1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . V E C T O R S . B O O L E A N _ O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2002-2023, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Ghost code, loop invariants and assertions in this unit are meant for
-- analysis only, not for run-time checking, as it would be too costly
-- otherwise. This is enforced by setting the assertion policy to Ignore.
pragma Assertion_Policy (Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore);
package body System.Vectors.Boolean_Operations
with SPARK_Mode
is
SU : constant := Storage_Unit;
-- Convenient short hand, used throughout
-- The coding of this unit depends on the fact that the Component_Size
-- of a normally declared array of Boolean is equal to Storage_Unit. We
-- can't use the Component_Size directly since it is non-static. The
-- following declaration checks that this declaration is correct
type Boolean_Array is array (Integer range <>) of Boolean;
pragma Compile_Time_Error
(Boolean_Array'Component_Size /= SU, "run time compile failure");
-- NOTE: The boolean literals must be qualified here to avoid visibility
-- anomalies when this package is compiled through Rtsfind, in a context
-- that includes a user-defined type derived from boolean.
True_Val : constant Vector := Standard.True'Enum_Rep
+ Standard.True'Enum_Rep * 2**SU
+ Standard.True'Enum_Rep * 2**(SU * 2)
+ Standard.True'Enum_Rep * 2**(SU * 3)
+ Standard.True'Enum_Rep * 2**(SU * 4)
+ Standard.True'Enum_Rep * 2**(SU * 5)
+ Standard.True'Enum_Rep * 2**(SU * 6)
+ Standard.True'Enum_Rep * 2**(SU * 7);
-- This constant represents the bits to be flipped to perform a logical
-- "not" on a vector of booleans, independent of the actual
-- representation of True.
-- The representations of (False, True) are assumed to be zero/one and
-- the maximum number of unpacked booleans per Vector is assumed to be 8.
pragma Assert (Standard.False'Enum_Rep = 0);
pragma Assert (Standard.True'Enum_Rep = 1);
pragma Assert (Vector'Size / Storage_Unit <= 8);
-- The reason we need to do these gymnastics is that no call to
-- Unchecked_Conversion can be made at the library level since this
-- unit is pure. Also a conversion from the array type to the Vector type
-- inside the body of "not" is inefficient because of alignment issues.
-----------
-- "not" --
-----------
function "not" (Item : Vectors.Vector) return Vectors.Vector is
procedure Prove_Not (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Item)
and then Result = (Item xor True_Val),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) = not Model (Item) (J));
procedure Prove_Not (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) = 1 - Element (Item, J));
end loop;
end Prove_Not;
begin
Prove_Not (Item xor True_Val);
return Item xor True_Val;
end "not";
----------
-- Nand --
----------
function Nand (Left, Right : Boolean) return Boolean is
begin
return not (Left and Right);
end Nand;
function Nand (Left, Right : Vectors.Vector) return Vectors.Vector is
procedure Prove_And (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Left)
and then Valid (Right)
and then Result = (Left and Right),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) =
(Model (Left) (J) and Model (Right) (J)));
procedure Prove_And (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) =
(if Element (Left, J) = 1
and Element (Right, J) = 1
then 1
else 0));
end loop;
end Prove_And;
begin
Prove_And (Left and Right);
return not (Left and Right);
end Nand;
---------
-- Nor --
---------
function Nor (Left, Right : Boolean) return Boolean is
begin
return not (Left or Right);
end Nor;
function Nor (Left, Right : Vectors.Vector) return Vectors.Vector is
procedure Prove_Or (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Left)
and then Valid (Right)
and then Result = (Left or Right),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) =
(Model (Left) (J) or Model (Right) (J)));
procedure Prove_Or (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) =
(if Element (Left, J) = 1
or Element (Right, J) = 1
then 1
else 0));
end loop;
end Prove_Or;
begin
Prove_Or (Left or Right);
return not (Left or Right);
end Nor;
----------
-- Nxor --
----------
function Nxor (Left, Right : Boolean) return Boolean is
begin
return not (Left xor Right);
end Nxor;
function Nxor (Left, Right : Vectors.Vector) return Vectors.Vector is
procedure Prove_Xor (Result : Vectors.Vector)
with
Ghost,
Pre => Valid (Left)
and then Valid (Right)
and then Result = (Left xor Right),
Post => Valid (Result)
and then (for all J in 1 .. Vector_Boolean_Size =>
Model (Result) (J) =
(Model (Left) (J) xor Model (Right) (J)));
procedure Prove_Xor (Result : Vectors.Vector) is
begin
for J in 1 .. Vector_Boolean_Size loop
pragma Assert
(Element (Result, J) =
(if Element (Left, J) = 1
xor Element (Right, J) = 1
then 1
else 0));
end loop;
end Prove_Xor;
begin
Prove_Xor (Left xor Right);
return not (Left xor Right);
end Nxor;
end System.Vectors.Boolean_Operations;
|