1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- G N A T . D Y N A M I C _ T A B L E S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2000-2020, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
pragma Compiler_Unit_Warning;
with GNAT.Heap_Sort_G;
with Ada.Unchecked_Deallocation;
with System;
package body GNAT.Dynamic_Tables is
-----------------------
-- Local Subprograms --
-----------------------
function Last_Allocated (T : Instance) return Table_Last_Type;
pragma Inline (Last_Allocated);
-- Return the index of the last allocated element
procedure Grow (T : in out Instance; New_Last : Table_Last_Type);
-- This is called when we are about to set the value of Last to a value
-- that is larger than Last_Allocated. This reallocates the table to the
-- larger size, as indicated by New_Last. At the time this is called,
-- Last (T) is still the old value, and this does not modify it.
--------------
-- Allocate --
--------------
procedure Allocate (T : in out Instance; Num : Integer := 1) is
begin
-- Note that Num can be negative
pragma Assert (not T.Locked);
Set_Last (T, Last (T) + Table_Index_Type'Base (Num));
end Allocate;
------------
-- Append --
------------
procedure Append (T : in out Instance; New_Val : Table_Component_Type) is
pragma Assert (not T.Locked);
New_Last : constant Table_Last_Type := Last (T) + 1;
begin
if New_Last <= Last_Allocated (T) then
-- Fast path
T.P.Last := New_Last;
T.Table (New_Last) := New_Val;
else
Set_Item (T, New_Last, New_Val);
end if;
end Append;
----------------
-- Append_All --
----------------
procedure Append_All (T : in out Instance; New_Vals : Table_Type) is
begin
for J in New_Vals'Range loop
Append (T, New_Vals (J));
end loop;
end Append_All;
--------------------
-- Decrement_Last --
--------------------
procedure Decrement_Last (T : in out Instance) is
begin
pragma Assert (not T.Locked);
Allocate (T, -1);
end Decrement_Last;
-----------
-- First --
-----------
function First return Table_Index_Type is
begin
return Table_Low_Bound;
end First;
--------------
-- For_Each --
--------------
procedure For_Each (Table : Instance) is
Quit : Boolean := False;
begin
for Index in First .. Last (Table) loop
Action (Index, Table.Table (Index), Quit);
exit when Quit;
end loop;
end For_Each;
----------
-- Grow --
----------
procedure Grow (T : in out Instance; New_Last : Table_Last_Type) is
-- Note: Type Alloc_Ptr below needs to be declared locally so we know
-- the bounds. That means that the collection is local, so is finalized
-- when leaving Grow. That's why this package doesn't support controlled
-- types; the table elements would be finalized prematurely. An Ada
-- implementation would also be within its rights to reclaim the
-- storage. Fortunately, GNAT doesn't do that.
pragma Assert (not T.Locked);
pragma Assert (New_Last > Last_Allocated (T));
subtype Table_Length_Type is Table_Index_Type'Base
range 0 .. Table_Index_Type'Base'Last;
Old_Last_Allocated : constant Table_Last_Type := Last_Allocated (T);
Old_Allocated_Length : constant Table_Length_Type :=
Old_Last_Allocated - First + 1;
New_Length : constant Table_Length_Type := New_Last - First + 1;
New_Allocated_Length : Table_Length_Type;
begin
if T.Table = Empty_Table_Ptr then
New_Allocated_Length := Table_Length_Type (Table_Initial);
else
New_Allocated_Length :=
Table_Length_Type
(Long_Long_Integer (Old_Allocated_Length) *
(100 + Long_Long_Integer (Table_Increment)) / 100);
end if;
-- Make sure it really did grow
if New_Allocated_Length <= Old_Allocated_Length then
New_Allocated_Length := Old_Allocated_Length + 10;
end if;
if New_Allocated_Length <= New_Length then
New_Allocated_Length := New_Length + 10;
end if;
pragma Assert (New_Allocated_Length > Old_Allocated_Length);
pragma Assert (New_Allocated_Length > New_Length);
T.P.Last_Allocated := First + New_Allocated_Length - 1;
declare
subtype Old_Alloc_Type is Table_Type (First .. Old_Last_Allocated);
type Old_Alloc_Ptr is access all Old_Alloc_Type;
procedure Free is
new Ada.Unchecked_Deallocation (Old_Alloc_Type, Old_Alloc_Ptr);
function To_Old_Alloc_Ptr is
new Ada.Unchecked_Conversion (Table_Ptr, Old_Alloc_Ptr);
subtype Alloc_Type is
Table_Type (First .. First + New_Allocated_Length - 1);
type Alloc_Ptr is access all Alloc_Type;
function To_Table_Ptr is
new Ada.Unchecked_Conversion (Alloc_Ptr, Table_Ptr);
Old_Table : Old_Alloc_Ptr := To_Old_Alloc_Ptr (T.Table);
New_Table : constant Alloc_Ptr := new Alloc_Type;
begin
if T.Table /= Empty_Table_Ptr then
New_Table (First .. Last (T)) := Old_Table (First .. Last (T));
Free (Old_Table);
end if;
T.Table := To_Table_Ptr (New_Table);
end;
pragma Assert (New_Last <= Last_Allocated (T));
pragma Assert (T.Table /= null);
pragma Assert (T.Table /= Empty_Table_Ptr);
end Grow;
--------------------
-- Increment_Last --
--------------------
procedure Increment_Last (T : in out Instance) is
begin
pragma Assert (not T.Locked);
Allocate (T, 1);
end Increment_Last;
----------
-- Init --
----------
procedure Init (T : in out Instance) is
pragma Assert (not T.Locked);
subtype Alloc_Type is Table_Type (First .. Last_Allocated (T));
type Alloc_Ptr is access all Alloc_Type;
procedure Free is new Ada.Unchecked_Deallocation (Alloc_Type, Alloc_Ptr);
function To_Alloc_Ptr is
new Ada.Unchecked_Conversion (Table_Ptr, Alloc_Ptr);
Temp : Alloc_Ptr := To_Alloc_Ptr (T.Table);
begin
if T.Table = Empty_Table_Ptr then
pragma Assert (T.P = (Last_Allocated | Last => First - 1));
null;
else
Free (Temp);
T.Table := Empty_Table_Ptr;
T.P := (Last_Allocated | Last => First - 1);
end if;
end Init;
--------------
-- Is_Empty --
--------------
function Is_Empty (T : Instance) return Boolean is
begin
return Last (T) = First - 1;
end Is_Empty;
----------
-- Last --
----------
function Last (T : Instance) return Table_Last_Type is
begin
return T.P.Last;
end Last;
--------------------
-- Last_Allocated --
--------------------
function Last_Allocated (T : Instance) return Table_Last_Type is
begin
return T.P.Last_Allocated;
end Last_Allocated;
----------
-- Move --
----------
procedure Move (From, To : in out Instance) is
begin
pragma Assert (not From.Locked);
pragma Assert (not To.Locked);
pragma Assert (Is_Empty (To));
To := From;
From.Table := Empty_Table_Ptr;
From.Locked := False;
From.P.Last_Allocated := First - 1;
From.P.Last := First - 1;
pragma Assert (Is_Empty (From));
end Move;
-------------
-- Release --
-------------
procedure Release (T : in out Instance) is
pragma Assert (not T.Locked);
Old_Last_Allocated : constant Table_Last_Type := Last_Allocated (T);
function New_Last_Allocated return Table_Last_Type;
-- Compute the new value of Last_Allocated. This is normally equal to
-- Last, but if Release_Threshold /= 0, then we need to take that into
-- account.
------------------------
-- New_Last_Allocated --
------------------------
function New_Last_Allocated return Table_Last_Type is
subtype Table_Length_Type is Table_Index_Type'Base
range 0 .. Table_Index_Type'Base'Last;
Length : constant Table_Length_Type := Last (T) - First + 1;
Comp_Size_In_Bytes : constant Table_Length_Type :=
Table_Type'Component_Size / System.Storage_Unit;
Length_Threshold : constant Table_Length_Type :=
Table_Length_Type (Release_Threshold) / Comp_Size_In_Bytes;
begin
if Release_Threshold = 0 or else Length < Length_Threshold then
return Last (T);
else
declare
Extra_Length : constant Table_Length_Type := Length / 1000;
begin
return (Length + Extra_Length) - 1 + First;
end;
end if;
end New_Last_Allocated;
-- Local variables
New_Last_Alloc : constant Table_Last_Type := New_Last_Allocated;
-- Start of processing for Release
begin
if New_Last_Alloc < Last_Allocated (T) then
pragma Assert (Last (T) < Last_Allocated (T));
pragma Assert (T.Table /= Empty_Table_Ptr);
declare
subtype Old_Alloc_Type is Table_Type (First .. Old_Last_Allocated);
type Old_Alloc_Ptr is access all Old_Alloc_Type;
procedure Free is
new Ada.Unchecked_Deallocation (Old_Alloc_Type, Old_Alloc_Ptr);
function To_Old_Alloc_Ptr is
new Ada.Unchecked_Conversion (Table_Ptr, Old_Alloc_Ptr);
subtype Alloc_Type is Table_Type (First .. New_Last_Alloc);
type Alloc_Ptr is access all Alloc_Type;
function To_Table_Ptr is
new Ada.Unchecked_Conversion (Alloc_Ptr, Table_Ptr);
Old_Table : Old_Alloc_Ptr := To_Old_Alloc_Ptr (T.Table);
New_Table : constant Alloc_Ptr := new Alloc_Type;
begin
New_Table (First .. Last (T)) := Old_Table (First .. Last (T));
T.P.Last_Allocated := New_Last_Alloc;
Free (Old_Table);
T.Table := To_Table_Ptr (New_Table);
end;
end if;
end Release;
--------------
-- Set_Item --
--------------
procedure Set_Item
(T : in out Instance;
Index : Valid_Table_Index_Type;
Item : Table_Component_Type)
is
begin
pragma Assert (not T.Locked);
-- If Set_Last is going to reallocate the table, we make a copy of Item,
-- in case the call was "Set_Item (T, X, T.Table (Y));", and Item is
-- passed by reference. Without the copy, we would deallocate the array
-- containing Item, leaving a dangling pointer.
if Index > Last_Allocated (T) then
declare
Item_Copy : constant Table_Component_Type := Item;
begin
Set_Last (T, Index);
T.Table (Index) := Item_Copy;
end;
else
if Index > Last (T) then
Set_Last (T, Index);
end if;
T.Table (Index) := Item;
end if;
end Set_Item;
--------------
-- Set_Last --
--------------
procedure Set_Last (T : in out Instance; New_Val : Table_Last_Type) is
begin
pragma Assert (not T.Locked);
if New_Val > Last_Allocated (T) then
Grow (T, New_Val);
end if;
T.P.Last := New_Val;
end Set_Last;
----------------
-- Sort_Table --
----------------
procedure Sort_Table (Table : in out Instance) is
Temp : Table_Component_Type;
-- A temporary position to simulate index 0
-- Local subprograms
function Index_Of (Idx : Natural) return Table_Index_Type'Base;
-- Return index of Idx'th element of table
function Lower_Than (Op1, Op2 : Natural) return Boolean;
-- Compare two components
procedure Move (From : Natural; To : Natural);
-- Move one component
package Heap_Sort is new GNAT.Heap_Sort_G (Move, Lower_Than);
--------------
-- Index_Of --
--------------
function Index_Of (Idx : Natural) return Table_Index_Type'Base is
J : constant Integer'Base :=
Table_Index_Type'Base'Pos (First) + Idx - 1;
begin
return Table_Index_Type'Base'Val (J);
end Index_Of;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
if From = 0 then
Table.Table (Index_Of (To)) := Temp;
elsif To = 0 then
Temp := Table.Table (Index_Of (From));
else
Table.Table (Index_Of (To)) :=
Table.Table (Index_Of (From));
end if;
end Move;
----------------
-- Lower_Than --
----------------
function Lower_Than (Op1, Op2 : Natural) return Boolean is
begin
if Op1 = 0 then
return Lt (Temp, Table.Table (Index_Of (Op2)));
elsif Op2 = 0 then
return Lt (Table.Table (Index_Of (Op1)), Temp);
else
return
Lt (Table.Table (Index_Of (Op1)), Table.Table (Index_Of (Op2)));
end if;
end Lower_Than;
-- Start of processing for Sort_Table
begin
Heap_Sort.Sort (Natural (Last (Table) - First) + 1);
end Sort_Table;
end GNAT.Dynamic_Tables;
|