1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . I M A G E _ R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Double_Real;
with System.Float_Control;
with System.Img_Util; use System.Img_Util;
package body System.Image_R is
-- The following defines the maximum number of digits that we can convert
-- accurately. This is limited by the precision of the Num type, and also
-- by the number of digits that can be held in the Uns type, which is the
-- integer type we use as an intermediate in the computation. But, in both
-- cases, we can work with a double value in these types.
-- Note that in the following, the "-2" accounts for the space and one
-- extra digit, since we need the maximum number of 9's that can be
-- represented, e.g. for the 64-bit case, Long_Long_Unsigned'Width is
-- 21, since the maximum value (approx 1.8E+19) has 20 digits, but the
-- maximum number of 9's that can be represented is only 19.
Maxdigs : constant Natural := 2 * Natural'Min (Uns'Width - 2, Num'Digits);
Maxscaling : constant := 5000;
-- Max decimal scaling required during conversion of floating-point
-- numbers to decimal. This is used to defend against infinite
-- looping in the conversion, as can be caused by erroneous executions.
-- The largest exponent used on any current system is 2**16383, which
-- is approximately 10**4932, and the highest number of decimal digits
-- is about 35 for 128-bit floating-point formats, so 5000 leaves
-- enough room for scaling such values
package Double_Real is new System.Double_Real (Num);
use type Double_Real.Double_T;
subtype Double_T is Double_Real.Double_T;
-- The double floating-point type
function From_Unsigned is new Double_Real.From_Unsigned (Uns);
function To_Unsigned is new Double_Real.To_Unsigned (Uns);
-- Convert betwwen a double Num and a single Uns
function Is_Negative (V : Num) return Boolean;
-- Return True if V is negative for the purpose of the output, i.e. return
-- True for negative zeros only if Signed_Zeros is True.
-----------------------
-- Image_Fixed_Point --
-----------------------
procedure Image_Fixed_Point
(V : Num;
S : in out String;
P : out Natural;
Aft : Natural)
is
pragma Assert (S'First = 1);
begin
-- Output space at start if non-negative
if V >= 0.0 then
S (1) := ' ';
P := 1;
else
P := 0;
end if;
Set_Image_Real (V, S, P, 1, Aft, 0);
end Image_Fixed_Point;
--------------------------
-- Image_Floating_Point --
--------------------------
procedure Image_Floating_Point
(V : Num;
S : in out String;
P : out Natural;
Digs : Natural)
is
pragma Assert (S'First = 1);
begin
-- Decide whether a blank should be prepended before the call to
-- Set_Image_Real. We generate a blank for positive values, and
-- also for positive zeros. For negative zeros, we generate a
-- blank only if Signed_Zeros is False (the RM only permits the
-- output of -0.0 when Signed_Zeros is True). We do not generate
-- a blank for positive infinity, since we output an explicit +.
if not Is_Negative (V) and then V <= Num'Last then
pragma Annotate (CodePeer, False_Positive, "condition predetermined",
"CodePeer analysis ignores NaN and Inf values");
pragma Assert (S'Last > 1);
-- The caller is responsible for S to be large enough for all
-- Image_Floating_Point operation.
S (1) := ' ';
P := 1;
else
P := 0;
end if;
Set_Image_Real (V, S, P, 1, Digs - 1, 3);
end Image_Floating_Point;
-----------------
-- Is_Negative --
-----------------
function Is_Negative (V : Num) return Boolean is
begin
if V < 0.0 then
return True;
elsif V > 0.0 then
return False;
elsif not Num'Signed_Zeros then
return False;
else
return Num'Copy_Sign (1.0, V) < 0.0;
end if;
end Is_Negative;
--------------------
-- Set_Image_Real --
--------------------
procedure Set_Image_Real
(V : Num;
S : in out String;
P : in out Natural;
Fore : Natural;
Aft : Natural;
Exp : Natural)
is
Powten : constant array (0 .. Maxpow) of Double_T;
pragma Import (Ada, Powten);
for Powten'Address use Powten_Address;
NFrac : constant Natural := Natural'Max (Aft, 1);
-- Number of digits after the decimal point
Digs : String (1 .. 3 + Maxdigs);
-- Array used to hold digits of converted integer value
Ndigs : Natural;
-- Number of digits stored in Digs (and also subscript of last digit)
Scale : Integer := 0;
-- Exponent such that the result is Digs (1 .. NDigs) * 10**(-Scale)
X : Double_T;
-- Current absolute value of the input after scaling
procedure Adjust_Scale (S : Natural);
-- Adjusts the value in X by multiplying or dividing by a power of
-- ten so that it is in the range 10**(S-1) <= X < 10**S. Scale is
-- adjusted to reflect the power of ten used to divide the result,
-- i.e. one is added to the scale value for each multiplication by
-- 10.0 and one is subtracted for each division by 10.0.
------------------
-- Adjust_Scale --
------------------
procedure Adjust_Scale (S : Natural) is
Lo, Mid, Hi : Natural;
XP : Double_T;
begin
-- Cases where scaling up is required
if X < Powten (S - 1) then
-- What we are looking for is a power of ten to multiply X by
-- so that the result lies within the required range.
loop
XP := X * Powten (Maxpow);
exit when XP >= Powten (S - 1) or else Scale > Maxscaling;
X := XP;
Scale := Scale + Maxpow;
end loop;
-- The following exception is only raised in case of erroneous
-- execution, where a number was considered valid but still
-- fails to scale up. One situation where this can happen is
-- when a system which is supposed to be IEEE-compliant, but
-- has been reconfigured to flush denormals to zero.
if Scale > Maxscaling then
raise Constraint_Error;
end if;
-- Here we know that we must multiply by at least 10**1 and that
-- 10**Maxpow takes us too far: binary search to find right one.
-- Because of roundoff errors, it is possible for the value
-- of XP to be just outside of the interval when Lo >= Hi. In
-- that case we adjust explicitly by a factor of 10. This
-- can only happen with a value that is very close to an
-- exact power of 10.
Lo := 1;
Hi := Maxpow;
loop
Mid := (Lo + Hi) / 2;
XP := X * Powten (Mid);
if XP < Powten (S - 1) then
if Lo >= Hi then
Mid := Mid + 1;
XP := XP * 10.0;
exit;
else
Lo := Mid + 1;
end if;
elsif XP >= Powten (S) then
if Lo >= Hi then
Mid := Mid - 1;
XP := XP / 10.0;
exit;
else
Hi := Mid - 1;
end if;
else
exit;
end if;
end loop;
X := XP;
Scale := Scale + Mid;
-- Cases where scaling down is required
elsif X >= Powten (S) then
-- What we are looking for is a power of ten to divide X by
-- so that the result lies within the required range.
loop
XP := X / Powten (Maxpow);
exit when XP < Powten (S) or else Scale < -Maxscaling;
X := XP;
Scale := Scale - Maxpow;
end loop;
-- The following exception is only raised in case of erroneous
-- execution, where a number was considered valid but still
-- fails to scale up. One situation where this can happen is
-- when a system which is supposed to be IEEE-compliant, but
-- has been reconfigured to flush denormals to zero.
if Scale < -Maxscaling then
raise Constraint_Error;
end if;
-- Here we know that we must divide by at least 10**1 and that
-- 10**Maxpow takes us too far, binary search to find right one.
Lo := 1;
Hi := Maxpow;
loop
Mid := (Lo + Hi) / 2;
XP := X / Powten (Mid);
if XP < Powten (S - 1) then
if Lo >= Hi then
XP := XP * 10.0;
Mid := Mid - 1;
exit;
else
Hi := Mid - 1;
end if;
elsif XP >= Powten (S) then
if Lo >= Hi then
XP := XP / 10.0;
Mid := Mid + 1;
exit;
else
Lo := Mid + 1;
end if;
else
exit;
end if;
end loop;
X := XP;
Scale := Scale - Mid;
-- Here we are already scaled right
else
null;
end if;
end Adjust_Scale;
-- Start of processing for Set_Image_Real
begin
-- We call the floating-point processor reset routine so we can be sure
-- that the processor is properly set for conversions. This is notably
-- needed on Windows, where calls to the operating system randomly reset
-- the processor into 64-bit mode.
if Num'Machine_Mantissa = 64 then
System.Float_Control.Reset;
end if;
-- Deal with invalid values first
if not V'Valid then
-- Note that we're taking our chances here, as V might be
-- an invalid bit pattern resulting from erroneous execution
-- (caused by using uninitialized variables for example).
-- No matter what, we'll at least get reasonable behavior,
-- converting to infinity or some other value, or causing an
-- exception to be raised is fine.
-- If the following two tests succeed, then we definitely have
-- an infinite value, so we print +Inf or -Inf.
if V > Num'Last then
pragma Annotate (CodePeer, False_Positive, "dead code",
"CodePeer analysis ignores NaN and Inf values");
pragma Annotate (CodePeer, False_Positive, "test always true",
"CodePeer analysis ignores NaN and Inf values");
Set_Floating_Invalid_Value (Infinity, S, P, Fore, Aft, Exp);
elsif V < Num'First then
Set_Floating_Invalid_Value (Minus_Infinity, S, P, Fore, Aft, Exp);
-- In all other cases we print NaN
else
Set_Floating_Invalid_Value (Not_A_Number, S, P, Fore, Aft, Exp);
end if;
return;
end if;
-- Set the first character like Image
Digs (1) := (if Is_Negative (V) then '-' else ' ');
Ndigs := 1;
X := Double_Real.To_Double (abs (V));
-- If X is zero, we are done
if X = 0.0 then
Digs (2) := '0';
Ndigs := 2;
-- Otherwise, scale X and convert it to an integer
else
-- In exponent notation, we need exactly NFrac + 1 digits and always
-- round the last one.
if Exp > 0 then
Adjust_Scale (Natural'Min (NFrac + 1, Maxdigs));
X := X + 0.5;
-- In straight notation, we compute the maximum number of digits and
-- compare how many of them will be put after the decimal point with
-- Nfrac, in order to find out whether we need to round the last one
-- here or whether the rounding is performed by Set_Decimal_Digits.
else
Adjust_Scale (Maxdigs);
if Scale <= NFrac then
X := X + 0.5;
end if;
end if;
-- If X fits in an Uns, do the conversion directly. Note that this is
-- always the case for the Image attribute.
if X <= Num (Uns'Last) then
Set_Image_Unsigned (To_Unsigned (X), Digs, Ndigs);
-- Otherwise, do the conversion in two steps
else pragma Assert (X <= 10.0 ** Num'Digits * Num (Uns'Last));
declare
Y : constant Uns := To_Unsigned (X / Powten (Num'Digits));
Buf : String (1 .. Num'Digits);
Len : Natural;
begin
Set_Image_Unsigned (Y, Digs, Ndigs);
X := X - From_Unsigned (Y) * Powten (Num'Digits);
Len := 0;
Set_Image_Unsigned (To_Unsigned (X), Buf, Len);
for J in 1 .. Num'Digits - Len loop
Digs (Ndigs + J) := '0';
end loop;
for J in 1 .. Len loop
Digs (Ndigs + Num'Digits - Len + J) := Buf (J);
end loop;
Ndigs := Ndigs + Num'Digits;
end;
end if;
end if;
Set_Decimal_Digits (Digs, Ndigs, S, P, Scale, Fore, Aft, Exp);
end Set_Image_Real;
end System.Image_R;
|