1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . P A C K _ @ @ --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2025, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Address_To_Access_Conversions;
with System.Storage_Elements;
with System.Unsigned_Types;
package body System.Pack_@@ is
-- The high-level idea of the implementation is to overlay a record
-- containing components of the same size as that of the component
-- of the array, in order words @@ bits, and to access the indexed
-- component of the array through the appropriate selected component
-- of the record.
-- The record must be of a fixed size for technical reasons, so we
-- effectively overlay a series of contiguous records containing 8
-- components (so that their size in bits is a multiple of a byte)
-- at the start of the array and access the component in the last
-- of them. However, this component in the last record may also be
-- mapped to the last component of the array, which means that the
-- generated code cannot safely access past it (or its last byte).
-- That's why the last record of the series is shortened, so the
-- accessed component is always the last component of the record.
-- A (0) A (N)
-- | |
-- V V
-- ---------------------------------------------------------------
-- | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
-- ---------------------------------------------------------------
--
-- component K
-- |
-- V
-- ---------------------------------------------------------
-- | | | | |
-- ---------------------------------------------------------
-- | | | |
-- Cluster7 Cluster7 Cluster7 ClusterK
--
-- where the number of Cluster7 is N / 8 and K is N mod 8.
subtype Bit_Order is System.Bit_Order;
Reverse_Bit_Order : constant Bit_Order :=
Bit_Order'Val (1 - Bit_Order'Pos (System.Default_Bit_Order));
subtype Ofs is System.Storage_Elements.Storage_Offset;
subtype Uns is System.Unsigned_Types.Unsigned;
subtype N07 is System.Unsigned_Types.Unsigned range 0 .. 7;
use type System.Storage_Elements.Storage_Offset;
use type System.Unsigned_Types.Unsigned;
--------------
-- Cluster0 --
--------------
type Cluster0 is record
E0 : Bits_@@;
end record;
for Cluster0 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
end record;
for Cluster0'Size use Bits * (1 + 0);
for Cluster0'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC0 is new Address_To_Access_Conversions (Cluster0);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster0 is new Cluster0
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC0 is new Address_To_Access_Conversions (Rev_Cluster0);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster0U is new Cluster0;
for Cluster0U'Alignment use 1;
package AAC0U is new Address_To_Access_Conversions (Cluster0U);
type Rev_Cluster0U is new Cluster0U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC0U is new Address_To_Access_Conversions (Rev_Cluster0U);
@/even
--------------
-- Cluster1 --
--------------
type Cluster1 is record
E0, E1 : Bits_@@;
end record;
for Cluster1 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
end record;
for Cluster1'Size use Bits * (1 + 1);
for Cluster1'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC1 is new Address_To_Access_Conversions (Cluster1);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster1 is new Cluster1
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC1 is new Address_To_Access_Conversions (Rev_Cluster1);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster1U is new Cluster1;
for Cluster1U'Alignment use 1;
package AAC1U is new Address_To_Access_Conversions (Cluster1U);
type Rev_Cluster1U is new Cluster1U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC1U is new Address_To_Access_Conversions (Rev_Cluster1U);
@/even
--------------
-- Cluster2 --
--------------
type Cluster2 is record
E0, E1, E2 : Bits_@@;
end record;
for Cluster2 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
E2 at 0 range 2 * Bits .. 2 * Bits + Bits - 1;
end record;
for Cluster2'Size use Bits * (1 + 2);
for Cluster2'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC2 is new Address_To_Access_Conversions (Cluster2);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster2 is new Cluster2
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC2 is new Address_To_Access_Conversions (Rev_Cluster2);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster2U is new Cluster2;
for Cluster2U'Alignment use 1;
package AAC2U is new Address_To_Access_Conversions (Cluster2U);
type Rev_Cluster2U is new Cluster2U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC2U is new Address_To_Access_Conversions (Rev_Cluster2U);
@/even
--------------
-- Cluster3 --
--------------
type Cluster3 is record
E0, E1, E2, E3 : Bits_@@;
end record;
for Cluster3 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
E2 at 0 range 2 * Bits .. 2 * Bits + Bits - 1;
E3 at 0 range 3 * Bits .. 3 * Bits + Bits - 1;
end record;
for Cluster3'Size use Bits * (1 + 3);
for Cluster3'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC3 is new Address_To_Access_Conversions (Cluster3);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster3 is new Cluster3
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC3 is new Address_To_Access_Conversions (Rev_Cluster3);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster3U is new Cluster3;
for Cluster3U'Alignment use 1;
package AAC3U is new Address_To_Access_Conversions (Cluster3U);
type Rev_Cluster3U is new Cluster3U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC3U is new Address_To_Access_Conversions (Rev_Cluster3U);
@/even
--------------
-- Cluster4 --
--------------
type Cluster4 is record
E0, E1, E2, E3, E4 : Bits_@@;
end record;
for Cluster4 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
E2 at 0 range 2 * Bits .. 2 * Bits + Bits - 1;
E3 at 0 range 3 * Bits .. 3 * Bits + Bits - 1;
E4 at 0 range 4 * Bits .. 4 * Bits + Bits - 1;
end record;
for Cluster4'Size use Bits * (1 + 4);
for Cluster4'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC4 is new Address_To_Access_Conversions (Cluster4);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster4 is new Cluster4
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC4 is new Address_To_Access_Conversions (Rev_Cluster4);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster4U is new Cluster4;
for Cluster4U'Alignment use 1;
package AAC4U is new Address_To_Access_Conversions (Cluster4U);
type Rev_Cluster4U is new Cluster4U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC4U is new Address_To_Access_Conversions (Rev_Cluster4U);
@/even
--------------
-- Cluster5 --
--------------
type Cluster5 is record
E0, E1, E2, E3, E4, E5 : Bits_@@;
end record;
for Cluster5 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
E2 at 0 range 2 * Bits .. 2 * Bits + Bits - 1;
E3 at 0 range 3 * Bits .. 3 * Bits + Bits - 1;
E4 at 0 range 4 * Bits .. 4 * Bits + Bits - 1;
E5 at 0 range 5 * Bits .. 5 * Bits + Bits - 1;
end record;
for Cluster5'Size use Bits * (1 + 5);
for Cluster5'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC5 is new Address_To_Access_Conversions (Cluster5);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster5 is new Cluster5
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC5 is new Address_To_Access_Conversions (Rev_Cluster5);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster5U is new Cluster5;
for Cluster5U'Alignment use 1;
package AAC5U is new Address_To_Access_Conversions (Cluster5U);
type Rev_Cluster5U is new Cluster5U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC5U is new Address_To_Access_Conversions (Rev_Cluster5U);
@/even
--------------
-- Cluster6 --
--------------
type Cluster6 is record
E0, E1, E2, E3, E4, E5, E6 : Bits_@@;
end record;
for Cluster6 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
E2 at 0 range 2 * Bits .. 2 * Bits + Bits - 1;
E3 at 0 range 3 * Bits .. 3 * Bits + Bits - 1;
E4 at 0 range 4 * Bits .. 4 * Bits + Bits - 1;
E5 at 0 range 5 * Bits .. 5 * Bits + Bits - 1;
E6 at 0 range 6 * Bits .. 6 * Bits + Bits - 1;
end record;
for Cluster6'Size use Bits * (1 + 6);
for Cluster6'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC6 is new Address_To_Access_Conversions (Cluster6);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster6 is new Cluster6
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC6 is new Address_To_Access_Conversions (Rev_Cluster6);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster6U is new Cluster6;
for Cluster6U'Alignment use 1;
package AAC6U is new Address_To_Access_Conversions (Cluster6U);
type Rev_Cluster6U is new Cluster6U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC6U is new Address_To_Access_Conversions (Rev_Cluster6U);
@/even
--------------
-- Cluster7 --
--------------
type Cluster7 is record
E0, E1, E2, E3, E4, E5, E6, E7 : Bits_@@;
end record;
for Cluster7 use record
E0 at 0 range 0 * Bits .. 0 * Bits + Bits - 1;
E1 at 0 range 1 * Bits .. 1 * Bits + Bits - 1;
E2 at 0 range 2 * Bits .. 2 * Bits + Bits - 1;
E3 at 0 range 3 * Bits .. 3 * Bits + Bits - 1;
E4 at 0 range 4 * Bits .. 4 * Bits + Bits - 1;
E5 at 0 range 5 * Bits .. 5 * Bits + Bits - 1;
E6 at 0 range 6 * Bits .. 6 * Bits + Bits - 1;
E7 at 0 range 7 * Bits .. 7 * Bits + Bits - 1;
end record;
for Cluster7'Size use Bits * (1 + 7);
for Cluster7'Alignment use Integer'Min (Standard'Maximum_Alignment,
1 +
1 * Boolean'Pos (Bits mod 2 = 0) +
2 * Boolean'Pos (Bits mod 4 = 0));
-- Use maximum possible alignment, given the bit field size, since this
-- will result in the most efficient code possible for the field.
package AAC7 is new Address_To_Access_Conversions (Cluster7);
-- We convert addresses to access values and dereference them instead of
-- directly using overlays in order to work around the implementation of
-- the RM 13.3(19) clause, which would pessimize the generated code.
type Rev_Cluster7 is new Cluster7
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC7 is new Address_To_Access_Conversions (Rev_Cluster7);
@even
-- The following declarations are for the case where the address
-- passed to GetU_@@ or SetU_@@ is not guaranteed to be aligned.
-- These routines are used when the packed array is itself a
-- component of a packed record, and therefore may not be aligned.
type Cluster7U is new Cluster7;
for Cluster7U'Alignment use 1;
package AAC7U is new Address_To_Access_Conversions (Cluster7U);
type Rev_Cluster7U is new Cluster7U
with Bit_Order => Reverse_Bit_Order,
Scalar_Storage_Order => Reverse_Bit_Order;
package Rev_AAC7U is new Address_To_Access_Conversions (Rev_Cluster7U);
@/even
------------
-- Get_@@ --
------------
function Get_@@
(Arr : System.Address;
N : Natural;
Rev_SSO : Boolean) return Bits_@@
is
A : constant System.Address := Arr + Bits * Ofs (Uns (N) / 8);
C0 : constant AAC0.Object_Pointer := AAC0.To_Pointer (A);
C1 : constant AAC1.Object_Pointer := AAC1.To_Pointer (A);
C2 : constant AAC2.Object_Pointer := AAC2.To_Pointer (A);
C3 : constant AAC3.Object_Pointer := AAC3.To_Pointer (A);
C4 : constant AAC4.Object_Pointer := AAC4.To_Pointer (A);
C5 : constant AAC5.Object_Pointer := AAC5.To_Pointer (A);
C6 : constant AAC6.Object_Pointer := AAC6.To_Pointer (A);
C7 : constant AAC7.Object_Pointer := AAC7.To_Pointer (A);
RC0 : constant Rev_AAC0.Object_Pointer := Rev_AAC0.To_Pointer (A);
RC1 : constant Rev_AAC1.Object_Pointer := Rev_AAC1.To_Pointer (A);
RC2 : constant Rev_AAC2.Object_Pointer := Rev_AAC2.To_Pointer (A);
RC3 : constant Rev_AAC3.Object_Pointer := Rev_AAC3.To_Pointer (A);
RC4 : constant Rev_AAC4.Object_Pointer := Rev_AAC4.To_Pointer (A);
RC5 : constant Rev_AAC5.Object_Pointer := Rev_AAC5.To_Pointer (A);
RC6 : constant Rev_AAC6.Object_Pointer := Rev_AAC6.To_Pointer (A);
RC7 : constant Rev_AAC7.Object_Pointer := Rev_AAC7.To_Pointer (A);
begin
return
(if Rev_SSO then
(case N07 (Uns (N) mod 8) is
when 0 => RC0.E0,
when 1 => RC1.E1,
when 2 => RC2.E2,
when 3 => RC3.E3,
when 4 => RC4.E4,
when 5 => RC5.E5,
when 6 => RC6.E6,
when 7 => RC7.E7)
else
(case N07 (Uns (N) mod 8) is
when 0 => C0.E0,
when 1 => C1.E1,
when 2 => C2.E2,
when 3 => C3.E3,
when 4 => C4.E4,
when 5 => C5.E5,
when 6 => C6.E6,
when 7 => C7.E7)
);
end Get_@@;
@even
-------------
-- GetU_@@ --
-------------
function GetU_@@
(Arr : System.Address;
N : Natural;
Rev_SSO : Boolean) return Bits_@@
is
A : constant System.Address := Arr + Bits * Ofs (Uns (N) / 8);
C0 : constant AAC0U.Object_Pointer := AAC0U.To_Pointer (A);
C1 : constant AAC1U.Object_Pointer := AAC1U.To_Pointer (A);
C2 : constant AAC2U.Object_Pointer := AAC2U.To_Pointer (A);
C3 : constant AAC3U.Object_Pointer := AAC3U.To_Pointer (A);
C4 : constant AAC4U.Object_Pointer := AAC4U.To_Pointer (A);
C5 : constant AAC5U.Object_Pointer := AAC5U.To_Pointer (A);
C6 : constant AAC6U.Object_Pointer := AAC6U.To_Pointer (A);
C7 : constant AAC7U.Object_Pointer := AAC7U.To_Pointer (A);
RC0 : constant Rev_AAC0U.Object_Pointer := Rev_AAC0U.To_Pointer (A);
RC1 : constant Rev_AAC1U.Object_Pointer := Rev_AAC1U.To_Pointer (A);
RC2 : constant Rev_AAC2U.Object_Pointer := Rev_AAC2U.To_Pointer (A);
RC3 : constant Rev_AAC3U.Object_Pointer := Rev_AAC3U.To_Pointer (A);
RC4 : constant Rev_AAC4U.Object_Pointer := Rev_AAC4U.To_Pointer (A);
RC5 : constant Rev_AAC5U.Object_Pointer := Rev_AAC5U.To_Pointer (A);
RC6 : constant Rev_AAC6U.Object_Pointer := Rev_AAC6U.To_Pointer (A);
RC7 : constant Rev_AAC7U.Object_Pointer := Rev_AAC7U.To_Pointer (A);
begin
return
(if Rev_SSO then
(case N07 (Uns (N) mod 8) is
when 0 => RC0.E0,
when 1 => RC1.E1,
when 2 => RC2.E2,
when 3 => RC3.E3,
when 4 => RC4.E4,
when 5 => RC5.E5,
when 6 => RC6.E6,
when 7 => RC7.E7)
else
(case N07 (Uns (N) mod 8) is
when 0 => C0.E0,
when 1 => C1.E1,
when 2 => C2.E2,
when 3 => C3.E3,
when 4 => C4.E4,
when 5 => C5.E5,
when 6 => C6.E6,
when 7 => C7.E7)
);
end GetU_@@;
@/even
------------
-- Set_@@ --
------------
procedure Set_@@
(Arr : System.Address;
N : Natural;
E : Bits_@@;
Rev_SSO : Boolean)
is
A : constant System.Address := Arr + Bits * Ofs (Uns (N) / 8);
C0 : constant AAC0.Object_Pointer := AAC0.To_Pointer (A);
C1 : constant AAC1.Object_Pointer := AAC1.To_Pointer (A);
C2 : constant AAC2.Object_Pointer := AAC2.To_Pointer (A);
C3 : constant AAC3.Object_Pointer := AAC3.To_Pointer (A);
C4 : constant AAC4.Object_Pointer := AAC4.To_Pointer (A);
C5 : constant AAC5.Object_Pointer := AAC5.To_Pointer (A);
C6 : constant AAC6.Object_Pointer := AAC6.To_Pointer (A);
C7 : constant AAC7.Object_Pointer := AAC7.To_Pointer (A);
RC0 : constant Rev_AAC0.Object_Pointer := Rev_AAC0.To_Pointer (A);
RC1 : constant Rev_AAC1.Object_Pointer := Rev_AAC1.To_Pointer (A);
RC2 : constant Rev_AAC2.Object_Pointer := Rev_AAC2.To_Pointer (A);
RC3 : constant Rev_AAC3.Object_Pointer := Rev_AAC3.To_Pointer (A);
RC4 : constant Rev_AAC4.Object_Pointer := Rev_AAC4.To_Pointer (A);
RC5 : constant Rev_AAC5.Object_Pointer := Rev_AAC5.To_Pointer (A);
RC6 : constant Rev_AAC6.Object_Pointer := Rev_AAC6.To_Pointer (A);
RC7 : constant Rev_AAC7.Object_Pointer := Rev_AAC7.To_Pointer (A);
begin
if Rev_SSO then
case N07 (Uns (N) mod 8) is
when 0 => RC0.E0 := E;
when 1 => RC1.E1 := E;
when 2 => RC2.E2 := E;
when 3 => RC3.E3 := E;
when 4 => RC4.E4 := E;
when 5 => RC5.E5 := E;
when 6 => RC6.E6 := E;
when 7 => RC7.E7 := E;
end case;
else
case N07 (Uns (N) mod 8) is
when 0 => C0.E0 := E;
when 1 => C1.E1 := E;
when 2 => C2.E2 := E;
when 3 => C3.E3 := E;
when 4 => C4.E4 := E;
when 5 => C5.E5 := E;
when 6 => C6.E6 := E;
when 7 => C7.E7 := E;
end case;
end if;
end Set_@@;
@even
-------------
-- SetU_@@ --
-------------
procedure SetU_@@
(Arr : System.Address;
N : Natural;
E : Bits_@@;
Rev_SSO : Boolean)
is
A : constant System.Address := Arr + Bits * Ofs (Uns (N) / 8);
C0 : constant AAC0U.Object_Pointer := AAC0U.To_Pointer (A);
C1 : constant AAC1U.Object_Pointer := AAC1U.To_Pointer (A);
C2 : constant AAC2U.Object_Pointer := AAC2U.To_Pointer (A);
C3 : constant AAC3U.Object_Pointer := AAC3U.To_Pointer (A);
C4 : constant AAC4U.Object_Pointer := AAC4U.To_Pointer (A);
C5 : constant AAC5U.Object_Pointer := AAC5U.To_Pointer (A);
C6 : constant AAC6U.Object_Pointer := AAC6U.To_Pointer (A);
C7 : constant AAC7U.Object_Pointer := AAC7U.To_Pointer (A);
RC0 : constant Rev_AAC0U.Object_Pointer := Rev_AAC0U.To_Pointer (A);
RC1 : constant Rev_AAC1U.Object_Pointer := Rev_AAC1U.To_Pointer (A);
RC2 : constant Rev_AAC2U.Object_Pointer := Rev_AAC2U.To_Pointer (A);
RC3 : constant Rev_AAC3U.Object_Pointer := Rev_AAC3U.To_Pointer (A);
RC4 : constant Rev_AAC4U.Object_Pointer := Rev_AAC4U.To_Pointer (A);
RC5 : constant Rev_AAC5U.Object_Pointer := Rev_AAC5U.To_Pointer (A);
RC6 : constant Rev_AAC6U.Object_Pointer := Rev_AAC6U.To_Pointer (A);
RC7 : constant Rev_AAC7U.Object_Pointer := Rev_AAC7U.To_Pointer (A);
begin
if Rev_SSO then
case N07 (Uns (N) mod 8) is
when 0 => RC0.E0 := E;
when 1 => RC1.E1 := E;
when 2 => RC2.E2 := E;
when 3 => RC3.E3 := E;
when 4 => RC4.E4 := E;
when 5 => RC5.E5 := E;
when 6 => RC6.E6 := E;
when 7 => RC7.E7 := E;
end case;
else
case N07 (Uns (N) mod 8) is
when 0 => C0.E0 := E;
when 1 => C1.E1 := E;
when 2 => C2.E2 := E;
when 3 => C3.E3 := E;
when 4 => C4.E4 := E;
when 5 => C5.E5 := E;
when 6 => C6.E6 := E;
when 7 => C7.E7 := E;
end case;
end if;
end SetU_@@;
@/even
end System.Pack_@@;
|