of the case selector is unconstrained,
         --  then use the length of the longest choice of the case statement.
         --  Components beyond that index value will not influence the case
         --  selection decision.

         function Unconstrained_Array_Scalar_Part_Count
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat;
         --  Same as Scalar_Part_Count except that the value used for the
         --  "length" of the array subtype being cased on is determined by
         --  calling Unconstrained_Array_Effective_Length.
      end Array_Case_Ops;

      generic
         Case_Statement : Node_Id;
      package Choice_Analysis is

         use Array_Case_Ops;

         type Alternative_Id is
           new Int range 1 .. List_Length (Alternatives (Case_Statement));
         type Choice_Id is
           new Int range 1 .. Choice_Count (Alternatives (Case_Statement));

         Case_Expr_Type : constant Entity_Id :=
           Normalized_Case_Expr_Type (Case_Statement);

         Unconstrained_Array_Case : constant Boolean :=
           Is_Array_Type (Case_Expr_Type)
             and then not Is_Constrained (Case_Expr_Type);

         --  If Unconstrained_Array_Case is True, choice lengths may differ:
         --    when "Aaa" | "Bb" | "C" | "" =>
         --
         --  Strictly speaking, the name "Unconstrained_Array_Case" is
         --  slightly imprecise; a subtype with a nonstatic constraint is
         --  also treated as unconstrained (see Normalize_Case_Expr_Type).

         type Part_Id is new Int range
           1 .. (if Unconstrained_Array_Case
                 then Unconstrained_Array_Scalar_Part_Count
                        (Case_Expr_Type, Case_Statement)
                 else Scalar_Part_Count (Case_Expr_Type));

         type Discrete_Range_Info is
           record
              Low, High : Uint;
           end record;
         function "=" (X, Y : Discrete_Range_Info) return Boolean is abstract;
         --  Here (and below), we don't use "=", which is a good thing,
         --  because it wouldn't work, because the user-defined "=" on
         --  Uint does not compose according to Ada rules.

         type Composite_Range_Info is array (Part_Id) of Discrete_Range_Info;
         function "=" (X, Y : Composite_Range_Info) return Boolean is abstract;

         type Choice_Range_Info (Is_Others : Boolean := False) is
           record
              case Is_Others is
                 when False =>
                    Ranges : Composite_Range_Info;
                 when True =>
                    null;
              end case;
           end record;
         pragma Annotate (CodePeer, False_Positive, "raise exception",
                          "function is abstract, hence never called");
         function "=" (X, Y : Choice_Range_Info) return Boolean is abstract;

         type Choices_Range_Info is array (Choice_Id) of Choice_Range_Info;

         package Value_Sets is

            type Value_Set is private;
            --  A set of points in the Cartesian product space defined
            --  by the composite type of the case selector.
            --  Implemented as an access type.

            type Set_Comparison is
              (Disjoint, Equal, Contains, Contained_By, Overlaps);

            function Compare (S1, S2 : Value_Set) return Set_Comparison;
            --  If either argument (or both) is empty, result is Disjoint.
            --  Otherwise, result is Equal if the two sets are equal.

            Empty : constant Value_Set;

            function Matching_Values
              (Info : Composite_Range_Info) return Value_Set;
            --  The Cartesian product of the given array of ranges
            --  (excluding any values outside the Cartesian product of the
            --  component ranges).

            procedure Union (Target : in out Value_Set; Source : Value_Set);
            --  Add elements of Source into Target

            procedure Remove (Target : in out Value_Set; Source : Value_Set);
            --  Remove elements of Source from Target

            function Complement_Is_Empty (Set : Value_Set) return Boolean;
            --  Return True iff the set is "maximal", in the sense that it
            --  includes every value in the Cartesian product of the
            --  component ranges.

            procedure Free_Value_Sets;
            --  Reclaim storage associated with implementation of this package.

         private
            type Value_Set is new Natural;
            --  An index for a table that will be declared in the package body.

            Empty : constant Value_Set := 0;

         end Value_Sets;

         type Single_Choice_Info (Is_Others : Boolean := False) is
           record
              Alternative : Alternative_Id;
              case Is_Others is
                 when False =>
                    Matches : Value_Sets.Value_Set;
                 when True =>
                    null;
              end case;
           end record;

         type Choices_Info is array (Choice_Id) of Single_Choice_Info;

         function Analysis return Choices_Info;
         --  Parse the case choices in order to determine the set of
         --  matching values associated with each choice.

         type Bound_Values is array (Positive range <>) of Node_Id;

      end Choice_Analysis;
   end Composite_Case_Ops;

   procedure Expand_Others_Choice
     (Case_Table    : Choice_Table_Type;
      Others_Choice : Node_Id;
      Choice_Type   : Entity_Id);
   --  The case table is the table generated by a call to Check_Choices
   --  (with just 1 .. Last_Choice entries present). Others_Choice is a
   --  pointer to the N_Others_Choice node (this routine is only called if
   --  an others choice is present), and Choice_Type is the discrete type
   --  of the bounds. The effect of this call is to analyze the cases and
   --  determine the set of values covered by others. This choice list is
   --  set in the Others_Discrete_Choices field of the N_Others_Choice node.

   ----------------------
   -- Check_Choice_Set --
   ----------------------

   procedure Check_Choice_Set
     (Choice_Table   : in out Choice_Table_Type;
      Bounds_Type    : Entity_Id;
      Subtyp         : Entity_Id;
      Others_Present : Boolean;
      Case_Node      : Node_Id)
   is
      Predicate_Error : Boolean := False;
      --  Flag to prevent cascaded errors when a static predicate is known to
      --  be violated by one choice.

      Num_Choices : constant Nat := Choice_Table'Last;

      procedure Check_Against_Predicate
        (Pred    : in out Node_Id;
         Choice  : Choice_Bounds;
         Prev_Lo : in out Uint;
         Prev_Hi : in out Uint;
         Error   : in out Boolean);
      --  Determine whether a choice covers legal values as defined by a static
      --  predicate set. Pred is a static predicate range. Choice is the choice
      --  to be examined. Prev_Lo and Prev_Hi are the bounds of the previous
      --  choice that covered a predicate set. Error denotes whether the check
      --  found an illegal intersection.

      procedure Check_Duplicates;
      --  Check for duplicate choices, and call Dup_Choice if there are any
      --  such errors. Note that predicates are irrelevant here.

      procedure Dup_Choice (Lo, Hi : Uint; C : Node_Id);
      --  Post message "duplication of choice value(s) bla bla at xx". Message
      --  is posted at location C. Caller sets Error_Msg_Sloc for xx.

      procedure Explain_Non_Static_Bound;
      --  Called when we find a nonstatic bound, requiring the base type to
      --  be covered. Provides where possible a helpful explanation of why the
      --  bounds are nonstatic, since this is not always obvious.

      function Lt_Choice (C1, C2 : Natural) return Boolean;
      --  Comparison routine for comparing Choice_Table entries. Use the lower
      --  bound of each Choice as the key.

      procedure Missing_Choice (Value1 : Node_Id; Value2 : Node_Id);
      procedure Missing_Choice (Value1 : Node_Id; Value2 : Uint);
      procedure Missing_Choice (Value1 : Uint;    Value2 : Node_Id);
      procedure Missing_Choice (Value1 : Uint;    Value2 : Uint);
      --  Issue an error message indicating that there are missing choices,
      --  followed by the image of the missing choices themselves which lie
      --  between Value1 and Value2 inclusive.

      procedure Missing_Choices (Pred : Node_Id; Prev_Hi : Uint);
      --  Emit an error message for each non-covered static predicate set.
      --  Prev_Hi denotes the upper bound of the last choice covering a set.

      procedure Move_Choice (From : Natural; To : Natural);
      --  Move routine for sorting the Choice_Table

      package Sorting is new GNAT.Heap_Sort_G (Move_Choice, Lt_Choice);

      -----------------------------
      -- Check_Against_Predicate --
      -----------------------------

      procedure Check_Against_Predicate
        (Pred    : in out Node_Id;
         Choice  : Choice_Bounds;
         Prev_Lo : in out Uint;
         Prev_Hi : in out Uint;
         Error   : in out Boolean)
      is
         procedure Illegal_Range
           (Loc : Source_Ptr;
            Lo  : Uint;
            Hi  : Uint);
         --  Emit an error message regarding a choice that clashes with the
         --  legal static predicate sets. Loc is the location of the choice
         --  that introduced the illegal range. Lo .. Hi is the range.

         function Inside_Range
           (Lo  : Uint;
            Hi  : Uint;
            Val : Uint) return Boolean;
         --  Determine whether position Val within a discrete type is within
         --  the range Lo .. Hi inclusive.

         -------------------
         -- Illegal_Range --
         -------------------

         procedure Illegal_Range
           (Loc : Source_Ptr;
            Lo  : Uint;
            Hi  : Uint)
         is
         begin
            Error_Msg_Name_1 := Chars (Bounds_Type);

            --  Single value

            if Lo = Hi then
               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg ("static predicate on % excludes value ^!", Loc);
               else
                  Error_Msg_Name_2 := Choice_Image (Lo, Bounds_Type);
                  Error_Msg ("static predicate on % excludes value %!", Loc);
               end if;

            --  Range

            else
               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg_Uint_2 := Hi;
                  Error_Msg
                    ("static predicate on % excludes range ^ .. ^!", Loc);
               else
                  Error_Msg_Name_2 := Choice_Image (Lo, Bounds_Type);
                  Error_Msg_Name_3 := Choice_Image (Hi, Bounds_Type);
                  Error_Msg
                    ("static predicate on % excludes range % .. %!", Loc);
               end if;
            end if;
         end Illegal_Range;

         ------------------
         -- Inside_Range --
         ------------------

         function Inside_Range
           (Lo  : Uint;
            Hi  : Uint;
            Val : Uint) return Boolean
         is
         begin
            return Lo <= Val and then Val <= Hi;
         end Inside_Range;

         --  Local variables

         Choice_Hi : constant Uint := Expr_Value (Choice.Hi);
         Choice_Lo : constant Uint := Expr_Value (Choice.Lo);
         Loc       : Source_Ptr;
         LocN      : Node_Id;
         Next_Hi   : Uint;
         Next_Lo   : Uint;
         Pred_Hi   : Uint;
         Pred_Lo   : Uint;

      --  Start of processing for Check_Against_Predicate

      begin
         --  Find the proper error message location

         if Present (Choice.Node) then
            LocN := Choice.Node;
         else
            LocN := Case_Node;
         end if;

         Loc := Sloc (LocN);

         if Present (Pred) then
            Pred_Lo := Expr_Value (Low_Bound  (Pred));
            Pred_Hi := Expr_Value (High_Bound (Pred));

         --  Previous choices managed to satisfy all static predicate sets

         else
            Illegal_Range (Loc, Choice_Lo, Choice_Hi);
            Error := True;
            return;
         end if;

         --  Step 1: Ignore duplicate choices, other than to set the flag,
         --  because these were already detected by Check_Duplicates.

         if Inside_Range (Choice_Lo, Choice_Hi, Prev_Lo)
           or else  Inside_Range (Choice_Lo, Choice_Hi, Prev_Hi)
         then
            Error := True;

         --  Step 2: Detect full coverage

         --  Choice_Lo    Choice_Hi
         --  +============+
         --  Pred_Lo      Pred_Hi

         elsif Choice_Lo = Pred_Lo and then Choice_Hi = Pred_Hi then
            Prev_Lo := Choice_Lo;
            Prev_Hi := Choice_Hi;
            Next (Pred);

         --  Step 3: Detect all cases where a choice mentions values that are
         --  not part of the static predicate sets.

         --  Choice_Lo   Choice_Hi   Pred_Lo   Pred_Hi
         --  +-----------+ . . . . . +=========+
         --   ^ illegal ^

         elsif Choice_Lo < Pred_Lo and then Choice_Hi < Pred_Lo then
            Illegal_Range (Loc, Choice_Lo, Choice_Hi);
            Error := True;

         --  Choice_Lo   Pred_Lo   Choice_Hi   Pred_Hi
         --  +-----------+=========+===========+
         --   ^ illegal ^

         elsif Choice_Lo < Pred_Lo
           and then Inside_Range (Pred_Lo, Pred_Hi, Choice_Hi)
         then
            Illegal_Range (Loc, Choice_Lo, Pred_Lo - 1);
            Error := True;

         --  Pred_Lo   Pred_Hi   Choice_Lo   Choice_Hi
         --  +=========+ . . . . +-----------+
         --                       ^ illegal ^

         elsif Pred_Lo < Choice_Lo and then Pred_Hi < Choice_Lo then
            if Others_Present then

               --  Current predicate set is covered by others clause.

               null;

            else
               Missing_Choice (Pred_Lo, Pred_Hi);
               Error := True;
            end if;

            --  There may be several static predicate sets between the current
            --  one and the choice. Inspect the next static predicate set.

            Next (Pred);
            Check_Against_Predicate
              (Pred    => Pred,
               Choice  => Choice,
               Prev_Lo => Prev_Lo,
               Prev_Hi => Prev_Hi,
               Error   => Error);

         --  Pred_Lo   Choice_Lo   Pred_Hi     Choice_Hi
         --  +=========+===========+-----------+
         --                         ^ illegal ^

         elsif Pred_Hi < Choice_Hi
           and then Inside_Range (Pred_Lo, Pred_Hi, Choice_Lo)
         then
            Next (Pred);

            --  The choice may fall in a static predicate set. If this is the
            --  case, avoid mentioning legal values in the error message.

            if Present (Pred) then
               Next_Lo := Expr_Value (Low_Bound  (Pred));
               Next_Hi := Expr_Value (High_Bound (Pred));

               --  The next static predicate set is to the right of the choice

               if Choice_Hi < Next_Lo and then Choice_Hi < Next_Hi then
                  Illegal_Range (Loc, Pred_Hi + 1, Choice_Hi);
               else
                  Illegal_Range (Loc, Pred_Hi + 1, Next_Lo - 1);
               end if;
            else
               Illegal_Range (Loc, Pred_Hi + 1, Choice_Hi);
            end if;

            Error := True;

         --  Choice_Lo   Pred_Lo   Pred_Hi     Choice_Hi
         --  +-----------+=========+-----------+
         --   ^ illegal ^           ^ illegal ^

         --  Emit an error on the low gap, disregard the upper gap

         elsif Choice_Lo < Pred_Lo and then Pred_Hi < Choice_Hi then
            Illegal_Range (Loc, Choice_Lo, Pred_Lo - 1);
            Error := True;

         --  Step 4: Detect all cases of partial or missing coverage

         --  Pred_Lo   Choice_Lo  Choice_Hi   Pred_Hi
         --  +=========+==========+===========+
         --   ^  gap  ^            ^   gap   ^

         else
            --  An "others" choice covers all gaps

            if Others_Present then
               Prev_Lo := Choice_Lo;
               Prev_Hi := Choice_Hi;

               --  Check whether predicate set is fully covered by choice

               if Pred_Hi = Choice_Hi then
                  Next (Pred);
               end if;

            --  Choice_Lo   Choice_Hi   Pred_Hi
            --  +===========+===========+
            --  Pred_Lo      ^   gap   ^

            --  The upper gap may be covered by a subsequent choice

            elsif Pred_Lo = Choice_Lo then
               Prev_Lo := Choice_Lo;
               Prev_Hi := Choice_Hi;

            --  Pred_Lo     Prev_Hi   Choice_Lo   Choice_Hi   Pred_Hi
            --  +===========+=========+===========+===========+
            --   ^ covered ^ ^  gap  ^

            else pragma Assert (Pred_Lo < Choice_Lo);

               --  A previous choice covered the gap up to the current choice

               if Prev_Hi = Choice_Lo - 1 then
                  Prev_Lo := Choice_Lo;
                  Prev_Hi := Choice_Hi;

                  if Choice_Hi = Pred_Hi then
                     Next (Pred);
                  end if;

               --  The previous choice did not intersect with the current
               --  static predicate set.

               elsif Prev_Hi < Pred_Lo then
                  Missing_Choice (Pred_Lo, Choice_Lo - 1);
                  Error := True;

               --  The previous choice covered part of the static predicate set
               --  but there is a gap after Prev_Hi.

               else
                  Missing_Choice (Prev_Hi + 1, Choice_Lo - 1);
                  Error := True;
               end if;
            end if;
         end if;
      end Check_Against_Predicate;

      ----------------------
      -- Check_Duplicates --
      ----------------------

      procedure Check_Duplicates is
         Choice      : Node_Id;
         Choice_Hi   : Uint;
         Choice_Lo   : Uint;
         Prev_Choice : Node_Id := Empty;
         Prev_Hi     : Uint;

      begin
         Prev_Hi := Expr_Value (Choice_Table (1).Hi);

         for Outer_Index in 2 .. Num_Choices loop
            Choice_Lo := Expr_Value (Choice_Table (Outer_Index).Lo);
            Choice_Hi := Expr_Value (Choice_Table (Outer_Index).Hi);

            --  Choices overlap; this is an error

            if Choice_Lo <= Prev_Hi then
               Choice := Choice_Table (Outer_Index).Node;

               --  Find first previous choice that overlaps

               for Inner_Index in 1 .. Outer_Index - 1 loop
                  if Choice_Lo <=
                       Expr_Value (Choice_Table (Inner_Index).Hi)
                  then
                     Prev_Choice := Choice_Table (Inner_Index).Node;
                     exit;
                  end if;
               end loop;

               pragma Assert (Present (Prev_Choice));

               if Sloc (Prev_Choice) <= Sloc (Choice) then
                  Error_Msg_Sloc := Sloc (Prev_Choice);
                  Dup_Choice (Choice_Lo, UI_Min (Choice_Hi, Prev_Hi), Choice);
               else
                  Error_Msg_Sloc := Sloc (Choice);
                  Dup_Choice
                    (Choice_Lo, UI_Min (Choice_Hi, Prev_Hi), Prev_Choice);
               end if;
            end if;

            if Choice_Hi > Prev_Hi then
               Prev_Hi := Choice_Hi;
            end if;
         end loop;
      end Check_Duplicates;

      ----------------
      -- Dup_Choice --
      ----------------

      procedure Dup_Choice (Lo, Hi : Uint; C : Node_Id) is
      begin
         --  In some situations, we call this with a null range, and obviously
         --  we don't want to complain in this case.

         if Lo > Hi then
            return;
         end if;

         --  Case of only one value that is duplicated

         if Lo = Hi then

            --  Integer type

            if Is_Integer_Type (Bounds_Type) then

               --  We have an integer value, Lo, but if the given choice
               --  placement is a constant with that value, then use the
               --  name of that constant instead in the message:

               if Nkind (C) = N_Identifier
                 and then Compile_Time_Known_Value (C)
                 and then Expr_Value (C) = Lo
               then
                  Error_Msg_N
                    ("duplication of choice value: &#!", Original_Node (C));

               --  Not that special case, so just output the integer value

               else
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg_N
                    ("duplication of choice value: ^#!", Original_Node (C));
               end if;

            --  Enumeration type

            else
               Error_Msg_Name_1 := Choice_Image (Lo, Bounds_Type);
               Error_Msg_N
                 ("duplication of choice value: %#!", Original_Node (C));
            end if;

         --  More than one choice value, so print range of values

         else
            --  Integer type

            if Is_Integer_Type (Bounds_Type) then

               --  Similar to the above, if C is a range of known values which
               --  match Lo and Hi, then use the names. We have to go to the
               --  original nodes, since the values will have been rewritten
               --  to their integer values.

               if Nkind (C) = N_Range
                 and then Nkind (Original_Node (Low_Bound  (C))) = N_Identifier
                 and then Nkind (Original_Node (High_Bound (C))) = N_Identifier
                 and then Compile_Time_Known_Value (Low_Bound (C))
                 and then Compile_Time_Known_Value (High_Bound (C))
                 and then Expr_Value (Low_Bound (C))  = Lo
                 and then Expr_Value (High_Bound (C)) = Hi
               then
                  Error_Msg_Node_2 := Original_Node (High_Bound (C));
                  Error_Msg_N
                    ("duplication of choice values: & .. &#!",
                     Original_Node (Low_Bound (C)));

               --  Not that special case, output integer values

               else
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg_Uint_2 := Hi;
                  Error_Msg_N
                    ("duplication of choice values: ^ .. ^#!",
                     Original_Node (C));
               end if;

            --  Enumeration type

            else
               Error_Msg_Name_1 := Choice_Image (Lo, Bounds_Type);
               Error_Msg_Name_2 := Choice_Image (Hi, Bounds_Type);
               Error_Msg_N
                 ("duplication of choice values: % .. %#!", Original_Node (C));
            end if;
         end if;
      end Dup_Choice;

      ------------------------------
      -- Explain_Non_Static_Bound --
      ------------------------------

      procedure Explain_Non_Static_Bound is
         Expr : Node_Id;

      begin
         if Nkind (Case_Node) = N_Variant_Part then
            Expr := Name (Case_Node);
         else
            Expr := Expression (Case_Node);
         end if;

         if Bounds_Type /= Subtyp then

            --  If the case is a variant part, the expression is given by the
            --  discriminant itself, and the bounds are the culprits.

            if Nkind (Case_Node) = N_Variant_Part then
               Error_Msg_NE
                 ("bounds of & are not static, "
                  & "alternatives must cover base type!", Expr, Expr);

            --  If this is a case statement, the expression may be nonstatic
            --  or else the subtype may be at fault.

            elsif Is_Entity_Name (Expr) then
               Error_Msg_NE
                 ("bounds of & are not static, "
                  & "alternatives must cover base type!", Expr, Expr);

            else
               Error_Msg_N
                 ("subtype of expression is not static, "
                  & "alternatives must cover base type!", Expr);
            end if;

         --  Otherwise the expression is not static, even if the bounds of the
         --  type are, or else there are missing alternatives. If both, the
         --  additional information may be redundant but harmless. Examine
         --  whether original node is an entity, because it may have been
         --  constant-folded to a literal if value is known.

         elsif not Is_Entity_Name (Original_Node (Expr)) then
            Error_Msg_N
              ("subtype of expression is not static, "
               & "alternatives must cover base type!", Expr);
         end if;
      end Explain_Non_Static_Bound;

      ---------------
      -- Lt_Choice --
      ---------------

      function Lt_Choice (C1, C2 : Natural) return Boolean is
      begin
         return
           Expr_Value (Choice_Table (Nat (C1)).Lo)
             <
           Expr_Value (Choice_Table (Nat (C2)).Lo);
      end Lt_Choice;

      --------------------
      -- Missing_Choice --
      --------------------

      procedure Missing_Choice (Value1 : Node_Id; Value2 : Node_Id) is
      begin
         Missing_Choice (Expr_Value (Value1), Expr_Value (Value2));
      end Missing_Choice;

      procedure Missing_Choice (Value1 : Node_Id; Value2 : Uint) is
      begin
         Missing_Choice (Expr_Value (Value1), Value2);
      end Missing_Choice;

      procedure Missing_Choice (Value1 : Uint; Value2 : Node_Id) is
      begin
         Missing_Choice (Value1, Expr_Value (Value2));
      end Missing_Choice;

      --------------------
      -- Missing_Choice --
      --------------------

      procedure Missing_Choice (Value1 : Uint; Value2 : Uint) is
      begin
         --  AI05-0188 : within an instance the non-others choices do not have
         --  to belong to the actual subtype.

         if Ada_Version >= Ada_2012 and then In_Instance then
            return;

         --  In some situations, we call this with a null range, and obviously
         --  we don't want to complain in this case.

         elsif Value1 > Value2 then
            return;

         --  If predicate is already known to be violated, do not check for
         --  coverage error, to prevent cascaded messages.

         elsif Predicate_Error then
            return;
         end if;

         --  Case of only one value that is missing

         if Value1 = Value2 then
            if Is_Integer_Type (Bounds_Type) then
               Error_Msg_Uint_1 := Value1;
               Error_Msg_N ("missing case value: ^!", Case_Node);
            else
               Error_Msg_Name_1 := Choice_Image (Value1, Bounds_Type);
               Error_Msg_N ("missing case value: %!", Case_Node);
            end if;

         --  More than one choice value, so print range of values

         else
            if Is_Integer_Type (Bounds_Type) then
               Error_Msg_Uint_1 := Value1;
               Error_Msg_Uint_2 := Value2;
               Error_Msg_N ("missing case values: ^ .. ^!", Case_Node);
            else
               Error_Msg_Name_1 := Choice_Image (Value1, Bounds_Type);
               Error_Msg_Name_2 := Choice_Image (Value2, Bounds_Type);
               Error_Msg_N ("missing case values: % .. %!", Case_Node);
            end if;
         end if;
      end Missing_Choice;

      ---------------------
      -- Missing_Choices --
      ---------------------

      procedure Missing_Choices (Pred : Node_Id; Prev_Hi : Uint) is
         Hi  : Uint;
         Lo  : Uint;
         Set : Node_Id;

      begin
         Set := Pred;
         while Present (Set) loop
            Lo := Expr_Value (Low_Bound (Set));
            Hi := Expr_Value (High_Bound (Set));

            --  A choice covered part of a static predicate set

            if Lo <= Prev_Hi and then Prev_Hi < Hi then
               Missing_Choice (Prev_Hi + 1, Hi);

            else
               Missing_Choice (Lo, Hi);
            end if;

            Next (Set);
         end loop;
      end Missing_Choices;

      -----------------
      -- Move_Choice --
      -----------------

      procedure Move_Choice (From : Natural; To : Natural) is
      begin
         Choice_Table (Nat (To)) := Choice_Table (Nat (From));
      end Move_Choice;

      --  Local variables

      Bounds_Hi     : constant Node_Id := Type_High_Bound (Bounds_Type);
      Bounds_Lo     : constant Node_Id := Type_Low_Bound  (Bounds_Type);
      Has_Predicate : constant Boolean :=
                        Is_OK_Static_Subtype (Bounds_Type)
                          and then Has_Static_Predicate (Bounds_Type);

      Choice_Hi   : Uint;
      Choice_Lo   : Uint;
      Pred        : Node_Id;
      Prev_Lo     : Uint;
      Prev_Hi     : Uint;

   --  Start of processing for Check_Choice_Set

   begin
      --  If the case is part of a predicate aspect specification, do not
      --  recheck it against itself.

      if Present (Parent (Case_Node))
        and then Nkind (Parent (Case_Node)) = N_Aspect_Specification
      then
         return;
      end if;

      --  Choice_Table must start at 0 which is an unused location used by the
      --  sorting algorithm. However the first valid position for a discrete
      --  choice is 1.

      pragma Assert (Choice_Table'First = 0);

      --  The choices do not cover the base range. Emit an error if "others" is
      --  not available and return as there is no need for further processing.

      if Num_Choices = 0 then
         if not Others_Present then
            Missing_Choice (Bounds_Lo, Bounds_Hi);
         end if;

         return;
      end if;

      Sorting.Sort (Positive (Choice_Table'Last));

      --  First check for duplicates. This involved the choices; predicates, if
      --  any, are irrelevant.

      Check_Duplicates;

      --  Then check for overlaps

      --  If the subtype has a static predicate, the predicate defines subsets
      --  of legal values and requires finer-grained analysis.

      --  Note that in GNAT the predicate is considered static if the predicate
      --  expression is static, independently of whether the aspect mentions
      --  Static explicitly.

      if Has_Predicate then
         Pred := First (Static_Discrete_Predicate (Bounds_Type));

         --  Make initial value smaller than 'First of type, so that first
         --  range comparison succeeds. This applies both to integer types
         --  and to enumeration types.

         Prev_Lo := Expr_Value (Type_Low_Bound (Bounds_Type)) - 1;
         Prev_Hi := Prev_Lo;

         declare
            Error : Boolean := False;
         begin
            for Index in 1 .. Num_Choices loop
               Check_Against_Predicate
                 (Pred    => Pred,
                  Choice  => Choice_Table (Index),
                  Prev_Lo => Prev_Lo,
                  Prev_Hi => Prev_Hi,
                  Error   => Error);

               --  The analysis detected an illegal intersection between a
               --  choice and a static predicate set. Do not examine other
               --  choices unless all errors are requested.

               if Error then
                  Predicate_Error := True;

                  if not All_Errors_Mode then
                     return;
                  end if;
               end if;
            end loop;
         end;

         if Predicate_Error then
            return;
         end if;

         --  The choices may legally cover some of the static predicate sets,
         --  but not all. Emit an error for each non-covered set.

         if not Others_Present then
            Missing_Choices (Pred, Prev_Hi);
         end if;

      --  Default analysis

      else
         Choice_Lo := Expr_Value (Choice_Table (1).Lo);
         Choice_Hi := Expr_Value (Choice_Table (1).Hi);
         Prev_Hi   := Choice_Hi;

         if not Others_Present and then Expr_Value (Bounds_Lo) < Choice_Lo then
            Missing_Choice (Bounds_Lo, Choice_Lo - 1);

            --  If values are missing outside of the subtype, add explanation.
            --  No additional message if only one value is missing.

            if Expr_Value (Bounds_Lo) < Choice_Lo - 1 then
               Explain_Non_Static_Bound;
            end if;
         end if;

         for Index in 2 .. Num_Choices loop
            Choice_Lo := Expr_Value (Choice_Table (Index).Lo);
            Choice_Hi := Expr_Value (Choice_Table (Index).Hi);

            if Choice_Lo > Prev_Hi + 1 and then not Others_Present then
               Missing_Choice (Prev_Hi + 1, Choice_Lo - 1);
            end if;

            if Choice_Hi > Prev_Hi then
               Prev_Hi := Choice_Hi;
            end if;
         end loop;

         if not Others_Present and then Expr_Value (Bounds_Hi) > Prev_Hi then
            Missing_Choice (Prev_Hi + 1, Bounds_Hi);

            if Expr_Value (Bounds_Hi) > Prev_Hi + 1 then
               Explain_Non_Static_Bound;
            end if;
         end if;
      end if;
   end Check_Choice_Set;

   ------------------
   -- Choice_Image --
   ------------------

   function Choice_Image (Value : Uint; Ctype : Entity_Id) return Name_Id is
      Rtp : constant Entity_Id := Root_Type (Ctype);
      Lit : Entity_Id;
      C   : Int;

   begin
      --  For character, or wide [wide] character. If 7-bit ASCII graphic
      --  range, then build and return appropriate character literal name

      if Is_Standard_Character_Type (Ctype) then
         C := UI_To_Int (Value);

         if C in 16#20# .. 16#7E# then
            Set_Character_Literal_Name (UI_To_CC (Value));
            return Name_Find;
         end if;

      --  For user defined enumeration type, find enum/char literal

      else
         Lit := First_Literal (Rtp);

         for J in 1 .. UI_To_Int (Value) loop
            Next_Literal (Lit);
         end loop;

         --  If enumeration literal, just return its value

         if Nkind (Lit) = N_Defining_Identifier then
            return Chars (Lit);

         --  For character literal, get the name and use it if it is
         --  for a 7-bit ASCII graphic character in 16#20#..16#7E#.

         else
            Get_Decoded_Name_String (Chars (Lit));

            if Name_Len = 3
              and then Name_Buffer (2) in
                Character'Val (16#20#) .. Character'Val (16#7E#)
            then
               return Chars (Lit);
            end if;
         end if;
      end if;

      --  If we fall through, we have a character literal which is not in
      --  the 7-bit ASCII graphic set. For such cases, we construct the
      --  name "type'val(nnn)" where type is the choice type, and nnn is
      --  the pos value passed as an argument to Choice_Image.

      Get_Name_String (Chars (First_Subtype (Ctype)));

      Add_Str_To_Name_Buffer ("'val(");
      UI_Image (Value);
      Add_Str_To_Name_Buffer (UI_Image_Buffer (1 .. UI_Image_Length));
      Add_Char_To_Name_Buffer (')');
      return Name_Find;
   end Choice_Image;

   package body Composite_Case_Ops is

      function Static_Array_Length (Subtyp : Entity_Id) return Nat;
      --  Given a one-dimensional constrained array subtype with
      --  statically known bounds, return its length.

      -------------------------
      -- Static_Array_Length --
      -------------------------

      function Static_Array_Length (Subtyp : Entity_Id) return Nat is
         pragma Assert (Is_Constrained (Subtyp));
         pragma Assert (Number_Dimensions (Subtyp) = 1);
         Index : constant Node_Id := First_Index (Subtyp);
         pragma Assert (Is_OK_Static_Range (Index));
         Lo  : constant Uint := Expr_Value (Low_Bound (Index));
         Hi  : constant Uint := Expr_Value (High_Bound (Index));
         Len : constant Uint := UI_Max (0, (Hi - Lo) + 1);
      begin
         return UI_To_Int (Len);
      end Static_Array_Length;

      ------------------------
      -- Box_Value_Required --
      ------------------------

      function Box_Value_Required (Subtyp : Entity_Id) return Boolean is
         --  Some of these restrictions will be relaxed eventually, but best
         --  to initially err in the direction of being too restrictive.
      begin
         if Has_Predicates (Subtyp) then
            return True;
         elsif Is_Discrete_Type (Subtyp) then
            if not Is_Static_Subtype (Subtyp) then
               return True;
            elsif Is_Enumeration_Type (Subtyp)
               and then Has_Enumeration_Rep_Clause (Subtyp)
               --  Maybe enumeration rep clauses can be ignored here?
            then
               return True;
            end if;
         elsif Is_Array_Type (Subtyp) then
            if Number_Dimensions (Subtyp) /= 1 then
               return True;
            elsif not Is_Constrained (Subtyp) then
               if not Is_Static_Subtype (Etype (First_Index (Subtyp))) then
                  return True;
               end if;
            elsif not Is_OK_Static_Range (First_Index (Subtyp)) then
               return True;
            end if;
         elsif Is_Record_Type (Subtyp) then
            if Has_Discriminants (Subtyp)
              and then Is_Constrained (Subtyp)
              and then not Has_Static_Discriminant_Constraint (Subtyp)
            then
               --  Perhaps treat differently the case where Subtyp is the
               --  subtype of the top-level selector expression, as opposed
               --  to the subtype of some subcomponent thereof.
               return True;
            end if;
         else
            --  Return True for any type that is not a discrete type,
            --  a record type, or an array type.
            return True;
         end if;

         return False;
      end Box_Value_Required;

      ------------------
      -- Choice_Count --
      ------------------

      function Choice_Count (Alternatives : List_Id) return Nat is
         Result : Nat := 0;
         Alt : Node_Id := First (Alternatives);
      begin
         while Present (Alt) loop
            Result := Result + List_Length (Discrete_Choices (Alt));
            Next (Alt);
         end loop;
         return Result;
      end Choice_Count;

      -------------------------------
      -- Normalized_Case_Expr_Type --
      -------------------------------

      function Normalized_Case_Expr_Type
        (Case_Statement : Node_Id) return Entity_Id
      is
         Unnormalized : constant Entity_Id :=
           Etype (Expression (Case_Statement));

         Is_Dynamically_Constrained_Array : constant Boolean :=
           Is_Array_Type (Unnormalized)
             and then Is_Constrained (Unnormalized)
             and then not Has_Static_Array_Bounds (Unnormalized);

         Is_Dynamically_Constrained_Record : constant Boolean :=
           Is_Record_Type (Unnormalized)
             and then Has_Discriminants (Unnormalized)
             and then Is_Constrained (Unnormalized)
             and then not Has_Static_Discriminant_Constraint (Unnormalized);
      begin
         if Is_Dynamically_Constrained_Array
           or Is_Dynamically_Constrained_Record
         then
            return Base_Type (Unnormalized);
         else
            return Unnormalized;
         end if;
      end Normalized_Case_Expr_Type;

      -----------------------
      -- Scalar_Part_Count --
      -----------------------

      function Scalar_Part_Count (Subtyp : Entity_Id) return Nat is
      begin
         if Box_Value_Required (Subtyp) then
            return 0; -- component does not participate in case selection
         elsif Is_Scalar_Type (Subtyp) then
            return 1;
         elsif Is_Array_Type (Subtyp) then
            return Static_Array_Length (Subtyp)
              * Scalar_Part_Count (Component_Type (Subtyp));
         elsif Is_Record_Type (Subtyp) then
            declare
               Result : Nat := 0;
               Comp : Entity_Id := First_Component_Or_Discriminant
                                     (Base_Type (Subtyp));
            begin
               while Present (Comp) loop
                  Result := Result + Scalar_Part_Count (Etype (Comp));
                  Next_Component_Or_Discriminant (Comp);
               end loop;
               return Result;
            end;
         else
            pragma Assert (Serious_Errors_Detected > 0);
            return 0;
         end if;
      end Scalar_Part_Count;

      package body Array_Case_Ops is

         -------------------------
         -- Array_Choice_Length --
         -------------------------

         function Array_Choice_Length (Choice : Node_Id) return Nat is
         begin
            case Nkind (Choice) is
               when N_String_Literal =>
                  return String_Length (Strval (Choice));
               when N_Aggregate =>
                  declare
                     Bounds : constant Node_Id :=
                       Aggregate_Bounds (Choice);
                     pragma Assert (Is_OK_Static_Range (Bounds));
                     Lo     : constant Uint :=
                       Expr_Value (Low_Bound (Bounds));
                     Hi     : constant Uint :=
                       Expr_Value (High_Bound (Bounds));
                     Len : constant Uint := (Hi - Lo) + 1;
                  begin
                     return UI_To_Int (Len);
                  end;
               when N_Has_Entity =>
                  if Present (Entity (Choice))
                    and then Ekind (Entity (Choice)) = E_Constant
                  then
                     return Array_Choice_Length
                              (Expression (Parent (Entity (Choice))));
                  end if;
               when N_Others_Choice =>
                  return 0;
               when others =>
                  null;
            end case;

            if Nkind (Original_Node (Choice))
                 in N_String_Literal | N_Aggregate
            then
               return Array_Choice_Length (Original_Node (Choice));
            end if;

            Error_Msg_N ("Unsupported case choice", Choice);
            return 0;
         end Array_Choice_Length;

         ------------------------------------------
         -- Unconstrained_Array_Effective_Length --
         ------------------------------------------

         function Unconstrained_Array_Effective_Length
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat
         is
            pragma Assert (Is_Array_Type (Array_Type));
            --  Array_Type is otherwise unreferenced for now.

            Result : Nat := 0;
            Alt : Node_Id := First (Alternatives (Case_Statement));
         begin
            while Present (Alt) loop
               declare
                  Choice : Node_Id := First (Discrete_Choices (Alt));
               begin
                  while Present (Choice) loop
                     Result := Nat'Max (Result, Array_Choice_Length (Choice));
                     Next (Choice);
                  end loop;
               end;
               Next (Alt);
            end loop;

            return Result;
         end Unconstrained_Array_Effective_Length;

         -------------------------------------------
         -- Unconstrained_Array_Scalar_Part_Count --
         -------------------------------------------

         function Unconstrained_Array_Scalar_Part_Count
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat
         is
         begin
            --  Add one for the length, which is treated like a discriminant

            return 1 + (Unconstrained_Array_Effective_Length
                          (Array_Type     => Array_Type,
                           Case_Statement => Case_Statement)
                        * Scalar_Part_Count (Component_Type (Array_Type)));
         end Unconstrained_Array_Scalar_Part_Count;

      end Array_Case_Ops;

      package body Choice_Analysis is

         function Component_Bounds_Info return Composite_Range_Info;
         --  Returns the (statically known) bounds for each component.
         --  The selector expression value (or any other value of the type
         --  of the selector expression) can be thought of as a point in the
         --  Cartesian product of these sets.

         function Parse_Choice (Choice : Node_Id;
                                Alt    : Node_Id) return Choice_Range_Info;
         --  Extract Choice_Range_Info from a Choice node

         ---------------------------
         -- Component_Bounds_Info --
         ---------------------------

         function Component_Bounds_Info return Composite_Range_Info is
            Result : Composite_Range_Info;
            Next   : Part_Id := 1;
            Done   : Boolean := False;

            procedure Update_Result (Info : Discrete_Range_Info);
            --  Initialize first remaining uninitialized element of Result.
            --  Also set Next and Done.

            -------------------
            -- Update_Result --
            -------------------

            procedure Update_Result (Info : Discrete_Range_Info) is
            begin
               Result (Next) := Info;
               if Next /= Part_Id'Last then
                  Next := Next + 1;
               else
                  pragma Assert (not Done);
                  Done := True;
               end if;
            end Update_Result;

            procedure Traverse_Discrete_Parts (Subtyp : Entity_Id);
            --  Traverse the given subtype, looking for discrete parts.
            --  For an array subtype of length N, the element subtype
            --  is traversed N times. For a record subtype, traverse
            --  each component's subtype (once). When a discrete part is
            --  found, call Update_Result.

            -----------------------------
            -- Traverse_Discrete_Parts --
            -----------------------------

            procedure Traverse_Discrete_Parts (Subtyp : Entity_Id) is
            begin
               if Box_Value_Required (Subtyp) then
                  return;
               end if;

               if Is_Discrete_Type (Subtyp) then
                  Update_Result
                    ((Low  => Expr_Value (Type_Low_Bound (Subtyp)),
                      High => Expr_Value (Type_High_Bound (Subtyp))));
               elsif Is_Array_Type (Subtyp) then
                  declare
                     Len : Nat;
                  begin
                     if Is_Constrained (Subtyp) then
                        Len := Static_Array_Length (Subtyp);
                     else
                        --  Length will be treated like a discriminant;
                        --  We could compute High more precisely as
                        --    1 + Index_Subtype'Last - Index_Subtype'First
                        --  (we currently require that those bounds be
                        --  static, so this is an option), but only downside of
                        --  overshooting is if somebody wants to omit a
                        --  "when others" choice and exhaustively cover all
                        --  possibilities explicitly.
                        Update_Result
                          ((Low  => Uint_0,
                            High => Uint_2 ** Uint_32));

                        Len := Unconstrained_Array_Effective_Length
                                 (Array_Type     => Subtyp,
                                  Case_Statement => Case_Statement);
                     end if;
                     for I in 1 .. Len loop
                        Traverse_Discrete_Parts (Component_Type (Subtyp));
                     end loop;
                  end;
               elsif Is_Record_Type (Subtyp) then
                  if Has_Static_Discriminant_Constraint (Subtyp) then

                     --  The component range for a constrained discriminant
                     --  is a single value.
                     declare
                        Dc_Elmt : Elmt_Id :=
                          First_Elmt (Discriminant_Constraint (Subtyp));
                        Dc_Value : Uint;
                     begin
                        while Present (Dc_Elmt) loop
                           Dc_Value := Expr_Value (Node (Dc_Elmt));
                           Update_Result ((Low  => Dc_Value,
                                           High => Dc_Value));

                           Next_Elmt (Dc_Elmt);
                        end loop;
                     end;

                     --  Generate ranges for nondiscriminant components.
                     declare
                        Comp : Entity_Id := First_Component
                                              (Base_Type (Subtyp));
                     begin
                        while Present (Comp) loop
                           Traverse_Discrete_Parts (Etype (Comp));
                           Next_Component (Comp);
                        end loop;
                     end;
                  else
                     --  Generate ranges for all components
                     declare
                        Comp : Entity_Id :=
                          First_Component_Or_Discriminant
                            (Base_Type (Subtyp));
                     begin
                        while Present (Comp) loop
                           Traverse_Discrete_Parts (Etype (Comp));
                           Next_Component_Or_Discriminant (Comp);
                        end loop;
                     end;
                  end if;
               else
                  Error_Msg_N
                    ("case selector type having a non-discrete non-record"
                     & "  non-array subcomponent type not implemented",
                     Expression (Case_Statement));
               end if;
            end Traverse_Discrete_Parts;

         begin
            Traverse_Discrete_Parts (Case_Expr_Type);
            pragma Assert (Done or else Serious_Errors_Detected > 0);
            return Result;
         end Component_Bounds_Info;

         Component_Bounds : constant Composite_Range_Info
           := Component_Bounds_Info;

         package Case_Bindings is

            procedure Note_Binding
              (Comp_Assoc : Node_Id;
               Choice     : Node_Id;
               Alt        : Node_Id);
            --  Note_Binding is called once for each component association
            --  that defines a binding (using either "A => B is X" or
            --  "A => <X>" syntax);

            procedure Check_Bindings;
            --  After all calls to Note_Binding, check that bindings are
            --  ok (e.g., check consistency among different choices of
            --  one alternative).

         end Case_Bindings;

         procedure Refresh_Binding_Info (Aggr : Node_Id);
         --  The parser records binding-related info in the tree.
         --  The choice nodes that we see here might not be (will never be?)
         --  the original nodes that were produced by the parser. The info
         --  recorded by the parser is missing in that case, so this
         --  procedure recovers it.
         --
         --  There are bugs here. In some cases involving nested aggregates,
         --  the path back to the parser-created nodes is lost. In particular,
         --  we may fail to detect an illegal case like
         --   when (F1 | F2 => (Aa => Natural, Bb => Natural is X)) =>
         --  This should be rejected because it is binding X to both the
         --  F1.Bb and to the F2.Bb subcomponents of the case selector.
         --  It would be nice if the not-specific-to-pattern-matching
         --  aggregate-processing code could remain unaware of the existence
         --  of this binding-related info but perhaps that isn't possible.

         --------------------------
         -- Refresh_Binding_Info --
         --------------------------

         procedure Refresh_Binding_Info (Aggr : Node_Id) is
            Orig_Aggr : constant Node_Id := Original_Node (Aggr);
            Orig_Comp : Node_Id := First (Component_Associations (Orig_Aggr));
         begin
            if Aggr = Orig_Aggr then
               return;
            end if;

            while Present (Orig_Comp) loop
               if Nkind (Orig_Comp) = N_Component_Association
                 and then Binding_Chars (Orig_Comp) /= No_Name
               then
                  if List_Length (Choices (Orig_Comp)) /= 1 then
                     --  Conceivably this could be checked during parsing,
                     --  but checking is easier here.

                     Error_Msg_N
                       ("binding shared by multiple components", Orig_Comp);
                     return;
                  end if;

                  declare
                     Orig_Name : constant Name_Id :=
                       Chars (First (Choices (Orig_Comp)));
                     Comp : Node_Id := First (Component_Associations (Aggr));
                     Matching_Comp : Node_Id := Empty;
                  begin
                     while Present (Comp) loop
                        if Chars (First (Choices (Comp))) = Orig_Name then
                           pragma Assert (No (Matching_Comp));
                           Matching_Comp := Comp;
                        end if;

                        Next (Comp);
                     end loop;

                     pragma Assert (Present (Matching_Comp));

                     Set_Binding_Chars
                       (Matching_Comp,
                        Binding_Chars (Orig_Comp));
                  end;
               end if;

               Next (Orig_Comp);
            end loop;
         end Refresh_Binding_Info;

         ------------------
         -- Parse_Choice --
         ------------------

         function Parse_Choice (Choice : Node_Id;
                                Alt    : Node_Id) return Choice_Range_Info
         is
            Result    : Choice_Range_Info (Is_Others => False);
            Ranges    : Composite_Range_Info renames Result.Ranges;
            Next_Part : Part_Id'Base range 1 .. Part_Id'Last + 1 := 1;

            procedure Traverse_Choice (Expr : Node_Id);
            --  Traverse a legal choice expression, looking for
            --  values/ranges of discrete parts. Call Update_Result
            --  for each.

            procedure Update_Result (Discrete_Range : Discrete_Range_Info);
            --  Initialize first remaining uninitialized element of Ranges.
            --  Also set Next_Part.

            procedure Update_Result_For_Full_Coverage (Comp_Type  : Entity_Id);
            --  For each scalar part of the given component type, call
            --  Update_Result with the full range for that scalar part.
            --  This is used for both box components in aggregates and
            --  for any inactive-variant components that do not appear in
            --  a given aggregate.

            -------------------
            -- Update_Result --
            -------------------

            procedure Update_Result (Discrete_Range : Discrete_Range_Info) is
            begin
               Ranges (Next_Part) := Discrete_Range;
               Next_Part := Next_Part + 1;
            end Update_Result;

            -------------------------------------
            -- Update_Result_For_Full_Coverage --
            -------------------------------------

            procedure Update_Result_For_Full_Coverage (Comp_Type : Entity_Id)
            is
            begin
               for Counter in 1 .. Scalar_Part_Count (Comp_Type) loop
                  Update_Result (Component_Bounds (Next_Part));
               end loop;
            end Update_Result_For_Full_Coverage;

            ---------------------
            -- Traverse_Choice --
            ---------------------

            procedure Traverse_Choice (Expr : Node_Id) is
            begin
               if Nkind (Expr) = N_Qualified_Expression then
                  Traverse_Choice (Expression (Expr));

               elsif Nkind (Expr) = N_Type_Conversion
                  and then not Comes_From_Source (Expr)
               then
                  if Expr /= Original_Node (Expr) then
                     Traverse_Choice (Original_Node (Expr));
                  else
                     Traverse_Choice (Expression (Expr));
                  end if;

               elsif Nkind (Expr) = N_Aggregate then
                  if Is_Record_Type (Etype (Expr)) then
                     Refresh_Binding_Info (Aggr => Expr);

                     declare
                        Comp_Assoc : Node_Id :=
                          First (Component_Associations (Expr));
                        --  Aggregate has been normalized (components in
                        --  order, only one component per choice, etc.).

                        Comp_From_Type : Node_Id :=
                          First_Component_Or_Discriminant
                            (Base_Type (Etype (Expr)));

                        Saved_Next_Part : constant Part_Id := Next_Part;
                     begin
                        while Present (Comp_Assoc) loop
                           pragma Assert
                             (List_Length (Choices (Comp_Assoc)) = 1);

                           declare
                              Comp : constant Node_Id :=
                                Entity (First (Choices (Comp_Assoc)));
                              Comp_Seen : Boolean := False;
                           begin
                              loop
                                 if Original_Record_Component (Comp) =
                                   Original_Record_Component (Comp_From_Type)
                                 then
                                    Comp_Seen := True;
                                 else
                                    --  We have an aggregate of a type that
                                    --  has a variant part (or has a
                                    --  subcomponent type that has a variant
                                    --  part) and we have to deal with a
                                    --  component that is present in the type
                                    --  but not in the aggregate (because the
                                    --  component is in an inactive variant).
                                    --
                                    Update_Result_For_Full_Coverage
                                      (Comp_Type => Etype (Comp_From_Type));
                                 end if;

                                 Comp_From_Type :=
                                   Next_Component_Or_Discriminant
                                     (Comp_From_Type);

                                 exit when Comp_Seen;
                              end loop;
                           end;

                           declare
                              Comp_Type : constant Entity_Id :=
                                Etype (First (Choices (Comp_Assoc)));
                           begin
                              if Box_Value_Required (Comp_Type) then
                                 --  This component is not allowed to
                                 --  influence which alternative is
                                 --  chosen; case choice must be box.
                                 --
                                 --  For example, component might be
                                 --  of a real type or of an access type
                                 --  or of a non-static discrete subtype.
                                 if not Box_Present (Comp_Assoc) then
                                    Error_Msg_N
                                      ("Non-box case choice component value" &
                                         " of unsupported type/subtype",
                                       Expression (Comp_Assoc));
                                 end if;
                              elsif Box_Present (Comp_Assoc) then
                                 --  Box matches all values
                                 Update_Result_For_Full_Coverage
                                   (Etype (First (Choices (Comp_Assoc))));
                              else
                                 Traverse_Choice (Expression (Comp_Assoc));
                              end if;
                           end;

                           if Binding_Chars (Comp_Assoc) /= No_Name
                           then
                              Case_Bindings.Note_Binding
                                (Comp_Assoc => Comp_Assoc,
                                 Choice     => Choice,
                                 Alt        => Alt);
                           end if;

                           Next (Comp_Assoc);
                        end loop;

                        while Present (Comp_From_Type) loop
                           --  Deal with any trailing inactive-variant
                           --  components.
                           --
                           --  See earlier commment about calling
                           --  Update_Result_For_Full_Coverage for such
                           --  components.

                           Update_Result_For_Full_Coverage
                             (Comp_Type => Etype (Comp_From_Type));

                           Comp_From_Type :=
                             Next_Component_Or_Discriminant (Comp_From_Type);
                        end loop;

                        declare
                           Expr_Type : Entity_Id := Etype (Expr);
                        begin
                           if Has_Discriminants (Expr_Type) then
                              --  Avoid nonstatic choice expr types,
                              --  for which Scalar_Part_Count returns 0.
                              Expr_Type := Base_Type (Expr_Type);
                           end if;

                           pragma Assert
                             (Nat (Next_Part - Saved_Next_Part)
                               = Scalar_Part_Count (Expr_Type));
                        end;
                     end;
                  elsif Is_Array_Type (Etype (Expr)) then
                     if Is_Non_Empty_List (Component_Associations (Expr)) then
                        Error_Msg_N
                          ("non-positional array aggregate as/within case "
                           & "choice not implemented", Expr);
                     end if;

                     if not Unconstrained_Array_Case
                        and then List_Length (Expressions (Expr))
                           /= Nat (Part_Id'Last)
                     then
                        Error_Msg_Uint_1 := UI_From_Int
                          (List_Length (Expressions (Expr)));
                        Error_Msg_Uint_2 := UI_From_Int (Int (Part_Id'Last));
                        Error_Msg_N
                          ("array aggregate length ^ does not match length " &
                           "of statically constrained case selector ^", Expr);
                        return;
                     end if;

                     declare
                        Subexpr : Node_Id := First (Expressions (Expr));
                     begin
                        while Present (Subexpr) loop
                           Traverse_Choice (Subexpr);
                           Next (Subexpr);
                        end loop;
                     end;
                  else
                     raise Program_Error;
                  end if;
               elsif Nkind (Expr) = N_String_Literal then
                  if not Is_Array_Type (Etype (Expr)) then
                     Error_Msg_N
                       ("User-defined string literal not allowed as/within"
                        & "case choice", Expr);
                  else
                     declare
                        Char_Type : constant Entity_Id :=
                          Root_Type (Component_Type (Etype (Expr)));

                        --  If the component type is not a standard character
                        --  type then this string lit should have already been
                        --  transformed into an aggregate in
                        --  Resolve_String_Literal.
                        --
                        pragma Assert (Is_Standard_Character_Type (Char_Type));

                        Str      : constant String_Id := Strval (Expr);
                        Strlen   : constant Nat       := String_Length (Str);
                        Char_Val : Uint;
                     begin
                        if not Unconstrained_Array_Case
                           and then Strlen /= Nat (Part_Id'Last)
                        then
                           Error_Msg_Uint_1 := UI_From_Int (Strlen);
                           Error_Msg_Uint_2 := UI_From_Int
                             (Int (Part_Id'Last));
                           Error_Msg_N
                             ("String literal length ^ does not match length" &
                              " of statically constrained case selector ^",
                              Expr);
                           return;
                        end if;

                        for Idx in 1 .. Strlen loop
                           Char_Val :=
                             UI_From_CC (Get_String_Char (Str, Idx));
                           Update_Result ((Low | High => Char_Val));
                        end loop;
                     end;
                  end if;
               elsif Is_Discrete_Type (Etype (Expr)) then
                  if Nkind (Expr) in N_Has_Entity
                    and then Present (Entity (Expr))
                    and then Is_Type (Entity (Expr))
                  then
                     declare
                        Low  : constant Node_Id :=
                          Type_Low_Bound (Entity (Expr));
                        High : constant Node_Id :=
                          Type_High_Bound (Entity (Expr));
                     begin
                        Update_Result ((Low  => Expr_Value (Low),
                                        High => Expr_Value (High)));
                     end;
                  else
                     pragma Assert (Compile_Time_Known_Value (Expr));
                     Update_Result ((Low | High => Expr_Value (Expr)));
                  end if;
               elsif Nkind (Expr) in N_Has_Entity
                 and then Present (Entity (Expr))
                 and then Ekind (Entity (Expr)) = E_Constant
               then
                  Traverse_Choice (Expression (Parent (Entity (Expr))));
               elsif Nkind (Original_Node (Expr))
                       in N_Aggregate | N_String_Literal
               then
                  Traverse_Choice (Original_Node (Expr));
               else
                  Error_Msg_N
                    ("non-aggregate case choice (or subexpression thereof)"
                     & " that is not of a discrete type not implemented",
                     Expr);
               end if;
            end Traverse_Choice;

         --  Start of processing for Parse_Choice

         begin
            if Nkind (Choice) = N_Others_Choice then
               return (Is_Others => True);
            end if;

            if Unconstrained_Array_Case then
               --  Treat length like a discriminant
               Update_Result ((Low | High =>
                                 UI_From_Int (Array_Choice_Length (Choice))));
            end if;

            Traverse_Choice (Choice);

            if Unconstrained_Array_Case then
               --  This is somewhat tricky. Suppose we are casing on String,
               --  the longest choice in the case statement is length 10, and
               --  the choice we are looking at now is of length 6. We fill
               --  in the trailing 4 slots here.
               while Next_Part <= Part_Id'Last loop
                  Update_Result_For_Full_Coverage
                    (Comp_Type => Component_Type (Case_Expr_Type));
               end loop;
            end if;

            --  Avoid returning uninitialized garbage in error case
            if Next_Part /= Part_Id'Last + 1 then
               pragma Assert (Serious_Errors_Detected > 0);
               Result.Ranges := (others => (Low => Uint_1, High => Uint_0));
            end if;

            return Result;
         end Parse_Choice;

         package body Case_Bindings is

            type Binding is record
               Comp_Assoc : Node_Id;
               Choice     : Node_Id;
               Alt        : Node_Id;
            end record;

            type Binding_Index is new Natural;

            package Case_Bindings_Table is new Table.Table
              (Table_Component_Type => Binding,
               Table_Index_Type     => Binding_Index,
               Table_Low_Bound      => 1,
               Table_Initial        => 16,
               Table_Increment      => 64,
               Table_Name           => "Composite_Case_Ops.Case_Bindings");

            ------------------
            -- Note_Binding --
            ------------------

            procedure Note_Binding
              (Comp_Assoc : Node_Id;
               Choice     : Node_Id;
               Alt        : Node_Id)
            is
            begin
               Case_Bindings_Table.Append
                 ((Comp_Assoc => Comp_Assoc,
                   Choice     => Choice,
                   Alt        => Alt));
            end Note_Binding;

            --------------------
            -- Check_Bindings --
            --------------------

            procedure Check_Bindings
            is
               use Case_Bindings_Table;

               function Binding_Subtype (Idx : Binding_Index;
                                         Tab : Table_Type)
                 return Entity_Id is
                 (Etype (Nlists.First (Choices (Tab (Idx).Comp_Assoc))));

               procedure Declare_Binding_Objects
                  (Alt_Start             : Binding_Index;
                   Alt                   : Node_Id;
                   First_Choice_Bindings : Natural;
                   Tab                   : Table_Type);
               --  Declare the binding objects for a given alternative

               ------------------------------
               --  Declare_Binding_Objects --
               ------------------------------

               procedure Declare_Binding_Objects
                  (Alt_Start             : Binding_Index;
                   Alt                   : Node_Id;
                   First_Choice_Bindings : Natural;
                   Tab                   : Table_Type)
               is
                  Loc : constant Source_Ptr := Sloc (Alt);
                  Declarations : constant List_Id := New_List;
                  Decl         : Node_Id;
                  Obj_Type     : Entity_Id;
                  Def_Id       : Entity_Id;
               begin
                  for FC_Idx in Alt_Start ..
                    Alt_Start + Binding_Index (First_Choice_Bindings - 1)
                  loop
                     Obj_Type := Binding_Subtype (FC_Idx, Tab);
                     Def_Id := Make_Defining_Identifier
                                 (Loc,
                                  Binding_Chars (Tab (FC_Idx).Comp_Assoc));

                     --  Either make a copy or rename the original. At a
                     --  minimum, we do not want a copy if it would need
                     --  finalization. Copies may also introduce problems
                     --  if default init can have side effects (although we
                     --  could suppress such default initialization).
                     --  We have to make a copy in any cases where
                     --  Unrestricted_Access doesn't work.
                     --
                     --  This is where the copy-or-rename decision is made.
                     --  In many cases either way would work and so we have
                     --  some flexibility here.

                     if not Is_By_Copy_Type (Obj_Type) then
                        --  Generate
                        --     type Ref
                        --       is access constant Obj_Type;
                        --     Ptr : Ref := <some bogus value>;
                        --     Obj : Obj_Type renames Ptr.all;
                                       --
                        --  Initialization of Ptr will be generated later
                        --  during expansion.

                        declare
                           Ptr_Type : constant Entity_Id :=
                             Make_Temporary (Loc, 'P');

                           Ptr_Type_Def : constant Node_Id :=
                             Make_Access_To_Object_Definition (Loc,
                               All_Present => True,
                               Subtype_Indication =>
                                 New_Occurrence_Of (Obj_Type, Loc));

                           Ptr_Type_Decl : constant Node_Id :=
                             Make_Full_Type_Declaration (Loc,
                               Ptr_Type,
                               Type_Definition => Ptr_Type_Def);

                           Ptr_Obj : constant Entity_Id :=
                             Make_Temporary (Loc, 'T');

                           --  We will generate initialization code for this
                           --  object later (during expansion) but in the
                           --  meantime we don't want the dereference that
                           --  is generated a few lines below here to be
                           --  transformed into a Raise_C_E. To prevent this,
                           --  we provide a bogus initial value here; this
                           --  initial value will be removed later during
                           --  expansion.

                           Ptr_Obj_Decl : constant Node_Id :=
                             Make_Object_Declaration
                               (Loc, Ptr_Obj,
                                Object_Definition =>
                                  New_Occurrence_Of (Ptr_Type, Loc),
                                Expression =>
                                  Unchecked_Convert_To
                                    (Ptr_Type,
                                     Make_Integer_Literal (Loc, 5432)));
                        begin
                           Mutate_Ekind (Ptr_Type, E_Access_Type);

                           --  in effect, Storage_Size => 0
                           Set_No_Pool_Assigned (Ptr_Type);

                           Set_Is_Access_Constant (Ptr_Type);

                           --  We could set Ptr_Type'Alignment here if that
                           --  ever turns out to be needed for renaming a
                           --  misaligned subcomponent.

                           Mutate_Ekind (Ptr_Obj, E_Variable);
                           Set_Etype (Ptr_Obj, Ptr_Type);

                           Decl :=
                             Make_Object_Renaming_Declaration
                               (Loc, Def_Id,
                                Subtype_Mark =>
                                  New_Occurrence_Of (Obj_Type, Loc),
                                Name =>
                                  Make_Explicit_Dereference
                                    (Loc, New_Occurrence_Of (Ptr_Obj, Loc)));

                           Append_To (Declarations, Ptr_Type_Decl);
                           Append_To (Declarations, Ptr_Obj_Decl);
                        end;
                     else
                        Decl := Make_Object_Declaration
                          (Sloc => Loc,
                           Defining_Identifier => Def_Id,
                           Object_Definition =>
                              New_Occurrence_Of (Obj_Type, Loc));
                     end if;
                     Append_To (Declarations, Decl);
                  end loop;

                  declare
                     Old_Statements : constant List_Id := Statements (Alt);
                     New_Statements : constant List_Id := New_List;

                     Block_Statement : constant Node_Id :=
                       Make_Block_Statement (Sloc => Loc,
                         Declarations => Declarations,
                         Handled_Statement_Sequence =>
                           Make_Handled_Sequence_Of_Statements
                             (Loc, Old_Statements),
                         Has_Created_Identifier => True);
                  begin
                     Append_To (New_Statements, Block_Statement);
                     Set_Statements (Alt, New_Statements);
                  end;
               end Declare_Binding_Objects;
            begin
               if Last = 0 then
                  --  no bindings to check
                  return;
               end if;

               declare
                  Tab : Table_Type
                          renames Case_Bindings_Table.Table (1 .. Last);

                  function Same_Id (Idx1, Idx2 : Binding_Index)
                    return Boolean is (
                    Binding_Chars (Tab (Idx1).Comp_Assoc) =
                    Binding_Chars (Tab (Idx2).Comp_Assoc));
               begin
                  --  Verify that elements with given choice or alt value
                  --  are contiguous, and that elements with equal
                  --  choice values have same alt value.

                  for Idx1 in 2 .. Tab'Last loop
                     if Tab (Idx1 - 1).Choice /= Tab (Idx1).Choice then
                        pragma Assert
                          (for all Idx2 in Idx1 + 1 .. Tab'Last =>
                             Tab (Idx2).Choice /= Tab (Idx1 - 1).Choice);
                     else
                        pragma Assert (Tab (Idx1 - 1).Alt = Tab (Idx1).Alt);
                     end if;
                     if Tab (Idx1 - 1).Alt /= Tab (Idx1).Alt then
                        pragma Assert
                          (for all Idx2 in Idx1 + 1 .. Tab'Last =>
                             Tab (Idx2).Alt /= Tab (Idx1 - 1).Alt);
                     end if;
                  end loop;

                  --  Check for user errors:
                  --  1) Two choices for a given alternative shall define the
                  --     same set of names. Can't have
                  --        when (<X>, 0) | (0, <Y>) =>
                  --  2) A choice shall not define a name twice. Can't have
                  --        when (A => <X>, B => <X>, C => 0) =>
                  --  3) Two definitions of a name within one alternative
                  --     shall have statically matching component subtypes.
                  --     Can't have
                  --        type R is record Int : Integer;
                  --                         Nat : Natural; end record;
                  --        case R'(...) is
                  --          when (<X>, 1) | (1, <X>) =>
                  --  4) A given binding shall match only one value.
                  --     Can't have
                  --         (Fld1 | Fld2 => (Fld => <X>))
                  --     For now, this is enforced *very* conservatively
                  --     with respect to arrays - a binding cannot match
                  --     any part of an array. This is temporary.

                  for Idx1 in Tab'Range loop
                     if Idx1 = 1
                       or else Tab (Idx1 - 1).Alt /= Tab (Idx1).Alt
                     then
                        --  Process one alternative
                        declare
                           Alt_Start : constant Binding_Index := Idx1;
                           Alt : constant Node_Id := Tab (Alt_Start).Alt;

                           First_Choice : constant Node_Id :=
                             Nlists.First (Discrete_Choices (Alt));
                           First_Choice_Bindings : Natural := 0;
                        begin
                           --  Check for duplicates within one choice,
                           --  and for choices with no bindings.

                           if First_Choice /= Tab (Alt_Start).Choice then
                              Error_Msg_N ("binding(s) missing for choice",
                                           First_Choice);
                              return;
                           end if;

                           declare
                              Current_Choice : Node_Id := First_Choice;
                              Choice_Start : Binding_Index := Alt_Start;
                           begin
                              for Idx2 in Alt_Start .. Tab'Last loop
                                 exit when Tab (Idx2).Alt /= Alt;
                                 if Tab (Idx2).Choice = Current_Choice then
                                    for Idx3 in Choice_Start .. Idx2 - 1 loop
                                       if Same_Id (Idx2, Idx3)
                                       then
                                          Error_Msg_N
                                            ("duplicate binding in choice",
                                             Current_Choice);
                                          return;
                                       end if;
                                    end loop;
                                 else
                                    Next (Current_Choice);
                                    pragma Assert (Present (Current_Choice));
                                    Choice_Start := Idx2;

                                    if Tab (Idx2).Choice /= Current_Choice
                                    then
                                       Error_Msg_N
                                         ("binding(s) missing for choice",
                                          Current_Choice);
                                       return;
                                    end if;
                                 end if;
                              end loop;

                              --  If we made it through all the bindings
                              --  for this alternative but didn't make it
                              --  to the last choice, then bindings are
                              --  missing for all remaining choices.
                              --  We only complain about the first one.

                              if Present (Next (Current_Choice)) then
                                 Error_Msg_N
                                   ("binding(s) missing for choice",
                                     Next (Current_Choice));
                                 return;
                              end if;
                           end;

                           --  Count bindings for first choice of alternative

                           for FC_Idx in Alt_Start .. Tab'Last loop
                              exit when Tab (FC_Idx).Choice /= First_Choice;
                              First_Choice_Bindings :=
                                First_Choice_Bindings + 1;
                           end loop;

                           declare
                              Current_Choice : Node_Id := First_Choice;
                              Current_Choice_Bindings : Natural := 0;
                           begin
                              for Idx2 in Alt_Start .. Tab'Last loop
                                 exit when Tab (Idx2).Alt /= Alt;

                                 --  If starting a new choice

                                 if Tab (Idx2).Choice /= Current_Choice then

                                    --  Check count for choice just finished

                                    if Current_Choice_Bindings
                                      /= First_Choice_Bindings
                                    then
                                       Error_Msg_N
                                         ("subsequent choice has different"
                                          & " number of bindings than first"
                                          & " choice", Current_Choice);
                                    end if;

                                    Current_Choice := Tab (Idx2).Choice;
                                    Current_Choice_Bindings := 1;

                                    --  Remember that Alt has both one or more
                                    --  bindings and two or more choices; we'll
                                    --  need to know this during expansion.

                                    Set_Multidefined_Bindings (Alt, True);
                                 else
                                    Current_Choice_Bindings :=
                                      Current_Choice_Bindings + 1;
                                 end if;

                                 --  Check that first choice has binding with
                                 --  matching name; check subtype consistency.

                                 declare
                                    Found : Boolean := False;
                                 begin
                                    for FC_Idx in
                                      Alt_Start ..
                                      Alt_Start + Binding_Index
                                                    (First_Choice_Bindings - 1)
                                    loop
                                       if Same_Id (Idx2, FC_Idx) then
                                          if not Subtypes_Statically_Match
                                            (Binding_Subtype (Idx2, Tab),
                                             Binding_Subtype (FC_Idx, Tab))
                                          then
                                             Error_Msg_N
                                               ("subtype of binding in "
                                                & "subsequent choice does not "
                                                & "match that in first choice",
                                                Tab (Idx2).Comp_Assoc);
                                          end if;
                                          Found := True;
                                          exit;
                                       end if;
                                    end loop;

                                    if not Found then
                                       Error_Msg_N
                                         ("binding defined in subsequent "
                                          & "choice not defined in first "
                                          & "choice", Current_Choice);
                                    end if;
                                 end;

                                 --  Check for illegal repeated binding
                                 --  via an enclosing aggregate, as in
                                 --  (F1 | F2 => (F3 => Natural is X,
                                 --               F4 => Natural))
                                 --  where the inner aggregate would be ok.

                                 declare
                                    Rover : Node_Id := Tab (Idx2).Comp_Assoc;
                                 begin
                                    while Rover /= Tab (Idx2).Choice loop
                                       Rover :=
                                         (if Is_List_Member (Rover) then
                                            Parent (List_Containing (Rover))
                                          else Parent (Rover));
                                       pragma Assert (Present (Rover));
                                       if Nkind (Rover)
                                         = N_Component_Association
                                         and then List_Length (Choices (Rover))
                                         > 1
                                       then
                                          Error_Msg_N
                                            ("binding shared by multiple "
                                                & "enclosing components",
                                             Tab (Idx2).Comp_Assoc);
                                       end if;
                                    end loop;
                                 end;
                              end loop;
                           end;

                           --  Construct the (unanalyzed) declarations for
                           --  the current alternative. Then analyze them.

                           if First_Choice_Bindings > 0 then
                              Declare_Binding_Objects
                                (Alt_Start             => Alt_Start,
                                 Alt                   => Alt,
                                 First_Choice_Bindings =>
                                   First_Choice_Bindings,
                                 Tab                   => Tab);
                           end if;
                        end;
                     end if;
                  end loop;
               end;
            end Check_Bindings;
         end Case_Bindings;

         function Choice_Bounds_Info return Choices_Range_Info;
         --  Returns mapping from any given Choice_Id value to that choice's
         --  component-to-range map.

         ------------------------
         -- Choice_Bounds_Info --
         ------------------------

         function Choice_Bounds_Info return Choices_Range_Info is
            Result : Choices_Range_Info;
            Alt    : Node_Id := First (Alternatives (Case_Statement));
            C_Id   : Choice_Id := 1;
         begin
            while Present (Alt) loop
               declare
                  Choice : Node_Id := First (Discrete_Choices (Alt));
               begin
                  while Present (Choice) loop
                     Result (C_Id) := Parse_Choice (Choice, Alt => Alt);

                     Next (Choice);
                     if C_Id /= Choice_Id'Last then
                        C_Id := C_Id + 1;
                     end if;
                  end loop;
               end;
               Next (Alt);
            end loop;

            pragma Assert (C_Id = Choice_Id'Last);

            --  No more calls to Note_Binding, so time for checks.
            Case_Bindings.Check_Bindings;

            return Result;
         end Choice_Bounds_Info;

         Choices_Bounds : constant Choices_Range_Info := Choice_Bounds_Info;

         package body Value_Sets is
            use GNAT;

            function Hash (Key : Uint) return Bucket_Range_Type is
              (Bucket_Range_Type
                 (UI_To_Int (Key mod (Uint_2 ** Uint_31))));

            package Uint_Sets is new GNAT.Sets.Membership_Sets
              (Uint, "=", Hash);

            type Representative_Values_Array is
              array (Part_Id) of Uint_Sets.Membership_Set;

            function Representative_Values_Init
              return Representative_Values_Array;
            --  Select the representative values for each Part_Id value.
            --  This function is called exactly once, immediately after it
            --  is declared.

            --------------------------------
            -- Representative_Values_Init --
            --------------------------------

            function Representative_Values_Init
              return Representative_Values_Array
            is
               --  For each range of each choice (as well as the range for the
               --  component subtype, which is handled in the first loop),
               --  insert the low bound of the range and the successor of
               --  the high bound into the corresponding R_V element.
               --
               --  The idea we are trying to capture here is somewhat tricky.
               --  Given an arbitrary point P1 in the Cartesian product
               --  of the Component_Bounds sets, we want to be able
               --  to map that to a point P2 in the (smaller) Cartesian product
               --  of the Representative_Values sets that has the property
               --  that for every choice of the case statement, P1 matches
               --  the choice if and only if P2 also matches. Given that,
               --  we can implement the overlapping/containment/etc. rules
               --  safely by just looking at (using brute force enumeration)
               --  the (smaller) Cartesian product of the R_V sets.
               --  We are never going to actually perform this point-to-point
               --  mapping - just the fact that it exists is enough to ensure
               --  we can safely look at just the R_V sets.
               --
               --  The desired mapping can be implemented by mapping a point
               --  P1 to a point P2 by reducing each of P1's coordinates down
               --  to the largest element of the corresponding R_V set that is
               --  less than or equal to the original coordinate value (such
               --  an element Y will always exist because the R_V set for a
               --  given component always includes the low bound of the
               --  component subtype). It then suffices to show that every
               --  choice in the case statement yields the same Boolean result
               --  for P1 as for P2.
               --
               --  Suppose the contrary. Then there is some particular
               --  coordinate position X (i.e., a Part_Id value) and some
               --  choice C where exactly one of P1(X) and P2(X) belongs to
               --  the (contiguous) range associated with C(X); call that
               --  range L .. H. We know that P2(X) <= P1(X) because the
               --  mapping never increases coordinate values. Consider three
               --  cases: P1(X) lies within the L .. H range, or it is greater
               --  than H, or it is lower than L.
               --  The third case is impossible because reducing a value that
               --  is less than L can only produce another such value,
               --  violating the "exactly one" assumption. The second
               --  case is impossible because L belongs to the corresponding
               --  R_V set, so P2(X) >= L and both values belong to the
               --  range, again violating the "exactly one" assumption.
               --  Finally, the third case is impossible because H+1 belongs
               --  to the corresponding R_V set, so P2(X) > H, so neither
               --  value belongs to the range, again violating the "exactly
               --  one" assumption. So our initial supposition was wrong. QED.

               use Uint_Sets;

               Result : constant Representative_Values_Array
                 := (others => Uint_Sets.Create (Initial_Size => 32));

               procedure Insert_Representative (Value : Uint; P : Part_Id);
               --  Insert the given Value into the representative values set
               --  for the given component if it belongs to the component's
               --  subtype. Otherwise, do nothing.

               ---------------------------
               -- Insert_Representative --
               ---------------------------

               procedure Insert_Representative (Value : Uint; P : Part_Id) is
               begin
                  if Value >= Component_Bounds (P).Low and
                    Value <= Component_Bounds (P).High
                  then
                     Insert (Result (P), Value);
                  end if;
               end Insert_Representative;

            begin
               for P in Part_Id loop
                  Insert_Representative (Component_Bounds (P).Low, P);
               end loop;

               if Simplified_Composite_Coverage_Rules then
                  --  Omit other representative values to avoid capacity
                  --  problems building data structures only used in
                  --  compile-time checks that will not be performed.
                  return Result;
               end if;

               for C of Choices_Bounds loop
                  if not C.Is_Others then
                     for P in Part_Id loop
                        if C.Ranges (P).Low <= C.Ranges (P).High then
                           Insert_Representative (C.Ranges (P).Low, P);
                           Insert_Representative (C.Ranges (P).High + 1, P);
                        end if;
                     end loop;
                  end if;
               end loop;
               return Result;
            end Representative_Values_Init;

            Representative_Values : constant Representative_Values_Array
              := Representative_Values_Init;
            --  We want to avoid looking at every point in the Cartesian
            --  product of all component values. Instead we select, for each
            --  component, a set of representative values and then look only
            --  at the Cartesian product of those sets. A single value can
            --  safely represent a larger enclosing interval if every choice
            --  for that component either completely includes or completely
            --  excludes the interval. The elements of this array will be
            --  populated by a call to Initialize_Representative_Values and
            --  will remain constant after that.

            type Value_Index_Base is new Natural;

            function Value_Index_Count return Value_Index_Base;
            --  Returns the product of the sizes of the Representative_Values
            --  sets (i.e., the size of the Cartesian product of the sets).
            --  May return zero if one of the sets is empty.
            --  This function is called exactly once, immediately after it
            --  is declared.

            -----------------------
            -- Value_Index_Count --
            -----------------------

            function Value_Index_Count return Value_Index_Base is
               Result : Value_Index_Base := 1;
            begin
               for Set of Representative_Values loop
                  Result := Result * Value_Index_Base (Uint_Sets.Size (Set));
               end loop;
               return Result;
            exception
               when Constraint_Error =>
                  Error_Msg_N
                    ("Capacity exceeded in compiling case statement with"
                      & " composite selector type", Case_Statement);
                  raise;
            end Value_Index_Count;

            Max_Value_Index : constant Value_Index_Base := Value_Index_Count;

            subtype Value_Index is Value_Index_Base range 1 .. Max_Value_Index;
            type Value_Index_Set is array (Value_Index) of Boolean;

            package Value_Index_Set_Table is new Table.Table
              (Table_Component_Type => Value_Index_Set,
               Table_Index_Type     => Value_Set,
               Table_Low_Bound      => 1,
               Table_Initial        => 16,
               Table_Increment      => 100,
               Table_Name           => "Composite_Case_Ops.Value_Sets");
            --  A nonzero Value_Set value is an index into this table.

            function Indexed (Index : Value_Set) return Value_Index_Set
              is (Value_Index_Set_Table.Table.all (Index));

            function Allocate_Table_Element (Initial_Value : Value_Index_Set)
              return Value_Set;
            --  Allocate and initialize a new table element; return its index.

            ----------------------------
            -- Allocate_Table_Element --
            ----------------------------

            function Allocate_Table_Element (Initial_Value : Value_Index_Set)
              return Value_Set
            is
               use Value_Index_Set_Table;
            begin
               Append (Initial_Value);
               return Last;
            end Allocate_Table_Element;

            procedure Assign_Table_Element (Index : Value_Set;
                                            Value : Value_Index_Set);
            --  Assign specified value to specified table element.

            --------------------------
            -- Assign_Table_Element --
            --------------------------

            procedure Assign_Table_Element (Index : Value_Set;
                                            Value : Value_Index_Set)
            is
            begin
               Value_Index_Set_Table.Table.all (Index) := Value;
            end Assign_Table_Element;

            -------------
            -- Compare --
            -------------

            function Compare (S1, S2 : Value_Set) return Set_Comparison is
            begin
               if S1 = Empty or S2 = Empty then
                  return Disjoint;
               elsif Indexed (S1) = Indexed (S2) then
                  return Equal;
               else
                  declare
                     Intersection : constant Value_Index_Set
                       := Indexed (S1) and Indexed (S2);
                  begin
                     if (for all Flag of Intersection => not Flag) then
                        return Disjoint;
                     elsif Intersection = Indexed (S1) then
                        return Contained_By;
                     elsif Intersection = Indexed (S2) then
                        return Contains;
                     else
                        return Overlaps;
                     end if;
                  end;
               end if;
            end Compare;

            -------------------------
            -- Complement_Is_Empty --
            -------------------------

            function Complement_Is_Empty (Set : Value_Set) return Boolean
              is (Set /= Empty
                  and then (for all Flag of Indexed (Set) => Flag));

            ---------------------
            -- Free_Value_Sets --
            ---------------------

            procedure Free_Value_Sets is
            begin
               Value_Index_Set_Table.Free;
            end Free_Value_Sets;

            -----------
            -- Union --
            -----------

            procedure Union (Target : in out Value_Set; Source : Value_Set) is
            begin
               if Source /= Empty then
                  if Target = Empty then
                     Target := Allocate_Table_Element (Indexed (Source));
                  else
                     Assign_Table_Element
                       (Target, Indexed (Target) or Indexed (Source));
                  end if;
               end if;
            end Union;

            ------------
            -- Remove --
            ------------

            procedure Remove (Target : in out Value_Set; Source : Value_Set) is
            begin
               if Source /= Empty and Target /= Empty then
                  Assign_Table_Element
                    (Target, Indexed (Target) and not Indexed (Source));
                  if (for all V of Indexed (Target) => not V) then
                     Target := Empty;
                  end if;
               end if;
            end Remove;

            ---------------------
            -- Matching_Values --
            ---------------------

            function Matching_Values
              (Info : Composite_Range_Info) return Value_Set
            is
               Matches    : Value_Index_Set;
               Next_Index : Value_Index := 1;
               Done       : Boolean := False;
               Point      : array (Part_Id) of Uint;

               procedure Test_Point_For_Match;
               --  Point identifies a point in the Cartesian product of the
               --  representative value sets. Record whether that Point
               --  belongs to the product-of-ranges specified by Info.

               --------------------------
               -- Test_Point_For_Match --
               --------------------------

               procedure Test_Point_For_Match is
                  function In_Range (Val : Uint; Rang : Discrete_Range_Info)
                    return Boolean is
                    (Rang.Low <= Val and then Val <= Rang.High);
               begin
                  pragma Assert (not Done);
                  Matches (Next_Index) :=
                    (for all P in Part_Id => In_Range (Point (P), Info (P)));
                  if Next_Index = Matches'Last then
                     Done := True;
                  else
                     Next_Index := Next_Index + 1;
                  end if;
               end Test_Point_For_Match;

               procedure Test_Points (P : Part_Id);
               --  Iterate over the Cartesian product of the representative
               --  value sets, calling Test_Point_For_Match for each point.

               -----------------
               -- Test_Points --
               -----------------

               procedure Test_Points (P : Part_Id) is
                  use Uint_Sets;
                  Iter : Iterator := Iterate (Representative_Values (P));
               begin
                  --  We could traverse here in sorted order, as opposed to
                  --  whatever order the set iterator gives us.
                  --  No need for that as long as every iteration over
                  --  a given representative values set yields the same order.
                  --  Not sorting is more efficient, but it makes it harder to
                  --  interpret a Value_Index_Set bit vector when debugging.

                  while Has_Next (Iter) loop
                     Next (Iter, Point (P));

                     --  If we have finished building up a Point value, then
                     --  test it for matching. Otherwise, recurse to continue
                     --  building up a point value.

                     if P = Part_Id'Last then
                        Test_Point_For_Match;
                     else
                        Test_Points (P + 1);
                     end if;
                  end loop;
               end Test_Points;

            begin
               Test_Points (1);
               if (for all Flag of Matches => not Flag) then
                  return Empty;
               end if;
               return Allocate_Table_Element (Matches);
            end Matching_Values;

         end Value_Sets;

         --------------
         -- Analysis --
         --------------

         function Analysis return Choices_Info is
            Result : Choices_Info;
            Alt    : Node_Id := First (Alternatives (Case_Statement));
            A_Id   : Alternative_Id := 1;
            C_Id   : Choice_Id := 1;
         begin
            while Present (Alt) loop
               declare
                  Choice : Node_Id := First (Discrete_Choices (Alt));
               begin
                  while Present (Choice) loop
                     if Nkind (Choice) = N_Others_Choice then
                        pragma Assert (Choices_Bounds (C_Id).Is_Others);
                        Result (C_Id) :=
                          (Alternative => A_Id,
                           Is_Others   => True);
                     else
                        Result (C_Id) :=
                          (Alternative => A_Id,
                           Is_Others   => False,
                           Matches     => Value_Sets.Matching_Values
                                            (Choices_Bounds (C_Id).Ranges));
                     end if;
                     Next (Choice);
                     if C_Id /= Choice_Id'Last then
                        C_Id := C_Id + 1;
                     end if;
                  end loop;
               end;

               Next (Alt);
               if A_Id /= Alternative_Id'Last then
                  A_Id := A_Id + 1;
               end if;
            end loop;

            pragma Assert (A_Id = Alternative_Id'Last);
            pragma Assert (C_Id = Choice_Id'Last);

            return Result;
         end Analysis;

      end Choice_Analysis;

   end Composite_Case_Ops;

   --------------------------
   -- Expand_Others_Choice --
   --------------------------

   procedure Expand_Others_Choice
     (Case_Table    : Choice_Table_Type;
      Others_Choice : Node_Id;
      Choice_Type   : Entity_Id)
   is
      Loc         : constant Source_Ptr := Sloc (Others_Choice);
      Choice_List : constant List_Id    := New_List;
      Choice      : Node_Id;
      Exp_Lo      : Node_Id;
      Exp_Hi      : Node_Id;
      Hi          : Uint;
      Lo          : Uint;
      Previous_Hi : Uint;

      function Build_Choice (Value1, Value2 : Uint) return Node_Id;
      --  Builds a node representing the missing choices given by Value1 and
      --  Value2. A N_Range node is built if there is more than one literal
      --  value missing. Otherwise a single N_Integer_Literal, N_Identifier
      --  or N_Character_Literal is built depending on what Choice_Type is.

      function Lit_Of (Value : Uint) return Node_Id;
      --  Returns the Node_Id for the enumeration literal corresponding to the
      --  position given by Value within the enumeration type Choice_Type. The
      --  returned value has its Is_Static_Expression flag set to true.

      ------------------
      -- Build_Choice --
      ------------------

      function Build_Choice (Value1, Value2 : Uint) return Node_Id is
         Lit_Node : Node_Id;
         Lo, Hi   : Node_Id;

      begin
         --  If there is only one choice value missing between Value1 and
         --  Value2, build an integer or enumeration literal to represent it.

         if Value1 = Value2 then
            if Is_Integer_Type (Choice_Type) then
               Lit_Node := Make_Integer_Literal (Loc, Value1);
               Set_Etype (Lit_Node, Choice_Type);
               Set_Is_Static_Expression (Lit_Node);
            else
               Lit_Node := Lit_Of (Value1);
            end if;

         --  Otherwise is more that one choice value that is missing between
         --  Value1 and Value2, therefore build a N_Range node of either
         --  integer or enumeration literals.

         else
            if Is_Integer_Type (Choice_Type) then
               Lo := Make_Integer_Literal (Loc, Value1);
               Set_Etype (Lo, Choice_Type);
               Set_Is_Static_Expression (Lo);
               Hi := Make_Integer_Literal (Loc, Value2);
               Set_Etype (Hi, Choice_Type);
               Set_Is_Static_Expression (Hi);
               Lit_Node :=
                 Make_Range (Loc,
                   Low_Bound  => Lo,
                   High_Bound => Hi);

            else
               Lit_Node :=
                 Make_Range (Loc,
                   Low_Bound  => Lit_Of (Value1),
                   High_Bound => Lit_Of (Value2));
            end if;
         end if;

         return Lit_Node;
      end Build_Choice;

      ------------
      -- Lit_Of --
      ------------

      function Lit_Of (Value : Uint) return Node_Id is
         Lit : Entity_Id;

      begin
         --  In the case where the literal is of type Character, there needs
         --  to be some special handling since there is no explicit chain
         --  of literals to search. Instead, a N_Character_Literal node
         --  is created with the appropriate Char_Code and Chars fields.

         if Is_Standard_Character_Type (Choice_Type) then
            Set_Character_Literal_Name (UI_To_CC (Value));
            Lit :=
              Make_Character_Literal (Loc,
                Chars              => Name_Find,
                Char_Literal_Value => Value);
            Set_Etype (Lit, Choice_Type);
            Set_Is_Static_Expression (Lit, True);
            return Lit;

         --  Otherwise, iterate through the literals list of Choice_Type
         --  "Value" number of times until the desired literal is reached
         --  and then return an occurrence of it.

         else
            Lit := First_Literal (Choice_Type);
            for J in 1 .. UI_To_Int (Value) loop
               Next_Literal (Lit);
            end loop;

            return New_Occurrence_Of (Lit, Loc);
         end if;
      end Lit_Of;

   --  Start of processing for Expand_Others_Choice

   begin
      if Case_Table'Last = 0 then

         --  Special case: only an others case is present. The others case
         --  covers the full range of the type.

         if Is_OK_Static_Subtype (Choice_Type) then
            Choice := New_Occurrence_Of (Choice_Type, Loc);
         else
            Choice := New_Occurrence_Of (Base_Type (Choice_Type), Loc);
         end if;

         Set_Others_Discrete_Choices (Others_Choice, New_List (Choice));
         return;
      end if;

      --  Establish the bound values for the choice depending upon whether the
      --  type of the case statement is static or not.

      if Is_OK_Static_Subtype (Choice_Type) then
         Exp_Lo := Type_Low_Bound (Choice_Type);
         Exp_Hi := Type_High_Bound (Choice_Type);
      else
         Exp_Lo := Type_Low_Bound (Base_Type (Choice_Type));
         Exp_Hi := Type_High_Bound (Base_Type (Choice_Type));
      end if;

      Lo := Expr_Value (Case_Table (1).Lo);
      Hi := Expr_Value (Case_Table (1).Hi);
      Previous_Hi := Expr_Value (Case_Table (1).Hi);

      --  Build the node for any missing choices that are smaller than any
      --  explicit choices given in the case.

      if Expr_Value (Exp_Lo) < Lo then
         Append (Build_Choice (Expr_Value (Exp_Lo), Lo - 1), Choice_List);
      end if;

      --  Build the nodes representing any missing choices that lie between
      --  the explicit ones given in the case.

      for J in 2 .. Case_Table'Last loop
         Lo := Expr_Value (Case_Table (J).Lo);
         Hi := Expr_Value (Case_Table (J).Hi);

         if Lo /= (Previous_Hi + 1) then
            Append_To (Choice_List, Build_Choice (Previous_Hi + 1, Lo - 1));
         end if;

         Previous_Hi := Hi;
      end loop;

      --  Build the node for any missing choices that are greater than any
      --  explicit choices given in the case.

      if Expr_Value (Exp_Hi) > Hi then
         Append (Build_Choice (Hi + 1, Expr_Value (Exp_Hi)), Choice_List);
      end if;

      Set_Others_Discrete_Choices (Others_Choice, Choice_List);

      --  Warn on null others list if warning option set

      if Warn_On_Redundant_Constructs
        and then Comes_From_Source (Others_Choice)
        and then Is_Empty_List (Choice_List)
      then
         Error_Msg_N ("?r?OTHERS choice is redundant", Others_Choice);
         Error_Msg_N ("\?r?previous choices cover all values", Others_Choice);
      end if;
   end Expand_Others_Choice;

   -----------
   -- No_OP --
   -----------

   procedure No_OP (C : Node_Id) is
   begin
      if Nkind (C) = N_Range and then Warn_On_Redundant_Constructs then
         Error_Msg_N ("choice is an empty range?r?", C);
      end if;
   end No_OP;

   -----------------------------
   -- Generic_Analyze_Choices --
   -----------------------------

   package body Generic_Analyze_Choices is

      --  The following type is used to gather the entries for the choice
      --  table, so that we can then allocate the right length.

      type Link;
      type Link_Ptr is access all Link;

      type Link is record
         Val : Choice_Bounds;
         Nxt : Link_Ptr;
      end record;

      ---------------------
      -- Analyze_Choices --
      ---------------------

      procedure Analyze_Choices
        (Alternatives : List_Id;
         Subtyp       : Entity_Id)
      is
         Choice_Type : constant Entity_Id := Base_Type (Subtyp);
         --  The actual type against which the discrete choices are resolved.
         --  Note that this type is always the base type not the subtype of the
         --  ruling expression, index or discriminant.

         Expected_Type : Entity_Id;
         --  The expected type of each choice. Equal to Choice_Type, except if
         --  the expression is universal, in which case the choices can be of
         --  any integer type.

         Alt : Node_Id;
         --  A case statement alternative or a variant in a record type
         --  declaration.

         Choice : Node_Id;
         Kind   : Node_Kind;
         --  The node kind of the current Choice

      begin
         --  Set Expected type (= choice type except for universal integer,
         --  where we accept any integer type as a choice).

         if Choice_Type = Universal_Integer then
            Expected_Type := Any_Integer;
         else
            Expected_Type := Choice_Type;
         end if;

         --  Now loop through the case alternatives or record variants

         Alt := First (Alternatives);
         while Present (Alt) loop

            --  If pragma, just analyze it

            if Nkind (Alt) = N_Pragma then
               Analyze (Alt);

            --  Otherwise we have an alternative. In most cases the semantic
            --  processing leaves the list of choices unchanged

            --  Check each choice against its base type

            else
               Choice := First (Discrete_Choices (Alt));
               while Present (Choice) loop
                  Analyze (Choice);
                  Kind := Nkind (Choice);

                  --  Choice is a Range

                  if Kind = N_Range
                    or else (Kind = N_Attribute_Reference
                              and then Attribute_Name (Choice) = Name_Range)
                  then
                     Resolve (Choice, Expected_Type);

                  --  Choice is a subtype name, nothing further to do now

                  elsif Is_Entity_Name (Choice)
                    and then Is_Type (Entity (Choice))
                  then
                     null;

                  --  Choice is a subtype indication

                  elsif Kind = N_Subtype_Indication then
                     Resolve_Discrete_Subtype_Indication
                       (Choice, Expected_Type);

                  --  Others choice, no analysis needed

                  elsif Kind = N_Others_Choice then
                     null;

                  --  Only other possibility is an expression

                  else
                     Resolve (Choice, Expected_Type);
                  end if;

                  --  Move to next choice

                  Next (Choice);
               end loop;

               Process_Associated_Node (Alt);
            end if;

            Next (Alt);
         end loop;
      end Analyze_Choices;

   end Generic_Analyze_Choices;

   ---------------------------
   -- Generic_Check_Choices --
   ---------------------------

   package body Generic_Check_Choices is

      --  The following type is used to gather the entries for the choice
      --  table, so that we can then allocate the right length.

      type Link;
      type Link_Ptr is access all Link;

      type Link is record
         Val : Choice_Bounds;
         Nxt : Link_Ptr;
      end record;

      procedure Free is new Ada.Unchecked_Deallocation (Link, Link_Ptr);

      -------------------
      -- Check_Choices --
      -------------------

      procedure Check_Choices
        (N              : Node_Id;
         Alternatives   : List_Id;
         Subtyp         : Entity_Id;
         Others_Present : out Boolean)
      is
         E : Entity_Id;

         Raises_CE : Boolean;
         --  Set True if one of the bounds of a choice raises CE

         Enode : Node_Id;
         --  This is where we post error messages for bounds out of range

         Choice_List : Link_Ptr := null;
         --  Gather list of choices

         Num_Choices : Nat := 0;
         --  Number of entries in Choice_List

         Choice_Type : constant Entity_Id := Base_Type (Subtyp);
         --  The actual type against which the discrete choices are resolved.
         --  Note that this type is always the base type not the subtype of the
         --  ruling expression, index or discriminant.

         Bounds_Type : Entity_Id;
         --  The type from which are derived the bounds of the values covered
         --  by the discrete choices (see 3.8.1 (4)). If a discrete choice
         --  specifies a value outside of these bounds we have an error.

         Bounds_Lo : Uint;
         Bounds_Hi : Uint;
         --  The actual bounds of the above type

         Expected_Type : Entity_Id;
         --  The expected type of each choice. Equal to Choice_Type, except if
         --  the expression is universal, in which case the choices can be of
         --  any integer type.

         Alt : Node_Id;
         --  A case statement alternative or a variant in a record type
         --  declaration.

         Choice : Node_Id;
         Kind   : Node_Kind;
         --  The node kind of the current Choice

         Others_Choice : Node_Id := Empty;
         --  Remember others choice if it is present (empty otherwise)

         procedure Check (Choice : Node_Id; Lo, Hi : Node_Id);
         --  Checks the validity of the bounds of a choice. When the bounds
         --  are static and no error occurred the bounds are collected for
         --  later entry into the choices table so that they can be sorted
         --  later on.

         procedure Check_Case_Pattern_Choices;
         --  Check choices validity for the Ada extension case where the
         --  selecting expression is not of a discrete type and so the
         --  choices are patterns.

         procedure Check_Composite_Case_Selector;
         --  Check that the (non-discrete) type of the expression being
         --  cased on is suitable.

         procedure Handle_Static_Predicate
           (Typ : Entity_Id;
            Lo  : Node_Id;
            Hi  : Node_Id);
         --  If the type of the alternative has predicates, we must examine
         --  each subset of the predicate rather than the bounds of the type
         --  itself. This is relevant when the choice is a subtype mark or a
         --  subtype indication.

         -----------
         -- Check --
         -----------

         procedure Check (Choice : Node_Id; Lo, Hi : Node_Id) is
            Lo_Val : Uint;
            Hi_Val : Uint;

         begin
            --  First check if an error was already detected on either bounds

            if Etype (Lo) = Any_Type or else Etype (Hi) = Any_Type then
               return;

            --  Do not insert non static choices in the table to be sorted

            elsif not Is_OK_Static_Expression (Lo)
                    or else
                  not Is_OK_Static_Expression (Hi)
            then
               Process_Non_Static_Choice (Choice);
               return;

            --  Ignore range which raise constraint error

            elsif Raises_Constraint_Error (Lo)
              or else Raises_Constraint_Error (Hi)
            then
               Raises_CE := True;
               return;

            --  AI05-0188 : Within an instance the non-others choices do not
            --  have to belong to the actual subtype.

            elsif Ada_Version >= Ada_2012 and then In_Instance then
               return;

            --  Otherwise we have an OK static choice

            else
               Lo_Val := Expr_Value (Lo);
               Hi_Val := Expr_Value (Hi);

               --  Do not insert null ranges in the choices table

               if Lo_Val > Hi_Val then
                  Process_Empty_Choice (Choice);
                  return;
               end if;
            end if;

            --  Check for low bound out of range

            if Lo_Val < Bounds_Lo then

               --  If the choice is an entity name, then it is a type, and we
               --  want to post the message on the reference to this entity.
               --  Otherwise post it on the lower bound of the range.

               if Is_Entity_Name (Choice) then
                  Enode := Choice;
               else
                  Enode := Lo;
               end if;

               --  Specialize message for integer/enum type

               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Bounds_Lo;
                  Error_Msg_N ("minimum allowed choice value is^", Enode);
               else
                  Error_Msg_Name_1 := Choice_Image (Bounds_Lo, Bounds_Type);
                  Error_Msg_N ("minimum allowed choice value is%", Enode);
               end if;
            end if;

            --  Check for high bound out of range

            if Hi_Val > Bounds_Hi then

               --  If the choice is an entity name, then it is a type, and we
               --  want to post the message on the reference to this entity.
               --  Otherwise post it on the upper bound of the range.

               if Is_Entity_Name (Choice) then
                  Enode := Choice;
               else
                  Enode := Hi;
               end if;

               --  Specialize message for integer/enum type

               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Bounds_Hi;
                  Error_Msg_N ("maximum allowed choice value is^", Enode);
               else
                  Error_Msg_Name_1 := Choice_Image (Bounds_Hi, Bounds_Type);
                  Error_Msg_N ("maximum allowed choice value is%", Enode);
               end if;
            end if;

            --  Collect bounds in the list

            --  Note: we still store the bounds, even if they are out of range,
            --  since this may prevent unnecessary cascaded errors for values
            --  that are covered by such an excessive range.

            Choice_List :=
              new Link'(Val => (Lo, Hi, Choice), Nxt => Choice_List);
            Num_Choices := Num_Choices + 1;
         end Check;

         --------------------------------
         -- Check_Case_Pattern_Choices --
         --------------------------------

         procedure Check_Case_Pattern_Choices is
            package Ops is new Composite_Case_Ops.Choice_Analysis
              (Case_Statement => N);
            use Ops;
            use Ops.Value_Sets;

            Empty : Value_Set renames Value_Sets.Empty;
            --  Cope with hiding due to multiple use clauses

            Info        : constant Choices_Info := Analysis;
            Others_Seen : Boolean := False;

         begin
            declare
               Matches : array (Alternative_Id) of Value_Sets.Value_Set :=
                 (others => Empty);

               Flag_Overlapping_Within_One_Alternative : constant Boolean :=
                 False;
               --  We may want to flag overlapping (perhaps with only a
               --  warning) if the pattern binds an identifier, as in
               --    when (Positive, <X>) | (Integer, <X>) =>

               Covered : Value_Set := Empty;
               --  The union of all alternatives seen so far
            begin
               if Composite_Case_Ops.Simplified_Composite_Coverage_Rules then
                  if not (for some Choice of Info => Choice.Is_Others) then
                     Error_Msg_N ("others choice required", N);
                  end if;
                  return;
               end if;

               for Choice of Info loop
                  if Choice.Is_Others then
                     Others_Seen := True;
                  else
                     if Flag_Overlapping_Within_One_Alternative
                        and then Compare (Matches (Choice.Alternative),
                                          Choice.Matches) /= Disjoint
                     then
                        Error_Msg_N
                          ("bad overlapping within one alternative", N);
                     end if;

                     Union (Target => Matches (Choice.Alternative),
                            Source => Choice.Matches);
                  end if;
               end loop;

               for A1 in Alternative_Id loop
                  for A2 in Alternative_Id
                              range A1 + 1 .. Alternative_Id'Last
                  loop
                     case Compare (Matches (A1), Matches (A2)) is
                        when Disjoint | Contained_By =>
                           null; -- OK
                        when Overlaps =>
                           declare
                              Uncovered_1, Uncovered_2 : Value_Set := Empty;
                           begin
                              Union (Uncovered_1, Matches (A1));
                              Remove (Uncovered_1, Covered);
                              Union (Uncovered_2, Matches (A2));
                              Remove (Uncovered_2, Covered);

                              --  Recheck for overlap after removing choices
                              --  covered by earlier alternatives.

                              case Compare (Uncovered_1, Uncovered_2) is
                                 when Disjoint | Contained_By =>
                                    null;
                                 when Contains | Overlaps | Equal =>
                                    Error_Msg_N
                                      ("bad alternative overlapping", N);
                              end case;
                           end;

                        when Equal =>
                           Error_Msg_N ("alternatives match same values", N);
                        when Contains =>
                           Error_Msg_N ("alternatives in wrong order", N);
                     end case;
                  end loop;

                  Union (Target => Covered, Source => Matches (A1));
               end loop;

               if not Others_Seen and then not Complement_Is_Empty (Covered)
               then
                  Error_Msg_N ("not all values are covered", N);
               end if;
            end;

            Ops.Value_Sets.Free_Value_Sets;
         end Check_Case_Pattern_Choices;

         -----------------------------------
         -- Check_Composite_Case_Selector --
         -----------------------------------

         procedure Check_Composite_Case_Selector is
         begin
            if not Is_Composite_Type (Subtyp) then
               Error_Msg_N
                 ("case selector type must be discrete or composite", N);
            elsif Is_Limited_Type (Subtyp) then
               Error_Msg_N ("case selector type must not be limited", N);
            elsif Is_Class_Wide_Type (Subtyp) then
               Error_Msg_N ("case selector type must not be class-wide", N);
            elsif Needs_Finalization (Subtyp)
              and then Is_Newly_Constructed
                         (Expression (N), Context_Requires_NC => False)
            then
               --  We could allow this case as long as there are no bindings.
               --
               --  If there are bindings, then allowing this case will get
               --  messy because the selector expression will be finalized
               --  before the statements of the selected alternative are
               --  executed (unless we add an INOX-specific change to the
               --  accessibility rules to prevent this earlier-than-wanted
               --  finalization, but adding new INOX-specific accessibility
               --  complexity is probably not the direction we want to go).
               --  This early selector finalization would be ok if we made
               --  copies in this case (so that the bindings would not yield
               --  a view of a finalized object), but then we'd have to deal
               --  with finalizing those copies (which would necessarily
               --  include defining their accessibility level). So it gets
               --  messy either way.

               Error_Msg_N ("case selector must not require finalization", N);
            end if;
         end Check_Composite_Case_Selector;

         -----------------------------
         -- Handle_Static_Predicate --
         -----------------------------

         procedure Handle_Static_Predicate
           (Typ : Entity_Id;
            Lo  : Node_Id;
            Hi  : Node_Id)
         is
            P : Node_Id;
            C : Node_Id;

         begin
            --  Loop through entries in predicate list, checking each entry.
            --  Note that if the list is empty, corresponding to a False
            --  predicate, then no choices are checked. If the choice comes
            --  from a subtype indication, the given range may have bounds
            --  that narrow the predicate choices themselves, so we must
            --  consider only those entries within the range of the given
            --  subtype indication..

            P := First (Static_Discrete_Predicate (Typ));
            while Present (P) loop

               --  Check that part of the predicate choice is included in the
               --  given bounds.

               if Expr_Value (High_Bound (P)) >= Expr_Value (Lo)
                 and then Expr_Value (Low_Bound (P)) <= Expr_Value (Hi)
               then
                  C := New_Copy (P);
                  Set_Sloc (C, Sloc (Choice));
                  Set_Original_Node (C, Choice);

                  if Expr_Value (Low_Bound (C)) < Expr_Value (Lo) then
                     Set_Low_Bound (C, Lo);
                  end if;

                  if Expr_Value (High_Bound (C)) > Expr_Value (Hi) then
                     Set_High_Bound (C, Hi);
                  end if;

                  Check (C, Low_Bound (C), High_Bound (C));
               end if;

               Next (P);
            end loop;

            Set_Has_SP_Choice (Alt);
         end Handle_Static_Predicate;

      --  Start of processing for Check_Choices

      begin
         Raises_CE      := False;
         Others_Present := False;

         --  If Subtyp is not a discrete type or there was some other error,
         --  then don't try any semantic checking on the choices since we have
         --  a complete mess.

         if not Is_Discrete_Type (Subtyp) or else Subtyp = Any_Type then

            --  Hold on, maybe it isn't a complete mess after all.

            if Core_Extensions_Allowed and then Subtyp /= Any_Type then
               Check_Composite_Case_Selector;
               Check_Case_Pattern_Choices;
            end if;

            return;
         end if;

         --  If Subtyp is not a static subtype Ada 95 requires then we use the
         --  bounds of its base type to determine the values covered by the
         --  discrete choices.

         --  In Ada 2012, if the subtype has a nonstatic predicate the full
         --  range of the base type must be covered as well.

         if Is_OK_Static_Subtype (Subtyp) then
            if not Has_Predicates (Subtyp)
              or else Has_Static_Predicate (Subtyp)
            then
               Bounds_Type := Subtyp;
            else
               Bounds_Type := Choice_Type;
            end if;

         else
            Bounds_Type := Choice_Type;
         end if;

         --  Obtain static bounds of type, unless this is a generic formal
         --  discrete type for which all choices will be nonstatic.

         if not Is_Generic_Type (Root_Type (Bounds_Type))
           or else Ekind (Bounds_Type) /= E_Enumeration_Type
         then
            Bounds_Lo := Expr_Value (Type_Low_Bound (Bounds_Type));
            Bounds_Hi := Expr_Value (Type_High_Bound (Bounds_Type));
         end if;

         if Choice_Type = Universal_Integer then
            Expected_Type := Any_Integer;
         else
            Expected_Type := Choice_Type;
         end if;

         --  Now loop through the case alternatives or record variants

         Alt := First (Alternatives);
         while Present (Alt) loop

            --  If pragma, just analyze it

            if Nkind (Alt) = N_Pragma then
               Analyze (Alt);

            --  Otherwise we have an alternative. In most cases the semantic
            --  processing leaves the list of choices unchanged

            --  Check each choice against its base type

            else
               Choice := First (Discrete_Choices (Alt));
               while Present (Choice) loop
                  Kind := Nkind (Choice);

                  --  Choice is a Range

                  if Kind = N_Range
                    or else (Kind = N_Attribute_Reference
                              and then Attribute_Name (Choice) = Name_Range)
                  then
                     Check (Choice, Low_Bound (Choice), High_Bound (Choice));

                  --  Choice is a subtype name

                  elsif Is_Entity_Name (Choice)
                    and then Is_Type (Entity (Choice))
                  then
                     --  Check for inappropriate type

                     if not Covers (Expected_Type, Etype (Choice)) then
                        Wrong_Type (Choice, Choice_Type);

                     --  Type is OK, so check further

                     else
                        E := Entity (Choice);

                        --  Case of predicated subtype

                        if Has_Predicates (E) then

                           --  Use of nonstatic predicate is an error

                           if not Is_Discrete_Type (E)
                             or else not Has_Static_Predicate (E)
                             or else Has_Dynamic_Predicate_Aspect (E)
                             or else Has_Ghost_Predicate_Aspect (E)
                           then
                              Bad_Predicated_Subtype_Use
                                ("cannot use subtype& with non-static "
                                 & "predicate as case alternative",
                                 Choice, E, Suggest_Static => True);

                           --  Static predicate case. The bounds are those of
                           --  the given subtype.

                           else
                              Handle_Static_Predicate (E,
                                Type_Low_Bound (E), Type_High_Bound (E));
                           end if;

                        --  Not predicated subtype case

                        elsif not Is_OK_Static_Subtype (E) then
                           Process_Non_Static_Choice (Choice);
                        else
                           Check
                             (Choice, Type_Low_Bound (E), Type_High_Bound (E));
                        end if;
                     end if;

                  --  Choice is a subtype indication

                  elsif Kind = N_Subtype_Indication then
                     Resolve_Discrete_Subtype_Indication
                       (Choice, Expected_Type);

                     if Etype (Choice) /= Any_Type then
                        declare
                           C : constant Node_Id := Constraint (Choice);
                           R : constant Node_Id := Range_Expression (C);
                           L : constant Node_Id := Low_Bound (R);
                           H : constant Node_Id := High_Bound (R);

                        begin
                           E := Entity (Subtype_Mark (Choice));

                           if not Is_OK_Static_Subtype (E) then
                              Process_Non_Static_Choice (Choice);

                           else
                              if Is_OK_Static_Expression (L)
                                   and then
                                 Is_OK_Static_Expression (H)
                              then
                                 if Expr_Value (L) > Expr_Value (H) then
                                    Process_Empty_Choice (Choice);
                                 else
                                    if Is_Out_Of_Range (L, E) then
                                       Apply_Compile_Time_Constraint_Error
                                         (L, "static value out of range",
                                          CE_Range_Check_Failed);
                                    end if;

                                    if Is_Out_Of_Range (H, E) then
                                       Apply_Compile_Time_Constraint_Error
                                         (H, "static value out of range",
                                          CE_Range_Check_Failed);
                                    end if;
                                 end if;
                              end if;

                              --  Check applicable predicate values within the
                              --  bounds of the given range.

                              if Has_Static_Predicate (E) then
                                 Handle_Static_Predicate (E, L, H);

                              else
                                 Check (Choice, L, H);
                              end if;
                           end if;
                        end;
                     end if;

                  --  The others choice is only allowed for the last
                  --  alternative and as its only choice.

                  elsif Kind = N_Others_Choice then
                     if not (Choice = First (Discrete_Choices (Alt))
                              and then Choice = Last (Discrete_Choices (Alt))
                              and then Alt = Last (Alternatives))
                     then
                        Error_Msg_N
                          ("the choice OTHERS must appear alone and last",
                           Choice);
                        return;
                     end if;

                     Others_Present := True;
                     Others_Choice  := Choice;

                  --  Only other possibility is an expression

                  else
                     Check (Choice, Choice, Choice);
                  end if;

                  --  Move to next choice

                  Next (Choice);
               end loop;

               Process_Associated_Node (Alt);
            end if;

            Next (Alt);
         end loop;

         --  Now we can create the Choice_Table, since we know how long
         --  it needs to be so we can allocate exactly the right length.

         declare
            Choice_Table : Choice_Table_Type (0 .. Num_Choices);

         begin
            --  Now copy the items we collected in the linked list into this
            --  newly allocated table (leave entry 0 unused for sorting).

            declare
               T : Link_Ptr;
            begin
               for J in 1 .. Num_Choices loop
                  T := Choice_List;
                  Choice_List := T.Nxt;
                  Choice_Table (J) := T.Val;
                  Free (T);
               end loop;
            end;

            Check_Choice_Set
              (Choice_Table,
               Bounds_Type,
               Subtyp,
               Others_Present or else Choice_Type = Universal_Integer,
               N);

            --  If no others choice we are all done, otherwise we have one more
            --  step, which is to set the Others_Discrete_Choices field of the
            --  others choice (to contain all otherwise unspecified choices).
            --  Skip this if CE is known to be raised.

            if Others_Present and not Raises_CE then
               Expand_Others_Choice
                 (Case_Table    => Choice_Table,
                  Others_Choice => Others_Choice,
                  Choice_Type   => Bounds_Type);
            end if;
         end;
      end Check_Choices;

   end Generic_Check_Choices;

   -----------------------------------------
   --  Has_Static_Discriminant_Constraint --
   -----------------------------------------

   function Has_Static_Discriminant_Constraint
     (Subtyp : Entity_Id) return Boolean
   is
   begin
      if Has_Discriminants (Subtyp) and then Is_Constrained (Subtyp) then
         declare
            DC_Elmt : Elmt_Id := First_Elmt (Discriminant_Constraint (Subtyp));
         begin
            while Present (DC_Elmt) loop
               if not All_Composite_Constraints_Static (Node (DC_Elmt)) then
                  return False;
               end if;
               Next_Elmt (DC_Elmt);
            end loop;
            return True;
         end;
      end if;
      return False;
   end Has_Static_Discriminant_Constraint;

   ----------------------------
   -- Is_Case_Choice_Pattern --
   ----------------------------

   function Is_Case_Choice_Pattern (Expr : Node_Id) return Boolean is
      E : Node_Id := Expr;
   begin
      if not Core_Extensions_Allowed then
         return False;
      end if;

      loop
         case Nkind (E) is
            when N_Case_Statement_Alternative
               | N_Case_Expression_Alternative
            =>
               --  We could return False if selecting expression is discrete,
               --  but this doesn't seem to be worth the bother.
               return True;

            when N_Empty
               | N_Statement_Other_Than_Procedure_Call
               | N_Procedure_Call_Statement
               | N_Declaration
            =>
               return False;

            when others =>
               E := Parent (E);
         end case;
      end loop;
   end Is_Case_Choice_Pattern;

end Sem_Case;