1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ A G G R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch6; use Exp_Ch6;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Namet.Sp; use Namet.Sp;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Case; use Sem_Case;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim; use Sem_Dim;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stringt; use Stringt;
with Stand; use Stand;
with Style; use Style;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Warnsw; use Warnsw;
package body Sem_Aggr is
type Case_Bounds is record
Lo : Node_Id;
-- Low bound of choice. Once we sort the Case_Table, then entries
-- will be in order of ascending Choice_Lo values.
Hi : Node_Id;
-- High Bound of choice. The sort does not pay any attention to the
-- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
Highest : Uint;
-- If there are duplicates or missing entries, then in the sorted
-- table, this records the highest value among Choice_Hi values
-- seen so far, including this entry.
Choice : Node_Id;
-- The node of the choice
end record;
type Case_Table_Type is array (Pos range <>) of Case_Bounds;
-- Table type used by Check_Case_Choices procedure
-----------------------
-- Local Subprograms --
-----------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
-- Sort the Case Table using the Lower Bound of each Choice as the key. A
-- simple insertion sort is used since the choices in a case statement will
-- usually be in near sorted order.
procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
-- Ada 2005 (AI-231): Check bad usage of null for a component for which
-- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
-- the array case (the component type of the array will be used) or an
-- E_Component/E_Discriminant entity in the record case, in which case the
-- type of the component will be used for the test. If Typ is any other
-- kind of entity, the call is ignored. Expr is the component node in the
-- aggregate which is known to have a null value. A warning message will be
-- issued if the component is null excluding.
--
-- It would be better to pass the proper type for Typ ???
procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
-- Check that Expr is either not limited or else is one of the cases of
-- expressions allowed for a limited component association (namely, an
-- aggregate, function call, or <> notation). Report error for violations.
-- Expression is also OK in an instance or inlining context, because we
-- have already preanalyzed and it is known to be type correct.
------------------------------------------------------
-- Subprograms used for RECORD AGGREGATE Processing --
------------------------------------------------------
procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
-- This procedure performs all the semantic checks required for record
-- aggregates. Note that for aggregates analysis and resolution go
-- hand in hand. Aggregate analysis has been delayed up to here and
-- it is done while resolving the aggregate.
--
-- N is the N_Aggregate node.
-- Typ is the record type for the aggregate resolution
--
-- While performing the semantic checks, this procedure builds a new
-- Component_Association_List where each record field appears alone in a
-- Component_Choice_List along with its corresponding expression. The
-- record fields in the Component_Association_List appear in the same order
-- in which they appear in the record type Typ.
--
-- Once this new Component_Association_List is built and all the semantic
-- checks performed, the original aggregate subtree is replaced with the
-- new named record aggregate just built. This new record aggregate has no
-- positional associations, so its Expressions field is set to No_List.
-- Note that subtree substitution is performed with Rewrite so as to be
-- able to retrieve the original aggregate.
--
-- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
-- yields the aggregate format expected by Gigi. Typically, this kind of
-- tree manipulations are done in the expander. However, because the
-- semantic checks that need to be performed on record aggregates really go
-- hand in hand with the record aggregate normalization, the aggregate
-- subtree transformation is performed during resolution rather than
-- expansion. Had we decided otherwise we would have had to duplicate most
-- of the code in the expansion procedure Expand_Record_Aggregate. Note,
-- however, that all the expansion concerning aggregates for tagged records
-- is done in Expand_Record_Aggregate.
--
-- The algorithm of Resolve_Record_Aggregate proceeds as follows:
--
-- 1. Make sure that the record type against which the record aggregate
-- has to be resolved is not abstract. Furthermore if the type is a
-- null aggregate make sure the input aggregate N is also null.
--
-- 2. Verify that the structure of the aggregate is that of a record
-- aggregate. Specifically, look for component associations and ensure
-- that each choice list only has identifiers or the N_Others_Choice
-- node. Also make sure that if present, the N_Others_Choice occurs
-- last and by itself.
--
-- 3. If Typ contains discriminants, the values for each discriminant is
-- looked for. If the record type Typ has variants, we check that the
-- expressions corresponding to each discriminant ruling the (possibly
-- nested) variant parts of Typ, are static. This allows us to determine
-- the variant parts to which the rest of the aggregate must conform.
-- The names of discriminants with their values are saved in a new
-- association list, New_Assoc_List which is later augmented with the
-- names and values of the remaining components in the record type.
--
-- During this phase we also make sure that every discriminant is
-- assigned exactly one value. Note that when several values for a given
-- discriminant are found, semantic processing continues looking for
-- further errors. In this case it's the first discriminant value found
-- which we will be recorded.
--
-- IMPORTANT NOTE: For derived tagged types this procedure expects
-- First_Discriminant and Next_Discriminant to give the correct list
-- of discriminants, in the correct order.
--
-- 4. After all the discriminant values have been gathered, we can set the
-- Etype of the record aggregate. If Typ contains no discriminants this
-- is straightforward: the Etype of N is just Typ, otherwise a new
-- implicit constrained subtype of Typ is built to be the Etype of N.
--
-- 5. Gather the remaining record components according to the discriminant
-- values. This involves recursively traversing the record type
-- structure to see what variants are selected by the given discriminant
-- values. This processing is a little more convoluted if Typ is a
-- derived tagged types since we need to retrieve the record structure
-- of all the ancestors of Typ.
--
-- 6. After gathering the record components we look for their values in the
-- record aggregate and emit appropriate error messages should we not
-- find such values or should they be duplicated.
--
-- 7. We then make sure no illegal component names appear in the record
-- aggregate and make sure that the type of the record components
-- appearing in a same choice list is the same. Finally we ensure that
-- the others choice, if present, is used to provide the value of at
-- least a record component.
--
-- 8. The original aggregate node is replaced with the new named aggregate
-- built in steps 3 through 6, as explained earlier.
--
-- Given the complexity of record aggregate resolution, the primary goal of
-- this routine is clarity and simplicity rather than execution and storage
-- efficiency. If there are only positional components in the aggregate the
-- running time is linear. If there are associations the running time is
-- still linear as long as the order of the associations is not too far off
-- the order of the components in the record type. If this is not the case
-- the running time is at worst quadratic in the size of the association
-- list.
procedure Check_Misspelled_Component
(Elements : Elist_Id;
Component : Node_Id);
-- Give possible misspelling diagnostic if Component is likely to be a
-- misspelling of one of the components of the Assoc_List. This is called
-- by Resolve_Aggr_Expr after producing an invalid component error message.
-----------------------------------------------------
-- Subprograms used for ARRAY AGGREGATE Processing --
-----------------------------------------------------
function Resolve_Array_Aggregate
(N : Node_Id;
Index : Node_Id;
Index_Constr : Node_Id;
Component_Typ : Entity_Id;
Others_Allowed : Boolean) return Boolean;
-- This procedure performs the semantic checks for an array aggregate.
-- True is returned if the aggregate resolution succeeds.
--
-- The procedure works by recursively checking each nested aggregate.
-- Specifically, after checking a sub-aggregate nested at the i-th level
-- we recursively check all the subaggregates at the i+1-st level (if any).
-- Note that aggregates analysis and resolution go hand in hand.
-- Aggregate analysis has been delayed up to here and it is done while
-- resolving the aggregate.
--
-- N is the current N_Aggregate node to be checked.
--
-- Index is the index node corresponding to the array sub-aggregate that
-- we are currently checking (RM 4.3.3 (8)). Its Etype is the
-- corresponding index type (or subtype).
--
-- Index_Constr is the node giving the applicable index constraint if
-- any (RM 4.3.3 (10)). It "is a constraint provided by certain
-- contexts [...] that can be used to determine the bounds of the array
-- value specified by the aggregate". If Others_Allowed below is False
-- there is no applicable index constraint and this node is set to Index.
--
-- Component_Typ is the array component type.
--
-- Others_Allowed indicates whether an others choice is allowed
-- in the context where the top-level aggregate appeared.
--
-- The algorithm of Resolve_Array_Aggregate proceeds as follows:
--
-- 1. Make sure that the others choice, if present, is by itself and
-- appears last in the sub-aggregate. Check that we do not have
-- positional and named components in the array sub-aggregate (unless
-- the named association is an others choice). Finally if an others
-- choice is present, make sure it is allowed in the aggregate context.
--
-- 2. If the array sub-aggregate contains discrete_choices:
--
-- (A) Verify their validity. Specifically verify that:
--
-- (a) If a null range is present it must be the only possible
-- choice in the array aggregate.
--
-- (b) Ditto for a non static range.
--
-- (c) Ditto for a non static expression.
--
-- In addition this step analyzes and resolves each discrete_choice,
-- making sure that its type is the type of the corresponding Index.
-- If we are not at the lowest array aggregate level (in the case of
-- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
-- recursively on each component expression. Otherwise, resolve the
-- bottom level component expressions against the expected component
-- type ONLY IF the component corresponds to a single discrete choice
-- which is not an others choice (to see why read the DELAYED
-- COMPONENT RESOLUTION below).
--
-- (B) Determine the bounds of the sub-aggregate and lowest and
-- highest choice values.
--
-- 3. For positional aggregates:
--
-- (A) Loop over the component expressions either recursively invoking
-- Resolve_Array_Aggregate on each of these for multi-dimensional
-- array aggregates or resolving the bottom level component
-- expressions against the expected component type.
--
-- (B) Determine the bounds of the positional sub-aggregates.
--
-- 4. Try to determine statically whether the evaluation of the array
-- sub-aggregate raises Constraint_Error. If yes emit proper
-- warnings. The precise checks are the following:
--
-- (A) Check that the index range defined by aggregate bounds is
-- compatible with corresponding index subtype.
-- We also check against the base type. In fact it could be that
-- Low/High bounds of the base type are static whereas those of
-- the index subtype are not. Thus if we can statically catch
-- a problem with respect to the base type we are guaranteed
-- that the same problem will arise with the index subtype
--
-- (B) If we are dealing with a named aggregate containing an others
-- choice and at least one discrete choice then make sure the range
-- specified by the discrete choices does not overflow the
-- aggregate bounds. We also check against the index type and base
-- type bounds for the same reasons given in (A).
--
-- (C) If we are dealing with a positional aggregate with an others
-- choice make sure the number of positional elements specified
-- does not overflow the aggregate bounds. We also check against
-- the index type and base type bounds as mentioned in (A).
--
-- Finally construct an N_Range node giving the sub-aggregate bounds.
-- Set the Aggregate_Bounds field of the sub-aggregate to be this
-- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
-- to build the appropriate aggregate subtype. Aggregate_Bounds
-- information is needed during expansion.
--
-- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
-- expressions in an array aggregate may call Duplicate_Subexpr or some
-- other routine that inserts code just outside the outermost aggregate.
-- If the array aggregate contains discrete choices or an others choice,
-- this may be wrong. Consider for instance the following example.
--
-- type Rec is record
-- V : Integer := 0;
-- end record;
--
-- type Acc_Rec is access Rec;
-- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
--
-- Then the transformation of "new Rec" that occurs during resolution
-- entails the following code modifications
--
-- P7b : constant Acc_Rec := new Rec;
-- RecIP (P7b.all);
-- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
--
-- This code transformation is clearly wrong, since we need to call
-- "new Rec" for each of the 3 array elements. To avoid this problem we
-- delay resolution of the components of non positional array aggregates
-- to the expansion phase. As an optimization, if the discrete choice
-- specifies a single value we do not delay resolution.
function Array_Aggr_Subtype (N : Node_Id; Typ : Entity_Id) return Entity_Id;
-- This routine returns the type or subtype of an array aggregate.
--
-- N is the array aggregate node whose type we return.
--
-- Typ is the context type in which N occurs.
--
-- This routine creates an implicit array subtype whose bounds are
-- those defined by the aggregate. When this routine is invoked
-- Resolve_Array_Aggregate has already processed aggregate N. Thus the
-- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
-- sub-aggregate bounds. When building the aggregate itype, this function
-- traverses the array aggregate N collecting such Aggregate_Bounds and
-- constructs the proper array aggregate itype.
--
-- Note that in the case of multidimensional aggregates each inner
-- sub-aggregate corresponding to a given array dimension, may provide a
-- different bounds. If it is possible to determine statically that
-- some sub-aggregates corresponding to the same index do not have the
-- same bounds, then a warning is emitted. If such check is not possible
-- statically (because some sub-aggregate bounds are dynamic expressions)
-- then this job is left to the expander. In all cases the particular
-- bounds that this function will chose for a given dimension is the first
-- N_Range node for a sub-aggregate corresponding to that dimension.
--
-- Note that the Raises_Constraint_Error flag of an array aggregate
-- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
-- is set in Resolve_Array_Aggregate but the aggregate is not
-- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
-- first construct the proper itype for the aggregate (Gigi needs
-- this). After constructing the proper itype we will eventually replace
-- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
-- Of course in cases such as:
--
-- type Arr is array (integer range <>) of Integer;
-- A : Arr := (positive range -1 .. 2 => 0);
--
-- The bounds of the aggregate itype are cooked up to look reasonable
-- (in this particular case the bounds will be 1 .. 2).
procedure Make_String_Into_Aggregate (N : Node_Id);
-- A string literal can appear in a context in which a one dimensional
-- array of characters is expected. This procedure simply rewrites the
-- string as an aggregate, prior to resolution.
function Resolve_Null_Array_Aggregate (N : Node_Id) return Boolean;
-- For the Ada 2022 construct, build a subtype with a null range for each
-- dimension, using the bounds from the context subtype (if the subtype
-- is constrained). If the subtype is unconstrained, then the bounds
-- are determined in much the same way as the bounds for a null string
-- literal with no applicable index constraint.
---------------------------------
-- Delta aggregate processing --
---------------------------------
procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Deep_Delta_Assoc (N : Node_Id; Typ : Entity_Id);
-- Resolve the names/expressions in a component association for
-- a deep delta aggregate. Typ is the type of the enclosing object.
------------------------
-- Array_Aggr_Subtype --
------------------------
function Array_Aggr_Subtype
(N : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
-- Number of aggregate index dimensions
Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
-- Constrained N_Range of each index dimension in our aggregate itype
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
-- Low and High bounds for each index dimension in our aggregate itype
Is_Fully_Positional : Boolean := True;
procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
-- N is an array (sub-)aggregate. Dim is the dimension corresponding
-- to (sub-)aggregate N. This procedure collects and removes the side
-- effects of the constrained N_Range nodes corresponding to each index
-- dimension of our aggregate itype. These N_Range nodes are collected
-- in Aggr_Range above.
--
-- Likewise collect in Aggr_Low & Aggr_High above the low and high
-- bounds of each index dimension. If, when collecting, two bounds
-- corresponding to the same dimension are static and found to differ,
-- then emit a warning, and mark N as raising Constraint_Error.
-------------------------
-- Collect_Aggr_Bounds --
-------------------------
procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
This_Range : constant Node_Id := Aggregate_Bounds (N);
-- The aggregate range node of this specific sub-aggregate
This_Low : constant Node_Id := Low_Bound (This_Range);
This_High : constant Node_Id := High_Bound (This_Range);
-- The aggregate bounds of this specific sub-aggregate
Assoc : Node_Id;
Expr : Node_Id;
begin
Remove_Side_Effects (This_Low, Variable_Ref => True);
Remove_Side_Effects (This_High, Variable_Ref => True);
-- Collect the first N_Range for a given dimension that you find.
-- For a given dimension they must be all equal anyway.
if No (Aggr_Range (Dim)) then
Aggr_Low (Dim) := This_Low;
Aggr_High (Dim) := This_High;
Aggr_Range (Dim) := This_Range;
else
if Compile_Time_Known_Value (This_Low) then
if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
Aggr_Low (Dim) := This_Low;
elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end if;
if Compile_Time_Known_Value (This_High) then
if not Compile_Time_Known_Value (Aggr_High (Dim)) then
Aggr_High (Dim) := This_High;
elsif
Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end if;
end if;
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (N)) then
Expr := First (Expressions (N));
while Present (Expr) loop
Collect_Aggr_Bounds (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (N)) then
Is_Fully_Positional := False;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Expr := Expression (Assoc);
Collect_Aggr_Bounds (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Collect_Aggr_Bounds;
-- Array_Aggr_Subtype variables
Itype : Entity_Id;
-- The final itype of the overall aggregate
Index_Constraints : constant List_Id := New_List;
-- The list of index constraints of the aggregate itype
-- Start of processing for Array_Aggr_Subtype
begin
-- Make sure that the list of index constraints is properly attached to
-- the tree, and then collect the aggregate bounds.
-- If no aggregaate bounds have been set, this is an aggregate with
-- iterator specifications and a dynamic size to be determined by
-- first pass of expanded code.
if No (Aggregate_Bounds (N)) then
return Typ;
end if;
Set_Parent (Index_Constraints, N);
-- When resolving a null aggregate we created a list of aggregate bounds
-- for the consecutive dimensions. The bounds for the first dimension
-- are attached as the Aggregate_Bounds of the aggregate node.
if Is_Null_Aggregate (N) then
declare
This_Range : Node_Id := Aggregate_Bounds (N);
begin
for J in 1 .. Aggr_Dimension loop
Aggr_Range (J) := This_Range;
Next_Index (This_Range);
-- Remove bounds from the list, so they can be reattached as
-- the First_Index/Next_Index again by the code that also
-- handles non-null aggregates.
Remove (Aggr_Range (J));
end loop;
end;
else
Collect_Aggr_Bounds (N, 1);
end if;
-- Build the list of constrained indexes of our aggregate itype
for J in 1 .. Aggr_Dimension loop
Create_Index : declare
Index_Base : constant Entity_Id :=
Base_Type (Etype (Aggr_Range (J)));
Index_Typ : Entity_Id;
begin
-- Construct the Index subtype, and associate it with the range
-- construct that generates it.
Index_Typ :=
Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
Set_Etype (Index_Typ, Index_Base);
if Is_Character_Type (Index_Base) then
Set_Is_Character_Type (Index_Typ);
end if;
Set_Size_Info (Index_Typ, (Index_Base));
Set_RM_Size (Index_Typ, RM_Size (Index_Base));
Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
Set_Scalar_Range (Index_Typ, Aggr_Range (J));
if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
end if;
Set_Etype (Aggr_Range (J), Index_Typ);
Append (Aggr_Range (J), To => Index_Constraints);
end Create_Index;
end loop;
-- Now build the Itype
Itype := Create_Itype (E_Array_Subtype, N);
Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
Set_Convention (Itype, Convention (Typ));
Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
Set_Etype (Itype, Base_Type (Typ));
Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
Set_Is_Aliased (Itype, Is_Aliased (Typ));
Set_Is_Independent (Itype, Is_Independent (Typ));
Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
Copy_Suppress_Status (Index_Check, Typ, Itype);
Copy_Suppress_Status (Length_Check, Typ, Itype);
Set_First_Index (Itype, First (Index_Constraints));
Set_Is_Constrained (Itype, True);
Set_Is_Internal (Itype, True);
if Has_Predicates (Typ) then
Set_Has_Predicates (Itype);
-- If the base type has a predicate, capture the predicated parent
-- or the existing predicate function for SPARK use.
if Present (Predicate_Function (Typ)) then
Set_Predicate_Function (Itype, Predicate_Function (Typ));
elsif Is_Itype (Typ) then
Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
else
Set_Predicated_Parent (Itype, Typ);
end if;
end if;
-- A simple optimization: purely positional aggregates of static
-- components should be passed to gigi unexpanded whenever possible, and
-- regardless of the staticness of the bounds themselves. Subsequent
-- checks in exp_aggr verify that type is not packed, etc.
Set_Size_Known_At_Compile_Time
(Itype,
Is_Fully_Positional
and then Comes_From_Source (N)
and then Size_Known_At_Compile_Time (Component_Type (Typ)));
-- We always need a freeze node for a packed array subtype, so that we
-- can build the Packed_Array_Impl_Type corresponding to the subtype. If
-- expansion is disabled, the packed array subtype is not built, and we
-- must not generate a freeze node for the type, or else it will appear
-- incomplete to gigi.
if Is_Packed (Itype)
and then not In_Spec_Expression
and then Expander_Active
then
Freeze_Itype (Itype, N);
end if;
return Itype;
end Array_Aggr_Subtype;
--------------------------------
-- Check_Misspelled_Component --
--------------------------------
procedure Check_Misspelled_Component
(Elements : Elist_Id;
Component : Node_Id)
is
Max_Suggestions : constant := 2;
Nr_Of_Suggestions : Natural := 0;
Suggestion_1 : Entity_Id := Empty;
Suggestion_2 : Entity_Id := Empty;
Component_Elmt : Elmt_Id;
begin
-- All the components of List are matched against Component and a count
-- is maintained of possible misspellings. When at the end of the
-- analysis there are one or two (not more) possible misspellings,
-- these misspellings will be suggested as possible corrections.
Component_Elmt := First_Elmt (Elements);
while Nr_Of_Suggestions <= Max_Suggestions
and then Present (Component_Elmt)
loop
if Is_Bad_Spelling_Of
(Chars (Node (Component_Elmt)),
Chars (Component))
then
Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
case Nr_Of_Suggestions is
when 1 => Suggestion_1 := Node (Component_Elmt);
when 2 => Suggestion_2 := Node (Component_Elmt);
when others => null;
end case;
end if;
Next_Elmt (Component_Elmt);
end loop;
-- Report at most two suggestions
if Nr_Of_Suggestions = 1 then
Error_Msg_NE -- CODEFIX
("\possible misspelling of&", Component, Suggestion_1);
elsif Nr_Of_Suggestions = 2 then
Error_Msg_Node_2 := Suggestion_2;
Error_Msg_NE -- CODEFIX
("\possible misspelling of& or&", Component, Suggestion_1);
end if;
end Check_Misspelled_Component;
----------------------------------------
-- Check_Expr_OK_In_Limited_Aggregate --
----------------------------------------
procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
begin
if Is_Limited_Type (Etype (Expr))
and then Comes_From_Source (Expr)
then
if In_Instance_Body or else In_Inlined_Body then
null;
elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
Error_Msg_N
("initialization not allowed for limited types", Expr);
Explain_Limited_Type (Etype (Expr), Expr);
end if;
end if;
end Check_Expr_OK_In_Limited_Aggregate;
--------------------
-- Is_Deep_Choice --
--------------------
function Is_Deep_Choice
(Choice : Node_Id;
Aggr_Type : Type_Kind_Id) return Boolean
is
Pref : Node_Id := Choice;
begin
while not Is_Root_Prefix_Of_Deep_Choice (Pref) loop
Pref := Prefix (Pref);
end loop;
if Is_Array_Type (Aggr_Type) then
return Paren_Count (Pref) > 0
and then Pref /= Choice;
else
return Pref /= Choice;
end if;
end Is_Deep_Choice;
-------------------------
-- Is_Others_Aggregate --
-------------------------
function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
Assoc : constant List_Id := Component_Associations (Aggr);
begin
return No (Expressions (Aggr))
and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
end Is_Others_Aggregate;
-----------------------------------
-- Is_Root_Prefix_Of_Deep_Choice --
-----------------------------------
function Is_Root_Prefix_Of_Deep_Choice (Pref : Node_Id) return Boolean is
begin
return Paren_Count (Pref) > 0
or else Nkind (Pref) not in N_Indexed_Component
| N_Selected_Component;
end Is_Root_Prefix_Of_Deep_Choice;
-------------------------
-- Is_Single_Aggregate --
-------------------------
function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
Assoc : constant List_Id := Component_Associations (Aggr);
begin
return No (Expressions (Aggr))
and then No (Next (First (Assoc)))
and then No (Next (First (Choice_List (First (Assoc)))));
end Is_Single_Aggregate;
-----------------------
-- Is_Null_Aggregate --
-----------------------
function Is_Null_Aggregate (N : Node_Id) return Boolean is
begin
return Ada_Version >= Ada_2022
and then Is_Homogeneous_Aggregate (N)
and then Is_Empty_List (Expressions (N))
and then Is_Empty_List (Component_Associations (N));
end Is_Null_Aggregate;
----------------------------------------
-- Is_Null_Array_Aggregate_High_Bound --
----------------------------------------
function Is_Null_Array_Aggregate_High_Bound (N : Node_Id) return Boolean is
Original_N : constant Node_Id := Original_Node (N);
begin
return Ada_Version >= Ada_2022
and then not Comes_From_Source (Original_N)
and then Nkind (Original_N) = N_Attribute_Reference
and then
Get_Attribute_Id (Attribute_Name (Original_N)) = Attribute_Pred
and then Nkind (Parent (N)) in N_Range | N_Op_Le
and then not Comes_From_Source (Parent (N));
end Is_Null_Array_Aggregate_High_Bound;
--------------------------------
-- Make_String_Into_Aggregate --
--------------------------------
procedure Make_String_Into_Aggregate (N : Node_Id) is
Exprs : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (N);
Str : constant String_Id := Strval (N);
Strlen : constant Nat := String_Length (Str);
C : Char_Code;
C_Node : Node_Id;
New_N : Node_Id;
P : Source_Ptr;
begin
P := Loc + 1;
for J in 1 .. Strlen loop
C := Get_String_Char (Str, J);
Set_Character_Literal_Name (C);
C_Node :=
Make_Character_Literal (P,
Chars => Name_Find,
Char_Literal_Value => UI_From_CC (C));
Set_Etype (C_Node, Any_Character);
Append_To (Exprs, C_Node);
P := P + 1;
-- Something special for wide strings???
end loop;
New_N := Make_Aggregate (Loc, Expressions => Exprs);
Set_Analyzed (New_N);
Set_Etype (New_N, Any_Composite);
Rewrite (N, New_N);
end Make_String_Into_Aggregate;
-----------------------
-- Resolve_Aggregate --
-----------------------
procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Aggr_Subtyp : Entity_Id;
-- The actual aggregate subtype. This is not necessarily the same as Typ
-- which is the subtype of the context in which the aggregate was found.
Others_Box : Boolean := False;
-- Set to True if N represents a simple aggregate with only
-- (others => <>), not nested as part of another aggregate.
function Is_Full_Access_Aggregate (N : Node_Id) return Boolean;
-- If a full access object is initialized with an aggregate or is
-- assigned an aggregate, we have to prevent a piecemeal access or
-- assignment to the object, even if the aggregate is to be expanded.
-- We create a temporary for the aggregate, and assign the temporary
-- instead, so that the back end can generate an atomic move for it.
-- This is only done in the context of an object declaration or an
-- assignment. Function is a noop and returns false in other contexts.
function Within_Aggregate (N : Node_Id) return Boolean;
-- Return True if N is part of an N_Aggregate
------------------------------
-- Is_Full_Access_Aggregate --
------------------------------
function Is_Full_Access_Aggregate (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
New_N : Node_Id;
Par : Node_Id;
Temp : Entity_Id;
Typ : Entity_Id;
begin
Par := Parent (N);
-- Aggregate may be qualified, so find outer context
if Nkind (Par) = N_Qualified_Expression then
Par := Parent (Par);
end if;
if not Comes_From_Source (Par) then
return False;
end if;
case Nkind (Par) is
when N_Assignment_Statement =>
Typ := Etype (Name (Par));
if not Is_Full_Access (Typ)
and then not Is_Full_Access_Object (Name (Par))
then
return False;
end if;
when N_Object_Declaration =>
Typ := Etype (Defining_Identifier (Par));
if not Is_Full_Access (Typ)
and then not Is_Full_Access (Defining_Identifier (Par))
then
return False;
end if;
when others =>
return False;
end case;
Temp := Make_Temporary (Loc, 'T', N);
New_N :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N));
Insert_Action (Par, New_N);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, Typ);
return True;
end Is_Full_Access_Aggregate;
----------------------
-- Within_Aggregate --
----------------------
function Within_Aggregate (N : Node_Id) return Boolean is
P : Node_Id := Parent (N);
begin
while Present (P) loop
if Nkind (P) = N_Aggregate then
return True;
end if;
P := Parent (P);
end loop;
return False;
end Within_Aggregate;
-- Start of processing for Resolve_Aggregate
begin
-- Ignore junk empty aggregate resulting from parser error
if No (Expressions (N))
and then No (Component_Associations (N))
and then not Null_Record_Present (N)
then
return;
-- If the aggregate is assigned to a full access variable, we have
-- to prevent a piecemeal assignment even if the aggregate is to be
-- expanded. We create a temporary for the aggregate, and assign the
-- temporary instead, so that the back end can generate an atomic move
-- for it. This is properly an expansion activity but it must be done
-- before resolution because aggregate resolution cannot be done twice.
elsif Expander_Active and then Is_Full_Access_Aggregate (N) then
return;
end if;
-- If the aggregate has box-initialized components, its type must be
-- frozen so that initialization procedures can properly be called
-- in the resolution that follows. The replacement of boxes with
-- initialization calls is properly an expansion activity but it must
-- be done during resolution.
if Expander_Active
and then Present (Component_Associations (N))
then
declare
Comp : Node_Id;
First_Comp : Boolean := True;
begin
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Box_Present (Comp) then
if First_Comp
and then No (Expressions (N))
and then Nkind (First (Choices (Comp))) = N_Others_Choice
and then not Within_Aggregate (N)
then
Others_Box := True;
end if;
Insert_Actions (N, Freeze_Entity (Typ, N));
exit;
end if;
First_Comp := False;
Next (Comp);
end loop;
end;
end if;
-- Check for aggregates not allowed in configurable run-time mode.
-- We allow all cases of aggregates that do not come from source, since
-- these are all assumed to be small (e.g. bounds of a string literal).
-- We also allow aggregates of types we know to be small.
if not Support_Aggregates_On_Target
and then Comes_From_Source (N)
and then (not Known_Static_Esize (Typ)
or else Esize (Typ) > System_Max_Integer_Size)
then
Error_Msg_CRT ("aggregate", N);
end if;
-- Ada 2005 (AI-287): Limited aggregates allowed
-- In an instance, ignore aggregate subcomponents that may be limited,
-- because they originate in view conflicts. If the original aggregate
-- is legal and the actuals are legal, the aggregate itself is legal.
if Is_Limited_Type (Typ)
and then Ada_Version < Ada_2005
and then not In_Instance
then
Error_Msg_N ("aggregate type cannot be limited", N);
Explain_Limited_Type (Typ, N);
elsif Is_Class_Wide_Type (Typ) then
Error_Msg_N ("type of aggregate cannot be class-wide", N);
elsif Typ = Any_String
or else Typ = Any_Composite
then
Error_Msg_N ("no unique type for aggregate", N);
Set_Etype (N, Any_Composite);
elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
Error_Msg_N ("null record forbidden in array aggregate", N);
elsif Has_Aspect (Typ, Aspect_Aggregate)
and then Ekind (Typ) /= E_Record_Type
and then Ada_Version >= Ada_2022
then
-- Check for Ada 2022 and () aggregate.
if not Is_Homogeneous_Aggregate (N) then
Error_Msg_N ("container aggregate must use '['], not ()", N);
end if;
Resolve_Container_Aggregate (N, Typ);
-- Check Ada 2022 empty aggregate [] initializing a record type that has
-- aspect aggregate; the empty aggregate will be expanded into a call to
-- the empty function specified in the aspect aggregate.
elsif Has_Aspect (Typ, Aspect_Aggregate)
and then Ekind (Typ) = E_Record_Type
and then Is_Homogeneous_Aggregate (N)
and then Is_Empty_List (Expressions (N))
and then Is_Empty_List (Component_Associations (N))
and then Ada_Version >= Ada_2022
then
Resolve_Container_Aggregate (N, Typ);
elsif Is_Record_Type (Typ) then
Resolve_Record_Aggregate (N, Typ);
elsif Is_Array_Type (Typ) then
-- First a special test, for the case of a positional aggregate of
-- characters which can be replaced by a string literal.
-- Do not perform this transformation if this was a string literal
-- to start with, whose components needed constraint checks, or if
-- the component type is non-static, because it will require those
-- checks and be transformed back into an aggregate. If the index
-- type is not Integer the aggregate may represent a user-defined
-- string type but the context might need the original type so we
-- do not perform the transformation at this point.
if Number_Dimensions (Typ) = 1
and then Is_Standard_Character_Type (Component_Type (Typ))
and then No (Component_Associations (N))
and then not Is_Limited_Composite (Typ)
and then not Is_Private_Composite (Typ)
and then not Is_Bit_Packed_Array (Typ)
and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
and then Is_OK_Static_Subtype (Component_Type (Typ))
and then Base_Type (Etype (First_Index (Typ))) =
Base_Type (Standard_Integer)
then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
exit when Nkind (Expr) /= N_Character_Literal;
Next (Expr);
end loop;
if No (Expr) then
Start_String;
Expr := First (Expressions (N));
while Present (Expr) loop
Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
Next (Expr);
end loop;
Rewrite (N, Make_String_Literal (Loc, End_String));
Analyze_And_Resolve (N, Typ);
return;
end if;
end;
end if;
-- Here if we have a real aggregate to deal with
Array_Aggregate : declare
Aggr_Resolved : Boolean;
Aggr_Typ : constant Entity_Id := Etype (Typ);
-- This is the unconstrained array type, which is the type against
-- which the aggregate is to be resolved. Typ itself is the array
-- type of the context which may not be the same subtype as the
-- subtype for the final aggregate.
Is_Null_Aggr : constant Boolean := Is_Null_Aggregate (N);
begin
-- In the following we determine whether an OTHERS choice is
-- allowed inside the array aggregate. The test checks the context
-- in which the array aggregate occurs. If the context does not
-- permit it, or the aggregate type is unconstrained, an OTHERS
-- choice is not allowed (except that it is always allowed on the
-- right-hand side of an assignment statement; in this case the
-- constrainedness of the type doesn't matter, because an array
-- object is always constrained).
-- If expansion is disabled (generic context, or semantics-only
-- mode) actual subtypes cannot be constructed, and the type of an
-- object may be its unconstrained nominal type. However, if the
-- context is an assignment statement, OTHERS is allowed, because
-- the target of the assignment will have a constrained subtype
-- when fully compiled. Ditto if the context is an initialization
-- procedure where a component may have a predicate function that
-- carries the base type.
-- Note that there is no node for Explicit_Actual_Parameter.
-- To test for this context we therefore have to test for node
-- N_Parameter_Association which itself appears only if there is a
-- formal parameter. Consequently we also need to test for
-- N_Procedure_Call_Statement or N_Function_Call.
-- The context may be an N_Reference node, created by expansion.
-- Legality of the others clause was established in the source,
-- so the context is legal.
Set_Etype (N, Aggr_Typ); -- May be overridden later on
if Is_Null_Aggr then
Set_Etype (N, Typ);
Aggr_Resolved := Resolve_Null_Array_Aggregate (N);
elsif Nkind (Parent (N)) = N_Assignment_Statement
or else Inside_Init_Proc
or else (Is_Constrained (Typ)
and then Nkind (Parent (N)) in
N_Parameter_Association
| N_Function_Call
| N_Procedure_Call_Statement
| N_Generic_Association
| N_Formal_Object_Declaration
| N_Simple_Return_Statement
| N_Object_Declaration
| N_Component_Declaration
| N_Parameter_Specification
| N_Qualified_Expression
| N_Unchecked_Type_Conversion
| N_Reference
| N_Aggregate
| N_Extension_Aggregate
| N_Component_Association
| N_Case_Expression_Alternative
| N_If_Expression
| N_Expression_With_Actions)
then
Aggr_Resolved :=
Resolve_Array_Aggregate
(N,
Index => First_Index (Aggr_Typ),
Index_Constr => First_Index (Typ),
Component_Typ => Component_Type (Typ),
Others_Allowed => True);
else
Aggr_Resolved :=
Resolve_Array_Aggregate
(N,
Index => First_Index (Aggr_Typ),
Index_Constr => First_Index (Aggr_Typ),
Component_Typ => Component_Type (Typ),
Others_Allowed => False);
end if;
if not Aggr_Resolved then
-- A parenthesized expression may have been intended as an
-- aggregate, leading to a type error when analyzing the
-- component. This can also happen for a nested component
-- (see Analyze_Aggr_Expr).
if Paren_Count (N) > 0 then
Error_Msg_N
("positional aggregate cannot have one component", N);
end if;
Aggr_Subtyp := Any_Composite;
else
Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
end if;
Set_Etype (N, Aggr_Subtyp);
end Array_Aggregate;
elsif Is_Private_Type (Typ)
and then Present (Full_View (Typ))
and then (In_Inlined_Body or In_Instance_Body)
and then Is_Composite_Type (Full_View (Typ))
then
Resolve (N, Full_View (Typ));
else
Error_Msg_N ("illegal context for aggregate", N);
end if;
-- If we can determine statically that the evaluation of the aggregate
-- raises Constraint_Error, then replace the aggregate with an
-- N_Raise_Constraint_Error node, but set the Etype to the right
-- aggregate subtype. Gigi needs this.
if Raises_Constraint_Error (N) then
Aggr_Subtyp := Etype (N);
Rewrite (N,
Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
Set_Raises_Constraint_Error (N);
Set_Etype (N, Aggr_Subtyp);
Set_Analyzed (N);
end if;
if Warn_On_No_Value_Assigned
and then Others_Box
and then not Is_Fully_Initialized_Type (Etype (N))
then
Error_Msg_N ("?v?aggregate not fully initialized", N);
end if;
Check_Function_Writable_Actuals (N);
end Resolve_Aggregate;
-----------------------------
-- Resolve_Array_Aggregate --
-----------------------------
function Resolve_Array_Aggregate
(N : Node_Id;
Index : Node_Id;
Index_Constr : Node_Id;
Component_Typ : Entity_Id;
Others_Allowed : Boolean) return Boolean
is
Loc : constant Source_Ptr := Sloc (N);
Failure : constant Boolean := False;
Success : constant Boolean := True;
Index_Typ : constant Entity_Id := Etype (Index);
Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
-- The type of the index corresponding to the array sub-aggregate along
-- with its low and upper bounds.
Index_Base : constant Entity_Id := Base_Type (Index_Typ);
Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
-- Ditto for the base type
Others_Present : Boolean := False;
Nb_Choices : Nat := 0;
-- Contains the overall number of named choices in this sub-aggregate
function Add (Val : Uint; To : Node_Id) return Node_Id;
-- Creates a new expression node where Val is added to expression To.
-- Tries to constant fold whenever possible. To must be an already
-- analyzed expression.
procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
-- Checks that AH (the upper bound of an array aggregate) is less than
-- or equal to BH (the upper bound of the index base type). If the check
-- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
-- set, and AH is replaced with a duplicate of BH.
procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
-- Checks that range AL .. AH is compatible with range L .. H. Emits a
-- warning if not and sets the Raises_Constraint_Error flag in N.
procedure Check_Length (L, H : Node_Id; Len : Uint);
-- Checks that range L .. H contains at least Len elements. Emits a
-- warning if not and sets the Raises_Constraint_Error flag in N.
function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
-- Returns True if range L .. H is dynamic or null
procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
-- Given expression node From, this routine sets OK to False if it
-- cannot statically evaluate From. Otherwise it stores this static
-- value into Value.
function Resolve_Aggr_Expr
(Expr : Node_Id;
Single_Elmt : Boolean) return Boolean;
-- Resolves aggregate expression Expr. Returns False if resolution
-- fails. If Single_Elmt is set to False, the expression Expr may be
-- used to initialize several array aggregate elements (this can happen
-- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
-- In this event we do not resolve Expr unless expansion is disabled.
-- To know why, see the DELAYED COMPONENT RESOLUTION note above.
--
-- NOTE: In the case of "... => <>", we pass the N_Component_Association
-- node as Expr, since there is no Expression and we need a Sloc for the
-- error message.
procedure Resolve_Iterated_Component_Association
(N : Node_Id;
Index_Typ : Entity_Id);
-- For AI12-061
procedure Warn_On_Null_Component_Association (Expr : Node_Id);
-- Expr is either a conditional expression or a case expression of an
-- iterated component association initializing the aggregate N with
-- components that can never be null. Report warning on associations
-- that may initialize some component with a null value.
---------
-- Add --
---------
function Add (Val : Uint; To : Node_Id) return Node_Id is
Expr_Pos : Node_Id;
Expr : Node_Id;
To_Pos : Node_Id;
begin
if Raises_Constraint_Error (To) then
return To;
end if;
-- First test if we can do constant folding
if Compile_Time_Known_Value (To)
or else Nkind (To) = N_Integer_Literal
then
Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
Set_Is_Static_Expression (Expr_Pos);
Set_Etype (Expr_Pos, Etype (To));
Set_Analyzed (Expr_Pos, Analyzed (To));
if not Is_Enumeration_Type (Index_Typ) then
Expr := Expr_Pos;
-- If we are dealing with enumeration return
-- Index_Typ'Val (Expr_Pos)
else
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Index_Typ, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end if;
-- If we are here no constant folding possible
if not Is_Enumeration_Type (Index_Base) then
Expr :=
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr (To),
Right_Opnd => Make_Integer_Literal (Loc, Val));
-- If we are dealing with enumeration return
-- Index_Typ'Val (Index_Typ'Pos (To) + Val)
else
To_Pos :=
Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Index_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Duplicate_Subexpr (To)));
Expr_Pos :=
Make_Op_Add (Loc,
Left_Opnd => To_Pos,
Right_Opnd => Make_Integer_Literal (Loc, Val));
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Index_Typ, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
-- If the index type has a non standard representation, the
-- attributes 'Val and 'Pos expand into function calls and the
-- resulting expression is considered non-safe for reevaluation
-- by the backend. Relocate it into a constant temporary in order
-- to make it safe for reevaluation.
if Has_Non_Standard_Rep (Etype (N)) then
declare
Def_Id : Entity_Id;
begin
Def_Id := Make_Temporary (Loc, 'R', Expr);
Set_Etype (Def_Id, Index_Typ);
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Occurrence_Of (Index_Typ, Loc),
Constant_Present => True,
Expression => Relocate_Node (Expr)));
Expr := New_Occurrence_Of (Def_Id, Loc);
end;
end if;
end if;
return Expr;
end Add;
-----------------
-- Check_Bound --
-----------------
procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
Val_BH : Uint;
Val_AH : Uint;
OK_BH : Boolean;
OK_AH : Boolean;
begin
Get (Value => Val_BH, From => BH, OK => OK_BH);
Get (Value => Val_AH, From => AH, OK => OK_AH);
if OK_BH and then OK_AH and then Val_BH < Val_AH then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("upper bound out of range<<", AH);
Error_Msg_N ("\Constraint_Error [<<", AH);
-- You need to set AH to BH or else in the case of enumerations
-- indexes we will not be able to resolve the aggregate bounds.
AH := Duplicate_Subexpr (BH);
end if;
end Check_Bound;
------------------
-- Check_Bounds --
------------------
procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
Val_L : Uint;
Val_H : Uint;
Val_AL : Uint;
Val_AH : Uint;
OK_L : Boolean;
OK_H : Boolean;
OK_AL : Boolean;
OK_AH : Boolean;
pragma Warnings (Off, OK_AL);
pragma Warnings (Off, OK_AH);
begin
if Raises_Constraint_Error (N)
or else Dynamic_Or_Null_Range (AL, AH)
then
return;
end if;
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
Get (Value => Val_AL, From => AL, OK => OK_AL);
Get (Value => Val_AH, From => AH, OK => OK_AH);
if OK_L and then Val_L > Val_AL then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("lower bound of aggregate out of range<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
if OK_H and then Val_H < Val_AH then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("upper bound of aggregate out of range<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end Check_Bounds;
------------------
-- Check_Length --
------------------
procedure Check_Length (L, H : Node_Id; Len : Uint) is
Val_L : Uint;
Val_H : Uint;
OK_L : Boolean;
OK_H : Boolean;
Range_Len : Uint;
begin
if Raises_Constraint_Error (N) then
return;
end if;
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
if not OK_L or else not OK_H then
return;
end if;
-- If null range length is zero
if Val_L > Val_H then
Range_Len := Uint_0;
else
Range_Len := Val_H - Val_L + 1;
end if;
if Range_Len < Len then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("too many elements<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end Check_Length;
---------------------------
-- Dynamic_Or_Null_Range --
---------------------------
function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
Val_L : Uint;
Val_H : Uint;
OK_L : Boolean;
OK_H : Boolean;
begin
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
return not OK_L or else not OK_H
or else not Is_OK_Static_Expression (L)
or else not Is_OK_Static_Expression (H)
or else Val_L > Val_H;
end Dynamic_Or_Null_Range;
---------
-- Get --
---------
procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
begin
OK := True;
if Compile_Time_Known_Value (From) then
Value := Expr_Value (From);
-- If expression From is something like Some_Type'Val (10) then
-- Value = 10.
elsif Nkind (From) = N_Attribute_Reference
and then Attribute_Name (From) = Name_Val
and then Compile_Time_Known_Value (First (Expressions (From)))
then
Value := Expr_Value (First (Expressions (From)));
else
Value := Uint_0;
OK := False;
end if;
end Get;
-----------------------
-- Resolve_Aggr_Expr --
-----------------------
function Resolve_Aggr_Expr
(Expr : Node_Id;
Single_Elmt : Boolean) return Boolean
is
Nxt_Ind : constant Node_Id := Next_Index (Index);
Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
-- Index is the current index corresponding to the expression
Resolution_OK : Boolean := True;
-- Set to False if resolution of the expression failed
begin
-- Defend against previous errors
if Nkind (Expr) = N_Error
or else Error_Posted (Expr)
then
return True;
end if;
-- If the array type against which we are resolving the aggregate
-- has several dimensions, the expressions nested inside the
-- aggregate must be further aggregates (or strings).
if Present (Nxt_Ind) then
if Nkind (Expr) /= N_Aggregate then
-- A string literal can appear where a one-dimensional array
-- of characters is expected. If the literal looks like an
-- operator, it is still an operator symbol, which will be
-- transformed into a string when analyzed.
if Is_Character_Type (Component_Typ)
and then No (Next_Index (Nxt_Ind))
and then Nkind (Expr) in N_String_Literal | N_Operator_Symbol
then
-- A string literal used in a multidimensional array
-- aggregate in place of the final one-dimensional
-- aggregate must not be enclosed in parentheses.
if Paren_Count (Expr) /= 0 then
Error_Msg_N ("no parenthesis allowed here", Expr);
end if;
Make_String_Into_Aggregate (Expr);
else
Error_Msg_N ("nested array aggregate expected", Expr);
-- If the expression is parenthesized, this may be
-- a missing component association for a 1-aggregate.
if Paren_Count (Expr) > 0 then
Error_Msg_N
("\if single-component aggregate is intended, "
& "write e.g. (1 ='> ...)", Expr);
end if;
return Failure;
end if;
end if;
-- If it's "... => <>", nothing to resolve
if Nkind (Expr) = N_Component_Association then
pragma Assert (Box_Present (Expr));
return Success;
end if;
-- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
-- Required to check the null-exclusion attribute (if present).
-- This value may be overridden later on.
Set_Etype (Expr, Etype (N));
Resolution_OK := Resolve_Array_Aggregate
(Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
else
-- If it's "... => <>", nothing to resolve
if Nkind (Expr) = N_Component_Association then
pragma Assert (Box_Present (Expr));
return Success;
end if;
-- Do not resolve the expressions of discrete or others choices
-- unless the expression covers a single component, or the
-- expander is inactive.
-- In SPARK mode, expressions that can perform side effects will
-- be recognized by the gnat2why back-end, and the whole
-- subprogram will be ignored. So semantic analysis can be
-- performed safely.
if Single_Elmt
or else not Expander_Active
or else In_Spec_Expression
then
Analyze_And_Resolve (Expr, Component_Typ);
Check_Expr_OK_In_Limited_Aggregate (Expr);
Check_Non_Static_Context (Expr);
Aggregate_Constraint_Checks (Expr, Component_Typ);
Check_Unset_Reference (Expr);
end if;
end if;
-- If an aggregate component has a type with predicates, an explicit
-- predicate check must be applied, as for an assignment statement,
-- because the aggregate might not be expanded into individual
-- component assignments. If the expression covers several components
-- the analysis and the predicate check take place later.
if Has_Predicates (Component_Typ)
and then Analyzed (Expr)
then
Apply_Predicate_Check (Expr, Component_Typ);
end if;
if Raises_Constraint_Error (Expr)
and then Nkind (Parent (Expr)) /= N_Component_Association
then
Set_Raises_Constraint_Error (N);
end if;
-- If the expression has been marked as requiring a range check,
-- then generate it here. It's a bit odd to be generating such
-- checks in the analyzer, but harmless since Generate_Range_Check
-- does nothing (other than making sure Do_Range_Check is set) if
-- the expander is not active.
if Do_Range_Check (Expr) then
Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
end if;
return Resolution_OK;
end Resolve_Aggr_Expr;
--------------------------------------------
-- Resolve_Iterated_Component_Association --
--------------------------------------------
procedure Resolve_Iterated_Component_Association
(N : Node_Id;
Index_Typ : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Id : constant Entity_Id := Defining_Identifier (N);
-----------------------
-- Remove_References --
-----------------------
function Remove_Reference (N : Node_Id) return Traverse_Result;
-- Remove reference to the entity Id after analysis, so it can be
-- properly reanalyzed after construct is expanded into a loop.
function Remove_Reference (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then Entity (N) = Id
then
Set_Entity (N, Empty);
Set_Etype (N, Empty);
end if;
Set_Analyzed (N, False);
return OK;
end Remove_Reference;
procedure Remove_References is new Traverse_Proc (Remove_Reference);
-- Local variables
Choice : Node_Id;
Dummy : Boolean;
Scop : Entity_Id;
Expr : constant Node_Id := Expression (N);
-- Start of processing for Resolve_Iterated_Component_Association
begin
Error_Msg_Ada_2022_Feature ("iterated component", Loc);
-- Create a scope in which to introduce an index, to make it visible
-- for the analysis of component expression.
Scop := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
Set_Etype (Scop, Standard_Void_Type);
Set_Parent (Scop, Parent (N));
Push_Scope (Scop);
-- If there is iterator specification, then its preanalysis will make
-- the index visible.
if Present (Iterator_Specification (N)) then
Preanalyze (Iterator_Specification (N));
-- Otherwise, analyze discrete choices and make the index visible
else
-- Insert index name into current scope but don't decorate it yet,
-- so that a premature usage of this name in discrete choices will
-- be nicely diagnosed.
Enter_Name (Id);
Choice := First (Discrete_Choices (N));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Present := True;
else
Analyze (Choice);
-- Choice can be a subtype name, a range, or an expression
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then
Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
then
null;
else
Analyze_And_Resolve (Choice, Index_Typ);
end if;
end if;
Next (Choice);
end loop;
-- Decorate the index variable
Set_Etype (Id, Index_Typ);
Mutate_Ekind (Id, E_Variable);
Set_Is_Not_Self_Hidden (Id);
Set_Scope (Id, Scop);
end if;
-- Analyze expression without expansion, to verify legality.
-- When generating code, we then remove references to the index
-- variable, because the expression will be analyzed anew after
-- rewritting as a loop with a new index variable; when not
-- generating code we leave the analyzed expression as it is.
Dummy := Resolve_Aggr_Expr (Expr, Single_Elmt => False);
if Operating_Mode /= Check_Semantics then
Remove_References (Expr);
end if;
-- An iterated_component_association may appear in a nested
-- aggregate for a multidimensional structure: preserve the bounds
-- computed for the expression, as well as the anonymous array
-- type generated for it; both are needed during array expansion.
if Nkind (Expr) = N_Aggregate then
Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
Set_Etype (Expression (N), Etype (Expr));
end if;
End_Scope;
end Resolve_Iterated_Component_Association;
----------------------------------------
-- Warn_On_Null_Component_Association --
----------------------------------------
procedure Warn_On_Null_Component_Association (Expr : Node_Id) is
Comp_Typ : constant Entity_Id := Component_Type (Etype (N));
procedure Check_Case_Expr (N : Node_Id);
-- Check if a case expression may initialize some component with a
-- null value.
procedure Check_Cond_Expr (N : Node_Id);
-- Check if a conditional expression may initialize some component
-- with a null value.
procedure Check_Expr (Expr : Node_Id);
-- Check if an expression may initialize some component with a
-- null value.
procedure Warn_On_Null_Expression_And_Rewrite (Null_Expr : Node_Id);
-- Report warning on known null expression and replace the expression
-- by a raise constraint error node.
---------------------
-- Check_Case_Expr --
---------------------
procedure Check_Case_Expr (N : Node_Id) is
Alt_Node : Node_Id := First (Alternatives (N));
begin
while Present (Alt_Node) loop
Check_Expr (Expression (Alt_Node));
Next (Alt_Node);
end loop;
end Check_Case_Expr;
---------------------
-- Check_Cond_Expr --
---------------------
procedure Check_Cond_Expr (N : Node_Id) is
If_Expr : Node_Id := N;
Then_Expr : Node_Id;
Else_Expr : Node_Id;
begin
Then_Expr := Next (First (Expressions (If_Expr)));
Else_Expr := Next (Then_Expr);
Check_Expr (Then_Expr);
-- Process elsif parts (if any)
while Nkind (Else_Expr) = N_If_Expression loop
If_Expr := Else_Expr;
Then_Expr := Next (First (Expressions (If_Expr)));
Else_Expr := Next (Then_Expr);
Check_Expr (Then_Expr);
end loop;
if Known_Null (Else_Expr) then
Warn_On_Null_Expression_And_Rewrite (Else_Expr);
end if;
end Check_Cond_Expr;
----------------
-- Check_Expr --
----------------
procedure Check_Expr (Expr : Node_Id) is
begin
if Known_Null (Expr) then
Warn_On_Null_Expression_And_Rewrite (Expr);
elsif Nkind (Expr) = N_If_Expression then
Check_Cond_Expr (Expr);
elsif Nkind (Expr) = N_Case_Expression then
Check_Case_Expr (Expr);
end if;
end Check_Expr;
-----------------------------------------
-- Warn_On_Null_Expression_And_Rewrite --
-----------------------------------------
procedure Warn_On_Null_Expression_And_Rewrite (Null_Expr : Node_Id) is
begin
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding component??",
Null_Expr);
Error_Msg_N
("\Constraint_Error might be raised at run time??", Null_Expr);
-- We cannot use Apply_Compile_Time_Constraint_Error because in
-- some cases the components are rewritten and the runtime error
-- would be missed.
Rewrite (Null_Expr,
Make_Raise_Constraint_Error (Sloc (Null_Expr),
Reason => CE_Access_Check_Failed));
Set_Etype (Null_Expr, Comp_Typ);
Set_Analyzed (Null_Expr);
end Warn_On_Null_Expression_And_Rewrite;
-- Start of processing for Warn_On_Null_Component_Association
begin
pragma Assert (Can_Never_Be_Null (Comp_Typ));
case Nkind (Expr) is
when N_If_Expression =>
Check_Cond_Expr (Expr);
when N_Case_Expression =>
Check_Case_Expr (Expr);
when others =>
pragma Assert (False);
null;
end case;
end Warn_On_Null_Component_Association;
-- Local variables
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Discard : Node_Id;
Aggr_Low : Node_Id := Empty;
Aggr_High : Node_Id := Empty;
-- The actual low and high bounds of this sub-aggregate
Case_Table_Size : Nat;
-- Contains the size of the case table needed to sort aggregate choices
Choices_Low : Node_Id := Empty;
Choices_High : Node_Id := Empty;
-- The lowest and highest discrete choices values for a named aggregate
Delete_Choice : Boolean;
-- Used when replacing a subtype choice with predicate by a list
Has_Iterator_Specifications : Boolean := False;
-- Flag to indicate that all named associations are iterated component
-- associations with iterator specifications, in which case the
-- expansion will create two loops: one to evaluate the size and one
-- to generate the elements (4.3.3 (20.2/5)).
Nb_Elements : Uint := Uint_0;
-- The number of elements in a positional aggregate
Nb_Discrete_Choices : Nat := 0;
-- The overall number of discrete choices (not counting others choice)
-- Start of processing for Resolve_Array_Aggregate
begin
-- Ignore junk empty aggregate resulting from parser error
if No (Expressions (N))
and then No (Component_Associations (N))
and then not Null_Record_Present (N)
then
return Failure;
end if;
-- Disable the warning for GNAT Mode to allow for easier transition.
if Ada_Version_Explicit >= Ada_2022
and then Warn_On_Obsolescent_Feature
and then not GNAT_Mode
and then not Is_Homogeneous_Aggregate (N)
and then not Is_Enum_Array_Aggregate (N)
and then Is_Parenthesis_Aggregate (N)
and then Nkind (Parent (N)) /= N_Qualified_Expression
and then Comes_From_Source (N)
then
Error_Msg_N
("?j?array aggregate using () is an" &
" obsolescent syntax, use '['] instead", N);
end if;
-- STEP 1: make sure the aggregate is correctly formatted
if Is_Null_Aggregate (N) then
null;
elsif Present (Component_Associations (N)) then
-- Verify that all or none of the component associations
-- include an iterator specification.
Assoc := First (Component_Associations (N));
if Nkind (Assoc) = N_Iterated_Component_Association
and then Present (Iterator_Specification (Assoc))
then
-- All other component associations must have an iterator spec.
Next (Assoc);
while Present (Assoc) loop
if Nkind (Assoc) /= N_Iterated_Component_Association
or else No (Iterator_Specification (Assoc))
then
Error_Msg_N ("mixed iterated component association"
& " (RM 4.3.3 (17.1/5))",
Assoc);
return Failure;
end if;
Next (Assoc);
end loop;
Has_Iterator_Specifications := True;
else
-- or none of them do.
Next (Assoc);
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association
and then Present (Iterator_Specification (Assoc))
then
Error_Msg_N ("mixed iterated component association"
& " (RM 4.3.3 (17.1/5))",
Assoc);
return Failure;
end if;
Next (Assoc);
end loop;
end if;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association then
Resolve_Iterated_Component_Association (Assoc, Index_Typ);
elsif Nkind (Assoc) /= N_Component_Association then
Error_Msg_N
("invalid component association for aggregate", Assoc);
return Failure;
end if;
Choice := First (Choice_List (Assoc));
Delete_Choice := False;
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Present := True;
if Choice /= First (Choice_List (Assoc))
or else Present (Next (Choice))
then
Error_Msg_N
("OTHERS must appear alone in a choice list", Choice);
return Failure;
end if;
if Present (Next (Assoc)) then
Error_Msg_N
("OTHERS must appear last in an aggregate", Choice);
return Failure;
end if;
if Ada_Version = Ada_83
and then Assoc /= First (Component_Associations (N))
and then Nkind (Parent (N)) in
N_Assignment_Statement | N_Object_Declaration
then
Error_Msg_N
("(Ada 83) illegal context for OTHERS choice", N);
end if;
elsif Is_Entity_Name (Choice) then
Analyze (Choice);
declare
E : constant Entity_Id := Entity (Choice);
New_Cs : List_Id;
P : Node_Id;
C : Node_Id;
begin
if Is_Type (E) and then Has_Predicates (E) then
Freeze_Before (N, E);
if Has_Dynamic_Predicate_Aspect (E)
or else Has_Ghost_Predicate_Aspect (E)
then
Error_Msg_NE
("subtype& has non-static predicate, not allowed "
& "in aggregate choice", Choice, E);
elsif not Is_OK_Static_Subtype (E) then
Error_Msg_NE
("non-static subtype& has predicate, not allowed "
& "in aggregate choice", Choice, E);
end if;
-- If the subtype has a static predicate, replace the
-- original choice with the list of individual values
-- covered by the predicate.
-- This should be deferred to expansion time ???
if Present (Static_Discrete_Predicate (E)) then
Delete_Choice := True;
New_Cs := New_List;
P := First (Static_Discrete_Predicate (E));
while Present (P) loop
C := New_Copy (P);
Set_Sloc (C, Sloc (Choice));
Append_To (New_Cs, C);
Next (P);
end loop;
Insert_List_After (Choice, New_Cs);
end if;
end if;
end;
end if;
Nb_Choices := Nb_Choices + 1;
declare
C : constant Node_Id := Choice;
begin
Next (Choice);
if Delete_Choice then
Remove (C);
Nb_Choices := Nb_Choices - 1;
Delete_Choice := False;
end if;
end;
end loop;
Next (Assoc);
end loop;
end if;
-- At this point we know that the others choice, if present, is by
-- itself and appears last in the aggregate. Check if we have mixed
-- positional and discrete associations (other than the others choice).
if Present (Expressions (N))
and then (Nb_Choices > 1
or else (Nb_Choices = 1 and then not Others_Present))
then
Error_Msg_N
("cannot mix named and positional associations in array aggregate",
First (Choice_List (First (Component_Associations (N)))));
return Failure;
end if;
-- Test for the validity of an others choice if present
if Others_Present and then not Others_Allowed then
declare
Others_N : constant Node_Id :=
First (Choice_List (First (Component_Associations (N))));
begin
Error_Msg_N ("OTHERS choice not allowed here", Others_N);
Error_Msg_N ("\qualify the aggregate with a constrained subtype "
& "to provide bounds for it", Others_N);
return Failure;
end;
end if;
-- Protect against cascaded errors
if Etype (Index_Typ) = Any_Type then
return Failure;
end if;
-- STEP 2: Process named components
if No (Expressions (N)) then
if Others_Present then
Case_Table_Size := Nb_Choices - 1;
else
Case_Table_Size := Nb_Choices;
end if;
Step_2 : declare
function Empty_Range (A : Node_Id) return Boolean;
-- If an association covers an empty range, some warnings on the
-- expression of the association can be disabled.
-----------------
-- Empty_Range --
-----------------
function Empty_Range (A : Node_Id) return Boolean is
R : Node_Id;
begin
if Nkind (A) = N_Iterated_Component_Association then
R := First (Discrete_Choices (A));
else
R := First (Choices (A));
end if;
return No (Next (R))
and then Nkind (R) = N_Range
and then Compile_Time_Compare
(Low_Bound (R), High_Bound (R), False) = GT;
end Empty_Range;
-- Local variables
Low : Node_Id;
High : Node_Id;
-- Denote the lowest and highest values in an aggregate choice
S_Low : Node_Id := Empty;
S_High : Node_Id := Empty;
-- if a choice in an aggregate is a subtype indication these
-- denote the lowest and highest values of the subtype
Table : Case_Table_Type (1 .. Case_Table_Size);
-- Used to sort all the different choice values
Single_Choice : Boolean;
-- Set to true every time there is a single discrete choice in a
-- discrete association
Prev_Nb_Discrete_Choices : Nat;
-- Used to keep track of the number of discrete choices in the
-- current association.
Errors_Posted_On_Choices : Boolean := False;
-- Keeps track of whether any choices have semantic errors
-- Start of processing for Step_2
begin
-- STEP 2 (A): Check discrete choices validity
-- No need if this is an element iteration.
Assoc := First (Component_Associations (N));
while Present (Assoc)
and then Present (Choice_List (Assoc))
loop
Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
Choice := First (Choice_List (Assoc));
loop
Analyze (Choice);
if Nkind (Choice) = N_Others_Choice then
Single_Choice := False;
exit;
-- Test for subtype mark without constraint
elsif Is_Entity_Name (Choice) and then
Is_Type (Entity (Choice))
then
if Base_Type (Entity (Choice)) /= Index_Base then
Error_Msg_N
("invalid subtype mark in aggregate choice",
Choice);
return Failure;
end if;
-- Case of subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
if Has_Dynamic_Predicate_Aspect
(Entity (Subtype_Mark (Choice)))
or else Has_Ghost_Predicate_Aspect
(Entity (Subtype_Mark (Choice)))
then
Error_Msg_NE
("subtype& has non-static predicate, "
& "not allowed in aggregate choice",
Choice, Entity (Subtype_Mark (Choice)));
end if;
-- Does the subtype indication evaluation raise CE?
Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
Get_Index_Bounds (Choice, Low, High);
Check_Bounds (S_Low, S_High, Low, High);
-- Case of range or expression
else
Resolve (Choice, Index_Base);
Check_Unset_Reference (Choice);
Check_Non_Static_Context (Choice);
-- If semantic errors were posted on the choice, then
-- record that for possible early return from later
-- processing (see handling of enumeration choices).
if Error_Posted (Choice) then
Errors_Posted_On_Choices := True;
end if;
-- Do not range check a choice. This check is redundant
-- since this test is already done when we check that the
-- bounds of the array aggregate are within range.
Set_Do_Range_Check (Choice, False);
end if;
-- If we could not resolve the discrete choice stop here
if Etype (Choice) = Any_Type then
return Failure;
-- If the discrete choice raises CE get its original bounds
elsif Nkind (Choice) = N_Raise_Constraint_Error then
Set_Raises_Constraint_Error (N);
Get_Index_Bounds (Original_Node (Choice), Low, High);
-- Otherwise get its bounds as usual
else
Get_Index_Bounds (Choice, Low, High);
end if;
if (Dynamic_Or_Null_Range (Low, High)
or else (Nkind (Choice) = N_Subtype_Indication
and then
Dynamic_Or_Null_Range (S_Low, S_High)))
and then Nb_Choices /= 1
then
Error_Msg_N
("dynamic or empty choice in aggregate "
& "must be the only choice", Choice);
return Failure;
end if;
if not (All_Composite_Constraints_Static (Low)
and then All_Composite_Constraints_Static (High)
and then All_Composite_Constraints_Static (S_Low)
and then All_Composite_Constraints_Static (S_High))
then
Check_Restriction (No_Dynamic_Sized_Objects, Choice);
end if;
Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
Table (Nb_Discrete_Choices).Lo := Low;
Table (Nb_Discrete_Choices).Hi := High;
Table (Nb_Discrete_Choices).Choice := Choice;
Next (Choice);
if No (Choice) then
-- Check if we have a single discrete choice and whether
-- this discrete choice specifies a single value.
Single_Choice :=
Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1
and then Low = High;
exit;
end if;
end loop;
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005
and then not Empty_Range (Assoc)
then
if Known_Null (Expression (Assoc)) then
Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
-- Report warning on iterated component association that may
-- initialize some component of an array of null-excluding
-- access type components with a null value. For example:
-- type AList is array (...) of not null access Integer;
-- L : AList :=
-- [for J in A'Range =>
-- (if Func (J) = 0 then A(J)'Access else Null)];
elsif Ada_Version >= Ada_2022
and then Can_Never_Be_Null (Component_Type (Etype (N)))
and then Nkind (Assoc) = N_Iterated_Component_Association
and then Nkind (Expression (Assoc)) in N_If_Expression
| N_Case_Expression
then
Warn_On_Null_Component_Association (Expression (Assoc));
end if;
end if;
-- Ada 2005 (AI-287): In case of default initialized component
-- we delay the resolution to the expansion phase.
if Box_Present (Assoc) then
-- Ada 2005 (AI-287): In case of default initialization of a
-- component the expander will generate calls to the
-- corresponding initialization subprogram. We need to call
-- Resolve_Aggr_Expr to check the rules about
-- dimensionality.
if not Resolve_Aggr_Expr
(Assoc, Single_Elmt => Single_Choice)
then
return Failure;
end if;
-- ??? Checks for dynamically tagged expressions below will
-- be only applied to iterated_component_association after
-- expansion; in particular, errors might not be reported when
-- -gnatc switch is used.
elsif Nkind (Assoc) = N_Iterated_Component_Association then
null; -- handled above, in a loop context
elsif not Resolve_Aggr_Expr
(Expression (Assoc), Single_Elmt => Single_Choice)
then
return Failure;
-- Check incorrect use of dynamically tagged expression
-- We differentiate here two cases because the expression may
-- not be decorated. For example, the analysis and resolution
-- of the expression associated with the others choice will be
-- done later with the full aggregate. In such case we
-- duplicate the expression tree to analyze the copy and
-- perform the required check.
elsif No (Etype (Expression (Assoc))) then
declare
Save_Analysis : constant Boolean := Full_Analysis;
Expr : constant Node_Id :=
New_Copy_Tree (Expression (Assoc));
begin
Expander_Mode_Save_And_Set (False);
Full_Analysis := False;
-- Analyze the expression, making sure it is properly
-- attached to the tree before we do the analysis.
Set_Parent (Expr, Parent (Expression (Assoc)));
Analyze (Expr);
-- Compute its dimensions now, rather than at the end of
-- resolution, because in the case of multidimensional
-- aggregates subsequent expansion may lead to spurious
-- errors.
Check_Expression_Dimensions (Expr, Component_Typ);
-- If the expression is a literal, propagate this info
-- to the expression in the association, to enable some
-- optimizations downstream.
if Is_Entity_Name (Expr)
and then Present (Entity (Expr))
and then Ekind (Entity (Expr)) = E_Enumeration_Literal
then
Analyze_And_Resolve
(Expression (Assoc), Component_Typ);
end if;
Full_Analysis := Save_Analysis;
Expander_Mode_Restore;
if Is_Tagged_Type (Etype (Expr)) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
end;
elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
Check_Dynamically_Tagged_Expression
(Expr => Expression (Assoc),
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
Next (Assoc);
end loop;
-- If aggregate contains more than one choice then these must be
-- static. Check for duplicate and missing values.
-- Note: there is duplicated code here wrt Check_Choice_Set in
-- the body of Sem_Case, and it is possible we could just reuse
-- that procedure. To be checked ???
if Nb_Discrete_Choices > 1 then
Check_Choices : declare
Choice : Node_Id;
-- Location of choice for messages
Hi_Val : Uint;
Lo_Val : Uint;
-- High end of one range and Low end of the next. Should be
-- contiguous if there is no hole in the list of values.
Lo_Dup : Uint;
Hi_Dup : Uint;
-- End points of duplicated range
Missing_Or_Duplicates : Boolean := False;
-- Set True if missing or duplicate choices found
procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
-- Output continuation message with a representation of the
-- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
-- choice node where the message is to be posted.
------------------------
-- Output_Bad_Choices --
------------------------
procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
begin
-- Enumeration type case
if Is_Enumeration_Type (Index_Typ) then
Error_Msg_Name_1 :=
Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
Error_Msg_Name_2 :=
Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
if Lo = Hi then
Error_Msg_N ("\\ %!", C);
else
Error_Msg_N ("\\ % .. %!", C);
end if;
-- Integer types case
else
Error_Msg_Uint_1 := Lo;
Error_Msg_Uint_2 := Hi;
if Lo = Hi then
Error_Msg_N ("\\ ^!", C);
else
Error_Msg_N ("\\ ^ .. ^!", C);
end if;
end if;
end Output_Bad_Choices;
-- Start of processing for Check_Choices
begin
Sort_Case_Table (Table);
-- First we do a quick linear loop to find out if we have
-- any duplicates or missing entries (usually we have a
-- legal aggregate, so this will get us out quickly).
for J in 1 .. Nb_Discrete_Choices - 1 loop
Hi_Val := Expr_Value (Table (J).Hi);
Lo_Val := Expr_Value (Table (J + 1).Lo);
if Lo_Val <= Hi_Val
or else (Lo_Val > Hi_Val + 1
and then not Others_Present)
then
Missing_Or_Duplicates := True;
exit;
end if;
end loop;
-- If we have missing or duplicate entries, first fill in
-- the Highest entries to make life easier in the following
-- loops to detect bad entries.
if Missing_Or_Duplicates then
Table (1).Highest := Expr_Value (Table (1).Hi);
for J in 2 .. Nb_Discrete_Choices loop
Table (J).Highest :=
UI_Max
(Table (J - 1).Highest, Expr_Value (Table (J).Hi));
end loop;
-- Loop through table entries to find duplicate indexes
for J in 2 .. Nb_Discrete_Choices loop
Lo_Val := Expr_Value (Table (J).Lo);
Hi_Val := Expr_Value (Table (J).Hi);
-- Case where we have duplicates (the lower bound of
-- this choice is less than or equal to the highest
-- high bound found so far).
if Lo_Val <= Table (J - 1).Highest then
-- We move backwards looking for duplicates. We can
-- abandon this loop as soon as we reach a choice
-- highest value that is less than Lo_Val.
for K in reverse 1 .. J - 1 loop
exit when Table (K).Highest < Lo_Val;
-- Here we may have duplicates between entries
-- for K and J. Get range of duplicates.
Lo_Dup :=
UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
Hi_Dup :=
UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
-- Nothing to do if duplicate range is null
if Lo_Dup > Hi_Dup then
null;
-- Otherwise place proper message
else
-- We place message on later choice, with a
-- line reference to the earlier choice.
if Sloc (Table (J).Choice) <
Sloc (Table (K).Choice)
then
Choice := Table (K).Choice;
Error_Msg_Sloc := Sloc (Table (J).Choice);
else
Choice := Table (J).Choice;
Error_Msg_Sloc := Sloc (Table (K).Choice);
end if;
if Lo_Dup = Hi_Dup then
Error_Msg_N
("index value in array aggregate "
& "duplicates the one given#!", Choice);
else
Error_Msg_N
("index values in array aggregate "
& "duplicate those given#!", Choice);
end if;
Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
end if;
end loop;
end if;
end loop;
-- Loop through entries in table to find missing indexes.
-- Not needed if others, since missing impossible.
if not Others_Present then
for J in 2 .. Nb_Discrete_Choices loop
Lo_Val := Expr_Value (Table (J).Lo);
Hi_Val := Table (J - 1).Highest;
if Lo_Val > Hi_Val + 1 then
declare
Error_Node : Node_Id;
begin
-- If the choice is the bound of a range in
-- a subtype indication, it is not in the
-- source lists for the aggregate itself, so
-- post the error on the aggregate. Otherwise
-- post it on choice itself.
Choice := Table (J).Choice;
if Is_List_Member (Choice) then
Error_Node := Choice;
else
Error_Node := N;
end if;
if Hi_Val + 1 = Lo_Val - 1 then
Error_Msg_N
("missing index value "
& "in array aggregate!", Error_Node);
else
Error_Msg_N
("missing index values "
& "in array aggregate!", Error_Node);
end if;
Output_Bad_Choices
(Hi_Val + 1, Lo_Val - 1, Error_Node);
end;
end if;
end loop;
end if;
-- If either missing or duplicate values, return failure
Set_Etype (N, Any_Composite);
return Failure;
end if;
end Check_Choices;
end if;
if Has_Iterator_Specifications then
-- Bounds will be determined dynamically.
return Success;
end if;
-- STEP 2 (B): Compute aggregate bounds and min/max choices values
if Nb_Discrete_Choices > 0 then
Choices_Low := Table (1).Lo;
Choices_High := Table (Nb_Discrete_Choices).Hi;
end if;
-- If Others is present, then bounds of aggregate come from the
-- index constraint (not the choices in the aggregate itself).
if Others_Present then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
-- Abandon processing if either bound is already signalled as
-- an error (prevents junk cascaded messages and blow ups).
if Nkind (Aggr_Low) = N_Error
or else
Nkind (Aggr_High) = N_Error
then
return False;
end if;
-- No others clause present
else
-- Special processing if others allowed and not present. This
-- means that the bounds of the aggregate come from the index
-- constraint (and the length must match).
if Others_Allowed then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
-- Abandon processing if either bound is already signalled
-- as an error (stop junk cascaded messages and blow ups).
if Nkind (Aggr_Low) = N_Error
or else
Nkind (Aggr_High) = N_Error
then
return False;
end if;
-- If others allowed, and no others present, then the array
-- should cover all index values. If it does not, we will
-- get a length check warning, but there is two cases where
-- an additional warning is useful:
-- If we have no positional components, and the length is
-- wrong (which we can tell by others being allowed with
-- missing components), and the index type is an enumeration
-- type, then issue appropriate warnings about these missing
-- components. They are only warnings, since the aggregate
-- is fine, it's just the wrong length. We skip this check
-- for standard character types (since there are no literals
-- and it is too much trouble to concoct them), and also if
-- any of the bounds have values that are not known at
-- compile time.
-- Another case warranting a warning is when the length
-- is right, but as above we have an index type that is
-- an enumeration, and the bounds do not match. This is a
-- case where dubious sliding is allowed and we generate a
-- warning that the bounds do not match.
if No (Expressions (N))
and then Nkind (Index) = N_Range
and then Is_Enumeration_Type (Etype (Index))
and then not Is_Standard_Character_Type (Etype (Index))
and then Compile_Time_Known_Value (Aggr_Low)
and then Compile_Time_Known_Value (Aggr_High)
and then Compile_Time_Known_Value (Choices_Low)
and then Compile_Time_Known_Value (Choices_High)
then
-- If any of the expressions or range bounds in choices
-- have semantic errors, then do not attempt further
-- resolution, to prevent cascaded errors.
if Errors_Posted_On_Choices then
return Failure;
end if;
declare
ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
AHi : constant Node_Id := Expr_Value_E (Aggr_High);
CLo : constant Node_Id := Expr_Value_E (Choices_Low);
CHi : constant Node_Id := Expr_Value_E (Choices_High);
Ent : Entity_Id;
begin
-- Warning case 1, missing values at start/end. Only
-- do the check if the number of entries is too small.
if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
<
(Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
then
Error_Msg_N
("missing index value(s) in array aggregate??",
N);
-- Output missing value(s) at start
if Chars (ALo) /= Chars (CLo) then
Ent := Prev (CLo);
if Chars (ALo) = Chars (Ent) then
Error_Msg_Name_1 := Chars (ALo);
Error_Msg_N ("\ %??", N);
else
Error_Msg_Name_1 := Chars (ALo);
Error_Msg_Name_2 := Chars (Ent);
Error_Msg_N ("\ % .. %??", N);
end if;
end if;
-- Output missing value(s) at end
if Chars (AHi) /= Chars (CHi) then
Ent := Next (CHi);
if Chars (AHi) = Chars (Ent) then
Error_Msg_Name_1 := Chars (Ent);
Error_Msg_N ("\ %??", N);
else
Error_Msg_Name_1 := Chars (Ent);
Error_Msg_Name_2 := Chars (AHi);
Error_Msg_N ("\ % .. %??", N);
end if;
end if;
-- Warning case 2, dubious sliding. The First_Subtype
-- test distinguishes between a constrained type where
-- sliding is not allowed (so we will get a warning
-- later that Constraint_Error will be raised), and
-- the unconstrained case where sliding is permitted.
elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
=
(Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
and then Chars (ALo) /= Chars (CLo)
and then
not Is_Constrained (First_Subtype (Etype (N)))
then
Error_Msg_N
("bounds of aggregate do not match target??", N);
end if;
end;
end if;
end if;
-- If no others, aggregate bounds come from aggregate
Aggr_Low := Choices_Low;
Aggr_High := Choices_High;
end if;
end Step_2;
-- STEP 3: Process positional components
else
-- STEP 3 (A): Process positional elements
Expr := First (Expressions (N));
Nb_Elements := Uint_0;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
Check_Can_Never_Be_Null (Etype (N), Expr);
end if;
if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
return Failure;
end if;
-- Check incorrect use of dynamically tagged expression
if Is_Tagged_Type (Etype (Expr)) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
Next (Expr);
end loop;
if Others_Present then
Assoc := Last (Component_Associations (N));
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
end if;
-- Ada 2005 (AI-287): In case of default initialized component,
-- we delay the resolution to the expansion phase.
if Box_Present (Assoc) then
-- Ada 2005 (AI-287): In case of default initialization of a
-- component the expander will generate calls to the
-- corresponding initialization subprogram. We need to call
-- Resolve_Aggr_Expr to check the rules about
-- dimensionality.
if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
return Failure;
end if;
elsif not Resolve_Aggr_Expr (Expression (Assoc),
Single_Elmt => False)
then
return Failure;
-- Check incorrect use of dynamically tagged expression. The
-- expression of the others choice has not been resolved yet.
-- In order to diagnose the semantic error we create a duplicate
-- tree to analyze it and perform the check.
elsif Nkind (Assoc) /= N_Iterated_Component_Association then
declare
Save_Analysis : constant Boolean := Full_Analysis;
Expr : constant Node_Id :=
New_Copy_Tree (Expression (Assoc));
begin
Expander_Mode_Save_And_Set (False);
Full_Analysis := False;
Analyze (Expr);
Full_Analysis := Save_Analysis;
Expander_Mode_Restore;
if Is_Tagged_Type (Etype (Expr)) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
end;
end if;
end if;
-- STEP 3 (B): Compute the aggregate bounds
if Others_Present then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
else
if Others_Allowed then
Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
else
Aggr_Low := Index_Typ_Low;
end if;
Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
Check_Bound (Index_Base_High, Aggr_High);
end if;
end if;
-- STEP 4: Perform static aggregate checks and save the bounds
-- Check (A)
Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
-- Check (B)
if Others_Present and then Nb_Discrete_Choices > 0 then
Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
Check_Bounds (Index_Typ_Low, Index_Typ_High,
Choices_Low, Choices_High);
Check_Bounds (Index_Base_Low, Index_Base_High,
Choices_Low, Choices_High);
-- Check (C)
elsif Others_Present and then Nb_Elements > 0 then
Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
end if;
if Raises_Constraint_Error (Aggr_Low)
or else Raises_Constraint_Error (Aggr_High)
then
Set_Raises_Constraint_Error (N);
end if;
Aggr_Low := Duplicate_Subexpr (Aggr_Low);
-- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
-- since the addition node returned by Add is not yet analyzed. Attach
-- to tree and analyze first. Reset analyzed flag to ensure it will get
-- analyzed when it is a literal bound whose type must be properly set.
if Others_Present or else Nb_Discrete_Choices > 0 then
Aggr_High := Duplicate_Subexpr (Aggr_High);
if Etype (Aggr_High) = Universal_Integer then
Set_Analyzed (Aggr_High, False);
end if;
end if;
-- If the aggregate already has bounds attached to it, it means this is
-- a positional aggregate created as an optimization by
-- Exp_Aggr.Convert_To_Positional, so we don't want to change those
-- bounds.
if Present (Aggregate_Bounds (N))
and then not Others_Allowed
and then not Comes_From_Source (N)
then
Aggr_Low := Low_Bound (Aggregate_Bounds (N));
Aggr_High := High_Bound (Aggregate_Bounds (N));
end if;
Set_Aggregate_Bounds
(N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
-- The bounds may contain expressions that must be inserted upwards.
-- Attach them fully to the tree. After analysis, remove side effects
-- from upper bound, if still needed.
Set_Parent (Aggregate_Bounds (N), N);
Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
Check_Unset_Reference (Aggregate_Bounds (N));
if not Others_Present and then Nb_Discrete_Choices = 0 then
Set_High_Bound
(Aggregate_Bounds (N),
Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
end if;
-- Check the dimensions of each component in the array aggregate
Analyze_Dimension_Array_Aggregate (N, Component_Typ);
return Success;
end Resolve_Array_Aggregate;
---------------------------------
-- Resolve_Container_Aggregate --
---------------------------------
procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
procedure Resolve_Iterated_Association
(Comp : Node_Id;
Key_Type : Entity_Id;
Elmt_Type : Entity_Id);
-- Resolve choices and expression in an iterated component association
-- or an iterated element association, which has a key_expression.
-- This is similar but not identical to the handling of this construct
-- in an array aggregate.
-- For a named container, the type of each choice must be compatible
-- with the key type. For a positional container, the choice must be
-- a subtype indication or an iterator specification that determines
-- an element type.
Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
Empty_Subp : Node_Id := Empty;
Add_Named_Subp : Node_Id := Empty;
Add_Unnamed_Subp : Node_Id := Empty;
New_Indexed_Subp : Node_Id := Empty;
Assign_Indexed_Subp : Node_Id := Empty;
----------------------------------
-- Resolve_Iterated_Association --
----------------------------------
procedure Resolve_Iterated_Association
(Comp : Node_Id;
Key_Type : Entity_Id;
Elmt_Type : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Choice : Node_Id;
Copy : Node_Id;
Ent : Entity_Id;
Expr : Node_Id;
Key_Expr : Node_Id;
Id : Entity_Id;
Id_Name : Name_Id;
Typ : Entity_Id := Empty;
begin
Error_Msg_Ada_2022_Feature ("iterated component", Loc);
-- If this is an Iterated_Element_Association then either a
-- an Iterator_Specification or a Loop_Parameter specification
-- is present. In both cases a Key_Expression is present.
if Nkind (Comp) = N_Iterated_Element_Association then
-- Create a temporary scope to avoid some modifications from
-- escaping the Analyze call below. The original Tree will be
-- reanalyzed later.
Ent := New_Internal_Entity
(E_Loop, Current_Scope, Sloc (Comp), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Comp));
Push_Scope (Ent);
if Present (Loop_Parameter_Specification (Comp)) then
Copy := Copy_Separate_Tree (Comp);
Analyze
(Loop_Parameter_Specification (Copy));
Id_Name := Chars (Defining_Identifier
(Loop_Parameter_Specification (Comp)));
else
Copy := Copy_Separate_Tree (Iterator_Specification (Comp));
Analyze (Copy);
Id_Name := Chars (Defining_Identifier
(Iterator_Specification (Comp)));
end if;
-- Key expression must have the type of the key. We analyze
-- a copy of the original expression, because it will be
-- reanalyzed and copied as needed during expansion of the
-- corresponding loop.
Key_Expr := Key_Expression (Comp);
Analyze_And_Resolve (New_Copy_Tree (Key_Expr), Key_Type);
End_Scope;
Typ := Key_Type;
elsif Present (Iterator_Specification (Comp)) then
-- Create a temporary scope to avoid some modifications from
-- escaping the Analyze call below. The original Tree will be
-- reanalyzed later.
Ent := New_Internal_Entity
(E_Loop, Current_Scope, Sloc (Comp), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Comp));
Push_Scope (Ent);
Copy := Copy_Separate_Tree (Iterator_Specification (Comp));
Id_Name :=
Chars (Defining_Identifier (Iterator_Specification (Comp)));
Preanalyze (Copy);
End_Scope;
Typ := Etype (Defining_Identifier (Copy));
else
Choice := First (Discrete_Choices (Comp));
while Present (Choice) loop
Analyze (Choice);
-- Choice can be a subtype name, a range, or an expression
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then Base_Type (Entity (Choice)) = Base_Type (Key_Type)
then
null;
elsif Present (Key_Type) then
Analyze_And_Resolve (Choice, Key_Type);
Typ := Key_Type;
else
Typ := Etype (Choice); -- assume unique for now
end if;
Next (Choice);
end loop;
Id_Name := Chars (Defining_Identifier (Comp));
end if;
-- Create a scope in which to introduce an index, which is usually
-- visible in the expression for the component, and needed for its
-- analysis.
Id := Make_Defining_Identifier (Sloc (Comp), Id_Name);
Ent := New_Internal_Entity (E_Loop,
Current_Scope, Sloc (Comp), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Comp));
Push_Scope (Ent);
-- Insert and decorate the loop variable in the current scope.
-- The expression has to be analyzed once the loop variable is
-- directly visible. Mark the variable as referenced to prevent
-- spurious warnings, given that subsequent uses of its name in the
-- expression will reference the internal (synonym) loop variable.
Enter_Name (Id);
pragma Assert (Present (Typ));
Set_Etype (Id, Typ);
Mutate_Ekind (Id, E_Variable);
Set_Is_Not_Self_Hidden (Id);
Set_Scope (Id, Ent);
Set_Referenced (Id);
-- Analyze a copy of the expression, to verify legality. We use
-- a copy because the expression will be analyzed anew when the
-- enclosing aggregate is expanded, and the construct is rewritten
-- as a loop with a new index variable.
Expr := New_Copy_Tree (Expression (Comp));
Preanalyze_And_Resolve (Expr, Elmt_Type);
End_Scope;
end Resolve_Iterated_Association;
-- Start of processing for Resolve_Container_Aggregate
begin
pragma Assert (Nkind (Asp) = N_Aggregate);
Set_Etype (N, Typ);
Parse_Aspect_Aggregate (Asp,
Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
New_Indexed_Subp, Assign_Indexed_Subp);
if Present (Add_Unnamed_Subp)
and then No (New_Indexed_Subp)
and then Present (Etype (Add_Unnamed_Subp))
and then Etype (Add_Unnamed_Subp) /= Any_Type
then
declare
Elmt_Type : constant Entity_Id :=
Etype (Next_Formal
(First_Formal (Entity (Add_Unnamed_Subp))));
Comp : Node_Id;
begin
if Present (Expressions (N)) then
-- positional aggregate
Comp := First (Expressions (N));
while Present (Comp) loop
Analyze_And_Resolve (Comp, Elmt_Type);
Next (Comp);
end loop;
end if;
-- Empty aggregate, to be replaced by Empty during
-- expansion, or iterated component association.
if Present (Component_Associations (N)) then
declare
Comp : Node_Id := First (Component_Associations (N));
begin
while Present (Comp) loop
if Nkind (Comp) /=
N_Iterated_Component_Association
then
Error_Msg_N ("illegal component association "
& "for unnamed container aggregate", Comp);
return;
else
Resolve_Iterated_Association
(Comp, Empty, Elmt_Type);
end if;
Next (Comp);
end loop;
end;
end if;
end;
elsif Present (Add_Named_Subp)
and then Etype (Add_Named_Subp) /= Any_Type
then
declare
-- Retrieves types of container, key, and element from the
-- specified insertion procedure.
Container : constant Entity_Id :=
First_Formal (Entity (Add_Named_Subp));
Key_Type : constant Entity_Id := Etype (Next_Formal (Container));
Elmt_Type : constant Entity_Id :=
Etype (Next_Formal (Next_Formal (Container)));
Comp : Node_Id;
Choice : Node_Id;
begin
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Association then
Choice := First (Choices (Comp));
while Present (Choice) loop
Analyze_And_Resolve (Choice, Key_Type);
if not Is_Static_Expression (Choice) then
Error_Msg_N ("choice must be static", Choice);
end if;
Next (Choice);
end loop;
Analyze_And_Resolve (Expression (Comp), Elmt_Type);
elsif Nkind (Comp) in
N_Iterated_Component_Association |
N_Iterated_Element_Association
then
Resolve_Iterated_Association
(Comp, Key_Type, Elmt_Type);
end if;
Next (Comp);
end loop;
end;
elsif Present (Assign_Indexed_Subp)
and then Etype (Assign_Indexed_Subp) /= Any_Type
then
-- Indexed Aggregate. Positional or indexed component
-- can be present, but not both. Choices must be static
-- values or ranges with static bounds.
declare
Container : constant Entity_Id :=
First_Formal (Entity (Assign_Indexed_Subp));
Index_Type : constant Entity_Id := Etype (Next_Formal (Container));
Comp_Type : constant Entity_Id :=
Etype (Next_Formal (Next_Formal (Container)));
Comp : Node_Id;
Choice : Node_Id;
Num_Choices : Nat := 0;
Hi_Val : Uint;
Lo_Val : Uint;
begin
if Present (Expressions (N)) then
Comp := First (Expressions (N));
while Present (Comp) loop
Analyze_And_Resolve (Comp, Comp_Type);
Next (Comp);
end loop;
end if;
if Present (Component_Associations (N))
and then not Is_Empty_List (Component_Associations (N))
then
if Present (Expressions (N))
and then not Is_Empty_List (Expressions (N))
then
Error_Msg_N ("container aggregate cannot be "
& "both positional and named", N);
return;
end if;
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Association then
Choice := First (Choices (Comp));
while Present (Choice) loop
Analyze_And_Resolve (Choice, Index_Type);
Num_Choices := Num_Choices + 1;
Next (Choice);
end loop;
Analyze_And_Resolve (Expression (Comp), Comp_Type);
elsif Nkind (Comp) in
N_Iterated_Component_Association |
N_Iterated_Element_Association
then
Resolve_Iterated_Association
(Comp, Index_Type, Comp_Type);
Num_Choices := Num_Choices + 1;
end if;
Next (Comp);
end loop;
-- The component associations in an indexed aggregate
-- must denote a contiguous set of static values. We
-- build a table of values/ranges and sort it, as is done
-- elsewhere for case statements and array aggregates.
-- If the aggregate has a single iterated association it
-- is allowed to be nonstatic and there is nothing to check.
if Num_Choices > 1 then
declare
Table : Case_Table_Type (1 .. Num_Choices);
No_Choice : Pos := 1;
Lo, Hi : Node_Id;
-- Traverse aggregate to determine size of needed table.
-- Verify that bounds are static and that loops have no
-- filters or key expressions.
begin
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Nkind (Comp) = N_Iterated_Element_Association then
if Present
(Loop_Parameter_Specification (Comp))
then
if Present (Iterator_Filter
(Loop_Parameter_Specification (Comp)))
then
Error_Msg_N
("iterator filter not allowed " &
"in indexed aggregate", Comp);
return;
elsif Present (Key_Expression
(Loop_Parameter_Specification (Comp)))
then
Error_Msg_N
("key expression not allowed " &
"in indexed aggregate", Comp);
return;
end if;
end if;
else
Choice := First (Choices (Comp));
while Present (Choice) loop
Get_Index_Bounds (Choice, Lo, Hi);
Table (No_Choice).Choice := Choice;
Table (No_Choice).Lo := Lo;
Table (No_Choice).Hi := Hi;
-- Verify staticness of value or range
if not Is_Static_Expression (Lo)
or else not Is_Static_Expression (Hi)
then
Error_Msg_N
("nonstatic expression for index " &
"for indexed aggregate", Choice);
return;
end if;
No_Choice := No_Choice + 1;
Next (Choice);
end loop;
end if;
Next (Comp);
end loop;
Sort_Case_Table (Table);
for J in 1 .. Num_Choices - 1 loop
Hi_Val := Expr_Value (Table (J).Hi);
Lo_Val := Expr_Value (Table (J + 1).Lo);
if Lo_Val = Hi_Val then
Error_Msg_N
("duplicate index in indexed aggregate",
Table (J + 1).Choice);
exit;
elsif Lo_Val < Hi_Val then
Error_Msg_N
("overlapping indices in indexed aggregate",
Table (J + 1).Choice);
exit;
elsif Lo_Val > Hi_Val + 1 then
Error_Msg_N
("missing index values", Table (J + 1).Choice);
exit;
end if;
end loop;
end;
end if;
end if;
end;
end if;
end Resolve_Container_Aggregate;
-----------------------------
-- Resolve_Delta_Aggregate --
-----------------------------
procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
Base : constant Node_Id := Expression (N);
begin
Error_Msg_Ada_2022_Feature ("delta aggregate", Sloc (N));
if not Is_Composite_Type (Typ) then
Error_Msg_N ("not a composite type", N);
end if;
Analyze_And_Resolve (Base, Typ);
if Is_Array_Type (Typ) then
-- For an array_delta_aggregate, the base_expression and each
-- expression in every array_component_association shall be of a
-- nonlimited type; RM 4.3.4(13/5). However, to prevent repeated
-- errors we only check the base expression and not array component
-- associations.
if Is_Limited_Type (Etype (Base)) then
Error_Msg_N
("array delta aggregate shall be of a nonlimited type", Base);
Explain_Limited_Type (Etype (Base), Base);
end if;
Resolve_Delta_Array_Aggregate (N, Typ);
else
-- Delta aggregates for record types must use parentheses,
-- not square brackets.
if Is_Homogeneous_Aggregate (N) then
Error_Msg_N
("delta aggregates for record types must use (), not '[']", N);
end if;
-- The base_expression of a record_delta_aggregate can be of a
-- limited type only if it is newly constructed; RM 7.5(2.1/5).
Check_Expr_OK_In_Limited_Aggregate (Base);
Resolve_Delta_Record_Aggregate (N, Typ);
end if;
Set_Etype (N, Typ);
end Resolve_Delta_Aggregate;
-----------------------------------
-- Resolve_Delta_Array_Aggregate --
-----------------------------------
procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
Deltas : constant List_Id := Component_Associations (N);
Index_Type : constant Entity_Id := Etype (First_Index (Typ));
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
begin
Assoc := First (Deltas);
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association then
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N
("OTHERS not allowed in delta aggregate", Choice);
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication
(Choice, Base_Type (Index_Type));
else
Analyze_And_Resolve (Choice, Index_Type);
end if;
Next (Choice);
end loop;
declare
Id : constant Entity_Id := Defining_Identifier (Assoc);
Ent : constant Entity_Id :=
New_Internal_Entity
(E_Loop, Current_Scope, Sloc (Assoc), 'L');
begin
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Assoc);
Push_Scope (Ent);
if No (Scope (Id)) then
Set_Etype (Id, Index_Type);
Mutate_Ekind (Id, E_Variable);
Set_Is_Not_Self_Hidden (Id);
Set_Scope (Id, Ent);
end if;
Enter_Name (Id);
-- Resolve a copy of the expression, after setting
-- its parent properly to preserve its context.
Expr := New_Copy_Tree (Expression (Assoc));
Set_Parent (Expr, Assoc);
Analyze_And_Resolve (Expr, Component_Type (Typ));
End_Scope;
end;
else
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Is_Deep_Choice (Choice, Typ) then
pragma Assert (All_Extensions_Allowed);
-- a deep delta aggregate
Resolve_Deep_Delta_Assoc (Assoc, Typ);
else
Analyze (Choice);
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N
("OTHERS not allowed in delta aggregate", Choice);
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
-- Choice covers a range of values
if Base_Type (Entity (Choice)) /=
Base_Type (Index_Type)
then
Error_Msg_NE
("choice does not match index type of &",
Choice, Typ);
end if;
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication
(Choice, Base_Type (Index_Type));
else
Resolve (Choice, Index_Type);
end if;
end if;
Next (Choice);
end loop;
-- For an array_delta_aggregate, the array_component_association
-- shall not use the box symbol <>; RM 4.3.4(11/5).
pragma Assert
(Box_Present (Assoc) xor Present (Expression (Assoc)));
if Box_Present (Assoc) then
Error_Msg_N
("'<'> in array delta aggregate is not allowed", Assoc);
else
Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
end if;
end if;
Next (Assoc);
end loop;
end Resolve_Delta_Array_Aggregate;
------------------------------------
-- Resolve_Delta_Record_Aggregate --
------------------------------------
procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
-- Variables used to verify that discriminant-dependent components
-- appear in the same variant.
Comp_Ref : Entity_Id := Empty; -- init to avoid warning
Variant : Node_Id;
procedure Check_Variant (Id : Node_Id);
-- If a given component of the delta aggregate appears in a variant
-- part, verify that it is within the same variant as that of previous
-- specified variant components of the delta.
function Get_Component_Type
(Selector : Node_Id; Enclosing_Type : Entity_Id) return Entity_Id;
-- Locate component with a given name and return its type.
-- If none found then report error and return Empty.
function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
-- Determine whether variant V1 is within variant V2
function Variant_Depth (N : Node_Id) return Natural;
-- Determine the distance of a variant to the enclosing type declaration
--------------------
-- Check_Variant --
--------------------
procedure Check_Variant (Id : Node_Id) is
Comp : Entity_Id;
Comp_Variant : Node_Id;
begin
if not Has_Discriminants (Typ) then
return;
end if;
Comp := First_Entity (Typ);
while Present (Comp) loop
exit when Chars (Comp) = Chars (Id);
Next_Component (Comp);
end loop;
-- Find the variant, if any, whose component list includes the
-- component declaration.
Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
if Nkind (Comp_Variant) = N_Variant then
if No (Variant) then
Variant := Comp_Variant;
Comp_Ref := Comp;
elsif Variant /= Comp_Variant then
declare
D1 : constant Integer := Variant_Depth (Variant);
D2 : constant Integer := Variant_Depth (Comp_Variant);
begin
if D1 = D2
or else
(D1 > D2 and then not Nested_In (Variant, Comp_Variant))
or else
(D2 > D1 and then not Nested_In (Comp_Variant, Variant))
then
pragma Assert (Present (Comp_Ref));
Error_Msg_Node_2 := Comp_Ref;
Error_Msg_NE
("& and & appear in different variants", Id, Comp);
-- Otherwise retain the deeper variant for subsequent tests
elsif D2 > D1 then
Variant := Comp_Variant;
end if;
end;
end if;
end if;
end Check_Variant;
------------------------
-- Get_Component_Type --
------------------------
function Get_Component_Type
(Selector : Node_Id; Enclosing_Type : Entity_Id) return Entity_Id
is
Comp : Entity_Id;
begin
case Nkind (Selector) is
when N_Selected_Component | N_Indexed_Component =>
-- a deep delta aggregate choice
declare
Prefix_Type : constant Entity_Id :=
Get_Component_Type (Prefix (Selector), Enclosing_Type);
begin
if not Present (Prefix_Type) then
pragma Assert (Serious_Errors_Detected > 0);
return Empty;
end if;
-- Set the type of the prefix for GNATprove
Set_Etype (Prefix (Selector), Prefix_Type);
if Nkind (Selector) = N_Selected_Component then
return Get_Component_Type
(Selector_Name (Selector),
Enclosing_Type => Prefix_Type);
elsif not Is_Array_Type (Prefix_Type) then
Error_Msg_NE
("type& is not an array type",
Selector, Prefix_Type);
elsif Number_Dimensions (Prefix_Type) /= 1 then
Error_Msg_NE
("array type& not one-dimensional",
Selector, Prefix_Type);
elsif List_Length (Expressions (Selector)) /= 1 then
Error_Msg_NE
("wrong number of indices for array type&",
Selector, Prefix_Type);
else
Analyze_And_Resolve
(First (Expressions (Selector)),
Etype (First_Index (Prefix_Type)));
return Component_Type (Prefix_Type);
end if;
end;
when others =>
null;
end case;
Comp := First_Entity (Enclosing_Type);
while Present (Comp) loop
if Chars (Comp) = Chars (Selector) then
if Ekind (Comp) = E_Discriminant then
Error_Msg_N ("delta cannot apply to discriminant", Selector);
end if;
Set_Entity (Selector, Comp);
Set_Etype (Selector, Etype (Comp));
return Etype (Comp);
end if;
Next_Entity (Comp);
end loop;
Error_Msg_NE
("type& has no component with this name", Selector, Enclosing_Type);
return Empty;
end Get_Component_Type;
---------------
-- Nested_In --
---------------
function Nested_In (V1, V2 : Node_Id) return Boolean is
Par : Node_Id;
begin
Par := Parent (V1);
while Nkind (Par) /= N_Full_Type_Declaration loop
if Par = V2 then
return True;
end if;
Par := Parent (Par);
end loop;
return False;
end Nested_In;
-------------------
-- Variant_Depth --
-------------------
function Variant_Depth (N : Node_Id) return Natural is
Depth : Natural;
Par : Node_Id;
begin
Depth := 0;
Par := Parent (N);
while Nkind (Par) /= N_Full_Type_Declaration loop
Depth := Depth + 1;
Par := Parent (Par);
end loop;
return Depth;
end Variant_Depth;
-- Local variables
Deltas : constant List_Id := Component_Associations (N);
Assoc : Node_Id;
Choice : Node_Id;
Comp_Type : Entity_Id := Empty; -- init to avoid warning
Deep_Choice : Boolean;
-- Start of processing for Resolve_Delta_Record_Aggregate
begin
Variant := Empty;
Assoc := First (Deltas);
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
Deep_Choice := Nkind (Choice) /= N_Identifier;
if Deep_Choice then
Error_Msg_GNAT_Extension
("deep delta aggregate", Sloc (Choice));
end if;
Comp_Type := Get_Component_Type
(Selector => Choice, Enclosing_Type => Typ);
-- Set the type of the choice for GNATprove
if Deep_Choice then
Set_Etype (Choice, Comp_Type);
end if;
if Present (Comp_Type) then
if not Deep_Choice then
-- ??? Not clear yet how RM 4.3.1(17.7) applies to a
-- deep delta aggregate.
Check_Variant (Choice);
end if;
else
Comp_Type := Any_Type;
end if;
Next (Choice);
end loop;
pragma Assert (Present (Comp_Type));
-- A record_component_association in record_delta_aggregate shall not
-- use the box compound delimiter <> rather than an expression; see
-- RM 4.3.1(17.3/5).
pragma Assert (Present (Expression (Assoc)) xor Box_Present (Assoc));
if Box_Present (Assoc) then
Error_Msg_N
("'<'> in record delta aggregate is not allowed", Assoc);
else
Analyze_And_Resolve (Expression (Assoc), Comp_Type);
-- The expression must not be of a limited type; RM 4.3.1(17.4/5)
if Is_Limited_Type (Etype (Expression (Assoc))) then
Error_Msg_N
("expression of a limited type in record delta aggregate " &
"is not allowed",
Expression (Assoc));
end if;
end if;
Next (Assoc);
end loop;
end Resolve_Delta_Record_Aggregate;
------------------------------
-- Resolve_Deep_Delta_Assoc --
------------------------------
procedure Resolve_Deep_Delta_Assoc (N : Node_Id; Typ : Entity_Id) is
Choice : constant Node_Id := First (Choice_List (N));
Enclosing_Type : Entity_Id := Typ;
procedure Resolve_Choice_Prefix
(Choice_Prefix : Node_Id; Enclosing_Type : in out Entity_Id);
-- Recursively analyze selectors. Enclosing_Type is set to
-- type of the last component.
---------------------------
-- Resolve_Choice_Prefix --
---------------------------
procedure Resolve_Choice_Prefix
(Choice_Prefix : Node_Id; Enclosing_Type : in out Entity_Id)
is
Selector : Node_Id := Choice_Prefix;
begin
if not Is_Root_Prefix_Of_Deep_Choice (Choice_Prefix) then
Resolve_Choice_Prefix (Prefix (Choice_Prefix), Enclosing_Type);
if Nkind (Choice_Prefix) = N_Selected_Component then
Selector := Selector_Name (Choice_Prefix);
else
pragma Assert (Nkind (Choice_Prefix) = N_Indexed_Component);
Selector := First (Expressions (Choice_Prefix));
end if;
end if;
if Is_Array_Type (Enclosing_Type) then
Analyze_And_Resolve (Selector,
Etype (First_Index (Enclosing_Type)));
Enclosing_Type := Component_Type (Enclosing_Type);
else
declare
Comp : Entity_Id := First_Entity (Enclosing_Type);
Found : Boolean := False;
begin
while Present (Comp) and not Found loop
if Chars (Comp) = Chars (Selector) then
if Ekind (Comp) = E_Discriminant then
Error_Msg_N ("delta cannot apply to discriminant",
Selector);
end if;
Found := True;
Set_Entity (Selector, Comp);
Set_Etype (Selector, Etype (Comp));
Set_Analyzed (Selector);
Enclosing_Type := Etype (Comp);
else
Next_Entity (Comp);
end if;
end loop;
if not Found then
Error_Msg_NE
("type& has no component with this name",
Selector, Enclosing_Type);
end if;
end;
end if;
-- Set the type of the prefix for GNATprove, except for the root
-- prefix, whose type is already the expected one for a record
-- delta aggregate, or the type of the array index for an
-- array delta aggregate (the only case here really since
-- Resolve_Deep_Delta_Assoc is only called for array delta
-- aggregates).
if Selector /= Choice_Prefix then
Set_Etype (Choice_Prefix, Enclosing_Type);
end if;
end Resolve_Choice_Prefix;
begin
declare
Unimplemented : exception; -- TEMPORARY
begin
if Present (Next (Choice)) then
raise Unimplemented;
end if;
end;
Resolve_Choice_Prefix (Choice, Enclosing_Type);
Analyze_And_Resolve (Expression (N), Enclosing_Type);
end Resolve_Deep_Delta_Assoc;
---------------------------------
-- Resolve_Extension_Aggregate --
---------------------------------
-- There are two cases to consider:
-- a) If the ancestor part is a type mark, the components needed are the
-- difference between the components of the expected type and the
-- components of the given type mark.
-- b) If the ancestor part is an expression, it must be unambiguous, and
-- once we have its type we can also compute the needed components as in
-- the previous case. In both cases, if the ancestor type is not the
-- immediate ancestor, we have to build this ancestor recursively.
-- In both cases, discriminants of the ancestor type do not play a role in
-- the resolution of the needed components, because inherited discriminants
-- cannot be used in a type extension. As a result we can compute
-- independently the list of components of the ancestor type and of the
-- expected type.
procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
A : constant Node_Id := Ancestor_Part (N);
A_Type : Entity_Id;
I : Interp_Index;
It : Interp;
function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
-- If the type is limited, verify that the ancestor part is a legal
-- expression (aggregate or function call, including 'Input)) that does
-- not require a copy, as specified in 7.5(2).
function Valid_Ancestor_Type return Boolean;
-- Verify that the type of the ancestor part is a non-private ancestor
-- of the expected type, which must be a type extension.
procedure Transform_BIP_Assignment (Typ : Entity_Id);
-- For an extension aggregate whose ancestor part is a build-in-place
-- call returning a nonlimited type, this is used to transform the
-- assignment to the ancestor part to use a temp.
----------------------------
-- Valid_Limited_Ancestor --
----------------------------
function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
begin
if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
return True;
-- The ancestor must be a call or an aggregate, but a call may
-- have been expanded into a temporary, so check original node.
elsif Nkind (Anc) in N_Aggregate
| N_Extension_Aggregate
| N_Function_Call
then
return True;
elsif Nkind (Original_Node (Anc)) = N_Function_Call then
return True;
elsif Nkind (Anc) = N_Attribute_Reference
and then Attribute_Name (Anc) = Name_Input
then
return True;
elsif Nkind (Anc) = N_Qualified_Expression then
return Valid_Limited_Ancestor (Expression (Anc));
elsif Nkind (Anc) = N_Raise_Expression then
return True;
else
return False;
end if;
end Valid_Limited_Ancestor;
-------------------------
-- Valid_Ancestor_Type --
-------------------------
function Valid_Ancestor_Type return Boolean is
Imm_Type : Entity_Id;
begin
Imm_Type := Base_Type (Typ);
while Is_Derived_Type (Imm_Type) loop
if Etype (Imm_Type) = Base_Type (A_Type) then
return True;
-- The base type of the parent type may appear as a private
-- extension if it is declared as such in a parent unit of the
-- current one. For consistency of the subsequent analysis use
-- the partial view for the ancestor part.
elsif Is_Private_Type (Etype (Imm_Type))
and then Present (Full_View (Etype (Imm_Type)))
and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
then
A_Type := Etype (Imm_Type);
return True;
-- The parent type may be a private extension. The aggregate is
-- legal if the type of the aggregate is an extension of it that
-- is not a private extension.
elsif Is_Private_Type (A_Type)
and then not Is_Private_Type (Imm_Type)
and then Present (Full_View (A_Type))
and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
then
return True;
-- The parent type may be a raise expression (which is legal in
-- any expression context).
elsif A_Type = Raise_Type then
A_Type := Etype (Imm_Type);
return True;
else
Imm_Type := Etype (Base_Type (Imm_Type));
end if;
end loop;
-- If previous loop did not find a proper ancestor, report error
Error_Msg_NE ("expect ancestor type of &", A, Typ);
return False;
end Valid_Ancestor_Type;
------------------------------
-- Transform_BIP_Assignment --
------------------------------
procedure Transform_BIP_Assignment (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
Obj_Decl : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => A,
Has_Init_Expression => True);
begin
Set_Etype (Def_Id, Typ);
Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
Insert_Action (N, Obj_Decl);
end Transform_BIP_Assignment;
-- Start of processing for Resolve_Extension_Aggregate
begin
-- Analyze the ancestor part and account for the case where it is a
-- parameterless function call.
Analyze (A);
Check_Parameterless_Call (A);
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
-- AI05-0115: If the ancestor part is a subtype mark, the ancestor
-- must not have unknown discriminants. To catch cases where the
-- aggregate occurs at a place where the full view of the ancestor
-- type is visible and doesn't have unknown discriminants, but the
-- aggregate type was derived from a partial view that has unknown
-- discriminants, we check whether the aggregate type has unknown
-- discriminants (unknown discriminants were inherited), along
-- with checking that the partial view of the ancestor has unknown
-- discriminants. (It might be sufficient to replace the entire
-- condition with Has_Unknown_Discriminants (Typ), but that might
-- miss some cases, not clear, and causes error changes in some tests
-- such as class-wide cases, that aren't clearly improvements. ???)
if Has_Unknown_Discriminants (Entity (A))
or else (Has_Unknown_Discriminants (Typ)
and then Partial_View_Has_Unknown_Discr (Entity (A)))
then
Error_Msg_NE
("aggregate not available for type& whose ancestor "
& "has unknown discriminants", N, Typ);
end if;
end if;
if not Is_Tagged_Type (Typ) then
Error_Msg_N ("type of extension aggregate must be tagged", N);
return;
elsif Is_Limited_Type (Typ) then
-- Ada 2005 (AI-287): Limited aggregates are allowed
if Ada_Version < Ada_2005 then
Error_Msg_N ("aggregate type cannot be limited", N);
Explain_Limited_Type (Typ, N);
return;
elsif Valid_Limited_Ancestor (A) then
null;
else
Error_Msg_N
("limited ancestor part must be aggregate or function call", A);
end if;
elsif Is_Class_Wide_Type (Typ) then
Error_Msg_N ("aggregate cannot be of a class-wide type", N);
return;
end if;
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
A_Type := Get_Full_View (Entity (A));
if Valid_Ancestor_Type then
Set_Entity (A, A_Type);
Set_Etype (A, A_Type);
Validate_Ancestor_Part (N);
Resolve_Record_Aggregate (N, Typ);
end if;
elsif Nkind (A) /= N_Aggregate then
if Is_Overloaded (A) then
A_Type := Any_Type;
Get_First_Interp (A, I, It);
while Present (It.Typ) loop
-- Consider limited interpretations if Ada 2005 or higher
if Is_Tagged_Type (It.Typ)
and then (Ada_Version >= Ada_2005
or else not Is_Limited_Type (It.Typ))
then
if A_Type /= Any_Type then
Error_Msg_N ("cannot resolve expression", A);
return;
else
A_Type := It.Typ;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
if A_Type = Any_Type then
if Ada_Version >= Ada_2005 then
Error_Msg_N
("ancestor part must be of a tagged type", A);
else
Error_Msg_N
("ancestor part must be of a nonlimited tagged type", A);
end if;
return;
end if;
else
A_Type := Etype (A);
end if;
if Valid_Ancestor_Type then
Resolve (A, A_Type);
Check_Unset_Reference (A);
Check_Non_Static_Context (A);
-- The aggregate is illegal if the ancestor expression is a call
-- to a function with a limited unconstrained result, unless the
-- type of the aggregate is a null extension. This restriction
-- was added in AI05-67 to simplify implementation.
if Nkind (A) = N_Function_Call
and then Is_Limited_Type (A_Type)
and then not Is_Null_Extension (Typ)
and then not Is_Constrained (A_Type)
then
Error_Msg_N
("type of limited ancestor part must be constrained", A);
-- Reject the use of CPP constructors that leave objects partially
-- initialized. For example:
-- type CPP_Root is tagged limited record ...
-- pragma Import (CPP, CPP_Root);
-- type CPP_DT is new CPP_Root and Iface ...
-- pragma Import (CPP, CPP_DT);
-- type Ada_DT is new CPP_DT with ...
-- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
-- Using the constructor of CPP_Root the slots of the dispatch
-- table of CPP_DT cannot be set, and the secondary tag of
-- CPP_DT is unknown.
elsif Nkind (A) = N_Function_Call
and then Is_CPP_Constructor_Call (A)
and then Enclosing_CPP_Parent (Typ) /= A_Type
then
Error_Msg_NE
("??must use 'C'P'P constructor for type &", A,
Enclosing_CPP_Parent (Typ));
-- The following call is not needed if the previous warning
-- is promoted to an error.
Resolve_Record_Aggregate (N, Typ);
elsif Is_Class_Wide_Type (Etype (A))
and then Nkind (Original_Node (A)) = N_Function_Call
then
-- If the ancestor part is a dispatching call, it appears
-- statically to be a legal ancestor, but it yields any member
-- of the class, and it is not possible to determine whether
-- it is an ancestor of the extension aggregate (much less
-- which ancestor). It is not possible to determine the
-- components of the extension part.
-- This check implements AI-306, which in fact was motivated by
-- an AdaCore query to the ARG after this test was added.
Error_Msg_N ("ancestor part must be statically tagged", A);
else
-- We are using the build-in-place protocol, but we can't build
-- in place, because we need to call the function before
-- allocating the aggregate. Could do better for null
-- extensions, and maybe for nondiscriminated types.
-- This is wrong for limited, but those were wrong already.
if not Is_Inherently_Limited_Type (A_Type)
and then Is_Build_In_Place_Function_Call (A)
then
Transform_BIP_Assignment (A_Type);
end if;
Resolve_Record_Aggregate (N, Typ);
end if;
end if;
else
Error_Msg_N ("no unique type for this aggregate", A);
end if;
Check_Function_Writable_Actuals (N);
end Resolve_Extension_Aggregate;
----------------------------------
-- Resolve_Null_Array_Aggregate --
----------------------------------
function Resolve_Null_Array_Aggregate (N : Node_Id) return Boolean is
-- Never returns False, but declared as a function to match
-- other Resolve_Mumble functions.
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Index : Node_Id;
Lo, Hi : Node_Id;
Constr : constant List_Id := New_List;
begin
-- Attach the list of constraints at the location of the aggregate, so
-- the individual constraints can be analyzed.
Set_Parent (Constr, N);
-- Create a constrained subtype with null dimensions
Index := First_Index (Typ);
while Present (Index) loop
Get_Index_Bounds (Index, L => Lo, H => Hi);
-- The upper bound is the predecessor of the lower bound
Hi := Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Etype (Index), Loc),
Attribute_Name => Name_Pred,
Expressions => New_List (New_Copy_Tree (Lo)));
Append (Make_Range (Loc, New_Copy_Tree (Lo), Hi), Constr);
Analyze_And_Resolve (Last (Constr), Etype (Index));
Next_Index (Index);
end loop;
Set_Compile_Time_Known_Aggregate (N);
Set_Aggregate_Bounds (N, First (Constr));
return True;
end Resolve_Null_Array_Aggregate;
------------------------------
-- Resolve_Record_Aggregate --
------------------------------
procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
New_Assoc_List : constant List_Id := New_List;
-- New_Assoc_List is the newly built list of N_Component_Association
-- nodes.
Others_Etype : Entity_Id := Empty;
-- This variable is used to save the Etype of the last record component
-- that takes its value from the others choice. Its purpose is:
--
-- (a) make sure the others choice is useful
--
-- (b) make sure the type of all the components whose value is
-- subsumed by the others choice are the same.
--
-- This variable is updated as a side effect of function Get_Value.
Box_Node : Node_Id := Empty;
Is_Box_Present : Boolean := False;
Is_Box_Init_By_Default : Boolean := False;
Others_Box : Natural := 0;
-- Ada 2005 (AI-287): Variables used in case of default initialization
-- to provide a functionality similar to Others_Etype. Box_Present
-- indicates that the component takes its default initialization;
-- Others_Box counts the number of components of the current aggregate
-- (which may be a sub-aggregate of a larger one) that are default-
-- initialized. A value of One indicates that an others_box is present.
-- Any larger value indicates that the others_box is not redundant.
-- These variables, similar to Others_Etype, are also updated as a side
-- effect of function Get_Value. Box_Node is used to place a warning on
-- a redundant others_box.
procedure Add_Association
(Component : Entity_Id;
Expr : Node_Id;
Assoc_List : List_Id;
Is_Box_Present : Boolean := False);
-- Builds a new N_Component_Association node which associates Component
-- to expression Expr and adds it to the association list being built,
-- either New_Assoc_List, or the association being built for an inner
-- aggregate.
procedure Add_Discriminant_Values
(New_Aggr : Node_Id;
Assoc_List : List_Id);
-- The constraint to a component may be given by a discriminant of the
-- enclosing type, in which case we have to retrieve its value, which is
-- part of the enclosing aggregate. Assoc_List provides the discriminant
-- associations of the current type or of some enclosing record.
function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
-- If aggregate N is a regular aggregate this routine will return True.
-- Otherwise, if N is an extension aggregate, then Input_Discr denotes
-- a discriminant whose value may already have been specified by N's
-- ancestor part. This routine checks whether this is indeed the case
-- and if so returns False, signaling that no value for Input_Discr
-- should appear in N's aggregate part. Also, in this case, the routine
-- appends to New_Assoc_List the discriminant value specified in the
-- ancestor part.
--
-- If the aggregate is in a context with expansion delayed, it will be
-- reanalyzed. The inherited discriminant values must not be reinserted
-- in the component list to prevent spurious errors, but they must be
-- present on first analysis to build the proper subtype indications.
-- The flag Inherited_Discriminant is used to prevent the re-insertion.
function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
-- AI05-0115: Find earlier ancestor in the derivation chain that is
-- derived from private view Typ. Whether the aggregate is legal depends
-- on the current visibility of the type as well as that of the parent
-- of the ancestor.
function Get_Value
(Compon : Entity_Id;
From : List_Id;
Consider_Others_Choice : Boolean := False) return Node_Id;
-- Given a record component stored in parameter Compon, this function
-- returns its value as it appears in the list From, which is a list
-- of N_Component_Association nodes.
--
-- If no component association has a choice for the searched component,
-- the value provided by the others choice is returned, if there is one,
-- and Consider_Others_Choice is set to true. Otherwise Empty is
-- returned. If there is more than one component association giving a
-- value for the searched record component, an error message is emitted
-- and the first found value is returned.
--
-- If Consider_Others_Choice is set and the returned expression comes
-- from the others choice, then Others_Etype is set as a side effect.
-- An error message is emitted if the components taking their value from
-- the others choice do not have same type.
procedure Propagate_Discriminants
(Aggr : Node_Id;
Assoc_List : List_Id);
-- Nested components may themselves be discriminated types constrained
-- by outer discriminants, whose values must be captured before the
-- aggregate is expanded into assignments.
procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
-- Analyzes and resolves expression Expr against the Etype of the
-- Component. This routine also applies all appropriate checks to Expr.
-- It finally saves a Expr in the newly created association list that
-- will be attached to the final record aggregate. Note that if the
-- Parent pointer of Expr is not set then Expr was produced with a
-- New_Copy_Tree or some such.
procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
-- Rewrite a range node Rge when its bounds refer to non-stored
-- discriminants from Root_Type, to replace them with the stored
-- discriminant values. This is required in GNATprove mode, and is
-- adopted in all modes to avoid special-casing GNATprove mode.
---------------------
-- Add_Association --
---------------------
procedure Add_Association
(Component : Entity_Id;
Expr : Node_Id;
Assoc_List : List_Id;
Is_Box_Present : Boolean := False)
is
Choice_List : constant List_Id := New_List;
Loc : Source_Ptr;
begin
-- If this is a box association the expression is missing, so use the
-- Sloc of the aggregate itself for the new association.
pragma Assert (Present (Expr) xor Is_Box_Present);
if Present (Expr) then
Loc := Sloc (Expr);
else
Loc := Sloc (N);
end if;
Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
Append_To (Assoc_List,
Make_Component_Association (Loc,
Choices => Choice_List,
Expression => Expr,
Box_Present => Is_Box_Present));
-- If this association has a box for a component that is initialized
-- by default, then set flag on the new association to indicate that
-- the original association was for such a box-initialized component.
if Is_Box_Init_By_Default then
Set_Was_Default_Init_Box_Association (Last (Assoc_List));
end if;
end Add_Association;
-----------------------------
-- Add_Discriminant_Values --
-----------------------------
procedure Add_Discriminant_Values
(New_Aggr : Node_Id;
Assoc_List : List_Id)
is
Assoc : Node_Id;
Discr : Entity_Id;
Discr_Elmt : Elmt_Id;
Discr_Val : Node_Id;
Val : Entity_Id;
begin
Discr := First_Discriminant (Etype (New_Aggr));
Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
while Present (Discr_Elmt) loop
Discr_Val := Node (Discr_Elmt);
-- If the constraint is given by a discriminant then it is a
-- discriminant of an enclosing record, and its value has already
-- been placed in the association list.
if Is_Entity_Name (Discr_Val)
and then Ekind (Entity (Discr_Val)) = E_Discriminant
then
Val := Entity (Discr_Val);
Assoc := First (Assoc_List);
while Present (Assoc) loop
if Present (Entity (First (Choices (Assoc))))
and then Entity (First (Choices (Assoc))) = Val
then
Discr_Val := Expression (Assoc);
exit;
end if;
Next (Assoc);
end loop;
end if;
Add_Association
(Discr, New_Copy_Tree (Discr_Val),
Component_Associations (New_Aggr));
-- If the discriminant constraint is a current instance, mark the
-- current aggregate so that the self-reference can be expanded by
-- Build_Record_Aggr_Code.Replace_Type later.
if Nkind (Discr_Val) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Discr_Val))
and then Is_Type (Entity (Prefix (Discr_Val)))
and then
Is_Ancestor
(Entity (Prefix (Discr_Val)),
Etype (N),
Use_Full_View => True)
then
Set_Has_Self_Reference (N);
end if;
Next_Elmt (Discr_Elmt);
Next_Discriminant (Discr);
end loop;
end Add_Discriminant_Values;
--------------------------
-- Discriminant_Present --
--------------------------
function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
Ancestor_Is_Subtyp : Boolean;
Loc : Source_Ptr;
Ancestor : Node_Id;
Ancestor_Typ : Entity_Id;
Comp_Assoc : Node_Id;
Discr : Entity_Id;
Discr_Expr : Node_Id;
Discr_Val : Elmt_Id := No_Elmt;
Orig_Discr : Entity_Id;
begin
if Regular_Aggr then
return True;
end if;
-- Check whether inherited discriminant values have already been
-- inserted in the aggregate. This will be the case if we are
-- re-analyzing an aggregate whose expansion was delayed.
if Present (Component_Associations (N)) then
Comp_Assoc := First (Component_Associations (N));
while Present (Comp_Assoc) loop
if Inherited_Discriminant (Comp_Assoc) then
return True;
end if;
Next (Comp_Assoc);
end loop;
end if;
Ancestor := Ancestor_Part (N);
Ancestor_Typ := Etype (Ancestor);
Loc := Sloc (Ancestor);
-- For a private type with unknown discriminants, use the underlying
-- record view if it is available.
if Has_Unknown_Discriminants (Ancestor_Typ)
and then Present (Full_View (Ancestor_Typ))
and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
then
Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
end if;
Ancestor_Is_Subtyp :=
Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
-- If the ancestor part has no discriminants clearly N's aggregate
-- part must provide a value for Discr.
if not Has_Discriminants (Ancestor_Typ) then
return True;
-- If the ancestor part is an unconstrained subtype mark then the
-- Discr must be present in N's aggregate part.
elsif Ancestor_Is_Subtyp
and then not Is_Constrained (Entity (Ancestor))
then
return True;
end if;
-- Now look to see if Discr was specified in the ancestor part
if Ancestor_Is_Subtyp then
Discr_Val :=
First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
end if;
Orig_Discr := Original_Record_Component (Input_Discr);
Discr := First_Discriminant (Ancestor_Typ);
while Present (Discr) loop
-- If Ancestor has already specified Disc value then insert its
-- value in the final aggregate.
if Original_Record_Component (Discr) = Orig_Discr then
if Ancestor_Is_Subtyp then
Discr_Expr := New_Copy_Tree (Node (Discr_Val));
else
Discr_Expr :=
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr (Ancestor),
Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
end if;
Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
Set_Inherited_Discriminant (Last (New_Assoc_List));
return False;
end if;
Next_Discriminant (Discr);
if Ancestor_Is_Subtyp then
Next_Elmt (Discr_Val);
end if;
end loop;
return True;
end Discriminant_Present;
---------------------------
-- Find_Private_Ancestor --
---------------------------
function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
Par : Entity_Id;
begin
Par := Typ;
loop
if Has_Private_Ancestor (Par)
and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
then
return Par;
elsif not Is_Derived_Type (Par) then
return Empty;
else
Par := Etype (Base_Type (Par));
end if;
end loop;
end Find_Private_Ancestor;
---------------
-- Get_Value --
---------------
function Get_Value
(Compon : Entity_Id;
From : List_Id;
Consider_Others_Choice : Boolean := False) return Node_Id
is
Typ : constant Entity_Id := Etype (Compon);
Assoc : Node_Id;
Expr : Node_Id := Empty;
Selector_Name : Node_Id;
begin
Is_Box_Present := False;
Is_Box_Init_By_Default := False;
if No (From) then
return Empty;
end if;
Assoc := First (From);
while Present (Assoc) loop
Selector_Name := First (Choices (Assoc));
while Present (Selector_Name) loop
if Nkind (Selector_Name) = N_Others_Choice then
if Consider_Others_Choice and then No (Expr) then
-- We need to duplicate the expression for each
-- successive component covered by the others choice.
-- This is redundant if the others_choice covers only
-- one component (small optimization possible???), but
-- indispensable otherwise, because each one must be
-- expanded individually to preserve side effects.
-- Ada 2005 (AI-287): In case of default initialization
-- of components, we duplicate the corresponding default
-- expression (from the record type declaration). The
-- copy must carry the sloc of the association (not the
-- original expression) to prevent spurious elaboration
-- checks when the default includes function calls.
if Box_Present (Assoc) then
Others_Box := Others_Box + 1;
Is_Box_Present := True;
if Expander_Active then
return
New_Copy_Tree_And_Copy_Dimensions
(Expression (Parent (Compon)),
New_Sloc => Sloc (Assoc));
else
return Expression (Parent (Compon));
end if;
else
if Present (Others_Etype)
and then Base_Type (Others_Etype) /= Base_Type (Typ)
then
-- If the components are of an anonymous access
-- type they are distinct, but this is legal in
-- Ada 2012 as long as designated types match.
if (Ekind (Typ) = E_Anonymous_Access_Type
or else Ekind (Typ) =
E_Anonymous_Access_Subprogram_Type)
and then Designated_Type (Typ) =
Designated_Type (Others_Etype)
then
null;
else
Error_Msg_N
("components in OTHERS choice must have same "
& "type", Selector_Name);
end if;
end if;
Others_Etype := Typ;
-- Copy the expression so that it is resolved
-- independently for each component, This is needed
-- for accessibility checks on components of anonymous
-- access types, even in compile_only mode.
if not Inside_A_Generic then
return
New_Copy_Tree_And_Copy_Dimensions
(Expression (Assoc));
else
return Expression (Assoc);
end if;
end if;
end if;
elsif Chars (Compon) = Chars (Selector_Name) then
if No (Expr) then
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005
and then Known_Null (Expression (Assoc))
then
Check_Can_Never_Be_Null (Compon, Expression (Assoc));
end if;
-- We need to duplicate the expression when several
-- components are grouped together with a "|" choice.
-- For instance "filed1 | filed2 => Expr"
-- Ada 2005 (AI-287)
if Box_Present (Assoc) then
Is_Box_Present := True;
-- Duplicate the default expression of the component
-- from the record type declaration, so a new copy
-- can be attached to the association.
-- Note that we always copy the default expression,
-- even when the association has a single choice, in
-- order to create a proper association for the
-- expanded aggregate.
-- Component may have no default, in which case the
-- expression is empty and the component is default-
-- initialized, but an association for the component
-- exists, and it is not covered by an others clause.
-- Scalar and private types have no initialization
-- procedure, so they remain uninitialized. If the
-- target of the aggregate is a constant this
-- deserves a warning.
if No (Expression (Parent (Compon)))
and then not Has_Non_Null_Base_Init_Proc (Typ)
and then not Has_Aspect (Typ, Aspect_Default_Value)
and then not Is_Concurrent_Type (Typ)
and then Nkind (Parent (N)) = N_Object_Declaration
and then Constant_Present (Parent (N))
then
Error_Msg_Node_2 := Typ;
Error_Msg_NE
("??component& of type& is uninitialized",
Assoc, Selector_Name);
-- An additional reminder if the component type
-- is a generic formal.
if Is_Generic_Type (Base_Type (Typ)) then
Error_Msg_NE
("\instance should provide actual type with "
& "initialization for&", Assoc, Typ);
end if;
end if;
return
New_Copy_Tree_And_Copy_Dimensions
(Expression (Parent (Compon)));
else
if Present (Next (Selector_Name)) then
Expr := New_Copy_Tree_And_Copy_Dimensions
(Expression (Assoc));
else
Expr := Expression (Assoc);
end if;
end if;
Generate_Reference (Compon, Selector_Name, 'm');
else
Error_Msg_NE
("more than one value supplied for &",
Selector_Name, Compon);
end if;
end if;
Next (Selector_Name);
end loop;
Next (Assoc);
end loop;
return Expr;
end Get_Value;
-----------------------------
-- Propagate_Discriminants --
-----------------------------
procedure Propagate_Discriminants
(Aggr : Node_Id;
Assoc_List : List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
procedure Process_Component (Comp : Entity_Id);
-- Add one component with a box association to the inner aggregate,
-- and recurse if component is itself composite.
-----------------------
-- Process_Component --
-----------------------
procedure Process_Component (Comp : Entity_Id) is
T : constant Entity_Id := Etype (Comp);
New_Aggr : Node_Id;
begin
if Is_Record_Type (T) and then Has_Discriminants (T) then
New_Aggr := Make_Aggregate (Loc, No_List, New_List);
Set_Etype (New_Aggr, T);
Add_Association
(Comp, New_Aggr, Component_Associations (Aggr));
-- Collect discriminant values and recurse
Add_Discriminant_Values (New_Aggr, Assoc_List);
Propagate_Discriminants (New_Aggr, Assoc_List);
Build_Constrained_Itype
(New_Aggr, T, Component_Associations (New_Aggr));
else
Add_Association
(Comp, Empty, Component_Associations (Aggr),
Is_Box_Present => True);
end if;
end Process_Component;
-- Local variables
Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
Components : constant Elist_Id := New_Elmt_List;
Def_Node : constant Node_Id :=
Type_Definition (Declaration_Node (Aggr_Type));
Comp : Node_Id;
Comp_Elmt : Elmt_Id;
Errors : Boolean;
-- Start of processing for Propagate_Discriminants
begin
-- The component type may be a variant type. Collect the components
-- that are ruled by the known values of the discriminants. Their
-- values have already been inserted into the component list of the
-- current aggregate.
if Nkind (Def_Node) = N_Record_Definition
and then Present (Component_List (Def_Node))
and then Present (Variant_Part (Component_List (Def_Node)))
then
Gather_Components (Aggr_Type,
Component_List (Def_Node),
Governed_By => Component_Associations (Aggr),
Into => Components,
Report_Errors => Errors);
Comp_Elmt := First_Elmt (Components);
while Present (Comp_Elmt) loop
if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
Process_Component (Node (Comp_Elmt));
end if;
Next_Elmt (Comp_Elmt);
end loop;
-- No variant part, iterate over all components
else
Comp := First_Component (Etype (Aggr));
while Present (Comp) loop
Process_Component (Comp);
Next_Component (Comp);
end loop;
end if;
end Propagate_Discriminants;
-----------------------
-- Resolve_Aggr_Expr --
-----------------------
procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
-- If the expression is an aggregate (possibly qualified) then its
-- expansion is delayed until the enclosing aggregate is expanded
-- into assignments. In that case, do not generate checks on the
-- expression, because they will be generated later, and will other-
-- wise force a copy (to remove side effects) that would leave a
-- dynamic-sized aggregate in the code, something that gigi cannot
-- handle.
---------------------------
-- Has_Expansion_Delayed --
---------------------------
function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
begin
return
(Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
and then Present (Etype (Expr))
and then Is_Record_Type (Etype (Expr))
and then Expansion_Delayed (Expr))
or else
(Nkind (Expr) = N_Qualified_Expression
and then Has_Expansion_Delayed (Expression (Expr)));
end Has_Expansion_Delayed;
-- Local variables
Expr_Type : Entity_Id := Empty;
New_C : Entity_Id := Component;
New_Expr : Node_Id;
Relocate : Boolean;
-- Set to True if the resolved Expr node needs to be relocated when
-- attached to the newly created association list. This node need not
-- be relocated if its parent pointer is not set. In fact in this
-- case Expr is the output of a New_Copy_Tree call. If Relocate is
-- True then we have analyzed the expression node in the original
-- aggregate and hence it needs to be relocated when moved over to
-- the new association list.
-- Start of processing for Resolve_Aggr_Expr
begin
-- If the type of the component is elementary or the type of the
-- aggregate does not contain discriminants, use the type of the
-- component to resolve Expr.
if Is_Elementary_Type (Etype (Component))
or else not Has_Discriminants (Etype (N))
then
Expr_Type := Etype (Component);
-- Otherwise we have to pick up the new type of the component from
-- the new constrained subtype of the aggregate. In fact components
-- which are of a composite type might be constrained by a
-- discriminant, and we want to resolve Expr against the subtype were
-- all discriminant occurrences are replaced with their actual value.
else
New_C := First_Component (Etype (N));
while Present (New_C) loop
if Chars (New_C) = Chars (Component) then
Expr_Type := Etype (New_C);
exit;
end if;
Next_Component (New_C);
end loop;
pragma Assert (Present (Expr_Type));
-- For each range in an array type where a discriminant has been
-- replaced with the constraint, check that this range is within
-- the range of the base type. This checks is done in the init
-- proc for regular objects, but has to be done here for
-- aggregates since no init proc is called for them.
if Is_Array_Type (Expr_Type) then
declare
Index : Node_Id;
-- Range of the current constrained index in the array
Orig_Index : Node_Id := First_Index (Etype (Component));
-- Range corresponding to the range Index above in the
-- original unconstrained record type. The bounds of this
-- range may be governed by discriminants.
Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
-- Range corresponding to the range Index above for the
-- unconstrained array type. This range is needed to apply
-- range checks.
begin
Index := First_Index (Expr_Type);
while Present (Index) loop
if Depends_On_Discriminant (Orig_Index) then
Apply_Range_Check (Index, Etype (Unconstr_Index));
end if;
Next_Index (Index);
Next_Index (Orig_Index);
Next_Index (Unconstr_Index);
end loop;
end;
end if;
end if;
-- If the Parent pointer of Expr is not set, Expr is an expression
-- duplicated by New_Tree_Copy (this happens for record aggregates
-- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
-- Such a duplicated expression must be attached to the tree
-- before analysis and resolution to enforce the rule that a tree
-- fragment should never be analyzed or resolved unless it is
-- attached to the current compilation unit.
if No (Parent (Expr)) then
Set_Parent (Expr, N);
Relocate := False;
else
Relocate := True;
end if;
Analyze_And_Resolve (Expr, Expr_Type);
Check_Expr_OK_In_Limited_Aggregate (Expr);
Check_Non_Static_Context (Expr);
Check_Unset_Reference (Expr);
-- Check wrong use of class-wide types
if Is_Class_Wide_Type (Etype (Expr)) then
Error_Msg_N ("dynamically tagged expression not allowed", Expr);
end if;
if not Has_Expansion_Delayed (Expr) then
Aggregate_Constraint_Checks (Expr, Expr_Type);
end if;
-- If an aggregate component has a type with predicates, an explicit
-- predicate check must be applied, as for an assignment statement,
-- because the aggregate might not be expanded into individual
-- component assignments.
if Has_Predicates (Expr_Type)
and then Analyzed (Expr)
then
Apply_Predicate_Check (Expr, Expr_Type);
end if;
if Raises_Constraint_Error (Expr) then
Set_Raises_Constraint_Error (N);
end if;
-- If the expression has been marked as requiring a range check, then
-- generate it here. It's a bit odd to be generating such checks in
-- the analyzer, but harmless since Generate_Range_Check does nothing
-- (other than making sure Do_Range_Check is set) if the expander is
-- not active.
if Do_Range_Check (Expr) then
Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
end if;
-- Add association Component => Expr if the caller requests it
if Relocate then
New_Expr := Relocate_Node (Expr);
-- Since New_Expr is not gonna be analyzed later on, we need to
-- propagate here the dimensions form Expr to New_Expr.
Copy_Dimensions (Expr, New_Expr);
else
New_Expr := Expr;
end if;
Add_Association (New_C, New_Expr, New_Assoc_List);
end Resolve_Aggr_Expr;
-------------------
-- Rewrite_Range --
-------------------
procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
procedure Rewrite_Bound
(Bound : Node_Id;
Disc : Entity_Id;
Expr_Disc : Node_Id);
-- Rewrite a bound of the range Bound, when it is equal to the
-- non-stored discriminant Disc, into the stored discriminant
-- value Expr_Disc.
-------------------
-- Rewrite_Bound --
-------------------
procedure Rewrite_Bound
(Bound : Node_Id;
Disc : Entity_Id;
Expr_Disc : Node_Id)
is
begin
if Nkind (Bound) /= N_Identifier then
return;
end if;
-- We expect either the discriminant or the discriminal
if Entity (Bound) = Disc
or else (Ekind (Entity (Bound)) = E_In_Parameter
and then Discriminal_Link (Entity (Bound)) = Disc)
then
Rewrite (Bound, New_Copy_Tree (Expr_Disc));
end if;
end Rewrite_Bound;
-- Local variables
Low, High : Node_Id;
Disc : Entity_Id;
Expr_Disc : Elmt_Id;
-- Start of processing for Rewrite_Range
begin
if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
Low := Low_Bound (Rge);
High := High_Bound (Rge);
Disc := First_Discriminant (Root_Type);
Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
while Present (Disc) loop
Rewrite_Bound (Low, Disc, Node (Expr_Disc));
Rewrite_Bound (High, Disc, Node (Expr_Disc));
Next_Discriminant (Disc);
Next_Elmt (Expr_Disc);
end loop;
end if;
end Rewrite_Range;
-- Local variables
Components : constant Elist_Id := New_Elmt_List;
-- Components is the list of the record components whose value must be
-- provided in the aggregate. This list does include discriminants.
Component : Entity_Id;
Component_Elmt : Elmt_Id;
Expr : Node_Id;
Positional_Expr : Node_Id;
-- Start of processing for Resolve_Record_Aggregate
begin
-- A record aggregate is restricted in SPARK:
-- Each named association can have only a single choice.
-- OTHERS cannot be used.
-- Positional and named associations cannot be mixed.
if Present (Component_Associations (N)) then
declare
Assoc : Node_Id;
begin
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association then
Error_Msg_N
("iterated component association can only appear in an "
& "array aggregate", N);
raise Unrecoverable_Error;
end if;
Next (Assoc);
end loop;
end;
end if;
-- We may end up calling Duplicate_Subexpr on expressions that are
-- attached to New_Assoc_List. For this reason we need to attach it
-- to the tree by setting its parent pointer to N. This parent point
-- will change in STEP 8 below.
Set_Parent (New_Assoc_List, N);
-- STEP 1: abstract type and null record verification
if Is_Abstract_Type (Typ) then
Error_Msg_N ("type of aggregate cannot be abstract", N);
end if;
if No (First_Entity (Typ)) and then Null_Record_Present (N) then
Set_Etype (N, Typ);
return;
elsif Present (First_Entity (Typ))
and then Null_Record_Present (N)
and then not Is_Tagged_Type (Typ)
then
Error_Msg_N ("record aggregate cannot be null", N);
return;
-- If the type has no components, then the aggregate should either
-- have "null record", or in Ada 2005 it could instead have a single
-- component association given by "others => <>". For Ada 95 we flag an
-- error at this point, but for Ada 2005 we proceed with checking the
-- associations below, which will catch the case where it's not an
-- aggregate with "others => <>". Note that the legality of a <>
-- aggregate for a null record type was established by AI05-016.
elsif No (First_Entity (Typ))
and then Ada_Version < Ada_2005
then
Error_Msg_N ("record aggregate must be null", N);
return;
end if;
-- A record aggregate can only use parentheses
if Nkind (N) = N_Aggregate
and then Is_Homogeneous_Aggregate (N)
then
Error_Msg_N ("record aggregate must use (), not '[']", N);
return;
end if;
-- STEP 2: Verify aggregate structure
Step_2 : declare
Assoc : Node_Id;
Bad_Aggregate : Boolean := False;
Selector_Name : Node_Id;
begin
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
else
Assoc := Empty;
end if;
while Present (Assoc) loop
Selector_Name := First (Choices (Assoc));
while Present (Selector_Name) loop
if Nkind (Selector_Name) = N_Identifier then
null;
elsif Nkind (Selector_Name) = N_Others_Choice then
if Selector_Name /= First (Choices (Assoc))
or else Present (Next (Selector_Name))
then
Error_Msg_N
("OTHERS must appear alone in a choice list",
Selector_Name);
return;
elsif Present (Next (Assoc)) then
Error_Msg_N
("OTHERS must appear last in an aggregate",
Selector_Name);
return;
-- (Ada 2005): If this is an association with a box,
-- indicate that the association need not represent
-- any component.
elsif Box_Present (Assoc) then
Others_Box := 1;
Box_Node := Assoc;
end if;
else
Error_Msg_N
("selector name should be identifier or OTHERS",
Selector_Name);
Bad_Aggregate := True;
end if;
Next (Selector_Name);
end loop;
Next (Assoc);
end loop;
if Bad_Aggregate then
return;
end if;
end Step_2;
-- STEP 3: Find discriminant Values
Step_3 : declare
Discrim : Entity_Id;
Missing_Discriminants : Boolean := False;
begin
if Present (Expressions (N)) then
Positional_Expr := First (Expressions (N));
else
Positional_Expr := Empty;
end if;
-- AI05-0115: if the ancestor part is a subtype mark, the ancestor
-- must not have unknown discriminants.
-- ??? We are not checking any subtype mark here and this code is not
-- exercised by any test, so it's likely wrong (in particular
-- we should not use Root_Type here but the subtype mark, if any),
-- and possibly not needed.
if Is_Derived_Type (Typ)
and then Has_Unknown_Discriminants (Root_Type (Typ))
and then Nkind (N) /= N_Extension_Aggregate
then
Error_Msg_NE
("aggregate not available for type& whose ancestor "
& "has unknown discriminants", N, Typ);
end if;
if Has_Unknown_Discriminants (Typ)
and then Present (Underlying_Record_View (Typ))
then
Discrim := First_Discriminant (Underlying_Record_View (Typ));
elsif Has_Discriminants (Typ) then
Discrim := First_Discriminant (Typ);
else
Discrim := Empty;
end if;
-- First find the discriminant values in the positional components
while Present (Discrim) and then Present (Positional_Expr) loop
if Discriminant_Present (Discrim) then
Resolve_Aggr_Expr (Positional_Expr, Discrim);
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005
and then Known_Null (Positional_Expr)
then
Check_Can_Never_Be_Null (Discrim, Positional_Expr);
end if;
Next (Positional_Expr);
end if;
if Present (Get_Value (Discrim, Component_Associations (N))) then
Error_Msg_NE
("more than one value supplied for discriminant&",
N, Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
-- Find remaining discriminant values if any among named components
while Present (Discrim) loop
Expr := Get_Value (Discrim, Component_Associations (N), True);
if not Discriminant_Present (Discrim) then
if Present (Expr) then
Error_Msg_NE
("more than one value supplied for discriminant &",
N, Discrim);
end if;
elsif No (Expr) then
Error_Msg_NE
("no value supplied for discriminant &", N, Discrim);
Missing_Discriminants := True;
else
Resolve_Aggr_Expr (Expr, Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
if Missing_Discriminants then
return;
end if;
-- At this point and until the beginning of STEP 6, New_Assoc_List
-- contains only the discriminants and their values.
end Step_3;
-- STEP 4: Set the Etype of the record aggregate
if Has_Discriminants (Typ)
or else (Has_Unknown_Discriminants (Typ)
and then Present (Underlying_Record_View (Typ)))
then
Build_Constrained_Itype (N, Typ, New_Assoc_List);
else
Set_Etype (N, Typ);
end if;
-- STEP 5: Get remaining components according to discriminant values
Step_5 : declare
Dnode : Node_Id;
Errors_Found : Boolean := False;
Record_Def : Node_Id;
Parent_Typ : Entity_Id;
Parent_Typ_List : Elist_Id;
Parent_Elmt : Elmt_Id;
Root_Typ : Entity_Id;
begin
if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
Parent_Typ_List := New_Elmt_List;
-- If this is an extension aggregate, the component list must
-- include all components that are not in the given ancestor type.
-- Otherwise, the component list must include components of all
-- ancestors, starting with the root.
if Nkind (N) = N_Extension_Aggregate then
Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
else
-- AI05-0115: check legality of aggregate for type with a
-- private ancestor.
Root_Typ := Root_Type (Typ);
if Has_Private_Ancestor (Typ) then
declare
Ancestor : constant Entity_Id :=
Find_Private_Ancestor (Typ);
Ancestor_Unit : constant Entity_Id :=
Cunit_Entity
(Get_Source_Unit (Ancestor));
Parent_Unit : constant Entity_Id :=
Cunit_Entity (Get_Source_Unit
(Base_Type (Etype (Ancestor))));
begin
-- Check whether we are in a scope that has full view
-- over the private ancestor and its parent. This can
-- only happen if the derivation takes place in a child
-- unit of the unit that declares the parent, and we are
-- in the private part or body of that child unit, else
-- the aggregate is illegal.
if Is_Child_Unit (Ancestor_Unit)
and then Scope (Ancestor_Unit) = Parent_Unit
and then In_Open_Scopes (Scope (Ancestor))
and then
(In_Private_Part (Scope (Ancestor))
or else In_Package_Body (Scope (Ancestor)))
then
null;
else
Error_Msg_NE
("type of aggregate has private ancestor&!",
N, Root_Typ);
Error_Msg_N ("must use extension aggregate!", N);
return;
end if;
end;
end if;
Dnode := Declaration_Node (Base_Type (Root_Typ));
-- If we don't get a full declaration, then we have some error
-- which will get signalled later so skip this part. Otherwise
-- gather components of root that apply to the aggregate type.
-- We use the base type in case there is an applicable stored
-- constraint that renames the discriminants of the root.
if Nkind (Dnode) = N_Full_Type_Declaration then
Record_Def := Type_Definition (Dnode);
Gather_Components
(Base_Type (Typ),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
if Errors_Found then
Error_Msg_N
("discriminant controlling variant part is not static",
N);
return;
end if;
end if;
end if;
Parent_Typ := Base_Type (Typ);
while Parent_Typ /= Root_Typ loop
Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
Parent_Typ := Etype (Parent_Typ);
-- Check whether a private parent requires the use of
-- an extension aggregate. This test does not apply in
-- an instantiation: if the generic unit is legal so is
-- the instance.
if Nkind (Parent (Base_Type (Parent_Typ))) =
N_Private_Type_Declaration
or else Nkind (Parent (Base_Type (Parent_Typ))) =
N_Private_Extension_Declaration
then
if Nkind (N) /= N_Extension_Aggregate
and then not In_Instance
then
Error_Msg_NE
("type of aggregate has private ancestor&!",
N, Parent_Typ);
Error_Msg_N ("must use extension aggregate!", N);
return;
elsif Parent_Typ /= Root_Typ then
Error_Msg_NE
("ancestor part of aggregate must be private type&",
Ancestor_Part (N), Parent_Typ);
return;
end if;
-- The current view of ancestor part may be a private type,
-- while the context type is always non-private.
elsif Is_Private_Type (Root_Typ)
and then Present (Full_View (Root_Typ))
and then Nkind (N) = N_Extension_Aggregate
then
exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
end if;
end loop;
-- Now collect components from all other ancestors, beginning
-- with the current type. If the type has unknown discriminants
-- use the component list of the Underlying_Record_View, which
-- needs to be used for the subsequent expansion of the aggregate
-- into assignments.
Parent_Elmt := First_Elmt (Parent_Typ_List);
while Present (Parent_Elmt) loop
Parent_Typ := Node (Parent_Elmt);
if Has_Unknown_Discriminants (Parent_Typ)
and then Present (Underlying_Record_View (Typ))
then
Parent_Typ := Underlying_Record_View (Parent_Typ);
end if;
Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
Gather_Components (Parent_Typ,
Component_List (Record_Extension_Part (Record_Def)),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
Next_Elmt (Parent_Elmt);
end loop;
-- Typ is not a derived tagged type
else
Record_Def := Type_Definition (Parent (Base_Type (Typ)));
if Null_Present (Record_Def) then
null;
elsif not Has_Unknown_Discriminants (Typ) then
Gather_Components
(Base_Type (Typ),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
else
Gather_Components
(Base_Type (Underlying_Record_View (Typ)),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
end if;
end if;
if Errors_Found then
return;
end if;
end Step_5;
-- STEP 6: Find component Values
Component_Elmt := First_Elmt (Components);
-- First scan the remaining positional associations in the aggregate.
-- Remember that at this point Positional_Expr contains the current
-- positional association if any is left after looking for discriminant
-- values in step 3.
while Present (Positional_Expr) and then Present (Component_Elmt) loop
Component := Node (Component_Elmt);
Resolve_Aggr_Expr (Positional_Expr, Component);
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
Check_Can_Never_Be_Null (Component, Positional_Expr);
end if;
if Present (Get_Value (Component, Component_Associations (N))) then
Error_Msg_NE
("more than one value supplied for component &", N, Component);
end if;
Next (Positional_Expr);
Next_Elmt (Component_Elmt);
end loop;
if Present (Positional_Expr) then
Error_Msg_N
("too many components for record aggregate", Positional_Expr);
end if;
-- Now scan for the named arguments of the aggregate
while Present (Component_Elmt) loop
Component := Node (Component_Elmt);
Expr := Get_Value (Component, Component_Associations (N), True);
-- Note: The previous call to Get_Value sets the value of the
-- variable Is_Box_Present.
-- Ada 2005 (AI-287): Handle components with default initialization.
-- Note: This feature was originally added to Ada 2005 for limited
-- but it was finally allowed with any type.
if Is_Box_Present then
Check_Box_Component : declare
Ctyp : constant Entity_Id := Etype (Component);
begin
-- Initially assume that the box is for a default-initialized
-- component and reset to False in cases where that's not true.
Is_Box_Init_By_Default := True;
-- If there is a default expression for the aggregate, copy
-- it into a new association. This copy must modify the scopes
-- of internal types that may be attached to the expression
-- (e.g. index subtypes of arrays) because in general the type
-- declaration and the aggregate appear in different scopes,
-- and the backend requires the scope of the type to match the
-- point at which it is elaborated.
-- If the component has an initialization procedure (IP) we
-- pass the component to the expander, which will generate
-- the call to such IP.
-- If the component has discriminants, their values must
-- be taken from their subtype. This is indispensable for
-- constraints that are given by the current instance of an
-- enclosing type, to allow the expansion of the aggregate to
-- replace the reference to the current instance by the target
-- object of the aggregate.
if Is_Case_Choice_Pattern (N) then
-- Do not transform box component values in a case-choice
-- aggregate.
Add_Association
(Component => Component,
Expr => Empty,
Assoc_List => New_Assoc_List,
Is_Box_Present => True);
elsif Present (Parent (Component))
and then Nkind (Parent (Component)) = N_Component_Declaration
and then Present (Expression (Parent (Component)))
then
-- If component declaration has an initialization expression
-- then this is not a case of default initialization.
Is_Box_Init_By_Default := False;
Expr :=
New_Copy_Tree_And_Copy_Dimensions
(Expression (Parent (Component)),
New_Scope => Current_Scope,
New_Sloc => Sloc (N));
-- As the type of the copied default expression may refer
-- to discriminants of the record type declaration, these
-- non-stored discriminants need to be rewritten into stored
-- discriminant values for the aggregate. This is required
-- in GNATprove mode, and is adopted in all modes to avoid
-- special-casing GNATprove mode.
if Is_Array_Type (Etype (Expr)) then
declare
Rec_Typ : constant Entity_Id := Scope (Component);
-- Root record type whose discriminants may be used as
-- bounds in range nodes.
Assoc : Node_Id;
Choice : Node_Id;
Index : Node_Id;
begin
-- Rewrite the range nodes occurring in the indexes
-- and their types.
Index := First_Index (Etype (Expr));
while Present (Index) loop
Rewrite_Range (Rec_Typ, Index);
Rewrite_Range
(Rec_Typ, Scalar_Range (Etype (Index)));
Next_Index (Index);
end loop;
-- Rewrite the range nodes occurring as aggregate
-- bounds and component associations.
if Nkind (Expr) = N_Aggregate then
if Present (Aggregate_Bounds (Expr)) then
Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
end if;
if Present (Component_Associations (Expr)) then
Assoc := First (Component_Associations (Expr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
Rewrite_Range (Rec_Typ, Choice);
Next (Choice);
end loop;
Next (Assoc);
end loop;
end if;
end if;
end;
end if;
Add_Association
(Component => Component,
Expr => Expr,
Assoc_List => New_Assoc_List);
Set_Has_Self_Reference (N);
elsif Needs_Simple_Initialization (Ctyp) then
Add_Association
(Component => Component,
Expr => Empty,
Assoc_List => New_Assoc_List,
Is_Box_Present => True);
elsif Has_Non_Null_Base_Init_Proc (Ctyp)
or else not Expander_Active
then
if Is_Record_Type (Ctyp)
and then Has_Discriminants (Ctyp)
and then not Is_Private_Type (Ctyp)
then
-- We build a partially initialized aggregate with the
-- values of the discriminants and box initialization
-- for the rest, if other components are present.
-- The type of the aggregate is the known subtype of
-- the component. The capture of discriminants must be
-- recursive because subcomponents may be constrained
-- (transitively) by discriminants of enclosing types.
-- For a private type with discriminants, a call to the
-- initialization procedure will be generated, and no
-- subaggregate is needed.
Capture_Discriminants : declare
Loc : constant Source_Ptr := Sloc (N);
Expr : Node_Id;
begin
Expr := Make_Aggregate (Loc, No_List, New_List);
Set_Etype (Expr, Ctyp);
-- If the enclosing type has discriminants, they have
-- been collected in the aggregate earlier, and they
-- may appear as constraints of subcomponents.
-- Similarly if this component has discriminants, they
-- might in turn be propagated to their components.
if Has_Discriminants (Typ) then
Add_Discriminant_Values (Expr, New_Assoc_List);
Propagate_Discriminants (Expr, New_Assoc_List);
elsif Has_Discriminants (Ctyp) then
Add_Discriminant_Values
(Expr, Component_Associations (Expr));
Propagate_Discriminants
(Expr, Component_Associations (Expr));
Build_Constrained_Itype
(Expr, Ctyp, Component_Associations (Expr));
else
declare
Comp : Entity_Id;
begin
-- If the type has additional components, create
-- an OTHERS box association for them.
Comp := First_Component (Ctyp);
while Present (Comp) loop
if Ekind (Comp) = E_Component then
if not Is_Record_Type (Etype (Comp)) then
Append_To
(Component_Associations (Expr),
Make_Component_Association (Loc,
Choices =>
New_List (
Make_Others_Choice (Loc)),
Expression => Empty,
Box_Present => True));
end if;
exit;
end if;
Next_Component (Comp);
end loop;
end;
end if;
Add_Association
(Component => Component,
Expr => Expr,
Assoc_List => New_Assoc_List);
end Capture_Discriminants;
-- Otherwise the component type is not a record, or it has
-- not discriminants, or it is private.
else
Add_Association
(Component => Component,
Expr => Empty,
Assoc_List => New_Assoc_List,
Is_Box_Present => True);
end if;
-- Otherwise we only need to resolve the expression if the
-- component has partially initialized values (required to
-- expand the corresponding assignments and run-time checks).
elsif Present (Expr)
and then Is_Partially_Initialized_Type (Ctyp)
then
Resolve_Aggr_Expr (Expr, Component);
end if;
end Check_Box_Component;
elsif No (Expr) then
-- Ignore hidden components associated with the position of the
-- interface tags: these are initialized dynamically.
if No (Related_Type (Component)) then
Error_Msg_NE
("no value supplied for component &!", N, Component);
end if;
else
Resolve_Aggr_Expr (Expr, Component);
end if;
Next_Elmt (Component_Elmt);
end loop;
-- STEP 7: check for invalid components + check type in choice list
Step_7 : declare
Assoc : Node_Id;
New_Assoc : Node_Id;
Selectr : Node_Id;
-- Selector name
Typech : Entity_Id;
-- Type of first component in choice list
begin
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
else
Assoc := Empty;
end if;
Verification : while Present (Assoc) loop
Selectr := First (Choices (Assoc));
Typech := Empty;
if Nkind (Selectr) = N_Others_Choice then
-- Ada 2005 (AI-287): others choice may have expression or box
if No (Others_Etype) and then Others_Box = 0 then
Error_Msg_N
("OTHERS must represent at least one component", Selectr);
elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
Error_Msg_N ("OTHERS choice is redundant?r?", Box_Node);
Error_Msg_N
("\previous choices cover all components?r?", Box_Node);
end if;
exit Verification;
end if;
while Present (Selectr) loop
Component := Empty;
New_Assoc := First (New_Assoc_List);
while Present (New_Assoc) loop
Component := First (Choices (New_Assoc));
if Chars (Selectr) = Chars (Component) then
if Style_Check then
Check_Identifier (Selectr, Entity (Component));
end if;
exit;
end if;
Next (New_Assoc);
end loop;
-- If we found an association, then this is a legal component
-- of the type in question.
pragma Assert (if Present (New_Assoc) then Present (Component));
-- If no association, this is not a legal component of the type
-- in question, unless its association is provided with a box.
if No (New_Assoc) then
if Box_Present (Parent (Selectr)) then
-- This may still be a bogus component with a box. Scan
-- list of components to verify that a component with
-- that name exists.
declare
C : Entity_Id;
begin
C := First_Component (Typ);
while Present (C) loop
if Chars (C) = Chars (Selectr) then
-- If the context is an extension aggregate,
-- the component must not be inherited from
-- the ancestor part of the aggregate.
if Nkind (N) /= N_Extension_Aggregate
or else
Scope (Original_Record_Component (C)) /=
Etype (Ancestor_Part (N))
then
exit;
end if;
end if;
Next_Component (C);
end loop;
if No (C) then
Error_Msg_Node_2 := Typ;
Error_Msg_N ("& is not a component of}", Selectr);
end if;
end;
elsif Chars (Selectr) /= Name_uTag
and then Chars (Selectr) /= Name_uParent
then
if not Has_Discriminants (Typ) then
Error_Msg_Node_2 := Typ;
Error_Msg_N ("& is not a component of}", Selectr);
else
Error_Msg_N
("& is not a component of the aggregate subtype",
Selectr);
end if;
Check_Misspelled_Component (Components, Selectr);
end if;
elsif No (Typech) then
Typech := Base_Type (Etype (Component));
-- AI05-0199: In Ada 2012, several components of anonymous
-- access types can appear in a choice list, as long as the
-- designated types match.
elsif Typech /= Base_Type (Etype (Component)) then
if Ada_Version >= Ada_2012
and then Ekind (Typech) = E_Anonymous_Access_Type
and then
Ekind (Etype (Component)) = E_Anonymous_Access_Type
and then Base_Type (Designated_Type (Typech)) =
Base_Type (Designated_Type (Etype (Component)))
and then
Subtypes_Statically_Match (Typech, (Etype (Component)))
then
null;
elsif not Box_Present (Parent (Selectr)) then
Error_Msg_N
("components in choice list must have same type",
Selectr);
end if;
end if;
Next (Selectr);
end loop;
Next (Assoc);
end loop Verification;
end Step_7;
-- STEP 8: replace the original aggregate
Step_8 : declare
New_Aggregate : constant Node_Id := New_Copy (N);
begin
Set_Expressions (New_Aggregate, No_List);
Set_Etype (New_Aggregate, Etype (N));
Set_Component_Associations (New_Aggregate, New_Assoc_List);
Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
Rewrite (N, New_Aggregate);
end Step_8;
-- Check the dimensions of the components in the record aggregate
Analyze_Dimension_Extension_Or_Record_Aggregate (N);
end Resolve_Record_Aggregate;
-----------------------------
-- Check_Can_Never_Be_Null --
-----------------------------
procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
Comp_Typ : Entity_Id;
begin
pragma Assert
(Ada_Version >= Ada_2005
and then Present (Expr)
and then Known_Null (Expr));
case Ekind (Typ) is
when E_Array_Type =>
Comp_Typ := Component_Type (Typ);
when E_Component
| E_Discriminant
=>
Comp_Typ := Etype (Typ);
when others =>
return;
end case;
if Can_Never_Be_Null (Comp_Typ) then
-- Here we know we have a constraint error. Note that we do not use
-- Apply_Compile_Time_Constraint_Error here to the Expr, which might
-- seem the more natural approach. That's because in some cases the
-- components are rewritten, and the replacement would be missed.
-- We do not mark the whole aggregate as raising a constraint error,
-- because the association may be a null array range.
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding component??", Expr);
Error_Msg_N
("\Constraint_Error will be raised at run time??", Expr);
Rewrite (Expr,
Make_Raise_Constraint_Error
(Sloc (Expr), Reason => CE_Access_Check_Failed));
Set_Etype (Expr, Comp_Typ);
Set_Analyzed (Expr);
end if;
end Check_Can_Never_Be_Null;
---------------------
-- Sort_Case_Table --
---------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
U : constant Int := Case_Table'Last;
K : Int;
J : Int;
T : Case_Bounds;
begin
K := 1;
while K < U loop
T := Case_Table (K + 1);
J := K + 1;
while J > 1
and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
loop
Case_Table (J) := Case_Table (J - 1);
J := J - 1;
end loop;
Case_Table (J) := T;
K := K + 1;
end loop;
end Sort_Case_Table;
end Sem_Aggr;
|