1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- P A R _ S C O --
-- --
-- B o d y --
-- --
-- Copyright (C) 2009-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Debug; use Debug;
with Errout; use Errout;
with Lib; use Lib;
with Lib.Util; use Lib.Util;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Output; use Output;
with Put_SCOs;
with SCOs; use SCOs;
with Sem; use Sem;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Table;
with GNAT.HTable; use GNAT.HTable;
with GNAT.Heap_Sort_G;
package body Par_SCO is
--------------------------
-- First-pass SCO table --
--------------------------
-- The Short_Circuit_And_Or pragma enables one to use AND and OR operators
-- in source code while the ones used with booleans will be interpreted as
-- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
-- meaning of these operators is known only after the semantic analysis.
-- However, decision SCOs include short circuit operators only. The SCO
-- information generation pass must be done before expansion, hence before
-- the semantic analysis. Because of this, the SCO information generation
-- is done in two passes.
-- The first one (SCO_Record_Raw, before semantic analysis) completes the
-- SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
-- Then, the semantic analysis determines which operators are promoted to
-- short circuit ones. Finally, the second pass (SCO_Record_Filtered)
-- translates the SCO_Raw_Table to SCO_Table, taking care of removing the
-- remaining AND/OR operators and of adjusting decisions accordingly
-- (splitting decisions, removing empty ones, etc.).
type SCO_Generation_State_Type is (None, Raw, Filtered);
SCO_Generation_State : SCO_Generation_State_Type := None;
-- Keep track of the SCO generation state: this will prevent us from
-- running some steps multiple times (the second pass has to be started
-- from multiple places).
package SCO_Raw_Table is new Table.Table
(Table_Component_Type => SCO_Table_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 500,
Table_Increment => 300,
Table_Name => "Raw_Table");
-----------------------
-- Unit Number Table --
-----------------------
-- This table parallels the SCO_Unit_Table, keeping track of the unit
-- numbers corresponding to the entries made in this table, so that before
-- writing out the SCO information to the ALI file, we can fill in the
-- proper dependency numbers and file names.
-- Note that the zeroth entry is here for convenience in sorting the table;
-- the real lower bound is 1.
package SCO_Unit_Number_Table is new Table.Table
(Table_Component_Type => Unit_Number_Type,
Table_Index_Type => SCO_Unit_Index,
Table_Low_Bound => 0, -- see note above on sort
Table_Initial => 20,
Table_Increment => 200,
Table_Name => "SCO_Unit_Number_Entry");
------------------------------------------
-- Condition/Operator/Pragma Hash Table --
------------------------------------------
-- We need to be able to get to conditions quickly for handling the calls
-- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
-- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
-- Set_SCO_Logical_Operator). For this purpose we identify the conditions,
-- operators and pragmas in the table by their starting sloc, and use this
-- hash table to map from these sloc values to SCO_Table indexes.
type Header_Num is new Integer range 0 .. 996;
-- Type for hash table headers
function Hash (F : Source_Ptr) return Header_Num;
-- Function to Hash source pointer value
function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
-- Function to test two keys for equality
function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
-- Function to test for source locations order
package SCO_Raw_Hash_Table is new Simple_HTable
(Header_Num, Int, 0, Source_Ptr, Hash, Equal);
-- The actual hash table
--------------------------
-- Internal Subprograms --
--------------------------
function Has_Decision (N : Node_Id) return Boolean;
-- N is the node for a subexpression. Returns True if the subexpression
-- contains a nested decision (i.e. either is a logical operator, or
-- contains a logical operator in its subtree).
--
-- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
-- operators are considered as short circuit, just in case the
-- Short_Circuit_And_Or pragma is used: only real short circuit operations
-- will be kept in the secord pass.
type Tristate is (False, True, Unknown);
function Is_Logical_Operator (N : Node_Id) return Tristate;
-- N is the node for a subexpression. This procedure determines whether N
-- is a logical operator: True for short circuit conditions, Unknown for OR
-- and AND (the Short_Circuit_And_Or pragma may be used) and False
-- otherwise. Note that in cases where True is returned, callers assume
-- Nkind (N) in N_Op.
function To_Source_Location (S : Source_Ptr) return Source_Location;
-- Converts Source_Ptr value to Source_Location (line/col) format
procedure Process_Decisions
(N : Node_Id;
T : Character;
Pragma_Sloc : Source_Ptr);
-- If N is Empty, has no effect. Otherwise scans the tree for the node N,
-- to output any decisions it contains. T is one of IEGPWX (for context of
-- expression: if/exit when/entry guard/pragma/while/expression). If T is
-- other than X, the node N is the if expression involved, and a decision
-- is always present (at the very least a simple decision is present at the
-- top level).
procedure Process_Decisions
(L : List_Id;
T : Character;
Pragma_Sloc : Source_Ptr);
-- Calls above procedure for each element of the list L
procedure Set_Raw_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean;
Pragma_Sloc : Source_Ptr := No_Location;
Pragma_Aspect_Name : Name_Id := No_Name);
-- Append an entry to SCO_Raw_Table with fields set as per arguments
type Dominant_Info is record
K : Character;
-- F/T/S/E for a valid dominance marker, or ' ' for no dominant
N : Node_Id;
-- Node providing the Sloc(s) for the dominance marker
end record;
No_Dominant : constant Dominant_Info := (' ', Empty);
procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
-- Add one entry from the instance table to the corresponding SCO table
procedure Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty);
-- Process L, a list of statements or declarations dominated by D. If P is
-- present, it is processed as though it had been prepended to L.
function Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty) return Dominant_Info;
-- Same as above, and returns dominant information corresponding to the
-- last node with SCO in L.
-- The following Traverse_* routines perform appropriate calls to
-- Traverse_Declarations_Or_Statements to traverse specific node kinds.
-- Parameter D, when present, indicates the dominant of the first
-- declaration or statement within N.
procedure Traverse_Generic_Package_Declaration (N : Node_Id);
procedure Traverse_Handled_Statement_Sequence
(N : Node_Id;
D : Dominant_Info := No_Dominant);
procedure Traverse_Package_Body (N : Node_Id);
procedure Traverse_Package_Declaration
(N : Node_Id;
D : Dominant_Info := No_Dominant);
procedure Traverse_Subprogram_Or_Task_Body
(N : Node_Id;
D : Dominant_Info := No_Dominant);
procedure Traverse_Protected_Or_Task_Definition (N : Node_Id);
-- Note regarding traversals: In a few cases where an Alternatives list is
-- involved, pragmas such as "pragma Page" may show up before the first
-- alternative. We skip them because we're out of statement or declaration
-- context, so these can't be pragmas of interest for SCO purposes, and
-- the regular alternative processing typically involves attribute queries
-- which aren't valid for a pragma.
procedure Write_SCOs_To_ALI_File is new Put_SCOs;
-- Write SCO information to the ALI file using routines in Lib.Util
----------
-- dsco --
----------
procedure dsco is
procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
-- Dump a SCO table entry
----------------
-- Dump_Entry --
----------------
procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
begin
Write_Str (" ");
Write_Int (Index);
Write_Char ('.');
if T.C1 /= ' ' then
Write_Str (" C1 = '");
Write_Char (T.C1);
Write_Char (''');
end if;
if T.C2 /= ' ' then
Write_Str (" C2 = '");
Write_Char (T.C2);
Write_Char (''');
end if;
if T.From /= No_Source_Location then
Write_Str (" From = ");
Write_Int (Int (T.From.Line));
Write_Char (':');
Write_Int (Int (T.From.Col));
end if;
if T.To /= No_Source_Location then
Write_Str (" To = ");
Write_Int (Int (T.To.Line));
Write_Char (':');
Write_Int (Int (T.To.Col));
end if;
if T.Last then
Write_Str (" True");
else
Write_Str (" False");
end if;
Write_Eol;
end Dump_Entry;
-- Start of processing for dsco
begin
-- Dump SCO unit table
Write_Line ("SCO Unit Table");
Write_Line ("--------------");
for Index in 1 .. SCO_Unit_Table.Last loop
declare
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
begin
Write_Str (" ");
Write_Int (Int (Index));
Write_Str (" Dep_Num = ");
Write_Int (Int (UTE.Dep_Num));
Write_Str (" From = ");
Write_Int (Int (UTE.From));
Write_Str (" To = ");
Write_Int (Int (UTE.To));
Write_Str (" File_Name = """);
if UTE.File_Name /= null then
Write_Str (UTE.File_Name.all);
end if;
Write_Char ('"');
Write_Eol;
end;
end loop;
-- Dump SCO Unit number table if it contains any entries
if SCO_Unit_Number_Table.Last >= 1 then
Write_Eol;
Write_Line ("SCO Unit Number Table");
Write_Line ("---------------------");
for Index in 1 .. SCO_Unit_Number_Table.Last loop
Write_Str (" ");
Write_Int (Int (Index));
Write_Str (". Unit_Number = ");
Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
Write_Eol;
end loop;
end if;
-- Dump SCO raw-table
Write_Eol;
Write_Line ("SCO Raw Table");
Write_Line ("---------");
if SCO_Generation_State = Filtered then
Write_Line ("Empty (free'd after second pass)");
else
for Index in 1 .. SCO_Raw_Table.Last loop
Dump_Entry (Index, SCO_Raw_Table.Table (Index));
end loop;
end if;
-- Dump SCO table itself
Write_Eol;
Write_Line ("SCO Filtered Table");
Write_Line ("---------");
for Index in 1 .. SCO_Table.Last loop
Dump_Entry (Index, SCO_Table.Table (Index));
end loop;
end dsco;
-----------
-- Equal --
-----------
function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
begin
return F1 = F2;
end Equal;
-------
-- < --
-------
function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
begin
return S1.Line < S2.Line
or else (S1.Line = S2.Line and then S1.Col < S2.Col);
end "<";
------------------
-- Has_Decision --
------------------
function Has_Decision (N : Node_Id) return Boolean is
function Check_Node (N : Node_Id) return Traverse_Result;
-- Determine if Nkind (N) indicates the presence of a decision (i.e. N
-- is a logical operator, which is a decision in itself, or an
-- IF-expression whose Condition attribute is a decision, or a
-- quantified expression, whose predicate is a decision).
----------------
-- Check_Node --
----------------
function Check_Node (N : Node_Id) return Traverse_Result is
begin
-- If we are not sure this is a logical operator (AND and OR may be
-- turned into logical operators with the Short_Circuit_And_Or
-- pragma), assume it is. Putative decisions will be discarded if
-- needed in the second pass.
if Is_Logical_Operator (N) /= False
or else Nkind (N) = N_If_Expression
or else Nkind (N) = N_Quantified_Expression
then
return Abandon;
else
return OK;
end if;
end Check_Node;
function Traverse is new Traverse_Func (Check_Node);
-- Start of processing for Has_Decision
begin
return Traverse (N) = Abandon;
end Has_Decision;
----------
-- Hash --
----------
function Hash (F : Source_Ptr) return Header_Num is
begin
return Header_Num (Nat (F) mod 997);
end Hash;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
SCO_Unit_Number_Table.Init;
-- The SCO_Unit_Number_Table entry with index 0 is intentionally set
-- aside to be used as temporary for sorting.
SCO_Unit_Number_Table.Increment_Last;
end Initialize;
-------------------------
-- Is_Logical_Operator --
-------------------------
function Is_Logical_Operator (N : Node_Id) return Tristate is
begin
if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then
return True;
elsif Nkind (N) in N_Op_And | N_Op_Or then
return Unknown;
else
return False;
end if;
end Is_Logical_Operator;
-----------------------
-- Process_Decisions --
-----------------------
-- Version taking a list
procedure Process_Decisions
(L : List_Id;
T : Character;
Pragma_Sloc : Source_Ptr)
is
N : Node_Id;
begin
N := First (L);
while Present (N) loop
Process_Decisions (N, T, Pragma_Sloc);
Next (N);
end loop;
end Process_Decisions;
-- Version taking a node
Current_Pragma_Sloc : Source_Ptr := No_Location;
-- While processing a pragma, this is set to the sloc of the N_Pragma node
procedure Process_Decisions
(N : Node_Id;
T : Character;
Pragma_Sloc : Source_Ptr)
is
Mark : Nat;
-- This is used to mark the location of a decision sequence in the SCO
-- table. We use it for backing out a simple decision in an expression
-- context that contains only NOT operators.
Mark_Hash : Nat;
-- Likewise for the putative SCO_Raw_Hash_Table entries: see below
type Hash_Entry is record
Sloc : Source_Ptr;
SCO_Index : Nat;
end record;
-- We must register all conditions/pragmas in SCO_Raw_Hash_Table.
-- However we cannot register them in the same time we are adding the
-- corresponding SCO entries to the raw table since we may discard them
-- later on. So instead we put all putative conditions into Hash_Entries
-- (see below) and register them once we are sure we keep them.
--
-- This data structure holds the conditions/pragmas to register in
-- SCO_Raw_Hash_Table.
package Hash_Entries is new Table.Table
(Table_Component_Type => Hash_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 10,
Table_Increment => 10,
Table_Name => "Hash_Entries");
-- Hold temporarily (i.e. free'd before returning) the Hash_Entry before
-- they are registered in SCO_Raw_Hash_Table.
X_Not_Decision : Boolean;
-- This flag keeps track of whether a decision sequence in the SCO table
-- contains only NOT operators, and is for an expression context (T=X).
-- The flag will be set False if T is other than X, or if an operator
-- other than NOT is in the sequence.
procedure Output_Decision_Operand (N : Node_Id);
-- The node N is the top level logical operator of a decision, or it is
-- one of the operands of a logical operator belonging to a single
-- complex decision. This routine outputs the sequence of table entries
-- corresponding to the node. Note that we do not process the sub-
-- operands to look for further decisions, that processing is done in
-- Process_Decision_Operand, because we can't get decisions mixed up in
-- the global table. Call has no effect if N is Empty.
procedure Output_Element (N : Node_Id);
-- Node N is an operand of a logical operator that is not itself a
-- logical operator, or it is a simple decision. This routine outputs
-- the table entry for the element, with C1 set to ' '. Last is set
-- False, and an entry is made in the condition hash table.
procedure Output_Header (T : Character);
-- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
-- PRAGMA, and 'X' for the expression case.
procedure Process_Decision_Operand (N : Node_Id);
-- This is called on node N, the top level node of a decision, or on one
-- of its operands or suboperands after generating the full output for
-- the complex decision. It process the suboperands of the decision
-- looking for nested decisions.
function Process_Node (N : Node_Id) return Traverse_Result;
-- Processes one node in the traversal, looking for logical operators,
-- and if one is found, outputs the appropriate table entries.
-----------------------------
-- Output_Decision_Operand --
-----------------------------
procedure Output_Decision_Operand (N : Node_Id) is
C1 : Character;
C2 : Character;
-- C1 holds a character that identifies the operation while C2
-- indicates whether we are sure (' ') or not ('?') this operation
-- belongs to the decision. '?' entries will be filtered out in the
-- second (SCO_Record_Filtered) pass.
L : Node_Id;
T : Tristate;
begin
if No (N) then
return;
end if;
T := Is_Logical_Operator (N);
-- Logical operator
if T /= False then
if Nkind (N) = N_Op_Not then
C1 := '!';
L := Empty;
else
L := Left_Opnd (N);
if Nkind (N) in N_Op_Or | N_Or_Else then
C1 := '|';
else pragma Assert (Nkind (N) in N_Op_And | N_And_Then);
C1 := '&';
end if;
end if;
if T = True then
C2 := ' ';
else
C2 := '?';
end if;
Set_Raw_Table_Entry
(C1 => C1,
C2 => C2,
From => Sloc (N),
To => No_Location,
Last => False);
Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
Output_Decision_Operand (L);
Output_Decision_Operand (Right_Opnd (N));
-- Not a logical operator
else
Output_Element (N);
end if;
end Output_Decision_Operand;
--------------------
-- Output_Element --
--------------------
procedure Output_Element (N : Node_Id) is
FSloc : Source_Ptr;
LSloc : Source_Ptr;
begin
Sloc_Range (N, FSloc, LSloc);
Set_Raw_Table_Entry
(C1 => ' ',
C2 => 'c',
From => FSloc,
To => LSloc,
Last => False);
Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
end Output_Element;
-------------------
-- Output_Header --
-------------------
procedure Output_Header (T : Character) is
Loc : Source_Ptr := No_Location;
-- Node whose Sloc is used for the decision
Nam : Name_Id := No_Name;
-- For the case of an aspect, aspect name
begin
case T is
when 'I' | 'E' | 'W' | 'a' | 'A' =>
-- For IF, EXIT, WHILE, or aspects, the token SLOC is that of
-- the parent of the expression.
Loc := Sloc (Parent (N));
if T = 'a' or else T = 'A' then
Nam := Chars (Identifier (Parent (N)));
end if;
when 'G' | 'P' =>
-- For entry guard, the token sloc is from the N_Entry_Body.
-- For PRAGMA, we must get the location from the pragma node.
-- Argument N is the pragma argument, and we have to go up
-- two levels (through the pragma argument association) to
-- get to the pragma node itself. For the guard on a select
-- alternative, we do not have access to the token location for
-- the WHEN, so we use the first sloc of the condition itself.
-- First_Sloc gives the most sensible result, but we have to
-- beware of also using it when computing the dominance marker
-- sloc (in the Set_Statement_Entry procedure), as this is not
-- fully equivalent to the "To" sloc computed by
-- Sloc_Range (Guard, To, From).
if Nkind (Parent (N)) in N_Accept_Alternative
| N_Delay_Alternative
| N_Terminate_Alternative
then
Loc := First_Sloc (N);
else
Loc := Sloc (Parent (Parent (N)));
end if;
when 'X' =>
-- For an expression, no Sloc
null;
-- No other possibilities
when others =>
raise Program_Error;
end case;
Set_Raw_Table_Entry
(C1 => T,
C2 => ' ',
From => Loc,
To => No_Location,
Last => False,
Pragma_Sloc => Pragma_Sloc,
Pragma_Aspect_Name => Nam);
-- For an aspect specification, which will be rewritten into a
-- pragma, enter a hash table entry now.
if T = 'a' then
Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
end if;
end Output_Header;
------------------------------
-- Process_Decision_Operand --
------------------------------
procedure Process_Decision_Operand (N : Node_Id) is
begin
if Is_Logical_Operator (N) /= False then
if Nkind (N) /= N_Op_Not then
Process_Decision_Operand (Left_Opnd (N));
X_Not_Decision := False;
end if;
Process_Decision_Operand (Right_Opnd (N));
else
Process_Decisions (N, 'X', Pragma_Sloc);
end if;
end Process_Decision_Operand;
------------------
-- Process_Node --
------------------
function Process_Node (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
-- Aspect specifications have dedicated processings (see
-- Traverse_Aspects) so ignore them here, so that they are
-- processed only once.
when N_Aspect_Specification =>
return Skip;
-- Logical operators, output table entries and then process
-- operands recursively to deal with nested conditions.
when N_And_Then
| N_Op_And
| N_Op_Not
| N_Op_Or
| N_Or_Else
=>
declare
T : Character;
begin
-- If outer level, then type comes from call, otherwise it
-- is more deeply nested and counts as X for expression.
if N = Process_Decisions.N then
T := Process_Decisions.T;
else
T := 'X';
end if;
-- Output header for sequence
X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
Mark := SCO_Raw_Table.Last;
Mark_Hash := Hash_Entries.Last;
Output_Header (T);
-- Output the decision
Output_Decision_Operand (N);
-- If the decision was in an expression context (T = 'X')
-- and contained only NOT operators, then we don't output
-- it, so delete it.
if X_Not_Decision then
SCO_Raw_Table.Set_Last (Mark);
Hash_Entries.Set_Last (Mark_Hash);
-- Otherwise, set Last in last table entry to mark end
else
SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
end if;
-- Process any embedded decisions
Process_Decision_Operand (N);
return Skip;
end;
-- Case expression
-- Really hard to believe this is correct given the special
-- handling for if expressions below ???
when N_Case_Expression =>
return OK; -- ???
-- If expression, processed like an if statement
when N_If_Expression =>
declare
Cond : constant Node_Id := First (Expressions (N));
Thnx : constant Node_Id := Next (Cond);
Elsx : constant Node_Id := Next (Thnx);
begin
Process_Decisions (Cond, 'I', Pragma_Sloc);
Process_Decisions (Thnx, 'X', Pragma_Sloc);
Process_Decisions (Elsx, 'X', Pragma_Sloc);
return Skip;
end;
when N_Quantified_Expression =>
declare
Cond : constant Node_Id := Condition (N);
I_Spec : Node_Id := Empty;
begin
if Present (Iterator_Specification (N)) then
I_Spec := Iterator_Specification (N);
else
I_Spec := Loop_Parameter_Specification (N);
end if;
Process_Decisions (I_Spec, 'X', Pragma_Sloc);
Process_Decisions (Cond, 'W', Pragma_Sloc);
return Skip;
end;
-- All other cases, continue scan
when others =>
return OK;
end case;
end Process_Node;
procedure Traverse is new Traverse_Proc (Process_Node);
-- Start of processing for Process_Decisions
begin
if No (N) then
return;
end if;
Hash_Entries.Init;
-- See if we have simple decision at outer level and if so then
-- generate the decision entry for this simple decision. A simple
-- decision is a boolean expression (which is not a logical operator
-- or short circuit form) appearing as the operand of an IF, WHILE,
-- EXIT WHEN, or special PRAGMA construct.
if T /= 'X' and then Is_Logical_Operator (N) = False then
Output_Header (T);
Output_Element (N);
-- Change Last in last table entry to True to mark end of
-- sequence, which is this case is only one element long.
SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
end if;
Traverse (N);
-- Now we have the definitive set of SCO entries, register them in the
-- corresponding hash table.
for J in 1 .. Hash_Entries.Last loop
SCO_Raw_Hash_Table.Set
(Hash_Entries.Table (J).Sloc,
Hash_Entries.Table (J).SCO_Index);
end loop;
Hash_Entries.Free;
end Process_Decisions;
-----------
-- pscos --
-----------
procedure pscos is
procedure Write_Info_Char (C : Character) renames Write_Char;
-- Write one character;
procedure Write_Info_Initiate (Key : Character) renames Write_Char;
-- Start new one and write one character;
procedure Write_Info_Nat (N : Nat);
-- Write value of N
procedure Write_Info_Terminate renames Write_Eol;
-- Terminate current line
--------------------
-- Write_Info_Nat --
--------------------
procedure Write_Info_Nat (N : Nat) is
begin
Write_Int (N);
end Write_Info_Nat;
procedure Debug_Put_SCOs is new Put_SCOs;
-- Start of processing for pscos
begin
Debug_Put_SCOs;
end pscos;
---------------------
-- Record_Instance --
---------------------
procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
Inst_Src : constant Source_File_Index :=
Get_Source_File_Index (Inst_Sloc);
begin
SCO_Instance_Table.Append
((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)),
Inst_Loc => To_Source_Location (Inst_Sloc),
Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
pragma Assert
(SCO_Instance_Table.Last = SCO_Instance_Index (Id));
end Record_Instance;
----------------
-- SCO_Output --
----------------
procedure SCO_Output is
procedure Populate_SCO_Instance_Table is
new Sinput.Iterate_On_Instances (Record_Instance);
begin
pragma Assert (SCO_Generation_State = Filtered);
if Debug_Flag_Dot_OO then
dsco;
end if;
Populate_SCO_Instance_Table;
-- Sort the unit tables based on dependency numbers
Unit_Table_Sort : declare
function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
-- Comparison routine for sort call
procedure Move (From : Natural; To : Natural);
-- Move routine for sort call
--------
-- Lt --
--------
function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
begin
return
Dependency_Num
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
<
Dependency_Num
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
SCO_Unit_Table.Table (SCO_Unit_Index (From));
SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
end Move;
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-- Start of processing for Unit_Table_Sort
begin
Sorting.Sort (Integer (SCO_Unit_Table.Last));
end Unit_Table_Sort;
-- Loop through entries in the unit table to set file name and
-- dependency number entries.
for J in 1 .. SCO_Unit_Table.Last loop
declare
U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
begin
Get_Name_String (Reference_Name (Source_Index (U)));
UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
UTE.Dep_Num := Dependency_Num (U);
end;
end loop;
-- Now the tables are all setup for output to the ALI file
Write_SCOs_To_ALI_File;
end SCO_Output;
-------------------------
-- SCO_Pragma_Disabled --
-------------------------
function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
Index : Nat;
begin
if Loc = No_Location then
return False;
end if;
Index := SCO_Raw_Hash_Table.Get (Loc);
-- The test here for zero is to deal with possible previous errors, and
-- for the case of pragma statement SCOs, for which we always set the
-- Pragma_Sloc even if the particular pragma cannot be specifically
-- disabled.
if Index /= 0 then
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
begin
case T.C1 is
when 'S' =>
-- Pragma statement
return T.C2 = 'p';
when 'A' =>
-- Aspect decision (enabled)
return False;
when 'a' =>
-- Aspect decision (not enabled)
return True;
when ASCII.NUL =>
-- Nullified disabled SCO
return True;
when others =>
raise Program_Error;
end case;
end;
else
return False;
end if;
end SCO_Pragma_Disabled;
--------------------
-- SCO_Record_Raw --
--------------------
procedure SCO_Record_Raw (U : Unit_Number_Type) is
procedure Traverse_Aux_Decls (N : Node_Id);
-- Traverse the Aux_Decls_Node of compilation unit N
------------------------
-- Traverse_Aux_Decls --
------------------------
procedure Traverse_Aux_Decls (N : Node_Id) is
ADN : constant Node_Id := Aux_Decls_Node (N);
begin
Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
-- Declarations and Actions do not correspond to source constructs,
-- they contain only nodes from expansion, so at this point they
-- should still be empty:
pragma Assert (No (Declarations (ADN)));
pragma Assert (No (Actions (ADN)));
end Traverse_Aux_Decls;
-- Local variables
From : Nat;
Lu : Node_Id;
-- Start of processing for SCO_Record_Raw
begin
-- It is legitimate to run this pass multiple times (once per unit) so
-- run it even if it was already run before.
pragma Assert (SCO_Generation_State in None .. Raw);
SCO_Generation_State := Raw;
-- Ignore call if not generating code and generating SCO's
if not (Generate_SCO and then Operating_Mode = Generate_Code) then
return;
end if;
-- Ignore call if this unit already recorded
for J in 1 .. SCO_Unit_Number_Table.Last loop
if U = SCO_Unit_Number_Table.Table (J) then
return;
end if;
end loop;
-- Otherwise record starting entry
From := SCO_Raw_Table.Last + 1;
-- Get Unit (checking case of subunit)
Lu := Unit (Cunit (U));
if Nkind (Lu) = N_Subunit then
Lu := Proper_Body (Lu);
end if;
-- Traverse the unit
Traverse_Aux_Decls (Cunit (U));
case Nkind (Lu) is
when N_Generic_Instantiation
| N_Generic_Package_Declaration
| N_Package_Body
| N_Package_Declaration
| N_Protected_Body
| N_Subprogram_Body
| N_Subprogram_Declaration
| N_Task_Body
=>
Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
-- All other cases of compilation units (e.g. renamings), generate no
-- SCO information.
when others =>
null;
end case;
-- Make entry for new unit in unit tables, we will fill in the file
-- name and dependency numbers later.
SCO_Unit_Table.Append (
(Dep_Num => 0,
File_Name => null,
File_Index => Get_Source_File_Index (Sloc (Lu)),
From => From,
To => SCO_Raw_Table.Last));
SCO_Unit_Number_Table.Append (U);
end SCO_Record_Raw;
-----------------------
-- Set_SCO_Condition --
-----------------------
procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
-- SCO annotations are not processed after the filtering pass
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
Constant_Condition_Code : constant array (Boolean) of Character :=
(False => 'f', True => 't');
Orig : constant Node_Id := Original_Node (Cond);
Dummy : Source_Ptr;
Index : Nat;
Start : Source_Ptr;
begin
Sloc_Range (Orig, Start, Dummy);
Index := SCO_Raw_Hash_Table.Get (Start);
-- Index can be zero for boolean expressions that do not have SCOs
-- (simple decisions outside of a control flow structure), or in case
-- of a previous error.
if Index = 0 then
return;
else
pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
end if;
end Set_SCO_Condition;
------------------------------
-- Set_SCO_Logical_Operator --
------------------------------
procedure Set_SCO_Logical_Operator (Op : Node_Id) is
-- SCO annotations are not processed after the filtering pass
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
Orig : constant Node_Id := Original_Node (Op);
Orig_Sloc : constant Source_Ptr := Sloc (Orig);
Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc);
begin
-- All (putative) logical operators are supposed to have their own entry
-- in the SCOs table. However, the semantic analysis may invoke this
-- subprogram with nodes that are out of the SCO generation scope.
if Index /= 0 then
SCO_Raw_Table.Table (Index).C2 := ' ';
end if;
end Set_SCO_Logical_Operator;
----------------------------
-- Set_SCO_Pragma_Enabled --
----------------------------
procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
-- SCO annotations are not processed after the filtering pass
pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
Index : Nat;
begin
-- Nothing to do if not generating SCO, or if we're not processing the
-- original source occurrence of the pragma.
if not (Generate_SCO
and then In_Extended_Main_Source_Unit (Loc)
and then not (In_Instance or In_Inlined_Body))
then
return;
end if;
-- Note: the reason we use the Sloc value as the key is that in the
-- generic case, the call to this procedure is made on a copy of the
-- original node, so we can't use the Node_Id value.
Index := SCO_Raw_Hash_Table.Get (Loc);
-- A zero index here indicates that semantic analysis found an
-- activated pragma at Loc which does not have a corresponding pragma
-- or aspect at the syntax level. This may occur in legitimate cases
-- because of expanded code (such are Pre/Post conditions generated for
-- formal parameter validity checks), or as a consequence of a previous
-- error.
if Index = 0 then
return;
else
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
begin
-- Note: may be called multiple times for the same sloc, so
-- account for the fact that the entry may already have been
-- marked enabled.
case T.C1 is
-- Aspect (decision SCO)
when 'a' =>
T.C1 := 'A';
when 'A' =>
null;
-- Pragma (statement SCO)
when 'S' =>
pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
T.C2 := 'P';
when others =>
raise Program_Error;
end case;
end;
end if;
end Set_SCO_Pragma_Enabled;
-------------------------
-- Set_Raw_Table_Entry --
-------------------------
procedure Set_Raw_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean;
Pragma_Sloc : Source_Ptr := No_Location;
Pragma_Aspect_Name : Name_Id := No_Name)
is
pragma Assert (SCO_Generation_State = Raw);
begin
SCO_Raw_Table.Append
((C1 => C1,
C2 => C2,
From => To_Source_Location (From),
To => To_Source_Location (To),
Last => Last,
Pragma_Sloc => Pragma_Sloc,
Pragma_Aspect_Name => Pragma_Aspect_Name));
end Set_Raw_Table_Entry;
------------------------
-- To_Source_Location --
------------------------
function To_Source_Location (S : Source_Ptr) return Source_Location is
begin
if S = No_Location then
return No_Source_Location;
else
return
(Line => Get_Logical_Line_Number (S),
Col => Get_Column_Number (S));
end if;
end To_Source_Location;
-----------------------------------------
-- Traverse_Declarations_Or_Statements --
-----------------------------------------
-- Tables used by Traverse_Declarations_Or_Statements for temporarily
-- holding statement and decision entries. These are declared globally
-- since they are shared by recursive calls to this procedure.
type SC_Entry is record
N : Node_Id;
From : Source_Ptr;
To : Source_Ptr;
Typ : Character;
end record;
-- Used to store a single entry in the following table, From:To represents
-- the range of entries in the CS line entry, and typ is the type, with
-- space meaning that no type letter will accompany the entry.
package SC is new Table.Table
(Table_Component_Type => SC_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "SCO_SC");
-- Used to store statement components for a CS entry to be output as a
-- result of the call to this procedure. SC.Last is the last entry stored,
-- so the current statement sequence is represented by SC_Array (SC_First
-- .. SC.Last), where SC_First is saved on entry to each recursive call to
-- the routine.
--
-- Extend_Statement_Sequence adds an entry to this array, and then
-- Set_Statement_Entry clears the entries starting with SC_First, copying
-- these entries to the main SCO output table. The reason that we do the
-- temporary caching of results in this array is that we want the SCO table
-- entries for a given CS line to be contiguous, and the processing may
-- output intermediate entries such as decision entries.
type SD_Entry is record
Nod : Node_Id;
Lst : List_Id;
Typ : Character;
Plo : Source_Ptr;
end record;
-- Used to store a single entry in the following table. Nod is the node to
-- be searched for decisions for the case of Process_Decisions_Defer with a
-- node argument (with Lst set to No_List. Lst is the list to be searched
-- for decisions for the case of Process_Decisions_Defer with a List
-- argument (in which case Nod is set to Empty). Plo is the sloc of the
-- enclosing pragma, if any.
package SD is new Table.Table
(Table_Component_Type => SD_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "SCO_SD");
-- Used to store possible decision information. Instead of calling the
-- Process_Decisions procedures directly, we call Process_Decisions_Defer,
-- which simply stores the arguments in this table. Then when we clear
-- out a statement sequence using Set_Statement_Entry, after generating
-- the CS lines for the statements, the entries in this table result in
-- calls to Process_Decision. The reason for doing things this way is to
-- ensure that decisions are output after the CS line for the statements
-- in which the decisions occur.
procedure Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty)
is
Discard_Dom : Dominant_Info;
pragma Warnings (Off, Discard_Dom);
begin
Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
end Traverse_Declarations_Or_Statements;
function Traverse_Declarations_Or_Statements
(L : List_Id;
D : Dominant_Info := No_Dominant;
P : Node_Id := Empty) return Dominant_Info
is
Current_Dominant : Dominant_Info := D;
-- Dominance information for the current basic block
Current_Test : Node_Id;
-- Conditional node (N_If_Statement or N_Elsif being processed)
N : Node_Id;
SC_First : constant Nat := SC.Last + 1;
SD_First : constant Nat := SD.Last + 1;
-- Record first entries used in SC/SD at this recursive level
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
-- Extend the current statement sequence to encompass the node N. Typ is
-- the letter that identifies the type of statement/declaration that is
-- being added to the sequence.
procedure Process_Decisions_Defer (N : Node_Id; T : Character);
pragma Inline (Process_Decisions_Defer);
-- This routine is logically the same as Process_Decisions, except that
-- the arguments are saved in the SD table for later processing when
-- Set_Statement_Entry is called, which goes through the saved entries
-- making the corresponding calls to Process_Decision. Note: the
-- enclosing statement must have already been added to the current
-- statement sequence, so that nested decisions are properly
-- identified as such.
procedure Process_Decisions_Defer (L : List_Id; T : Character);
pragma Inline (Process_Decisions_Defer);
-- Same case for list arguments, deferred call to Process_Decisions
procedure Set_Statement_Entry;
-- Output CS entries for all statements saved in table SC, and end the
-- current CS sequence. Then output entries for all decisions nested in
-- these statements, which have been deferred so far.
procedure Traverse_One (N : Node_Id);
-- Traverse one declaration or statement
procedure Traverse_Aspects (N : Node_Id);
-- Helper for Traverse_One: traverse N's aspect specifications
procedure Traverse_Degenerate_Subprogram (N : Node_Id);
-- Common code to handle null procedures and expression functions. Emit
-- a SCO of the given Kind and N outside of the dominance flow.
-------------------------------
-- Extend_Statement_Sequence --
-------------------------------
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
Dummy : Source_Ptr;
F : Source_Ptr;
T : Source_Ptr;
To_Node : Node_Id := Empty;
begin
Sloc_Range (N, F, T);
case Nkind (N) is
when N_Accept_Statement =>
if Present (Parameter_Specifications (N)) then
To_Node := Last (Parameter_Specifications (N));
elsif Present (Entry_Index (N)) then
To_Node := Entry_Index (N);
else
To_Node := Entry_Direct_Name (N);
end if;
when N_Case_Statement =>
To_Node := Expression (N);
when N_Elsif_Part
| N_If_Statement
=>
To_Node := Condition (N);
when N_Extended_Return_Statement =>
To_Node := Last (Return_Object_Declarations (N));
when N_Loop_Statement =>
To_Node := Iteration_Scheme (N);
when N_Asynchronous_Select
| N_Conditional_Entry_Call
| N_Selective_Accept
| N_Single_Protected_Declaration
| N_Single_Task_Declaration
| N_Timed_Entry_Call
=>
T := F;
when N_Protected_Type_Declaration
| N_Task_Type_Declaration
=>
if Has_Aspects (N) then
To_Node := Last (Aspect_Specifications (N));
elsif Present (Discriminant_Specifications (N)) then
To_Node := Last (Discriminant_Specifications (N));
else
To_Node := Defining_Identifier (N);
end if;
when N_Subexpr =>
To_Node := N;
when others =>
null;
end case;
if Present (To_Node) then
Sloc_Range (To_Node, Dummy, T);
end if;
SC.Append ((N, F, T, Typ));
end Extend_Statement_Sequence;
-----------------------------
-- Process_Decisions_Defer --
-----------------------------
procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
begin
SD.Append ((N, No_List, T, Current_Pragma_Sloc));
end Process_Decisions_Defer;
procedure Process_Decisions_Defer (L : List_Id; T : Character) is
begin
SD.Append ((Empty, L, T, Current_Pragma_Sloc));
end Process_Decisions_Defer;
-------------------------
-- Set_Statement_Entry --
-------------------------
procedure Set_Statement_Entry is
SC_Last : constant Int := SC.Last;
SD_Last : constant Int := SD.Last;
begin
-- Output statement entries from saved entries in SC table
for J in SC_First .. SC_Last loop
if J = SC_First then
if Current_Dominant /= No_Dominant then
declare
From : Source_Ptr;
To : Source_Ptr;
begin
Sloc_Range (Current_Dominant.N, From, To);
if Current_Dominant.K /= 'E' then
To := No_Location;
end if;
-- Be consistent with the location determined in
-- Output_Header.
if Current_Dominant.K = 'T'
and then Nkind (Parent (Current_Dominant.N))
in N_Accept_Alternative
| N_Delay_Alternative
| N_Terminate_Alternative
then
From := First_Sloc (Current_Dominant.N);
end if;
Set_Raw_Table_Entry
(C1 => '>',
C2 => Current_Dominant.K,
From => From,
To => To,
Last => False,
Pragma_Sloc => No_Location,
Pragma_Aspect_Name => No_Name);
end;
end if;
end if;
declare
SCE : SC_Entry renames SC.Table (J);
Pragma_Sloc : Source_Ptr := No_Location;
Pragma_Aspect_Name : Name_Id := No_Name;
begin
-- For the case of a statement SCO for a pragma controlled by
-- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
-- those of any nested decision) is emitted only if the pragma
-- is enabled.
if SCE.Typ = 'p' then
Pragma_Sloc := SCE.From;
SCO_Raw_Hash_Table.Set
(Pragma_Sloc, SCO_Raw_Table.Last + 1);
Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
pragma Assert (Pragma_Aspect_Name /= No_Name);
elsif SCE.Typ = 'P' then
Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
pragma Assert (Pragma_Aspect_Name /= No_Name);
end if;
Set_Raw_Table_Entry
(C1 => 'S',
C2 => SCE.Typ,
From => SCE.From,
To => SCE.To,
Last => (J = SC_Last),
Pragma_Sloc => Pragma_Sloc,
Pragma_Aspect_Name => Pragma_Aspect_Name);
end;
end loop;
-- Last statement of basic block, if present, becomes new current
-- dominant.
if SC_Last >= SC_First then
Current_Dominant := ('S', SC.Table (SC_Last).N);
end if;
-- Clear out used section of SC table
SC.Set_Last (SC_First - 1);
-- Output any embedded decisions
for J in SD_First .. SD_Last loop
declare
SDE : SD_Entry renames SD.Table (J);
begin
if Present (SDE.Nod) then
Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
else
Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
end if;
end;
end loop;
-- Clear out used section of SD table
SD.Set_Last (SD_First - 1);
end Set_Statement_Entry;
----------------------
-- Traverse_Aspects --
----------------------
procedure Traverse_Aspects (N : Node_Id) is
AE : Node_Id;
AN : Node_Id;
C1 : Character;
begin
AN := First (Aspect_Specifications (N));
while Present (AN) loop
AE := Expression (AN);
C1 := ASCII.NUL;
case Get_Aspect_Id (AN) is
-- Aspects rewritten into pragmas controlled by a Check_Policy:
-- Current_Pragma_Sloc must be set to the sloc of the aspect
-- specification. The corresponding pragma will have the same
-- sloc. Note that Invariant, Pre, and Post will be enabled if
-- the policy is Check; on the other hand, predicate aspects
-- will be enabled for Check and Ignore (when Add_Predicate
-- is called) because the actual checks occur in client units.
-- When the assertion policy for Predicate is Disable, the
-- SCO remains disabled, because Add_Predicate is never called.
-- Pre/post can have checks in client units too because of
-- inheritance, so should they receive the same treatment???
when Aspect_Dynamic_Predicate
| Aspect_Invariant
| Aspect_Post
| Aspect_Postcondition
| Aspect_Pre
| Aspect_Precondition
| Aspect_Predicate
| Aspect_Static_Predicate
| Aspect_Type_Invariant
=>
C1 := 'a';
-- Other aspects: just process any decision nested in the
-- aspect expression.
when others =>
if Has_Decision (AE) then
C1 := 'X';
end if;
end case;
if C1 /= ASCII.NUL then
pragma Assert (Current_Pragma_Sloc = No_Location);
if C1 = 'a' or else C1 = 'A' then
Current_Pragma_Sloc := Sloc (AN);
end if;
Process_Decisions_Defer (AE, C1);
Current_Pragma_Sloc := No_Location;
end if;
Next (AN);
end loop;
end Traverse_Aspects;
------------------------------------
-- Traverse_Degenerate_Subprogram --
------------------------------------
procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
begin
-- Complete current sequence of statements
Set_Statement_Entry;
declare
Saved_Dominant : constant Dominant_Info := Current_Dominant;
-- Save last statement in current sequence as dominant
begin
-- Output statement SCO for degenerate subprogram body (null
-- statement or freestanding expression) outside of the dominance
-- chain.
Current_Dominant := No_Dominant;
Extend_Statement_Sequence (N, Typ => 'X');
-- For the case of an expression-function, collect decisions
-- embedded in the expression now.
if Nkind (N) in N_Subexpr then
Process_Decisions_Defer (N, 'X');
end if;
Set_Statement_Entry;
-- Restore current dominant information designating last statement
-- in previous sequence (i.e. make the dominance chain skip over
-- the degenerate body).
Current_Dominant := Saved_Dominant;
end;
end Traverse_Degenerate_Subprogram;
------------------
-- Traverse_One --
------------------
procedure Traverse_One (N : Node_Id) is
begin
-- Initialize or extend current statement sequence. Note that for
-- special cases such as IF and Case statements we will modify
-- the range to exclude internal statements that should not be
-- counted as part of the current statement sequence.
case Nkind (N) is
-- Package declaration
when N_Package_Declaration =>
Set_Statement_Entry;
Traverse_Package_Declaration (N, Current_Dominant);
-- Generic package declaration
when N_Generic_Package_Declaration =>
Set_Statement_Entry;
Traverse_Generic_Package_Declaration (N);
-- Package body
when N_Package_Body =>
Set_Statement_Entry;
Traverse_Package_Body (N);
-- Subprogram declaration or subprogram body stub
when N_Expression_Function
| N_Subprogram_Body_Stub
| N_Subprogram_Declaration
=>
declare
Spec : constant Node_Id := Specification (N);
begin
Process_Decisions_Defer
(Parameter_Specifications (Spec), 'X');
-- Case of a null procedure: generate SCO for fictitious
-- NULL statement located at the NULL keyword in the
-- procedure specification.
if Nkind (N) = N_Subprogram_Declaration
and then Nkind (Spec) = N_Procedure_Specification
and then Null_Present (Spec)
then
Traverse_Degenerate_Subprogram (Null_Statement (Spec));
-- Case of an expression function: generate a statement SCO
-- for the expression (and then decision SCOs for any nested
-- decisions).
elsif Nkind (N) = N_Expression_Function then
Traverse_Degenerate_Subprogram (Expression (N));
end if;
end;
-- Entry declaration
when N_Entry_Declaration =>
Process_Decisions_Defer (Parameter_Specifications (N), 'X');
-- Generic subprogram declaration
when N_Generic_Subprogram_Declaration =>
Process_Decisions_Defer
(Generic_Formal_Declarations (N), 'X');
Process_Decisions_Defer
(Parameter_Specifications (Specification (N)), 'X');
-- Task or subprogram body
when N_Subprogram_Body
| N_Task_Body
=>
Set_Statement_Entry;
Traverse_Subprogram_Or_Task_Body (N);
-- Entry body
when N_Entry_Body =>
declare
Cond : constant Node_Id :=
Condition (Entry_Body_Formal_Part (N));
Inner_Dominant : Dominant_Info := No_Dominant;
begin
Set_Statement_Entry;
if Present (Cond) then
Process_Decisions_Defer (Cond, 'G');
-- For an entry body with a barrier, the entry body
-- is dominated by a True evaluation of the barrier.
Inner_Dominant := ('T', N);
end if;
Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
end;
-- Protected body
when N_Protected_Body =>
Set_Statement_Entry;
Traverse_Declarations_Or_Statements (Declarations (N));
-- Exit statement, which is an exit statement in the SCO sense,
-- so it is included in the current statement sequence, but
-- then it terminates this sequence. We also have to process
-- any decisions in the exit statement expression.
when N_Exit_Statement =>
Extend_Statement_Sequence (N, 'E');
Process_Decisions_Defer (Condition (N), 'E');
Set_Statement_Entry;
-- If condition is present, then following statement is
-- only executed if the condition evaluates to False.
if Present (Condition (N)) then
Current_Dominant := ('F', N);
else
Current_Dominant := No_Dominant;
end if;
-- Label, which breaks the current statement sequence, but the
-- label itself is not included in the next statement sequence,
-- since it generates no code.
when N_Label =>
Set_Statement_Entry;
Current_Dominant := No_Dominant;
-- Block statement, which breaks the current statement sequence
when N_Block_Statement =>
Set_Statement_Entry;
-- The first statement in the handled sequence of statements
-- is dominated by the elaboration of the last declaration.
Current_Dominant := Traverse_Declarations_Or_Statements
(L => Declarations (N),
D => Current_Dominant);
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Current_Dominant);
-- If statement, which breaks the current statement sequence,
-- but we include the condition in the current sequence.
when N_If_Statement =>
Current_Test := N;
Extend_Statement_Sequence (N, 'I');
Process_Decisions_Defer (Condition (N), 'I');
Set_Statement_Entry;
-- Now we traverse the statements in the THEN part
Traverse_Declarations_Or_Statements
(L => Then_Statements (N),
D => ('T', N));
-- Loop through ELSIF parts if present
if Present (Elsif_Parts (N)) then
declare
Saved_Dominant : constant Dominant_Info :=
Current_Dominant;
Elif : Node_Id := First (Elsif_Parts (N));
begin
while Present (Elif) loop
-- An Elsif is executed only if the previous test
-- got a FALSE outcome.
Current_Dominant := ('F', Current_Test);
-- Now update current test information
Current_Test := Elif;
-- We generate a statement sequence for the
-- construct "ELSIF condition", so that we have
-- a statement for the resulting decisions.
Extend_Statement_Sequence (Elif, 'I');
Process_Decisions_Defer (Condition (Elif), 'I');
Set_Statement_Entry;
-- An ELSIF part is never guaranteed to have
-- been executed, following statements are only
-- dominated by the initial IF statement.
Current_Dominant := Saved_Dominant;
-- Traverse the statements in the ELSIF
Traverse_Declarations_Or_Statements
(L => Then_Statements (Elif),
D => ('T', Elif));
Next (Elif);
end loop;
end;
end if;
-- Finally traverse the ELSE statements if present
Traverse_Declarations_Or_Statements
(L => Else_Statements (N),
D => ('F', Current_Test));
-- CASE statement, which breaks the current statement sequence,
-- but we include the expression in the current sequence.
when N_Case_Statement =>
Extend_Statement_Sequence (N, 'C');
Process_Decisions_Defer (Expression (N), 'X');
Set_Statement_Entry;
-- Process case branches, all of which are dominated by the
-- CASE statement.
declare
Alt : Node_Id;
begin
Alt := First_Non_Pragma (Alternatives (N));
while Present (Alt) loop
Traverse_Declarations_Or_Statements
(L => Statements (Alt),
D => Current_Dominant);
Next (Alt);
end loop;
end;
-- ACCEPT statement
when N_Accept_Statement =>
Extend_Statement_Sequence (N, 'A');
Set_Statement_Entry;
-- Process sequence of statements, dominant is the ACCEPT
-- statement.
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Current_Dominant);
-- SELECT
when N_Selective_Accept =>
Extend_Statement_Sequence (N, 'S');
Set_Statement_Entry;
-- Process alternatives
declare
Alt : Node_Id;
Guard : Node_Id;
S_Dom : Dominant_Info;
begin
Alt := First (Select_Alternatives (N));
while Present (Alt) loop
S_Dom := Current_Dominant;
Guard := Condition (Alt);
if Present (Guard) then
Process_Decisions
(Guard,
'G',
Pragma_Sloc => No_Location);
Current_Dominant := ('T', Guard);
end if;
Traverse_One (Alt);
Current_Dominant := S_Dom;
Next (Alt);
end loop;
end;
Traverse_Declarations_Or_Statements
(L => Else_Statements (N),
D => Current_Dominant);
when N_Conditional_Entry_Call
| N_Timed_Entry_Call
=>
Extend_Statement_Sequence (N, 'S');
Set_Statement_Entry;
-- Process alternatives
Traverse_One (Entry_Call_Alternative (N));
if Nkind (N) = N_Timed_Entry_Call then
Traverse_One (Delay_Alternative (N));
else
Traverse_Declarations_Or_Statements
(L => Else_Statements (N),
D => Current_Dominant);
end if;
when N_Asynchronous_Select =>
Extend_Statement_Sequence (N, 'S');
Set_Statement_Entry;
Traverse_One (Triggering_Alternative (N));
Traverse_Declarations_Or_Statements
(L => Statements (Abortable_Part (N)),
D => Current_Dominant);
when N_Accept_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Accept_Statement (N));
when N_Entry_Call_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Entry_Call_Statement (N));
when N_Delay_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Delay_Statement (N));
when N_Triggering_Alternative =>
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Current_Dominant,
P => Triggering_Statement (N));
when N_Terminate_Alternative =>
-- It is dubious to emit a statement SCO for a TERMINATE
-- alternative, since no code is actually executed if the
-- alternative is selected -- the tasking runtime call just
-- never returns???
Extend_Statement_Sequence (N, ' ');
Set_Statement_Entry;
-- Unconditional exit points, which are included in the current
-- statement sequence, but then terminate it
when N_Goto_Statement
| N_Raise_Statement
| N_Requeue_Statement
=>
Extend_Statement_Sequence (N, ' ');
Set_Statement_Entry;
Current_Dominant := No_Dominant;
-- Simple return statement. which is an exit point, but we
-- have to process the return expression for decisions.
when N_Simple_Return_Statement =>
Extend_Statement_Sequence (N, ' ');
Process_Decisions_Defer (Expression (N), 'X');
Set_Statement_Entry;
Current_Dominant := No_Dominant;
-- Extended return statement
when N_Extended_Return_Statement =>
Extend_Statement_Sequence (N, 'R');
Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
Set_Statement_Entry;
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Current_Dominant);
Current_Dominant := No_Dominant;
-- Loop ends the current statement sequence, but we include
-- the iteration scheme if present in the current sequence.
-- But the body of the loop starts a new sequence, since it
-- may not be executed as part of the current sequence.
when N_Loop_Statement =>
declare
ISC : constant Node_Id := Iteration_Scheme (N);
Inner_Dominant : Dominant_Info := No_Dominant;
begin
if Present (ISC) then
-- If iteration scheme present, extend the current
-- statement sequence to include the iteration scheme
-- and process any decisions it contains.
-- While loop
if Present (Condition (ISC)) then
Extend_Statement_Sequence (N, 'W');
Process_Decisions_Defer (Condition (ISC), 'W');
-- Set more specific dominant for inner statements
-- (the control sloc for the decision is that of
-- the WHILE token).
Inner_Dominant := ('T', ISC);
-- For loop
else
Extend_Statement_Sequence (N, 'F');
Process_Decisions_Defer
(Loop_Parameter_Specification (ISC), 'X');
end if;
end if;
Set_Statement_Entry;
if Inner_Dominant = No_Dominant then
Inner_Dominant := Current_Dominant;
end if;
Traverse_Declarations_Or_Statements
(L => Statements (N),
D => Inner_Dominant);
end;
-- Pragma
when N_Pragma =>
-- Record sloc of pragma (pragmas don't nest)
pragma Assert (Current_Pragma_Sloc = No_Location);
Current_Pragma_Sloc := Sloc (N);
-- Processing depends on the kind of pragma
declare
Nam : constant Name_Id := Pragma_Name_Unmapped (N);
Arg : Node_Id :=
First (Pragma_Argument_Associations (N));
Typ : Character;
begin
case Nam is
when Name_Assert
| Name_Assert_And_Cut
| Name_Assume
| Name_Check
| Name_Loop_Invariant
| Name_Postcondition
| Name_Precondition
| Name_Type_Invariant
| Name_Invariant
=>
-- For Assert/Check/Precondition/Postcondition, we
-- must generate a P entry for the decision. Note
-- that this is done unconditionally at this stage.
-- Output for disabled pragmas is suppressed later
-- on when we output the decision line in Put_SCOs,
-- depending on setting by Set_SCO_Pragma_Enabled.
if Nam = Name_Check
or else Nam = Name_Type_Invariant
or else Nam = Name_Invariant
then
Next (Arg);
end if;
Process_Decisions_Defer (Expression (Arg), 'P');
Typ := 'p';
-- Pre/postconditions can be inherited so SCO should
-- never be deactivated???
when Name_Debug =>
if Present (Arg) and then Present (Next (Arg)) then
-- Case of a dyadic pragma Debug: first argument
-- is a P decision, any nested decision in the
-- second argument is an X decision.
Process_Decisions_Defer (Expression (Arg), 'P');
Next (Arg);
end if;
Process_Decisions_Defer (Expression (Arg), 'X');
Typ := 'p';
-- For all other pragmas, we generate decision entries
-- for any embedded expressions, and the pragma is
-- never disabled.
-- Should generate P decisions (not X) for assertion
-- related pragmas: [{Static,Dynamic}_]Predicate???
when others =>
Process_Decisions_Defer (N, 'X');
Typ := 'P';
end case;
-- Add statement SCO
Extend_Statement_Sequence (N, Typ);
Current_Pragma_Sloc := No_Location;
end;
-- Object declaration. Ignored if Prev_Ids is set, since the
-- parser generates multiple instances of the whole declaration
-- if there is more than one identifier declared, and we only
-- want one entry in the SCOs, so we take the first, for which
-- Prev_Ids is False.
when N_Number_Declaration
| N_Object_Declaration
=>
if not Prev_Ids (N) then
Extend_Statement_Sequence (N, 'o');
if Has_Decision (N) then
Process_Decisions_Defer (N, 'X');
end if;
end if;
-- All other cases, which extend the current statement sequence
-- but do not terminate it, even if they have nested decisions.
when N_Protected_Type_Declaration
| N_Task_Type_Declaration
=>
Extend_Statement_Sequence (N, 't');
Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
Set_Statement_Entry;
Traverse_Protected_Or_Task_Definition (N);
when N_Single_Protected_Declaration
| N_Single_Task_Declaration
=>
Extend_Statement_Sequence (N, 'o');
Set_Statement_Entry;
Traverse_Protected_Or_Task_Definition (N);
when others =>
-- Determine required type character code, or ASCII.NUL if
-- no SCO should be generated for this node.
declare
NK : constant Node_Kind := Nkind (N);
Typ : Character;
begin
case NK is
when N_Full_Type_Declaration
| N_Incomplete_Type_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
=>
Typ := 't';
when N_Subtype_Declaration =>
Typ := 's';
when N_Renaming_Declaration =>
Typ := 'r';
when N_Generic_Instantiation =>
Typ := 'i';
when N_Package_Body_Stub
| N_Protected_Body_Stub
| N_Representation_Clause
| N_Task_Body_Stub
| N_Use_Package_Clause
| N_Use_Type_Clause
=>
Typ := ASCII.NUL;
when N_Procedure_Call_Statement =>
Typ := ' ';
when others =>
if NK in N_Statement_Other_Than_Procedure_Call then
Typ := ' ';
else
Typ := 'd';
end if;
end case;
if Typ /= ASCII.NUL then
Extend_Statement_Sequence (N, Typ);
end if;
end;
-- Process any embedded decisions
if Has_Decision (N) then
Process_Decisions_Defer (N, 'X');
end if;
end case;
if Permits_Aspect_Specifications (N) then
Traverse_Aspects (N);
end if;
end Traverse_One;
-- Start of processing for Traverse_Declarations_Or_Statements
begin
-- Process single prefixed node
if Present (P) then
Traverse_One (P);
end if;
-- Loop through statements or declarations
N := First (L);
while Present (N) loop
-- Note: For separate bodies, we see the tree after Par.Labl has
-- introduced implicit labels, so we need to ignore those nodes.
if Nkind (N) /= N_Implicit_Label_Declaration then
Traverse_One (N);
end if;
Next (N);
end loop;
-- End sequence of statements and flush deferred decisions
if Present (P) or else Is_Non_Empty_List (L) then
Set_Statement_Entry;
end if;
return Current_Dominant;
end Traverse_Declarations_Or_Statements;
------------------------------------------
-- Traverse_Generic_Package_Declaration --
------------------------------------------
procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
begin
Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
Traverse_Package_Declaration (N);
end Traverse_Generic_Package_Declaration;
-----------------------------------------
-- Traverse_Handled_Statement_Sequence --
-----------------------------------------
procedure Traverse_Handled_Statement_Sequence
(N : Node_Id;
D : Dominant_Info := No_Dominant)
is
Handler : Node_Id;
begin
-- For package bodies without a statement part, the parser adds an empty
-- one, to normalize the representation. The null statement therein,
-- which does not come from source, does not get a SCO.
if Present (N) and then Comes_From_Source (N) then
Traverse_Declarations_Or_Statements (Statements (N), D);
if Present (Exception_Handlers (N)) then
Handler := First_Non_Pragma (Exception_Handlers (N));
while Present (Handler) loop
Traverse_Declarations_Or_Statements
(L => Statements (Handler),
D => ('E', Handler));
Next (Handler);
end loop;
end if;
end if;
end Traverse_Handled_Statement_Sequence;
---------------------------
-- Traverse_Package_Body --
---------------------------
procedure Traverse_Package_Body (N : Node_Id) is
Dom : Dominant_Info;
begin
-- The first statement in the handled sequence of statements is
-- dominated by the elaboration of the last declaration.
Dom := Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence
(Handled_Statement_Sequence (N), Dom);
end Traverse_Package_Body;
----------------------------------
-- Traverse_Package_Declaration --
----------------------------------
procedure Traverse_Package_Declaration
(N : Node_Id;
D : Dominant_Info := No_Dominant)
is
Spec : constant Node_Id := Specification (N);
Dom : Dominant_Info;
begin
Dom :=
Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
-- First private declaration is dominated by last visible declaration
Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
end Traverse_Package_Declaration;
-------------------------------------------
-- Traverse_Protected_Or_Task_Definition --
-------------------------------------------
procedure Traverse_Protected_Or_Task_Definition (N : Node_Id) is
Dom_Info : Dominant_Info := ('S', N);
-- The first declaration is dominated by the protected or task [type]
-- declaration.
Sync_Def : Node_Id;
-- N's protected or task definition
Priv_Decl : List_Id;
Vis_Decl : List_Id;
-- Sync_Def's Visible_Declarations and Private_Declarations
begin
case Nkind (N) is
when N_Protected_Type_Declaration
| N_Single_Protected_Declaration
=>
Sync_Def := Protected_Definition (N);
when N_Single_Task_Declaration
| N_Task_Type_Declaration
=>
Sync_Def := Task_Definition (N);
when others =>
raise Program_Error;
end case;
-- Sync_Def may be Empty at least for empty Task_Type_Declarations.
-- Querying Visible or Private_Declarations is invalid in this case.
if Present (Sync_Def) then
Vis_Decl := Visible_Declarations (Sync_Def);
Priv_Decl := Private_Declarations (Sync_Def);
else
Vis_Decl := No_List;
Priv_Decl := No_List;
end if;
Dom_Info := Traverse_Declarations_Or_Statements
(L => Vis_Decl,
D => Dom_Info);
-- If visible declarations are present, the first private declaration
-- is dominated by the last visible declaration.
Traverse_Declarations_Or_Statements
(L => Priv_Decl,
D => Dom_Info);
end Traverse_Protected_Or_Task_Definition;
--------------------------------------
-- Traverse_Subprogram_Or_Task_Body --
--------------------------------------
procedure Traverse_Subprogram_Or_Task_Body
(N : Node_Id;
D : Dominant_Info := No_Dominant)
is
Decls : constant List_Id := Declarations (N);
Dom_Info : Dominant_Info := D;
begin
-- If declarations are present, the first statement is dominated by the
-- last declaration.
Dom_Info := Traverse_Declarations_Or_Statements
(L => Decls, D => Dom_Info);
Traverse_Handled_Statement_Sequence
(N => Handled_Statement_Sequence (N),
D => Dom_Info);
end Traverse_Subprogram_Or_Task_Body;
-------------------------
-- SCO_Record_Filtered --
-------------------------
procedure SCO_Record_Filtered is
type Decision is record
Kind : Character;
-- Type of the SCO decision (see comments for SCO_Table_Entry.C1)
Sloc : Source_Location;
Top : Nat;
-- Index in the SCO_Raw_Table for the root operator/condition for the
-- expression that controls the decision.
end record;
-- Decision descriptor: used to gather information about a candidate
-- SCO decision.
package Pending_Decisions is new Table.Table
(Table_Component_Type => Decision,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "Filter_Pending_Decisions");
-- Table used to hold decisions to process during the collection pass
procedure Add_Expression_Tree (Idx : in out Nat);
-- Add SCO raw table entries for the decision controlling expression
-- tree starting at Idx to the filtered SCO table.
procedure Collect_Decisions
(D : Decision;
Next : out Nat);
-- Collect decisions to add to the filtered SCO table starting at the
-- D decision (including it and its nested operators/conditions). Set
-- Next to the first node index passed the whole decision.
procedure Compute_Range
(Idx : in out Nat;
From : out Source_Location;
To : out Source_Location);
-- Compute the source location range for the expression tree starting at
-- Idx in the SCO raw table. Store its bounds in From and To.
function Is_Decision (Idx : Nat) return Boolean;
-- Return if the expression tree starting at Idx has adjacent nested
-- nodes that make a decision.
procedure Process_Pending_Decisions
(Original_Decision : SCO_Table_Entry);
-- Complete the filtered SCO table using collected decisions. Output
-- decisions inherit the pragma information from the original decision.
procedure Search_Nested_Decisions (Idx : in out Nat);
-- Collect decisions to add to the filtered SCO table starting at the
-- node at Idx in the SCO raw table. This node must not be part of an
-- already-processed decision. Set Idx to the first node index passed
-- the whole expression tree.
procedure Skip_Decision
(Idx : in out Nat;
Process_Nested_Decisions : Boolean);
-- Skip all the nodes that belong to the decision starting at Idx. If
-- Process_Nested_Decision, call Search_Nested_Decisions on the first
-- nested nodes that do not belong to the decision. Set Idx to the first
-- node index passed the whole expression tree.
-------------------------
-- Add_Expression_Tree --
-------------------------
procedure Add_Expression_Tree (Idx : in out Nat) is
Node_Idx : constant Nat := Idx;
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
From : Source_Location;
To : Source_Location;
begin
case T.C1 is
when ' ' =>
-- This is a single condition. Add an entry for it and move on
SCO_Table.Append (T);
Idx := Idx + 1;
when '!' =>
-- This is a NOT operator: add an entry for it and browse its
-- only child.
SCO_Table.Append (T);
Idx := Idx + 1;
Add_Expression_Tree (Idx);
when others =>
-- This must be an AND/OR/AND THEN/OR ELSE operator
if T.C2 = '?' then
-- This is not a short circuit operator: consider this one
-- and all its children as a single condition.
Compute_Range (Idx, From, To);
SCO_Table.Append
((From => From,
To => To,
C1 => ' ',
C2 => 'c',
Last => False,
Pragma_Sloc => No_Location,
Pragma_Aspect_Name => No_Name));
else
-- This is a real short circuit operator: add an entry for
-- it and browse its children.
SCO_Table.Append (T);
Idx := Idx + 1;
Add_Expression_Tree (Idx);
Add_Expression_Tree (Idx);
end if;
end case;
end Add_Expression_Tree;
-----------------------
-- Collect_Decisions --
-----------------------
procedure Collect_Decisions
(D : Decision;
Next : out Nat)
is
Idx : Nat := D.Top;
begin
if D.Kind /= 'X' or else Is_Decision (D.Top) then
Pending_Decisions.Append (D);
end if;
Skip_Decision (Idx, True);
Next := Idx;
end Collect_Decisions;
-------------------
-- Compute_Range --
-------------------
procedure Compute_Range
(Idx : in out Nat;
From : out Source_Location;
To : out Source_Location)
is
Sloc_F : Source_Location := No_Source_Location;
Sloc_T : Source_Location := No_Source_Location;
procedure Process_One;
-- Process one node of the tree, and recurse over children. Update
-- Idx during the traversal.
-----------------
-- Process_One --
-----------------
procedure Process_One is
begin
if Sloc_F = No_Source_Location
or else
SCO_Raw_Table.Table (Idx).From < Sloc_F
then
Sloc_F := SCO_Raw_Table.Table (Idx).From;
end if;
if Sloc_T = No_Source_Location
or else
Sloc_T < SCO_Raw_Table.Table (Idx).To
then
Sloc_T := SCO_Raw_Table.Table (Idx).To;
end if;
if SCO_Raw_Table.Table (Idx).C1 = ' ' then
-- This is a condition: nothing special to do
Idx := Idx + 1;
elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
-- The "not" operator has only one operand
Idx := Idx + 1;
Process_One;
else
-- This is an AND THEN or OR ELSE logical operator: follow the
-- left, then the right operands.
Idx := Idx + 1;
Process_One;
Process_One;
end if;
end Process_One;
-- Start of processing for Compute_Range
begin
Process_One;
From := Sloc_F;
To := Sloc_T;
end Compute_Range;
-----------------
-- Is_Decision --
-----------------
function Is_Decision (Idx : Nat) return Boolean is
Index : Nat := Idx;
begin
loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
begin
case T.C1 is
when ' ' =>
return False;
when '!' =>
-- This is a decision iff the only operand of the NOT
-- operator could be a standalone decision.
Index := Idx + 1;
when others =>
-- This node is a logical operator (and thus could be a
-- standalone decision) iff it is a short circuit
-- operator.
return T.C2 /= '?';
end case;
end;
end loop;
end Is_Decision;
-------------------------------
-- Process_Pending_Decisions --
-------------------------------
procedure Process_Pending_Decisions
(Original_Decision : SCO_Table_Entry)
is
begin
for Index in 1 .. Pending_Decisions.Last loop
declare
D : Decision renames Pending_Decisions.Table (Index);
Idx : Nat := D.Top;
begin
-- Add a SCO table entry for the decision itself
pragma Assert (D.Kind /= ' ');
SCO_Table.Append
((To => No_Source_Location,
From => D.Sloc,
C1 => D.Kind,
C2 => ' ',
Last => False,
Pragma_Sloc => Original_Decision.Pragma_Sloc,
Pragma_Aspect_Name =>
Original_Decision.Pragma_Aspect_Name));
-- Then add ones for its nested operators/operands. Do not
-- forget to tag its *last* entry as such.
Add_Expression_Tree (Idx);
SCO_Table.Table (SCO_Table.Last).Last := True;
end;
end loop;
-- Clear the pending decisions list
Pending_Decisions.Set_Last (0);
end Process_Pending_Decisions;
-----------------------------
-- Search_Nested_Decisions --
-----------------------------
procedure Search_Nested_Decisions (Idx : in out Nat) is
begin
loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
begin
case T.C1 is
when ' ' =>
Idx := Idx + 1;
exit;
when '!' =>
Collect_Decisions
((Kind => 'X',
Sloc => T.From,
Top => Idx),
Idx);
exit;
when others =>
if T.C2 = '?' then
-- This is not a logical operator: start looking for
-- nested decisions from here. Recurse over the left
-- child and let the loop take care of the right one.
Idx := Idx + 1;
Search_Nested_Decisions (Idx);
else
-- We found a nested decision
Collect_Decisions
((Kind => 'X',
Sloc => T.From,
Top => Idx),
Idx);
exit;
end if;
end case;
end;
end loop;
end Search_Nested_Decisions;
-------------------
-- Skip_Decision --
-------------------
procedure Skip_Decision
(Idx : in out Nat;
Process_Nested_Decisions : Boolean)
is
begin
loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
begin
Idx := Idx + 1;
case T.C1 is
when ' ' =>
exit;
when '!' =>
-- This NOT operator belongs to the outside decision:
-- just skip it.
null;
when others =>
if T.C2 = '?' and then Process_Nested_Decisions then
-- This is not a logical operator: start looking for
-- nested decisions from here. Recurse over the left
-- child and let the loop take care of the right one.
Search_Nested_Decisions (Idx);
else
-- This is a logical operator, so it belongs to the
-- outside decision: skip its left child, then let the
-- loop take care of the right one.
Skip_Decision (Idx, Process_Nested_Decisions);
end if;
end case;
end;
end loop;
end Skip_Decision;
-- Start of processing for SCO_Record_Filtered
begin
-- Filtering must happen only once: do nothing if it this pass was
-- already run.
if SCO_Generation_State = Filtered then
return;
else
pragma Assert (SCO_Generation_State = Raw);
SCO_Generation_State := Filtered;
end if;
-- Loop through all SCO entries under SCO units
for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
declare
Unit : SCO_Unit_Table_Entry
renames SCO_Unit_Table.Table (Unit_Idx);
Idx : Nat := Unit.From;
-- Index of the current SCO raw table entry
New_From : constant Nat := SCO_Table.Last + 1;
-- After copying SCO enties of interest to the final table, we
-- will have to change the From/To indexes this unit targets.
-- This constant keeps track of the new From index.
begin
while Idx <= Unit.To loop
declare
T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
begin
case T.C1 is
-- Decision (of any kind, including pragmas and aspects)
when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
if SCO_Pragma_Disabled (T.Pragma_Sloc) then
-- Skip SCO entries for decisions in disabled
-- constructs (pragmas or aspects).
Idx := Idx + 1;
Skip_Decision (Idx, False);
else
Collect_Decisions
((Kind => T.C1,
Sloc => T.From,
Top => Idx + 1),
Idx);
Process_Pending_Decisions (T);
end if;
-- There is no translation/filtering to do for other kind
-- of SCO items (statements, dominance markers, etc.).
when '|' | '&' | '!' | ' ' =>
-- SCO logical operators and conditions cannot exist
-- on their own: they must be inside a decision (such
-- entries must have been skipped by
-- Collect_Decisions).
raise Program_Error;
when others =>
SCO_Table.Append (T);
Idx := Idx + 1;
end case;
end;
end loop;
-- Now, update the SCO entry indexes in the unit entry
Unit.From := New_From;
Unit.To := SCO_Table.Last;
end;
end loop;
-- Then clear the raw table to free bytes
SCO_Raw_Table.Free;
end SCO_Record_Filtered;
end Par_SCO;
|