aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-genbig.adb
blob: da03ff9205004a2d77297be3f23892c8f3203d5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--               S Y S T E M . G E N E R I C _ B I G N U M S                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2012-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  This package provides arbitrary precision signed integer arithmetic.

package body System.Generic_Bignums is

   use Interfaces;
   --  So that operations on Unsigned_32/Unsigned_64 are available

   use Shared_Bignums;

   type DD is mod Base ** 2;
   --  Double length digit used for intermediate computations

   function MSD (X : DD) return SD is (SD (X / Base));
   function LSD (X : DD) return SD is (SD (X mod Base));
   --  Most significant and least significant digit of double digit value

   function "&" (X, Y : SD) return DD is (DD (X) * Base + DD (Y));
   --  Compose double digit value from two single digit values

   subtype LLI is Long_Long_Integer;
   subtype LLLI is Long_Long_Long_Integer;

   LLLI_Is_128 : constant Boolean := Long_Long_Long_Integer'Size = 128;
   --  True if Long_Long_Long_Integer is 128-bit large

   One_Data : constant Digit_Vector (1 .. 1) := [1];
   --  Constant one

   Zero_Data : constant Digit_Vector (1 .. 0) := [];
   --  Constant zero

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Add
     (X, Y  : Digit_Vector;
      X_Neg : Boolean;
      Y_Neg : Boolean) return Big_Integer
   with
     Pre => X'First = 1 and then Y'First = 1;
   --  This procedure adds two signed numbers returning the Sum, it is used
   --  for both addition and subtraction. The value computed is X + Y, with
   --  X_Neg and Y_Neg giving the signs of the operands.

   type Compare_Result is (LT, EQ, GT);
   --  Indicates result of comparison in following call

   function Compare
     (X, Y         : Digit_Vector;
      X_Neg, Y_Neg : Boolean) return Compare_Result
   with
     Pre => X'First = 1 and then Y'First = 1;
   --  Compare (X with sign X_Neg) with (Y with sign Y_Neg), and return the
   --  result of the signed comparison.

   procedure Div_Rem
     (X, Y              : Bignum;
      Quotient          : out Big_Integer;
      Remainder         : out Big_Integer;
      Discard_Quotient  : Boolean := False;
      Discard_Remainder : Boolean := False);
   --  Returns the Quotient and Remainder from dividing abs (X) by abs (Y). The
   --  values of X and Y are not modified. If Discard_Quotient is True, then
   --  Quotient is undefined on return, and if Discard_Remainder is True, then
   --  Remainder is undefined on return. Service routine for Big_Div/Rem/Mod.

   function Normalize
     (X   : Digit_Vector;
      Neg : Boolean := False) return Big_Integer;
   --  Given a digit vector and sign, allocate and construct a big integer
   --  value. Note that X may have leading zeroes which must be removed, and if
   --  the result is zero, the sign is forced positive.
   --  If X is too big, Storage_Error is raised.

   function "**" (X : Bignum; Y : SD) return Big_Integer;
   --  Exponentiation routine where we know right operand is one word

   ---------
   -- Add --
   ---------

   function Add
     (X, Y  : Digit_Vector;
      X_Neg : Boolean;
      Y_Neg : Boolean) return Big_Integer
   is
   begin
      --  If signs are the same, we are doing an addition, it is convenient to
      --  ensure that the first operand is the longer of the two.

      if X_Neg = Y_Neg then
         if X'Last < Y'Last then
            return Add (X => Y, Y => X, X_Neg => Y_Neg, Y_Neg => X_Neg);

         --  Here signs are the same, and the first operand is the longer

         else
            pragma Assert (X_Neg = Y_Neg and then X'Last >= Y'Last);

            --  Do addition, putting result in Sum (allowing for carry)

            declare
               Sum : Digit_Vector (0 .. X'Last);
               RD  : DD;

            begin
               RD := 0;
               for J in reverse 1 .. X'Last loop
                  RD := RD + DD (X (J));

                  if J >= 1 + (X'Last - Y'Last) then
                     RD := RD + DD (Y (J - (X'Last - Y'Last)));
                  end if;

                  Sum (J) := LSD (RD);
                  RD := RD / Base;
               end loop;

               Sum (0) := SD (RD);
               return Normalize (Sum, X_Neg);
            end;
         end if;

      --  Signs are different so really this is a subtraction, we want to make
      --  sure that the largest magnitude operand is the first one, and then
      --  the result will have the sign of the first operand.

      else
         declare
            CR : constant Compare_Result := Compare (X, Y, False, False);

         begin
            if CR = EQ then
               return Normalize (Zero_Data);

            elsif CR = LT then
               return Add (X => Y, Y => X, X_Neg => Y_Neg, Y_Neg => X_Neg);

            else
               pragma Assert (X_Neg /= Y_Neg and then CR = GT);

               --  Do subtraction, putting result in Diff

               declare
                  Diff : Digit_Vector (1 .. X'Length);
                  RD   : DD;

               begin
                  RD := 0;
                  for J in reverse 1 .. X'Last loop
                     RD := RD + DD (X (J));

                     if J >= 1 + (X'Last - Y'Last) then
                        RD := RD - DD (Y (J - (X'Last - Y'Last)));
                     end if;

                     Diff (J) := LSD (RD);
                     RD := (if RD < Base then 0 else -1);
                  end loop;

                  return Normalize (Diff, X_Neg);
               end;
            end if;
         end;
      end if;
   end Add;

   -------------
   -- Big_Abs --
   -------------

   function Big_Abs (X : Bignum) return Big_Integer is
   begin
      return Normalize (X.D);
   end Big_Abs;

   -------------
   -- Big_Add --
   -------------

   function Big_Add  (X, Y : Bignum) return Big_Integer is
   begin
      return Add (X.D, Y.D, X.Neg, Y.Neg);
   end Big_Add;

   -------------
   -- Big_Div --
   -------------

   --  This table is excerpted from RM 4.5.5(28-30) and shows how the result
   --  varies with the signs of the operands.

   --   A      B   A/B      A     B    A/B
   --
   --   10     5    2      -10    5    -2
   --   11     5    2      -11    5    -2
   --   12     5    2      -12    5    -2
   --   13     5    2      -13    5    -2
   --   14     5    2      -14    5    -2
   --
   --   A      B   A/B      A     B    A/B
   --
   --   10    -5   -2      -10   -5     2
   --   11    -5   -2      -11   -5     2
   --   12    -5   -2      -12   -5     2
   --   13    -5   -2      -13   -5     2
   --   14    -5   -2      -14   -5     2

   function Big_Div  (X, Y : Bignum) return Big_Integer is
      Q, R : aliased Big_Integer;
   begin
      Div_Rem (X, Y, Q, R, Discard_Remainder => True);
      To_Bignum (Q).Neg := To_Bignum (Q).Len > 0 and then (X.Neg xor Y.Neg);
      return Q;
   end Big_Div;

   ----------
   -- "**" --
   ----------

   function "**" (X : Bignum; Y : SD) return Big_Integer is
   begin
      case Y is

         --  X ** 0 is 1

         when 0 =>
            return Normalize (One_Data);

         --  X ** 1 is X

         when 1 =>
            return Normalize (X.D);

         --  X ** 2 is X * X

         when 2 =>
            return Big_Mul (X, X);

         --  For X greater than 2, use the recursion

         --  X even, X ** Y = (X ** (Y/2)) ** 2;
         --  X odd,  X ** Y = (X ** (Y/2)) ** 2 * X;

         when others =>
            declare
               XY2  : aliased Big_Integer := X ** (Y / 2);
               XY2S : aliased Big_Integer :=
                 Big_Mul (To_Bignum (XY2), To_Bignum (XY2));

            begin
               Free_Big_Integer (XY2);

               if (Y and 1) = 0 then
                  return XY2S;
               else
                  return Res : constant Big_Integer :=
                    Big_Mul (To_Bignum (XY2S), X)
                  do
                     Free_Big_Integer (XY2S);
                  end return;
               end if;
            end;
      end case;
   end "**";

   -------------
   -- Big_Exp --
   -------------

   function Big_Exp  (X, Y : Bignum) return Big_Integer is
   begin
      --  Error if right operand negative

      if Y.Neg then
         raise Constraint_Error with "exponentiation to negative power";

      --  X ** 0 is always 1 (including 0 ** 0, so do this test first)

      elsif Y.Len = 0 then
         return Normalize (One_Data);

      --  0 ** X is always 0 (for X non-zero)

      elsif X.Len = 0 then
         return Normalize (Zero_Data);

      --  (+1) ** Y = 1
      --  (-1) ** Y = +/-1 depending on whether Y is even or odd

      elsif X.Len = 1 and then X.D (1) = 1 then
         return Normalize
           (X.D, Neg => X.Neg and then (Y.D (Y.Len) and 1) = 1);

      --  If the absolute value of the base is greater than 1, then the
      --  exponent must not be bigger than one word, otherwise the result
      --  is ludicrously large, and we just signal Storage_Error right away.

      elsif Y.Len > 1 then
         raise Storage_Error with "exponentiation result is too large";

      --  Special case (+/-)2 ** K, where K is 1 .. 31 using a shift

      elsif X.Len = 1 and then X.D (1) = 2 and then Y.D (1) < 32 then
         declare
            D : constant Digit_Vector (1 .. 1) :=
                  [Shift_Left (SD'(1), Natural (Y.D (1)))];
         begin
            return Normalize (D, X.Neg);
         end;

      --  Remaining cases have right operand of one word

      else
         return X ** Y.D (1);
      end if;
   end Big_Exp;

   -------------
   -- Big_And --
   -------------

   function Big_And (X, Y : Bignum) return Big_Integer is
   begin
      if X.Len > Y.Len then
         return Big_And (X => Y, Y => X);
      end if;

      --  X is the smallest integer

      declare
         Result : Digit_Vector (1 .. X.Len);
         Diff   : constant Length := Y.Len - X.Len;
      begin
         for J in 1 .. X.Len loop
            Result (J) := X.D (J) and Y.D (J + Diff);
         end loop;

         return Normalize (Result, X.Neg and Y.Neg);
      end;
   end Big_And;

   ------------
   -- Big_Or --
   ------------

   function Big_Or  (X, Y : Bignum) return Big_Integer is
   begin
      if X.Len < Y.Len then
         return Big_Or (X => Y, Y => X);
      end if;

      --  X is the largest integer

      declare
         Result : Digit_Vector (1 .. X.Len);
         Index  : Length;
         Diff   : constant Length := X.Len - Y.Len;

      begin
         Index := 1;

         while Index <= Diff loop
            Result (Index) := X.D (Index);
            Index := Index + 1;
         end loop;

         for J in 1 .. Y.Len loop
            Result (Index) := X.D (Index) or Y.D (J);
            Index := Index + 1;
         end loop;

         return Normalize (Result, X.Neg or Y.Neg);
      end;
   end Big_Or;

   --------------------
   -- Big_Shift_Left --
   --------------------

   function Big_Shift_Left (X : Bignum; Amount : Natural) return Big_Integer is
   begin
      if X.Neg then
         raise Constraint_Error;
      elsif Amount = 0 then
         return Allocate_Big_Integer (X.D, False);
      end if;

      declare
         Shift  : constant Natural := Amount rem SD'Size;
         Result : Digit_Vector (0 .. X.Len + Amount / SD'Size);
         Carry  : SD := 0;

      begin
         for J in X.Len + 1 .. Result'Last loop
            Result (J) := 0;
         end loop;

         for J in reverse 1 .. X.Len loop
            Result (J) := Shift_Left (X.D (J), Shift) or Carry;
            Carry := Shift_Right (X.D (J), SD'Size - Shift);
         end loop;

         Result (0) := Carry;
         return Normalize (Result, False);
      end;
   end Big_Shift_Left;

   ---------------------
   -- Big_Shift_Right --
   ---------------------

   function Big_Shift_Right
     (X : Bignum; Amount : Natural) return Big_Integer is
   begin
      if X.Neg then
         raise Constraint_Error;
      elsif Amount = 0 then
         return Allocate_Big_Integer (X.D, False);
      end if;

      declare
         Shift  : constant Natural := Amount rem SD'Size;
         Result : Digit_Vector (1 .. X.Len - Amount / SD'Size);
         Carry  : SD := 0;

      begin
         for J in 1 .. Result'Last - 1 loop
            Result (J) := Shift_Right (X.D (J), Shift) or Carry;
            Carry := Shift_Left (X.D (J), SD'Size - Shift);
         end loop;

         Result (Result'Last) :=
           Shift_Right (X.D (Result'Last), Shift) or Carry;

         return Normalize (Result, False);
      end;
   end Big_Shift_Right;

   ------------
   -- Big_EQ --
   ------------

   function Big_EQ (X, Y : Bignum) return Boolean is
   begin
      return Compare (X.D, Y.D, X.Neg, Y.Neg) = EQ;
   end Big_EQ;

   ------------
   -- Big_GE --
   ------------

   function Big_GE (X, Y : Bignum) return Boolean is
   begin
      return Compare (X.D, Y.D, X.Neg, Y.Neg) /= LT;
   end Big_GE;

   ------------
   -- Big_GT --
   ------------

   function Big_GT (X, Y : Bignum) return Boolean is
   begin
      return Compare (X.D, Y.D, X.Neg, Y.Neg) = GT;
   end Big_GT;

   ------------
   -- Big_LE --
   ------------

   function Big_LE (X, Y : Bignum) return Boolean is
   begin
      return Compare (X.D, Y.D, X.Neg, Y.Neg) /= GT;
   end Big_LE;

   ------------
   -- Big_LT --
   ------------

   function Big_LT (X, Y : Bignum) return Boolean is
   begin
      return Compare (X.D, Y.D, X.Neg, Y.Neg) = LT;
   end Big_LT;

   -------------
   -- Big_Mod --
   -------------

   --  This table is excerpted from RM 4.5.5(28-30) and shows how the result
   --  of Rem and Mod vary with the signs of the operands.

   --   A      B    A mod B  A rem B     A     B    A mod B  A rem B

   --   10     5       0        0       -10    5       0        0
   --   11     5       1        1       -11    5       4       -1
   --   12     5       2        2       -12    5       3       -2
   --   13     5       3        3       -13    5       2       -3
   --   14     5       4        4       -14    5       1       -4

   --   A      B    A mod B  A rem B     A     B    A mod B  A rem B

   --   10    -5       0        0       -10   -5       0        0
   --   11    -5      -4        1       -11   -5      -1       -1
   --   12    -5      -3        2       -12   -5      -2       -2
   --   13    -5      -2        3       -13   -5      -3       -3
   --   14    -5      -1        4       -14   -5      -4       -4

   function Big_Mod (X, Y : Bignum) return Big_Integer is
      Q, R : aliased Big_Integer;

   begin
      --  If signs are same, result is same as Rem

      if X.Neg = Y.Neg then
         return Big_Rem (X, Y);

      --  Case where Mod is different

      else
         --  Do division

         Div_Rem (X, Y, Q, R, Discard_Quotient => True);

         --  Zero result is unchanged

         if To_Bignum (R).Len = 0 then
            return R;

         --  Otherwise adjust result

         else
            declare
               T1 : aliased Big_Integer := Big_Sub (Y, To_Bignum (R));
            begin
               To_Bignum (T1).Neg := Y.Neg;
               Free_Big_Integer (R);
               return T1;
            end;
         end if;
      end if;
   end Big_Mod;

   -------------
   -- Big_Mul --
   -------------

   function Big_Mul (X, Y : Bignum) return Big_Integer is
      Result : Digit_Vector (1 .. X.Len + Y.Len) := [others => 0];
      --  Accumulate result (max length of result is sum of operand lengths)

      L : Length;
      --  Current result digit

      D : DD;
      --  Result digit

   begin
      for J in 1 .. X.Len loop
         for K in 1 .. Y.Len loop
            L := Result'Last - (X.Len - J) - (Y.Len - K);
            D := DD (X.D (J)) * DD (Y.D (K)) + DD (Result (L));
            Result (L) := LSD (D);
            D := D / Base;

            --  D is carry which must be propagated

            while D /= 0 and then L >= 1 loop
               L := L - 1;
               D := D + DD (Result (L));
               Result (L) := LSD (D);
               D := D / Base;
            end loop;

            --  Must not have a carry trying to extend max length

            pragma Assert (D = 0);
         end loop;
      end loop;

      --  Return result

      return Normalize (Result, X.Neg xor Y.Neg);
   end Big_Mul;

   ------------
   -- Big_NE --
   ------------

   function Big_NE (X, Y : Bignum) return Boolean is
   begin
      return Compare (X.D, Y.D, X.Neg, Y.Neg) /= EQ;
   end Big_NE;

   -------------
   -- Big_Neg --
   -------------

   function Big_Neg (X : Bignum) return Big_Integer is
   begin
      return Normalize (X.D, not X.Neg);
   end Big_Neg;

   -------------
   -- Big_Rem --
   -------------

   --  This table is excerpted from RM 4.5.5(28-30) and shows how the result
   --  varies with the signs of the operands.

   --   A      B   A rem B   A     B   A rem B

   --   10     5      0     -10    5      0
   --   11     5      1     -11    5     -1
   --   12     5      2     -12    5     -2
   --   13     5      3     -13    5     -3
   --   14     5      4     -14    5     -4

   --   A      B  A rem B    A     B   A rem B

   --   10    -5     0      -10   -5      0
   --   11    -5     1      -11   -5     -1
   --   12    -5     2      -12   -5     -2
   --   13    -5     3      -13   -5     -3
   --   14    -5     4      -14   -5     -4

   function Big_Rem (X, Y : Bignum) return Big_Integer is
      Q, R : aliased Big_Integer;
   begin
      Div_Rem (X, Y, Q, R, Discard_Quotient => True);
      To_Bignum (R).Neg := To_Bignum (R).Len > 0 and then X.Neg;
      return R;
   end Big_Rem;

   -------------
   -- Big_Sub --
   -------------

   function Big_Sub (X, Y : Bignum) return Big_Integer is
   begin
      --  If right operand zero, return left operand (avoiding sharing)

      if Y.Len = 0 then
         return Normalize (X.D, X.Neg);

      --  Otherwise add negative of right operand

      else
         return Add (X.D, Y.D, X.Neg, not Y.Neg);
      end if;
   end Big_Sub;

   -------------
   -- Compare --
   -------------

   function Compare
     (X, Y         : Digit_Vector;
      X_Neg, Y_Neg : Boolean) return Compare_Result
   is
   begin
      --  Signs are different, that's decisive, since 0 is always plus

      if X_Neg /= Y_Neg then
         return (if X_Neg then LT else GT);

      --  Lengths are different, that's decisive since no leading zeroes

      elsif X'Last /= Y'Last then
         return (if X'Last > Y'Last xor X_Neg then GT else LT);

      --  Need to compare data

      else
         for J in X'Range loop
            if X (J) /= Y (J) then
               return (if X (J) > Y (J) xor X_Neg then GT else LT);
            end if;
         end loop;

         return EQ;
      end if;
   end Compare;

   -------------
   -- Div_Rem --
   -------------

   procedure Div_Rem
     (X, Y              : Bignum;
      Quotient          : out Big_Integer;
      Remainder         : out Big_Integer;
      Discard_Quotient  : Boolean := False;
      Discard_Remainder : Boolean := False) is
   begin
      --  Error if division by zero

      if Y.Len = 0 then
         raise Constraint_Error with "division by zero";
      end if;

      --  Handle simple cases with special tests

      --  If X < Y then quotient is zero and remainder is X

      if Compare (X.D, Y.D, False, False) = LT then
         if not Discard_Quotient then
            Quotient := Normalize (Zero_Data);
         end if;

         if not Discard_Remainder then
            Remainder := Normalize (X.D);
         end if;

         return;

      --  If both X and Y are less than 2**63-1, we can use Long_Long_Integer
      --  arithmetic. Note it is good not to do an accurate range check against
      --  Long_Long_Integer since -2**63 / -1 overflows.

      elsif (X.Len <= 1 or else (X.Len = 2 and then X.D (1) < 2**31))
              and then
            (Y.Len <= 1 or else (Y.Len = 2 and then Y.D (1) < 2**31))
      then
         declare
            A : constant LLI := abs (From_Bignum (X));
            B : constant LLI := abs (From_Bignum (Y));
         begin
            if not Discard_Quotient then
               Quotient := To_Bignum (A / B);
            end if;

            if not Discard_Remainder then
               Remainder := To_Bignum (A rem B);
            end if;

            return;
         end;

      --  Easy case if divisor is one digit

      elsif Y.Len = 1 then
         declare
            ND  : DD;
            Div : constant DD := DD (Y.D (1));

            Result : Digit_Vector (1 .. X.Len);
            Remdr  : Digit_Vector (1 .. 1);

         begin
            ND := 0;
            for J in 1 .. X.Len loop
               ND := Base * ND + DD (X.D (J));
               pragma Assert (Div /= 0);
               Result (J) := SD (ND / Div);
               ND := ND rem Div;
            end loop;

            if not Discard_Quotient then
               Quotient  := Normalize (Result);
            end if;

            if not Discard_Remainder then
               Remdr (1) := SD (ND);
               Remainder := Normalize (Remdr);
            end if;

            return;
         end;
      end if;

      --  The complex full multi-precision case. We will employ algorithm
      --  D defined in the section "The Classical Algorithms" (sec. 4.3.1)
      --  of Donald Knuth's "The Art of Computer Programming", Vol. 2, 2nd
      --  edition. The terminology is adjusted for this section to match that
      --  reference.

      --  We are dividing X.Len digits of X (called u here) by Y.Len digits
      --  of Y (called v here), developing the quotient and remainder. The
      --  numbers are represented using Base, which was chosen so that we have
      --  the operations of multiplying to single digits (SD) to form a double
      --  digit (DD), and dividing a double digit (DD) by a single digit (SD)
      --  to give a single digit quotient and a single digit remainder.

      --  Algorithm D from Knuth

      --  Comments here with square brackets are directly from Knuth

      Algorithm_D : declare

         --  The following lower case variables correspond exactly to the
         --  terminology used in algorithm D.

         m : constant Length := X.Len - Y.Len;
         n : constant Length := Y.Len;
         b : constant DD     := Base;

         u : Digit_Vector (0 .. m + n);
         v : Digit_Vector (1 .. n);
         q : Digit_Vector (0 .. m);
         r : Digit_Vector (1 .. n);

         u0 : SD renames u (0);
         v1 : SD renames v (1);
         v2 : SD renames v (2);

         d    : DD;
         j    : Length;
         qhat : DD;
         rhat : DD;
         temp : DD;

      begin
         --  Initialize data of left and right operands

         for J in 1 .. m + n loop
            u (J) := X.D (J);
         end loop;

         for J in 1 .. n loop
            v (J) := Y.D (J);
         end loop;

         --  [Division of nonnegative integers.] Given nonnegative integers u
         --  = (ul,u2..um+n) and v = (v1,v2..vn), where v1 /= 0 and n > 1, we
         --  form the quotient u / v = (q0,ql..qm) and the remainder u mod v =
         --  (r1,r2..rn).

         pragma Assert (v1 /= 0);
         pragma Assert (n > 1);

         --  Dl. [Normalize.] Set d = b/(vl + 1). Then set (u0,u1,u2..um+n)
         --  equal to (u1,u2..um+n) times d, and set (v1,v2..vn) equal to
         --  (v1,v2..vn) times d. Note the introduction of a new digit position
         --  u0 at the left of u1; if d = 1 all we need to do in this step is
         --  to set u0 = 0.

         d := b / (DD (v1) + 1);

         if d = 1 then
            u0 := 0;

         else
            declare
               Carry : DD;
               Tmp   : DD;

            begin
               --  Multiply Dividend (u) by d

               Carry := 0;
               for J in reverse 1 .. m + n loop
                  Tmp   := DD (u (J)) * d + Carry;
                  u (J) := LSD (Tmp);
                  Carry := Tmp / Base;
               end loop;

               u0 := SD (Carry);

               --  Multiply Divisor (v) by d

               Carry := 0;
               for J in reverse 1 .. n loop
                  Tmp   := DD (v (J)) * d + Carry;
                  v (J) := LSD (Tmp);
                  Carry := Tmp / Base;
               end loop;

               pragma Assert (Carry = 0);
            end;
         end if;

         --  D2. [Initialize j.] Set j = 0. The loop on j, steps D2 through D7,
         --  will be essentially a division of (uj, uj+1..uj+n) by (v1,v2..vn)
         --  to get a single quotient digit qj.

         j := 0;

         --  Loop through digits

         loop
            --  Note: In the original printing, step D3 was as follows:

            --  D3. [Calculate qhat.] If uj = v1, set qhat to b-l; otherwise
            --  set qhat to (uj,uj+1)/v1. Now test if v2 * qhat is greater than
            --  (uj*b + uj+1 - qhat*v1)*b + uj+2. If so, decrease qhat by 1 and
            --  repeat this test

            --  This had a bug not discovered till 1995, see Vol 2 errata:
            --  http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz. Under
            --  rare circumstances the expression in the test could overflow.
            --  This version was further corrected in 2005, see Vol 2 errata:
            --  http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
            --  The code below is the fixed version of this step.

            --  D3. [Calculate qhat.] Set qhat to (uj,uj+1)/v1 and rhat to
            --  to (uj,uj+1) mod v1.

            temp := u (j) & u (j + 1);
            qhat := temp / DD (v1);
            rhat := temp mod DD (v1);

            --  D3 (continued). Now test if qhat >= b or v2*qhat > (rhat,uj+2):
            --  if so, decrease qhat by 1, increase rhat by v1, and repeat this
            --  test if rhat < b. [The test on v2 determines at high speed
            --  most of the cases in which the trial value qhat is one too
            --  large, and eliminates all cases where qhat is two too large.]

            while qhat >= b
              or else DD (v2) * qhat > LSD (rhat) & u (j + 2)
            loop
               qhat := qhat - 1;
               rhat := rhat + DD (v1);
               exit when rhat >= b;
            end loop;

            --  D4. [Multiply and subtract.] Replace (uj,uj+1..uj+n) by
            --  (uj,uj+1..uj+n) minus qhat times (v1,v2..vn). This step
            --  consists of a simple multiplication by a one-place number,
            --  combined with a subtraction.

            --  The digits (uj,uj+1..uj+n) are always kept positive; if the
            --  result of this step is actually negative then (uj,uj+1..uj+n)
            --  is left as the true value plus b**(n+1), i.e. as the b's
            --  complement of the true value, and a "borrow" to the left is
            --  remembered.

            declare
               Borrow : SD;
               Carry  : DD;
               Temp   : DD;

               Negative : Boolean;
               --  Records if subtraction causes a negative result, requiring
               --  an add back (case where qhat turned out to be 1 too large).

            begin
               Borrow := 0;
               for K in reverse 1 .. n loop
                  Temp := qhat * DD (v (K)) + DD (Borrow);
                  Borrow := MSD (Temp);

                  if LSD (Temp) > u (j + K) then
                     Borrow := Borrow + 1;
                  end if;

                  u (j + K) := u (j + K) - LSD (Temp);
               end loop;

               Negative := u (j) < Borrow;
               u (j) := u (j) - Borrow;

               --  D5. [Test remainder.] Set qj = qhat. If the result of step
               --  D4 was negative, we will do the add back step (step D6).

               q (j) := LSD (qhat);

               if Negative then

                  --  D6. [Add back.] Decrease qj by 1, and add (0,v1,v2..vn)
                  --  to (uj,uj+1,uj+2..uj+n). (A carry will occur to the left
                  --  of uj, and it is be ignored since it cancels with the
                  --  borrow that occurred in D4.)

                  q (j) := q (j) - 1;

                  Carry := 0;
                  for K in reverse 1 .. n loop
                     Temp := DD (v (K)) + DD (u (j + K)) + Carry;
                     u (j + K) := LSD (Temp);
                     Carry := Temp / Base;
                  end loop;

                  u (j) := u (j) + SD (Carry);
               end if;
            end;

            --  D7. [Loop on j.] Increase j by one. Now if j <= m, go back to
            --  D3 (the start of the loop on j).

            j := j + 1;
            exit when not (j <= m);
         end loop;

         --  D8. [Unnormalize.] Now (qo,ql..qm) is the desired quotient, and
         --  the desired remainder may be obtained by dividing (um+1..um+n)
         --  by d.

         if not Discard_Quotient then
            Quotient := Normalize (q);
         end if;

         if not Discard_Remainder then
            declare
               Remdr : DD;
            begin
               Remdr := 0;

               for K in 1 .. n loop
                  Remdr := Base * Remdr + DD (u (m + K));
                  r (K) := SD (Remdr / d);
                  Remdr := Remdr rem d;
               end loop;

               pragma Assert (Remdr = 0);
            end;

            Remainder := Normalize (r);
         end if;
      end Algorithm_D;
   end Div_Rem;

   -----------------
   -- From_Bignum --
   -----------------

   function From_Bignum (X : Bignum) return Long_Long_Long_Integer is
   begin
      if X.Len = 0 then
         return 0;

      elsif X.Len = 1 then
         return (if X.Neg then -LLLI (X.D (1)) else LLLI (X.D (1)));

      elsif X.Len = 2 then
         declare
            Mag : constant DD := X.D (1) & X.D (2);
         begin
            if X.Neg and then (Mag <= 2 ** 63 or else LLLI_Is_128) then
               return -LLLI (Mag);
            elsif Mag < 2 ** 63 or else LLLI_Is_128 then
               return LLLI (Mag);
            end if;
         end;

      elsif X.Len = 3 and then LLLI_Is_128 then
         declare
            Hi  : constant SD := X.D (1);
            Lo  : constant DD := X.D (2) & X.D (3);
            Mag : constant Unsigned_128 :=
                    Shift_Left (Unsigned_128 (Hi), 64) + Unsigned_128 (Lo);
         begin
            return (if X.Neg then -LLLI (Mag) else LLLI (Mag));
         end;

      elsif X.Len = 4 and then LLLI_Is_128 then
         declare
            Hi  : constant DD := X.D (1) & X.D (2);
            Lo  : constant DD := X.D (3) & X.D (4);
            Mag : constant Unsigned_128 :=
                    Shift_Left (Unsigned_128 (Hi), 64) + Unsigned_128 (Lo);
         begin
            if X.Neg
              and then (Hi < 2 ** 63 or else (Hi = 2 ** 63 and then Lo = 0))
            then
               return -LLLI (Mag);
            elsif Hi < 2 ** 63 then
               return LLLI (Mag);
            end if;
         end;
      end if;

      raise Constraint_Error with "expression value out of range";
   end From_Bignum;

   function From_Bignum (X : Bignum) return Long_Long_Integer is
   begin
      return Long_Long_Integer (Long_Long_Long_Integer'(From_Bignum (X)));
   end From_Bignum;

   function From_Bignum (X : Bignum) return Unsigned_128 is
   begin
      if X.Neg then
         null;

      elsif X.Len = 0 then
         return 0;

      elsif X.Len = 1 then
         return Unsigned_128 (X.D (1));

      elsif X.Len = 2 then
         return Unsigned_128 (DD'(X.D (1) & X.D (2)));

      elsif X.Len = 3 and then LLLI_Is_128 then
         return
           Shift_Left (Unsigned_128 (X.D (1)), 64) +
             Unsigned_128 (DD'(X.D (2) & X.D (3)));

      elsif X.Len = 4 and then LLLI_Is_128 then
         return
           Shift_Left (Unsigned_128 (DD'(X.D (1) & X.D (2))), 64) +
             Unsigned_128 (DD'(X.D (3) & X.D (4)));
      end if;

      raise Constraint_Error with "expression value out of range";
   end From_Bignum;

   function From_Bignum (X : Bignum) return Unsigned_64 is
   begin
      return Unsigned_64 (Unsigned_128'(From_Bignum (X)));
   end From_Bignum;

   -------------------------
   -- Bignum_In_LLI_Range --
   -------------------------

   function Bignum_In_LLI_Range (X : Bignum) return Boolean is
   begin
      --  If length is 0 or 1, definitely fits

      if X.Len <= 1 then
         return True;

      --  If length is greater than 2, definitely does not fit

      elsif X.Len > 2 then
         return False;

      --  Length is 2, more tests needed

      else
         declare
            Mag : constant DD := X.D (1) & X.D (2);
         begin
            return Mag < 2 ** 63 or else (X.Neg and then Mag = 2 ** 63);
         end;
      end if;
   end Bignum_In_LLI_Range;

   ---------------
   -- Normalize --
   ---------------

   Bignum_Limit : constant := 200;

   function Normalize
     (X   : Digit_Vector;
      Neg : Boolean := False) return Big_Integer
   is
      J : Length;

   begin
      J := X'First;
      while J <= X'Last and then X (J) = 0 loop
         J := J + 1;
      end loop;

      if X'Last - J > Bignum_Limit then
         raise Storage_Error with "big integer limit exceeded";
      end if;

      return Allocate_Big_Integer (X (J .. X'Last), J <= X'Last and then Neg);
   end Normalize;

   ---------------
   -- To_Bignum --
   ---------------

   function To_Bignum (X : Long_Long_Long_Integer) return Big_Integer is

      function Convert_128
        (X : Long_Long_Long_Integer; Neg : Boolean) return Big_Integer;
      --  Convert a 128 bits natural integer to a Big_Integer

      -----------------
      -- Convert_128 --
      -----------------

      function Convert_128
        (X : Long_Long_Long_Integer; Neg : Boolean) return Big_Integer
      is
         Vector : Digit_Vector (1 .. 4);
         High   : constant Unsigned_64 :=
           Unsigned_64 (Shift_Right (Unsigned_128 (X), 64));
         Low    : constant Unsigned_64 :=
           Unsigned_64 (Unsigned_128 (X) and 16#FFFF_FFFF_FFFF_FFFF#);

      begin
         Vector (1) := SD (High / Base);
         Vector (2) := SD (High mod Base);
         Vector (3) := SD (Low / Base);
         Vector (4) := SD (Low mod Base);
         return Normalize (Vector, Neg);
      end Convert_128;

   begin
      if X = 0 then
         return Allocate_Big_Integer ([], False);

      --  One word result

      elsif X in -(2 ** 32 - 1) .. +(2 ** 32 - 1) then
         return Allocate_Big_Integer ([SD (abs X)], X < 0);

      --  Large negative number annoyance

      elsif X = -2 ** 63 then
         return Allocate_Big_Integer ([2 ** 31, 0], True);

      elsif LLLI_Is_128 and then X = Long_Long_Long_Integer'First then
         return Allocate_Big_Integer ([2 ** 31, 0, 0, 0], True);

      --  Other negative numbers

      elsif X < 0 then
         if LLLI_Is_128 then
            return Convert_128 (-X, True);
         else
            return Allocate_Big_Integer
                     ((SD ((-X) / Base), SD ((-X) mod Base)), True);
         end if;

      --  Positive numbers

      else
         if LLLI_Is_128 then
            return Convert_128 (X, False);
         else
            return Allocate_Big_Integer
                     ((SD (X / Base), SD (X mod Base)), False);
         end if;
      end if;
   end To_Bignum;

   function To_Bignum (X : Long_Long_Integer) return Big_Integer is
   begin
      return To_Bignum (Long_Long_Long_Integer (X));
   end To_Bignum;

   function To_Bignum (X : Unsigned_128) return Big_Integer is
   begin
      if X = 0 then
         return Allocate_Big_Integer ([], False);

      --  One word result

      elsif X < 2 ** 32 then
         return Allocate_Big_Integer ([SD (X)], False);

      --  Two word result

      elsif Shift_Right (X, 32) < 2 ** 32 then
         return Allocate_Big_Integer ([SD (X / Base), SD (X mod Base)], False);

      --  Three or four word result

      else
         declare
            Vector : Digit_Vector (1 .. 4);
            High   : constant Unsigned_64 := Unsigned_64 (Shift_Right (X, 64));
            Low    : constant Unsigned_64 :=
              Unsigned_64 (X and 16#FFFF_FFFF_FFFF_FFFF#);

         begin
            Vector (1) := SD (High / Base);
            Vector (2) := SD (High mod Base);
            Vector (3) := SD (Low / Base);
            Vector (4) := SD (Low mod Base);
            return Normalize (Vector, False);
         end;
      end if;
   end To_Bignum;

   function To_Bignum (X : Unsigned_64) return Big_Integer is
   begin
      return To_Bignum (Unsigned_128 (X));
   end To_Bignum;

   ---------------
   -- To_String --
   ---------------

   Hex_Chars : constant array (0 .. 15) of Character := "0123456789ABCDEF";

   function To_String
     (X : Bignum; Width : Natural := 0; Base : Positive := 10) return String
   is
      Big_Base : aliased Bignum_Data := (1, False, [SD (Base)]);

      function Add_Base (S : String) return String;
      --  Add base information if Base /= 10

      function Leading_Padding
        (Str        : String;
         Min_Length : Natural;
         Char       : Character := ' ') return String;
      --  Return padding of Char concatenated with Str so that the resulting
      --  string is at least Min_Length long.

      function Image (Arg : Bignum) return String;
      --  Return image of Arg, assuming Arg is positive.

      function Image (N : Natural) return String;
      --  Return image of N, with no leading space.

      --------------
      -- Add_Base --
      --------------

      function Add_Base (S : String) return String is
      begin
         if Base = 10 then
            return S;
         else
            return Image (Base) & "#" & S & "#";
         end if;
      end Add_Base;

      -----------
      -- Image --
      -----------

      function Image (N : Natural) return String is
         S : constant String := Natural'Image (N);
      begin
         return S (2 .. S'Last);
      end Image;

      function Image (Arg : Bignum) return String is
      begin
         if Big_LT (Arg, Big_Base'Unchecked_Access) then
            return [Hex_Chars (Natural (LLI'(From_Bignum (Arg))))];
         else
            declare
               Div    : aliased Big_Integer;
               Remain : aliased Big_Integer;
               R      : Natural;

            begin
               Div_Rem (Arg, Big_Base'Unchecked_Access, Div, Remain);
               R := Natural (LLI'(From_Bignum (To_Bignum (Remain))));
               Free_Big_Integer (Remain);

               return S : constant String :=
                 Image (To_Bignum (Div)) & Hex_Chars (R)
               do
                  Free_Big_Integer (Div);
               end return;
            end;
         end if;
      end Image;

      ---------------------
      -- Leading_Padding --
      ---------------------

      function Leading_Padding
        (Str        : String;
         Min_Length : Natural;
         Char       : Character := ' ') return String is
      begin
         return [1 .. Integer'Max (Integer (Min_Length) - Str'Length, 0)
                        => Char] & Str;
      end Leading_Padding;

      Zero : aliased Bignum_Data := (0, False, D => Zero_Data);

   begin
      if Big_LT (X, Zero'Unchecked_Access) then
         declare
            X_Pos : aliased Bignum_Data := (X.Len, not X.Neg, X.D);
         begin
            return Leading_Padding
                     ("-" & Add_Base (Image (X_Pos'Unchecked_Access)), Width);
         end;
      else
         return Leading_Padding (" " & Add_Base (Image (X)), Width);
      end if;
   end To_String;

   -------------
   -- Is_Zero --
   -------------

   function Is_Zero (X : Bignum) return Boolean is
     (X /= null and then X.D = Zero_Data);

end System.Generic_Bignums;