aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-fatgen.adb
blob: 512b7b21ecdaa16f10e19211508496a0350953da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                       S Y S T E M . F A T _ G E N                        --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2020, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  This implementation is portable to any IEEE implementation. It does not
--  handle nonbinary radix, and also assumes that model numbers and machine
--  numbers are basically identical, which is not true of all possible
--  floating-point implementations.

with Ada.Unchecked_Conversion;
with Interfaces;
with System.Unsigned_Types;

pragma Warnings (Off, "non-static constant in preelaborated unit");
--  Every constant is static given our instantiation model

package body System.Fat_Gen is
   use type Interfaces.Unsigned_64;

   pragma Assert (T'Machine_Radix = 2);
   --  This version does not handle radix 16

   Rad : constant T := T (T'Machine_Radix);
   --  Renaming for the machine radix

   Mantissa : constant Integer := T'Machine_Mantissa;
   --  Renaming for the machine mantissa

   Invrad : constant T := 1.0 / Rad;
   --  Smallest positive mantissa in the canonical form (RM A.5.3(4))

   --  Small : constant T := Rad ** (T'Machine_Emin - 1);
   --  Smallest positive normalized number

   --  Tiny : constant T := Rad ** (T'Machine_Emin - Mantissa);
   --  Smallest positive denormalized number

   Tiny16 : constant Interfaces.Unsigned_16 := 1;
   Tiny32 : constant Interfaces.Unsigned_32 := 1;
   Tiny64 : constant Interfaces.Unsigned_64 := 1;
   Tiny80 : constant array (1 .. 2) of Interfaces.Unsigned_64 :=
              (1 * Standard'Default_Bit_Order,
               2**48 * (1 - Standard'Default_Bit_Order));
   --  We cannot use the direct declaration because it cannot be translated
   --  into C90, as the hexadecimal floating constants were introduced in C99.
   --  So we work around this by using an overlay of the integer constant.

   RM1 : constant T := Rad ** (Mantissa - 1);
   --  Smallest positive member of the large consecutive integers. It is equal
   --  to the ratio Small / Tiny, which means that multiplying by it normalizes
   --  any nonzero denormalized number.

   IEEE_Emin : constant Integer := T'Machine_Emin - 1;
   IEEE_Emax : constant Integer := T'Machine_Emax - 1;
   --  The mantissa is a fraction with first digit set in Ada whereas it is
   --  shifted by 1 digit to the left in the IEEE floating-point format.

   subtype IEEE_Erange is Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
   --  The IEEE floating-point format extends the machine range by 1 to the
   --  left for denormalized numbers and 1 to the right for infinities/NaNs.

   IEEE_Ebias : constant Integer := -(IEEE_Emin - 1);
   --  The exponent is biased such that denormalized numbers have it zero

   --  The implementation uses a representation type Float_Rep that allows
   --  direct access to exponent and mantissa of the floating point number.

   --  The Float_Rep type is a simple array of Float_Word elements. This
   --  representation is chosen to make it possible to size the type based
   --  on a generic parameter. Since the array size is known at compile
   --  time, efficient code can still be generated. The size of Float_Word
   --  elements should be large enough to allow accessing the exponent in
   --  one read, but small enough so that all floating-point object sizes
   --  are a multiple of Float_Word'Size.

   --  The following conditions must be met for all possible instantiations
   --  of the attribute package:

   --    - T'Size is an integral multiple of Float_Word'Size

   --    - The exponent and sign are completely contained in a single
   --      component of Float_Rep, named Most Significant Word (MSW).

   --    - The sign occupies the most significant bit of the MSW and the
   --      exponent is in the following bits. The exception is 80-bit
   --      double extended, where they occupy the low 16-bit halfword.

   --  The low-level primitives Copy_Sign, Decompose, Scaling and Valid are
   --  implemented by accessing the bit pattern of the floating-point number.
   --  Only the normalization of denormalized numbers, if any, and the gradual
   --  underflow are left to the hardware, mainly because there is some leeway
   --  for the hardware implementation in this area: for example, the MSB of
   --  the mantissa, which is 1 for normalized numbers and 0 for denormalized
   --  numbers, may or may not be stored by the hardware.

   Siz : constant := (if System.Word_Size > 32 then 32 else System.Word_Size);
   type Float_Word is mod 2**Siz;

   N : constant Natural := (T'Size + Siz - 1) / Siz;
   Rep_Last : constant Natural := Natural'Min (N - 1, (Mantissa + 16) / Siz);
   --  Determine the number of Float_Words needed for representing the
   --  entire floating-point value. Do not take into account excessive
   --  padding, as occurs on IA-64 where 80 bits floats get padded to 128
   --  bits. In general, the exponent field cannot be larger than 15 bits,
   --  even for 128-bit floating-point types, so the final format size
   --  won't be larger than Mantissa + 16.

   type Float_Rep is array (Natural range 0 .. N - 1) of Float_Word;
   pragma Suppress_Initialization (Float_Rep);
   --  This pragma suppresses the generation of an initialization procedure
   --  for type Float_Rep when operating in Initialize/Normalize_Scalars mode.

   MSW : constant Natural := Rep_Last * Standard'Default_Bit_Order;
   --  Finding the location of the Exponent_Word is a bit tricky. In general
   --  we assume Word_Order = Bit_Order.

   Exp_Factor : constant Float_Word :=
                  (if Mantissa = 64
                   then 1
                   else 2**(Siz - 1) / Float_Word (IEEE_Emax - IEEE_Emin + 3));
   --  Factor that the extracted exponent needs to be divided by to be in
   --  range 0 .. IEEE_Emax - IEEE_Emin + 2. The special case is 80-bit
   --  double extended, where the exponent starts the 3rd float word.

   Exp_Mask : constant Float_Word :=
                Float_Word (IEEE_Emax - IEEE_Emin + 2) * Exp_Factor;
   --  Value needed to mask out the exponent field. This assumes that the
   --  range 0 .. IEEE_Emax - IEEE_Emin + 2 contains 2**N values, for some
   --  N in Natural.

   Sign_Mask : constant Float_Word :=
                 (if Mantissa = 64 then 2**15 else 2**(Siz - 1));
   --  Value needed to mask out the sign field. The special case is 80-bit
   --  double extended, where the exponent starts the 3rd float word.

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Decompose (XX : T; Frac : out T; Expo : out UI);
   --  Decomposes a floating-point number into fraction and exponent parts.
   --  Both results are signed, with Frac having the sign of XX, and UI has
   --  the sign of the exponent. The absolute value of Frac is in the range
   --  0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.

   --------------
   -- Adjacent --
   --------------

   function Adjacent (X, Towards : T) return T is
   begin
      if Towards = X then
         return X;
      elsif Towards > X then
         return Succ (X);
      else
         return Pred (X);
      end if;
   end Adjacent;

   -------------
   -- Ceiling --
   -------------

   function Ceiling (X : T) return T is
      XT : constant T := Truncation (X);
   begin
      if X <= 0.0 then
         return XT;
      elsif X = XT then
         return X;
      else
         return XT + 1.0;
      end if;
   end Ceiling;

   -------------
   -- Compose --
   -------------

   function Compose (Fraction : T; Exponent : UI) return T is
      Arg_Frac : T;
      Arg_Exp  : UI;
      pragma Unreferenced (Arg_Exp);
   begin
      Decompose (Fraction, Arg_Frac, Arg_Exp);
      return Scaling (Arg_Frac, Exponent);
   end Compose;

   ---------------
   -- Copy_Sign --
   ---------------

   function Copy_Sign (Value, Sign : T) return T is
      S : constant T := T'Machine (Sign);

      Rep_S : Float_Rep;
      for Rep_S'Address use S'Address;
      --  Rep_S is a view of the Sign parameter

      V : T := T'Machine (Value);

      Rep_V : Float_Rep;
      for Rep_V'Address use V'Address;
      --  Rep_V is a view of the Value parameter

   begin
      Rep_V (MSW) :=
        (Rep_V (MSW) and not Sign_Mask) or (Rep_S (MSW) and Sign_Mask);
      return V;
   end Copy_Sign;

   ---------------
   -- Decompose --
   ---------------

   procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
      X : T := T'Machine (XX);

      Rep : Float_Rep;
      for Rep'Address use X'Address;
      --  Rep is a view of the input floating-point parameter

      Exp : constant IEEE_Erange :=
              Integer ((Rep (MSW) and Exp_Mask) / Exp_Factor) - IEEE_Ebias;
      --  Mask/Shift X to only get bits from the exponent. Then convert biased
      --  value to final value.

      Minus : constant Boolean := (Rep (MSW) and Sign_Mask) /= 0;
      --  Mask/Shift X to only get bit from the sign

   begin
      --  The normalized exponent of zero is zero, see RM A.5.3(15)

      if X = 0.0 then
         Expo := 0;
         Frac := X;

      --  Check for infinities and NaNs

      elsif Exp = IEEE_Emax + 1 then
         Expo := T'Machine_Emax + 1;
         Frac := (if Minus then -Invrad else Invrad);

      --  Check for nonzero denormalized numbers

      elsif Exp = IEEE_Emin - 1 then
         --  Normalize by multiplying by Radix ** (Mantissa - 1)

         Decompose (X * RM1, Frac, Expo);
         Expo := Expo - (Mantissa - 1);

      --  Case of normalized numbers

      else
         --  The Ada exponent is the IEEE exponent plus 1, see above

         Expo := Exp + 1;

         --  Set Ada exponent of X to zero, so we end up with the fraction

         Rep (MSW) := (Rep (MSW) and not Exp_Mask) +
                        Float_Word (IEEE_Ebias - 1) * Exp_Factor;
         Frac := X;
      end if;
   end Decompose;

   --------------
   -- Exponent --
   --------------

   function Exponent (X : T) return UI is
      X_Frac : T;
      X_Exp  : UI;
      pragma Unreferenced (X_Frac);
   begin
      Decompose (X, X_Frac, X_Exp);
      return X_Exp;
   end Exponent;

   -----------
   -- Floor --
   -----------

   function Floor (X : T) return T is
      XT : constant T := Truncation (X);
   begin
      if X >= 0.0 then
         return XT;
      elsif XT = X then
         return X;
      else
         return XT - 1.0;
      end if;
   end Floor;

   --------------
   -- Fraction --
   --------------

   function Fraction (X : T) return T is
      X_Frac : T;
      X_Exp  : UI;
      pragma Unreferenced (X_Exp);
   begin
      Decompose (X, X_Frac, X_Exp);
      return X_Frac;
   end Fraction;

   ------------------
   -- Leading_Part --
   ------------------

   function Leading_Part (X : T; Radix_Digits : UI) return T is
      L    : UI;
      Y, Z : T;

   begin
      if Radix_Digits >= Mantissa then
         return X;

      elsif Radix_Digits <= 0 then
         raise Constraint_Error;

      else
         L := Exponent (X) - Radix_Digits;
         Y := Truncation (Scaling (X, -L));
         Z := Scaling (Y, L);
         return Z;
      end if;
   end Leading_Part;

   -------------
   -- Machine --
   -------------

   --  The trick with Machine is to force the compiler to store the result
   --  in memory so that we do not have extra precision used. The compiler
   --  is clever, so we have to outwit its possible optimizations. We do
   --  this by using an intermediate pragma Volatile location.

   function Machine (X : T) return T is
      Temp : T;
      pragma Volatile (Temp);
   begin
      Temp := X;
      return Temp;
   end Machine;

   ----------------------
   -- Machine_Rounding --
   ----------------------

   --  For now, the implementation is identical to that of Rounding, which is
   --  a permissible behavior, but is not the most efficient possible approach.

   function Machine_Rounding (X : T) return T is
      Result : T;
      Tail   : T;

   begin
      Result := Truncation (abs X);
      Tail   := abs X - Result;

      if Tail >= 0.5 then
         Result := Result + 1.0;
      end if;

      if X > 0.0 then
         return Result;

      elsif X < 0.0 then
         return -Result;

      --  For zero case, make sure sign of zero is preserved

      else
         return X;
      end if;
   end Machine_Rounding;

   -----------
   -- Model --
   -----------

   --  We treat Model as identical to Machine. This is true of IEEE and other
   --  nice floating-point systems, but not necessarily true of all systems.

   function Model (X : T) return T is
   begin
      return T'Machine (X);
   end Model;

   ----------
   -- Pred --
   ----------

   function Pred (X : T) return T is
      Tiny : constant T;
      pragma Import (Ada, Tiny);
      for Tiny'Address use (if     T'Size   = 16 then Tiny16'Address
                             elsif T'Size   = 32 then Tiny32'Address
                             elsif T'Size   = 64 then Tiny64'Address
                             elsif Mantissa = 64 then Tiny80'Address
                             else raise Program_Error);
      X_Frac : T;
      X_Exp  : UI;

   begin
      --  Zero has to be treated specially, since its exponent is zero

      if X = 0.0 then
         return -Tiny;

      --  Special treatment for largest negative number: raise Constraint_Error

      elsif X = T'First then
         raise Constraint_Error with "Pred of largest negative number";

      --  For infinities, return unchanged

      elsif X < T'First or else X > T'Last then
         pragma Annotate (CodePeer, Intentional, "condition predetermined",
                          "Check for invalid float");
         return X;
         pragma Annotate (CodePeer, Intentional, "dead code",
                          "Check float range.");

      --  Subtract from the given number a number equivalent to the value
      --  of its least significant bit. Given that the most significant bit
      --  represents a value of 1.0 * Radix ** (Exp - 1), the value we want
      --  is obtained by shifting this by (Mantissa-1) bits to the right,
      --  i.e. decreasing the exponent by that amount.

      else
         Decompose (X, X_Frac, X_Exp);

         --  For a denormalized number or a normalized number with the lowest
         --  exponent, just subtract the Tiny.

         if X_Exp <= T'Machine_Emin then
            return X - Tiny;

         --  A special case, if the number we had was a power of two on the
         --  positive side of zero, then we want to subtract half of what we
         --  would have subtracted, since the exponent is going to be reduced.

         --  Note that X_Frac has the same sign as X so, if X_Frac is Invrad,
         --  then we know that we had a power of two on the positive side.

         elsif X_Frac = Invrad then
            return X - Scaling (1.0, X_Exp - Mantissa - 1);

         --  Otherwise the adjustment is unchanged

         else
            return X - Scaling (1.0, X_Exp - Mantissa);
         end if;
      end if;
   end Pred;

   ---------------
   -- Remainder --
   ---------------

   function Remainder (X, Y : T) return T is
      A        : T;
      B        : T;
      Arg      : T;
      P        : T;
      P_Frac   : T;
      Sign_X   : T;
      IEEE_Rem : T;
      Arg_Exp  : UI;
      P_Exp    : UI;
      K        : UI;
      P_Even   : Boolean;

      Arg_Frac : T;
      pragma Unreferenced (Arg_Frac);

   begin
      if Y = 0.0 then
         raise Constraint_Error;
      end if;

      if X > 0.0 then
         Sign_X :=  1.0;
         Arg := X;
      else
         Sign_X := -1.0;
         Arg := -X;
      end if;

      P := abs Y;

      if Arg < P then
         P_Even := True;
         IEEE_Rem := Arg;
         P_Exp := Exponent (P);

      else
         Decompose (Arg, Arg_Frac, Arg_Exp);
         Decompose (P,   P_Frac,   P_Exp);

         P := Compose (P_Frac, Arg_Exp);
         K := Arg_Exp - P_Exp;
         P_Even := True;
         IEEE_Rem := Arg;

         for Cnt in reverse 0 .. K loop
            if IEEE_Rem >= P then
               P_Even := False;
               IEEE_Rem := IEEE_Rem - P;
            else
               P_Even := True;
            end if;

            P := P * 0.5;
         end loop;
      end if;

      --  That completes the calculation of modulus remainder. The final
      --  step is get the IEEE remainder. Here we need to compare Rem with
      --  (abs Y) / 2. We must be careful of unrepresentable Y/2 value
      --  caused by subnormal numbers

      if P_Exp >= 0 then
         A := IEEE_Rem;
         B := abs Y * 0.5;

      else
         A := IEEE_Rem * 2.0;
         B := abs Y;
      end if;

      if A > B or else (A = B and then not P_Even) then
         IEEE_Rem := IEEE_Rem - abs Y;
      end if;

      return Sign_X * IEEE_Rem;
   end Remainder;

   --------------
   -- Rounding --
   --------------

   function Rounding (X : T) return T is
      Result : T;
      Tail   : T;

   begin
      Result := Truncation (abs X);
      Tail   := abs X - Result;

      if Tail >= 0.5 then
         Result := Result + 1.0;
      end if;

      if X > 0.0 then
         return Result;

      elsif X < 0.0 then
         return -Result;

      --  For zero case, make sure sign of zero is preserved

      else
         return X;
      end if;
   end Rounding;

   -------------
   -- Scaling --
   -------------

   function Scaling (X : T; Adjustment : UI) return T is
      pragma Assert (Mantissa <= 64);
      --  This implementation handles only 80-bit IEEE Extended or smaller

      package UST renames System.Unsigned_Types;
      use type UST.Long_Long_Unsigned;

      XX : T := T'Machine (X);

      Rep : Float_Rep;
      for Rep'Address use XX'Address;
      --  Rep is a view of the input floating-point parameter

      Exp : constant IEEE_Erange :=
              Integer ((Rep (MSW) and Exp_Mask) / Exp_Factor) - IEEE_Ebias;
      --  Mask/Shift X to only get bits from the exponent. Then convert biased
      --  value to final value.

      Minus : constant Boolean := (Rep (MSW) and Sign_Mask) /= 0;
      --  Mask/Shift X to only get bit from the sign

      Expi, Expf : IEEE_Erange;

   begin
      --  Check for zero, infinities, NaNs as well as no adjustment

      if X = 0.0 or else Exp = IEEE_Emax + 1 or else Adjustment = 0 then
         return X;

      --  Check for nonzero denormalized numbers

      elsif Exp = IEEE_Emin - 1 then
         --  Check for zero result to protect the subtraction below

         if Adjustment < -(Mantissa - 1) then
            XX := 0.0;
            return (if Minus then -XX else XX);

         --  Normalize by multiplying by Radix ** (Mantissa - 1)

         else
            return Scaling (XX * RM1, Adjustment - (Mantissa - 1));
         end if;

      --  Case of normalized numbers

      else
         --  Check for overflow

         if Adjustment > IEEE_Emax - Exp then
            XX := 0.0;
            return (if Minus then -1.0 / XX else 1.0 / XX);
            pragma Annotate
              (CodePeer, Intentional, "divide by zero", "Infinity produced");

         --  Check for underflow

         elsif Adjustment < IEEE_Emin - Exp then
            --  Check for gradual underflow

            if T'Denorm
              and then Adjustment >= IEEE_Emin - (Mantissa - 1) - Exp
            then
               Expf := IEEE_Emin;
               Expi := Exp + Adjustment - Expf;

            --  Case of zero result

            else
               XX := 0.0;
               return (if Minus then -XX else XX);
            end if;

         --  Case of normalized results

         else
            Expf := Exp + Adjustment;
            Expi := 0;
         end if;

         Rep (MSW) := (Rep (MSW) and not Exp_Mask) +
                        Float_Word (IEEE_Ebias + Expf) * Exp_Factor;

         if Expi < 0 then
            XX := XX / T (UST.Long_Long_Unsigned (2) ** (-Expi));
         end if;

         return XX;
      end if;
   end Scaling;

   ----------
   -- Succ --
   ----------

   function Succ (X : T) return T is
      Tiny : constant T;
      pragma Import (Ada, Tiny);
      for Tiny'Address use (if     T'Size   = 16 then Tiny16'Address
                             elsif T'Size   = 32 then Tiny32'Address
                             elsif T'Size   = 64 then Tiny64'Address
                             elsif Mantissa = 64 then Tiny80'Address
                             else raise Program_Error);
      X_Frac : T;
      X_Exp  : UI;

   begin
      --  Treat zero specially since it has a zero exponent

      if X = 0.0 then
         return Tiny;

      --  Special treatment for largest positive number: raise Constraint_Error

      elsif X = T'Last then
         raise Constraint_Error with "Succ of largest positive number";

      --  For infinities, return unchanged

      elsif X < T'First or else X > T'Last then
         pragma Annotate (CodePeer, Intentional, "condition predetermined",
                          "Check for invalid float");
         return X;
         pragma Annotate (CodePeer, Intentional, "dead code",
                          "Check float range.");

      --  Add to the given number a number equivalent to the value of its
      --  least significant bit. Given that the most significant bit
      --  represents a value of 1.0 * Radix ** (Exp - 1), the value we want
      --  is obtained by shifting this by (Mantissa-1) bits to the right,
      --  i.e. decreasing the exponent by that amount.

      else
         Decompose (X, X_Frac, X_Exp);

         --  For a denormalized number or a normalized number with the lowest
         --  exponent, just add the Tiny.

         if X_Exp <= T'Machine_Emin then
            return X + Tiny;

         --  A special case, if the number we had was a power of two on the
         --  negative side of zero, then we want to add half of what we would
         --  have added, since the exponent is going to be reduced.

         --  Note that X_Frac has the same sign as X, so if X_Frac is -Invrad,
         --  then we know that we had a power of two on the negative side.

         elsif X_Frac = -Invrad then
            return X + Scaling (1.0, X_Exp - Mantissa - 1);

         --  Otherwise the adjustment is unchanged

         else
            return X + Scaling (1.0, X_Exp - Mantissa);
         end if;
      end if;
   end Succ;

   ----------------
   -- Truncation --
   ----------------

   --  The basic approach is to compute

   --    T'Machine (RM1 + N) - RM1

   --  where N >= 0.0 and RM1 = Radix ** (Mantissa - 1)

   --  This works provided that the intermediate result (RM1 + N) does not
   --  have extra precision (which is why we call Machine). When we compute
   --  RM1 + N, the exponent of N will be normalized and the mantissa shifted
   --  appropriately so the lower order bits, which cannot contribute to the
   --  integer part of N, fall off on the right. When we subtract RM1 again,
   --  the significant bits of N are shifted to the left, and what we have is
   --  an integer, because only the first e bits are different from zero
   --  (assuming binary radix here).

   function Truncation (X : T) return T is
      Result : T;

   begin
      Result := abs X;

      if Result >= RM1 then
         return T'Machine (X);

      else
         Result := T'Machine (RM1 + Result) - RM1;

         if Result > abs X then
            Result := Result - 1.0;
         end if;

         if X > 0.0 then
            return Result;

         elsif X < 0.0 then
            return -Result;

         --  For zero case, make sure sign of zero is preserved

         else
            return X;
         end if;
      end if;
   end Truncation;

   -----------------------
   -- Unbiased_Rounding --
   -----------------------

   function Unbiased_Rounding (X : T) return T is
      Abs_X  : constant T := abs X;
      Result : T;
      Tail   : T;

   begin
      Result := Truncation (Abs_X);
      Tail   := Abs_X - Result;

      if Tail > 0.5 then
         Result := Result + 1.0;

      elsif Tail = 0.5 then
         Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
      end if;

      if X > 0.0 then
         return Result;

      elsif X < 0.0 then
         return -Result;

      --  For zero case, make sure sign of zero is preserved

      else
         return X;
      end if;
   end Unbiased_Rounding;

   -----------
   -- Valid --
   -----------

   function Valid (X : not null access T) return Boolean is
      type Access_T is access all T;
      function To_Address is
        new Ada.Unchecked_Conversion (Access_T, System.Address);

      Rep : Float_Rep;
      for Rep'Address use To_Address (Access_T (X));
      --  Rep is a view of the input floating-point parameter. Note that we
      --  must avoid reading the actual bits of this parameter in float form
      --  since it may be a signalling NaN.

      Exp : constant IEEE_Erange :=
              Integer ((Rep (MSW) and Exp_Mask) / Exp_Factor) - IEEE_Ebias;
      --  Mask/Shift X to only get bits from the exponent. Then convert biased
      --  value to final value.

   begin
      if Exp = IEEE_Emax + 1 then
         --  This is an infinity or a NaN, i.e. always invalid

         return False;

      elsif Exp in IEEE_Emin .. IEEE_Emax then
         --  This is a normalized number, i.e. always valid

         return True;

      else pragma Assert (Exp = IEEE_Emin - 1);
         --  This is a denormalized number, valid if T'Denorm is True or 0.0

         return T'Denorm or else X.all = 0.0;
      end if;
   end Valid;

end System.Fat_Gen;