aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/sem_aux.adb
blob: d82dced057e414749d54df59d006ce875e4b4090 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ A U X                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;  use Atree;
with Einfo;  use Einfo;
with Snames; use Snames;
with Stand;  use Stand;
with Uintp;  use Uintp;

package body Sem_Aux is

   ----------------------
   -- Ancestor_Subtype --
   ----------------------

   function Ancestor_Subtype (Typ : Entity_Id) return Entity_Id is
   begin
      --  If this is first subtype, or is a base type, then there is no
      --  ancestor subtype, so we return Empty to indicate this fact.

      if Is_First_Subtype (Typ) or else Is_Base_Type (Typ) then
         return Empty;
      end if;

      declare
         D : constant Node_Id := Declaration_Node (Typ);

      begin
         --  If we have a subtype declaration, get the ancestor subtype

         if Nkind (D) = N_Subtype_Declaration then
            if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
               return Entity (Subtype_Mark (Subtype_Indication (D)));
            else
               return Entity (Subtype_Indication (D));
            end if;

         --  If not, then no subtype indication is available

         else
            return Empty;
         end if;
      end;
   end Ancestor_Subtype;

   --------------------
   -- Available_View --
   --------------------

   function Available_View (Ent : Entity_Id) return Entity_Id is
   begin
      --  Obtain the non-limited view (if available)

      if Has_Non_Limited_View (Ent) then
         return Get_Full_View (Non_Limited_View (Ent));

      --  In all other cases, return entity unchanged

      else
         return Ent;
      end if;
   end Available_View;

   --------------------
   -- Constant_Value --
   --------------------

   function Constant_Value (Ent : Entity_Id) return Node_Id is
      D      : constant Node_Id := Declaration_Node (Ent);
      Full_D : Node_Id;

   begin
      --  If we have no declaration node, then return no constant value. Not
      --  clear how this can happen, but it does sometimes and this is the
      --  safest approach.

      if No (D) then
         return Empty;

      --  Normal case where a declaration node is present

      elsif Nkind (D) = N_Object_Renaming_Declaration then
         return Renamed_Object (Ent);

      --  If this is a component declaration whose entity is a constant, it is
      --  a prival within a protected function (and so has no constant value).

      elsif Nkind (D) = N_Component_Declaration then
         return Empty;

      --  If there is an expression, return it

      elsif Present (Expression (D)) then
         return Expression (D);

      --  For a constant, see if we have a full view

      elsif Ekind (Ent) = E_Constant
        and then Present (Full_View (Ent))
      then
         Full_D := Parent (Full_View (Ent));

         --  The full view may have been rewritten as an object renaming

         if Nkind (Full_D) = N_Object_Renaming_Declaration then
            return Name (Full_D);
         else
            return Expression (Full_D);
         end if;

      --  Otherwise we have no expression to return

      else
         return Empty;
      end if;
   end Constant_Value;

   ---------------------------------
   -- Corresponding_Unsigned_Type --
   ---------------------------------

   function Corresponding_Unsigned_Type (Typ : Entity_Id) return Entity_Id is
      pragma Assert (Is_Signed_Integer_Type (Typ));
      Siz : constant Uint := Esize (Base_Type (Typ));
   begin
      if Siz = Esize (Standard_Short_Short_Integer) then
         return Standard_Short_Short_Unsigned;
      elsif Siz = Esize (Standard_Short_Integer) then
         return Standard_Short_Unsigned;
      elsif Siz = Esize (Standard_Unsigned) then
         return Standard_Unsigned;
      elsif Siz = Esize (Standard_Long_Integer) then
         return Standard_Long_Unsigned;
      elsif Siz = Esize (Standard_Long_Long_Integer) then
         return Standard_Long_Long_Unsigned;
      else
         raise Program_Error;
      end if;
   end Corresponding_Unsigned_Type;

   -----------------------------
   -- Enclosing_Dynamic_Scope --
   -----------------------------

   function Enclosing_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
      S : Entity_Id;

   begin
      --  The following test is an error defense against some syntax errors
      --  that can leave scopes very messed up.

      if Ent = Standard_Standard then
         return Ent;
      end if;

      --  Normal case, search enclosing scopes

      --  Note: the test for Present (S) should not be required, it defends
      --  against an ill-formed tree.

      S := Scope (Ent);
      loop
         --  If we somehow got an empty value for Scope, the tree must be
         --  malformed. Rather than blow up we return Standard in this case.

         if No (S) then
            return Standard_Standard;

         --  Quit if we get to standard or a dynamic scope. We must also
         --  handle enclosing scopes that have a full view; required to
         --  locate enclosing scopes that are synchronized private types
         --  whose full view is a task type.

         elsif S = Standard_Standard
           or else Is_Dynamic_Scope (S)
           or else (Is_Private_Type (S)
                     and then Present (Full_View (S))
                     and then Is_Dynamic_Scope (Full_View (S)))
         then
            return S;

         --  Otherwise keep climbing

         else
            S := Scope (S);
         end if;
      end loop;
   end Enclosing_Dynamic_Scope;

   ------------------------
   -- First_Discriminant --
   ------------------------

   function First_Discriminant (Typ : Entity_Id) return Entity_Id is
      Ent : Entity_Id;

   begin
      pragma Assert
        (Has_Discriminants (Typ) or else Has_Unknown_Discriminants (Typ));

      Ent := First_Entity (Typ);

      --  The discriminants are not necessarily contiguous, because access
      --  discriminants will generate itypes. They are not the first entities
      --  either because the tag must be ahead of them.

      if Chars (Ent) = Name_uTag then
         Ent := Next_Entity (Ent);
      end if;

      --  Skip all hidden stored discriminants if any

      while Present (Ent) loop
         exit when Ekind (Ent) = E_Discriminant
           and then not Is_Completely_Hidden (Ent);

         Ent := Next_Entity (Ent);
      end loop;

      --  Call may be on a private type with unknown discriminants, in which
      --  case Ent is Empty, and as per the spec, we return Empty in this case.

      --  Historical note: The assertion in previous versions that Ent is a
      --  discriminant was overly cautious and prevented convenient application
      --  of this function in the gnatprove context.

      return Ent;
   end First_Discriminant;

   -------------------------------
   -- First_Stored_Discriminant --
   -------------------------------

   function First_Stored_Discriminant (Typ : Entity_Id) return Entity_Id is
      Ent : Entity_Id;

      function Has_Completely_Hidden_Discriminant
        (Typ : Entity_Id) return Boolean;
      --  Scans the Discriminants to see whether any are Completely_Hidden
      --  (the mechanism for describing non-specified stored discriminants)
      --  Note that the entity list for the type may contain anonymous access
      --  types created by expressions that constrain access discriminants.

      ----------------------------------------
      -- Has_Completely_Hidden_Discriminant --
      ----------------------------------------

      function Has_Completely_Hidden_Discriminant
        (Typ : Entity_Id) return Boolean
      is
         Ent : Entity_Id;

      begin
         pragma Assert (Ekind (Typ) = E_Discriminant);

         Ent := Typ;
         while Present (Ent) loop

            --  Skip anonymous types that may be created by expressions
            --  used as discriminant constraints on inherited discriminants.

            if Is_Itype (Ent) then
               null;

            elsif Ekind (Ent) = E_Discriminant
              and then Is_Completely_Hidden (Ent)
            then
               return True;
            end if;

            Ent := Next_Entity (Ent);
         end loop;

         return False;
      end Has_Completely_Hidden_Discriminant;

   --  Start of processing for First_Stored_Discriminant

   begin
      pragma Assert
        (Has_Discriminants (Typ)
          or else Has_Unknown_Discriminants (Typ));

      Ent := First_Entity (Typ);

      if Chars (Ent) = Name_uTag then
         Ent := Next_Entity (Ent);
      end if;

      if Has_Completely_Hidden_Discriminant (Ent) then
         while Present (Ent) loop
            exit when Ekind (Ent) = E_Discriminant
              and then Is_Completely_Hidden (Ent);
            Ent := Next_Entity (Ent);
         end loop;
      end if;

      pragma Assert (Ekind (Ent) = E_Discriminant);

      return Ent;
   end First_Stored_Discriminant;

   -------------------
   -- First_Subtype --
   -------------------

   function First_Subtype (Typ : Entity_Id) return Entity_Id is
      B   : constant Entity_Id := Base_Type (Typ);
      F   : constant Node_Id   := Freeze_Node (B);
      Ent : Entity_Id;

   begin
      --  If the base type has no freeze node, it is a type in Standard, and
      --  always acts as its own first subtype, except where it is one of the
      --  predefined integer types. If the type is formal, it is also a first
      --  subtype, and its base type has no freeze node. On the other hand, a
      --  subtype of a generic formal is not its own first subtype. Its base
      --  type, if anonymous, is attached to the formal type decl. from which
      --  the first subtype is obtained.

      if No (F) then
         if B = Base_Type (Standard_Integer) then
            return Standard_Integer;

         elsif B = Base_Type (Standard_Long_Integer) then
            return Standard_Long_Integer;

         elsif B = Base_Type (Standard_Short_Short_Integer) then
            return Standard_Short_Short_Integer;

         elsif B = Base_Type (Standard_Short_Integer) then
            return Standard_Short_Integer;

         elsif B = Base_Type (Standard_Long_Long_Integer) then
            return Standard_Long_Long_Integer;

         elsif Is_Generic_Type (Typ) then
            if Present (Parent (B)) then
               return Defining_Identifier (Parent (B));
            else
               return Defining_Identifier (Associated_Node_For_Itype (B));
            end if;

         else
            return B;
         end if;

      --  Otherwise we check the freeze node, if it has a First_Subtype_Link
      --  then we use that link, otherwise (happens with some Itypes), we use
      --  the base type itself.

      else
         Ent := First_Subtype_Link (F);

         if Present (Ent) then
            return Ent;
         else
            return B;
         end if;
      end if;
   end First_Subtype;

   -------------------------
   -- First_Tag_Component --
   -------------------------

   function First_Tag_Component (Typ : Entity_Id) return Entity_Id is
      Comp : Entity_Id;
      Ctyp : Entity_Id;

   begin
      Ctyp := Typ;
      pragma Assert (Is_Tagged_Type (Ctyp));

      if Is_Class_Wide_Type (Ctyp) then
         Ctyp := Root_Type (Ctyp);
      end if;

      if Is_Private_Type (Ctyp) then
         Ctyp := Underlying_Type (Ctyp);

         --  If the underlying type is missing then the source program has
         --  errors and there is nothing else to do (the full-type declaration
         --  associated with the private type declaration is missing).

         if No (Ctyp) then
            return Empty;
         end if;
      end if;

      Comp := First_Entity (Ctyp);
      while Present (Comp) loop
         if Is_Tag (Comp) then
            return Comp;
         end if;

         Comp := Next_Entity (Comp);
      end loop;

      --  No tag component found

      return Empty;
   end First_Tag_Component;

   ---------------------
   -- Get_Binary_Nkind --
   ---------------------

   function Get_Binary_Nkind (Op : Entity_Id) return Node_Kind is
   begin
      case Chars (Op) is
         when Name_Op_Add      => return N_Op_Add;
         when Name_Op_Concat   => return N_Op_Concat;
         when Name_Op_Expon    => return N_Op_Expon;
         when Name_Op_Subtract => return N_Op_Subtract;
         when Name_Op_Mod      => return N_Op_Mod;
         when Name_Op_Multiply => return N_Op_Multiply;
         when Name_Op_Divide   => return N_Op_Divide;
         when Name_Op_Rem      => return N_Op_Rem;
         when Name_Op_And      => return N_Op_And;
         when Name_Op_Eq       => return N_Op_Eq;
         when Name_Op_Ge       => return N_Op_Ge;
         when Name_Op_Gt       => return N_Op_Gt;
         when Name_Op_Le       => return N_Op_Le;
         when Name_Op_Lt       => return N_Op_Lt;
         when Name_Op_Ne       => return N_Op_Ne;
         when Name_Op_Or       => return N_Op_Or;
         when Name_Op_Xor      => return N_Op_Xor;
         when others           => raise Program_Error;
      end case;
   end Get_Binary_Nkind;

   -----------------------
   -- Get_Called_Entity --
   -----------------------

   function Get_Called_Entity (Call : Node_Id) return Entity_Id is
      Nam : constant Node_Id := Name (Call);
      Id  : Entity_Id;

   begin
      if Nkind (Nam) = N_Explicit_Dereference then
         Id := Etype (Nam);
         pragma Assert (Ekind (Id) = E_Subprogram_Type);

      elsif Nkind (Nam) = N_Selected_Component then
         Id := Entity (Selector_Name (Nam));

      elsif Nkind (Nam) = N_Indexed_Component then
         Id := Entity (Selector_Name (Prefix (Nam)));

      else
         Id := Entity (Nam);
      end if;

      return Id;
   end Get_Called_Entity;

   -------------------
   -- Get_Low_Bound --
   -------------------

   function Get_Low_Bound (E : Entity_Id) return Node_Id is
   begin
      if Ekind (E) = E_String_Literal_Subtype then
         return String_Literal_Low_Bound (E);
      else
         return Type_Low_Bound (E);
      end if;
   end Get_Low_Bound;

   ------------------
   -- Get_Rep_Item --
   ------------------

   function Get_Rep_Item
     (E             : Entity_Id;
      Nam           : Name_Id;
      Check_Parents : Boolean := True) return Node_Id
   is
      N : Node_Id;

   begin
      N := First_Rep_Item (E);
      while Present (N) loop

         --  Only one of Priority / Interrupt_Priority can be specified, so
         --  return whichever one is present to catch illegal duplication.

         if Nkind (N) = N_Pragma
           and then
             (Pragma_Name_Unmapped (N) = Nam
               or else (Nam = Name_Priority
                         and then Pragma_Name (N) =
                           Name_Interrupt_Priority)
               or else (Nam = Name_Interrupt_Priority
                         and then Pragma_Name (N) = Name_Priority))
         then
            if Check_Parents then
               return N;

            --  If Check_Parents is False, return N if the pragma doesn't
            --  appear in the Rep_Item chain of the parent.

            else
               declare
                  Par : constant Entity_Id := Nearest_Ancestor (E);
                  --  This node represents the parent type of type E (if any)

               begin
                  if No (Par) then
                     return N;

                  elsif not Present_In_Rep_Item (Par, N) then
                     return N;
                  end if;
               end;
            end if;

         elsif Nkind (N) = N_Attribute_Definition_Clause
           and then
             (Chars (N) = Nam
               or else (Nam = Name_Priority
                         and then Chars (N) = Name_Interrupt_Priority))
         then
            if Check_Parents or else Entity (N) = E then
               return N;
            end if;

         elsif Nkind (N) = N_Aspect_Specification
           and then
             (Chars (Identifier (N)) = Nam
               or else
                 (Nam = Name_Priority
                   and then Chars (Identifier (N)) = Name_Interrupt_Priority))
         then
            if Check_Parents then
               return N;

            elsif Entity (N) = E then
               return N;
            end if;
         end if;

         Next_Rep_Item (N);
      end loop;

      return Empty;
   end Get_Rep_Item;

   function Get_Rep_Item
     (E             : Entity_Id;
      Nam1          : Name_Id;
      Nam2          : Name_Id;
      Check_Parents : Boolean := True) return Node_Id
   is
      Nam1_Item : constant Node_Id := Get_Rep_Item (E, Nam1, Check_Parents);
      Nam2_Item : constant Node_Id := Get_Rep_Item (E, Nam2, Check_Parents);

      N : Node_Id;

   begin
      --  Check both Nam1_Item and Nam2_Item are present

      if No (Nam1_Item) then
         return Nam2_Item;
      elsif No (Nam2_Item) then
         return Nam1_Item;
      end if;

      --  Return the first node encountered in the list

      N := First_Rep_Item (E);
      while Present (N) loop
         if N = Nam1_Item or else N = Nam2_Item then
            return N;
         end if;

         Next_Rep_Item (N);
      end loop;

      return Empty;
   end Get_Rep_Item;

   --------------------
   -- Get_Rep_Pragma --
   --------------------

   function Get_Rep_Pragma
     (E             : Entity_Id;
      Nam           : Name_Id;
      Check_Parents : Boolean := True) return Node_Id
   is
      N : constant Node_Id := Get_Rep_Item (E, Nam, Check_Parents);

   begin
      if Present (N) and then Nkind (N) = N_Pragma then
         return N;
      end if;

      return Empty;
   end Get_Rep_Pragma;

   function Get_Rep_Pragma
     (E             : Entity_Id;
      Nam1          : Name_Id;
      Nam2          : Name_Id;
      Check_Parents : Boolean := True) return Node_Id
   is
      Nam1_Item : constant Node_Id := Get_Rep_Pragma (E, Nam1, Check_Parents);
      Nam2_Item : constant Node_Id := Get_Rep_Pragma (E, Nam2, Check_Parents);

      N : Node_Id;

   begin
      --  Check both Nam1_Item and Nam2_Item are present

      if No (Nam1_Item) then
         return Nam2_Item;
      elsif No (Nam2_Item) then
         return Nam1_Item;
      end if;

      --  Return the first node encountered in the list

      N := First_Rep_Item (E);
      while Present (N) loop
         if N = Nam1_Item or else N = Nam2_Item then
            return N;
         end if;

         Next_Rep_Item (N);
      end loop;

      return Empty;
   end Get_Rep_Pragma;

   ---------------------
   -- Get_Unary_Nkind --
   ---------------------

   function Get_Unary_Nkind (Op : Entity_Id) return Node_Kind is
   begin
      case Chars (Op) is
         when Name_Op_Abs      => return N_Op_Abs;
         when Name_Op_Subtract => return N_Op_Minus;
         when Name_Op_Not      => return N_Op_Not;
         when Name_Op_Add      => return N_Op_Plus;
         when others           => raise Program_Error;
      end case;
   end Get_Unary_Nkind;

   ---------------------------------
   -- Has_External_Tag_Rep_Clause --
   ---------------------------------

   function Has_External_Tag_Rep_Clause (T : Entity_Id) return Boolean is
   begin
      pragma Assert (Is_Tagged_Type (T));
      return Has_Rep_Item (T, Name_External_Tag, Check_Parents => False);
   end Has_External_Tag_Rep_Clause;

   ------------------
   -- Has_Rep_Item --
   ------------------

   function Has_Rep_Item
     (E             : Entity_Id;
      Nam           : Name_Id;
      Check_Parents : Boolean := True) return Boolean
   is
   begin
      return Present (Get_Rep_Item (E, Nam, Check_Parents));
   end Has_Rep_Item;

   function Has_Rep_Item
     (E             : Entity_Id;
      Nam1          : Name_Id;
      Nam2          : Name_Id;
      Check_Parents : Boolean := True) return Boolean
   is
   begin
      return Present (Get_Rep_Item (E, Nam1, Nam2, Check_Parents));
   end Has_Rep_Item;

   function Has_Rep_Item (E : Entity_Id; N : Node_Id) return Boolean is
      Item : Node_Id;

   begin
      pragma Assert
        (Nkind_In (N, N_Aspect_Specification,
                      N_Attribute_Definition_Clause,
                      N_Enumeration_Representation_Clause,
                      N_Pragma,
                      N_Record_Representation_Clause));

      Item := First_Rep_Item (E);
      while Present (Item) loop
         if Item = N then
            return True;
         end if;

         Item := Next_Rep_Item (Item);
      end loop;

      return False;
   end Has_Rep_Item;

   --------------------
   -- Has_Rep_Pragma --
   --------------------

   function Has_Rep_Pragma
     (E             : Entity_Id;
      Nam           : Name_Id;
      Check_Parents : Boolean := True) return Boolean
   is
   begin
      return Present (Get_Rep_Pragma (E, Nam, Check_Parents));
   end Has_Rep_Pragma;

   function Has_Rep_Pragma
     (E             : Entity_Id;
      Nam1          : Name_Id;
      Nam2          : Name_Id;
      Check_Parents : Boolean := True) return Boolean
   is
   begin
      return Present (Get_Rep_Pragma (E, Nam1, Nam2, Check_Parents));
   end Has_Rep_Pragma;

   --------------------------------
   -- Has_Unconstrained_Elements --
   --------------------------------

   function Has_Unconstrained_Elements (T : Entity_Id) return Boolean is
      U_T : constant Entity_Id := Underlying_Type (T);
   begin
      if No (U_T) then
         return False;
      elsif Is_Record_Type (U_T) then
         return Has_Discriminants (U_T) and then not Is_Constrained (U_T);
      elsif Is_Array_Type (U_T) then
         return Has_Unconstrained_Elements (Component_Type (U_T));
      else
         return False;
      end if;
   end Has_Unconstrained_Elements;

   ----------------------
   -- Has_Variant_Part --
   ----------------------

   function Has_Variant_Part (Typ : Entity_Id) return Boolean is
      FSTyp : Entity_Id;
      Decl  : Node_Id;
      TDef  : Node_Id;
      CList : Node_Id;

   begin
      if not Is_Type (Typ) then
         return False;
      end if;

      FSTyp := First_Subtype (Typ);

      if not Has_Discriminants (FSTyp) then
         return False;
      end if;

      --  Proceed with cautious checks here, return False if tree is not
      --  as expected (may be caused by prior errors).

      Decl := Declaration_Node (FSTyp);

      if Nkind (Decl) /= N_Full_Type_Declaration then
         return False;
      end if;

      TDef := Type_Definition (Decl);

      if Nkind (TDef) /= N_Record_Definition then
         return False;
      end if;

      CList := Component_List (TDef);

      if Nkind (CList) /= N_Component_List then
         return False;
      else
         return Present (Variant_Part (CList));
      end if;
   end Has_Variant_Part;

   ---------------------
   -- In_Generic_Body --
   ---------------------

   function In_Generic_Body (Id : Entity_Id) return Boolean is
      S : Entity_Id;

   begin
      --  Climb scopes looking for generic body

      S := Id;
      while Present (S) and then S /= Standard_Standard loop

         --  Generic package body

         if Ekind (S) = E_Generic_Package
           and then In_Package_Body (S)
         then
            return True;

         --  Generic subprogram body

         elsif Is_Subprogram (S)
           and then Nkind (Unit_Declaration_Node (S)) =
                      N_Generic_Subprogram_Declaration
         then
            return True;
         end if;

         S := Scope (S);
      end loop;

      --  False if top of scope stack without finding a generic body

      return False;
   end In_Generic_Body;

   -------------------------------
   -- Initialization_Suppressed --
   -------------------------------

   function Initialization_Suppressed (Typ : Entity_Id) return Boolean is
   begin
      return Suppress_Initialization (Typ)
        or else Suppress_Initialization (Base_Type (Typ));
   end Initialization_Suppressed;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize is
   begin
      Obsolescent_Warnings.Init;
   end Initialize;

   -------------
   -- Is_Body --
   -------------

   function Is_Body (N : Node_Id) return Boolean is
   begin
      return
        Nkind (N) in N_Body_Stub
          or else Nkind_In (N, N_Entry_Body,
                               N_Package_Body,
                               N_Protected_Body,
                               N_Subprogram_Body,
                               N_Task_Body);
   end Is_Body;

   ---------------------
   -- Is_By_Copy_Type --
   ---------------------

   function Is_By_Copy_Type (Ent : Entity_Id) return Boolean is
   begin
      --  If Id is a private type whose full declaration has not been seen,
      --  we assume for now that it is not a By_Copy type. Clearly this
      --  attribute should not be used before the type is frozen, but it is
      --  needed to build the associated record of a protected type. Another
      --  place where some lookahead for a full view is needed ???

      return
        Is_Elementary_Type (Ent)
          or else (Is_Private_Type (Ent)
                     and then Present (Underlying_Type (Ent))
                     and then Is_Elementary_Type (Underlying_Type (Ent)));
   end Is_By_Copy_Type;

   --------------------------
   -- Is_By_Reference_Type --
   --------------------------

   function Is_By_Reference_Type (Ent : Entity_Id) return Boolean is
      Btype : constant Entity_Id := Base_Type (Ent);

   begin
      if Error_Posted (Ent) or else Error_Posted (Btype) then
         return False;

      elsif Is_Private_Type (Btype) then
         declare
            Utyp : constant Entity_Id := Underlying_Type (Btype);
         begin
            if No (Utyp) then
               return False;
            else
               return Is_By_Reference_Type (Utyp);
            end if;
         end;

      elsif Is_Incomplete_Type (Btype) then
         declare
            Ftyp : constant Entity_Id := Full_View (Btype);
         begin
            --  Return true for a tagged incomplete type built as a shadow
            --  entity in Build_Limited_Views. It can appear in the profile
            --  of a thunk and the back end needs to know how it is passed.

            if No (Ftyp) then
               return Is_Tagged_Type (Btype);
            else
               return Is_By_Reference_Type (Ftyp);
            end if;
         end;

      elsif Is_Concurrent_Type (Btype) then
         return True;

      elsif Is_Record_Type (Btype) then
         if Is_Limited_Record (Btype)
           or else Is_Tagged_Type (Btype)
           or else Is_Volatile (Btype)
         then
            return True;

         else
            declare
               C : Entity_Id;

            begin
               C := First_Component (Btype);
               while Present (C) loop

                  --  For each component, test if its type is a by reference
                  --  type and if its type is volatile. Also test the component
                  --  itself for being volatile. This happens for example when
                  --  a Volatile aspect is added to a component.

                  if Is_By_Reference_Type (Etype (C))
                    or else Is_Volatile (Etype (C))
                    or else Is_Volatile (C)
                  then
                     return True;
                  end if;

                  C := Next_Component (C);
               end loop;
            end;

            return False;
         end if;

      elsif Is_Array_Type (Btype) then
         return
           Is_Volatile (Btype)
             or else Is_By_Reference_Type (Component_Type (Btype))
             or else Is_Volatile (Component_Type (Btype))
             or else Has_Volatile_Components (Btype);

      else
         return False;
      end if;
   end Is_By_Reference_Type;

   -------------------------
   -- Is_Definite_Subtype --
   -------------------------

   function Is_Definite_Subtype (T : Entity_Id) return Boolean is
      pragma Assert (Is_Type (T));
      K : constant Entity_Kind := Ekind (T);

   begin
      if Is_Constrained (T) then
         return True;

      elsif K in Array_Kind
        or else K in Class_Wide_Kind
        or else Has_Unknown_Discriminants (T)
      then
         return False;

      --  Known discriminants: definite if there are default values. Note that
      --  if any discriminant has a default, they all do.

      elsif Has_Discriminants (T) then
         return Present (Discriminant_Default_Value (First_Discriminant (T)));

      else
         return True;
      end if;
   end Is_Definite_Subtype;

   ---------------------
   -- Is_Derived_Type --
   ---------------------

   function Is_Derived_Type (Ent : E) return B is
      Par : Node_Id;

   begin
      if Is_Type (Ent)
        and then Base_Type (Ent) /= Root_Type (Ent)
        and then not Is_Class_Wide_Type (Ent)

        --  An access_to_subprogram whose result type is a limited view can
        --  appear in a return statement, without the full view of the result
        --  type being available. Do not interpret this as a derived type.

        and then Ekind (Ent) /= E_Subprogram_Type
      then
         if not Is_Numeric_Type (Root_Type (Ent)) then
            return True;

         else
            Par := Parent (First_Subtype (Ent));

            return Present (Par)
              and then Nkind (Par) = N_Full_Type_Declaration
              and then Nkind (Type_Definition (Par)) =
                         N_Derived_Type_Definition;
         end if;

      else
         return False;
      end if;
   end Is_Derived_Type;

   -----------------------
   -- Is_Generic_Formal --
   -----------------------

   function Is_Generic_Formal (E : Entity_Id) return Boolean is
      Kind : Node_Kind;

   begin
      if No (E) then
         return False;
      else
         --  Formal derived types are rewritten as private extensions, so
         --  examine original node.

         Kind := Nkind (Original_Node (Parent (E)));

         return
           Nkind_In (Kind, N_Formal_Object_Declaration,
                           N_Formal_Type_Declaration)
             or else Is_Formal_Subprogram (E)
             or else
               (Ekind (E) = E_Package
                 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
                            N_Formal_Package_Declaration);
      end if;
   end Is_Generic_Formal;

   -------------------------------
   -- Is_Immutably_Limited_Type --
   -------------------------------

   function Is_Immutably_Limited_Type (Ent : Entity_Id) return Boolean is
      Btype : constant Entity_Id := Available_View (Base_Type (Ent));

   begin
      if Is_Limited_Record (Btype) then
         return True;

      elsif Ekind (Btype) = E_Limited_Private_Type
        and then Nkind (Parent (Btype)) = N_Formal_Type_Declaration
      then
         return not In_Package_Body (Scope ((Btype)));

      elsif Is_Private_Type (Btype) then

         --  AI05-0063: A type derived from a limited private formal type is
         --  not immutably limited in a generic body.

         if Is_Derived_Type (Btype)
           and then Is_Generic_Type (Etype (Btype))
         then
            if not Is_Limited_Type (Etype (Btype)) then
               return False;

            --  A descendant of a limited formal type is not immutably limited
            --  in the generic body, or in the body of a generic child.

            elsif Ekind (Scope (Etype (Btype))) = E_Generic_Package then
               return not In_Package_Body (Scope (Btype));

            else
               return False;
            end if;

         else
            declare
               Utyp : constant Entity_Id := Underlying_Type (Btype);
            begin
               if No (Utyp) then
                  return False;
               else
                  return Is_Immutably_Limited_Type (Utyp);
               end if;
            end;
         end if;

      elsif Is_Concurrent_Type (Btype) then
         return True;

      else
         return False;
      end if;
   end Is_Immutably_Limited_Type;

   ---------------------
   -- Is_Limited_Type --
   ---------------------

   function Is_Limited_Type (Ent : Entity_Id) return Boolean is
      Btype : constant E := Base_Type (Ent);
      Rtype : constant E := Root_Type (Btype);

   begin
      if not Is_Type (Ent) then
         return False;

      elsif Ekind (Btype) = E_Limited_Private_Type
        or else Is_Limited_Composite (Btype)
      then
         return True;

      elsif Is_Concurrent_Type (Btype) then
         return True;

         --  The Is_Limited_Record flag normally indicates that the type is
         --  limited. The exception is that a type does not inherit limitedness
         --  from its interface ancestor. So the type may be derived from a
         --  limited interface, but is not limited.

      elsif Is_Limited_Record (Ent)
        and then not Is_Interface (Ent)
      then
         return True;

      --  Otherwise we will look around to see if there is some other reason
      --  for it to be limited, except that if an error was posted on the
      --  entity, then just assume it is non-limited, because it can cause
      --  trouble to recurse into a murky entity resulting from other errors.

      elsif Error_Posted (Ent) then
         return False;

      elsif Is_Record_Type (Btype) then

         if Is_Limited_Interface (Ent) then
            return True;

         --  AI-419: limitedness is not inherited from a limited interface

         elsif Is_Limited_Record (Rtype) then
            return not Is_Interface (Rtype)
              or else Is_Protected_Interface (Rtype)
              or else Is_Synchronized_Interface (Rtype)
              or else Is_Task_Interface (Rtype);

         elsif Is_Class_Wide_Type (Btype) then
            return Is_Limited_Type (Rtype);

         else
            declare
               C : E;

            begin
               C := First_Component (Btype);
               while Present (C) loop
                  if Is_Limited_Type (Etype (C)) then
                     return True;
                  end if;

                  C := Next_Component (C);
               end loop;
            end;

            return False;
         end if;

      elsif Is_Array_Type (Btype) then
         return Is_Limited_Type (Component_Type (Btype));

      else
         return False;
      end if;
   end Is_Limited_Type;

   ---------------------
   -- Is_Limited_View --
   ---------------------

   function Is_Limited_View (Ent : Entity_Id) return Boolean is
      Btype : constant Entity_Id := Available_View (Base_Type (Ent));

   begin
      if Is_Limited_Record (Btype) then
         return True;

      elsif Ekind (Btype) = E_Limited_Private_Type
        and then Nkind (Parent (Btype)) = N_Formal_Type_Declaration
      then
         return not In_Package_Body (Scope ((Btype)));

      elsif Is_Private_Type (Btype) then

         --  AI05-0063: A type derived from a limited private formal type is
         --  not immutably limited in a generic body.

         if Is_Derived_Type (Btype)
           and then Is_Generic_Type (Etype (Btype))
         then
            if not Is_Limited_Type (Etype (Btype)) then
               return False;

            --  A descendant of a limited formal type is not immutably limited
            --  in the generic body, or in the body of a generic child.

            elsif Ekind (Scope (Etype (Btype))) = E_Generic_Package then
               return not In_Package_Body (Scope (Btype));

            else
               return False;
            end if;

         else
            declare
               Utyp : constant Entity_Id := Underlying_Type (Btype);
            begin
               if No (Utyp) then
                  return False;
               else
                  return Is_Limited_View (Utyp);
               end if;
            end;
         end if;

      elsif Is_Concurrent_Type (Btype) then
         return True;

      elsif Is_Record_Type (Btype) then

         --  Note that we return True for all limited interfaces, even though
         --  (unsynchronized) limited interfaces can have descendants that are
         --  nonlimited, because this is a predicate on the type itself, and
         --  things like functions with limited interface results need to be
         --  handled as build in place even though they might return objects
         --  of a type that is not inherently limited.

         if Is_Class_Wide_Type (Btype) then
            return Is_Limited_View (Root_Type (Btype));

         else
            declare
               C : Entity_Id;

            begin
               C := First_Component (Btype);
               while Present (C) loop

                  --  Don't consider components with interface types (which can
                  --  only occur in the case of a _parent component anyway).
                  --  They don't have any components, plus it would cause this
                  --  function to return true for nonlimited types derived from
                  --  limited interfaces.

                  if not Is_Interface (Etype (C))
                    and then Is_Limited_View (Etype (C))
                  then
                     return True;
                  end if;

                  C := Next_Component (C);
               end loop;
            end;

            return False;
         end if;

      elsif Is_Array_Type (Btype) then
         return Is_Limited_View (Component_Type (Btype));

      else
         return False;
      end if;
   end Is_Limited_View;

   ----------------------
   -- Nearest_Ancestor --
   ----------------------

   function Nearest_Ancestor (Typ : Entity_Id) return Entity_Id is
      D : constant Node_Id := Original_Node (Declaration_Node (Typ));
      --  We use the original node of the declaration, because derived
      --  types from record subtypes are rewritten as record declarations,
      --  and it is the original declaration that carries the ancestor.

   begin
      --  If we have a subtype declaration, get the ancestor subtype

      if Nkind (D) = N_Subtype_Declaration then
         if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
            return Entity (Subtype_Mark (Subtype_Indication (D)));
         else
            return Entity (Subtype_Indication (D));
         end if;

      --  If derived type declaration, find who we are derived from

      elsif Nkind (D) = N_Full_Type_Declaration
        and then Nkind (Type_Definition (D)) = N_Derived_Type_Definition
      then
         declare
            DTD : constant Entity_Id := Type_Definition (D);
            SI  : constant Entity_Id := Subtype_Indication (DTD);
         begin
            if Is_Entity_Name (SI) then
               return Entity (SI);
            else
               return Entity (Subtype_Mark (SI));
            end if;
         end;

      --  If derived type and private type, get the full view to find who we
      --  are derived from.

      elsif Is_Derived_Type (Typ)
        and then Is_Private_Type (Typ)
        and then Present (Full_View (Typ))
      then
         return Nearest_Ancestor (Full_View (Typ));

      --  Otherwise, nothing useful to return, return Empty

      else
         return Empty;
      end if;
   end Nearest_Ancestor;

   ---------------------------
   -- Nearest_Dynamic_Scope --
   ---------------------------

   function Nearest_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
   begin
      if Is_Dynamic_Scope (Ent) then
         return Ent;
      else
         return Enclosing_Dynamic_Scope (Ent);
      end if;
   end Nearest_Dynamic_Scope;

   ------------------------
   -- Next_Tag_Component --
   ------------------------

   function Next_Tag_Component (Tag : Entity_Id) return Entity_Id is
      Comp : Entity_Id;

   begin
      pragma Assert (Is_Tag (Tag));

      --  Loop to look for next tag component

      Comp := Next_Entity (Tag);
      while Present (Comp) loop
         if Is_Tag (Comp) then
            pragma Assert (Chars (Comp) /= Name_uTag);
            return Comp;
         end if;

         Comp := Next_Entity (Comp);
      end loop;

      --  No tag component found

      return Empty;
   end Next_Tag_Component;

   -----------------------
   -- Number_Components --
   -----------------------

   function Number_Components (Typ : Entity_Id) return Nat is
      N    : Nat := 0;
      Comp : Entity_Id;

   begin
      --  We do not call Einfo.First_Component_Or_Discriminant, as this
      --  function does not skip completely hidden discriminants, which we
      --  want to skip here.

      if Has_Discriminants (Typ) then
         Comp := First_Discriminant (Typ);
      else
         Comp := First_Component (Typ);
      end if;

      while Present (Comp) loop
         N := N + 1;
         Comp := Next_Component_Or_Discriminant (Comp);
      end loop;

      return N;
   end Number_Components;

   --------------------------
   -- Number_Discriminants --
   --------------------------

   function Number_Discriminants (Typ : Entity_Id) return Pos is
      N     : Nat       := 0;
      Discr : Entity_Id := First_Discriminant (Typ);

   begin
      while Present (Discr) loop
         N := N + 1;
         Discr := Next_Discriminant (Discr);
      end loop;

      return N;
   end Number_Discriminants;

   ----------------------------------------------
   -- Object_Type_Has_Constrained_Partial_View --
   ----------------------------------------------

   function Object_Type_Has_Constrained_Partial_View
     (Typ  : Entity_Id;
      Scop : Entity_Id) return Boolean
   is
   begin
      return Has_Constrained_Partial_View (Typ)
        or else (In_Generic_Body (Scop)
                  and then Is_Generic_Type (Base_Type (Typ))
                  and then Is_Private_Type (Base_Type (Typ))
                  and then not Is_Tagged_Type (Typ)
                  and then not (Is_Array_Type (Typ)
                                 and then not Is_Constrained (Typ))
                  and then Has_Discriminants (Typ));
   end Object_Type_Has_Constrained_Partial_View;

   ------------------
   -- Package_Body --
   ------------------

   function Package_Body (E : Entity_Id) return Node_Id is
      N : Node_Id;

   begin
      if Ekind (E) = E_Package_Body then
         N := Parent (E);

         if Nkind (N) = N_Defining_Program_Unit_Name then
            N := Parent (N);
         end if;

      else
         N := Package_Spec (E);

         if Present (Corresponding_Body (N)) then
            N := Parent (Corresponding_Body (N));

            if Nkind (N) = N_Defining_Program_Unit_Name then
               N := Parent (N);
            end if;
         else
            N := Empty;
         end if;
      end if;

      return N;
   end Package_Body;

   ------------------
   -- Package_Spec --
   ------------------

   function Package_Spec (E : Entity_Id) return Node_Id is
   begin
      return Parent (Package_Specification (E));
   end Package_Spec;

   ---------------------------
   -- Package_Specification --
   ---------------------------

   function Package_Specification (E : Entity_Id) return Node_Id is
      N : Node_Id;

   begin
      N := Parent (E);

      if Nkind (N) = N_Defining_Program_Unit_Name then
         N := Parent (N);
      end if;

      return N;
   end Package_Specification;

   ---------------------
   -- Subprogram_Body --
   ---------------------

   function Subprogram_Body (E : Entity_Id) return Node_Id is
      Body_E : constant Entity_Id := Subprogram_Body_Entity (E);

   begin
      if No (Body_E) then
         return Empty;
      else
         return Parent (Subprogram_Specification (Body_E));
      end if;
   end Subprogram_Body;

   ----------------------------
   -- Subprogram_Body_Entity --
   ----------------------------

   function Subprogram_Body_Entity (E : Entity_Id) return Entity_Id is
      N : constant Node_Id := Parent (Subprogram_Specification (E));
      --  Declaration for E

   begin
      --  If this declaration is not a subprogram body, then it must be a
      --  subprogram declaration or body stub, from which we can retrieve the
      --  entity for the corresponding subprogram body if any, or an abstract
      --  subprogram declaration, for which we return Empty.

      case Nkind (N) is
         when N_Subprogram_Body =>
            return E;

         when N_Subprogram_Body_Stub
            | N_Subprogram_Declaration
         =>
            return Corresponding_Body (N);

         when others =>
            return Empty;
      end case;
   end Subprogram_Body_Entity;

   ---------------------
   -- Subprogram_Spec --
   ---------------------

   function Subprogram_Spec (E : Entity_Id) return Node_Id is
      N : constant Node_Id := Parent (Subprogram_Specification (E));
      --  Declaration for E

   begin
      --  This declaration is either subprogram declaration or a subprogram
      --  body, in which case return Empty.

      if Nkind (N) = N_Subprogram_Declaration then
         return N;
      else
         return Empty;
      end if;
   end Subprogram_Spec;

   ------------------------------
   -- Subprogram_Specification --
   ------------------------------

   function Subprogram_Specification (E : Entity_Id) return Node_Id is
      N : Node_Id;

   begin
      N := Parent (E);

      if Nkind (N) = N_Defining_Program_Unit_Name then
         N := Parent (N);
      end if;

      --  If the Parent pointer of E is not a subprogram specification node
      --  (going through an intermediate N_Defining_Program_Unit_Name node
      --  for subprogram units), then E is an inherited operation. Its parent
      --  points to the type derivation that produces the inheritance: that's
      --  the node that generates the subprogram specification. Its alias
      --  is the parent subprogram, and that one points to a subprogram
      --  declaration, or to another type declaration if this is a hierarchy
      --  of derivations.

      if Nkind (N) not in N_Subprogram_Specification then
         pragma Assert (Present (Alias (E)));
         N := Subprogram_Specification (Alias (E));
      end if;

      return N;
   end Subprogram_Specification;

   ---------------
   -- Tree_Read --
   ---------------

   procedure Tree_Read is
   begin
      Obsolescent_Warnings.Tree_Read;
   end Tree_Read;

   ----------------
   -- Tree_Write --
   ----------------

   procedure Tree_Write is
   begin
      Obsolescent_Warnings.Tree_Write;
   end Tree_Write;

   --------------------
   -- Ultimate_Alias --
   --------------------

   function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
      E : Entity_Id := Prim;

   begin
      while Present (Alias (E)) loop
         pragma Assert (Alias (E) /= E);
         E := Alias (E);
      end loop;

      return E;
   end Ultimate_Alias;

   --------------------------
   -- Unit_Declaration_Node --
   --------------------------

   function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
      N : Node_Id := Parent (Unit_Id);

   begin
      --  Predefined operators do not have a full function declaration

      if Ekind (Unit_Id) = E_Operator then
         return N;
      end if;

      --  Isn't there some better way to express the following ???

      while Nkind (N) /= N_Abstract_Subprogram_Declaration
        and then Nkind (N) /= N_Entry_Body
        and then Nkind (N) /= N_Entry_Declaration
        and then Nkind (N) /= N_Formal_Package_Declaration
        and then Nkind (N) /= N_Function_Instantiation
        and then Nkind (N) /= N_Generic_Package_Declaration
        and then Nkind (N) /= N_Generic_Subprogram_Declaration
        and then Nkind (N) /= N_Package_Declaration
        and then Nkind (N) /= N_Package_Body
        and then Nkind (N) /= N_Package_Instantiation
        and then Nkind (N) /= N_Package_Renaming_Declaration
        and then Nkind (N) /= N_Procedure_Instantiation
        and then Nkind (N) /= N_Protected_Body
        and then Nkind (N) /= N_Protected_Type_Declaration
        and then Nkind (N) /= N_Subprogram_Declaration
        and then Nkind (N) /= N_Subprogram_Body
        and then Nkind (N) /= N_Subprogram_Body_Stub
        and then Nkind (N) /= N_Subprogram_Renaming_Declaration
        and then Nkind (N) /= N_Task_Body
        and then Nkind (N) /= N_Task_Type_Declaration
        and then Nkind (N) not in N_Formal_Subprogram_Declaration
        and then Nkind (N) not in N_Generic_Renaming_Declaration
      loop
         N := Parent (N);

         --  We don't use Assert here, because that causes an infinite loop
         --  when assertions are turned off. Better to crash.

         if No (N) then
            raise Program_Error;
         end if;
      end loop;

      return N;
   end Unit_Declaration_Node;

end Sem_Aux;